Powered by Deep Web Technologies
Note: This page contains sample records for the topic "force microscopy afm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Geochemistry Atomic Force Microscopy | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

imaging modes: contact, intermittent contact, phase imaging, magnetic force microscopy, electric force microscopy, surface potential microscopy, scanning capacitance microscopy,...

2

The use of atomic force microscopy (AFM) to study the surface topography of commercial fluid cracking catalysts (FCCs) and pillared interlayered clay (PILC) catalysts  

Science Journals Connector (OSTI)

An atomic force microscope operating in contact or Tapping ModeTM has been used to study the surface morphology, nanostructure, clay plates packing and conformation while providing nanometer-scale features of \\{FCCs\\} surfaces not readily accessible by other microscopic techniques. Contact mode micrometer-scale (15?m x 15?m) AFM images have revealed that the topography and molecular organization of the surface of several commercial \\{FCCs\\} are fairly heterogenous in nature, frequently containing discontinuities represented by deep trenches, valleys and crater-like openings with micrometer dimensions. Surfaces are in general, composed of short stacks of plates with voids or pores between these stacks resulting from materials occlusion between plates, from missing plates, missing stacks of plates and from misaligned stacks of plates. Gross structural differences between fresh and equilibrium FCCs, were not observed. However surfaces of equilibrium \\{FCCs\\} may contain debris possibly representing NiO and V2O5 deposits, in agreement with chemical analysis. Not all equilibrium microspheres contain surface debris. Thus AFM images allow the distinction of old and young FCC fractions in equilibrium FCC samples. Coke deposits during gas oil cracking at MAT conditions, are imaged as raised surface features representing molecules or cluster of molecules. Contact-mode AFM images of pillared interlayered clays (PILCs) cracking catalysts having alumina clusters as the structure supporting pillars, represent the catalyst surface as a collection of white spots in an hexagonal arrangements having nearest neighbor and lateral distances in agreement with the repeat distances of the clay siloxane layer; evidenced of surface alumina debris was not observed an all the extraframework alumina introduced by the pillaring reaction is located in the clay interlamellar space. After exposure for 5h to 100% steam at 760 C and 1 atm, the structural parameters of the surface disappear when the PILC was prepared using montmorillonite and were retained when the PILC was prepared from rectorite. Thus \\{PILCs\\} collapse is the result of the clay (single) silicate layer hydrothermal instability and it occurs irrespective of the hydrothermal stability of the pillars used. In contrast to FCCs, coke deposition from gas oil cracking at MAT conditions, form on the surface of pillared rectorites a layer geometrically similar to graphite that can be easily removed by heating in air at 600C without affecting the PILC's structure or cracking activity.

Mario L. Occelli; Scot A.C. Gould

2004-01-01T23:59:59.000Z

3

Spectroscopy and atomic force microscopy of biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectroscopy Spectroscopy and atomic force microscopy of biomass L. Tetard a,b , A. Passian a,b,n , R.H. Farahi a , U.C. Kalluri c , B.H. Davison c , T. Thundat a,b a Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA b Department of Physics, University of Tennessee, Knoxville, TN 37996, USA c Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA a r t i c l e i n f o Keywords: Atomic force microscopy Spectroscopy Plant cells Biomass Nanomechanics a b s t r a c t Scanning probe microscopy has emerged as a powerful approach to a broader understanding of the molecular architecture of cell walls, which may shed light on the challenge of efficient cellulosic ethanol production. We have obtained preliminary images of both Populus and switchgrass samples using atomic force microscopy (AFM). The results show distinctive features that are shared by switchgrass

4

Atomic Force Microscopy and Kelvin Probe Force Microscopy Evidence of Local Structural Inhomogeneity and Nonuniform Dopant Distribution in Conducting Polybithiophene  

Science Journals Connector (OSTI)

Atomic Force Microscopy and Kelvin Probe Force Microscopy Evidence of Local Structural Inhomogeneity and Nonuniform Dopant Distribution in Conducting Polybithiophene ... The fundamental difference between polymer grains and grain peripheral areas demonstrated by KFM was also supported by in situ contact-mode AFM data taken with the as-grown polymer film. ... (1)?Pekker, S.; Janossy, A. In Handbook of Conducting Polymers; Skotheim, T. A., Ed.; Marcel Dekker:? New York, 1986; Vol. ...

Oleg A. Semenikhin; Lei Jiang; Tomokazu Iyoda; Kazuhito Hashimoto; Akira Fujishima

1996-11-28T23:59:59.000Z

5

Spatial spectrograms of vibrating atomic force microscopy cantilevers coupled to sample surfaces  

SciTech Connect

Many advanced dynamic Atomic Force Microscopy (AFM) techniques such as contact resonance, force modulation, piezoresponse force microscopy, electrochemical strain microscopy, and AFM infrared spectroscopy exploit the dynamic response of a cantilever in contact with a sample to extract local material properties. Achieving quantitative results in these techniques usually requires the assumption of a certain shape of cantilever vibration. We present a technique that allows in-situ measurements of the vibrational shape of AFM cantilevers coupled to surfaces. This technique opens up unique approaches to nanoscale material property mapping, which are not possible with single point measurements alone.

Wagner, Ryan; Raman, Arvind, E-mail: raman@purdue.edu [Birck Nanotechnology Center, 1205 W. State Street, Purdue University, West Lafayette, Indiana 47907 (United States)] [Birck Nanotechnology Center, 1205 W. State Street, Purdue University, West Lafayette, Indiana 47907 (United States); Proksch, Roger, E-mail: Roger.Proksch@oxinst.com [Asylum Research, 6310 Hollister Ave., Santa Barbara, California 93117 (United States)] [Asylum Research, 6310 Hollister Ave., Santa Barbara, California 93117 (United States)

2013-12-23T23:59:59.000Z

6

Atomic Force Microscopy in Nanomedicine  

Science Journals Connector (OSTI)

The combination of AFM with conventional techniques, as well as AFM itself, allows answering biomedical questions of high interest. We could show this clearly for CFTR with single molecule imaging and observat...

Dessy Nikova; Tobias Lange; Hans Oberleithner

2006-01-01T23:59:59.000Z

7

Over the past summer, I participated in three separate research projects related to Nanotribology using atomic force microscopy technique (AFM) in Dr. Carpick's laboratory under the guidance of Dr. Robert  

E-Print Network (OSTI)

Over the past summer, I participated in three separate research projects related to Nanotribology. Robert W. Carpick and Dr. Nitya N. Gosvami. The first project was to study how the properties of an AFM data acquisition box controlled using LabView software. Matlab scripts were then written to analyze

Carpick, Robert W.

8

Thermal calibration of photodiode sensitivity for atomic force microscopy Phil Attarda  

E-Print Network (OSTI)

Thermal calibration of photodiode sensitivity for atomic force microscopy Phil Attarda School 21 November 2006 The photodiode sensitivity in the atomic force microscope is calibrated by relating measurement with the atomic force microscope AFM requires the sensitivity of the photodiode, which re- lates

Attard, Phil

9

Characterization of gold nanoparticle films: Rutherford backscattering spectroscopy, scanning electron microscopy with image analysis, and atomic force microscopy  

SciTech Connect

Gold nanoparticle films are of interest in several branches of science and technology, and accurate sample characterization is needed but technically demanding. We prepared such films by DC magnetron sputtering and recorded their mass thickness by Rutherford backscattering spectroscopy. The geometric thickness d{sub g}from the substrate to the tops of the nanoparticleswas obtained by scanning electron microscopy (SEM) combined with image analysis as well as by atomic force microscopy (AFM). The various techniques yielded an internally consistent characterization of the films. In particular, very similar results for d{sub g} were obtained by SEM with image analysis and by AFM.

Lansker, Pia C., E-mail: pia.lansaker@angstrom.uu.se; Niklasson, Gunnar A.; Granqvist, Claes G. [Department of Engineering Sciences, The ngstrm Laboratory, Uppsala University, P. O. Box 534, SE-751 21 Uppsala (Sweden); Halln, Anders [Royal Institute of Technology, KTH-ICT, Elektrum 229, Kista, SE-164 40 Stockholm (Sweden)

2014-10-15T23:59:59.000Z

10

Liquid contact resonance atomic force microscopy via experimental reconstruction of the hydrodynamic function  

SciTech Connect

We present a method to correct for surface-coupled inertial and viscous fluid loading forces in contact resonance (CR) atomic force microscopy (AFM) experiments performed in liquid. Based on analytical hydrodynamic theory, the method relies on experimental measurements of the AFM cantilever's free resonance peaks near the sample surface. The free resonance frequencies and quality factors in both air and liquid allow reconstruction of a continuous hydrodynamic function that can be used to adjust the CR data in liquid. Validation experiments utilizing thermally excited free and in-contact spectra were performed to assess the accuracy of our approach. Results show that the method recovers the air frequency values within approximately 6%. Knowledge of fluid loading forces allows current CR analysis techniques formulated for use in air and vacuum environments to be applied to liquid environments. Our technique greatly extends the range of measurement environments available to CR-AFM.

Tung, Ryan C., E-mail: ryan.tung@nist.gov; Killgore, Jason P.; Hurley, Donna C. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)

2014-06-14T23:59:59.000Z

11

Atomic Force and Scanning Electron Microscopy of Atmospheric Particles  

E-Print Network (OSTI)

conducted so as to characterize atmospheric aerosols from anthropogenic (pollution) and natural (sea saltAtomic Force and Scanning Electron Microscopy of Atmospheric Particles ZAHAVA BARKAY,1 * AMIT 69978, Israel KEY WORDS atmospheric aerosols; atomic force microscopy; scanning electron microscopy

Shapira, Yoram

12

Imaging and quantitative data acquisition of biological cell walls with Atomic Force Microscopy and Scanning Acoustic Microscopy  

SciTech Connect

This chapter demonstrates the feasibility of Atomic Force Microscopy (AFM) and High Frequency Scanning Acoustic Microscopy (HF-SAM) as tools to characterize biological tissues. Both the AFM and the SAM have shown to provide imaging (with different resolution) and quantitative elasticity measuring abilities. Plant cell walls with minimal disturbance and under conditions of their native state have been examined with these two kinds of microscopy. After descriptions of both the SAM and AFM, their special features and the typical sample preparation is discussed. The sample preparation is focused here on epidermal peels of onion scales and celery epidermis cells which were sectioned for the AFM to visualize the inner surface (closest to the plasma membrane) of the outer epidermal wall. The nm-wide cellulose microfibrils orientation and multilayer structure were clearly observed. The microfibril orientation and alignment tend to be more organized in older scales compared with younger scales. The onion epidermis cell wall was also used as a test analog to study cell wall elasticity by the AFM nanoindentation and the SAM V(z) feature. The novelty in this work was to demonstrate the capability of these two techniques to analyze isolated, single layered plant cell walls in their natural state. AFM nanoindentation was also used to probe the effects of Ethylenediaminetetraacetic acid (EDTA), and calcium ion treatment to modify pectin networks in cell walls. The results suggest a significant modulus increase in the calcium ion treatment and a slight decrease in EDTA treatment. To complement the AFM measurements, the HF-SAM was used to obtain the V(z) signatures of the onion epidermis. These measurements were focused on documenting the effect of pectinase enzyme treatment. The results indicate a significant change in the V(z) signature curves with time into the enzyme treatment. Thus AFM and HF-SAM open the door to a systematic nondestructive structure and mechanical property study of complex biological cell walls. A unique feature of this approach is that both microscopes allow the biological samples to be examined in their natural fluid (water) environment.

Tittmann, B. R. [Penn State; Xi, X. [Penn State

2014-09-01T23:59:59.000Z

13

Measuring Shear Stress in Microfluidics using Traction Force Microscopy  

Science Journals Connector (OSTI)

Traction force microscopy is a previously-developed method to measure shear forces exerted by biological cells on substrates to which they are adhered (Dembo, 1999). The technique determines the shear stress a...

Bryant Mueller

2011-01-01T23:59:59.000Z

14

Abstract--Automation has long been recognized as an im-portant goal in AFM (Atomic Force Microscope) nanomanipu-  

E-Print Network (OSTI)

Abstract--Automation has long been recognized as an im- portant goal in AFM (Atomic Force on the order of 10 nm, however, automation has re- mained an elusive goal, primarily because of the spatial multi-tip arrays) or by automating the manipulation process, thus bypassing the time-consuming and labor

Southern California, University of

15

Comments on the paper A comprehensive modeling and vibration analysis of AFM microcantilevers subjected to nonlinear tip-sample interaction forcesŽ by Sohrab Eslami and Nader Jalili  

NLE Websites -- All DOE Office Websites (Extended Search)

Comments Comments on the paper "A comprehensive modeling and vibration analysis of AFM microcantilevers subjected to nonlinear tip-sample interaction forces" by Sohrab Eslami and Nader Jalili Ali Passian a,b,c,n , Laurene Tetard a , Thomas Thundat d a Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA b Department of Physics, University of Tennessee, Knoxville, TN 37996, USA c Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA d Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alta., Canada T6G 2V4 a r t i c l e i n f o Available online 4 April 2013 Keywords: Microscopy AFM MSAFM Imaging Nonlinear dynamics Nanomechanical forces a b s t r a c t This comment on the paper "A comprehensive modeling and vibration analysis of AFM microcantilevers subjected to nonlinear tip-sample interaction

16

E-Print Network 3.0 - afm force measurements Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

K. D. Usadel Summary: , measures the irreversible domain state magnetization of the AFM interface layer which is responsible... the magnetization of the whole FMAFM bilayer is...

17

Fabrication of sharp tungsten-coated tip for atomic force microscopy by ion-beam sputter deposition  

SciTech Connect

Tungsten (W) is significantly suitable as a tip material for atomic force microscopy (AFM) because its high mechanical stiffness enables the stable detection of tip-sample interaction forces. We have developed W sputter-coating equipment to compensate the drawbacks of conventional Si cantilever tips used in AFM measurements. By employing an ion gun commonly used for sputter cleaning of a cantilever tip, the equipment is capable of depositing conductive W films in the preparation chamber of a general ultrahigh vacuum (UHV)-AFM system without the need for an additional chamber or transfer system. This enables W coating of a cantilever tip immediately after sputter cleaning of the tip apex and just before the use in AFM observations. The W film consists of grain structures, which prevent tip dulling and provide sharpness (<3 nm in radius of curvature at the apex) comparable to that of the original Si tip apex. We demonstrate that in non-contact (NC)-AFM measurement, a W-coated Si tip can clearly resolve the atomic structures of a Ge(001) surface without any artifacts, indicating that, as a force sensor, the fabricated W-coated Si tip is superior to a bare Si tip.

Kinoshita, Yukinori; Naitoh, Yoshitaka; Li, Yan Jun; Sugawara, Yasuhiro [Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

2011-11-15T23:59:59.000Z

18

Adsorption of Glucose Oxidase onto Plasma-Polymerized Film Characterized by Atomic Force Microscopy, Quartz Crystal Microbalance, and Electrochemical Measurement  

Science Journals Connector (OSTI)

Adsorption of glucose oxidase (GOD) onto plasma-polymerized thin films (PPF) with nanoscale thickness was characterized by atomic force microscopy (AFM), quartz crystal microbalance (QCM), and electrochemical measurements. ... The electrophoretic mobility (u) of polystyrene particles at the PPF surfaces was measured, and the mobility obtained was converted into a zeta potential using the Smoluchowski equation, ? = 4??u/?, where ? is the viscosity of the solution and ? is the dielectric constant of the solvent. ...

Hitoshi Muguruma; Yoshihiro Kase; Naoya Murata; Kazunari Matsumura

2006-12-07T23:59:59.000Z

19

Oscillating String as a Force Sensor in Scanning Force Microscopy  

Science Journals Connector (OSTI)

We present a sensor that uses an oscillating string to detect forces. A cantilever beam serves as a sample stage. The string is attached to the free end of ... the free end of the beam modifies the string tension...

A. Stalder; U. Drig

1995-01-01T23:59:59.000Z

20

Note: Design and development of an integrated three-dimensional scanner for atomic force microscopy  

SciTech Connect

A compact scanning head for the Atomic Force Microscope (AFM) greatly enhances the portability of AFM and facilitates easy integration with other tools. This paper reports the design and development of a three-dimensional (3D) scanner integrated into an AFM micro-probe. The scanner is realized by means of a novel design for the AFM probe along with a magnetic actuation system. The integrated scanner, the actuation system, and their associated mechanical mounts are fabricated and evaluated. The experimentally calibrated actuation ranges are shown to be over 1 ?m along all the three axes.

Rashmi, T.; Dharsana, G.; Sriramshankar, R.; Sri Muthu Mrinalini, R.; Jayanth, G. R. [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India)] [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India)

2013-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "force microscopy afm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

E-Print Network 3.0 - afm-based force spectroscopy Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

3 4 5 > >> Page: << < 1 2 3 4 5 > >> 61 Investigation of nanolocal fluorescence resonance energy transfer for scanning probe microscopy Summary: confirmed in another series of...

22

The effect of patch potentials in Casimir force measurements determined by heterodyne Kelvin probe force microscopy  

E-Print Network (OSTI)

Measurements of the Casimir force require the elimination of electrostatic interactions between the surfaces. However, due to electrostatic patch potentials, the voltage required to minimize the total force may not be sufficient to completely nullify the electrostatic interaction. Thus, these surface potential variations cause an additional force, which can obscure the Casimir force signal. In this paper, we inspect the spatially varying surface potential (SP) of e-beamed, sputtered, sputtered and annealed, and template stripped gold surfaces with Heterodyne Amplitude Modulated Kelvin Probe Force Microscopy (HAM-KPFM). It is demonstrated that HAM-KPFM improves the spatial resolution of surface potential measurements compared to Amplitude Modulated Kelvin Probe Force Microscopy (AM-KPFM). We find that patch potentials vary depending on sample preparation, and that the calculated pressure can be similar to the pressure difference between Casimir force calculations employing the plasma and Drude models.

Joseph L. Garrett; David Somers; Jeremy N. Munday

2014-09-17T23:59:59.000Z

23

A system dynamics approach to user independence in high speed atomic force microscopy  

E-Print Network (OSTI)

As progress in molecular biology and nanotechnology continues, demand for rapid and high quality image acquisition has increased to the point where the limitations of atomic force microscopes (AFM) become impediments to ...

Burns, Daniel James

2010-01-01T23:59:59.000Z

24

On single-molecule DNA sequencing with atomic force microscopy using functionalized carbon nanotube probes  

E-Print Network (OSTI)

A novel DNA sequencing method is proposed based on the specific binding nature of nucleotides and measured by an atomic force microscope (AFM). A single molecule of DNA is denatured and immobilized on an atomically fiat ...

Burns, Daniel James

2004-01-01T23:59:59.000Z

25

SURFACE CHARACTERIZATION OF PAN-BASED CARBON FIBERS USING XPS, SIMS, AND AFM  

E-Print Network (OSTI)

SURFACE CHARACTERIZATION OF PAN-BASED CARBON FIBERS USING XPS, SIMS, AND AFM by Kris Anne Battleson on Carbon Fiber Surfaces.....................................17 Atomic Force Microscopy on Carbon Fiber Surfaces.....................................21 Numerical Methods...........................................................................

26

SUBMOLECULAR IMAGING OF EPITAXIALLY CRYSTALLIZED HELICAL POLYOLEFINS BY ATOMIC FORCE MICROSCOPY  

E-Print Network (OSTI)

Digital Instruments, Inc., Santa Barbara, Cal. USA. Images were taken with an A­type scan head (max. scan microscopy EM and electron diffraction ED. AFM pictures with high resolution could be obtained when using polypropylene has been determined by electron microscopy EM and electron diffraction ED: chain conformation

Peters, Achim

27

Mapping of Proteomic Composition on the Surfaces of Bacillus spores by Atomic Force Microscopy-based Immunolabeling  

SciTech Connect

Atomic force microscopy provides a unique capability to image high-resolution architecture and structural dynamics of pathogens (e.g. viruses, bacteria and bacterial spores) at near molecular resolution in native conditions. Further development of atomic force microscopy in order to enable the correlation of pathogen protein surface structures with specific gene products is essential to understand the mechanisms of the pathogen life cycle. We have applied an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures through the visualization of the binding of antibodies, conjugated with nanogold particles, to specific epitopes on Bacillus spore surfaces. This information is generated while simultaneously acquiring the surface morphology of the pathogen. The immunospecificity of this labeling method was established through the utilization of specific polyclonal and monoclonal antibodies that target spore coat and exosporium epitopes of Bacillus atrophaeus and Bacillus anthracis spores.

Plomp, M; Malkin, A J

2008-06-02T23:59:59.000Z

28

Atomic-Resolution Image of GaAs(110) Surface with an Ultrahigh-Vacuum Atomic Force Microscope (UHV-AFM)  

Science Journals Connector (OSTI)

The first demonstration of atomic-resolution imaging of a GaAs(HO) surface with an ultrahigh vacuum atomic force microscope (UHV-AFM) was performed. We also observed ... GaAs(llO). This result suggests that the UHV

Y. Sugawara; M. Ohta; K. Hontani; S. Morita; F. Osaka

1995-01-01T23:59:59.000Z

29

The study of organic crystals by atomic force microscopy  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.16 2-D and 3-D height images of a chocolate sample obtained at various storage times. . . . . . . . . . . . . . . . . . . . . . . . . 25 2.17 AFM images of the {110} face of paracetamol crystals. . . . . . 26 2.18 AFM images of glycine crystals... ]. Among others, such interactions include hydrogen bonding, halogen bonding, as well as pi-pi interactions [4]. By understanding the behaviour of these interactions, crystal engineering was developed not only for the study of crystal structures, but also...

Chow, Ernest Ho Hin

2014-07-01T23:59:59.000Z

30

Note: Electrical resolution during conductive atomic force microscopy measurements under different environmental conditions and contact forces  

SciTech Connect

Conductive atomic force microscopy experiments on gate dielectrics in air, nitrogen, and UHV have been compared to evaluate the impact of the environment on topography and electrical measurements. In current images, an increase of the lateral resolution and a reduction of the conductivity were observed in N{sub 2} and, especially, in UHV (where current depends also on the contact force). Both effects were related to the reduction/elimination of the water layer between the tip and the sample in N{sub 2}/UHV. Therefore, since current measurements are very sensitive to environmental conditions, these factors must be taken into consideration when comparisons between several experiments are performed.

Lanza, M.; Porti, M.; Nafria, M.; Aymerich, X. [Dept. Enginyeria Electronica, Universitat Autonoma de Barcelona, Edifici Q, 08193 Bellaterra (Spain); Whittaker, E.; Hamilton, B. [University of Manchester, Sackville Street, Manchester M60 JQD (United Kingdom)

2010-10-15T23:59:59.000Z

31

Calibration of lateral force measurements in atomic force microscopy with a piezoresistive force sensor  

SciTech Connect

We present here a method to calibrate the lateral force in the atomic force microscope. This method makes use of an accurately calibrated force sensor composed of a tipless piezoresistive cantilever and corresponding signal amplifying and processing electronics. Two ways of force loading with different loading points were compared by scanning the top and side edges of the piezoresistive cantilever. Conversion factors between the lateral force and photodiode signal using three types of atomic force microscope cantilevers with rectangular geometries (normal spring constants from 0.092 to 1.24 N/m and lateral stiffness from 10.34 to 101.06 N/m) were measured in experiments using the proposed method. When used properly, this method calibrates the conversion factors that are accurate to {+-}12.4% or better. This standard has less error than the commonly used method based on the cantilever's beam mechanics. Methods such of this allow accurate and direct conversion between lateral forces and photodiode signals without any knowledge of the cantilevers and the laser measuring system.

Xie Hui; Vitard, Julien; Haliyo, Sinan; Regnier, Stephane [Institut des Systemes Intelligents et Robotique (ISIR), Universite Pierre et Marie Curie-Paris 6/CNRS, 18 Route du Panorama-BP 61, 92265 Fontenay-Aux-Roses (France); Boukallel, Mehdi [Laboratoire de Robotique et Mesorobotique (LRM), CEA, 18 Route du Panorama-BP 61, 92265 Fontenay-Aux-Roses (France)

2008-03-15T23:59:59.000Z

32

Local elastic modulus of RF sputtered HfO{sub 2} thin film by atomic force acoustic microscopy  

SciTech Connect

Atomic force acoustic microscopy (AFAM) is a useful nondestructive technique for measurement of local elastic modulus of materials at nano-scale spatial resolution by measuring the contact resonance spectra for higher order modes of the AFM cantilever. The elastic modulus of RF sputtered HfO{sub 2} thin film has been measured quantitatively, using reference approach in which measurements are performed on the test and reference samples. Using AFAM, the measured elastic modulus of the HfO{sub 2} thin film is 22327 GPa, which is in agreement with the literature value of 22040 GPa for atomic layer deposited HfO{sub 2} thin film using nanoindentation technique.

Jena, S., E-mail: shuvendujena9@gmail.com; Tokas, R. B., E-mail: shuvendujena9@gmail.com; Sarkar, P., E-mail: shuvendujena9@gmail.com; Thakur, S.; Sahoo, N. K. [Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400 085 (India); Misal, J. S.; Rao, K. D. [Optics and Thin Film Laboratory, Autonagar, BARC-Vizag, Visakhapatnam-530 012 (India)

2014-04-24T23:59:59.000Z

33

Real-time atomic-resolution imaging of crystal growth process in water by phase modulation atomic force microscopy at one frame per second  

SciTech Connect

Recent advancement in dynamic-mode atomic force microscopy (AFM) has enabled its operation in liquid with atomic-scale resolution. However, its imaging speed has often been too slow to visualize atomic-scale dynamic processes. Here, we propose a method for making a significant improvement in the operation speed of dynamic-mode AFM. In this method, we use a wideband and low-latency phase detector with an improved algorithm for the signal complexification. We demonstrate atomic-scale imaging of a calcite crystal growth process in water at one frame per second. The significant improvement in the imaging speed should enable various studies on unexplored atomic-scale interfacial processes.

Miyata, Kazuki [Division of Electrical Engineering and Computer Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)] [Division of Electrical Engineering and Computer Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Asakawa, Hitoshi [Bio-AFM Frontier Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)] [Bio-AFM Frontier Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Fukuma, Takeshi, E-mail: fukuma@staff.kanazawa-u.ac.jp [Division of Electrical Engineering and Computer Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan) [Division of Electrical Engineering and Computer Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Bio-AFM Frontier Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); ACT-C, Japan Science and Technology Agency, Honcho 4-1-9, Kawaguchi 332-0012 (Japan)

2013-11-11T23:59:59.000Z

34

Real-Space Identification of Intermolecular Bonding with Atomic Force Microscopy  

Science Journals Connector (OSTI)

...Atomic Force Microscopy 10.1126/science.1242603 Jun Zhang Pengcheng Chen Bingkai Yuan Wei Ji Zhihai Cheng Xiaohui Qiu 1Key Laboratory...Intermolecular Bonding with Atomic Force Microscopy Jun Zhang, Pengcheng Chen, Bingkai Yuan, Wei Ji, Zhihai Cheng, Xiaohui Qiu...

Jun Zhang; Pengcheng Chen; Bingkai Yuan; Wei Ji; Zhihai Cheng; Xiaohui Qiu

2013-11-01T23:59:59.000Z

35

A calibration method for lateral forces for use with colloidal probe force microscopy cantilevers  

SciTech Connect

A calibration method is described for colloidal probe cantilevers that enables friction force measurements obtained using lateral force microscopy (LFM) to be quantified. The method is an adaptation of the lever method of Feiler et al. [A. Feiler, P. Attard, and I. Larson, Rev. Sci. Instum. 71, 2746 (2000)] and uses the advantageous positioning of probe particles that are usually offset from the central axis of the cantilever. The main sources of error in the calibration method are assessed, in particular, the potential misalignment of the long axis of the cantilever that ideally should be perpendicular to the photodiode detector. When this is not taken into account, the misalignment is shown to have a significant effect on the cantilever torsional stiffness but not on the lateral photodiode sensitivity. Also, because the friction signal is affected by the topography of the substrate, the method presented is valid only against flat substrates. Two types of particles, 20 {mu}m glass beads and UO{sub 3} agglomerates attached to silicon tapping mode cantilevers were used to test the method against substrates including glass, cleaved mica, and UO{sub 2} single crystals. Comparisons with the lateral compliance method of Cain et al. [R. G. Cain, S. Biggs, and N. W. Page, J. Colloid Interface Sci. 227, 55 (2000)] are also made.

Quintanilla, M. A. S.; Goddard, D. T. [Nexia Solutions Ltd., Springfields, Salwick, Preston, Lancashire PR4 0XJ (United Kingdom)

2008-02-15T23:59:59.000Z

36

Structural Characterization of Micromechanical Properties in Asphalt Using Atomic Force Microscopy  

E-Print Network (OSTI)

OF FIGURES FIGURE Page 1.1 Experimental flowchart?..?????????????????... 6 2.1 Van der Waals forces vs. distance.??????????????... 11 2.2 Beam-detection deflection scheme.??????????????... 11 3.1 (i) AFM controller and (ii... der Waals forces as the tip is moved further away from the sample. mo fro can bea . The AF st common m the back o tilever bend m on the PS Figure (Ad M detects th technique, a f the cantile s, due to int PD shifts. Figure (Ad...

Allen, Robert Grover

2012-02-14T23:59:59.000Z

37

Interpretation of frequency modulation atomic force microscopy in terms of fractional calculus  

Science Journals Connector (OSTI)

It is widely recognized that small amplitude frequency modulation atomic force microscopy probes the derivative of the interaction force between tip and sample. For large amplitudes, however, such a physical connection is currently lacking, although it has been observed that the frequency shift presents a quantity intermediate to the interaction force and energy for certain force laws. Here we prove that these observations are a universal property of large amplitude frequency modulation atomic force microscopy, by establishing that the frequency shift is proportional to the half-fractional integral of the force, regardless of the force law. This finding indicates that frequency modulation atomic force microscopy can be interpreted as a fractional differential operator, where the order of the derivative?integral is dictated by the oscillation amplitude. We also establish that the measured frequency shift varies systematically from a probe of the force gradient for small oscillation amplitudes, through to the measurement of a quantity intermediate to the force and energy (the half-fractional integral of the force) for large oscillation amplitudes. This has significant implications to measurement sensitivity, since integrating the force will smooth its behavior, while differentiating it will enhance variations. This highlights the importance in choice of oscillation amplitude when wishing to optimize the sensitivity of force spectroscopy measurements to short-range interactions and consequently imaging with the highest possible resolution.

John E. Sader and Suzanne P. Jarvis

2004-07-27T23:59:59.000Z

38

Potential Distribution in Functionalized Graphene Devices Probed by Kelvin Probe Force Microscopy  

E-Print Network (OSTI)

graphene sheet (FGS) [1] can be utilized in sensor technology, batteries and supercapacitors becausePotential Distribution in Functionalized Graphene Devices Probed by Kelvin Probe Force Microscopy Institute of Physics. Related Articles Ferromagnetic fluctuation in doped armchair graphene nanoribbons J

Aksay, Ilhan A.

39

Chemical Force Microscopy Nanoscale Probing of Fundamental Chemical Interactions  

Science Journals Connector (OSTI)

Intermolecular forces impact a wide spectrum of problems in condensed phases: from molecular recognition, self-assembly, and protein folding at the molecular and nanometer scale, to interfacial fracture, frict...

Aleksandr Noy; Dmitry V. Vezenov

2008-01-01T23:59:59.000Z

40

High-resolution friction force microscopy under electrochemical control Aleksander Labuda,1  

E-Print Network (OSTI)

High-resolution friction force microscopy under electrochemical control Aleksander Labuda,1 William and development of a friction force microscope for high-resolution studies in electrochemical environments in liquids. The noise of the system is analyzed based on a methodology for the quantification of all

Grütter, Peter

Note: This page contains sample records for the topic "force microscopy afm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Thermal calibration of photodiode sensitivity for atomic force microscopy  

SciTech Connect

The photodiode sensitivity in the atomic force microscope is calibrated by relating the voltage noise to the thermal fluctuations of the cantilever angle. The method accounts for the ratio of the thermal fluctuations measured in the fundamental vibration mode to the total, and also for the tilt and extended tip of the cantilever. The method is noncontact and is suitable for soft or deformable surfaces where the constant compliance method cannot be used. For hard surfaces, the method can also be used to calibrate the cantilever spring constant.

Attard, Phil; Pettersson, Torbjoern; Rutland, Mark W. [School of Chemistry F11, University of Sydney, NSW 2006 Australia (Australia); Department of Chemistry, Royal Institute of Technology, SE-100 44 Stockholm, Sweden and Institute for Surface Chemistry, Box 5607, SE-114 86 Stockholm (Sweden)

2006-11-15T23:59:59.000Z

42

Surface Geometric Structure of Chemically Modified Silica Studied by Direct Atomic Force Microscopy (AFM) Imaging and Adsorption Method  

Science Journals Connector (OSTI)

The equation to estimate the surface area (m2g-1) according to the latter method is where NA is Avogadro's constant (mol-1), ? is the adsorbed amount (mL STPg-1), and P represents the relative pressure at which the monolayer is formed on the unmodified sample. ...

Masayoshi Fuji; Kotoe Machida; Takashi Takei; Tohru Watanabe; Masatoshi Chikazawa

2000-02-10T23:59:59.000Z

43

Simulations of friction force microscopy on the KBr(001) surface based on ab initio calculated tip-sample forces  

Science Journals Connector (OSTI)

We report on ab initio-based simulations of friction-force microscopy on the KBr(001) surface at zero and nonzero temperature. To simulate sliding friction, we employ an extended three-dimensional (3D) Prandtl-Tomlinson model. The microscopic part of the tip is modeled by K+- or Br--terminated tips. We use a tip-surface interaction potential, which is calculated within local-density approximation of density-functional theory and supplemented by a long-range van der Waals interaction resulting from the macroscopic part of the tip. Thermal fluctuations are included via random white noise. The loading force acting on the tip enters the Langevin equation of motion separately from all other forces so that it can be changed at will. We analyze friction as a function of loading force, temperature, and mass of the tip and identify regions of these parameters where distinct stick-slip behavior or ultra-low friction occurs. A comparison of our 3D ab initioresults with those obtained using sinusoidal tip-surface forces (1D model) is very revealing. By and large, both approaches yield results in good agreement at T=0K. At higher temperatures, however, distinct differences occur. For example, at T=295K, the 1D model calculations overestimate the friction hysteresis and energy dissipation, and for positive loading forces they even can yield a different periodicity in the friction-force profile.

Christine Wieferink; Peter Krger; Johannes Pollmann

2011-06-15T23:59:59.000Z

44

Noncovalent Cross-Linking of Casein by Epigallocatechin Gallate Characterized by Single Molecule Force Microscopy  

E-Print Network (OSTI)

force microscopy; astrin- gency; compaction INTRODUCTION Green tea contains a large amount is produced from green tea by fermentation, which oxidizes many of the tea polyphenols into higher molecular, Sheffield S3 7RH, United Kingdom Interaction of the tea polyphenol epigallocatechin gallate (EGCG

Williamson, Mike P.

45

High resolution UHV-AFM surface analysis on polymeric materials: Baltic Amber  

Science Journals Connector (OSTI)

In this paper we present, for the first time, the results from Atomic Force Microscopy (AFM) surface studies from freshly fractured Baltic Amber samples, carried out under ultrahigh vacuum (UHV) conditions from micrometer to nanometer resolution. The micrometric AFM images provide a structural clue to the birefringent behavior occasionally observed with amber samples. Two-dimensional pair-distance distributions of the nanometric AFM images prove the completely amorphous structure of the material. This, together with the detection of individual motifs such as aromatic rings, supports the notion of amber being an amorphous polymeric organic network, consistent with the accompanying X-Ray Photoelectron spectroscopy (XPS) data. No nanocrystalline inclusions could be found. The results also show that it is possible to obtain atomically resolved AFM images from amorphous dielectric surfaces.

E. Barletta; K. Wandelt

2011-01-01T23:59:59.000Z

46

AFM CHARACTERIZATION OF LASER INDUCED DAMAGE ON CDZNTE CRYSTAL SURFACES  

SciTech Connect

Semi-conducting CdZnTe (or CZT) crystals can be used in a variety of detector-type applications. CZT shows great promise for use as a gamma radiation spectrometer. However, its performance is adversely affected by point defects, structural and compositional heterogeneities within the crystals, such as twinning, pipes, grain boundaries (polycrystallinity), secondary phases and in some cases, damage caused by external forces. One example is damage that occurs during characterization of the surface by a laser during Raman spectroscopy. Even minimal laser power can cause Te enriched areas on the surface to appear. The Raman spectra resulting from measurements at moderate intensity laser power show large increases in peak intensity that is attributed to Te. Atomic Force Microscopy (AFM) was used to characterize the extent of damage to the CZT crystal surface following exposure to the Raman laser. AFM data reveal localized surface damage in the areas exposed to the Raman laser beam. The degree of surface damage to the crystal is dependent on the laser power, with the most observable damage occurring at high laser power. Moreover, intensity increases in the Te peaks of the Raman spectra are observed even at low laser power with little to no visible damage observed by AFM. AFM results also suggest that exposure to the same amount of laser power yields different amounts of surface damage depending on whether the exposed surface is the Te terminating face or the Cd terminating face of CZT.

Hawkins, S; Lucile Teague, L; Martine Duff, M; Eliel Villa-Aleman, E

2008-06-10T23:59:59.000Z

47

Effect of current compliance and voltage sweep rate on the resistive switching of HfO{sub 2}/ITO/Invar structure as measured by conductive atomic force microscopy  

SciTech Connect

The electrical characterization of HfO{sub 2}/ITO/Invar resistive switching memory structure was studied using conductive atomic force microscopy (AFM) with a semiconductor parameter analyzer, Agilent 4156C. The metal alloy Invar was used as the metal substrate to ensure good ohmic contact with the substrate holder of the AFM. A conductive Pt/Ir AFM tip was placed in direct contact with the HfO{sub 2} surface, such that it acted as the top electrode. Nanoscale current-voltage (I-V) characteristics of the HfO{sub 2}/ITO/Invar structure were measured by applying a ramp voltage through the conductive AFM tip at various current compliances and ramp voltage sweep rates. It was found that the resistance of the low resistance state (RLRS) decreased with increasing current compliance value, but resistance of high resistance state (RHRS) barely changed. However, both the RHRS and RLRS decreased as the voltage sweep rate increased. The reasons for this dependency on current compliance and voltage sweep rate are discussed.

Wu, You-Lin, E-mail: ylwu@ncnu.edu.tw; Liao, Chun-Wei [Department of Electrical Engineering, National Chi Nan University, Puli, Nantou, Taiwan (China); Ling, Jing-Jenn [Department of Applied Materials and Optoelectronic Engineering, National Chi Nan University, Puli, Nantou, Taiwan (China)

2014-06-16T23:59:59.000Z

48

AFM/LFM surface studies of a ternary polymer blend cast on substrates covered by a self-assembled monolayer  

E-Print Network (OSTI)

AFM/LFM surface studies of a ternary polymer blend cast on substrates covered by a self force microscopy; Friction; Self-assembly; Surface thermodynamics (including phase transitions); Growth are of utmost current interest. In many practical appli- cations films of incompatible mixtures are pre- pared

Zbigniew, Postawa

49

Note: Spring constant calibration of nanosurface-engineered atomic force microscopy cantilevers  

Science Journals Connector (OSTI)

The determination of the dynamic spring constant (k d ) of atomic force microscopy cantilevers is of crucial importance for converting cantilever deflection to accurate force data. Indeed the non-destructive fast and accurate measurement method of the cantilever dynamic spring constant by Sader et al. [Rev. Sci. Instrum.83 103705 (2012)] is confirmed here for plane geometry but surface modified cantilevers. It is found that the measured spring constants (k eff the dynamic one k d ) and the calculated (k d 1) are in good agreement within less than 10% error.

2014-01-01T23:59:59.000Z

50

Spectroscopic ellipsometric modeling of a BiTeSe write layer of an optical data storage device as guided by atomic force microscopy, scanning electron microscopy, and X-ray diffraction  

Science Journals Connector (OSTI)

Abstract Conventional magnetic tape is the most widely used medium for archival data storage. However, data stored on it need to be migrated every ca. 5years. Recently, optical discs that store information for hundreds, or even more than 1000years, have been introduced to the market. We recently proposed that technology in these optical discs be used to make an optical tape that would show greater permanence than its magnetic counterpart. Here we provide a detailed optical characterization of a sputtered thin film of bismuth, tellurium, and selenium (BTS) that is a proposed data storage layer for these devices. The methodology described herein should be useful in the future development of related materials. Spectroscopic ellipsometry (SE) data are obtained using interference enhancement, and the modeling of this data is guided by results from atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray reflectivity (XRR). By AFM, ca. 40nm BTS films show ca. 10nm roughness. SEM images also suggest considerable roughness in the films and indicate that they are composed of 13.15.9nm grains. XRD confirms that the films are crystalline and predicts a grain size of 172nm. XRD results are consistent with the composition of the films a mildly oxidized BTS material. Three models of increasing complexity are investigated to explain the SE data. The first model consists of a smooth, homogeneous BTS film. The second model adds a roughness layer to the previous model. The third model also has two layers. The bottom layer is modeled as a mixture of BTS and void using a Bruggeman effective medium approximation. The upper layer is similarly modeled, but with a gradient. The first model was unable to adequately model the SE data. The second model was an improvement lower MSE (4.4) and good agreement with step height measurements. The third model was even better very low MSE (2.6) and good agreement with AFM results. The third SE model predicted ca. 90% void at the film surface. XRR modeling of the film agreed well with the predictions from SE. The uniquenesses of the SE models were confirmed.

Hao Wang; Nitesh Madaan; Jacob Bagley; Anubhav Diwan; Yiqun Liu; Robert C. Davis; Barry M. Lunt; Stacey J. Smith; Matthew R. Linford

2014-01-01T23:59:59.000Z

51

Direct Visualization and Identification of Biofunctionalized Nanoparticles using a Magnetic Atomic Force Microscope  

Science Journals Connector (OSTI)

Because of its outstanding ability to image and manipulate single molecules, atomic force microscopy (AFM) established itself as a fundamental technique in nanobiotechnology. ... force microscope (AFM) has emerged as a powerful tool for exploring the forces and the dynamics of the interaction between individual ligands and receptors, either on isolated mols. ... In CRC Handbook of Chemistry and Physics, 90thed.; Lide, D. R., Eds.; CRC Press Inc.: Boca Raton, FL, 2010; pp 4-142 4-147. ...

Stephan Block; Gunnar Glo?ckl; Werner Weitschies; Christiane A. Helm

2011-08-05T23:59:59.000Z

52

Resolving the internal structure of individual atmospheric aerosol particle by the combination of Atomic Force Microscopy, ESEMEDX, Raman and ToFSIMS imaging  

Science Journals Connector (OSTI)

Abstract In this study, internal structures of individual aerosol particles were resolved by using micro-analytical techniques in combination. We demonstrated the practical applicability of the combined use of Atomic Force Microscopy (AFM), Environmental Scanning Electron Microscopy coupled with Energy-Dispersive X-ray analysis (ESEMEDX), Raman Microspectrometry (RMS) and Time-of-Flight Secondary Ion Mass Spectrometry (ToFSIMS) to provide morphological, elemental, molecular and outer surface imaging of the same individual airborne particles for the first time. The characterization of single particles collected in the industrial atmosphere influenced by marine air masses demonstrated the physicochemical evolution of the particles in a short time period. The marine-derived particles were mainly encountered as genuine sea salts internally mixed with reacted sea salts such as NaNO3 and liquid NO3? which are covered by an organic thin layer. The particles collected downwind the industrial area were solid particles composed of an internal mixture of iron oxides and of marine-derived particles coated with an organic layer. The formation of these particles is a result of coalescence, agglomeration and drying processes occurring in the atmosphere during the transport of particles in a short time period (~15min). It is demonstrated that the combined use of the different types of spectral and imaging data from the same individual particles in atmospheric aerosol sample provides richer information on their physicochemical characteristics than when those techniques were used alone or when two techniques in combination.

S. Sobanska; G. Falgayrac; J. Rimetz-Planchon; E. Perdrix; C. Brmard; J. Barbillat

2014-01-01T23:59:59.000Z

53

Domain-wall structure in thin films with perpendicular anisotropy: Magnetic force microscopy and polarized neutron reflectometry study  

E-Print Network (OSTI)

Ferromagnetic domain patterns and three-dimensional domain-wall configurations in thin CoCrPt films with perpendicular magnetic anisotropy were studied in detail by combining magnetic force microscopy and polarized neutron ...

Navas, David

54

The nanostructure and microstructure of steels: Electrochemical Tafel behaviour and atomic force microscopy  

Science Journals Connector (OSTI)

The influence of chemical composition and heat treatment on a low-carbon steel, chromium steel and high speed steel has been examined by polarisation curves and electrochemical parameters deduced from the Tafel plots. The electrochemical corrosion resistance, which is small between the as-received steels become greater after heat treatment, following the order: carbon steelforce microscopy and optical microscopy, before and after surface etching with Nital (a solution of 5% HNO3 in ethanol). This causes preferential attack of the ferrite phases showing the carbide phases more clearly. From these nanostructural studies it was possible to better understand why the passive films formed on chromium steel and high speed steel have superior protective properties to those formed on carbon steel.

Valria A. Alves; Ana M. Chiorcea Paquim; Albano Cavaleiro; Christopher M.A. Brett

2005-01-01T23:59:59.000Z

55

Surface aggregation of urinary proteins and aspartic acid-rich peptides on the faces of calcium oxalate monohydrate investigated by in situ force microscopy  

SciTech Connect

The growth of calcium oxalate monohydrate in the presence of Tamm-Horsfall protein (THP), osteopontin (OPN), and the 27-residue synthetic peptides (DDDS){sub 6}DDD and (DDDG){sub 6}DDD [where D = aspartic acid and X = S (serine) or G (glycine)] was investigated via in situ atomic force microscopy (AFM). The results show that these three growth modulators create extensive deposits on the crystal faces. Depending on the modulator and crystal face, these deposits can occur as discrete aggregates, filamentary structures, or uniform coatings. These proteinaceous films can lead to either the inhibition or increase of the step speeds (with respect to the impurity-free system) depending on a range of factors that include peptide or protein concentration, supersaturation and ionic strength. While THP and the linear peptides act, respectively, to exclusively increase and inhibit growth on the (-101) face, both exhibit dual functionality on the (010) face, inhibiting growth at low supersaturation or high modulator concentration and accelerating growth at high supersaturation or low modulator concentration. Based on analyses of growth morphologies and dependencies of step speeds on supersaturation and protein or peptide concentration, we argue for a picture of growth modulation that accounts for the observations in terms of the strength of binding to the surfaces and steps and the interplay of electrostatic and solvent-induced forces at crystal surface.

Weaver, M L; Qiu, S R; Hoyer, J R; Casey, W H; Nancollas, G H; De Yoreo, J J

2008-05-28T23:59:59.000Z

56

Atomic-force-microscopy observations of tracks induced by swift Kr ions in mica  

Science Journals Connector (OSTI)

For the first time, latent tracks induced by swift Kr ions have been directly observed in mica. These tracks are imaged by atomic-force microscopy as hollows which are associated with softer areas in the mica surface. The track core is formed by disordered mica. The mean diameter of the observed hollows increases with the electronic stopping power of the ions. The track shape along the ion path is deduced from the analysis of both the number of the tracks per unit area and their diameter distribution. These observations are the first images of nanometric changes of elastic properties.

F. Thibaudau; J. Cousty; E. Balanzat; S. Bouffard

1991-09-16T23:59:59.000Z

57

Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits  

DOE Patents (OSTI)

A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits.

Campbell, Ann. N. (13170-B Central SE #188, Albuquerque, NM 87123); Anderson, Richard E. (2800 Tennessee NE, Albuquerque, NM 87110); Cole, Jr., Edward I. (2116 White Cloud NE, Albuquerque, NM 87112)

1995-01-01T23:59:59.000Z

58

Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits  

DOE Patents (OSTI)

A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits are disclosed. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits. 17 figs.

Campbell, A.N.; Anderson, R.E.; Cole, E.I. Jr.

1995-11-07T23:59:59.000Z

59

Dual harmonic Kelvin probe force microscopy at the grapheneliquid interface  

SciTech Connect

Kelvin probe force microscopy (KPFM) is a powerful technique for the determination of the contact potential difference (CPD) between an atomic force microscope tip and a sample under ambient and vacuum conditions. However, for many energy storage and conversion systems, including graphene-based electrochemical capacitors, understanding electrochemical phenomena at the solidliquid interface is paramount. Despite the vast potential to provide fundamental insight for energy storage materials at the nanoscale, KPFM has found limited applicability in liquid environments to date. Here, using dual harmonic (DH)-KPFM, we demonstrate CPD imaging of graphene in liquid. We find good agreement with measurements performed in air, highlighting the potential of DH-KPFM to probe electrochemistry at the grapheneliquid interface.

Collins, Liam; Rodriguez, Brian J., E-mail: brian.rodriguez@ucd.ie [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 (Ireland); Kilpatrick, Jason I.; Weber, Stefan A. L. [Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4 (Ireland); Vlassiouk, Ivan V. [Energy and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Tselev, Alexander; Jesse, Stephen; Kalinin, Sergei V. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

2014-03-31T23:59:59.000Z

60

Electric force microscopy of semiconductors: Theory of cantilever frequency fluctuations and noncontact friction  

SciTech Connect

An electric force microscope employs a charged atomic force microscope probe in vacuum to measure fluctuating electric forces above the sample surface generated by dynamics of molecules and charge carriers. We present a theoretical description of two observables in electric force microscopy of a semiconductor: the spectral density of cantilever frequency fluctuations (jitter), which are associated with low-frequency dynamics in the sample, and the coefficient of noncontact friction, induced by higher-frequency motions. The treatment is classical-mechanical, based on linear response theory and classical electrodynamics of diffusing charges in a dielectric continuum. Calculations of frequency jitter explain the absence of contributions from carrier dynamics to previous measurements of an organic field effect transistor. Calculations of noncontact friction predict decreasing friction with increasing carrier density through the suppression of carrier density fluctuations by intercarrier Coulomb interactions. The predicted carrier density dependence of the friction coefficient is consistent with measurements of the dopant density dependence of noncontact friction over Si. Our calculations predict that in contrast to the measurement of cantilever frequency jitter, a noncontact friction measurement over an organic semiconductor could show appreciable contributions from charge carriers.

Lekkala, Swapna; Marohn, John A.; Loring, Roger F., E-mail: roger.loring@cornell.edu [Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 (United States)

2013-11-14T23:59:59.000Z

Note: This page contains sample records for the topic "force microscopy afm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Journal of Magnetism and Magnetic Materials 286 (2005) 324328 Light-free magnetic resonance force microscopy for studies of  

E-Print Network (OSTI)

Journal of Magnetism and Magnetic Materials 286 (2005) 324­328 Light-free magnetic resonance force for Physical Sciences, College Park, MD, USA Available online 4 November 2004 Abstract Magnetic resonance force microscopy is a scanned probe technique capable of three-dimensional magnetic resonance imaging. Its

62

Surface-enhanced Raman scattering and atomic force microscopy of brass electrodes in sulfuric acid solution containing benzotriazole and chloride ion  

SciTech Connect

Three different methods were used to roughen brass (Cu/Zn = 67/33) electrodes in 0.5 M H[sub 2]SO[sub 4] containing 1.0 mM benzotriazole (BTAH): (1) polarization at +0.05 V vs. saturated calomel for 5 min; (2) immersion in the above solution for six hours; and (3) oxidation-reduction cycling in the presence of chloride ion. The surfaces prepared by the first two methods exhibited surface-enhanced Raman scattering (SERS) spectra of the polymeric complex [Cu(I)BTA][sub s]. The SERS spectrum obtained from electrodes prepared by the third method is very similar to that of [Cu(I)CIBTAH][sub 4]. Examination of the electrodes by atomic force microscopy (AFM) showed that a large number of grain boundary sites are formed by the roughening processes. This effect is attributed to the loss of zinc, which occurs during corrosion of the mirror-like, polished brass electrode surface in the sulfuric acid solution. 11 refs., 5 figs.

Rubim, J.C.; Kim, J.; Henderson, E.; Cotton, T.M. (Instituto de Quimica da Universidade de Sao Paulo (Brazil) Ames Lab., IA (United States) Iowa State Univ., Ames (United States))

1993-01-01T23:59:59.000Z

63

Characterization of Cell Surface and EPS Remodeling of Azospirillum brasilense Chemotaxis-like 1 Signal Transduction Pathway mutants by Atomic Force Microscopy  

SciTech Connect

To compete in complex microbial communities, bacteria must quickly sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the modulation of multiple cellular responses, including motility, EPS production, and cell-to-cell interactions. Recently, the Che1 chemotaxis-like pathway from Azospirillum brasilense was shown to modulate flocculation. In A. brasilense, cell surface properties, including EPS production, are thought to play a direct role in promoting flocculation. Using atomic force microscopy (AFM), we have detected distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains that are absent in the wild type strain. Whereas the wild type strain produces a smooth mucosal extracellular matrix, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition and lectin-binding assays suggest that the composition of EPS components in the extracellular matrix differs between the cheA1 and cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that mutations in the Che1 pathway that result in increased flocculation are correlated with distinctive changes in the extracellular matrix structure produced by the mutants, including likely changes in the EPS structure and/or composition.

Billings, Amanda N [ORNL; Siuti, Piro [ORNL; Bible, Amber [University of Tennessee, Knoxville (UTK); Alexandre, Gladys [University of Tennessee, Knoxville (UTK); Retterer, Scott T [ORNL; Doktycz, Mitchel John [ORNL; Morrell-Falvey, Jennifer L [ORNL

2011-01-01T23:59:59.000Z

64

Combined short scale roughness and surface dielectric function gradient effects on the determination of tip-sample force in atomic force microscopy  

SciTech Connect

The contribution of tip roughness to the van der Waals force between an atomic force microscopy probe tip and the sample is calculated using the multilayer effective medium model, which allows us to consider the relevant case of roughness characterized by correlation length and amplitude in the nanometer scale. The effect of the surface dielectric function gradient is incorporated in the tip-sample force model. It is concluded that for rms roughness in the few nanometers range the effect of short scale tip roughness is quite significant.

Gusso, Andr, E-mail: gusso@metal.eeimvr.uff.br [Departamento de Cincias Exatas-EEIMVR, Universidade Federal Fluminense, Volta Redonda, RJ 27255-125 (Brazil)] [Departamento de Cincias Exatas-EEIMVR, Universidade Federal Fluminense, Volta Redonda, RJ 27255-125 (Brazil)

2013-11-11T23:59:59.000Z

65

Sorption of cadmium on humic acid: Mechanistic and kinetic studies with atomic force microscopy and X-ray  

E-Print Network (OSTI)

Sorption of cadmium on humic acid: Mechanistic and kinetic studies with atomic force microscopy, Upton, New York 593-5000 USA. Liu, C., Frenkel, A. I., Vairavamurthy, A. and Huang, P. M. 2001. Sorption of Cd sorption by HAs, especially those pertaining to the surface features and structure of the Cd

Frenkel, Anatoly

66

Experimental study of the relationship between temperature and adhesive forces for low-alloyed steel, stainless steel, and titanium using atomic force microscopy in ultrahigh vacuum  

Science Journals Connector (OSTI)

Dry sliding contact between metallic surfaces is often associated with high surfacetemperatures due to frictional heating and adhesive wear resulting in high friction and severe surface damage. In the present research the dependence of adhesive forces on temperature for commercial low-alloyed steel stainless steel and pure titanium was investigated in ultrahigh vacuum at elevated temperatures using atomic force microscopy. It was found that adhesive forces increased as the temperature increased. Room-temperature values of adhesive forces decreased in the order Ti stainless steel and low-alloyed steel which agreed with the values of the electron work function measured by a Kelvin probe. The findings correlate well with results observed for the same materials using conventional macroscopic tribotesters.

A. Grd; P. Krakhmalev; J. Bergstrm; J. Hirvonen Grytzelius; H. M. Zhang

2008-01-01T23:59:59.000Z

67

Electrochemically controlled pitting corrosion in Ni film: A study of AFM and neutron reflectometry  

Science Journals Connector (OSTI)

Electrochemical behavior of pitting corrosion of a Ni film, grown on Si substrate by sputtering, prepassivated in a chloride-free sulfuric acid solution and subsequently exposed to chloride above the pitting potential is reported. Specular and off-specular unpolarized neutron reflectometry and Atomic Force Microscopy (AFM) techniques have been used to determine the depth profile of scattering length density and morphology of as-deposited as well as corroded sample. Specular neutron reflectometry measurement of the film after corrosion shows density degradation along the thickness of film. The density profile as a function of depth, maps the growth of pitting and void networks due to corrosion. The AFM and off-specular neutron reflectivity measurements has suggested that the morphology of the film remains same after exposure of the film in chloride solution.

Surendra Singh; Saibal Basu; A.K. Poswal; R.B. Tokas; S.K. Ghosh

2009-01-01T23:59:59.000Z

68

Investigations into Protein-Surface Interactions via Atomic Force Microscopy and Surface Plasmon Resonance  

E-Print Network (OSTI)

.7.1. Fibrinogen 126 2.7.2. ATPase 127 2.7.2.1. Recombinant ATPase Preparation 127 2.7.2.2. Modifications to F1-ATPase 128 2.7.2.3. Protocol for Buffers and Dilutions 129 2.8. Summary 133 2.9. References 134 CHAPTER THREE: Fibrinogen Adsorption... Adsorption to a) Mica and b) Graphite with 1.0 nm height scale. 164 Figure 3.5: AFM height images (a & c 2.00 ?m x 2.00 ?m or b & d 1.00 ?m x 1.00 ?m) of 0.1 ?g/mL Fibrinogen Adsorption to Graphite with 5.0 nm height scales at pH 7 buffer (a-b) and p...

Settle, Jenifer Kaye

2012-08-31T23:59:59.000Z

69

Method for imaging liquid and dielectric materials with scanning polarization force microscopy  

SciTech Connect

The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged. 9 figs.

Hu, J.; Ogletree, D.F.; Salmeron, M.; Xiao, X.

1999-03-09T23:59:59.000Z

70

Deformation induced changes in surface properties of polymers investigated by scanning force microscopy  

E-Print Network (OSTI)

In this study the possibility of combining commercial Scanning Force Microscopes (SFM) with stretching devices for the investigation of microscopic surface changes during stepwise elongation is investigated. Different types of stretching devices have been developed either for Scanning Platform-SFM or for Stand Alone-SFM. Their suitability for the investigation of deformation induced surface changes is demonstrated. A uniaxially oriented polypropylene film is stretched vertically to its extrusion direction. The reorientation of its microfibrillar structure is investigated and correlated to macroscopic structural changes determined by taking a force-elongation curve. Microtome cuts of natural rubber filled with 15 PHR carbon black are stretched. Changes in topography, local stiffness and adhesive force are simultaneously reported by using a new imaging method called Pulsed Force Mode (PFM).

Sabine Hild; Armin Rosa; Othmar Marti

2013-12-10T23:59:59.000Z

71

Bubble Colloidal AFM Probes Formed from Ultrasonically Generated Bubbles  

E-Print Network (OSTI)

Letters Bubble Colloidal AFM Probes Formed from Ultrasonically Generated Bubbles Ivan U. Vakarelski forces between two small bubbles (80-140 µm) in aqueous solution during controlled collisions) was extended to measure interaction forces between a cantilever-attached bubble and surface-attached bubbles

Chan, Derek Y C

72

1996 Oxford University Press 713720Nucleic Acids Research, 1996, Vol. 24, No. 4 Atomic force microscopy of long and short  

E-Print Network (OSTI)

of DNA can be reliably imaged and identified and also what substrates and methods of sample preparation technique for observing DNA. The AFM can image conformations of DNA molecules (3­5), nucleosome Corporation; Wood Dale, IL) and cleaved with tape immediately before use. Silicon. Oxidized silicon substrates

Hansma, Helen

73

Effect of plasma CVD operating temperature on nanomechanical properties of TiC nanostructured coating investigated by atomic force microscopy  

SciTech Connect

Highlights: ? The TiC{sub x} nanostructure coatings have been deposited by PACVD method. ? Dominant mechanism of growth structure at 490 C is island-layer type. ? TiC{sub x} nanostructure coating applied at 490 C, exhibits lowest friction coefficient. ? Young's moduli are 289.9, 400 and 187.6 GPa for 470, 490 and 510 C, respectively. ? This higher elastic modulus and higher hardness of nanocoating obtain at 490 C. -- Abstract: The structure, composition, and mechanical properties of nanostructured titanium carbide (TiC) coatings deposited on H{sub 11} hot-working tool steel by pulsed-DC plasma assisted chemical vapor deposition at three different temperatures are investigated. Nanoindentation and nanoscratch tests are carried out by atomic force microscopy to determine the mechanical properties such as hardness, elastic modulus, surface roughness, and friction coefficient. The nanostructured TiC coatings prepared at 490 C exhibit lower friction coefficient (0.23) than the ones deposited at 470 and 510 C. Increasing the deposition temperature reduces the Young's modulus and hardness. The overall superior mechanical properties such as higher hardness and lower friction coefficient render the coatings deposited at 490 C suitable for wear resistant applications.

Shanaghi, Ali, E-mail: alishanaghi@gmail.com [Materials Engineering Department, Faculty of Engineering, Malayer University, P.O. Box: 95863-65719, Malayer (Iran, Islamic Republic of)] [Materials Engineering Department, Faculty of Engineering, Malayer University, P.O. Box: 95863-65719, Malayer (Iran, Islamic Republic of); Rouhaghdam, Ali Reza Sabour, E-mail: sabour01@modares.ac.ir [Surface Engineering Laboratory, Materials Engineering Department, Faculty of Engineering, Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Ahangarani, Shahrokh, E-mail: sh.ahangarani@gmail.com [Advanced Materials and Renewable Energies Department, Iranian Research Organization for Science and Technology, P.O. Box 15815-3538, Tehran (Iran, Islamic Republic of)] [Advanced Materials and Renewable Energies Department, Iranian Research Organization for Science and Technology, P.O. Box 15815-3538, Tehran (Iran, Islamic Republic of); Chu, Paul K., E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

2012-09-15T23:59:59.000Z

74

Shortening Carbon Nanotube-Tipped AFM Probes Daniel J. Burns1  

E-Print Network (OSTI)

and actuators available on a standard AFM. The shortening operation is fa- cilitated by electric arcing using and Quate [1], the atomic force microscope (AFM) became a vital tool in the study of micro and nanoscopic using a CNT that locally oxidizes an atomically flat sheet of titanium to write bits of data [12]. We

75

Comparison of the Identation and Elasticity of E.coli and its Spheroplasts by AFM  

SciTech Connect

Atomic force microscopy (AFM) provides a unique opportunity to study live individual bacteria at the nanometer scale. In addition to providing accurate morphological information, AFM can be exploited to investigate membrane protein localization and molecular interactions on the surface of living cells. A prerequisite for these studies is the development of robust procedures for sample preparation. While such procedures are established for intact bacteria, they are only beginning to emerge for bacterial spheroplasts. Spheroplasts are useful research models for studying mechanosensitive ion channels, membrane transport, lipopolysaccharide translocation, solute uptake, and the effects of antimicrobial agents on membranes. Furthermore, given the similarities between spheroplasts and cell wall-deficient (CWD) forms of pathogenic bacteria, spheroplast research could be relevant in biomedical research. In this paper, a new technique for immobilizing spheroplasts on mica pretreated with aminopropyltriethoxysilane (APTES) and glutaraldehyde is described. Using this mounting technique, the indentation and cell elasticity of glutaraldehyde-fixed and untreated spheroplasts of E. coli in liquid were measured. These values are compared to those of intact E. coli. Untreated spheroplasts were found to be much softer than the intact cells and the silicon nitride cantilevers used in this study.

Sullivan, Claretta J [ORNL; Venkataraman, Sankar [ORNL; Retterer, Scott T [ORNL; Allison, David P [ORNL; Doktycz, Mitchel John [ORNL

2007-01-01T23:59:59.000Z

76

Two-Dimensional Measurement of n+-p Asymmetrical Junctions in Multicrystalline Silicon Solar Cells Using AFM-Based Electrical Techniques with Nanometer Resolution: Preprint  

SciTech Connect

Lateral inhomogeneities of modern solar cells demand direct electrical imaging with nanometer resolution. We show that atomic force microscopy (AFM)-based electrical techniques provide unique junction characterizations, giving a two-dimensional determination of junction locations. Two AFM-based techniques, scanning capacitance microscopy/spectroscopy (SCM/SCS) and scanning Kelvin probe force microscopy (SKPFM), were significantly improved and applied to the junction characterizations of multicrystalline silicon (mc-Si) cells. The SCS spectra were taken pixel by pixel by precisely controlling the tip positions in the junction area. The spectra reveal distinctive features that depend closely on the position relative to the electrical junction, which allows us to indentify the electrical junction location. In addition, SKPFM directly probes the built-in potential over the junction area modified by the surface band bending, which allows us to deduce the metallurgical junction location by identifying a peak of the electric field. Our results demonstrate resolutions of 10-40 nm, depending on the techniques (SCS or SKPFM). These direct electrical measurements with nanometer resolution and intrinsic two-dimensional capability are well suited for investigating the junction distribution of solar cells with lateral inhomogeneities.

Jiang, C. S.; Moutinho, H. R.; Li, J. V.; Al-Jassim, M. M.; Heath, J. T.

2011-07-01T23:59:59.000Z

77

NANOMETER-SCALE INVESTIGATIONS BY ATOMIC FORCE MICROSCOPY INTO THE EFFECT OF DIFFERENT TREATMENTS ON THE SURFACE STRUCTURE OF HAIR  

E-Print Network (OSTI)

-section through both images (Fig. 4(d)) reveals the correlation, and that the modulation in surface potential associated with the deposits is of the order 70 mV. To test this further, an area of a freshly cleaned (by soaking in ethanol overnight and by rinsing... to determine the adhesion force (the force necessary to pull the cantilever off the surface) and adhesion energy between the tip and the surface area of interest. Force volume spectroscopy on a the bare hair surface and on a deposit as shown in Fig. 4(g) and (h...

Durkan, C.; Wang, N.

2014-09-15T23:59:59.000Z

78

Topography, complex refractive index, and conductivity of graphene layers measured by correlation of optical interference contrast, atomic force, and back scattered electron microscopy  

SciTech Connect

The optical phase shift by reflection on graphene is measured by interference contrast microscopy. The height profile across graphene layers on 300?nm thick SiO{sub 2} on silicon is derived from the phase profile. The complex refractive index and conductivity of graphene layers on silicon with 2?nm thin SiO{sub 2} are evaluated from a phase profile, while the height profile of the layers is measured by atomic force microscopy. It is observed that the conductivity measured on thin SiO{sub 2} is significantly greater than on thick SiO{sub 2}. Back scattered electron contrast of graphene layers is correlated to the height of graphene layers.

Vaupel, Matthias, E-mail: Matthias.vaupel@zeiss.com; Dutschke, Anke [Training Application Support Center, Carl Zeiss Microscopy GmbH, Knigsallee 9-21, 37081 Gttingen (Germany); Wurstbauer, Ulrich; Pasupathy, Abhay [Department of Physics, Columbia University New York, 538 West 120th Street, New York, New York 10027 (United States); Hitzel, Frank [DME Nanotechnologie GmbH, Geysostr. 13, D-38106 Braunschweig (Germany)

2013-11-14T23:59:59.000Z

79

Interaction of Nano-Sized Materials With Polymer Chains in Polymer-Nanocomposite Thin Films-An AFM Perspective  

SciTech Connect

Nanocomposite thin films were prepared with polyurethane as a matrix and organically modified clay as a filler. The interfacial interaction between the exfoliated clay nanoplatelets and the polymeric chains has been investigated by using Atomic Force Microscopy (AFM). The nanoclay platelets show a preferential association with the hard domains of polyurethane matrix on the surface of the thin films. The pendant hydroxyl group on the nanoplatelets attract the isocyanate of the polyisocyanate and a urethane group is formed. This leads to the 'clouding' and 'entwining' of the nanoplatelets by the hard segmental chains. This is the first visual evidence of nanomaterial filler and polymer matrix interaction and it could open up a spectrum of novel property achievements in nanocomposite thin films. Also the understanding of this interaction can lead to more controlled architecture of nanocomposites.

Verma, Gaurav; Kaushik, Anupama [University Institute of Chemical Engineering and Technology, Sector 14, Panjab University Chandigarh-160014, India and (Department of Chemical Engineering and Technology) (India); Ghosh, Anup K. [Centre for Polymer Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016 (India)

2011-12-12T23:59:59.000Z

80

Cryogenic scanning force microscopy of quantum Hall samples: Adiabatic transport originating in anisotropic depletion at contact interfaces  

Science Journals Connector (OSTI)

Anisotropic magnetoresistances and intrinsic adiabatic transport features are generated on quantum Hall samples based on an (Al,Ga)As/GaAs heterostructure with alloyed Au/Ge/Ni contacts. We succeed to probe the microscopic origin of these transport features with a cryogenic scanning force microscope by measuring the local potential distribution within the two-dimensional electron system (2DES). These local measurements reveal the presence of an incompressible strip in front of contacts with insulating properties depending on the orientation of the contact/2DES interface line relatively to the crystal axes of the heterostructure. Such an observation gives another microscopic meaning to the term nonideal contact used in context with the Landauer-Bttiker formalism applied to the quantum Hall effect.

F. Dahlem; E. Ahlswede; J. Weis; K. v. Klitzing

2010-09-10T23:59:59.000Z

Note: This page contains sample records for the topic "force microscopy afm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Ferrocenylundecanethiol Self-Assembled Monolayer Charging Correlates with Negative Differential Resistance Measured by Conducting Probe Atomic Force Microscopy  

Science Journals Connector (OSTI)

Additionally, electric force measurements along with theoretical modeling both in and out of contact with a nonelectroactive 1-octanethiol (C8SH) SAM were also performed. ... Using a simple parallel-plate geometry37 and assuming that stored charge is localized on the ferricenium end groups, we find that the quantity of detected charges is Q = 80 20 positive elementary charges or the same number of oxidized molecules if we assume each molecule can store one charge. ... The measurements showed: (1) the I-V traces were linear over 0.3 V, (2) the junction resistance increased exponentially with alkyl chain length, (3) the junction resistance decreased with increasing load and showed two distinct power law scaling regimes, (4) resistances were a factor of 10 lower for junctions based on benzyl thiol SAMs compared to hexyl thiol SAMs having the same thickness, and (5) the junctions sustained fields up to 2 107 V/cm before breakdown. ...

Alexei V. Tivanski; Gilbert C. Walker

2005-05-03T23:59:59.000Z

82

Atomic Force Microscope  

SciTech Connect

The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

Day, R.D.; Russell, P.E.

1988-12-01T23:59:59.000Z

83

Correlation between Charge State of Insulating NaCl Surfaces and Ionic Mobility Induced by Water Adsorption: A Combined Ambient Pressure X-ray Photoelectron Spectroscopy and Scanning Force Microscopy Study  

SciTech Connect

In situ ambient pressure X-ray photoelectron spectroscopy (APPES) and scanning force microscopy were used to characterize the surface discharge induced by water layers grown on (001) surfaces of sodium chloride single crystals. The APPES studies show that both kinetic energy (KE) and full width at half-maximum (FWHM) of the Na 2s and Cl 2p core level peaks, monitored as a function of relative humidity (RH), mimic surface conductivity curves measured using scanning force microscopy. The KE position and FWHM of the core level peaks therefore are directly related to the solvation and diffusion of ions at the NaCl(100) surface upon adsorption of water.

Verdaguer, Albert; Jose Segura, Juan; Fraxedas, Jordi; Bluhm, Hendrik; Salmeron, Miquel

2008-09-03T23:59:59.000Z

84

Combined low-temperature scanning tunneling/atomic force microscope for atomic resolution imaging and site-specific force spectroscopy  

SciTech Connect

The authors present the design and first results of a low-temperature, ultrahigh vacuum scanning probe microscope enabling atomic resolution imaging in both scanning tunneling microscopy (STM) and noncontact atomic force microscopy (NC-AFM) modes. A tuning-fork-based sensor provides flexibility in selecting probe tip materials, which can be either metallic or nonmetallic. When choosing a conducting tip and sample, simultaneous STM/NC-AFM data acquisition is possible. Noticeable characteristics that distinguish this setup from similar systems providing simultaneous STM/NC-AFM capabilities are its combination of relative compactness (on-top bath cryostat needs no pit), in situ exchange of tip and sample at low temperatures, short turnaround times, modest helium consumption, and unrestricted access from dedicated flanges. The latter permits not only the optical surveillance of the tip during approach but also the direct deposition of molecules or atoms on either tip or sample while they remain cold. Atomic corrugations as low as 1 pm could successfully be resolved. In addition, lateral drifts rates of below 15 pm/h allow long-term data acquisition series and the recording of site-specific spectroscopy maps. Results obtained on Cu(111) and graphite illustrate the microscope's performance.

Schwarz, Udo; Albers, Boris J.; Liebmann, Marcus; Schwendemann, Todd C.; Baykara, Mehmet Z.; Heyde, Markus; Salmeron, Miquel; Altman, Eric I.; Schwarz, Udo D.

2008-02-27T23:59:59.000Z

85

E-Print Network 3.0 - afm detects wga-binding Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

and Ecology 17 Gold Nanoparticles on Modified Glass Surface as Height Calibration Standard for Atomic Force Microscopy Operating in Contact and Tapping Mode Summary: with...

86

Microscopy. I: A Review  

Science Journals Connector (OSTI)

...indicates the spindle to be an orienting force through which a co-ordinated con tractile...asoT,E. M. and M@&soN,C. W. Handbook of Chemi cal Microscopy. Vol. 1. 1st...498 "586,1950. 164. NAORA, H. Fundamental Studies on the Determination of Desoxypentose-Nucleic...

Robert C. Mellors

1953-02-01T23:59:59.000Z

87

Dynamic measurement and modeling of the Casimir force at the nanometer scale  

SciTech Connect

We present a dynamic method for measurement of the Casimir force with an atomic force microscope (AFM) with a conventional AFM tip. With this method, originally based on the phase of vibration of the AFM tip, we are able to verify the Casimir force at distances of nearly 6 nm with an AFM tip that has a radius of curvature of nearly 100 nm. Until now dynamic methods have been done using large metal spheres at greater distances. Also presented is a theoretical model based on the harmonic oscillator, including nonidealities. This model accurately predicts the experimental data.

Kohoutek, John; Wan, Ivy Yoke Leng; Mohseni, Hooman [Bio-Inspired Sensors and Optoelectronics Laboratory (BISOL), EECS, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208 (United States)

2010-02-08T23:59:59.000Z

88

Impact of particle size on interaction forces between ettringite and dispersing comb-polymers in various electrolyte solutions  

Science Journals Connector (OSTI)

Abstract The inter-particle forces play a fundamental role for the flow properties of a particle suspension in response to shear stresses. In concrete applications, cement admixtures based on comb-polymers like polycarboxylate-ether-based superplasticizer (PCE) are used to control the rheological behavior of the fresh mixtures, as it is negatively impacted by certain early hydration products, like the mineral ettringite. In this work, dispersion forces due to PCE were measured directly at the surface of ettringite crystals in different electrolyte solutions by the means of atomic force microscopy (AFM) applying spherical and sharp silicon dioxide tips. Results show an effective repulsion between ettringite surface and AFM tips for solutions above the IEP of ettringite (pH?12) and significant attraction in solution at lower pH. The addition of polyelectrolytes in solution provides dispersion forces exclusively between the sharp tips (radius?10nm) and the ettringite surface, whereas the polymer layer at the ettringite surface results to be unable to disperse large colloidal probes (radius?10?m). A simple modeling of the inter-particle forces explains that, for large particles, the steric hindrance of the studied PCE molecules is not high enough to compensate for the Van der Waals and the attractive electrostatic contributions. Therefore, in cement suspensions the impact of ettringite on rheology is probably not only related to the particle charge, but also related to the involved particle sizes.

Lucia Ferrari; Josef Kaufmann; Frank Winnefeld; Johann Plank

2014-01-01T23:59:59.000Z

89

Polymers with hydro-responsive topography identified using high throughput AFM of an acrylate microarray  

E-Print Network (OSTI)

Atomic force microscopy has been applied to an acrylate polymer microarray to achieve a full topographic characterisation. This process discovered a small number of hydro-responsive materials created from monomers with ...

Hook, Andrew L.

90

True atomic-scale imaging of a spinel Li{sub 4}Ti{sub 5}O{sub 12}(111) surface in aqueous solution by frequency-modulation atomic force microscopy  

SciTech Connect

Spinel-type lithium titanium oxide (LTO; Li{sub 4}Ti{sub 5}O{sub 12}) is a negative electrode material for lithium-ion batteries. Revealing the atomic-scale surface structure of LTO in liquid is highly necessary to investigate its surface properties in practical environments. Here, we reveal an atomic-scale image of the LTO(111) surface in LiCl aqueous solution using frequency-modulation atomic force microscopy. Atomically flat terraces and single steps having heights of multiples of 0.5?nm were observed in the aqueous solution. Hexagonal bright spots separated by 0.6?nm were also observed on the flat terrace part, corresponding to the atomistic contrast observed in the ultrahigh vacuum condition, which suggests that the basic atomic structure of the LTO(111) surface is retained without dramatic reconstruction even in the aqueous solution.

Kitta, Mitsunori, E-mail: m-kitta@aist.go.jp; Kohyama, Masanori [Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Onishi, Hiroshi [Department of Chemistry, Graduate School of Science, Kobe University 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan)

2014-09-15T23:59:59.000Z

91

Integration of an Atomic Force Microscope in a Beamline Sample Environment  

SciTech Connect

We developed and optimised an optics-free Atomic Force Microscope (AFM) that can be directly installed on most of the synchrotron radiation end-stations. The combination of Scanning Probe Microscopies with X-ray microbeams adds new possibilities to the variety of synchrotron radiation techniques. The instrument can be used for atomic force imaging of the investigated sample or to locally measure the X-ray absorption or diffraction, or it can also be used to mechanically interact with the sample while simultaneously taking spectroscopy or diffraction measurements. The local character of these measurements is intrinsically linked with the use of the Atomic Force Microscope tip. It is the sharpness of the tip that gives the opportunity to measure the photons flux impinging on it giving beam position monitor features, or allows to locally measure the absorption coefficient or the shape of the diffraction pattern. As an example of the possibilities opened by the instrument we will show diffraction measurements performed on a Ge/Si island while being indented with the AFM tip providing local measure of the Young coefficient. Three ESRF beamlines are going to be equipped with this new instrument.

Rodrigues, M. S.; Hrouzek, M.; Dhez, O.; Comin, F. [ESRF, 6 rue Horowitz 38042 Grenoble Cedex (France); Chevrier, J. [Institut Neel-CNRS and Universite Joseph Fourier, 38042 Grenoble (France)

2010-06-23T23:59:59.000Z

92

Optical system for high-speed Atomic Force Microscope  

E-Print Network (OSTI)

This thesis presents the design and development of an optical cantilever deflection sensor for a high speed Atomic Force Microscope (AFM). This optical sensing system is able to track a small cantilever while the X-Y scanner ...

Lim, Kwang Yong, S.M. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

93

E-Print Network 3.0 - afm indentation study Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

critical step of comparing sphere indentation measurements to AFM... indentation depth profile is fit to an indentational model to extract the Young's modulus. However, AFM......

94

Infrared Scattering Scanning Near-Field Optical Microscopy Using An External Cavity Quantum Cascade Laser For Nanoscale Chemical Imaging And Spectroscopy of Explosive Residues  

SciTech Connect

Infrared scattering scanning near-field optical microscopy (s-SNOM) is an apertureless superfocusing technique that uses the antenna properties of a conducting atomic force microscope (AFM) tip to achieve infrared spatial resolution below the diffraction limit. The instrument can be used either in imaging mode, where a fixed wavelength light source is tuned to a molecular resonance and the AFM raster scans an image, or in spectroscopy mode where the AFM is held stationary over a feature of interest and the light frequency is varied to obtain a spectrum. In either case, a strong, stable, coherent infrared source is required. Here we demonstrate the integration of a broadly tunable external cavity quantum cascade laser (ECQCL) into an s-SNOM and use it to obtain infrared spectra of microcrystals of chemicals adsorbed onto gold substrates. Residues of the explosive compound tetryl was deposited onto gold substrates. s-SNOM experiments were performed in the 1260-1400 cm?1 tuning range of the ECQCL, corresponding to the NO2 symmetric stretch vibrational fingerprint region. Vibrational infrared spectra were collected on individual chemical domains with a collection area of *500nm2 and compared to ensemble averaged far-field reflection-absorption infrared spectroscopy (RAIRS) results.

Craig, Ian M.; Phillips, Mark C.; Taubman, Matthew S.; Josberger, Erik E.; Raschke, Markus Bernd

2013-02-04T23:59:59.000Z

95

Optical Microscopy and 4Optical Microscopy and 4 Pi MicroscopyPi Microscopy  

E-Print Network (OSTI)

Optical Microscopy and 4Optical Microscopy and 4 Pi MicroscopyPi Microscopy Carolyn A. SuttonCarolyn A. Sutton PH 464PH 464 #12;OverviewOverview The OpticalThe Optical MicroscopeMicroscopy 4 Pi Microscopy4 Pi Microscopy Optical Microscope for Metallography #12;Optical Microscope: OriginsOptical

La Rosa, Andres H.

96

Hysteresis Modeling and Inverse Feedforward Control of an AFM Piezoelectric Scanner Based on Nano Images  

E-Print Network (OSTI)

Hysteresis Modeling and Inverse Feedforward Control of an AFM Piezoelectric Scanner Based on Nano of micro/nano technology. As a critical part of AFM system, the piezoelectric scanner exists many defects in this paper possess a good performance for AFM nano imaging. Index Terms-- Hysteresis modeling, feedforward

Li, Yangmin

97

E-Print Network 3.0 - atom probe characterization Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

the sample. Similar to an atomic force microscope (AFM), the contact force... , Brand O, Baltes H, Tonin A and Hidber H R 2000 Integrated atomic force microscopy array...

98

Solvent-mediated repair and patterning of surfaces by AFM  

SciTech Connect

A tip-based approach to shaping surfaces of soluble materials with nanometer-scale control is reported. The proposed method can be used, for example, to eliminate defects and inhomogeneities in surface shape, repair mechanical or laser-induced damage to surfaces, or perform 3D lithography on the length scale of an AFM tip. The phenomenon that enables smoothing and repair of surfaces is based on the transport of material from regions of high- to low-curvature within the solution meniscus formed in a solvent-containing atmosphere between the surface in question and an AFM tip scanned over the surface. Using in situ AFM measurements of the kinetics of surface remodeling on KDP (KH{sub 2}PO{sub 4}) crystals in humid air, we show that redistribution of solute material during relaxation of grooves and mounds is driven by a reduction in surface free energy as described by the Gibbs-Thomson law. We find that the perturbation from a flat interface evolves according to the diffusion equation where the effective diffusivity is determined by the product of the surface stiffness and the step kinetic coefficient. We also show that, surprisingly, if the tip is instead scanned over or kept stationary above an atomically flat area of the surface, a convex structure is formed with a diameter that is controlled by the dimensions of the meniscus, indicating that the presence of the tip and meniscus reduces the substrate chemical potential beneath that of the free surface. This allows one to create nanometer-scale 3D structures of arbitrary shape without the removal of substrate material or the use of extrinsic masks or chemical compounds. Potential applications of these tip-based phenomena are discussed.

Elhadj, S; Chernov, A; De Yoreo, J

2007-10-30T23:59:59.000Z

99

Climate forcing Climate forcing  

E-Print Network (OSTI)

parameters (solar distance factors) solar luminosity moon orbit volcanoes and other geothermal sources,000 years (large panels) and since 1750 (inset panels). Measurements are shown from ice cores (symbols forcings are shown on the right hand axes of the large panels. {Figure 6.4} !"#$#%&'(!&#)$&*$+#$,-.$/0

MacKinnon, Jennifer

100

EMSL: Capabilities: Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Microscopy Microscopy Additional Information Meet the Microscopy Experts Related EMSL User Projects Microscopy Tools are Applied to all Science Themes Watch the Microscopy capability video on EMSL's YouTube channel and read the transcript. Microscopy brochure Quiet Wing brochure EMSL hosts a variety of sophisticated microscopy instruments, including electron microscopes, optical microscopes, scanning probe microscopes, and computer-controlled microscopes for automated particle analysis. These tools are used to image a range of sample types with nanoscale-and even atomic-resolution with applications to surface, environmental, biogeochemical, atmospheric, and biological science. Each state-of-the-art instrument and customized capability is equipped with features for specific

Note: This page contains sample records for the topic "force microscopy afm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

E-Print Network 3.0 - afm based indentation Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

based on indentation of the substrate with a ferromagnetic sphere... indentation depth profile is fit to an indentational model to extract the Young's modulus. However, AFM... a...

102

E-Print Network 3.0 - afm Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

of Scanning Probe Microscope... (SPM). The AFM is one of the primary tools for imaging, measuring, and manipulating matter... ). We cannot use standard microscopes to look at the...

103

E-Print Network 3.0 - afm sintez sloev Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

of Scanning Probe Microscope... (SPM). The AFM is one of the primary tools for imaging, measuring, and manipulating matter... ). We cannot use standard microscopes to look at the...

104

On the transferability of three water models developed by adaptive force matching  

E-Print Network (OSTI)

Water is perhaps the most simulated liquid. Recently three water models have been developed following the adaptive force matching (AFM) method that provides excellent predictions of water properties with only electronic structure information as a reference. Compared to many other electronic structure based force fields that rely on fairly sophisticated energy expressions, the AFM water models use point-charge based energy expressions that are supported by most popular molecular dynamics packages. An outstanding question regarding simple force fields is whether such force fields provide reasonable transferability outside of their conditions of parameterization. A survey of three AFM water models, B3LYPD-4F, BLYPSP-4F, and WAIL are provided for simulations under conditions ranging from the melting point up to the critical point. By including ice-Ih configurations in the training set, the WAIL potential predicts the melting temperate, TM, of ice-Ih correctly. Without training for ice, BLYPSP-4F underestimates TM...

Hu, Hongyi; Wang, Feng

2015-01-01T23:59:59.000Z

105

Nuclear forces  

SciTech Connect

These lectures present an introduction into the theory of nuclear forces. We focus mainly on the modern approach, in which the forces between nucleons emerge from low-energy QCD via chiral effective field theory.

Machleidt, R. [Department of Physics, University of Idaho, Moscow, Idaho 83844 (United States)

2013-06-10T23:59:59.000Z

106

A metrological large range atomic force microscope with improved performance  

Science Journals Connector (OSTI)

A metrological large range atomic force microscope (Met. LR-AFM) has been set up and improved over the past years at Physikalisch-Technische Bundesanstalt (PTB). Being designed as a scanning sample type instrument the sample is moved in three dimensions by a mechanical ball bearing stage in combination with a compact z -piezostage. Its topography is detected by a position-stationary AFM head. The sample displacement is measured by three embedded miniature homodyneinterferometers in the x y and z directions. The AFM head is aligned in such a way that its cantilever tip is positioned on the sample surface at the intersection point of the three interferometer measurement beams for satisfying the Abbe measurement principle. In this paper further improvements of the Met. LR-AFM are reported. A new AFM head using the beam deflection principle has been developed to reduce the influence of parasitic optical interference phenomena. Furthermore an off-line Heydemann correction method has been applied to reduce the inherent interferometer nonlinearities to less than 0.3 nm ( p - v ) . Versatile scanning functions for example radial scanning or local AFM measurement functions have been implemented to optimize the measurement process. The measurement software is also improved and allows comfortable operations of the instrument via graphical user interface or script-based command sets. The improved Met. LR-AFM is capable of measuring for instance the step height lateral pitch line width nanoroughness and other geometrical parameters of nanostructures.Calibration results of a one-dimensional grating and a set of film thickness standards are demonstrated showing the excellent metrological performance of the instrument.

Gaoliang Dai; Helmut Wolff; Frank Pohlenz; Hans-Ulrich Danzebrink

2009-01-01T23:59:59.000Z

107

Facile fabrication of spherical nanoparticle-tipped AFM probes for plasmonic applications  

E-Print Network (OSTI)

for reliably producing metallic spherical nanoparticle tips using only a simple electrochemical cell. Fabrication of Au spherical nanoparticle (AuNP) tips onto commercial AFM probes is achieved using single-pulse high- fi eld electrochemical growth... is employed for growth since both the cell geometry and electrodeposition solution are kept the same between fabrications. AFM probes are attached to fl u- orine-doped tin oxide (FTO) conductive glass, used as a working DOI: 10.1002/ppsc.201400104 Facile...

Sanders, Alan; Zhang, Liwu; Bowman, Richard W.; Herrmann, Lars O.; Baumberg, Jeremy J.

2014-07-16T23:59:59.000Z

108

An improved proximity force approximation for electrostatics  

SciTech Connect

A quite straightforward approximation for the electrostatic interaction between two perfectly conducting surfaces suggests itself when the distance between them is much smaller than the characteristic lengths associated with their shapes. Indeed, in the so called 'proximity force approximation' the electrostatic force is evaluated by first dividing each surface into a set of small flat patches, and then adding up the forces due two opposite pairs, the contributions of which are approximated as due to pairs of parallel planes. This approximation has been widely and successfully applied in different contexts, ranging from nuclear physics to Casimir effect calculations. We present here an improvement on this approximation, based on a derivative expansion for the electrostatic energy contained between the surfaces. The results obtained could be useful for discussing the geometric dependence of the electrostatic force, and also as a convenient benchmark for numerical analyses of the tip-sample electrostatic interaction in atomic force microscopes. - Highlights: Black-Right-Pointing-Pointer The proximity force approximation (PFA) has been widely used in different areas. Black-Right-Pointing-Pointer The PFA can be improved using a derivative expansion in the shape of the surfaces. Black-Right-Pointing-Pointer We use the improved PFA to compute electrostatic forces between conductors. Black-Right-Pointing-Pointer The results can be used as an analytic benchmark for numerical calculations in AFM. Black-Right-Pointing-Pointer Insight is provided for people who use the PFA to compute nuclear and Casimir forces.

Fosco, Cesar D. [Centro Atomico Bariloche, Comision Nacional de Energia Atomica, R8402AGP Bariloche (Argentina) [Centro Atomico Bariloche, Comision Nacional de Energia Atomica, R8402AGP Bariloche (Argentina); Instituto Balseiro, Universidad Nacional de Cuyo, R8402AGP Bariloche (Argentina); Lombardo, Fernando C. [Departamento de Fisica Juan Jose Giambiagi, FCEyN UBA, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina) [Departamento de Fisica Juan Jose Giambiagi, FCEyN UBA, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); IFIBA (Argentina)] [Argentina; Mazzitelli, Francisco D., E-mail: fdmazzi@cab.cnea.gov.ar [Centro Atomico Bariloche, Comision Nacional de Energia Atomica, R8402AGP Bariloche (Argentina); Departamento de Fisica Juan Jose Giambiagi, FCEyN UBA, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina)

2012-08-15T23:59:59.000Z

109

Photothermal imaging scanning microscopy  

DOE Patents (OSTI)

Photothermal Imaging Scanning Microscopy produces a rapid, thermal-based, non-destructive characterization apparatus. Also, a photothermal characterization method of surface and subsurface features includes micron and nanoscale spatial resolution of meter-sized optical materials.

Chinn, Diane (Pleasanton, CA); Stolz, Christopher J. (Lathrop, CA); Wu, Zhouling (Pleasanton, CA); Huber, Robert (Discovery Bay, CA); Weinzapfel, Carolyn (Tracy, CA)

2006-07-11T23:59:59.000Z

110

Functionalized aerogels new nanomaterials for energy-efficient building. Preliminary AFM, Nanoidentation and EIS studies  

Science Journals Connector (OSTI)

Aerogels are highly porous nanostructured materials with excellent thermal insulation properties. The possibility to add additional function to functionalize the aerogels, especially to produce photovoltaic electricity, will make them an excellent candidate for energy-efficient building. Going in the direction of this midterm goal we start with the investigation of the properties of the readily available silica aerogels. Atomic Force Microscopy reveals large areas with submicrometer roughness, which allows reliable nanoidentation measurements. The average hardness was measured to be 2,2 MPa and the Young's modulus was 11 MPa, values typical for low density elastic silica aerogels. Electrochemical Impedance Spectroscopy, measured in ambient air, shows typical capacitive behaviour and the aerogel is best modelled by serially connected resistance of 37 k? and capacitor of 170 pF. The conductivity is interpreted in terms of proton migration, strongly dependant on air humidity.

G R Ivanov; R Tomova; S T Djambova; M Nadoliiski; D Dimova-Malinovska

2010-01-01T23:59:59.000Z

111

Protective Force  

Directives, Delegations, and Requirements

Establishes requirements for management and operation of the DOE Protective Force (PF), establishes requirements for firearms operations and defines the firearms courses of fire. Cancels: DOE M 473.2-1A DOE M 473.2-2

2005-08-26T23:59:59.000Z

112

Protective Force  

Directives, Delegations, and Requirements

The manual establishes requirements for management and operation of the DOE Protective Force, establishes requirements for firearms operations and defines the firearms courses of fire. Chg 1 dated 3/7/06. DOE M 470.4-3A cancels DOE M 470.4-3, Chg 1, Protective Force, dated 3-7-06, Attachment 2, Contractor Requirement Document (CRD) only (except for Section C). Chg 1, dated 3-7-06, cancels DOE M 470.4-3

2006-03-07T23:59:59.000Z

113

Steering the Self-Assembly of Octadecylamine Monolayers on Mica by Controlled Mechanical Energy Transfer from the AFM Tip  

E-Print Network (OSTI)

Steering the self-assembly of octadecylamine monolayers onon the dynamics of self-assembly of monolayer films ofoctadecylamine monolayers, self-assembly, AFM, packing

Benitez, J.J.

2010-01-01T23:59:59.000Z

114

Nonlinear vibrational microscopy  

DOE Patents (OSTI)

The present invention is a method and apparatus for microscopic vibrational imaging using coherent Anti-Stokes Raman Scattering or Sum Frequency Generation. Microscopic imaging with a vibrational spectroscopic contrast is achieved by generating signals in a nonlinear optical process and spatially resolved detection of the signals. The spatial resolution is attained by minimizing the spot size of the optical interrogation beams on the sample. Minimizing the spot size relies upon a. directing at least two substantially co-axial laser beams (interrogation beams) through a microscope objective providing a focal spot on the sample; b. collecting a signal beam together with a residual beam from the at least two co-axial laser beams after passing through the sample; c. removing the residual beam; and d. detecting the signal beam thereby creating said pixel. The method has significantly higher spatial resolution then IR microscopy and higher sensitivity than spontaneous Raman microscopy with much lower average excitation powers. CARS and SFG microscopy does not rely on the presence of fluorophores, but retains the resolution and three-dimensional sectioning capability of confocal and two-photon fluorescence microscopy. Complementary to these techniques, CARS and SFG microscopy provides a contrast mechanism based on vibrational spectroscopy. This vibrational contrast mechanism, combined with an unprecedented high sensitivity at a tolerable laser power level, provides a new approach for microscopic investigations of chemical and biological samples.

Holtom, Gary R. (Richland, WA); Xie, Xiaoliang Sunney (Richland, WA); Zumbusch, Andreas (Munchen, DE)

2000-01-01T23:59:59.000Z

115

Materials Applications of Photoelectron Emission Microscopy....  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications of Photoelectron Emission Microscopy. Materials Applications of Photoelectron Emission Microscopy. Abstract: Photoelectron emission microscopy (PEEM) is a versatile...

116

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Acknowledgment Acknowledgment EMC Home Overview Personnel Resources Highlights Publications Visit EMC Contact Info Information for Users Becoming a User Submit a Proposal End-of-Proposal Report Acknowledgment User Training User Safety User Status Instrument Access User Committee User Meetings Data Storage Policy Visiting the EMC Instrument Calendars Info for EMC Staff SÅMM Facility TEAM Project Microscopy Links Argonne Facilities DOE/BES Facilities DOE/BES BES Electron Beam Microcharacterization Centers Acknowledgment Please acknowledge your use of the EMC in your publications and presentations with the following acknowledgment statement: The electron microscopy was accomplished at the Electron Microscopy Center at Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory operated under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC.

117

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

SAMM SAMM EMC Home Overview Personnel Resources Highlights Publications Visit EMC Contact Info Information for Users Instrument Calendars Info for EMC Staff SÅMM Facility TEAM Project Microscopy Links Argonne Facilities DOE/BES Facilities DOE/BES BES Electron Beam Microcharacterization Centers Sub-Ångstrom Microscopy and Microanalysis Facility In order to meet the scientific challenges of the future, the EMC has built a new state-of-the-art laboratory space for advanced electron microscopy. The new building has been designed to provide next- generation science with an operating environment that cannot be attained by renovating existing facilities. The EMC staff learned as much as possible from similar efforts around the world, including the SuperSTEM building at Daresbury, the Triebenberg Special Laboratory, the AML at Oak Ridge National Laboratory, the new NIST building, and various facilities for nanoscience.

118

Biofilm Cohesiveness Measurement Using a Novel Atomic Force Microscopy Methodology  

Science Journals Connector (OSTI)

...functions by characterizing friction and/or wear under repeated scanning with variable loads...our knowledge, concomitant friction and wear processes on biofilms, important for understanding...Bacteriol. 186: 8096-8104. 40 Towler, B. W., C. J. Rupp, A. B. Cunningham...

Francois Ahimou; Michael J. Semmens; Paige J. Novak; Greg Haugstad

2007-03-02T23:59:59.000Z

119

Mode synthesizing atomic force microscopy and mode-synthesizing sensing  

DOE Patents (OSTI)

A method of analyzing a sample that includes applying a first set of energies at a first set of frequencies to a sample and applying, simultaneously with the applying the first set of energies, a second set of energies at a second set of frequencies, wherein the first set of energies and the second set of energies form a multi-mode coupling. The method further includes detecting an effect of the multi-mode coupling.

Passian, Ali; Thundat, Thomas George; Tetard, Laurene

2013-05-17T23:59:59.000Z

120

Nanofilaments on glioblastoma exosomes revealed by peak force microscopy  

Science Journals Connector (OSTI)

...USA 3 Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, , Los Angeles...nanofilaments|intercellular communication|nanotechnology| 1. Introduction The ability of cells to...

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "force microscopy afm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Atomic Force Microscopy Study of Clay Nanoplatelets and Their Impurities  

E-Print Network (OSTI)

of the nanoclays into various polymers has been shown to result in increases in tensile properties (elastic modulus of nanoclay-polymer composites, based on the layer-by-layer assembly of individual clay nanoplatelets

122

Ultrasonic-Based Mode-Synthesizing Atomic Force Microscopy -...  

NLE Websites -- All DOE Office Websites (Extended Search)

is critical to understanding biological processes that lead to cell signaling, protein folding, and gene expression. Using MSAFM, nanoscale properties such as porosity,...

123

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites

Laboratory Laboratory Electron Microscopy Center Argonne Home > EMC > EMC Home Overview Personnel Resources Highlights Publications Visit EMC Contact Info Information for Users Instrument Calendars Info for EMC Staff SÅMM Facility TEAM Project Microscopy Links Argonne Facilities DOE/BES Facilities DOE/BES BES Electron Beam Microcharacterization Centers An Office of Science User Facility The Electron Microscopy Center (EMC) at Argonne National Laboratory develops and maintains unique capabilities for electron beam characterization and applies those capabilities to solve materials problems. The EMC staff carry out research with collaborators and users from Argonne, universities, and other laboratories. The expertise and facilities of the EMC additionally serve a group of national and international researchers. The EMC emphasizes three major areas: materials research, technique and instrumentation development, and operation as a national research facility. Research by EMC personnel includes microscopy based studies in high Tc superconducting materials, irradiation effects in metals and semiconductors, phase transformations, and processing related structure and chemistry of interfaces in thin films.

124

High resolution, high speed ultrahigh vacuum microscopy  

SciTech Connect

The history and future of transmission electron microscopy (TEM) is discussed as it refers to the eventual development of instruments and techniques applicable to the real time in situ investigation of surface processes with high resolution. To reach this objective, it was necessary to transform conventional high resolution instruments so that an ultrahigh vacuum (UHV) environment at the sample site was created, that access to the sample by various in situ sample modification procedures was provided, and that in situ sample exchanges with other integrated surface analytical systems became possible. Furthermore, high resolution image acquisition systems had to be developed to take advantage of the high speed imaging capabilities of projection imaging microscopes. These changes to conventional electron microscopy and its uses were slowly realized in a few international laboratories over a period of almost 40 years by a relatively small number of researchers crucially interested in advancing the state of the art of electron microscopy and its applications to diverse areas of interest; often concentrating on the nucleation, growth, and properties of thin films on well defined material surfaces. A part of this review is dedicated to the recognition of the major contributions to surface and thin film science by these pioneers. Finally, some of the important current developments in aberration corrected electron optics and eventual adaptations to in situ UHV microscopy are discussed. As a result of all the path breaking developments that have led to today's highly sophisticated UHV-TEM systems, integrated fundamental studies are now possible that combine many traditional surface science approaches. Combined investigations to date have involved in situ and ex situ surface microscopies such as scanning tunneling microscopy/atomic force microscopy, scanning Auger microscopy, and photoemission electron microscopy, and area-integrating techniques such as x-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, Auger electron spectroscopy, low-energy electron diffraction, temperature programmed desorption, high-resolution electron energy-loss and Fourier-transform infrared spectroscopies, and others. Material systems ranging from atomic layers of metals and semiconductors to biology related depositions are being investigated. In the case of biological materials, however, strict limitations to high-resolution applications are imposed by electron radiation damage considerations.

Poppa, Helmut [National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

2004-09-01T23:59:59.000Z

125

Probing graphene defects and estimating graphene quality with optical microscopy  

SciTech Connect

We report a simple and accurate method for detecting graphene defects that utilizes the mild, dry annealing of graphene/Cu films in air. In contrast to previously reported techniques, our simple approach with optical microscopy can determine the density and degree of dislocation of defects in a graphene film without inducing water-related damage or functionalization. Scanning electron microscopy, confocal Raman and atomic force microscopy, and X-ray photoelectron spectroscopy analysis were performed to demonstrate that our nondestructive approach to characterizing graphene defects with optimized thermal annealing provides rapid and comprehensive determinations of graphene quality.

Lai, Shen [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Center for Human Interface Nanotechnology (HINT), Suwon 440-746 (Korea, Republic of); Kyu Jang, Sung [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Jae Song, Young, E-mail: yjsong@skku.edu [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Department of Physics, Sungkyunkwan University (SKKU), Suwon 440-746 (Korea, Republic of); Lee, Sungjoo, E-mail: leesj@skku.edu [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Center for Human Interface Nanotechnology (HINT), Suwon 440-746 (Korea, Republic of); College of Information and Communication Engineering, Sungkyunkwan University (SKKU), Suwon 440-746 (Korea, Republic of)

2014-01-27T23:59:59.000Z

126

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

An Office of Science User Facility An Office of Science User Facility The Electron Microscopy Center (EMC) at Argonne National Laboratory develops and maintains unique capabilities for electron beam characterization and applies those capabilities to solve materials problems. The EMC staff carry out research with collaborators and users from Argonne, universities, and other laboratories. The expertise and facilities of the EMC additionally serve a group of national and international researchers. The EMC emphasizes three major areas: materials research, technique and instrumentation development, and operation as a national research facility. Research by EMC personnel includes microscopy based studies in high Tc superconducting materials, irradiation effects in metals and semiconductors, phase transformations, and processing related structure and chemistry of interfaces in thin films.

127

Electron Microscopy Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities » Facilities » Electron Microscopy Lab Electron Microscopy Lab Focusing on the study of microstructures with electron and ion beam instruments, including crystallographic and chemical techniques. April 12, 2012 Transmission electron microscope Rob Dickerson examines a multiphase oxide scale using the FEI Titan 80-300 transmission electron microscope. Contact Rob Dickerson (505) 667-6337 Email Rod McCabe (505) 606-1649 Email Pat Dickerson (505) 665-3036 Email Tom Wynn (505) 665-6861 Email Dedicated to the characterization of materials through imaging, chemical, and crystallographic analyses of material microstructures in support of Basic Energy Science, Laboratory Directed Research and Development, DoD, DOE, Work for Others, nuclear energy, and weapons programs. Go to full website »

128

Dynamic Transmission Electron Microscopy  

SciTech Connect

Dynamic transmission electron microscopy (DTEM) combines the benefits of high spatial resolution electron microscopy with the high temporal resolution of ultrafast lasers. The incorporation of these two components into a single instrument provides a perfect platform for in situ observations of material processes. However, previous DTEM applications have focused on observing structural changes occurring in samples exposed to high vacuum. Therefore, in order to expand the pump-probe experimental regime to more natural environmental conditions, in situ gas and liquid chambers must be coupled with Dynamic TEM. This chapter describes the current and future applications of in situ liquid DTEM to permit time-resolved atomic scale observations in an aqueous environment, Although this chapter focuses mostly on in situ liquid imaging, the same research potential exists for in situ gas experiments and the successful integration of these techniques promises new insights for understanding nanoparticle, catalyst and biological protein dynamics with unprecedented spatiotemporal resolution.

Evans, James E.; Jungjohann, K. L.; Browning, Nigel D.

2012-10-12T23:59:59.000Z

129

Surface Science Analysis of GaAs Photocathodes Following Sustained...  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectrometry (RBS), Atomic Force Microscopy (AFM) and Secondary Ion Mass Spectrometry (SIMS). In addition, strained super-lattice GaAs photocathode samples, removed from the CEBAF...

130

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Training Training EMC Home Overview Personnel Resources Highlights Publications Visit EMC Contact Info Information for Users Becoming a User Submit a Proposal End-of-Proposal Report Acknowledgment User Training User Safety User Status Instrument Access User Committee User Meetings Data Storage Policy Visiting the EMC Instrument Calendars Info for EMC Staff SÅMM Facility TEAM Project Microscopy Links Argonne Facilities DOE/BES Facilities DOE/BES BES Electron Beam Microcharacterization Centers User Training Prior Training in Electron Microscopy: People who wish to operate TEMs must have at least one college-level course in TEM with a lab component or previous TEM experience. The college course can't be one in which TEM was just one of many topics. For researchers who lack academic training and/or practical experience in electron microscopy, we suggest the short courses in TEM at the Hooke College of Applied Sciences, and the hands-on TEM courses at Northwestern University or the University of Chicago or Northern Illinois University.

131

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview Overview The mission of the Electron Microscopy Center (EMC) is to: Conduct materials research using advanced microstructural characterization methods; Maintain unique resources and facilities for scientific research for the both the Argonne National Laboratory and national scientific community. Develop and expand the frontiers of microanalysis by fostering the evolution of synergistic state-of-the-art resources in instrumentation, techniques and scientific expertise; The staff members of the EMC carry out their own research as well as participate in collaborative programs with other scientists at Argonne National Laboratory as well as researchers, educators and students worldwide. The Electron Microscopy Center (EMC) at Argonne National Laboratory develops and maintains unique capabilities for electron beam characterization and applies those capabilities to solve materials problems. The EMC staff perform collaborative research with members of other Divisions at Argonne National Laboratory and with collaborators from universities and other laboratories. The expertise and facilities of the EMC additionally serve a group of national and international researchers. The EMC emphasizes three major areas: materials research, technique and instrumentation development, and operation as a national research facility. Research by EMC personnel includes microscopy based studies in high Tc superconducting materials, irradiation effects in metals and semiconductors, phase transformations, and processing related structure and chemistry of interfaces in thin films.

132

Nuclear Forces  

Science Journals Connector (OSTI)

One-meson-exchange Feynman diagrams are nonrelativistically reduced and unitarized via Schrdinger's equation. Properties of nucleon-nucleon scattering are calculated at incident laboratory energies of 25-310 MeV. Bound-state properties of the deuteron and of nuclear matter are also calculated. Mesons included are the ?, ?, ?, ?, ?, and ?. Very good over-all agreement with the experimental data is obtained. Important features of this "potential" include its momentum dependence, properly treated, and the contribution of the ? "meson," which qualitatively changes the central/tensor force ratio from that of previous phenomenological potentials.

Lester Ingber

1968-10-20T23:59:59.000Z

133

Membrane shape as a reporter for applied forces  

Science Journals Connector (OSTI)

...reconstruction microscopy . Science 319 : 810 813...cell membranes . Science 175 : 720 731...applied forces. | Recent advances have enabled...Mechanical and Aerospace Engineering and...and vesicles. Advances in Physics...

Heun Jin Lee; Eric L. Peterson; Rob Phillips; William S. Klug; Paul A. Wiggins

2008-01-01T23:59:59.000Z

134

Selective nano-patterning of graphene using a heated atomic force microscope tip  

SciTech Connect

In this study, we introduce a selective thermochemical nano-patterning method of graphene on insulating substrates. A tiny heater formed at the end of an atomic force microscope (AFM) cantilever is optimized by a finite element method. The cantilever device is fabricated using conventional micromachining processes. After preliminary tests of the cantilever device, nano-patterning experiments are conducted with various conducting and insulating samples. The results indicate that faster scanning speed and higher contact force are desirable to reduce the sizes of nano-patterns. With the experimental condition of 1 ?m/s and 24 mW, the heated AFM tip generates a graphene oxide layer of 3.6 nm height and 363 nm width, on a 300 nm thick SiO{sub 2} layer, with a tip contact force of 100 nN.

Choi, Young-Soo; Wu, Xuan; Lee, Dong-Weon, E-mail: mems@jnu.ac.kr [MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, Gwangju (Korea, Republic of)] [MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, Gwangju (Korea, Republic of)

2014-04-15T23:59:59.000Z

135

Sample heating in near-field scanning optical microscopy  

E-Print Network (OSTI)

Heating near the aperture of aluminumcoated,fiber opticnear-field scanning optical microscopy probes was studied as a function of input and output powers. Using the shear-force feedback method, near-field probes were positioned nanometers above a...

Erickson, Elizabeth S.; Dunn, Robert C.

2005-10-05T23:59:59.000Z

136

Toward single cell traction microscopy within 3D collagen matrices  

SciTech Connect

Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cellECM and cellcell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: Review of the current state of the art in 3D cell traction force microscopy. Bulk and micro-characterization of remodelable fibrous collagen gels. Strategies for performing 3D cell traction microscopy within collagen gels.

Hall, Matthew S. [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Long, Rong [Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada T6G 2G8 (Canada); Feng, Xinzeng [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Huang, YuLing [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Hui, Chung-Yuen [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Wu, Mingming, E-mail: mw272@cornell.edu [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States)

2013-10-01T23:59:59.000Z

137

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Submit an EMC Proposal Submit an EMC Proposal EMC Home Overview Personnel Resources Highlights Publications Visit EMC Contact Info Information for Users Becoming a User Submit a Proposal End-of-Proposal Report Acknowledgment User Training User Safety User Status Instrument Access User Committee User Meetings Data Storage Policy Visiting the EMC Instrument Calendars Info for EMC Staff SÅMM Facility TEAM Project Microscopy Links Argonne Facilities DOE/BES Facilities DOE/BES BES Electron Beam Microcharacterization Centers Submit an EMC Proposal EMC Proposal Submission Deadline Dates for FY2014: November 1, 2013 March 7, 2014 July 11, 2014 Is your proposal a multi-facility proposal? In other words, do you intend to submit proposals to EMC and APS or CNM for your research project? If your answer is "yes," go now to the Proposal Gateway.

138

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

EMC Users Committee EMC Users Committee EMC Home Overview Personnel Resources Highlights Publications Visit EMC Contact Info Information for Users Becoming a User Submit a Proposal End-of-Proposal Report Acknowledgment User Training User Safety User Status Instrument Access User Committee User Meetings Data Storage Policy Visiting the EMC Instrument Calendars Info for EMC Staff SÅMM Facility TEAM Project Microscopy Links Argonne Facilities DOE/BES Facilities DOE/BES BES Electron Beam Microcharacterization Centers EMC Users Committee An EMC Users Committee has been organized to enhance communication between the user community and the EMC. While the EMC relies on and encourages strong interaction among its users and between its staff and users, the Users Committee provides an additional formal mechanism for user input into EMC planning and operations to ensure that users' needs and concerns are addressed.

139

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

End-of-Proposal Report End-of-Proposal Report EMC Home Overview Personnel Resources Highlights Publications Visit EMC Contact Info Information for Users Becoming a User Submit a Proposal End-of-Proposal Report Acknowledgment User Training User Safety User Status Instrument Access User Committee User Meetings Data Storage Policy Visiting the EMC Instrument Calendars Info for EMC Staff SÅMM Facility TEAM Project Microscopy Links Argonne Facilities DOE/BES Facilities DOE/BES BES Electron Beam Microcharacterization Centers End-of-Proposal Report In accordance with the User Agreement, please provide the EMC with the following information when your proposal expires (one year after its acceptance date or when the experiments end, whichever is sooner). A research summary/progress report using these two templates:

140

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Becoming a User Becoming a User EMC Home Overview Personnel Resources Highlights Publications Visit EMC Contact Info Information for Users Becoming a User Submit a Proposal End-of-Proposal Report Acknowledgment User Training User Safety User Status Instrument Access User Committee User Meetings Data Storage Policy Visiting the EMC Instrument Calendars Info for EMC Staff SÅMM Facility TEAM Project Microscopy Links Argonne Facilities DOE/BES Facilities DOE/BES BES Electron Beam Microcharacterization Centers Procedure to Become a User at the EMC 1. Summary All users have to fulfill certain requirements before access to the EMC can be granted. The following list provides short descriptions of the requirements. Details can be found on this page and via the relevant links at the left. Register for access to Argonne's scientific user facilities (or update your user registration information).

Note: This page contains sample records for the topic "force microscopy afm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

AFM | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

(3-dimercapto-1-propanol, BAL)significantly reduced extracellular polymeric substances (EPS) expression by Brevundimonas diminuta in suspended cultures at levels just below the...

142

Nanoscale Characterization and Determination of Adhesion Forces of Pseudomonas aeruginosa Pili by Using Atomic Force Microscopy  

Science Journals Connector (OSTI)

...pili are anchored to the plasma membrane, the peptidoglycan...have been reported for a large variety of biopolymers...length of 600 nm. For larger values for L, the curvature...Department of Physics and Atmospheric Science, Dalhousie University...Article Research Support, Non-U.S. Gov't | Bacterial...

Ahmed Touhami; Manfred H. Jericho; Jessica M. Boyd; Terry J. Beveridge

2006-01-15T23:59:59.000Z

143

The adhesion force study of dairy thermophile Anoxybacillus flavithermus CM with atomic force microscopy.  

E-Print Network (OSTI)

??Anoxybacillus flavithermus is a common species of thermophilic bacteria discovered in most milk powder manufacturing plants through out New Zealand. The contamination of its spores (more)

Mohd Saidi, Mohd Salihin

2014-01-01T23:59:59.000Z

144

Introduction to Photoelectron Emission Microscopy: Principles...  

NLE Websites -- All DOE Office Websites (Extended Search)

Introduction to Photoelectron Emission Microscopy: Principles and Applications. Introduction to Photoelectron Emission Microscopy: Principles and Applications. Abstract: In the...

145

Chapter 11 - Light sheet microscopy  

Science Journals Connector (OSTI)

Abstract This chapter introduces the concept of light sheet microscopy along with practical advice on how to design and build such an instrument. Selective plane illumination microscopy is presented as an alternative to confocal microscopy due to several superior features such as high-speed full-frame acquisition, minimal phototoxicity, and multiview sample rotation. Based on our experience over the last 10 years, we summarize the key concepts in light sheet microscopy, typical implementations, and successful applications. In particular, sample mounting for long time-lapse imaging and the resulting challenges in data processing are discussed in detail.

Michael Weber; Michaela Mickoleit; Jan Huisken

2014-01-01T23:59:59.000Z

146

Magnetic Force Between Magnetic Nano Probes at Optical Frequency  

E-Print Network (OSTI)

Magnetic force microscopy based on the interaction of static magnetic materials was demonstrated in the past with resolutions in the order of nanometers. Measurement techniques based on forces between electric dipoles oscillating at optical frequencies have been also demonstrated leading to the standard operation of the scanning force microscope (SFM). However the investigations of a SFM based on the magnetic force generated by magnetic dipole moments oscillating at optical frequencies has not been tackled yet. With this goal in mind we establish a theoretical model towards observable magnetic force interaction between two magnetically polarizable nanoparticles at optical frequency and show such a force to be in the order of piconewtons which could be in principle detected by conventional microscopy techniques. Two possible principles for conceiving magnetically polarizable nano probes able to generate strong magnetic dipoles at optical frequency are investigated based on silicon nanoparticles and on clusters...

Guclu, Caner; Capolino, Filippo

2014-01-01T23:59:59.000Z

147

Electron Microscopy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

General Information for EMC Users General Information for EMC Users The Electron Microscopy Center (EMC) is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory. It is one of three scientific user facilities for electron beam microcharacterization and one of several National User Facilities located at Argonne National Laboratory. As a scientific user facility, the EMC supports user-accessible instruments (Resources) for high spatial resolution microanalysis, field imaging, nanoscale structural characterization, nanoscale fabrication and manipulation, and unique in situ studies of materials under the influence of ion-beam irradiation. These capabilities are used in a diverse variety of research areas to address grand challenge scientific questions encompassing, for example, energy-related studies, biology, astrophysics, archaeology, superconductivity, nanotechnology, environmental engineering, tribology, and ferroelectricity. The research is performed both by users and by EMC staff. While many users work independently, the most challenging research activities require extensive contributions from EMC staff.

148

From Self-Assembly to Controlled-Assembly, From Optical Manipulation to AFM Manipulation  

E-Print Network (OSTI)

Moving nanoparticles/atoms to study the nearfield interaction between them is one of the many approaches to explore the optical and electrical properties of these assemblies. Traditional approach included the self assembly by spinning or drying nanoparticles in aqua on the substrate is well practiced. Lithography technique is another popular approach to deposit limited nano/micro patterns on substrates. Later optical and mechanical manipulations were used to have more control over moving individual elements of nano and microstructures and even atoms. Optical tweezers, optical trapping and AFM manipulation are examples of these precise approaches.

Shafiei, Farbod

2015-01-01T23:59:59.000Z

149

Investigation of short-range surface forces to develop self-organizing devices by Steven M. Tobias.  

E-Print Network (OSTI)

Force spectra from atomic force microscopy were used to verify surface energy components of indium tin oxide and mesocarbon microbeads. These materials were selected based on spectroscopic and thermodynamic parameters to ...

Tobias, Steven M., 1980-

2005-01-01T23:59:59.000Z

150

Spin Dynamics and Quantum Tunneling in Fe8 Nanomagnet and in AFM Rings by NMR  

SciTech Connect

In this thesis, our main interest has been to investigate the spin dynamics and quantum tunneling in single molecule magnets (SMMs), For this we have selected two different classes of SMMs: a ferrimagnetic total high spin S = 10 cluster Fe8 and antiferromagnetic (AFM) ring-type clusters. For Fe8, our efforts have been devoted to the investigation of the quantum tunneling of magnetization in the very low temperature region. The most remarkable experimental finding in Fe8 is that the nuclear spin-lattice relaxation rate (1/T{sub l}) at low temperatures takes place via strong collision mechanism, and thus it allows to measure directly the tunneling rate vs T and H for the first time. For AFM rings, we have shown that 1/T{sub l} probes the thermal fluctuations of the magnetization in the intermediate temperature range. We find that the fluctuations are dominated by a single characteristic frequency which has a power law T-dependence indicative of fluctuations due to electron-acoustic phonon interactions.

Seung-Ho-Baek

2004-12-19T23:59:59.000Z

151

The 2/3 Power Law Dependence of Capillary Force on Normal Load in Nanoscopic Friction E. Riedo,*,, I. Palaci, C. Boragno, and H. Brune  

E-Print Network (OSTI)

with the normal load following a 2/3 power law. We trace back this behavior to the load induced change of the tip between a spherical AFM tip and a rough flat surface increases with the normal load, FN, following a 2The 2/3 Power Law Dependence of Capillary Force on Normal Load in Nanoscopic Friction E. Riedo

Brune, Harald

152

CONFRENCES BARR BARR LECTURES  

E-Print Network (OSTI)

), atomic force microscopy (AFM), scanning tunneling microscopy (STM), ultra-high vacuum (UHV), UHV-tip-enhanced Raman spectroscopy (UHV-TERS), MALDI-TOF mass spectrometry, and surface- enhanced femtosecond stimulated

Charette, André

153

Directly correlated transmission electron microscopy and atom...  

NLE Websites -- All DOE Office Websites (Extended Search)

Directly correlated transmission electron microscopy and atom probe tomography of grain boundary oxidation in a Ni-Al binary Directly correlated transmission electron microscopy...

154

Anisotropic and tunable characteristics of the colloidal behavior of metal oxide surfaces  

E-Print Network (OSTI)

The electroosmotic behavior of the rutile polymorph of titanium dioxide was explored as a function of crystallographic orientation. Atomic force microscopy (AFM) was employed to make high-resolution force spectroscopy ...

Bullard, Joseph Warren, 1978-

2006-01-01T23:59:59.000Z

155

Long range constant force profiling for measurement of engineering surfaces  

Science Journals Connector (OSTI)

A new instrument bridging the gap between atomic force microscopes (AFMs) and stylus profiling instruments is described. The constant force profiler is capable of subnanometer resolution over a 15??m vertical range with a horizontal traverse length of 50 mm. This long traverse length coupled with the possibilities of utilizing standard radius diamondmeasurement styli make the force profiler more compatible with existing profiling instrument standards. The forces between the specimen and a diamond stylus tipped cantilever spring are sensed as displacements using a capacitance bridge. This displacement signal is then fed through a proportional plus integral controller to a high stability piezoelectric actuator to maintain a constant tip?to?sample force of approximately 100 nN. Much of the sensor head and traverse mechanism is made of Zerodur glass?ceramic to provide the thermal stability needed for long travel measurements. Profiles of a 30?nm silica step height standard and an 8.5??m step etched on Zerodur are presented.

L. P. Howard; S. T. Smith

1992-01-01T23:59:59.000Z

156

Hickam Air Force Base  

Energy.gov (U.S. Department of Energy (DOE))

Hickam Air Force Base spans 2,850 acres in Honolulu, Hawaii. The military base is home to the 15th Airlift Wing, the Hawaii Air National Guard, and the Pacific Air Forces headquarters.

157

Protective Force Program Manual  

Directives, Delegations, and Requirements

Provides detailed requirements to supplement DOE O 473.2, Protective Force Program, which establishes the requirements and responsibilities for management and operation of the Department of Energy (DOE) Protective Force (PF) Program. Does not cancel other directives.

2000-06-30T23:59:59.000Z

158

Fluid force transducer  

DOE Patents (OSTI)

An electrical fluid force transducer for measuring the magnitude and direction of fluid forces caused by lateral fluid flow, includes a movable sleeve which is deflectable in response to the movement of fluid, and a rod fixed to the sleeve to translate forces applied to the sleeve to strain gauges attached to the rod, the strain gauges being connected in a bridge circuit arrangement enabling generation of a signal output indicative of the magnitude and direction of the force applied to the sleeve.

Jendrzejczyk, Joseph A. (Warrenville, IL)

1982-01-01T23:59:59.000Z

159

Laser irradiation effects on the CdTe/ZnTe quantum dot structure studied by Raman and AFM spectroscopy  

SciTech Connect

Micro-Raman spectroscopy has been applied to investigate the impact of laser irradiation on semiconducting CdTe/ZnTe quantum dots (QDs) structures. A reference sample (without dots) was also studied for comparison. Both samples were grown by molecular beam epitaxy technique on the p-type GaAs substrate. The Raman spectra have been recorded for different time of a laser exposure and for various laser powers. The spectra for both samples exhibit peak related to the localized longitudinal (LO) ZnTe phonon of a wavenumber equal to 210 cm{sup -1}. For the QD sample, a broad band corresponding to the LO CdTe phonon related to the QD-layer appears at a wavenumber of 160 cm{sup -1}. With increasing time of a laser beam exposure and laser power, the spectra get dominated by tellurium-related peaks appearing at wavenumbers around 120 cm{sup -1} and 140 cm{sup -1}. Simultaneously, the ZnTe surface undergoes rising damage, with the formation of Te aggregates at the pinhole edge as reveal atomic force microscopy observations. Local temperature of irradiated region has been estimated from the anti-Stokes/Stokes ratio of the Te modes intensity and it was found to be close or exceeding ZnTe melting point. Thus, the laser damage can be explained by the ablation process.

Zielony, E.; Placzek-Popko, E.; Henrykowski, A.; Gumienny, Z.; Kamyczek, P.; Jacak, J. [Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Nowakowski, P.; Karczewski, G. [Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw (Poland)

2012-09-15T23:59:59.000Z

160

Dynamic imaging with electron microscopy  

ScienceCinema (OSTI)

Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

2014-05-30T23:59:59.000Z

Note: This page contains sample records for the topic "force microscopy afm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Dynamic imaging with electron microscopy  

SciTech Connect

Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

2014-02-20T23:59:59.000Z

162

Developing luminescent nanoprobes for labeling focal adhesion complex proteins and performing combined AFM-TIRF imaging of these conjugates  

E-Print Network (OSTI)

of Committee, Kenith E. Meissner Committee Members, Anshu B. Mathur Alvin T. Yeh David C. Zawieja Head of Department, Gerald L. Cote May 2008 Major Subject: Biomedical Engineering iii ABSTRACT Developing Luminescent Nanoprobes... for Labeling Focal Adhesion Complex Proteins and Performing Combined AFM-TIRF Imaging of These Conjugates. (May 2008) Bhavik Nathwani, B.E, Saurashtra University Chair of Advisory Committee: Dr. Kenith E. Meissner Recent progress in the field...

Nathwani, Bhavik Bharat

2008-10-10T23:59:59.000Z

163

Coulomb force as an entropic force  

SciTech Connect

Motivated by Verlinde's theory of entropic gravity, we give a tentative explanation to the Coulomb's law with an entropic force. When trying to do this, we find the equipartition rule should be extended to charges and the concept of temperature should be reinterpreted. If one accepts the holographic principle as well as our generalizations and reinterpretations, then Coulomb's law, the Poisson equation, and the Maxwell equations can be derived smoothly. Our attempt can be regarded as a new way to unify the electromagnetic force with gravity, from the entropic origin. Possibly some of our postulates are related to the D-brane picture of black hole thermodynamics.

Wang Tower [Center for High-Energy Physics, Peking University, Beijing 100871 (China)

2010-05-15T23:59:59.000Z

164

Unbalanced electromagnetic forces  

E-Print Network (OSTI)

) . I :, jazdz g (Member) (Member) August 1974 -" ~ 5:. -. 62 ABSTRACT Unbalanced Electromagnetic Forces (August 1974) Craig Martin Hansen, B. S. , Texas A&M University Directed by: Dr. Attilio J. Giaroia Electromagnetic forces from moving... be deduced from the history of the development of an under- standing of electromagnetic forces. This is a relatively short history (starting in the late 1800's) filled with misunderstandings and pre]udices. This history can be divided into two eras: non...

Hansen, Craig Martin

2012-06-07T23:59:59.000Z

165

NUCLEAR PROXIMITY FORCES  

E-Print Network (OSTI)

One might summarize of nuclear potential energy has beendegree of freedom) for the nuclear interaction between anyUniversity of California. Nuclear Proximity Forces 'I< at

Randrup, J.

2011-01-01T23:59:59.000Z

166

Protective Force Program Manual  

Directives, Delegations, and Requirements

Provides detailed requirements to supplement DOE O 473.2, PROTECTIVE FORCE PROGRAM, which establishes the requirements and responsibilities for management and operation of the Department of Energy (DOE) Protective Force (PF) Program. Change 1 revised pages in Chapters IV and VI on 12/20/2001.

2001-12-20T23:59:59.000Z

167

ILC Citizens' Task Force  

NLE Websites -- All DOE Office Websites (Extended Search)

the Fermilab ILC Citizens' Task Force June 2008 Report of the Fermilab ILC Citizens' Task Force 3 Contents 1 Executive Summary 3 Chapter 1 Purpose 7 Chapter 2 Origins and Purpose of the Fermilab Citizens' Task Force 15 Chapter 3 Setting the Stage 19 Chapter 4 Current Status of High Energy Physics Research 25 Chapter 5 Bringing the Next-Generation Accelerator to Fermilab 31 Chapter 6 Learning from Past Projects 37 Chapter 7 Location, Construction and Operation of Facilities Beyond Fermilab's Borders 45 Chapter 8 Health and Safety 49 Chapter 9 Environment 53 Chapter 10 Economics 59 Chapter 11 Political Considerations 65 Chapter 12 Community Engagement 77 Chapter 13 Summary 81 Appendices Appendix A. Task Force Members Appendix B. Task Force Meetings and Topics

168

A high-pressure atomic force microscope for imaging in supercritical carbon dioxide  

SciTech Connect

A high-pressure atomic force microscope (AFM) that enables in situ, atomic scale measurements of topography of solid surfaces in contact with supercritical CO{sub 2} (scCO{sub 2}) fluids has been developed. This apparatus overcomes the pressure limitations of the hydrothermal AFM and is designed to handle pressures up to 100 atm at temperatures up to ?350 K. A standard optically-based cantilever deflection detection system was chosen. When imaging in compressible supercritical fluids such as scCO{sub 2} , precise control of pressure and temperature in the fluid cell is the primary technical challenge. Noise levels and imaging resolution depend on minimization of fluid density fluctuations that change the fluid refractive index and hence the laser path. We demonstrate with our apparatus in situ atomic scale imaging of a calcite (CaCO{sub 3}) mineral surface in scCO{sub 2}; both single, monatomic steps and dynamic processes occurring on the (10{overbar 1}4) surface are presented. This new AFM provides unprecedented in situ access to interfacial phenomena at solidfluid interfaces under pressure.

Lea, A.S.; Higgins, S.R.; Knauss, K.G.; Rosso, K.M.

2011-01-15T23:59:59.000Z

169

Crystallinity and compositional changes in carbonated apatites: Evidence from {sup 31}P solid-state NMR, Raman, and AFM analysis  

SciTech Connect

Solid-state (magic-angle spinning) NMR spectroscopy is a useful tool for obtaining structural information on bone organic and mineral components and synthetic model minerals at the atomic-level. Raman and {sup 31}P NMR spectral parameters were investigated in a series of synthetic B-type carbonated apatites (CAps). Inverse {sup 31}P NMR linewidth and inverse Raman PO{sub 4}{sup 3?}?{sub 1} bandwidth were both correlated with powder XRD c-axis crystallinity over the 0.310.3 wt% CO{sub 3}{sup 2?} range investigated. Comparison with bone powder crystallinities showed agreement with values predicted by NMR and Raman calibration curves. Carbonate content was divided into two domains by the {sup 31}P NMR chemical shift frequency and the Raman phosphate ?{sub 1} band position. These parameters remain stable except for an abrupt transition at 6.5 wt% carbonate, a composition which corresponds to an average of one carbonate per unit cell. This near-binary distribution of spectroscopic properties was also found in AFM-measured particle sizes and Ca/P molar ratios by elemental analysis. We propose that this transition differentiates between two charge-balancing ion-loss mechanisms as measured by Ca/P ratios. These results define a criterion for spectroscopic characterization of B-type carbonate substitution in apatitic minerals. - Graphical abstract: Carbonated apatite shows an abrupt change in spectral (NMR, Raman) and morphological (AFM) properties at a composition of about one carbonate substitution per unit cell. Display Omitted - Highlights: Crystallinity (XRD), particle size (AFM) of carbonated apatites and bone mineral. Linear relationships among crystallinity, {sup 31}P NMR and Raman inverse bandwidths. Low and high carbonated apatites use different charge-balancing ion-loss mechanism.

McElderry, John-David P.; Zhu, Peizhi [Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055 (United States); Mroue, Kamal H. [Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055 (United States); Department of Biophysics, University of Michigan, Ann Arbor, MI 48109-1055 (United States); Xu, Jiadi [Department of Biophysics, University of Michigan, Ann Arbor, MI 48109-1055 (United States); Pavan, Barbara [Department of Chemistry and Science of Advanced Materials Program, Central Michigan University, Mt. Pleasant, MI 48859 (United States); Fang, Ming [Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055 (United States); Zhao, Guisheng; McNerny, Erin; Kohn, David H.; Franceschi, Renny T. [School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1055 (United States); Holl, Mark M.Banaszak [Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055 (United States); Tecklenburg, Mary M.J., E-mail: mary.tecklenburg@cmich.edu [Department of Chemistry and Science of Advanced Materials Program, Central Michigan University, Mt. Pleasant, MI 48859 (United States); Ramamoorthy, Ayyalusamy [Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055 (United States); Department of Biophysics, University of Michigan, Ann Arbor, MI 48109-1055 (United States); Morris, Michael D. [Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055 (United States)

2013-10-15T23:59:59.000Z

170

Protective Force Program  

Directives, Delegations, and Requirements

To prescribe Department of Energy policy, responsibilities, and requirements for the management and operation of the Protective Force Program. Chg 1 dated 2-13-95. Cancels DOE O 5632.7 and DOE O 5632.8.

1995-02-13T23:59:59.000Z

171

ATLAS Metadata Task Force  

E-Print Network (OSTI)

ATLAS Metadata Task Force D. Costanzo, J. Cranshaw, S.provided and approved by the ATLAS TDAQ and DCS Connectinformation, go to http://atlas-connect-forum.web.cern.ch/

Costanzo, D.; ATLAS Collaboration

2009-01-01T23:59:59.000Z

172

Federal Protective Force  

Directives, Delegations, and Requirements

This Manual establishes requirements for the management and operation of the Department of Energy (DOE) Federal protective forces (FPFs). Cancels DOE M 470.4-3, Chg 1. Canceled by DOE O 473.3.

2009-07-15T23:59:59.000Z

173

Constraint and Restoring Force  

E-Print Network (OSTI)

Long-lived sensor network applications must be able to self-repair and adapt to changing demands. We introduce a new approach for doing so: Constraint and Restoring Force. CRF is a physics-inspired framework for computing ...

Beal, Jacob

2007-08-24T23:59:59.000Z

174

Weak nuclear forces cause the strong nuclear force  

E-Print Network (OSTI)

We determine the strength of the weak nuclear force which holds the lattices of the elementary particles together. We also determine the strength of the strong nuclear force which emanates from the sides of the nuclear lattices. The strong force is the sum of the unsaturated weak forces at the surface of the nuclear lattices. The strong force is then about ten to the power of 6 times stronger than the weak force between two lattice points.

E. L. Koschmieder

2007-12-11T23:59:59.000Z

175

Direct measurement of proton-beam-written polymer optical waveguide sidewall morphorlogy using an atomic force microscope  

SciTech Connect

Proton-beam writing (PBW) is a direct-write micromachining technique capable of fabricating low-loss single-mode polymer waveguides with straight and smooth sidewalls. Recently, the sidewall morphologies of such proton beam written polymer waveguide structures were directly measured using an atomic force microscope (AFM). Statistical information such as the rms roughness and the correlation length of the sidewall profile obtained from the AFM scans allows us to quantify the quality of the sidewalls and optimize the fabrication parameters using PBW. For structures fabricated using a stage scanning speed of {approx}10 {mu}m/s, a rms roughness of 3.8{+-}0.3 nm with a correlation length of 46{+-}6 nm was measured.

Sum, T.C.; Bettiol, A.A.; Seng, H.L.; Kan, J.A. van; Watt, F. [Department of Physics Centre for Ion Beam Applications (CIBA), National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore)

2004-08-23T23:59:59.000Z

176

Electron Microscopy | Center for Functional Nanomaterials  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Microscopy Facility Electron Microscopy Facility Electron Microscopy This facility consists of four top-of-the line transmission electron microscopes, two of which are highly specialized instruments capable of extreme levels of resolution, achieved through spherical aberration correction. The facility is also equipped with extensive sample-preparation capabilities. The scientific interests of the staff focus on understanding the microscopic origin of the physical and chemical behavior of materials, with specific emphasis on in-situ studies of materials in native, functional environments. Capabilities Atomic-resolution imaging of internal materials structure with scanning transmission and transmission electron microscopy Spectroscopic characterization with energy dispersive x-ray

177

Microscopy charges ahead | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Microscopy charges ahead By Jared Sagoff * May 28, 2014 Tweet EmailPrint ARGONNE, Ill. - Ferroelectric materials - substances in which there is a slight and reversible shift of...

178

Nonlinear Dark-Field Microscopy Hayk Harutyunyan,  

E-Print Network (OSTI)

/20/2010 Published on Web: 11/16/2010 FIGURE 1. Illustration of the nonlinear dark-field imaging method. Two incidentNonlinear Dark-Field Microscopy Hayk Harutyunyan, Stefano Palomba, Jan Renger, Romain Quidant Dark-field microscopy is a background-free imaging method that provides high sensitivity and a large

Novotny, Lukas

179

Scanning Probe Microscopy Studies of Carbon Nanotubes  

E-Print Network (OSTI)

Scanning Probe Microscopy Studies of Carbon Nanotubes Teri Wang Odom1 , Jason H. Hafner1 relationship between Single-Walled Carbon Nanotube (SWNT) atomic structure and electronic properties, (2, properties and application of carbon nanotube probe microscopy tips to ultrahigh resolution and chemically

Odom, Teri W.

180

Faculty Position in Materials Electron Microscopy  

E-Print Network (OSTI)

Faculty Position in Materials Electron Microscopy at the Ecole Polytechnique Fédérale de Lausanne in electron microscopy of materials within its Institute of Materials. We seek exceptional individuals who community. Top-level applications are invited from candidates at the cutting edge of electron microscopic

Candea, George

Note: This page contains sample records for the topic "force microscopy afm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Multiphoton microscopy with near infrared contrast  

E-Print Network (OSTI)

Multiphoton microscopy with near infrared contrast agents Siavash Yazdanfar,a, * Chulmin Joo,a Chun limited to the visible spectrum. We introduce a paradigm for MPM of near-infrared NIR fluorescent Engineers. DOI: 10.1117/1.3420209 Keywords: two-photon microscopy; ultrafast fiber lasers; near-infrared

Larson-Prior, Linda

182

Work Force Restructuring Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Force Restructuring Activities Force Restructuring Activities December 10, 2008 Note: Current updates are in bold # Planned Site/Contractor HQ Approved Separations Status General * LM has finalized the compilation of contractor management team separation data for the end of FY07 actuals and end of FY08 and FY09 projections. LM has submitted to Congress the FY 2007 Annual Report on contractor work force restructuring activities. The report has been posted to the LM website. *LM conducted a DOE complex-wide data call to the Field and Operations offices for DOE Contractor Management teams to provide, by program, actual contractor separation data for the end of FY 2008 and projections for the end of FY 2009 and FY 2010. The data will be used to keep senior management informed of upcoming large WFR actions.

183

Switchable stiffness scanning microscope probe  

E-Print Network (OSTI)

Atomic Force Microscopy (AFM) has rapidly gained widespread utilization as an imaging device and micro/nano-manipulator during recent years. This thesis investigates the new concept of a dual stiffness scanning probe with ...

Mueller-Falcke, Clemens T. (Clemens Tobias)

2005-01-01T23:59:59.000Z

184

Bacillus atrophaeus Outer Spore Coat Assembly and Ultrastructure  

Science Journals Connector (OSTI)

Our previous atomic force microscopy (AFM) studies successfully visualized native Bacillus atrophaeus spore coat ultrastructure and surface morphology. We have shown that the outer spore coat surface is formed by a crystalline array of ?11 nm thick ...

Marco Plomp; Terrance J. Leighton; Katherine E. Wheeler; Maurice E. Pitesky; Alexander J. Malkin

2005-10-05T23:59:59.000Z

185

Nano-mechanical tuning and imaging of a photonic crystal micro-cavity resonance  

Science Journals Connector (OSTI)

We show that nano-mechanical interaction using atomic force microscopy (AFM) can be used to map out mode-patterns of an optical micro-resonator with high spatial accuracy....

Hopman, W C L; van der Werf, K O; Hollink, A J F; Bogaerts, W; Subramaniam, V; de Ridder, R M

2006-01-01T23:59:59.000Z

186

Direct Aerosol Forcing Uncertainty  

DOE Data Explorer (OSTI)

Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

Mccomiskey, Allison

187

Protective Force Program  

Directives, Delegations, and Requirements

Establishes policy, requirements, responsibilities, and authorities, for the management and operation of the Department of Energy (DOE) Protective Force (PF) Program. Extended until 7-7-06 by DOE N 251.64, dated 7-7-05 Cancels: DOE 5632.7A

2000-06-30T23:59:59.000Z

188

Work Force Discipline  

Directives, Delegations, and Requirements

The order provides guidance and procedures and states responsibilities for maintaining work force discipline in DOE. Chg 1, dated 3-11-85; Chg 2, dated 1-6-86; Chg 3, dated 3-21-89; Chg 4, dated 8-2-90; Chg 5, dated 3-9-92; Chg 6, dated 8-21-92, cancels Chg 5.

1983-03-23T23:59:59.000Z

189

Contractor Protective Force  

Directives, Delegations, and Requirements

This Manual establishes requirements for the management and operation of the U.S. Department of Energy contractor protective forces. Cancels: DOE M 470.4-3 Chg 1, CRD (Attachment 2) only, except for Section C. Canceled by DOE O 473.3.

2008-11-05T23:59:59.000Z

190

Seminar Announcement Nanoscale High Field Chemistry with the Atomic Force Microscope and Patterning January 15, 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

SEMINAR SEMINAR ANNOUNCMENT Thursday, January 15, 2009 11:00am - 12:00 noon EMSL Boardroom Nanoscale High Field Chemistry With the Atomic Force Microscope and Patterning Marco Rolandi Assistant Professor Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195 Facile and affordable processes for the fabrication of nanostructures are fundamental to future endeavors in nanoscale science and engineering. The atomic force microscope was designed primarily for imaging, and has evolved into a versatile tool for nanoscale surface modification. We have developed an AFM based scheme capable of direct writing of glassy carbon nanowires as fast as 1 cm/s. In brief, when a bias is applied across the tip-sample gap a molecular precursor undergoes high field reactions that result in the deposition of a cross- linked product on the surface. In order to gain a

191

Spatially resolved quantitative mapping of thermomechanical properties and phase transition temperatures using scanning probe microscopy  

DOE Patents (OSTI)

An approach for the thermomechanical characterization of phase transitions in polymeric materials (polyethyleneterephthalate) by band excitation acoustic force microscopy is developed. This methodology allows the independent measurement of resonance frequency, Q factor, and oscillation amplitude of a tip-surface contact area as a function of tip temperature, from which the thermal evolution of tip-surface spring constant and mechanical dissipation can be extracted. A heating protocol maintained a constant tip-surface contact area and constant contact force, thereby allowing for reproducible measurements and quantitative extraction of material properties including temperature dependence of indentation-based elastic and loss moduli.

Jesse, Stephen; Kalinin, Sergei V; Nikiforov, Maxim P

2013-07-09T23:59:59.000Z

192

Fast scanning two-photon microscopy  

E-Print Network (OSTI)

Fast scanning two-photon microscopy coupled with the use light activated ion channels provides the basis for fast imaging and stimulation in the characterization of in vivo neural networks. A two-photon microscope capable ...

Chang, Jeremy T

2010-01-01T23:59:59.000Z

193

Dark Field Microscopy for Analytical Laboratory Courses  

Science Journals Connector (OSTI)

An innovative and inexpensive optical microscopy experiment for a quantitative analysis or an instrumental analysis chemistry course is described. The students have hands-on experience with a dark field microscope and investigate the wavelength dependence ...

Ashley E. Augspurger; Anthony S. Stender; Kyle Marchuk; Thomas J. Greenbowe; Ning Fang

2014-05-01T23:59:59.000Z

194

Photon tunnelling microscopy of polyethylene single crystals  

E-Print Network (OSTI)

Photon tunnelling microscopy of polyethylene single crystals Mohan Srinivasarao* and Richard S:photon tunnellingmicroscopy;single crystals; polyethylene) INTRODUCTION The study of morphology of polymers is an area

Srinivasarao, Mohan

195

Subwavelength optical microscopy in the far field  

E-Print Network (OSTI)

We present a procedure for subwavelength optical microscopy. The identical atoms are distributed on a plane and shined with a standing wave. We rotate the plane to different angles and record the resonant fluorescence spectra in the far field, from...

Sun, Qingqing; Al-Amri, M.; Scully, Marlan O.; Zubairy, M. Suhail.

2011-01-01T23:59:59.000Z

196

ARMY SERVICE FORCES  

Office of Legacy Management (LM)

ARMY SERVICE FORCES ARMY SERVICE FORCES ' -, 1 MANHATTAN ENGINEER DISTRICT --t 4 IN "LPLI RC,' LR io EIDM CIS INTELLIGENCE AND SECURITY DIVISION CHICAGO BRANCH OFFICE i ., -,* - P. 0. Box 6770-A I ' 1 .' CHICAGO 80. ILLINOIS /lvb 15 February 1945 Subject: shipment Security Survey at &Uinckrodt Chemical Works. MEMORANDUM to the Officer in Charge. 1. The Mallinckrodt Chemical Works, St. Louis, Missouri, was contacted by the undersigned on 16 November 1944, for the purpose of -king an investigation to determine security provided shipments of interest to the Manhattan Engineer District. The investigation in- cluded shipments of vital materials originating with the Mallinckrodt Company and those received by them. Particular attention has been given to the future production and shipment schedules of these materials.

197

Modified entropic force  

SciTech Connect

The theory of statistical thermodynamics tells us the equipartition law of energy does not hold in the limit of very low temperatures. It is found the Debye model is very successful in explaining the experimental results for most of the solid objects. Motivated by this fact, we modify the entropic force formula which is proposed very recently. Since the Unruh temperature is proportional to the strength of the gravitational field, so the modified entropic force formula is an extension of the Newtonian gravity to the weak field. On the contrary, general relativity extends Newtonian gravity to the strong field case. Corresponding to Debye temperature, there exists a Debye acceleration g{sub D}. It is found the Debye acceleration is g{sub D}=10{sup -15} N kg{sup -1}. This acceleration is very much smaller than the gravitational acceleration 10{sup -4} N kg{sup -1} which is felt by Neptune and the gravitational acceleration 10{sup -10} N kg{sup -1} felt by the Sun. Therefore, the modified entropic force can be very well approximated by the Newtonian gravity in the Solar System and in the Galaxy. With this Debye acceleration, we find the current cosmic speeding up can be explained without invoking any kind of dark energy.

Gao Changjun [National Astronomical Observatories, Chinese Academy of Sciences, Key Laboratory of Optical Astronomy, NAOC, CAS, Beijing, 100012 and Kavli Institute for Theoretical Physics China, CAS, Beijing 100190 (China)

2010-04-15T23:59:59.000Z

198

Soft, entirely photoplastic probes for scanning force microscopy G. Genolet,a)  

E-Print Network (OSTI)

. The stiffness of a cantilever is given by its spring constant k Ewt3 /4l3 where w, t, and l denote the width with integrated tips made with a batch molding technique. II. DESCRIPTION AND FABRICATION OF PHOTOPLASTIC PROBES

Bielefeld, Universität

199

Nanotribology and Nanofabrication of MoO3 Structures by Atomic Force Microscopy  

Science Journals Connector (OSTI)

...MoS2) surfaces. Highly anisotropic friction was observed whereby...and Ni) typical of black shale environments. One of...MoS2) surfaces. Highly anisotropic friction was observed...measUred friction is extremely anisotropic, with MoO, crystals sliding...

Paul E. Sheehan; Charles M. Lieber

1996-05-24T23:59:59.000Z

200

Mode-synthesizing atomic force microscopy and mode-synthesizing sensing  

DOE Patents (OSTI)

A method of analyzing a sample that includes applying a first set of energies at a first set of frequencies to a sample and applying, simultaneously with the applying the first set of energies, a second set of energies at a second set of frequencies, wherein the first set of energies and the second set of energies form a multi-mode coupling. The method further includes detecting an effect of the multi-mode coupling.

Passain, Ali; Thundat, Thomas George; Tetard, Laurene

2014-07-22T23:59:59.000Z

Note: This page contains sample records for the topic "force microscopy afm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Influence of Elastic Deformation on Single-Wall Carbon Nanotube Atomic Force Microscopy Probe Resolution  

E-Print Network (OSTI)

Resolution Ian R. Shapiro, Santiago D. Solares,,§ Maria J. Esplandiu,, Lawrence A. Wade,| William A. Goddard,*,,§ and C. Patrick Collier*, Jet Propulsion Laboratory and Departments of Chemistry, Chemical Engineering

Goddard III, William A.

202

Highly controlled fabrication of carbon nanotube based probes for atomic force microscopy  

E-Print Network (OSTI)

phase images taken with the CNC MFM probe. 5.7 References J.silicon substrate using (a) A CNC probe. (b) A commercial Sithe Si MFM probe, and (b) the CNC MFM probe ... . 94

Chen, I-Chen

2007-01-01T23:59:59.000Z

203

Atomic force microscopy with carbon nanotube probe resolves the subunit organization of protein complexes  

Science Journals Connector (OSTI)

......synthesized by the conventional DC arc discharge method. Synthesized carbon nanotubes...aligned on a glass plate. An ac electric field of 5 MHz and 1.8 kV cm...Hl-induced compaction in aligned in an arc. The largest subunit was always......

Ken I. Hohmura; Yutakatti Itokazu; Shige H. Yoshimura; Gaku Mizuguchi; Yu-suke Masamura; Kunio Takeyasu; Yasushi Shiomi; Toshiki Tsurimoto; Hidehiro Nishijima; Seiji Akita; Yoshikazu Nakayama

2000-01-01T23:59:59.000Z

204

Viscous Nature of the Bond between Adhering Bacteria and Substratum Surfaces Probed by Atomic Force Microscopy  

Science Journals Connector (OSTI)

University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands ... *Address: Henny C. van der Mei Department of Biomedical Engineering, FB40 University Medical Center Groningen Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands. ... This study was entirely funded by the University Medical Center Groningen, Groningen, The Netherlands. ...

Yun Chen; Henny C. van der Mei; Henk J. Busscher; Willem Norde

2014-03-03T23:59:59.000Z

205

Mechanical and Electrical Properties of CdTe Tetrapods Studied by Atomic Force Microscopy  

E-Print Network (OSTI)

Electrical Properties of CdTe Tetrapods Studied by Atomicelectrical properties of CdTe tetrapod-shaped nanocrystalsIntroduction CdSe and CdTe nanocrystals possess interesting

2008-01-01T23:59:59.000Z

206

Data Reconstruction from a Hard Disk Drive using Magnetic Force Microscopy  

E-Print Network (OSTI)

flying over the magnetization pattern written on the disk,disks be free of even microscopic particles, since the flying

Kanekal, Vasu

207

Induced water condensation and bridge formation by electric fieldsin Atomic Force Microscopy  

SciTech Connect

We present an analytical model that explains how in humidenvironments the electric field near a sharp tip enhances the formationof water meniscii and bridges between tip and sample. The predictions ofthe model are compared with experimental measurements of the criticaldistance where the field strength causes bridge formation.

Sacha, G.M.; Verdaguer, A.; Salmeron, M.

2006-02-22T23:59:59.000Z

208

Measuring Forces between Protein Fibers by Microscopy Christopher W. Jones,* J. C. Wang,y  

E-Print Network (OSTI)

b-amyloid, actin, and tubulin. INTRODUCTION Sickle cell anemia is a blood disorder in which a genetic mutation leads to the transcription of sickle hemoglobin (HbS). A good review of sickle cell and the associated pathologies can be found in Eaton and Hofrichter (1990). The main pathology of sickle cell anemia

Turner, Matthew

209

Study of dynamic effects in microparticle adhesion using Atomic force microscopy  

E-Print Network (OSTI)

monitor. The images from this camera have a total maximum magnification of 1000X. This camera is also capable of taking still images. Cantilever Tips: The cantilever tips used in the experiments were obtained from Veeco Systems. These are Silicon... Nitride tips. The cantilevers have gold coating on top for better reflection. These cantilevers come in four sizes, lengths 21 100 and 200 micron, widths 40 micron (wide) and 15 micron (narrow). The spring constants of the cantilevers are specified...

Kaushik, Anshul

2005-02-17T23:59:59.000Z

210

Measuring Localized Redox Enzyme Electron Transfer in a Live Cell with Conducting Atomic Force Microscopy  

Science Journals Connector (OSTI)

Department of Bioengineering, ?Department of Aerospace and Mechanical Engineering, ?Materials Science Program, University of California San Diego, 9500 Gillman Dr., La Jolla, California 92093, United States ... Connelly, L.; Meckes, B.; Larkin, J.; Gillman, A. L.; Wanunu, M.; Lal, R. ACS Appl. ... Connelly, Laura S.; Meckes, Brian; Larkin, Joseph; Gillman, Alan L.; Wanunu, Meni; Lal, Ratnesh ...

Lital Alfonta; Brian Meckes; Liron Amir; Orr Schlesinger; Srinivasan Ramachandran; Ratnesh Lal

2014-06-30T23:59:59.000Z

211

Direct Visualization of Vesicle-Bilayer Complexes by Atomic Force Microscopy  

E-Print Network (OSTI)

vesicles and bilayers play a central role in cell physiology, enabling secretion, signaling, less is known about the structure and organization of lipids during this process. In addition, the interaction between lipids and proteins is known to be important for fusion. Evidence for this comes from

Kumar, Sanjay

212

A 4 K cryogenic probe for use in magnetic resonance force microscopy experiments  

SciTech Connect

The detailed design of a mechanically detected nuclear magnetic resonance probe using the SPAM (Springiness Preservation by Aligning Magnetization) geometry, operating at 4 K, in vacuum, and a several-Tesla magnetic field is described. The probe head is vibration-isolated well enough from the environment by a three-spring suspension system that the cantilever achieves thermal equilibrium with the environment without the aid of eddy current damping. The probe uses an ultra-soft Si cantilever with a Ni sphere attached to its tip, and magnetic resonance is registered as a change in the resonant frequency of the driven cantilever. The RF system uses frequency sweeps for adiabatic rapid passage using a 500 ?m diameter RF coil wound around a sapphire rod. The RF coil and optical fiber of the interferometer used to sense the cantilever's position are both located with respect to the cantilever using a Garbini micropositioner, and the sample stage is mounted on an Attocube nanopositioner.

Smith, Doran D.; Alexson, Dimitri A. [U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783 (United States)] [U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783 (United States); Garbini, Joseph L. [Mechanical Engineering, University of Washington, Seattle, Washington 98195 (United States)] [Mechanical Engineering, University of Washington, Seattle, Washington 98195 (United States)

2013-09-15T23:59:59.000Z

213

Nanoscale Current Imaging of the Conducting Channels in Proton  

E-Print Network (OSTI)

must traverse the aqueous domains of the PEM and reach the catalyst at the cathode area of a proton exchange membrane fuel cell (PEMFC) is investigated using conductive probe atomic force microscopy (CP-AFM). A platinum-coated AFM tip is used as a nanoscale cathode in an operating

Buratto, Steve

214

In-situ Transmission Electron Microscopy and Spectroscopy Studies...  

NLE Websites -- All DOE Office Websites (Extended Search)

Transmission Electron Microscopy and Spectroscopy Studies of Interfaces in Li-ion Batteries: Challenges and In-situ Transmission Electron Microscopy and Spectroscopy Studies of...

215

Ultra-High Resolution Electron Microscopy for Catalyst Characterizatio...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ultra-High Resolution Electron Microscopy for Catalyst Characterization Ultra-High Resolution Electron Microscopy for Catalyst Characterization 2011 DOE Hydrogen and Fuel Cells...

216

Ultra-high Resolution Electron Microscopy for Catalyst Characterizatio...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

high Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst Characterization 2009 DOE Hydrogen Program and Vehicle...

217

Ultra-High Resolution Electron Microscopy for Catalyst Characterizatio...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High Resolution Electron Microscopy for Catalyst Characterization Ultra-High Resolution Electron Microscopy for Catalyst Characterization 2010 DOE Vehicle Technologies and Hydrogen...

218

Norms of Presentational Force  

E-Print Network (OSTI)

://www.americanforensics.org/uploaded-files/tc_41_3_w05.pdf. Open Access version: http://kuscholarworks.ku.edu/dspace/. 15 hope to illustrate the close connection between emotional appeal and premise adequacy. After arguing that the Declaration of Independence and Constitution secure...Innocenti Manolescu, Beth. "Norms of Presentational Force." Argumentation and Advocacy 41 (2005): 139-51. Official publishers version: http://www.americanforensics.org/uploaded-files/tc_41_3_w05.pdf. 1 Citation: Innocenti Manolescu, Beth...

Innocenti, Beth

2005-01-01T23:59:59.000Z

219

DISCLAIMER  

NLE Websites -- All DOE Office Websites (Extended Search)

Finite element method simulation of the atomic force microscopy (AFM) Finite element method simulation of the atomic force microscopy (AFM) tip induced optical-field enhancement near a metallic nano-particle, a new approach for AFM-surface enhanced Raman microscopy (AFM-SERS). The illustration shows the distri- bution of an enhanced electric field in the vicinity of a nano-particle (dia.10nm) when approached from above by a silver AFM and exposed under the laser illumination with vertical polarization. By using a frequency-domain 3D finite element method to solve Maxwell's equations, CS&D researcher Miodrag Micic, Nicholas Klymyshyn, and H. Peter Lu simulated the electric field enhancement distribution as a function of the geometrical and optical parameters. Ongoing research suggests possible new approaches for enhanc-

220

TEXT Pro Force Training  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basic Protective Basic Protective Force Training Program DOE/IG-0641 March 2004 * None of the 10 sites included instruction in rappelling even though it was part of the special response team core curriculum and continued to be offered by the Nonprolif- eration and National Security Institute; * Only one site conducted basic training on use of a shotgun, despite the fact that a num- ber of sites used the weapon for breaching exercises and other purposes; and, * Seven of the sites modified prescribed training techniques by reducing the intensity or delivery method for skills that some security experts characterized as critical, such as handcuffing, hand-to- hand combat, and vehicle assaults. We found that the Department's facilities were not required to report departures from the core

Note: This page contains sample records for the topic "force microscopy afm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

A micropatterning and image processing approach to simplify measurement of cellular traction forces  

E-Print Network (OSTI)

of traction force microscopy on polyacrylamide (PAA) gels that addresses limitations of existing technologies. Through an indirect pat- terning technique, we generated PAA gels with fluorescent 1 lm dot markers (PAA) hydrogels are popular substrates for this purpose, although PAA substrates first have

222

Spatial resolution in vector potential photoelectron microscopy  

SciTech Connect

The experimental spatial resolution of vector potential photoelectron microscopy is found to be much higher than expected because of the cancellation of one of the expected contributions to the point spread function. We present a new calculation of the spatial resolution with support from finite element ray tracing, and experimental results.

Browning, R. [R. Browning Consultants, 1 Barnhart Place, Shoreham, New York 11786 (United States)] [R. Browning Consultants, 1 Barnhart Place, Shoreham, New York 11786 (United States)

2014-03-15T23:59:59.000Z

223

Physical sectioning in 3D biological microscopy  

E-Print Network (OSTI)

developed in the Brain Networks Laboratory at Texas A&M University, has been used for the purpose of this study. However, the modes of characterizing chatter and its measurement are equally applicable to all current variants of 3D biological microscopy using...

Guntupalli, Jyothi Swaroop

2008-10-10T23:59:59.000Z

224

Physical sectioning in 3D biological microscopy  

E-Print Network (OSTI)

developed in the Brain Networks Laboratory at Texas A&M University, has been used for the purpose of this study. However, the modes of characterizing chatter and its measurement are equally applicable to all current variants of 3D biological microscopy using...

Guntupalli, Jyothi Swaroop

2009-05-15T23:59:59.000Z

225

Feature Article NEXAFS microscopy and resonant scattering  

E-Print Network (OSTI)

and conven- tional electron, X-ray and neutron scattering. We provide an overview of these synchrotron based and derivative struc- tures, ranging from spectroscopy to mechanical analysis and neutron scattering [9,10]. SomeFeature Article NEXAFS microscopy and resonant scattering: Composition and orientation probed

Hitchcock, Adam P.

226

Protective Force Firearms Qualification Courses  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PROTECTIVE FORCE PROTECTIVE FORCE FIREARMS QUALIFICATION COURSES U.S. DEPARTMENT OF ENERGY Office of Health, Safety and Security AVAILABLE ONLINE AT: INITIATED BY: http://www.hss.energy.gov Office of Health, Safety and Security Protective Force Firearms Qualification Courses July 2011 i TABLE OF CONTENTS SECTION A - APPROVED FIREARMS QUALIFICATION COURSES .......................... I-1 CHAPTER I . INTRODUCTION ................................................................................... I-1 1. Scope .................................................................................................................. I-1 2. Content ............................................................................................................... I-1

227

Air Force Renewable Energy Programs  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers Air Force Renewable Energy Programs and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

228

The Forces which lift Aeroplanes  

Science Journals Connector (OSTI)

... cylinder. To avoid unnecessary complications we use Heaviside's rational electromagnetic units. Then the hydroelectric current i equals the line-integral of the hydro-magnetic force, i.e. of ... actions-at-a-distance. From the propeller blade the way is not far to the turbine blade. The type of driving force will remain the same whether the driving medium ...

V. K. F. BJERKNES

1924-10-04T23:59:59.000Z

229

Ecosystem Task Force Meeting Minutes  

E-Print Network (OSTI)

in violation of the clean water act 2. Long term tracking can identify problems and remediation techniques. 3. A focus on planning helps ground the Task Force because of the complexity of ecosystems. UNH targets for future reductions? 3.1. No. We could work on those with the Task Force. Water Quality

New Hampshire, University of

230

Multimode AFM (Nanoscope) | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

grown... Lithium Metal Anodes for Rechargeable Batteries. Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using...

231

Air Force Renewable Energy Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 Ken Gray P.E. HQ AFCESA /CENR Air Force Renewable Energy Programs April, 2011 FUPWG "Make Energy a Consideration in All We Do" I n t e g r i t y - S e r v i c e - E x c e l l e n c e THINK GREEN, BUILD GREEN, Topics  Air Force Energy Use  Air Force Facility Energy Center  Current RE Generation  Project Development System  Programmed RE Generation FY11-13  Goal Achievement 2 I n t e g r i t y - S e r v i c e - E x c e l l e n c e THINK GREEN, BUILD GREEN, Air Force 2010 Energy Use The Air Force spent approximately $8.2 billion for energy in 2010; an increase of 22% from 2009 Energy Cost and Consumption Trends Energy Cost Breakdown Aviation 79% Facilities 17% 3 Aviation 84% Facilities 12% Vehicles & Equipment

232

The relationship between local liquid density and force applied on a tip of atomic force microscope: A theoretical analysis for simple liquids  

SciTech Connect

The density of a liquid is not uniform when placed on a solid. The structured liquid pushes or pulls a probe employed in atomic force microscopy, as demonstrated in a number of experimental studies. In the present study, the relation between the force on a probe and the local density of a liquid is derived based on the statistical mechanics of simple liquids. When the probe is identical to a solvent molecule, the strength of the force is shown to be proportional to the vertical gradient of ln(?{sub DS}) with the local liquid's density on a solid surface being ?{sub DS}. The intrinsic liquid's density on a solid is numerically calculated and compared with the density reconstructed from the force on a probe that is identical or not identical to the solvent molecule.

Amano, Ken-ichi, E-mail: aman@tohoku-pharm.ac.jp; Takahashi, Ohgi [Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558 (Japan)] [Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558 (Japan); Suzuki, Kazuhiro [Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510 (Japan)] [Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510 (Japan); Fukuma, Takeshi [Bio-AFM Frontier Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)] [Bio-AFM Frontier Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Onishi, Hiroshi [Department of Chemistry, Faculty of Science, Kobe University, Nada-ku, Kobe 657-8501 (Japan)] [Department of Chemistry, Faculty of Science, Kobe University, Nada-ku, Kobe 657-8501 (Japan)

2013-12-14T23:59:59.000Z

233

The indentation of pressurized elastic shells: from polymeric capsules to yeast cells  

Science Journals Connector (OSTI)

...common to use an atomic force microscope (AFM) in...shell theory. From a fundamental point of view, the indentation...action of a point-like force, F. Numerical simulations...A. Kwade 2010 Atomic force microscopy studies on...and I. A. Stegun 1964 Handbook of mathematical functions...

2012-01-01T23:59:59.000Z

234

New Developments in Transmission Electron Microscopy for Nanotechnology**  

E-Print Network (OSTI)

New Developments in Transmission Electron Microscopy for Nanotechnology** By Zhong Lin Wang* 1. Electron Microscopy and Nanotechnology Nanotechnology, as an international initiative for science manufacturing are the foundation of nanotechnology. Tracking the historical background of why nanotechnology

Wang, Zhong L.

235

Quantitative imaging of living cells by deep ultraviolet microscopy  

E-Print Network (OSTI)

Developments in light microscopy over the past three centuries have opened new windows into cell structure and function, yet many questions remain unanswered by current imaging approaches. Deep ultraviolet microscopy ...

Zeskind, Benjamin J

2006-01-01T23:59:59.000Z

236

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Biological Imaging by Soft X-Ray Diffraction Microscopy Print Wednesday, 30 November 2005 00:00 Electron and x-ray...

237

Tomography and High-Resolution Electron Microscopy Study of Surfaces...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tomography and High-Resolution Electron Microscopy Study of Surfaces and Porosity in a Plate-Like ?-Al2O3. Tomography and High-Resolution Electron Microscopy Study of...

238

TRANSMISSION ELECTRON MICROSCOPY OF WEAKLY DEFORMED ALKALI HALIDE CRYSTALS  

E-Print Network (OSTI)

377 TRANSMISSION ELECTRON MICROSCOPY OF WEAKLY DEFORMED ALKALI HALIDE CRYSTALS H. STRUNK Max'importance croissante du durcissement de la solution solide. Abstract. 2014 Transmission electron microscopy (TEM Abstracts 7j66 - 7 I' 1. Introduction. - It is only some years ago that transmission electron microscopy

Boyer, Edmond

239

Prediction of vehicle impact forces  

E-Print Network (OSTI)

PREDICTION OF VEHICLE IMPACT FORCES A Thesis by DARRELL LAINE KADERKA Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1990 Major Subject...: Civil Engineering PREDICTION OF VEHICLE IMPACT FORCES A Thesis by DARRELL LAINE KADERKA Approved as to style and content by: C. Eugene Buth (Chair of Committee) W. ynn Beason (Member) I? D n E. B ay (Member) es T. P. Yao (Departmen Head) May...

Kaderka, Darrell Laine

2012-06-07T23:59:59.000Z

240

Fast electron microscopy via compressive sensing  

DOE Patents (OSTI)

Various technologies described herein pertain to compressive sensing electron microscopy. A compressive sensing electron microscope includes a multi-beam generator and a detector. The multi-beam generator emits a sequence of electron patterns over time. Each of the electron patterns can include a plurality of electron beams, where the plurality of electron beams is configured to impart a spatially varying electron density on a sample. Further, the spatially varying electron density varies between each of the electron patterns in the sequence. Moreover, the detector collects signals respectively corresponding to interactions between the sample and each of the electron patterns in the sequence.

Larson, Kurt W; Anderson, Hyrum S; Wheeler, Jason W

2014-12-09T23:59:59.000Z

Note: This page contains sample records for the topic "force microscopy afm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Mitotic force generators and chromosome segregation  

E-Print Network (OSTI)

38:1838 Mitotic force generators 79. McDonald HB, StewartREVIEW Mitotic force generators and chromosome segregationbelow) that the force generators (MTs or motors) have only *

Civelekoglu-Scholey, Gul; Scholey, Jonathan M.

2010-01-01T23:59:59.000Z

242

Argonne CNM: X-Ray Microscopy Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Microscopy Facilities X-Ray Microscopy Facilities The Hard X-Ray Nanoprobe (HXN) facility provides scanning fluorescence, scanning diffraction, and full-field transmission and tomographic imaging capabilities with a spatial resolution of 30 nm over a spectral range of 6-12 keV. Modes of Operation Full-Field Transmission Imaging and Nanotomography X-ray transmission imaging uses both the absorption and phase shift of the X-ray beam by the sample as contrast mechanisms. Absorption contrast is used to map the sample density. Elemental constituents can be located by using differential edge contrast in this mode. Phase contrast can be highly sensitive to edges and interfaces even when the X-ray absorption is weak. These contrast mechanisms are exploited to image samples rapidly in full-field transmission mode under various environmental conditions, or combined with nanotomography methods to study the three-dimensional structure of complex and amorphous nanomaterials with the HXN.

243

Task Force Approach | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Task Force Approach Task Force Approach Task Force Approach Task Force Approach Results of the ARI Task Force: The purpose of the ARI Task Force is to 1) identify, prioritize, and resolve issues to enable sites and programs to implement revitalization efforts more effectively and 2) to facilitate programmatic incorporation of revitalization concepts into DOE's programmatic business environments. The Task Force must do this through coordinating and facilitating communication and connections, sharing lessons learned, broadening the general knowledge base, facilitating, analyzing problems, developing implementable solutions, and considering and incorporating broader perspectives and knowledge. The success of the Task Force can be evaluated by impacts to the Department upon its completion. These impacts

244

In-situ and ex-situ observations of lithium de-intercalation from LiCoO? : atomic force microscopy and transmission electron microscopy studies  

E-Print Network (OSTI)

Lithium cobalt dioxide is the most commonly used material for positive electrodes in lithium rechargeable batteries. During lithium de-intercalation from this material, ... undergoes a number of phase transitions, which ...

Clmenon, Anne

2005-01-01T23:59:59.000Z

245

Sensing mode atomic force microscope  

DOE Patents (OSTI)

An atomic force microscope utilizes a pulse release system and improved method of operation to minimize contact forces between a probe tip affixed to a flexible cantilever and a specimen being measured. The pulse release system includes a magnetic particle affixed proximate the probe tip and an electromagnetic coil. When energized, the electromagnetic coil generates a magnetic field which applies a driving force on the magnetic particle sufficient to overcome adhesive forces exhibited between the probe tip and specimen. The atomic force microscope includes two independently displaceable piezo elements operable along a Z-axis. A controller drives the first Z-axis piezo element to provide a controlled approach between the probe tip and specimen up to a point of contact between the probe tip and specimen. The controller then drives the first Z-axis piezo element to withdraw the cantilever from the specimen. The controller also activates the pulse release system which drives the probe tip away from the specimen during withdrawal. Following withdrawal, the controller adjusts the height of the second Z-axis piezo element to maintain a substantially constant approach distance between successive samples.

Hough, Paul V. C. (Port Jefferson, NY); Wang, Chengpu (Upton, NY)

2003-01-01T23:59:59.000Z

246

X-ray optics for scanning fluorescence microscopy and other applications  

SciTech Connect

Scanning x-ray fluorescence microscopy is analogous to scanning electron microscopy. Maps of chemical element distribution are produced by scanning with a very small x-ray beam. Goal is to perform such scanning microscopy with resolution in the range of <1 to 10 {mu}m, using standard laboratory x-ray tubes. We are investigating mirror optics in the Kirkpatrick-Baez (K-B) configuration. K-B optics uses two curved mirrors mounted orthogonally along the optical axis. The first mirror provides vertical focus, the second mirror provides horizontal focus. We have used two types of mirrors: synthetic multilayers and crystals. Multilayer mirrors are used with lower energy radiation such as Cu K{alpha}. At higher energies such as Ag K{alpha}, silicon wafers are used in order to increase the incidence angles and thereby the photon collection efficiency. In order to increase the surface area of multilayers which reflects x-rays at the Bragg angle, we have designed mirrors with the spacing between layers graded along the optic axis in order to compensate for the changing angle of incidence. Likewise, to achieve a large reflecting surface with silicon, the wafers are placed on a specially designed lever arm which is bent into a log spiral by applying force at one end. In this way, the same diffracting angle is maintained over the entire surface of the wafer, providing a large solid angle for photon collection.

Ryon, R.W. [Lawrence Livermore National Lab., CA (United States); Warburton, W.K. [X-Ray Instrumentation Associates, Menlo Park, CA (United States)

1992-05-01T23:59:59.000Z

247

NCEM National Center for Electron Microscopy: Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Staff Staff Scientific Technical / Admin. Postdoctoral and Visitors Uli Dahmen, Head Jane Cavlina / Administrator Abhay Gautam Christian Kisielowski John Turner Helmut Poppa Andrew Minor ChengYu Song Frances Allen Andreas Schmid Marissa Libbee Tamara Radetic Peter Ercius Karen Bustillo Haimei Zheng Jim Ciston Alpha N'Diaye Colin Ophus Gong Chen Burak Ozdol Velimir Radmilovic Sara Kiani Hua Guo Christian Liebscher Josh Kacher Chris Nelson Xiuguang Jin Qian Yu Mary Scott Search the LBNL directory services page for other LBNL staff. Scientific Staff Uli Dahmen udahmen@lbl.gov (510) 486-4627 Ulrich Dahmen is Director of the National Center for Electron Microscopy. His current research interests include embedded nanostructures and interfaces in materials. Embedded nanostructures. Size- and shape-dependence of structural phase

248

Thermal expansion recovery microscopy: Practical design considerations  

SciTech Connect

A detailed study of relevant parameters for the design and operation of a photothermal microscope technique recently introduced is presented. The technique, named thermal expansion recovery microscopy (ThERM) relies in the measurement of the defocusing introduced by a surface that expands and recovers upon the heating from a modulated source. A new two lens design is presented that can be easily adapted to commercial infinite conjugate microscopes and the sensitivity to misalignment is analyzed. The way to determine the beam size by means of a focus scan and the use of that same scan to verify if a thermoreflectance signal is overlapping with the desired ThERM mechanism are discussed. Finally, a method to cancel the thermoreflectance signal by an adequate choice of a nanometric coating is presented.

Mingolo, N., E-mail: nmingol@fi.uba.ar; Martnez, O. E. [Facultad de Ingeniera, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina)] [Facultad de Ingeniera, Universidad de Buenos Aires, Paseo Colon 850, 1063 Buenos Aires (Argentina)

2014-01-15T23:59:59.000Z

249

Contact angles and surface forces  

Science Journals Connector (OSTI)

The modern state of the theory of wetting phenomena is considered with special attention to the approach based on the theory of surface forces. Contribution of the effects of molecular, electrostatic and short-range structural forces to wetting films stability and forming contact angles is discussed. The magnitudes of contact angles may be predicted on the basis of isotherms of disjoining pressure of wetting films that include Hamaker constants, electrical potentials of solid-liquid and liquid-gas interfaces, and experimental constants that characterize the structural forces of hydrophilic repulsion and hydrophobic attraction. The constants seem to be the same as in the case of interaction of colloidal particles. In the framework of the suggested approach, the influence of surfactants on wetting phenomena was considered.

N.V. Churaev

1995-01-01T23:59:59.000Z

250

Nuclear force in Lattice QCD  

E-Print Network (OSTI)

We perform the quenched lattice QCD analysis on the nuclear force (baryon-baryon interactions). We employ $20^3\\times 24$ lattice at $\\beta=5.7$ ($a\\simeq 0.19$ fm) with the standard gauge action and the Wilson quark action with the hopping parameters $\\kappa=0.1600, 0.1625, 0.1650$, and generate about 200 gauge configurations. We measure the temporal correlators of the two-baryon system which consists of heavy-light-light quarks. We extract the inter-baryon force as a function of the relative distance $r$. We also evaluate the contribution to the nuclear force from each ``Feynman diagram'' such as the quark-exchange diagram individually, and single out the roles of Pauli-blocking effects or quark exchanges in the inter-baryon interactions.

T. T. Takahashi; T. Doi; H. Suganuma

2006-01-05T23:59:59.000Z

251

Nuclear Forces and Nuclear Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Forces and Nuclear Systems Forces and Nuclear Systems Our goal is to achieve a description of nuclear systems ranging in size from the deuteron to nuclear matter and neutron stars using a single parameterization of the nuclear forces. Our work includes both the construction of two- and three-nucleon potentials and the development of many-body techniques for computing nuclear properties with these interactions. Detailed quantitative, computationally intense studies are essential parts of this work. In the last decade we have constructed several realistic two- and three-nucleon potential models. The NN potential, Argonne v18, has a dominant charge-independent piece plus additional charge-dependent and charge-symmetry-breaking terms, including a complete electromagnetic interaction. It fits 4301 pp and np elastic scattering data with a chi**2

252

Interaction forces between oilwater particle interfaces--Non-DLVO forces  

E-Print Network (OSTI)

silica sphere and a butyl or octyl acetate droplet was measured in an aqueous environment using atomic of the water solubility of the organic liquid, in that the same force­distance characteristics were obtained in industrial applications. They include formulation, stability, and rheological properties of emulsions

Chan, Derek Y C

253

Automatic HTS force measurement instrument  

DOE Patents (OSTI)

A device is disclosed for measuring the levitation force of a high temperature superconductor sample with respect to a reference magnet includes a receptacle for holding several high temperature superconductor samples each cooled to superconducting temperature. A rotatable carousel successively locates a selected one of the high temperature superconductor samples in registry with the reference magnet. Mechanism varies the distance between one of the high temperature superconductor samples and the reference magnet, and a sensor measures levitation force of the sample as a function of the distance between the reference magnet and the sample. A method is also disclosed. 3 figs.

Sanders, S.T.; Niemann, R.C.

1999-03-30T23:59:59.000Z

254

Automatic HTS force measurement instrument  

DOE Patents (OSTI)

A device for measuring the levitation force of a high temperature superconductor sample with respect to a reference magnet includes a receptacle for holding several high temperature superconductor samples each cooled to superconducting temperature. A rotatable carousel successively locates a selected one of the high temperature superconductor samples in registry with the reference magnet. Mechanism varies the distance between one of the high temperature superconductor samples and the reference magnet, and a sensor measures levitation force of the sample as a function of the distance between the reference magnet and the sample. A method is also disclosed.

Sanders, Scott T. (Valparaiso, IN); Niemann, Ralph C. (Downers Grove, IL)

1999-01-01T23:59:59.000Z

255

Casimir force on a piston  

E-Print Network (OSTI)

We consider a massless scalar field obeying Dirichlet boundary conditions on the walls of a two-dimensional L x b rectangular box, divided by a movable partition (piston) into two compartments of dimensions a x b and (L-a) x b. We compute the Casimir force on the piston in the limit L -> infinity. Regardless of the value of a/b, the piston is attracted to the nearest end of the box. Asymptotic expressions for the Casimir force on the piston are derived for a > b.

R. M. Cavalcanti

2004-01-26T23:59:59.000Z

256

Work Force Planning for Public Power Utilities  

E-Print Network (OSTI)

Work Force Planning for Public Power Utilities: Ensuring Resources to Meet Projected Utilities Need to Do More to Prepare for Their Future Work Force Needs.............................................................................20 #12;ii Work Force Planning for Public Power Utilities #12;1 Work Force Planning for Public Power

257

Solvent-induced forces in protein folding  

SciTech Connect

The solvent-induced forces between various groups on the protein are examined. It is found that the intramolecular hydrophilic forces are likely to be the strongest forces mediated through the solvent. It is argued that these are probably the most important solvent-induced driving forces in the process of protein folding.

Ben-Naim, A. (Hebrew Univ., Jerusalem (Israel))

1990-08-23T23:59:59.000Z

258

Alternative Fuels Data Center: Energy Task Force  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Energy Task Force to Energy Task Force to someone by E-mail Share Alternative Fuels Data Center: Energy Task Force on Facebook Tweet about Alternative Fuels Data Center: Energy Task Force on Twitter Bookmark Alternative Fuels Data Center: Energy Task Force on Google Bookmark Alternative Fuels Data Center: Energy Task Force on Delicious Rank Alternative Fuels Data Center: Energy Task Force on Digg Find More places to share Alternative Fuels Data Center: Energy Task Force on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Energy Task Force The Governor's Task Force on Energy Policy is developing a state energy plan to facilitate energy efficiency and the use of alternative and renewable fuels in Tennessee. The energy plan will include a summary of

259

Complex Forces Affect China's Biodiversity  

E-Print Network (OSTI)

global efforts have been put into biodiversity conservation, but biodiversity loss continues rapidly in biodiversity conservation to the global level and help protect biodiversity in other developing countries Wiley & Sons, Ltd. #12;208 ConservationBiology COMPLEXITY OF INTERACTING FORCES AFFECTING BIODIVERSITY

260

Kollisionsdetektion fr Force-Feedback-  

E-Print Network (OSTI)

(high impact velocities or large contact areas) 3. Force-feedback requires a constant update rate.e., in case of no overlap - Complicated to compute penetration depth [Mendoza et al, 2006], [Zhang et al, 2007], ... § Voxels & Points (VPS): + Easy to compute approx. penetration depth - Large memory footprint - Aliasing

Zachmann, Gabriel

Note: This page contains sample records for the topic "force microscopy afm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

In-Situ Electron Microscopy of Electrical Energy Storage Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Electrical Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage Materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

262

In-Situ Electron Microscopy of Electrical Energy Storage Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Electrical Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage Materials 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

263

AIR FORCE SPECIAL WEAPONS CENTER  

Office of Legacy Management (LM)

HEADQUARTERS aII?y HEADQUARTERS aII?y 9 AIR FORCE SPECIAL WEAPONS CENTER 1 AIR FORCE SYSTEMS COMMAND . - KlRTlAND AIR FORCE BASE, NEW MEXICO - k FINAL REPORT O N AIR FORCE PARTICIPATION PROJECT RULISON .1 O c t o b e r 1969 P r e p a r e d by : CONT INENTAL TEST D I V I S ION DIRECTORATE OF NUCLEAR FIELD OPERATIONS This page intentionally left blank INDEX AIR FORCE PARTICIPATION I N PROJECT RULISON FINAL REPORT PARAGRAPH BASIC REPORT SUBJECT R e f e r e n c e s PAGE 2 G e n e r a l 1 3 P l a n n i n g 3 4 Command a n d C o n t r o l 5 O p e r a t i o n s , G r a n d ' J u n c t i o n M u n i c i p a l A i r p o r t . . ' A i r O p e r a t i o n s C e n t e r , He1 i c o p t e r P a d / ' 7.. - . M a t e r i e l : ' 8 M e d i c a l 1 9 R a d - S a f e C r a s h - R e s c u e S e c u r i t y 2 1 C o m m u n i c a t i o n s ~ d m i n i s t r a t ' i o n Summary ATTACHMENTS ATTACHMENT SUBJECI' 1 F r a g O r d e r 69-1 ( ~ r o j ' e c t RULISON) , AFSWC D

264

Nuclear Radius and Nuclear Forces  

Science Journals Connector (OSTI)

The difference between the radius of the nuclear matter distribution and the nuclear force radius, RN?1.4A1310-13 cm, for heavy nuclei (A>100) is interpreted as a consequence of the finite range of nuclear forces. Assuming that the nuclear matter distribution coincides with the charge distribution as determined at Stanford (RC=1.12A1310-13 cm is the distance at which the charge density falls to one half value) we sum up the nuclear interactions of an incident nucleon for various proposed internucleon potentials, V(r). We also evaluate contributions from the spin, charge, and matter polarizations induced in the nuclear distributions by the incident nucleon as a test of the convergence of these calculations. The aim here is to infer some features of nuclear forces which satisfy saturation requirements and at the same time give rise to an appreciable nuclear attraction for an incident nucleon at RN. Analyses of the scattering of neutrons and protons by heavy nuclei suggest a nuclear attraction ?14 Mev at a distance RN.These considerations are primarily sensitive to the long range behavior of the direct, central part of V(r). The key point which emerges from them is that the nuclear forces must contain long range (~ meson Compton wavelength) direct, central attractions which will be felt by an incident nucleon at RN before the shorter range repulsions (hard cores, many-body forces, or exchange interactions), which are responsible for saturation, become effective. Such interactions can be constructed phenomenologically, but are not found in recent meson-theoretically deduced potentials.

S. D. Drell

1955-10-01T23:59:59.000Z

265

U.S. Air Force Fact Sheet Air Force Reserve Officer Training Corps  

E-Print Network (OSTI)

for the Air Force. Personnel and Resources Air Force Reserve Officer Training Corps (ROTC) includes fourU.S. Air Force Fact Sheet Air Force Reserve Officer Training Corps Mission Develop Quality Leaders Reserve Officer Training Corps is the largest and oldest source of commissioned officers for the Air Force

Su, Xiao

266

Characterisation of Hadley grains by confocal microscopy  

Science Journals Connector (OSTI)

This work forms part of an exploratory study to investigate the use of fluorescent laser scanning confocal microscopy (LSCM) for imaging pores and voids in hardened mortar and concrete. The study has revealed the suitability of the technique for the characterisation of hollow shell (Hadley) hydration grains (these are grains that contain a void within the original boundary of the cement grain). It was found that Hadley grains could be imaged using fluorescent light techniques, subsequent to their impregnation by epoxy resin doped with a fluorescent dye. Prior to this work, it was not clear whether hollow grains were impregnated due to connections with capillary pores, or if they had been impregnated due to connections with damage caused during surface preparation (i.e. micro-cracks or deep surface scratches). However using the 3D LSCM imaging technique it was observed that connections between Hadley grains and hardened cement paste (HCP) capillary pores did exist, in different forms, at depths well below the surface providing conduits along which resin was able to flow and impregnate the hollow grains. Other aspects of imaging Hadley grains are also described, such as the sectioning of tips of larger grains often taken as separate smaller pores or grains in 2D images.

M.K. Head; H.S. Wong; N.R. Buenfeld

2006-01-01T23:59:59.000Z

267

Lorentz Force Electrical Impedance Tomography  

E-Print Network (OSTI)

This article describes a method called Lorentz Force Electrical Impedance Tomography. The electrical conductivity of biological tissues can be measured through their sonication in a magnetic field: the vibration of the tissues inside the field induces an electrical current by Lorentz force. This current, detected by electrodes placed around the sample, is proportional to the ultrasonic pressure, to the strength of the magnetic field and to the electrical conductivity gradient along the acoustic axis. By focusing at different places inside the sample, a map of the electrical conductivity gradient can be established. In this study experiments were conducted on a gelatin phantom and on a beef sample, successively placed in a 300 mT magnetic field and sonicated with an ultrasonic transducer focused at 21 cm emitting 500 kHz bursts. Although all interfaces are not visible, in this exploratory study a good correlation is observed between the electrical conductivity image and the ultrasonic image. This method offers...

Grasland-Mongrain, Pol; Chapelon, Jean-Yves; Lafon, Cyril

2014-01-01T23:59:59.000Z

268

STUDIES OF DENGUE FEVER VIRUS BY ELECTRON MICROSCOPY  

Science Journals Connector (OSTI)

...MICROSCOPY Reginald L. Reagan A. L. Brueckner Live Stock Sanitary Service Laboratory...MICROSCOPY REGINALD L. REAGAN AND A. L. BRUECKNER Live Stock Sanitary Service Laboratory...material 233 REGINALD L. REAGAN AND A. L. BRUECKNER Figure 1. Dengue fever virus (mouse...

Reginald L. Reagan; A. L. Brueckner

1952-08-01T23:59:59.000Z

269

Friction forces in cosmological models  

E-Print Network (OSTI)

We investigate the dynamics of test particles undergoing friction forces in a Friedmann-Robertson-Walker (FRW) spacetime. The interaction with the background fluid is modeled by introducing a Poynting-Robertson-like friction force in the equations of motion, leading to measurable (at least in principle) deviations of the particle trajectories from geodesic motion. The effect on the peculiar velocities of the particles is investigated for various equations of state of the background fluid and different standard cosmological models. The friction force is found to have major effects on particle motion in closed FRW universes, where it turns the time-asymptotic value (approaching the recollapse) of the peculiar particle velocity from ultra-relativistic (close to light speed) to a co-moving one, i.e., zero peculiar speed. On the other hand, for open or flat universes the effect of the friction is not so significant, because the time-asymptotic peculiar particle speed is largely non-relativistic also in the geodesi...

Bini, Donato; Gregoris, Daniele; Succi, Sauro

2014-01-01T23:59:59.000Z

270

Friction forces in cosmological models  

E-Print Network (OSTI)

We investigate the dynamics of test particles undergoing friction forces in a Friedmann-Robertson-Walker (FRW) spacetime. The interaction with the background fluid is modeled by introducing a Poynting-Robertson-like friction force in the equations of motion, leading to measurable (at least in principle) deviations of the particle trajectories from geodesic motion. The effect on the peculiar velocities of the particles is investigated for various equations of state of the background fluid and different standard cosmological models. The friction force is found to have major effects on particle motion in closed FRW universes, where it turns the time-asymptotic value (approaching the recollapse) of the peculiar particle velocity from ultra-relativistic (close to light speed) to a co-moving one, i.e., zero peculiar speed. On the other hand, for open or flat universes the effect of the friction is not so significant, because the time-asymptotic peculiar particle speed is largely non-relativistic also in the geodesic case.

Donato Bini; Andrea Geralico; Daniele Gregoris; Sauro Succi

2014-08-23T23:59:59.000Z

271

Registration, Force Protection Equipment Demonstration - May 2009 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Registration, Force Protection Equipment Demonstration - May 2009 Registration, Force Protection Equipment Demonstration - May 2009 Registration, Force Protection Equipment Demonstration - May 2009 May 2009 Demonstrating commercially availale physical security/force protection soultions around the world The bombing of Khobar Towers in Saudi Arabia on 25 June 1996 revealed the need for continal vigilance and protection againist terrorist forces intent on harming US personnel and interests. The Chairman if the Joint Chiefs of Staff directed the Services to investigate COTS equipments solutions for physical security/force protection needs. The Office of the Under Secretary of Defense for Acquistion, Technology, and Logistics (OUSD {at&l}) tasked the Office of the US Army Product Manager, force Protection Systems (PM-FPS), to coordiante and facilitate a Force Protection Equipment

272

Development of a light force accelerometer  

E-Print Network (OSTI)

In this work, the feasibility of a light force accelerometer was experimentally demonstrated. The light force accelerometer is an optical inertial sensor which uses focused laser light to levitate and trap glass microspheres ...

Butts, David LaGrange

2008-01-01T23:59:59.000Z

273

Reduction-in-Force | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reduction-in-Force Reduction in force (RIF) is a set of regulations and procedures that are used to determine whether an employee keeps his or her present position, or...

274

A Dynamic Defense Force for Japan  

E-Print Network (OSTI)

A Dynamic Defense Force for Japan Sugio TAKAHASHI SUMMARY AGuidelines released by Japan in 2010, the most important isconcept, which will enable the Japan Self-Defense Forces to

TAKAHASHI, Sugio

2012-01-01T23:59:59.000Z

275

Nuclear Radiological Threat Task Force Established | National...  

National Nuclear Security Administration (NNSA)

Radiological Threat Task Force Established | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

276

Three-body forces and the trinucleons  

SciTech Connect

Three-body forces are discussed in the context of classical, atomic, solid-state and nuclear physics. The basic theoretical ingredients used in the construction of such forces are reviewed. Experimental evidence for three-nucleon forces and an overview of the three-nucleon bound states are presented. 53 refs., 9 figs.

Friar, J.L.

1987-01-01T23:59:59.000Z

277

Theory of trapping forces in optical tweezers  

Science Journals Connector (OSTI)

...been used to measure forces in the piconewton range...investigations in some fundamental fields of cell biology...result for the transverse force as given by (3.9...Stegun, I. 1972 Handbook of mathematical functions...Dover. Ashkin, A. 1992 Forces of a single beam gradient...

2003-01-01T23:59:59.000Z

278

Quarkonium Binding and Entropic Force  

E-Print Network (OSTI)

A Q-Qbar bound state represents a balance between repulsive kinetic and attractive potential energy. In a hot quark-gluon plasma, the interaction potential experiences medium effects. Color screening modifies the attractive binding force between the quarks, while the increase of entropy with Q-Qbar separation gives rise to a growing repulsion. We study the role of these phenomena for in-medium Q-Qbar binding and dissociation. It is found that the relevant potential for Q-Qbar binding is the free energy F; with increasing Q-Qbar separation, further binding through the internal energy U is compensated by repulsive entropic effects.

Satz, Helmut

2015-01-01T23:59:59.000Z

279

Probing Nanostructures for Photovoltaics: Using atomic force microscopy and other tools to characterize nanoscale materials for harvesting solar energy  

E-Print Network (OSTI)

for harvesting solar energy by Anna Monro Zaniewski Amaterials for harvesting solar energy Copyright 2012 by Annafor harvesting solar energy by Anna Monro Zaniewski Doctor

Zaniewski, Anna Monro

2012-01-01T23:59:59.000Z

280

Mapping of Proteomic Composition on the Surfaces of Bacillus Spores by Atomic Force Microscopy-Based Immunolabeling  

Science Journals Connector (OSTI)

We acknowledge Terrance Leighton, Katherine Wheeler, and Olivia Mooren for providing us with antibodies and assisting in the development of immunolabeling protocols, and Sue Martin for providing us with B. anthracis spore preparations. ... Plomp, Marco; Leighton, Terrance J.; Wheeler, Katherine E.; Malkin, Alexander J. ... Plomp, Marco; Leighton, Terrance J.; Wheeler, Katherine E.; Malkin, Alexander J. ...

Marco Plomp; Alexander J. Malkin

2008-12-08T23:59:59.000Z

Note: This page contains sample records for the topic "force microscopy afm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Probing Nanostructures for Photovoltaics: Using atomic force microscopy and other tools to characterize nanoscale materials for harvesting solar energy  

E-Print Network (OSTI)

4.2.1 Organic solar cellOrganic Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.3.1 Organic solar cell materials . . . . .

Zaniewski, Anna Monro

2012-01-01T23:59:59.000Z

282

Probing Nanostructures for Photovoltaics: Using atomic force microscopy and other tools to characterize nanoscale materials for harvesting solar energy  

E-Print Network (OSTI)

an organic solar cell using a single post-production step.Production-scale deposition techniques which have been successfully used for organic solar cellproduction volumes. These two considerations mean that organic solar cells

Zaniewski, Anna Monro

2012-01-01T23:59:59.000Z

283

Atomic force microscopy-based microrheology reveals significant differences in the viscoelastic response between malign and benign cell lines  

Science Journals Connector (OSTI)

...distribution of energy well depth...values of G (storage modulus...G-values at all frequencies, followed...the elastic response of normal...the overall response even more...signature and response to mechanical...modulus to storage modulus of...quantifies energy dissipation...different frequencies. We found...

2014-01-01T23:59:59.000Z

284

Are the Soft, Liquid-Like Structures Detected around Bacteria by Ambient Dynamic Atomic Force Microscopy Capsules?  

Science Journals Connector (OSTI)

...or HEPES, is proposed as the fundamental mechanism of the formation of these...corresponding to the P2p and K2p electronic orbitals. These were recorded...or HEPES, is proposed as the fundamental mechanism of the formation of these...

A. Mndez-Vilas; L. Labajos-Broncano; J. Perera-Nez; M. L. Gonzlez-Martn

2011-03-11T23:59:59.000Z

285

Probing Nanostructures for Photovoltaics: Using atomic force microscopy and other tools to characterize nanoscale materials for harvesting solar energy  

E-Print Network (OSTI)

v List of Tables vii 1 Introduction 1.1 Photovoltaicsand J. V. Manca. Prog. Photovoltaics Res. Appl. , 15:713,polymer blends. Prog. Photovoltaics Res. Appl. , 15:727,

Zaniewski, Anna Monro

2012-01-01T23:59:59.000Z

286

Probing Nanostructures for Photovoltaics: Using atomic force microscopy and other tools to characterize nanoscale materials for harvesting solar energy.  

E-Print Network (OSTI)

??The ability to make materials with nanoscale dimensions opens vast opportunities for creating custom materials with unique properties. The properties of materials on the nanoscale (more)

Zaniewski, Anna Monro

2012-01-01T23:59:59.000Z

287

Air Force Enhanced Use Lease  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 Air Force Enhanced Use Lease Mr. Brian Brown 16 Oct. 12 I n t e g r i t y - S e r v i c e - E x c e l l e n c e 2 Agenda  Brian Brown  Enhanced Use Lease (EUL) Overview  Energy EULs  EUL Goals  David Swanson  Energy EUL Market Drivers  Current EUL Projects  Partnering with the Air Force  Contact Information I n t e g r i t y - S e r v i c e - E x c e l l e n c e 3 Overview  Authority 10 USC 2667  An EUL is a lease  By the government  Of "non-excess" property  Under the control of the government  To a public or private sector lessee  In exchange for fair market value rental payments in cash and/or in kind consideration I n t e g r i t y - S e r v i c e - E x c e l l e n c e

288

Lorentz-Force Hydrophone Characterization  

E-Print Network (OSTI)

A Lorentz-force hydrophone consists of a thin wire placed inside a magnetic field. When under the influence of an ultrasound pulse, the wire vibrates and an electrical signal is induced by the Lorentz force that is proportional to the pulse amplitude. In this study a compact prototype of such a hydrophone is introduced and characterized, and the hydrodynamic model previously developed is refined. It is shown that the wire tension has a negligible effect on the measurement of pressure. The frequency response of the hydrophone reaches 1 MHz for wires with a diameter ranging between 70 and 400 \\micro m. The hydrophone exhibits a directional response such that the signal amplitude differs by less than 3dB as the angle of the incident ultrasound pulse varies from -20$^o$ and +20$^o$. The linearity of the measured signal is confirmed across the 50 kPa to 10 MPa pressure range, and an excellent resistance to cavitation is observed. This hydrophone is of interest for high pressure ultrasound measurements including Hi...

Grasland-Mongrain, Pol; Gilles, Bruno; Poizat, Adrien; Chapelon, Jean-Yves; Lafon, Cyril

2014-01-01T23:59:59.000Z

289

NCEM National Center for Electron Microscopy: Becoming an NCEM User  

NLE Websites -- All DOE Office Websites (Extended Search)

New Research New Research Gallery Microscopy Links Becoming an NCEM User Step 1: Submit a proposal Step 2: Before you begin your research Step 3: Instrument qualification Step 4: Accessing NCEM facilities and performing research Step 1: Submit a proposal Deadlines for new proposals are March 15, June 15, September 15, December 15. Access to NCEM facilities is granted to researchers whose proposals are accepted by the NCEM proposal review committee. NCEM users are expected to have a strong background in transmission electron microscopy, and submitted proposals should include evidence of prior electron microscopy experience by the intended operator. Researchers who do not have sufficient experience in electron microscopy may be able to use NCEM facilities through a collaborative project.

290

Electron microscopy and microanalysis Two transmission electron microscopes  

E-Print Network (OSTI)

Electron microscopy and microanalysis Two transmission electron microscopes (TEM) and three scanning electron micro- scopes (SEM) are operated by the De- partment. Attachments for TEM include energy dispersive X-ray spectrometer (EDS), scanning transmission attachment, serial electron energy loss

291

Sub-Kelvin scanning tunneling microscopy on magnetic molecules.  

E-Print Network (OSTI)

??Magnetic molecules have attracted lots interest. In this work, an ultra-stable and low noise scanning tunneling microscopy operating at 400 mK using He-3 (930 mK (more)

Zhang, Lei

2012-01-01T23:59:59.000Z

292

X-Ray Diffraction Microscopy of Magnetic Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing...

293

Doppler optical coherence microscopy for studies of cochlear mechanics  

E-Print Network (OSTI)

The possibility of measuring subnanometer motions with micron scale spatial resolution in the intact mammalian cochlea using Doppler optical coherence microscopy (DOCM) is demonstrated. A novel DOCM system is described ...

Hong, Stanley S.

294

Fast live simultaneous multiwavelength four-dimensional optical microscopy  

Science Journals Connector (OSTI)

...between excitation power and sensitivity...throughput of both systems. Most modern microscopy systems have excellent...connected to a power source (Bioptechs...Pawley JB ( 2006 ) Handbook of Biological Confocal...image sequence restoration . IEEE T Pattern...

Peter M. Carlton; Jrme Boulanger; Charles Kervrann; Jean-Baptiste Sibarita; Jean Salamero; Susannah Gordon-Messer; Debra Bressan; James E. Haber; Sebastian Haase; Lin Shao; Lukman Winoto; Atsushi Matsuda; Peter Kner; Satoru Uzawa; Mats Gustafsson; Zvi Kam; David A. Agard; John W. Sedat

2010-01-01T23:59:59.000Z

295

Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission  

Science Journals Connector (OSTI)

...intracavity frequency doubler. This system partly converted the Ti:Sapphire...the focused time-averaged power. The axial...processing. Computational image restoration can in addition improve...light. 1 Pawley J ( 1995 ) Handbook of Biological Confocal Microscopy...

Thomas A. Klar; Stefan Jakobs; Marcus Dyba; Alexander Egner; Stefan W. Hell

2000-01-01T23:59:59.000Z

296

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in...

297

Carmichael's Concise Review Microscopy is Only Skin Deep  

E-Print Network (OSTI)

Carmichael's Concise Review Microscopy is Only Skin Deep Stephen W. Carmichael Mayo Clinic. Coming Events 2011 EMAS 2011 May 15­19, 2011 Angers, France www.emas-web.net IUMAS-V May 22­27, 2011

Heller, Eric

298

Los Alamos: MST-MTM: EML: Electron Microscopy Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Microscopy Laboratory, MST-6 Electron Microscopy Laboratory, MST-6 MST-6 Home Home In the MSL FEI Tecnai F30 Analytical TEM/STEM JEOL 6300FXV High Resolution SEM JEOL 3000F High Resolution Transmission Electron Microscope Philips XL30 F Scanning Electron Microscope & Orientation Imaging System Phillips CM30 Transmission Electron Microscope In the Sigma Building JEOL 840 EPMA with Wavelength Dispersive Spectroscopy FEI Strata DB235 FIB/SEM FEI XL30 Environmental Scanning Electron Microscope & Orientation Imaging System CONTACTS Bob Field 665.3938 Pat Dickerson 665.3036 Rob Dickerson 667.6337 Rod McCabe 606.1649 The Electron Microscopy Laboratory's Capabilities The Electron Microscopy Laboratory's Capabilities The Electron Microscopy Laboratory (EML) is part of MST-6, the Materials Technology - Metallurgy Group within the Materials Science and Technology Division at Los Alamos National Laboratory. It is a facility dedicated to the characterization of materials primarily through imaging, chemical, and crystallographic analyses of material microstructures with several electron and ion beam instruments. Accessory characterization techniques and equipment include energy dispersive x-ray analysis (EDS), wavelength dispersive x-ray analysis (WDS), electron backscatter diffraction (EBSD) and orientation imaging microscopy (OIM), and electron energy loss spectroscopy (EELS).

299

Army Energy Initiatives Task Force  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UNCLASSIFIED UNCLASSIFIED Army Energy Initiatives Task Force Kathy Ahsing Director, Planning and Development UNCLASSIFIED 2 Perfect Storm UNCLASSIFIED 3 U.S. Army Energy Consumption, 2010 23% 77% 42% 58%  Facilities  Vehicles & Equipment (Tactical and Non-tactical) Sources: Energy Information Agency, 2010 Annual Energy Review; Agency Annual Energy Management Data Reports submitted to DOE's Federal Energy Management Program (Preliminary FY 2010) 32% 68% DoD 80% Army 21% Federal Gov 1% Federal Government United States Department of Defense U.S. = 98,079 Trillion Btu DoD = 889 Trillion Btu Fed Gov = 1,108 Trillion Btu U.S. Army = 189 Trillion Btu FY10 Highlights - $2.5+B Operational Energy Costs - $1.2 B Facility Energy Costs

300

Dark Forces At The Tevatron  

A simple explanation of the W + dijet excess recently reported by the CDF collaboration involves the introduction of a new gauge boson with sizable couplings to quarks, but with no or highly suppressed couplings to leptons. Anomaly-free theories which include such a leptophobic gauge boson must also include additional particle content, which may include a stable and otherwise viable candidate for dark matter. Based on the couplings and mass of the Z` required to generate the CDF excess, we predict such a dark matter candidate to possess an elastic scattering cross section with nucleons on the order of ? ~ 10-40 cm2, providing a natural explanation for the signals reported by the CoGeNT and DAMA/LIBRA collaborations. In this light, CDF may be observing the gauge boson responsible for the force which mediates the interactions between the dark and visible matter of our universe.

Buckley, Matt [Fermilab; Fileviez Perez, Pavel [Wisconsin U., Madison; Hooper, Dan [Fermilab; Chicago U., Astron. Astrophys. Ctr.; Neil, Ethan [Fermilab

2011-08-19T23:59:59.000Z

Note: This page contains sample records for the topic "force microscopy afm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking  

SciTech Connect

In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of these methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g., electrokinetic or dielectrophoretic forces.

Dettmer, Simon L.; Keyser, Ulrich F.; Pagliara, Stefano [Cavendish Laboratory, University of Cambridge, 19 J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom)] [Cavendish Laboratory, University of Cambridge, 19 J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

2014-02-15T23:59:59.000Z

302

Untitled Document  

NLE Websites -- All DOE Office Websites (Extended Search)

Digital Instruments Scanning Probe Microscopy with AFM capabilties and Hysitron Nano Indenter Back to Equipment...

303

Frictional forces in helical buckling of tubing  

SciTech Connect

Previous analyses of helical buckling of tubing have not considered frictional forces. This paper describes the modifications to helical buckling theory necessary to include friction. The first need is a relationship between the buckling force and the casing to tubing contact force. This contact force is determined through use of the principle of virtual work. The next need is the relationship between the friction forces, the buckling force, and the geometry of the tubing helix. Differential equations are derived and solved for two cases of interest: buckling during the landing of the tubing and thermal and differential pressure loading subsequent to landing. Several example problems are examined to evaluate the relative importance of friction.

Mitchell, R.F.

1984-09-01T23:59:59.000Z

304

Casimir force between integrable and chaotic pistons  

E-Print Network (OSTI)

We have computed numerically the Casimir force between two identical pistons inside a very long cylinder, considering different shapes for the pistons. The pistons can be considered as quantum billiards, whose spectrum determines the vacuum force. The smooth part of the spectrum fixes the force at short distances, and depends only on geometric quantities like the area or perimeter of the piston. However, correcting terms to the force, coming from the oscillating part of the spectrum which is related to the classical dynamics of the billiard, are qualitatively different for classically integrable or chaotic systems. We have performed a detailed numerical analysis of the corresponding Casimir force for pistons with regular and chaotic classical dynamics. For a family of stadium billiards, we have found that the correcting part of the Casimir force presents a sudden change in the transition from regular to chaotic geometries.

Ezequiel Alvarez; Francisco Diego Mazzitelli; Alejandro G. Monastra; Diego A. Wisniacki

2010-07-27T23:59:59.000Z

305

The force exerted by a fireball  

SciTech Connect

The force exerted by a fireball was deduced both from the change of the equilibrium position of a pendulum and from the change in the pendulum oscillation period. That measured force was found to be several times larger than the force exerted by the ions accelerated across the double layer that is assumed to surround the fireball. The force enhancement that is expected by ion-neutral collisions in the fireball is evaluated to be too small to explain the measured enhanced force. Gas pressure increase, due to gas heating through electron-neutral collisions, as recently suggested [Stenzel et al., J. Appl. Phys. 109, 113305 (2011)], is examined as the source for the force enhancement.

Makrinich, G.; Fruchtman, A. [H.I.T. - Holon Institute of Technology, 52 Golomb St., Holon 58102 (Israel)] [H.I.T. - Holon Institute of Technology, 52 Golomb St., Holon 58102 (Israel)

2014-02-15T23:59:59.000Z

306

E-Print Network 3.0 - advanced microscopy techniques Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

microscopy techniques and their practice in relationship to materials structure characterization... of Microscopy", Edited by P.W. Hawkes and J.C.H. Spence, Springer, 2006 (An...

307

Soft X-Ray Microscopy and Spectroscopy at the Molecular Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

Soft X-Ray Microscopy and Spectroscopy at the Molecular Environmental Science Beamline at the Advanced Light Source. Soft X-Ray Microscopy and Spectroscopy at the Molecular...

308

Magnus force effect in optical manipulation  

SciTech Connect

The effect of the Magnus force in optical micromanipulation has been observed. An ad hoc experiment has been designed based on a one-dimensional optical trap that carries angular momentum. The observed particle dynamics reveals the occurrence of this hydrodynamic force, which is neglected in the common approach. Its measured value is larger than the one predicted by the existing theoretical models for micrometric particles and low Reynolds number, showing that the Magnus force can contribute to unconventional optohydrodynamic trapping and manipulation.

Cipparrone, Gabriella; Pagliusi, Pasquale [Dipartimento di Fisica and Centro di Eccellenza CEMIF.CAL, University of Calabria, Ponte P. Bucci, Cubo 33B, I-87036 Rende (Italy); Istituto per i Processi Chimici e Fisici, Consiglio Nazionale delle Ricerche, Ponte P. Bucci, Cubo 33B, I-87036 Rende (Italy); Hernandez, Raul Josue; Provenzano, Clementina [Dipartimento di Fisica and Centro di Eccellenza CEMIF.CAL, University of Calabria, Ponte P. Bucci, Cubo 33B, I-87036 Rende (Italy)

2011-07-15T23:59:59.000Z

309

Biological Applications and Transmission Electron Microscopy Investigations of Mesoporous Silica Nanoparticles  

SciTech Connect

The research presented and discussed within involves the development of novel biological applications of mesoporous silica nanoparticles (MSN) and an investigation of mesoporous material by transmission electron microscopy (TEM). Mesoporous silica nanoparticles organically functionalized shown to undergo endocytosis in cancer cells and drug release from the pores was controlled intracellularly and intercellularly. Transmission electron microscopy investigations demonstrated the variety of morphologies produced in this field of mesoporous silica nanomaterial synthesis. A series of room-temperature ionic liquid (RTIL) containing mesoporous silica nanoparticle (MSN) materials with various particle morphologies, including spheres, ellipsoids, rods, and tubes, were synthesized. By changing the RTIL template, the pore morphology was tuned from the MCM-41 type of hexagonal mesopores to rotational moire type of helical channels, and to wormhole-like porous structures. These materials were used as controlled release delivery nanodevices to deliver antibacterial ionic liquids against Escherichia coli K12. The involvement of a specific organosiloxane function group, covalently attached to the exterior of fluorescein doped mesoporous silica nanoparticles (FITC-MSN), on the degree and kinetics of endocytosis in cancer and plant cells was investigated. The kinetics of endocystosis of TEG coated FITC-MSN is significantly quicker than FITC-MSN as determined by flow cytometry experiments. The fluorescence confocal microscopy investigation showed the endocytosis of TEG coated-FITC MSN triethylene glycol grafted fluorescein doped MSN (TEG coated-FITC MSN) into both KeLa cells and Tobacco root protoplasts. Once the synthesis of a controlled-release delivery system based on MCM-41-type mesoporous silica nanorods capped by disulfide bonds with superparamagnetic iron oxide nanoparticles was completed. The material was characterized by general methods and the dosage and kinetics of the antioxidant dependent release was measured. Finally, the biological interaction of the material was determined along with TEM measurements. An electron investigation proved that the pore openings of the MSN were indeed blocked by the Fe{sub 3}O{sub 4} nanoparticles. The biological interaction investigation demonstrated Fe{sub 3}O{sub 4}-capped MSN endocytosis into HeLa cells. Not only does the material enter the cells through endocytosis, but it seems that fluorescein was released from the pores most probably caused by disulfide bond reducing molecules, antioxidants. In addition to endocytosis and release, the Fe{sub 3}O{sub 4}-capped MSN propelled the cells across a cuvette upon induction of a magnet force. Finally, an important aspect of materials characterization is transmission electron microscopy. A TEM investigation demonstrated that incorporating different functional groups during the synthesis (co-condensation) changed the particle and pore morphologies.

Brian G. Trewyn

2006-05-01T23:59:59.000Z

310

Reduction of the Casimir force using aerogels  

Science Journals Connector (OSTI)

By using silicon oxide based aerogels we show numerically that the Casimir force can be reduced several orders of magnitude making its effect negligible in nanodevices. This decrease in the Casimir force is also present even when the aerogels are deposited on metallic substrates. To calculate the Casimir force we model the dielectric function of silicon oxide aerogels using an effective medium dielectric function such as the ClausiusMossotti approximation. The results show that both the porosity of the aerogel and its thickness can be used as control parameters to reduce the magnitude of the Casimir force.

R. Esquivel-Sirvent

2007-01-01T23:59:59.000Z

311

Ellsworth Air Force Base Advanced Metering Project  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers the Ellsworth Air Force Base Advanced Metering project and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

312

Interagency Energy Management Task Force Members  

Energy.gov (U.S. Department of Energy (DOE))

The Interagency Energy Management Task Force is led by the Federal Energy Management Program director, and its members include energy and sustainability managers from federal agencies.

313

Adsorbed layer structure of cationic surfactants on quartz  

SciTech Connect

Recent atomic force microscopy (AFM) surface images of surfactant adsorbed at solid and solution interfaces have shown apparent micellar aggregates familiar from bulk self-assembly. This contradicts the classical picture of laterally unstructured bilayers within which neutron reflectometry (NR) measurements have previously been analyzed. Applying both techniques to surfactant adsorption on quartz, we show that film thickness and coverage parameters derived from NR results are generally consistent with those from AFM and bulk self-assembly. NR by itself allows us to distinguish between actual bilayer and probable aggregate adsorption, which will be of particular importance when a solution's rheology makes AFM imaging impractical.

Schulz, Jamie C.; Warr, Gregory G.; Butler, Paul D.; Hamilton, W. A.

2001-04-01T23:59:59.000Z

314

Nuclear Force from Lattice QCD  

E-Print Network (OSTI)

The first lattice QCD result on the nuclear force (the NN potential) is presented in the quenched level. The standard Wilson gauge action and the standard Wilson quark action are employed on the lattice of the size 16^3\\times 24 with the gauge coupling beta=5.7 and the hopping parameter kappa=0.1665. To obtain the NN potential, we adopt a method recently proposed by CP-PACS collaboration to study the pi pi scattering phase shift. It turns out that this method provides the NN potentials which are faithful to those obtained in the analysis of NN scattering data. By identifying the equal-time Bethe-Salpeter wave function with the Schroedinger wave function for the two nucleon system, the NN potential is reconstructed so that the wave function satisfies the time-independent Schroedinger equation. In this report, we restrict ourselves to the J^P=0^+ and I=1 channel, which enables us to pick up unambiguously the ``central'' NN potential V_{central}(r). The resulting potential is seen to posses a clear repulsive core of about 500 MeV at short distance (r < 0.5 fm). Although the attraction in the intermediate and long distance regions is still missing in the present lattice set-up, our method is appeared to be quite promising in reconstructing the NN potential with lattice QCD.

Noriyoshi ISHII; Sinya AOKI; Tetsuo HATSUDA

2006-09-30T23:59:59.000Z

315

FEDERAL SMART GRID TASK FORCE - February 26, 2009 Task Force Meeting Agenda  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FEDERAL SMART GRID TASK FORCE - February 26, 2009 Task Force FEDERAL SMART GRID TASK FORCE - February 26, 2009 Task Force Meeting Agenda FEDERAL SMART GRID TASK FORCE - February 26, 2009 Task Force Meeting Agenda February 26, 2009 Task Force Meeting Agenda - CONFERENCE CALL Agenda FEDERAL SMART GRID TASK FORCE CONFERENCE CALL February 26, 2009 10:00-11:00 AM 10:00 Opening and Introduction - Eric Lightner, DOE * Call the meeting to order, around-the-table introductions, review of the agenda, additions to agenda 10:05 Update from DOE - Eric Lightner * Stimulus update * E-Forum * Fact sheet - discussion 10:30 Update from FERC - Ray Palmer, David Andrejcak * NARUC-FERC Smart Grid Collaborative meeting update 10:40 Update from NIST - William Anderson, Jerry FitzPatrick * Interoperability Standards Framework report to Congress

316

Einstein's Dream of Unified Forces - forces | U.S. DOE Office of Science  

Office of Science (SC) Website

Do all the forces become one? Do all the forces become one? The International Linear Collider The U.S. is pushing superconducting technology forward for use in future accelerators like the proposed International Linear Collider. (Credit: Fermilab) At the most fundamental level, particles and forces may converge, either through hidden principles like grand unification, or through radical physics like superstring. We already know that remarkably similar mathematical laws and principles describe all the known forces except gravity. Perhaps all forces are different manifestations of a single grand unified force, a force that would relate quarks to leptons and predict new ways of converting one kind of particle into another. Such a force might eventually make protons decay, rendering ordinary matter unstable.

317

Tendon Arrangement and Muscle Force Requirements for Humanlike Force Capabilities in a Robotic Finger  

E-Print Network (OSTI)

Finger Nancy S. Pollard and Richards C. Gilbert Brown University Abstract Human motion can provide a rich hand has strong asym- metry in these directions: flexion forces ­ the forces needed to form a power

Pollard, Nancy

318

Scanning Transmission Electron Microscopy Investigations of Complex Oxides  

NLE Websites -- All DOE Office Websites (Extended Search)

Scanning Transmission Electron Microscopy Investigations of Complex Oxides Scanning Transmission Electron Microscopy Investigations of Complex Oxides Monday, May 23, 2011 - 3:30pm SSRL Conference room 137-322 Professor Tom Vogt, NanoCenter & Department of Chemistry, University of South Carolina High-Angle-Annular-Dark-Field/Scanning Transmission Electron Microscopy (HAADF/STEM) is a technique uniquely suited for detailed studies of the structure and composition of complex oxides. The HAADF detector collects electrons which have interact inelastically with the potentials of the atoms in the specimen and therefore resembles the better known Z2 (Z is atomic number) Rutherford scattering. One class of important catalysts consists of bronzes based on pentagonal {Mo6O21} building units; these include Mo5O14 and Mo17O47. In the last 20 years, new materials doped with

319

Imaging Hydrated Microbial Extracellular Polymers: Comparative Analysis by Electron Microscopy  

SciTech Connect

Microbe-mineral and -metal interactions represent a major intersection between the biosphere and geosphere but require high-resolution imaging and analytical tools for investigating microscale associations. Electron microscopy has been used extensively for geomicrobial investigations and although used bona fide, the traditional methods of sample preparation do not preserve the native morphology of microbiological components, especially extracellular polymers. Herein, we present a direct comparative analysis of microbial interactions using conventional electron microscopy approaches of imaging at room temperature and a suite of cryo-electron microscopy methods providing imaging in the close-to-natural hydrated state. In situ, we observed an irreversible transformation of bacterial extracellular polymers during the traditional dehydration-based sample preparation that resulted in the collapse of hydrated gel-like EPS into filamentous structures. Dehydration-induced polymer collapse can lead to inaccurate spatial relationships and hence could subsequently affect conclusions regarding nature of interactions between microbial extracellular polymers and their environment.

Dohnalkova, Alice; Marshall, Matthew J.; Arey, Bruce W.; Williams, Kenneth H.; Buck, Edgar C.; Fredrickson, Jim K.

2011-02-01T23:59:59.000Z

320

Reducing Photobleaching in STED Microscopy with Higher Scanning Speed  

E-Print Network (OSTI)

Photobleaching is a major limitation of super-resolution STED microscopy. We show that the photobleaching rate in STED microscopy is slowed down by scanning with a higher linear speed, enabled by the large field of view in our custom-built resonant-scanning STED microscope. The effect of scanning speed on photobleaching is more remarkable at higher levels of depletion laser irradiance. With a depletion irradiance of 0.4 GW/cm$^2$ (time average), we were able to slow down the photobleaching of the Atto 647N dye by 80% with 8-fold faster scanning. Photobleaching is primarily caused by the depletion light acting upon the excited fluorophores. Experimental data qualitatively agree with a theoretical model. Our results encourage further increasing linear scanning speed for photobleaching reduction in STED microscopy.

Wu, Yong

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "force microscopy afm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Competing magnetic anisotropies in an AFM-FM-AFM trilayer  

SciTech Connect

An antiferromagnet-ferromagnet-antiferromagnet trilayer was grown in magnetic field using CoMn, permalloy (Py), and FeMn, respectively. Magnetometry studies show that the direction of exchange coupling of CoMn with Py was perpendicular to that of Py with FeMn. These results are explained by a spin flop in the CoMn layer and show that the spin structure of an antiferromagnet may undergo severe modification due to a relatively small magnetic field applied during its growth. The perpendicular exchange coupling was exploited in the CoMn-Py-FeMn trilayer to manipulate the easy axis of the ferromagnet.

Bali, R.; Nelson-Cheeseman, B.B.; Scholl, A.; Arenholz, E.; Suzuki, Y.; Blamire, M.G.

2009-08-01T23:59:59.000Z

322

Work Force Retention Work Group Charter  

Energy.gov (U.S. Department of Energy (DOE))

The Work force Retention Work Group is established to support the Departments critical focus on maintaining a high-performing work force at a time when a significant number of the workers needed to support DOEs national security mission are reaching retirement age.

323

U.S.Air Force Advanced Power  

E-Print Network (OSTI)

efficiency,improved power distribution,reduced fuel dependency,reduction of noise,heat,and visual signatureU.S.Air Force Advanced Power Technology Office (APTO) U.S.Air Force Advanced Power Technology/Wind Powered Hydrogen Generation for Fuel Cell Applications · Waste-To-Energy APTO/Small Business Innovation

324

Water Conservation Task Force (2014 Charge)  

E-Print Network (OSTI)

Water Conservation Task Force (2014 Charge) The Task Force will advise the Chancellor and Campus Provost/Executive Vice Chancellor (CP/EVC) on current and past water use and provide recommendations on implementation of policies for potable water use reductions in support of The Regents Policy on Sustainable

California at Santa Cruz, University of

325

Sustainability Initiative Task Force Final Report  

E-Print Network (OSTI)

UW­Madison Sustainability Initiative Task Force Final Report October 2010 #12;We are pleased to present the final report of the campus Sustainability Task Force. This report fulfills the charge we gave to sustainability for consideration by UW­Madison's leadership and campus community. There are many reasons why

Sheridan, Jennifer

326

ARM - PI Product - Direct Aerosol Forcing Uncertainty  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsDirect Aerosol Forcing Uncertainty ProductsDirect Aerosol Forcing Uncertainty Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Direct Aerosol Forcing Uncertainty Site(s) NSA SGP TWP General Description Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in

327

Force localization in contracting cell layers  

E-Print Network (OSTI)

Epithelial cell layers on soft elastic substrates or pillar arrays are commonly used as model systems for investigating the role of force in tissue growth, maintenance and repair. Here we show analytically that the experimentally observed localization of traction forces to the periphery of the cell layers does not necessarily imply increased local cell activity, but follows naturally from the elastic problem of a finite-sized contractile layer coupled to an elastic foundation. For homogeneous contractility, the force localization is determined by one dimensionless parameter interpolating between linear and exponential force profiles for the extreme cases of very soft and very stiff substrates, respectively. If contractility is sufficiently increased at the periphery, outward directed displacements can occur at intermediate positions, although the edge itself still retracts. We also show that anisotropic extracellular stiffness leads to force localization in the stiffer direction, as observed experimentally.

Carina M. Edwards; Ulrich S. Schwarz

2012-01-13T23:59:59.000Z

328

Measurement of tool forces in diamond turning  

SciTech Connect

A dynamometer has been designed and built to measure forces in diamond turning. The design includes a 3-component, piezoelectric transducer. Initial experiments with this dynamometer system included verification of its predicted dynamic characteristics as well as a detailed study of cutting parameters. Many cutting experiments have been conducted on OFHC Copper and 6061-T6 Aluminum. Tests have involved investigation of velocity effects, and the effects of depth and feedrate on tool forces. Velocity has been determined to have negligible effects between 4 and 21 m/s. Forces generally increase with increasing depth of cut. Increasing feedrate does not necessarily lead to higher forces. Results suggest that a simple model may not be sufficient to describe the forces produced in the diamond turning process.

Drescher, J.; Dow, T.A.

1988-12-01T23:59:59.000Z

329

Generative Models for Super-Resolution Single Molecule Microscopy Images of Biological Structures  

E-Print Network (OSTI)

an information bridge between super-resolution microscopy and structural biology by using generative models

Matsuda, Noboru

330

Atom probe field ion microscopy and related topics: A bibliography 1992  

SciTech Connect

This bibliography contains citations of books, conference proceedings, journals, and patents published in 1992 on the following types of microscopy: atom probe field ion microscopy (108 items); field emission microscopy (101 items); and field ion microscopy (48 items). An addendum of 34 items missed in previous bibliographies is included.

Russell, K.F.; Godfrey, R.D.; Miller, M.K.

1993-12-01T23:59:59.000Z

331

Ecological and agricultural applications of synchrotron IR microscopy  

E-Print Network (OSTI)

Ecological and agricultural applications of synchrotron IR microscopy T.K. Raab a,*, J.P. Vogel b factors to the fungus Erysiphe cichoracearum, a causative agent of powdery mildew disease. Three genes to pro- liferate when environmental conditions and re- sources are optimum. Cellulose, an abundant

332

Nanoscale Thermotropic Phase Transitions Enhance Photothermal Microscopy Signals  

E-Print Network (OSTI)

the material undergoes a phase transition. Herein, we show that thermotropic phase transitions in 4-Cyano-41 Nanoscale Thermotropic Phase Transitions Enhance Photothermal Microscopy Signals A. Nicholas G-objects in various environments. It uses a photo-induced change in the refractive index of the environment. Taking

Boyer, Edmond

333

Nanometric depth resolution from multi-focal images in microscopy  

Science Journals Connector (OSTI)

...that have been stored in a computer, but it is noted that using...interdisciplinary Bridging the Gaps grant from the UK Engineering and...Physics, SUPA/IIS, School of Engineering and Physical...instrumentation Image Processing, Computer-Assisted methods Microscopy...

2011-01-01T23:59:59.000Z

334

ABSTRACTS IN REPORTS CONCERNING ELECTRON MICROSCOPY PUBLISHED IN JAPAN:  

Science Journals Connector (OSTI)

......Thoracic Lymphatics of Living Rabbits and Sites of Escape of Car- bon Particles from the Vessels: Fumihiko KATO (First Dept...deafness. Using light and elect- ron microscopy he studied the defective organ of Corti in Shaker-1 mouse, one strain of congeni......

ABSTRACTS

1967-01-01T23:59:59.000Z

335

Image processing pipeline for synchrotron-radiation-based tomographic microscopy  

Science Journals Connector (OSTI)

A software environment has been developed for processing and reconstructing online the large amount of data generated at TOMCAT, a synchrotron-radiation-based tomographic microscopy beamline of the Swiss Light Source at Paul Scherrer Institute, Switzerland. It has been designed to minimize user interaction and maximize the reconstruction speed and therefore optimize beam time usage.

Hintermller, C.

2010-05-14T23:59:59.000Z

336

Detection of protein conformation defects from fluorescence microscopy images  

Science Journals Connector (OSTI)

A diagnostic method for protein conformational diseases (PCD) from microscopy images is proposed when such conformational conflicts involve muscular intranuclear inclusions (INIs) indicative of oculopharyngeal muscular dystrophy (OPMD), one variety of ... Keywords: Computer-aided diagnosis, Histogram, Microscopic images, Pattern classification, Protein conformational diseases, Texture analysis

Peifang Guo; Prabir Bhattacharya

2013-09-01T23:59:59.000Z

337

Laser scanning third-harmonic-generation microscopy in biology  

E-Print Network (OSTI)

. Denk, J. H. Stricker and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990). 3. S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel and W. W. Webb, "Measuring-214 (1996). 6. R. Hellwarth and P. Christensen, "Nonlinear optical microscopic examination of structure

Silberberg, Yaron

338

Field-regulated force by grafted polyelectrolytes  

E-Print Network (OSTI)

Generation of mechanical force regulated by external electric field is studied both theoretically and by molecular dynamics (MD) simulations. The force arises in deformable bodies linked to the free end of a grafted polyelectrolyte chain which is exposed to electric field that favours its adsorption. We consider a few target bodies with different force-deformation relations including (i) linear and (ii) cubic dependences as well as (iii) Hertzian-like force. Such force-deformation relations mimic the behaviour of (i) coiled and (ii) stretched polymer chains, respectively, or (iii) that of a squeezed colloidal particle. The magnitude of the arising force varies over a wide interval although the electric field alters within a relatively narrow range only. The predictions of our theory agree quantitatively well with the results of numerical simulations. Both cases of zero and finite electrical current are investigated and we do not obtain substantial differences in the force generated. The phenomenon studied could possibly be utilised to design, e.g., vice-like devices to fix nano-sized objects.

Christian Seidel; Yury A. Budkov; Nikolay V. Brilliantov

2014-11-08T23:59:59.000Z

339

Piezoresistive cantilever force-clamp system  

SciTech Connect

We present a microelectromechanical device-based tool, namely, a force-clamp system that sets or ''clamps'' the scaled force and can apply designed loading profiles (e.g., constant, sinusoidal) of a desired magnitude. The system implements a piezoresistive cantilever as a force sensor and the built-in capacitive sensor of a piezoelectric actuator as a displacement sensor, such that sample indentation depth can be directly calculated from the force and displacement signals. A programmable real-time controller operating at 100 kHz feedback calculates the driving voltage of the actuator. The system has two distinct modes: a force-clamp mode that controls the force applied to a sample and a displacement-clamp mode that controls the moving distance of the actuator. We demonstrate that the system has a large dynamic range (sub-nN up to tens of {mu}N force and nm up to tens of {mu}m displacement) in both air and water, and excellent dynamic response (fast response time, <2 ms and large bandwidth, 1 Hz up to 1 kHz). In addition, the system has been specifically designed to be integrated with other instruments such as a microscope with patch-clamp electronics. We demonstrate the capabilities of the system by using it to calibrate the stiffness and sensitivity of an electrostatic actuator and to measure the mechanics of a living, freely moving Caenorhabditis elegans nematode.

Park, Sung-Jin; Petzold, Bryan C.; Pruitt, Beth L. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Goodman, Miriam B. [Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305 (United States)

2011-04-15T23:59:59.000Z

340

In vivo recording of aerodynamic force with an aerodynamic force platform  

E-Print Network (OSTI)

Flapping wings enable flying animals and biomimetic robots to generate elevated aerodynamic forces. Measurements that demonstrate this capability are based on tethered experiments with robots and animals, and indirect force calculations based on measured kinematics or airflow during free flight. Remarkably, there exists no method to measure these forces directly during free flight. Such in vivo recordings in freely behaving animals are essential to better understand the precise aerodynamic function of their flapping wings, in particular during the downstroke versus upstroke. Here we demonstrate a new aerodynamic force platform (AFP) for nonintrusive aerodynamic force measurement in freely flying animals and robots. The platform encloses the animal or object that generates fluid force with a physical control surface, which mechanically integrates the net aerodynamic force that is transferred to the earth. Using a straightforward analytical solution of the Navier-Stokes equation, we verified that the method is ...

Lentink, David; Ingersoll, Rivers

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "force microscopy afm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Definition: Forced Outage | Open Energy Information  

Open Energy Info (EERE)

Forced Outage Forced Outage Jump to: navigation, search Dictionary.png Forced Outage The removal from service availability of a generating unit, transmission line, or other facility for emergency reasons., The condition in which the equipment is unavailable due to unanticipated failure.[1] Related Terms transmission lines, transmission line References ↑ Glossary of Terms Used in Reliability Standards An i LikeLike UnlikeLike You like this.Sign Up to see what your friends like. nline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Forced_Outage&oldid=480310" Categories: Definitions ISGAN Definitions What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data

342

Kirland Air Force Base wins Robot Rodeo  

NLE Websites -- All DOE Office Websites (Extended Search)

Kirland Air Force Base wins Robot Rodeo Kirland Air Force Base wins Robot Rodeo Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues » submit Kirland Air Force Base wins Robot Rodeo Hazardous devices teams test their maneuvering skills July 1, 2013 Students from Valarde Middle School won the video competition in the Best in Show and Middle School categories. They are shown here with sixth-grade teacher Jimmy Lara. During the Robot Rodeo, an unseen operator attempts to conduct reconnaissance and rescue injured personnel Contact Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Kirland Air Force Base wins Robot Rodeo Police and public safety teams from as far away as New Jersey recently convened in Albuquerque to test their ability to remotely deploy robots

343

U.S. Air Force UESCs  

Energy.gov (U.S. Department of Energy (DOE))

Presentationgiven at the Spring 2009 Federal Utility Partnership Working Group (FUPWG) meetingcovers the U.S. Air Force's approval process, submittal requirements, and guidelines for utility energy service contracts (UESCs).

344

Qualifying Facility Wheeling Task Force-- Status Report  

E-Print Network (OSTI)

Docket No. 8650 that the PUCT review the applicability of certain parts of the wheeling rules, and in April the Commission appointed a task force composed of representatives from affected industries, utilities, and regulatory staff to review the wheeling...

Panjavan, S.

345

Polarization dependent forces in optical vortex pipeline  

Science Journals Connector (OSTI)

We study both, theoretically and in experiments, the dependence of optical forces acting on a spherical particle guided in air with an optical vortex beam, on the light polarization...

Eckerskorn, Niko; Krolikowski, Wieslaw; Shvedov, Vladlen; Rode, Andrei

346

MagLab - Lorentz Force Tutorial  

NLE Websites -- All DOE Office Websites (Extended Search)

downloading the latest version of Java. A charged particle moving through a magnetic field experiences a force that is at right angles to both the direction in which the...

347

Macroscopic approach to the Casimir friction force  

E-Print Network (OSTI)

The general formula is derived for the vacuum friction force between two parallel perfectly flat planes bounding two material media separated by a vacuum gap and moving relative to each other with a constant velocity $\\mathbf{v}$. The material media are described in the framework of macroscopic electrodynamics whereas the nonzero temperature and dissipation are taken into account by making use of the Kubo formulae from non-equilibrium statistical thermodynamics. The formula obtained provides a rigorous basis for calculation of the vacuum friction force within the quantum field theory methods in the condensed matter physics. The revealed $v$-dependence of the vacuum friction force proves to be the following: for zero temperature ($T=0$) it is proportional to $(v/c)^3$ and for $T>0$ this force is linear in $(v/c)$.

V. V. Nesterenko; A. V. Nesterenko

2014-03-13T23:59:59.000Z

348

Modelling the climate response to orbital forcing  

Science Journals Connector (OSTI)

...next few years there will be a tremendous expansion in models that include several additional components. Such Earth system models will at last allow us to fully tackle the link between orbital forcing, climate variability, and the sediment...

1999-01-01T23:59:59.000Z

349

Sponsored by Air Force Research Laboratory  

E-Print Network (OSTI)

Sponsored by Air Force Research Laboratory Space Vehicles Directorate Directed Energy Directorate PROGRAM Space Scholars and Directed Energy Scholars The Space Vehicles and Directed Energy Directorates Scholars The Phillips Scholars internship offers an edu- cational and fulfilling summer job experience

Piao, Daqing

350

Static forces in a superconducting magnet bearing  

SciTech Connect

Static levitation forces and stiffnesses in a superconducting bearing consisting of concentric ring magnets and a superconducting YBaCuO ring are investigated. In the field-cooled mode a levitation force of 20 N has been achieved. The axial and radial stiffnesses have values of 15 N/mm and 10 N/mm, respectively. An arrangement with two bearings supporting a high speed shaft is now under development. A possible application of superconducting magnetic bearings is flywheels for energy storage.

Stoye, P.; Fuchs, G. [Institut fuer Festkoerper- und Werkstofforschung, Dresden (Germany)] [Institut fuer Festkoerper- und Werkstofforschung, Dresden (Germany); Gawalek, W.; Goernert, P. [Institut fuer Physikalische Hochtechnologie, Jena (Germany)] [Institut fuer Physikalische Hochtechnologie, Jena (Germany); Gladun, A. [Technische Univ., Dresden (Germany)] [Technische Univ., Dresden (Germany)

1995-11-01T23:59:59.000Z

351

Effects of the Biologically Produced Polymer Alginic Acid on  

E-Print Network (OSTI)

. Using a combined atomic force microscopy (AFM)/flow- through reactor apparatus, we investigated. In alginic acid, the acute step retreat rate is nearly unchanged in comparison to water, whereas the obtuse but propagate faster in the obtuse direction. To explain these observations, we propose that alginic acid

352

SEAB Subcommittees and Task Forces | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

is chaired by Shirley Ann Jackson. Task Forces: The SEAB Next Generation High Performance Computing Task Force The SEAB Task Force to Support the Evaluation of the New Funding...

353

Report of the Task Force on Next Generation High Performance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report of the Task Force on Next Generation High Performance Computing Report of the Task Force on Next Generation High Performance Computing The SEAB Task Force on Next Generation...

354

A verification of quantum field theory measurement of Casimir force  

Science Journals Connector (OSTI)

Here we review our work on measurement of the Casimir force between a large aluminum coated a sphere and flat plate using an atomic force microscope. The average statistical precision is 1% of the force measur...

Anushree Roy; U Mohideen

355

Mechanical Network in Titin Immunoglobulin from Force Distribution Analysis  

E-Print Network (OSTI)

Mechanical Network in Titin Immunoglobulin from Force Distribution Analysis Wolfram Stacklies1. , M, Stuttgart, Germany Abstract The role of mechanical force in cellular processes is increasingly revealed force propagates within proteins determines their mechanical behavior yet remains largely unknown. We

Gräter, Frauke

356

X-ray Microscopy and Imaging (XSD-XMI)  

NLE Websites -- All DOE Office Websites (Extended Search)

Imaging (XMI) Imaging (XMI) About XMI Science and Research Beamlines Highlights Software and Tools Intranet Search APS... Argonne Home > Advanced Photon Source > Contacts FAQs Beamlines News Publications APS Email Portal APS Intranet APS Phonebook APS Quick Links for Users APS Safety and Training Welcome to the X-ray Microscopy and Imaging group (XMI)! X-ray Microscopy and Imaging is part of the X-ray Science Division at the Advanced Photon Source. We develop and support a diverse and multidisciplinary user research program at Sectors 2 and 32 of the APS, with the overall goal to image and study materials structures at spatial and temporal resolutions that are most scientifically relevant to the cutting-edge advances in materials, biological, environmental, and biomedical sciences. To achieve this goal, we actively engage in various research activities including

357

X-Ray Diffraction Microscopy of Magnetic Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of magnetic atoms, but these terms are traditionally ignored since coherent x-ray diffraction has not been used to retrieve magnetic information. Using the full formula allows for the determination of not only the electron density, but also the magnetic spin distribution and its orientation.

358

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

359

CFN Operations and Safety Awareness (COSA) Checklist Electron Microscopy Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Microscopy Facility Electron Microscopy Facility Building 735 This COSA form must be completed for all experimenters working in the CFN and must be submitted to the CFN User Office for badge access. CFN Safety Awareness Policy: Each user must be instructed in the safe procedures in CFN related activities. CFN Facility Laboratory personnel shall keep readily available all relevant instructions and safety literature. Employee/Guest Name Life/Guest Number Department/Division ES&H Coordinator/Ext. Facility Manager COSA Trainer Guest User Staff USER ADMINISTRATION Checked in at User Administration and has valid BNL ID badge Safety Approval Form (SAF) approved. Training requirements completed (Indicate additional training specified in SAF or ESR in lines provided below):

360

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

Note: This page contains sample records for the topic "force microscopy afm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

X-Ray Diffraction Microscopy of Magnetic Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of magnetic atoms, but these terms are traditionally ignored since coherent x-ray diffraction has not been used to retrieve magnetic information. Using the full formula allows for the determination of not only the electron density, but also the magnetic spin distribution and its orientation.

362

NCEM National Center for Electron Microscopy: About NCEM  

NLE Websites -- All DOE Office Websites (Extended Search)

NCEM NCEM The National Center for Electron Microscopy (NCEM) is one of the world's foremost centers for electron microscopy and microcharacterization. It is an Office of Science User Facility operated for the U.S. Department of Energy by Lawrence Berkeley National Laboratory. Located adjacent to the University of California, Berkeley, NCEM was established in 1983 to maintain a forefront research center for electron-optical characterization of materials with state-of-the-art instrumentation and expertise. As a national user facility, NCEM is open to scientists from universities, government and industrial laboratories. The center provides cutting-edge instrumentation, techniques and expertise for advanced electron beam microcharacterization of materials at high spatial

363

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

364

X-Ray Diffraction Microscopy of Magnetic Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of magnetic atoms, but these terms are traditionally ignored since coherent x-ray diffraction has not been used to retrieve magnetic information. Using the full formula allows for the determination of not only the electron density, but also the magnetic spin distribution and its orientation.

365

Simulating realistic imaging conditions for in situ liquid microscopy  

SciTech Connect

In situ transmission electron microscopy enables the imaging of biological cells, macromolecular protein complexes, nanoparticles, and other systems in a near-native environment. In order to improve interpretation of image contrast features and also predict ideal imaging conditions ahead of time, new virtual electron microscopic techniques are needed. A technique for virtual fluid-stage high-angle annular dark-field scanning transmission electron microscopy with the multislice method is presented that enables the virtual imaging of model fluid-stage systems composed of millions of atoms. The virtual technique is exemplified by simulating images of PbS nanoparticles under different imaging conditions and the results agree with previous experimental findings. General insight is obtained on the influence of the effects of fluid path length, membrane thickness, nanoparticle position, defocus and other microscope parameters on attainable image quality.

Welch, David A.; Faller, Roland; Evans, James E.; Browning, Nigel D.

2013-12-01T23:59:59.000Z

366

Acoustic microscopy for characterization of high?temperature superconducting tape  

Science Journals Connector (OSTI)

Although material scientists constantly discover superconducting compounds with higher critical temperatures (T c s) manufacturing of the high?temperature superconductors(HTS) remains a problem and long lengths (>1 mile) have yet to be produced. In an effort to produce long length superconductors manufacturing steps for HTS tape production have been critically looked at to find their effects in producing tape with the desired characteristics. In support of determining superconducting tapecharacteristics acoustic microscopy offers the potential for internal microstructural material characterization. This research will ultimately support in?process monitoring of HTSmanufacturing as part of an advanced sensing system to determine the presence of defects and/or the effects of process variables on the HTS tape. This presentation will overview scanning acoustic microscopy and present images of HTS tape at several frequencies ranging from 50 to 500 MHz. The results clearly demonstrate the feasibility of determining the Ag/ceramic interface location and the general integrity of the constituents.

Chiaki Miyasaka; Chris Cobucci; Bernhard Tittmann

1997-01-01T23:59:59.000Z

367

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

368

Optimization of graphene dry etching conditions via combined microscopic and spectroscopic analysis  

SciTech Connect

Single-layer graphene structures and devices are commonly defined using reactive ion etching and plasma etching with O{sub 2} or Ar as the gaseous etchants. Although optical microscopy and Raman spectroscopy are widely used to determine the appropriate duration of dry etching, additional characterization with atomic force microscopy (AFM) reveals that residual graphene and/or etching byproducts persist beyond the point where the aforementioned methods suggest complete graphene etching. Recognizing that incomplete etching may have deleterious effects on devices and/or downstream processing, AFM characterization is used here to determine optimal etching conditions that eliminate graphene dry etching residues.

Prado, Mariana C. [Departamento de Fisica, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 31270-901 Belo Horizonte (Brazil)] [Departamento de Fisica, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 31270-901 Belo Horizonte (Brazil); Jariwala, Deep [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States)] [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Marks, Tobin J.; Hersam, Mark C. [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States) [Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States)

2013-05-13T23:59:59.000Z

369

Deposition of tungsten nitride on stainless steel substrates using plasma focus device  

Science Journals Connector (OSTI)

Tungsten nitride (WN) films were deposited on the stainless steel-304 substrate by a 2kJ Mather-type plasma focus device. The preparation method and characterization data are presented. X-ray diffractometer (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed for the characterization of the samples obtained with different number of focus shots, respectively. The average size of crystallites (from XRD), sub-micro-structures (from SEM) and particles (from AFM images) increase when the number of shots increase from 10 to 20 then 30, then they decrease when the substrate is exposed to 40 shots.

G.R. Etaati; M.T. Hosseinnejad; M. Ghoranneviss; M. Habibi; M. shirazi

2011-01-01T23:59:59.000Z

370

"EOD, Up!" how explosive ordnance disposal forces can best support special operations forces .  

E-Print Network (OSTI)

??U.S. special operations forces (SOF) are likely to undertake missions against terrorists, insurgents, and other enemies where they will encounter explosive hazards. Identification, detection, and (more)

Draper, Stephen R.

2006-01-01T23:59:59.000Z

371

Single molecule microscopy in 3D cell cultures and tissues  

Science Journals Connector (OSTI)

Abstract From the onset of the first microscopic visualization of single fluorescent molecules in living cells at the beginning of this century, to the present, almost routine application of single molecule microscopy, the method has well-proven its ability to contribute unmatched detailed insight into the heterogeneous and dynamic molecular world life is composed of. Except for investigations on bacteria and yeast, almost the entire story of success is based on studies on adherent mammalian 2D cell cultures. However, despite this continuous progress, the technique was not able to keep pace with the move of the cell biology community to adapt 3D cell culture models for basic research, regenerative medicine, or drug development and screening. In this review, we will summarize the progress, which only recently allowed for the application of single molecule microscopy to 3D cell systems and give an overview of the technical advances that led to it. While initially posing a challenge, we finally conclude that relevant 3D cell models will become an integral part of the on-going success of single molecule microscopy.

Florian M. Lauer; Elke Kaemmerer; Tobias Meckel

2014-01-01T23:59:59.000Z

372

Protective Force Protocols for ESS Supported Performance Tests...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Protective Force Protocols for ESS Supported Performance Tests and Exercises, March 12, 2007 Protective Force Protocols for ESS Supported Performance Tests and Exercises, March 12,...

373

6.641 Electromagnetic Fields, Forces, and Motion, Spring 2003  

E-Print Network (OSTI)

Electric and magnetic quasistatic forms of Maxwell's equations applied to dielectric, conduction, and magnetization boundary value problems. Electromagnetic forces, force densities, and stress tensors, including magnetization ...

Zahn, Markus, 1946-

374

Climate Change Task Force Webinar Series | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Climate Change Task Force Webinar Series Climate Change Task Force Webinar Series The four-part Climate Change Impacts and Indian Country webinar series provided tribal leaders an...

375

Northeast High-Level Radioactive Waste Transportation Task Force...  

Office of Environmental Management (EM)

Northeast High-Level Radioactive Waste Transportation Task Force Agenda Northeast High-Level Radioactive Waste Transportation Task Force Agenda Northeast High-Level Radioactive...

376

U.S. Air Force Energy Program Presentation  

Energy.gov (U.S. Department of Energy (DOE))

Omar Mendoza, U.S. Air Force, presentation on the U.S. Air Force Energy Program at the Advanced Biofuels Industry Roundtable.

377

Government and Industry A Force for Collaboration at the Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Government and Industry A Force for Collaboration at the Energy Roadmap Update Workshop Government and Industry A Force for Collaboration at the Energy Roadmap Update Workshop...

378

Argonne CNM: Proximal Probes Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Proximal Probes Proximal Probes Capabilities Omicron VT-AFM XA microscope scanning tunneling microscope VIew high-resolution image. Variable-temperature, ultra-high-vacuum, atomic force microscope/scanning tunneling microscope: Omicron VT-AFM XA (N. Guisinger, Electronic & Magnetic Materials & Devices Group) Measurement modes include: Contact and non-contact AFM Magnetic force microscopy (MFM) Scanning tunneling spectroscopy Preparation tools include: Resistive sample heating Direct current heating E-beam heating Sputter ion etching Gas dosing E-beam evaporation An analysis chamber contains combined four-grid LEED/Auger optics Omicron nanoprobe View high-resolution image Scanning probe/scanning electron microscopy: Omicron UHV Nanoprobe (N. Guisinger, Electronic & Magnetic Materials & Devices Group)

379

Atom probe field ion microscopy and related topics: A bibliography 1991  

SciTech Connect

This report contains a bibliography for 1991 on the following topics: Atom probe field ion microscopy; field desorption mass spectrometry; field emission; field ion microscopy; and field emission theory.

Russell, K.F.; Miller, M.K.

1993-01-01T23:59:59.000Z

380

Cellular resolution ex vivo imaging of gastrointestinal tissues with coherence microscopy  

E-Print Network (OSTI)

Optical coherence microscopy (OCM) combines confocal microscopy and optical coherence tomography (OCT) to improve imaging depth and contrast, enabling cellular imaging in human tissues. We aim to investigate OCM for ex ...

Fujimoto, James G.

Note: This page contains sample records for the topic "force microscopy afm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Comparison between direct methods for determination of microbial cell volume: electron microscopy and electronic particle sizing.  

Science Journals Connector (OSTI)

...than those processed for electronic particle sizing, reflecting...Electron Microscopy and Electronic Particle Sizing E. MONTESINOS...ofMicrobiology and Institute for Fundamental Biology, Autonomous University...transmission electron microscopy and electronic particle sizing. Statistically...

E Montesinos; I Esteve; R Guerrero

1983-05-01T23:59:59.000Z

382

New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution  

NLE Websites -- All DOE Office Websites (Extended Search)

New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution New Zone Plate for Soft X-Ray Microscopy at 15-nm Spatial Resolution Print Wednesday, 31 August 2005 00:00...

383

General Multiobjective Force Field Optimization Framework, with Application to Reactive Force Fields for Silicon Carbide  

E-Print Network (OSTI)

Fields for Silicon Carbide Andres Jaramillo-Botero,* Saber Naserifar, and William A. Goddard, III: (1) the ReaxFF reactive force field for modeling the adiabatic reactive dynamics of silicon carbide specific force field parameters for tripod metal templates, tripodMO(CO)3, using the root mean square

Goddard III, William A.

384

A molecular mechanics force field for lignin  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular Molecular Mechanics Force Field for Lignin LOUKAS PETRIDIS, JEREMY C. SMITH Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 Received 14 February 2008; Revised 8 May 2008; Accepted 12 June 2008 DOI 10.1002/jcc.21075 Published online 1 August 2008 in Wiley InterScience (www.interscience.wiley.com). Abstract: A CHARMM molecular mechanics force field for lignin is derived. Parameterization is based on reproducing quantum mechanical data of model compounds. Partial atomic charges are derived using the RESP electrostatic potential fitting method supplemented by the examination of methoxybenzene:water interactions. Dihedral parameters are optimized by fitting to critical rotational potentials and bonded parameters are obtained by optimizing vibrational frequencies and normal modes. Finally, the force field is validated

385

Electromigration wind force at stepped Al surfaces  

Science Journals Connector (OSTI)

When an electrical current flows parallel to a stepped metal surface, each step experiences a force due to momentum transfer from the carriers that are diffusely scattered by the step edge. In this paper, a ballistic model is used to compute the wind force per unit length acting on the steps of vicinal (100) surfaces of Al. The carrier scattering at the surface is described by a potential-barrier model fit to the results of a first-principles calculation of the surface-induced resistivity of the unstepped surface. The magnitude of the wind force is an increasing function of the step terrace width and reaches a constant value as the steps move apart. For an isolated step on a Al(100) surface, the effective wind valence per unit length of the step edge is zw?-15e -1. This value is equivalent to a wind valence of zw?-43e per atom at the leading edge of each step.

P. J. Rous

1999-03-15T23:59:59.000Z

386

Dynamical friction force exerted on spherical bodies  

E-Print Network (OSTI)

We present a rigorous calculation of the dynamical friction force exerted on a spherical massive perturber moving through an infinite homogenous system of field stars. By calculating the shape and mass of the polarization cloud induced by the perturber in the background system, which decelerates the motion of the perturber, we recover Chandrasekhar's drag force law with a modified Coulomb logarithm. As concrete examples we calculate the drag force exerted on a Plummer sphere or a sphere with the density distribution of a Hernquist profile. It is shown that the shape of the perturber affects only the exact form of the Coulomb logarithm. The latter converges on small scales, because encounters of the test and field stars with impact parameters less than the size of the massive perturber become inefficient. We confirm this way earlier results based on the impulse approximation of small angle scatterings.

O. Esquivel; B. Fuchs

2007-04-30T23:59:59.000Z

387

Giant vacuum forces via transmission lines  

E-Print Network (OSTI)

Quantum electromagnetic fluctuations induce forces between neutral particles, known as the van der Waals (vdW) and Casimir interactions. These fundamental forces, mediated by virtual photons from the vacuum, play an important role in basic physics and chemistry, and in emerging technologies involving, e.g. micro-electromechanical systems or quantum information processing. Here we show that these interactions can be enhanced by many orders of magnitude upon changing the character of the mediating vacuum-modes. By considering two polarizable particles in the vicinity of any standard electric transmission line, along which photons can propagate in one dimension (1d), we find a much stronger and longer-range interaction than in free-space. This enhancement may have profound implications on many-particle and bulk systems, and impact the quantum technologies mentioned above. The predicted giant vacuum force is estimated to be measurable in a coplanar waveguide line.

Ephraim Shahmoon; Igor Mazets; Gershon Kurizki

2013-04-07T23:59:59.000Z

388

David J. Gross and the Strong Force  

NLE Websites -- All DOE Office Websites (Extended Search)

David J. Gross and the Strong Force David J. Gross and the Strong Force Resources with Additional Information The 2004 Nobel Prize in Physics was awarded to David Gross for "the discovery of asymptotic freedom in the theory of the strong interaction". 'Gross, who obtained his PhD in physics in 1966, currently is a professor of physics and director of the Kavli Institute for Theoretical Physics at UC Santa Barbara. ... David Gross Courtesy of UC Santa Barbara [When on the faculty at Princeton University,] he and then-graduate student Frank Wilczek came up with a way to describe the "strong force" that governs interactions between protons and neutrons in the nucleus of the atom. He and Wilczek published their proposal simultaneously with H. David Politzer, a graduate student [at Harvard University] who independently came up with the same idea. ...

389

Towards automatic cell identi cation in DIC microscopy , C.A. Glasbey2y  

E-Print Network (OSTI)

1998. Journal of Microscopy, 192, 186-193. #12;a b c Figure 1: DIC microscope images: a Chlorella algal

Stone, J. V.

390

Computing nonlinear force free coronal magnetic fields  

E-Print Network (OSTI)

Knowledge of the structure of the coronal magnetic field is important for our understanding of many solar activity phenomena, e.g. flares and CMEs. However, the direct measurement of coronal magnetic fields is not possible with present methods, and therefore the coronal field has to be extrapolated from photospheric measurements. Due to the low plasma beta the coronal magnetic field can usually be assumed to be approximately force free, with electric currents flowing along the magnetic field lines. There are both observational and theoretical reasons which suggest that at least prior to an eruption the coronal magnetic field is in a nonlinear force free state. Unfortunately the computation of nonlinear force free fields is way more difficult than potential or linear force free fields and analytic solutions are not generally available. We discuss several methods which have been proposed to compute nonlinear force free fields and focus particularly on an optimization method which has been suggested recently. We compare the numerical performance of a newly developed numerical code based on the optimization method with the performance of another code based on an MHD relaxation method if both codes are applied to the reconstruction of a semi-analytic nonlinear force-free solution. The optimization method has also been tested for cases where we add random noise to the perfect boundary conditions of the analytic solution, in this way mimicking the more realistic case where the boundary conditions are given by vector magnetogram data. We find that the convergence properties of the optimization method are affected by adding noise to the boundary data and we discuss possibilities to overcome this difficulty.

T. Wiegelmann; T. Neukirch

2008-01-21T23:59:59.000Z

391

On photo-expansion and microlens formation in (GeS{sub 2}){sub 0.74}(Sb{sub 2}S{sub 3}){sub 0.26} chalcogenide glass  

SciTech Connect

Graphical abstract: Display Omitted Highlights: ? Photo-expansion induced by sub-band-gap photons in GeSbS glass. ? One-step microlens formation. ? The topography of the microlenses detected by AFM and DHM. ? The good mechanical characteristics of the microlenses were obtained. ? Local light-induced overheating of the glass. -- Abstract: Photo-expansion of the bulk of (GeS{sub 2}){sub 0.74}(Sb{sub 2}S{sub 3}){sub 0.26} glass induced by sub-gap photons is studied employing specifically atomic force microscopy (AFM) namely an atomic force acoustic microscopy (AFAM) and a force spectroscopy and digital holographic microscopy. The results are discussed with respect to the possible role of light induced overheating in the process of photo-expansion.

Knotek, P., E-mail: petr.knotek@upce.cz [University of Pardubice, Faculty of Chemical Technology, Studentska 573, 532 10 Pardubice (Czech Republic); Tichy, L. [Institute of Macromolecular Chemistry, Academy of Sciences of Czech Republic, v.v.i., Heyrovskeho sq. 2, 162 06 Prague (Czech Republic)] [Institute of Macromolecular Chemistry, Academy of Sciences of Czech Republic, v.v.i., Heyrovskeho sq. 2, 162 06 Prague (Czech Republic)

2012-12-15T23:59:59.000Z

392

Modulational instability in wind-forced waves  

E-Print Network (OSTI)

We consider the wind-forced nonlinear Schroedinger (NLS) equation obtained in the potential flow framework when the Miles growth rate is of the order of the wave steepness. In this case, the form of the wind-forcing terms gives rise to the enhancement of the modulational instability and to a band of positive gain with infinite width. This regime is characterised by the fact that the ratio between wave momentum and norm is not a constant of motion, in contrast to what happens in the standard case where the Miles growth rate is of the order of the steepness squared.

Brunetti, Maura

2014-01-01T23:59:59.000Z

393

Rings in central-force network dynamics  

Science Journals Connector (OSTI)

The central-force network dynamics model for glasses is extended to treat networks involving small regular rings of bonds. In particular, band-limit formulas are obtained for an A2X3 glass consisting of regular puckered six-membered A3X3 rings. The special case of planar rings is compared with observations on vitreous B2O3. This continuous random network of "boroxol" rings shows improved agreement with experiment over a model not containing rings. The remaining discrepancies illustrate the need to include noncentral forces in the network dynamics of v-B2O3.

F. L. Galeener and M. F. Thorpe

1983-11-15T23:59:59.000Z

394

Nuclear emission microscopies B.L. Doyle a,*, D.S. Walsh a  

E-Print Network (OSTI)

Nuclear emission microscopies B.L. Doyle a,*, D.S. Walsh a , S.N. Renfrow a,b , G. Vizkelethy a,1 Abstract Alternatives to traditional nuclear microprobe analysis (NMA) emerged two years ago with the invention of ion electron emission microscopy (IEEM). With nuclear emission microscopy (NEM) the ion beam

395

Electron Microscopy of Myosin Molecules from Muscle and Non-Muscle Sources  

Science Journals Connector (OSTI)

...1976 research-article Electron Microscopy of Myosin...Muscle and Non-Muscle Sources A. Elliott G. Offer...give the two heads). Electron microscopy of myosin...muscle and non-muscle sources. | Journal Article...Chickens Microscopy, Electron Muscle Proteins Myosins...

1976-01-01T23:59:59.000Z

396

Cryogenic X-Ray Diffraction Microscopy for Biological Samples  

Science Journals Connector (OSTI)

X-ray diffraction microscopy (XDM) is well suited for nondestructive, high-resolution biological imaging, especially for thick samples, with the high penetration power of xrays and without limitations imposed by a lens. We developed nonvacuum, cryogenic (cryo-) XDM with hard xrays at 8keV and report the first frozen-hydrated imaging by XDM. By preserving samples in amorphous ice, the risk of artifacts associated with dehydration or chemical fixation is avoided, ensuring the imaging condition closest to their natural state. The reconstruction shows internal structures of intact D. radiodurans bacteria in their natural contrast.

Enju Lima; Lutz Wiegart; Petra Pernot; Malcolm Howells; Joanna Timmins; Federico Zontone; Anders Madsen

2009-11-05T23:59:59.000Z

397

Cryogenic X-ray Diffraction Microscopy for Biological Samples  

SciTech Connect

X-ray diffraction microscopy (XDM) is well suited for nondestructive, high-resolution biological imaging, especially for thick samples, with the high penetration power of x rays and without limitations imposed by a lens. We developed nonvacuum, cryogenic (cryo-) XDM with hard x rays at 8 keV and report the first frozen-hydrated imaging by XDM. By preserving samples in amorphous ice, the risk of artifacts associated with dehydration or chemical fixation is avoided, ensuring the imaging condition closest to their natural state. The reconstruction shows internal structures of intact D. radiodurans bacteria in their natural contrast.

E Lima; L Wiegart; P Pernot; M Howells; J Timmins; F Zontone; A Madsen

2011-12-31T23:59:59.000Z

398

Field-ion microscopy observation of single-walled carbon  

Science Journals Connector (OSTI)

Field-ion microscopy (FIM), a tool for surface analysis with atomic resolution, has been employed to observe the end structure of single-walled carbon nanotubes (SWCNTs). FIM images revealed the existence of open SWCNT ends. Amorphous carbon atoms were also observed to occur around SWCNTs and traditional field evaporation failed to remove them. Heat treatment was found to be efficacious in altering the end structures of SWCNT bundles. Carbon and oxygen atoms released from heated tungsten filament are believed to be responsible for the decoration imposed on the SWCNT ends.

Zhang Zhao-Xiang; Zhang Geng-Min; Du Min; Jin Xin-Xi; Hou Shi-Min; Sun Jian-Ping; Gu Zhen-Nan; Zhao Xing-Yu; Liu Wei-Min; Wu Jin-Lei; Xue Zeng-Quan

2002-01-01T23:59:59.000Z

399

Single Molecule Emission Characteristics in Near-Field Microscopy  

Science Journals Connector (OSTI)

In near-field scanning optical microscopy (NSOM), the measured fluorescence lifetime of a single dye molecule can be shortened or lengthened, sensitively dependent on the relative position between the molecule and aluminum coated fiber tip. The modified lifetimes and other emission characteristics are simulated by solving Maxwell equations with the finite-difference time-domain (FDTD) method. The 2D computation reveals insight into the lifetime behaviors and provides guidance for nonperturbative spectroscopic measurements with NSOM. This new methodology is capable of predicting molecular emission properties in front of a metal/dielectric interface of arbitrary geometry.

Randy X. Bian; Robert C. Dunn; X. Sunney Xie; P. T. Leung

1995-12-25T23:59:59.000Z

400

Effect of Temperature Variation on the Under-Potential Deposition of Copper on Pt(111) in Aqueous H2SO4  

Science Journals Connector (OSTI)

Department of Chemistry, Queens University, 90 Bader Lane, Kingston, Ontario, K7L 3N6 Canada, and Dpartement de Chimie, Universit de Sherbrooke, 2500 boul. ... The effect of anion adsorption on UPD Cu was also investigated by many ex-situ and in situ techniques, such as low energy electron diffraction (LEED), Auger electron spectroscopy (AES), scanning tunneling microscopy (STM), and atomic force microscopy (AFM). ...

Gregory Jerkiewicz; Frdric Perreault; Zorana Radovic-Hrapovic

2009-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "force microscopy afm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Refined tip preparation by electrochemical etching and ultrahigh vacuum treatment to obtain atomically sharp tips for scanning tunneling microscope and atomic force microscope  

SciTech Connect

A modification of the common electrochemical etching setup is presented. The described method reproducibly yields sharp tungsten tips for usage in the scanning tunneling microscope and tuning fork atomic force microscope. In situ treatment under ultrahigh vacuum (p {<=}10{sup -10} mbar) conditions for cleaning and fine sharpening with minimal blunting is described. The structure of the microscopic apex of these tips is atomically resolved with field ion microscopy and cross checked with field emission.

Hagedorn, Till; Ouali, Mehdi El; Paul, William; Oliver, David; Miyahara, Yoichi; Gruetter, Peter [Department of Physics, McGill University, 3600 Rue University, Montreal, QC H3A2T8 (Canada)

2011-11-15T23:59:59.000Z

402

Robotic Assembly and Contact Force Control  

E-Print Network (OSTI)

indis- pensable in many applications, such as spot welding and painting in the automotive industryRobotic Assembly and Contact Force Control Andreas Stolt Department of Automatic Control Lund in Sweden, Lund University, Lund 2012 #12;Abstract Modern industrial robots are traditionally programmed

403

Inertial Force, Equivalence Principle and Quantum Mechanics  

E-Print Network (OSTI)

On the basis of a manifestly covariant formalism of non-relativistic quantum mechanics in general coordinate systems, proposed by us recently, we derive general expressions for inertial forces. The results enable us further to discuss, and to explain the validity of, the equivalence principle in non-relativistic quantum mechanics.

Minoru Omote; Susumu Kamefuchi

2000-05-10T23:59:59.000Z

404

Yangtze Patrol: American Naval Forces in China  

E-Print Network (OSTI)

Yangtze Patrol: American Naval Forces in China A Selected, Partially-Annotated Bibliography literature of the United States Navy in China. mvh #12;"Like Chimneys in Summer" The thousands of men who served on the China Station before World War II have been all but forgotten, except in the mythology

405

Climate-Forced Variability of Ocean Hypoxia  

Science Journals Connector (OSTI)

...mixture of local wind forcing and basin-scale circulation, but the PDO...exported to the wider Pacific basin (22, 23), yielding widespread...Oxygen in the Southern California Bight: Multidecadal trends and implications...Gentili B. , Climate-driven basin-scale decadal oscillations...

Curtis Deutsch; Holger Brix; Taka Ito; Hartmut Frenzel; LuAnne Thompson

2011-07-15T23:59:59.000Z

406

Power Capping Via Forced Idleness Anshul Gandhi  

E-Print Network (OSTI)

Power Capping Via Forced Idleness Anshul Gandhi Carnegie Mellon University anshulg@cs.cmu.edu Mor@us.ibm.com Abstract We introduce a novel power capping technique, IdleCap, that achieves higher effective server frequency for a given power constraint than existing techniques. IdleCap works by repeatedly alternating

Harchol-Balter, Mor

407

REPORT OF THE DARK ENERGY TASK FORCE  

E-Print Network (OSTI)

REPORT OF THE DARK ENERGY TASK FORCE Andreas Albrecht, University of California, Davis Gary. Suntzeff, Texas A&M University Dark energy appears to be the dominant component of the physical Universe a full understanding of the cosmic acceleration. For these reasons, the nature of dark energy ranks among

Hu, Wayne

408

Seasonal Isochronic Forcing of Lotka Volterra Equations  

Science Journals Connector (OSTI)

......paid to this phenomenon in ecological models. A few recent models...certainly affect almost all ecological processes, but certainly...1I2. This is a temporary vehicle whereby it is possible to...forcing. Thus, no convenient ecological analog (e.g., a gradient......

John Vandermeer

1996-07-01T23:59:59.000Z

409

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Biological Imaging by Soft X-Ray Diffraction Microscopy Biological Imaging by Soft X-Ray Diffraction Microscopy Print Wednesday, 30 November 2005 00:00 Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

410

Forced Air Systems in High Performance Homes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FORCED AIR SYSTEMS IN FORCED AIR SYSTEMS IN HIGH PERFORMANCE HOMES Iain Walker (LBNL) Building America Meeting 2013 What are the issues? 1. Sizing  When is too small too small? 2. Distribution  Can we get good mixing at low flow? 3. Performance  Humidity Control  Part load efficiency  Blowers & thermal losses Sizing  Part-load - not an issue with modern equipment  Careful about predicted loads - a small error becomes a big problem for tightly sized systems  Too Low Capacity = not robust  Extreme vs. design days  Change in occupancy  Party mode  Recovery from setback Sizing  Conventional wisdom - a good envelope = easy to predict and not sensitive to indoor conditions  But..... Heating and cooling become discretionary - large variability depending on occupants

411

Cutoff effects on lattice nuclear forces  

E-Print Network (OSTI)

We present a lattice QCD study for the cutoff effects on nuclear forces. Two-nucleon forces are determined from Nambu-Bethe-Salpeter (NBS) wave functions using the HAL QCD method. Lattice QCD simulations are performed employing N_f = 2 clover fermion configurations at three lattice spacings of a = 0.108, 0.156, 0.215 fm on a fixed physical volume of L^3 x T = (2.5 fm)^3 x 5 fm with a large quark mass corresponding to m_\\pi = 1.1 GeV. We observe that while the discretization artifact appears at the short range part of potentials, it is suppressed at the long distance region. The cutoff dependence of the phase shifts and scattering length is also presented.

Takumi Doi; for HAL QCD Collaboration

2013-11-12T23:59:59.000Z

412

Friction forces on phase transition fronts  

SciTech Connect

In cosmological first-order phase transitions, the microscopic interaction of the phase transition fronts with non-equilibrium plasma particles manifests itself macroscopically as friction forces. In general, it is a nontrivial problem to compute these forces, and only two limits have been studied, namely, that of very slow walls and, more recently, ultra-relativistic walls which run away. In this paper we consider ultra-relativistic velocities and show that stationary solutions still exist when the parameters allow the existence of runaway walls. Hence, we discuss the necessary and sufficient conditions for the fronts to actually run away. We also propose a phenomenological model for the friction, which interpolates between the non-relativistic and ultra-relativistic values. Thus, the friction depends on two friction coefficients which can be calculated for specific models. We then study the velocity of phase transition fronts as a function of the friction parameters, the thermodynamic parameters, and the amount of supercooling.

Mgevand, Ariel, E-mail: megevand@mdp.edu.ar [IFIMAR (CONICETUNMdP), Departamento de Fsica, Facultad de Ciencias Exactas y Naturales, UNMdP, Den Funes 3350, (7600) Mar del Plata (Argentina)

2013-07-01T23:59:59.000Z

413

Ellsworth Air Force Base Advanced Metering Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ellsworth Air Force Base Ellsworth Air Force Base Advanced Metering Project A Partnership between Ellsworth AFB and MDU Resources Group, Inc. to install advanced metering on all large buildings on EAFB  Based in Bismarck, North Dakota  Celebrated our 85 th year in 2009  NYSE - MDU for over 60 years  Over $4B market cap  Fortune 500 Company  Member of the S&P MidCap 400 Index  Over 8,000 employees in 44 states  Business Lines:  Energy  Utility Resources  Construction Materials  Construction Materials  Energy  Oil and Gas Production  Utility Resources  Natural Gas Pipelines  Construction Services  Electric / Natural Gas Utilities  Utility Resources  Montana - Dakota Utilities Co.  Cascade Natural Gas Co.  Intermountain Gas Corporation

414

Exploring medium effects on the nuclear force  

SciTech Connect

This STI product contains a description of results from theoretical studies in nuclear physics. The goal is a systematic investigation of the nuclear force in the nuclear medium. The problems addressed are: density-dependent effective interactions as seen through proton-nucleus reactions, nuclear matter with unequal densities of protons and neutrons, applications to asymmetric nuclei through predictions of neutron radii and neutron skins.

F. Sammarruca

2004-04-18T23:59:59.000Z

415

Improved Precision Measurement of the Casimir Force Using Gold Surfaces  

E-Print Network (OSTI)

We report an improved precision measurement of the Casimir force using metallic gold surfaces. The force is measured between a large gold coated sphere and flat plate using an Atomic Force Microscope. The use of gold surfaces removes some theoretical uncertainties in the interpretation of the measurement. The forces are also measured at smaller surface separations. The complete dielectric spectrum of the metal is used in the comparison of theory to the experiment. The average statistical precision remains at the same 1% of the forces measured at the closest separation. These results should lead to the development of stronger constraints on hypothetical forces.

B. W. Harris; F. Chen; U. Mohideen

2000-05-21T23:59:59.000Z

416

NCEM National Center for Electron Microscopy: Microscopes and Facilities:  

NLE Websites -- All DOE Office Websites (Extended Search)

SPLEEM SPLEEM Publications Imaging Spin Reorientation Transitions in Consecutive Atomic Co layers, Farid El Gabaly, Silvia Gallego, M. Carmen Munoz, Laszlo Szunyogh, Peter Weinberger, Kevin F. McCarty, Christof Klein, Andreas K. Schmid, Juan de la Figuera, submitted Direct imaging of spin-reorientation transitions in ultra-thin Ni films by spin-polarized low-energy electron microscopy, C. Klein, A. K. Schmid, R. Ramchal, and M. Farle, submitted Controlling the kinetic order of spin-reorientation transitions in Ni/Cu(100) films by tuning the substrate step-structure, C. Klein, R. Ramchal, A.K. Schmid, M. Farle, submitted Self-organization and magnetic domain microstructure of Fe nanowire arrays, N. Rougemaille and A.K. Schmid, submitted Self-Assembled Nanofold Network Formation on Layered Crystal Surfaces

417

Advanced Photon Source | Combining Scanning Probe Microscopy and  

NLE Websites -- All DOE Office Websites (Extended Search)

01.2013 01.2013 Nanoscience Seminar presented at Tokyo University On November 1, 2013, Volker Rose was invited to present the Nanoscience Seminar at the Institute of Solid State Physics (ISSP) of the University of Tokyo. In his seminar he discussed the physical principles of Synchrotron X-ray Scanning Tunneling Microscopy (SXSTM) as well as the recent progress made by his team at the Advanced Photon Source. He was invited by Prof. Yukio Hasegawa, who himself conducts SXSTM experiment at the Photon Factory in Tsukuba, Japan. The ISSP serves as the central laboratory of materials science in Japan equipped with state-of-art facilities. It was relocated to the new campus in Kashiwa of the University of Tokyo in 2000 after the 43 years of activities at the Roppongi campus in downtown Tokyo. Here ISSP is focusing

418

NCEM National Center for Electron Microscopy: Microscopes and Facilities:  

NLE Websites -- All DOE Office Websites (Extended Search)

Specimen Preparation Specimen Preparation Preparation of samples with large transparent areas and flat surfaces is a key element of electron microscopy. In particular, the interpretation of lattice or holographic images is often limited by the sample's geometry and surface roughness. These parameters are largely determined by a particular sample preparation procedure. The increasing demand for microscopes with a spatial resolution of better than 1Å increases the need for improved sample preparation techniques. A substantial effort at NCEM is devoted to the development of reliable and specialized thinning techniques. Current programs explore the application of chemicals to shape the surfaces of thin films, the use of nanospheres for observation of small particles, and the

419

Advanced Photon Source | Combining Scanning Probe Microscopy and  

NLE Websites -- All DOE Office Websites (Extended Search)

27.2013 27.2013 Researchers from NSLS-II visit SXSPM team at Argonne Synchrotron x-ray scanning tunneling microscopy will soon also be developed at the National Synchrotron Light Source (NSLS-II) at Brookhaven National Laboratory (BNL). In order to establish collaboration between the two National Laboratories, Drs. Evgeny Nazaretski and Hui Yan fom BNL visited Argonne to learn more about recent progress made in the SXSPM project. During the 2-day visit the teams discussed mutual scientific goals and strategies to achieve them. NSLS-II will be a new state-of-the-art, medium-energy electron storage ring at BNL designed to deliver high intensity and brightness. Construction of the NSLS-II's ring building began in March 2009. The new facility will begin operating in 2014

420

Advanced Photon Source | Combining Scanning Probe Microscopy and  

NLE Websites -- All DOE Office Websites (Extended Search)

APS APS SXSPM News Researchers from NSLS-II visit SXSPM team at Argonne (November 27, 2013) Cummings presents invited talk at magnetism meeting (November 11, 2013) Invited talk at ACSIN-12 & ICSPM21 in Japan (November 11, 2013) Nanoscience Seminar presented at Tokyo University (November 01, 2013) Scientists study old photos for new solutions to corrosion (October 21, 2013) More News Featured Image Recent Publications Kangkang Wang, Daniel Rosenmann, Martin Holt, Robert Winarski, Saw-Wai Hla, and Volker Rose, "An easy-to-implement filter for separating photo-excited signals from topography in scanning tunneling microscopy", Rev. Sci. Instrum. 84, 063704 (2013). More SXSPM Publications Upcoming Presentations V. Rose, 41st Conference on the Physics and Chemistry of Surfaces and Interfaces (PCSI-41) (Invited Speaker)

Note: This page contains sample records for the topic "force microscopy afm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

NCEM National Center for Electron Microscopy: Microscopes and Facilities:  

NLE Websites -- All DOE Office Websites (Extended Search)

CM 200 FEG CM 200 FEG AEME The Philips CM200/FEG is a versatile instrument that is designed for analysis of the physical, chemical and magnetic microstructure at high spatial resolution. In addition to high resolution imaging capability, the machine is optimized for analytical electron microscopy and Lorentz imaging, under normal as well as dynamic conditions of variable temperature (77K - 1250K) and applied magnetic fields. Spatially resolved compositional analysis by X-ray emission spectroscopy (Z > 5), local electronic structure measurements by electron energy-loss spectroscopy (Z > 2), convergent beam electron diffraction for three-dimensional structure information, and energy-filtered imaging at the nanometer scale are some of the techniques available on this instrument. In addition, a TEM differential phase

422

Combined Scanning Transmission Electron Microscopy Tilt- and Focal Series  

SciTech Connect

In this study, a combined tilt- and focal series is proposed as a new recording scheme for high-angle annular dark-field scanning transmission electron microscopy (STEM) tomography. Three-dimensional (3D) data were acquired by mechanically tilting the specimen, and recording a through-focal series at each tilt direction. The sample was a whole-mount macrophage cell with embedded gold nanoparticles. The tilt focal algebraic reconstruction technique (TF-ART) is introduced as a new algorithm to reconstruct tomograms from such combined tilt- and focal series. The feasibility of TF-ART was demonstrated by 3D reconstruction of the experimental 3D data. The results were compared with a conventional STEM tilt series of a similar sample. The combined tilt- and focal series led to smaller missing wedge artifacts, and a higher axial resolution than obtained for the STEM tilt series, thus improving on one of the main issues of tilt series-based electron tomography.

Dahmen, Tim [German Research Center for Artificial Intelligence (DFKI), Germany] [German Research Center for Artificial Intelligence (DFKI), Germany; Baudoin, Jean-Pierre G [ORNL] [ORNL; Lupini, Andrew R [ORNL] [ORNL; Kubel, Christian [Karlsruhe Institute of Technology, Leopoldshafen, Germany] [Karlsruhe Institute of Technology, Leopoldshafen, Germany; Slusallek, Phillip [German Research Center for Artificial Intelligence (DFKI), Germany] [German Research Center for Artificial Intelligence (DFKI), Germany; De Jonge, Niels [ORNL] [ORNL

2014-01-01T23:59:59.000Z

423

In Situ Analytical Electron Microscopy for Probing Nanoscale Electrochemistry  

SciTech Connect

Oxides and their tailored structures are at the heart of electrochemical energy storage technologies and advances in understanding and controlling the dynamic behaviors in the complex oxides, particularly at the interfaces, during electrochemical processes will catalyze creative design concepts for new materials with enhanced and better-understood properties. Such knowledge is not accessible without new analytical tools. New innovative experimental techniques are needed for understanding the chemistry and structure of the bulk and interfaces, more importantly how they change with electrochemical processes in situ. Analytical Transmission Electron Microscopy (TEM) is used extensively to study electrode materials ex situ and is one of the most powerful tools to obtain structural, morphological, and compositional information at nanometer scale by combining imaging, diffraction and spectroscopy, e.g., EDS (energy dispersive X-ray spectrometry) and Electron Energy Loss Spectrometry (EELS). Determining the composition/structure evolution upon electrochemical cycling at the bulk and interfaces can be addressed by new electron microscopy technique with which one can observe, at the nanometer scale and in situ, the dynamic phenomena in the electrode materials. In electrochemical systems, for instance in a lithium ion battery (LIB), materials operate under conditions that are far from equilibrium, so that the materials studied ex situ may not capture the processes that occur in situ in a working battery. In situ electrochemical operation in the ultra-high vacuum column of a TEM has been pursued by two major strategies. In one strategy, a 'nano-battery' can be fabricated from an all-solid-state thin film battery using a focused ion beam (FIB). The electrolyte is either polymer based or ceramic based without any liquid component. As shown in Fig. 1a, the interfaces between the active electrode material/electrolyte can be clearly observed with TEM imaging, in contrast to the composite electrodes/electrolyte interfaces in conventional lithium ion batteries, depicted in Fig.1b, where quantitative interface characterization is extremely difficult if not impossible. A second strategy involves organic electrolyte, though this approach more closely resembles the actual operation conditions of a LIB, the extreme volatility In Situ Analytical Electron Microscopy for Probing Nanoscale Electrochemistry by Ying Shirley Meng, Thomas McGilvray, Ming-Che Yang, Danijel Gostovic, Feng Wang, Dongli Zeng, Yimei Zhu, and Jason Graetz of the organic electrolytes present significant challenges for designing an in situ cell that is suitable for the vacuum environment of the TEM. Significant progress has been made in the past few years on the development of in situ electron microscopy for probing nanoscale electrochemistry. In 2008, Brazier et al. reported the first cross-section observation of an all solid-state lithium ion nano-battery by TEM. In this study the FIB was used to make a 'nano-battery,' from an all solid-state battery prepared by pulsed laser deposition (PLD). In situ TEM observations were not possible at that time due to several key challenges such as the lack of a suitable biasing sample holder and vacuum transfer of sample. In 2010, Yamamoto et al. successfully observed changes of electric potential in an all-solid-state lithium ion battery in situ with electron holography (EH). The 2D potential distribution resulting from movement of lithium ions near the positive-electrode/electrolyte interface was quantified. More recently Huang et al. and Wang et al. reported the in situ observations of the electrochemical lithiation of a single SnO{sub 2} nanowire electrode in two different in situ setups. In their approach, a vacuum compatible ionic liquid is used as the electrolyte, eliminating the need for complicated membrane sealing to prevent the evaporation of carbonate based organic electrolyte into the TEM column. One main limitation of this approach is that EELS spectral imaging is not possible due to the high plasmon signal of the ionic li

Graetz J.; Meng, Y.S.; McGilvray, T.; Yang, M.-C.; Gostovic, D.; Wang, F.; Zeng, D.; Zhu, Y.

2011-10-31T23:59:59.000Z

424

Aberration-Coreected Electron Microscopy at Brookhaven National Laboratory  

SciTech Connect

The last decade witnessed the rapid development and implementation of aberration correction in electron optics, realizing a more-than-70-year-old dream of aberration-free electron microscopy with a spatial resolution below one angstrom [1-9]. With sophisticated aberration correctors, modern electron microscopes now can reveal local structural information unavailable with neutrons and x-rays, such as the local arrangement of atoms, order/disorder, electronic inhomogeneity, bonding states, spin configuration, quantum confinement, and symmetry breaking [10-17]. Aberration correction through multipole-based correctors, as well as the associated improved stability in accelerating voltage, lens supplies, and goniometers in electron microscopes now enables medium-voltage (200-300kV) microscopes to achieve image resolution at or below 0.1nm. Aberration correction not only improves the instrument's spatial resolution but, equally importantly, allows larger objective lens pole-piece gaps to be employed thus realizing the potential of the instrument as a nanoscale property-measurement tool. That is, while retaining high spatial resolution, we can use various sample stages to observe the materials response under various temperature, electric- and magnetic- fields, and atmospheric environments. Such capabilities afford tremendous opportunities to tackle challenging science and technology issues in physics, chemistry, materials science, and biology. The research goal of the electron microscopy group at the Dept. of Condensed Matter Physics and Materials Science and the Center for Functional Nanomaterials, as well as the Institute for Advanced Electron Microscopy, Brookhaven National Laboratory (BNL), is to elucidate the microscopic origin of the physical- and chemical-behavior of materials, and the role of individual, or groups of atoms, especially in their native functional environments. We plan to accomplish this by developing and implementing various quantitative electron microscopy techniques in strongly correlated electron systems and nanostructured materials. As a first step, with the support of Materials Science Division, Office of Basic Energy Science, US Department of Energy, and the New York State Office of Science, Technology, and Academic Research, recently we acquired three aberration-corrected electron microscopes from the three major microscope manufacturers, i.e., JEOL, Hitachi, and FEI. The Hitachi HD2700C is equipped with a probe corrector, the FEI Titan 80-300 has an imaging corrector, while the JEOL2200MCO has both. All the correctors are of the dual-hexapole type, designed and manufactured by CEOS GmbH based on the design due to Rose and Haider [3, 18]. All these three are one-of-a-kind in the US, designed for specialized capabilities in characterizing nanoscale structure. In this chapter, we review the performance of these state-of-the art instruments and the new challenges associated with the improved spatial resolution, including the environment requirements of the laboratory that hosts these instruments. Although each instrument we describe here has its own strengths and drawbacks, it is not our intention to rank them in terms of their performance, especially their spatial resolution in imaging.

Zhu,Y.; Wall, J.

2008-04-01T23:59:59.000Z

425

Calibration of fluorescence resonance energy transfer in microscopy  

DOE Patents (OSTI)

Imaging hardware, software, calibrants, and methods are provided to visualize and quantitate the amount of Fluorescence Resonance Energy Transfer (FRET) occurring between donor and acceptor molecules in epifluorescence microscopy. The MicroFRET system compensates for overlap among donor, acceptor, and FRET spectra using well characterized fluorescent beads as standards in conjunction with radiometrically calibrated image processing techniques. The MicroFRET system also provides precisely machined epifluorescence cubes to maintain proper image registration as the sample is illuminated at the donor and acceptor excitation wavelengths. Algorithms are described that pseudocolor the image to display pixels exhibiting radiometrically-corrected fluorescence emission from the donor (blue), the acceptor (green) and FRET (red). The method is demonstrated on samples exhibiting FRET between genetically engineered derivatives of the Green Fluorescent Protein (GFP) bound to the surface of Ni chelating beads by histidine-tags.

Youvan, Douglas C. (San Jose, CA); Silva, Christopher M. (Sunnyvale, CA); Bylina, Edward J. (San Jose, CA); Coleman, William J. (Moutain View, CA); Dilworth, Michael R. (Santa Cruz, CA); Yang, Mary M. (San Jose, CA)

2002-09-24T23:59:59.000Z

426

Integrated fiducial sample mount and software for correlated microscopy  

SciTech Connect

A novel design sample mount with integrated fiducials and software for assisting operators in easily and efficiently locating points of interest established in previous analytical sessions is described. The sample holder and software were evaluated with experiments to demonstrate the utility and ease of finding the same points of interest in two different microscopy instruments. Also, numerical analysis of expected errors in determining the same position with errors unbiased by a human operator was performed. Based on the results, issues related to acquiring reproducibility and best practices for using the sample mount and software were identified. Overall, the sample mount methodology allows data to be efficiently and easily collected on different instruments for the same sample location.

Timothy R McJunkin; Jill R. Scott; Tammy L. Trowbridge; Karen E. Wright

2014-02-01T23:59:59.000Z

427

OnForce Solar | Open Energy Information  

Open Energy Info (EERE)

OnForce Solar OnForce Solar Jump to: navigation, search Name OnForce Solar Address 728 East 136th St. Place Bronx, New York Zip 10454 Sector Renewable Energy Year founded 2007 Number of employees 11-50 Company Type For Profit Phone number 347 590 5450 Website http://www.onforcesolar.com Coordinates 40.8028059°, -73.912863° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.8028059,"lon":-73.912863,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

428

Forced response analysis of hydroelectric systems  

Science Journals Connector (OSTI)

At off-design operating points, Francis turbines develop cavitation vortex rope in the draft tube which may interact with the hydraulic system. Risk resonance assessment by means of eigenmodes computation of the system is usually performed. However, the system response to the excitation source induced by the cavitation vortex rope is not predicted in terms of amplitudes and phase. Only eigenmodes shapes with related frequencies and dampings can be predicted. Besides this modal analysis, the risk resonance assessment can be completed by a forced response analysis. This method allows identifying the contribution of each eigenmode into the system response which depends on the system boundary conditions and the excitation source location. In this paper, a forced response analysis of a Francis turbine hydroelectric power plant including hydraulic system, rotating train, electrical system and control devices is performed. First, the general methodology of the forced response analysis is presented and validated with time domain simulations. Then, analysis of electrical, hydraulic and hydroelectric systems are performed and compared to analyse the influence of control structures on pressure fluctuations induced by cavitation vortex rope.

S Allign; P C O Silva; A Bguin; B Kawkabani; P Allenbach; C Nicolet; F Avellan

2014-01-01T23:59:59.000Z

429

Spacetime approach to force-free magnetospheres  

E-Print Network (OSTI)

Force-Free Electrodynamics (FFE) describes magnetically dominated relativistic plasma via non-linear equations for the electromagnetic field alone. Such plasma is thought to play a key role in the physics of pulsars and active black holes. Despite its simple covariant formulation, FFE has primarily been studied in 3+1 frameworks, where spacetime is split into space and time. In this article we systematically develop the theory of force-free magnetospheres taking a spacetime perspective. Using a suite of spacetime tools and techniques (notably exterior calculus) we cover 1) the basics of the theory, 2) exact solutions that demonstrate the extraction and transport of the rotational energy of a compact object (in the case of a black hole, the Blandford-Znajek mechanism), 3) the behavior of current sheets, 4) the general theory of stationary, axisymmetric magnetospheres and 5) general properties of pulsar and black hole magnetospheres. We thereby synthesize, clarify and generalize known aspects of the physics of force-free magnetospheres, while also introducing several new results.

Samuel E. Gralla; Ted Jacobson

2014-10-15T23:59:59.000Z

430

Entropic-force dark energy reconsidered  

E-Print Network (OSTI)

We reconsider the entropic-force model in which both kind of Hubble terms ${\\dot H}$ and $H^{2}$ appear in the effective dark energy (DE) density affecting the evolution of the main cosmological functions, namely the scale factor, deceleration parameter, matter density and growth of linear matter perturbations. However, we find that the entropic-force model is not viable at the background and perturbation levels due to the fact that the entropic formulation does not add a constant term in the Friedmann equations. On the other hand, if on mere phenomenological grounds we replace the ${\\dot H}$ dependence of the effective DE density with a linear term $H$ without including a constant additive term, we find that the transition from deceleration to acceleration becomes possible but the recent structure formation data strongly disfavors this cosmological scenario. Finally, we briefly compare the entropic-force models with some related DE models (based on dynamical vacuum energy) which overcome these difficulties and are compatible with the present observations.

Spyros Basilakos; Joan Sola

2014-05-21T23:59:59.000Z

431

Influence of tip structure on tip-sample interaction forces at the KBr(001) surface: Results from ab initio investigations  

Science Journals Connector (OSTI)

We present ab initio calculations of the short-range tip-surface interaction between K+- or Br?-terminated tips and a KBr(001) surface. Comparing the results for different tips represented by a small (KBr)2 or two larger (KBr)6 clusters, in most cases we find only relatively small differences in the tip-sample forces in the unrelaxed case. When relaxations of tip and surface are fully taken into account, we find a more pronounced dependence of the calculated forces on the coordination of the tip apex atom. This holds, in particular, for K+-terminated tips. We compare our results with experimental atomic force microscopy data. The latter do not reveal by themselves whether a K+ or a Br? tip has been instrumental in a particular experiment. We find good agreement between our calculated two-dimensional force map for a K+-terminated tip and experiment. This result strongly supports the notion that the respective measurements have actually been carried out with a K+-terminated tip.

Christine Wieferink; Peter Krger; Johannes Pollmann

2011-11-01T23:59:59.000Z

432

Federal Smart Grid Task Force | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Smart Federal Smart Grid Task Force Federal Smart Grid Task Force Task Force Background The Federal Smart Grid Task Force was established under Title XIII of the Energy Independence and Security Act of 2007 (EISA) and includes experts from eleven Federal agencies. The Department of Energy is represented by the Office of Electricity Delivery and Energy Reliability which is the Task Force lead, as well as the Office of Energy Efficiency and Renewable Energy and the National Energy Technology Laboratory. Task Force Mission The mission of the Task Force is to ensure awareness, coordination and integration of the diverse activities of the Federal Government related to smart grid technologies, practices, and services. The Task Force will collaborate with DOE's Electricity Advisory Committee and other relevant

433

Microstructure effects for Casimir forces in chiral metamaterials  

E-Print Network (OSTI)

We examine a recent prediction for the chirality dependence of the Casimir force in chiral metamaterials by numerical computation of the forces between the exact microstructures, rather than homogeneous approximations. ...

Johnson, Steven G.

434

Aerodynamic Forces on Truck Models, Including Two Trucks in Tandem  

E-Print Network (OSTI)

rear-edge shaping on the aerodynamic drag of bluff vehiclesOF CALIFORNIA, BERKELEY Aerodynamic Forces on Truck Models,TRANSIT AND HIGHWAYS Aerodynamic Forces on Truck Models,

Hammache, Mustapha; Michaelian, Mark; Browand, Fred

2001-01-01T23:59:59.000Z

435

Assessment of a body force representation for compressor stability estimation  

E-Print Network (OSTI)

This thesis presents a methodology for the integration of blade row body forces, derived from axisymmetric and three- dimensional flow fields, for use in the stability analysis of axial compressors. The body force database ...

Patel, Amish A. (Amish Ashok)

2009-01-01T23:59:59.000Z

436

Development of a body force description for compressor stability assessment  

E-Print Network (OSTI)

This thesis presents a methodology for a body force description of a compressor with particular application to compressor stability calculations. The methodology is based on extracting blade forces from an axisymmetric ...

Kiwada, George (George Ford)

2008-01-01T23:59:59.000Z

437

Signs and Polarized/Magnetic versions of the Casimir Forces  

E-Print Network (OSTI)

We consider versions of the Casimir effect where the force can be controlled by changing the angle between two Casimir ``plates'' or the temperature of two nearby rings. We also present simple arguments for the sign of Casimir forces.

S. Nussinov

1995-09-05T23:59:59.000Z

438

Damping of glacial-interglacial cycles from anthropogenic forcing  

E-Print Network (OSTI)

Climate variability over the past million years shows a strong glacial-interglacial cycle of ~100,000 years as a combined result of Milankovitch orbital forcing and climatic resonance. It has been suggested that anthropogenic contributions to radiative forcing may extend the length of the present interglacial, but the effects of anthropogenic forcing on the periodicity of glacial-interglacial cycles has received little attention. Here I demonstrate that moderate anthropogenic forcing can act to damp this 100,000 year cycle and reduce climate variability from orbital forcing. Future changes in solar insolation alone will continue to drive a 100,000 year climate cycle over the next million years, but the presence of anthropogenic warming can force the climate into an ice-free state that only weakly responds to orbital forcing. Sufficiently strong anthropogenic forcing that eliminates the glacial-interglacial cycle may serve as an indication of an epoch transition from the Pleistocene to the Anthropocene.

Haqq-Misra, Jacob

2014-01-01T23:59:59.000Z

439

UNITED STATES AIR FORCE OUTSIDE THE NATIONAL CAPITAL REGION  

E-Print Network (OSTI)

program in order to reduce Federal employee's contribution to traffic congestion and air pollutionUNITED STATES AIR FORCE OUTSIDE THE NATIONAL CAPITAL REGION PUBLIC TRANSPORTATION BENEFIT PROGRAM): ____________ City (Residence): __________________________State: _______________ Zip Code: ________________ Air Force

440

Annual report on contractor work force restructuring, fiscal year 1997  

SciTech Connect

This report summarizes work force restructuring and community transition activities at all sites. It outlines work force restructuring activity for FY 1997, changing separation patterns, cost savings and separation costs, program assessment, activities to mitigate restructuring impacts, community transition activities, status of displaced workers, lessons learned, and emerging issues in worker and community transition. Work force restructuring and community transition activities for defense nuclear sites are summarized, as are work force restructuring activities at non-defense sites.

NONE

1998-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "force microscopy afm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Aerodynamic Force Modeling for Unsteady Wing Ryan Jantzen  

E-Print Network (OSTI)

Aerodynamic Force Modeling for Unsteady Wing Maneuvers Ryan Jantzen and Kunihiko Taira Florida, Wright-Patterson Air Force Base, OH We report on the development of an aerodynamic force model for a flat focus is placed on examining the influence of large-amplitude wing motion on the unsteady aerodynamics

442

Radiative forcing from aircraft NOx emissions: Mechanisms and seasonal dependence  

E-Print Network (OSTI)

dependence. The long-term globally integrated annual mean net forcing calculated here is approximately zero, related to the annual cycle in photochemistry; the O3 radiative forcing calculations also have a seasonal, although earlier work suggests a small net positive forcing. The model design (e.g., upper tropospheric

443

Role of seepage forces on hydraulic fracturing and failure patterns  

E-Print Network (OSTI)

Role of seepage forces on hydraulic fracturing and failure patterns Alexander Rozhko Thesis September 2007 #12;ii Role of seepage forces on hydraulic fracturing and failure patterns Abstract. The mechanical role of seepage forces on hydraulic fracturing and failure patterns was studied both

Paris-Sud XI, Université de

444

Updated radiative forcing estimates of 65 halocarbons and nonmethane  

E-Print Network (OSTI)

Updated radiative forcing estimates of 65 halocarbons and nonmethane hydrocarbons 1234567 89A64BC7,493-20,505,SEPTEMBER 16,2001 Updated radiative forcing estimates of 65 halocarbons and nonmethane hydrocarbons Kamaljit representhemisphericdifferencesin water vapor, ozoneconcentrations,and cloud cover. Instantaneous,clear-skyradiative forcing

Wirosoetisno, Djoko

445

E-Print Network 3.0 - analytical electron microscopy Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Director Rutgers Research Showcase Summary: Electron Microscopy Nuclear Magnetic Resonance Spectroscopy X-Ray Diffraction Facility (XRD) Micro-Analytical... for...

446

Cell Division Stage in C. elegans Imaged Using Third Harmonic Generation Microscopy  

Science Journals Connector (OSTI)

C. elegans embryogenesis, at the cell division stage, was imaged using third harmonic generation microscopy employing ultrashort pulsed lasers at 1028nm and 1550nm. This technique...

Aviles-Espinosa, Rodrigo; Tserevelakis, G J; Santos, Susana I c o; Filippidis, G; Krmpot, A J; Vlachos, M; Tavernarakis, N; Brodschelm, A; Kaenders, W; Artigas, David; Loza-Alvarez, Pablo

447

Label-free hyperspectral nonlinear optical microscopy of the biofuel micro-algae Haematococcus Pluvialis  

Science Journals Connector (OSTI)

We consider multi-modal four-wave mixing microscopies to be ideal tools for the in vivo study of carotenoid distributions within the important biofuel microalgae Haematococcus...

Barlow, Aaron M; Slepkov, Aaron D; Ridsdale, Andrew; McGinn, Patrick J; Stolow, Albert

2014-01-01T23:59:59.000Z

448

Pixel super-resolution in serial time-encoded amplified microscopy (STEAM)  

Science Journals Connector (OSTI)

We propose pixel super-resolution serial time-encoded amplified microscopy (STEAM) for achieves high speed and high-resolution imaging - relaxing the stringent requirement on the...

Wong, Terence T W; Chan, Antony; Wong, Kenneth K Y; Tsia, Kevin K

449

Coherence-Controlled Holographic Microscopy for Coherence-Gated Quantitative Phase Imaging  

Science Journals Connector (OSTI)

We show that the use of incoherent illumination in coherence-controlled holographic microscopy (CCHM) enables coherence-gated quantitative phase imaging of objects through turbid...

Slaby, Tomas; Kolman, Pavel; Dostal, Zbynek; Antos, Martin; Lostak, Martin; Krizova, Aneta; Collakova, Jana; Kollarova, Vera; Slaba, Michala; Vesely, Pavel; Chmelik, Radim

450

E-Print Network 3.0 - absorption spectroscopic microscopy Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

version of scanning near-field optical microscopy (SNOM). The tunable infrared radiation... the l 3.5 mm, CH vibrational stretch mode absorption band. ... Source:...

451

Data Reduction Enables Massive Data Handling in Super-resolution Localization Microscopy  

Science Journals Connector (OSTI)

Massive data handling is the major challenge in super-resolution localization microscopy. Here we present a data reduction approach to solve this challenge. This approach enables the...

Ma, Hongqiang; Zeng, Shaoqun; Huang, Zhen-li

452

Electron and Scanning Probe Microscopies | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron and Scanning Probe Microscopies Electron and Scanning Probe Microscopies Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities The Computational Materials and Chemical Sciences Network (CMCSN) Theoretical Condensed Matter Physics Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Research Areas Electron and Scanning Probe Microscopies Print Text Size: A A A RSS Feeds FeedbackShare Page This research area supports basic research in condensed matter physics and materials physics using electron scattering and microscopy and scanning probe techniques. The research includes experiments and theory to understand the atomic, electronic, and magnetic structures of materials.

453

Atom chip microscopy: A novel probe for strongly correlated materials  

SciTech Connect

Improved measurements of strongly correlated systems will enable the predicative design of the next generation of supermaterials. In this program, we are harnessing recent advances in the quantum manipulation of ultracold atomic gases to expand our ability to probe these technologically important materials in heretofore unexplored regions of temperature, resolution, and sensitivity parameter space. We are working to demonstrate the use of atom chips to enable single-shot, large area detection of magnetic flux at the 10^-7 flux quantum level and below. By harnessing the extreme sensitivity of atomic clocks and Bose-Einstein condensates (BECs) to external perturbations, the cryogenic atom chip technology developed here will provide a magnetic flux detection capability that surpasses other techniques---such as scanning SQUIDs---by a factor of 10--1000. We are testing the utility of this technique by using rubidium BECs to image the magnetic fields emanating from charge transport and magnetic domain percolation in strongly correlated materials as they undergo temperature-tuned metal--to--insulator phase transitions. Cryogenic atom chip microscopy introduces three very important features to the toolbox of high-resolution, strongly correlated material microscopy: simultaneous detection of magnetic and electric fields (down to the sub-single electron charge level); no invasive large magnetic fields or gradients; simultaneous micro- and macroscopic spatial resolution; freedom from 1/f flicker noise at low frequencies; and, perhaps most importantly, the complete decoupling of probe and sample temperatures. The first of these features will play an important role in studying the interplay between magnetic and electric domain structure. The last two are crucial for low frequency magnetic noise detection in, e.g., the cuprate pseudogap region and for precision measurements of transport in the high temperature, technologically relevant regime inaccessible to other techniques based on superconducting scanning probes. In periods 1--3 of this grant, which we now close at the University of Illinois at Urbana-Champaign and restart at Stanford University where our new lab is being built, we have demonstrated the ability to rapidly create Rb BECs and trap them within microns of a surface ina cryostat. Period 4 of this grant, to be performed at Stanford, will demonstrate the feasibility of using atom chips with a BEC to image transport features on a cryogenically cooled surface. Successful demonstration, in future funding cycles, will lead directly to the use of system for studies of transport in exotic and technologically relevant materials such as cuprate superconductors and topological insulators.

Lev, Benjamin L

2011-11-03T23:59:59.000Z

454

US Air Force Facility Energy Management Program - How Industry Can Help the Air Force Meet Its Objectives  

E-Print Network (OSTI)

This paper describes the Air Force's facility energy management program including how industry can help the Air Force meet its facility energy objectives. Background information on energy use and energy conservation efforts are presented to give...

Holden, P. C.; Kroop, R. H.

1983-01-01T23:59:59.000Z

455

Photodetachment near an attractive force center  

E-Print Network (OSTI)

This article studies the photodetachment of a single electron anion near an attractive center. Both the differential and total photodetachment cross section are analysed. We obtain the electron flux crossing through a spherical detector centered at the force center using the semiclassical approximation. The closed-orbit theory gives the total cross section which contains a smooth background and an oscillatory part. Concrete calculations and discussions are carried out for two types of wave source: the $s$- and $p_z$-wave source. Photodetachment processes for three conditions are compared: an anion near an attractive center, near a repulsive center and in a homogeneous electric field.

You, X P

2014-01-01T23:59:59.000Z

456

Force generation by Myosin II Filaments in Compliant Networks  

E-Print Network (OSTI)

Myosin II isoforms with varying mechanochemistry and filament size interact with filamentous actin (F-actin) networks to generate contractile forces in cells. How their properties control force production in environments with varying stiffness is poorly understood. Here, we incorporated literature values for properties of myosin II isoforms into a cross-bridge model. Similar actin gliding speeds and force-velocity curves expected from previous experiments were observed. Motor force output on an elastic load was regulated by two timescales--that of their attachment to F-actin, which varied sharply with the ensemble size, motor duty ratio, and external load, and that of force build up, which scaled with ensemble stall force, gliding speed, and load stiffness. While such regulation did not require force-dependent kinetics, the myosin catch bond produced positive feedback between attachment time and force to trigger switch-like transitions from short attachments and small forces to high force-generating runs at threshold parameter values. Parameters representing skeletal muscle myosin, non-muscle myosin IIB, and non-muscle myosin IIA revealed distinct regimes of behavior respectively: (1) large assemblies of fast, low-duty ratio motors rapidly build stable forces over a large range of environmental stiffness, (2) ensembles of slow, high-duty ratio motors serve as high-affinity cross-links with force build-up times that exceed physiological timescales, and (3) small assemblies of low-duty ratio motors operating at intermediate speeds may respond sharply to changes in mechanical context--at low forces or stiffness, they serve as low affinity cross-links but they can transition to effective force production via the positive feedback mechanism described above. These results reveal how myosin isoform properties may be tuned to produce force and respond to mechanical cues in their environment.

Samantha Stam; Jon Alberts; Margaret L. Gardel; Edwin Munro

2014-07-08T23:59:59.000Z

457

Band excitation method applicable to scanning probe microscopy  

DOE Patents (OSTI)

Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

Jesse, Stephen; Kalinin, Sergei V

2013-05-28T23:59:59.000Z

458

Detection of protein conformation defects from fluorescence microscopy images  

Science Journals Connector (OSTI)

Abstract A diagnostic method for protein conformational diseases (PCD) from microscopy images is proposed when such conformational conflicts involve muscular intranuclear inclusions (INIs) indicative of oculopharyngeal muscular dystrophy (OPMD), one variety of PCD. The method combines two techniques: (1) the Histogram Region of Interest Fixed by Thresholds (HRIFT) is designed to capture the color information of \\{INIs\\} for basic feature extraction; (2) an automated feature synthesis, based on the HRIFT features, is designed to identify OPMD by means of Genetic Programming and the Expectation Maximization algorithm (GP-EM) for classification improvement. With variations in size, shape, and background structure, a total of 600 microscopic images are analyzed for the binary classes of healthy and sick conditions of OPMD. The integrated technique of the approach reveals a sensitivity of 0.9 and an area of 0.961 under the receiver operating characteristic (ROC) at a specificity of 0.95. Furthermore, significant improvements in classification accuracy and computational time are demonstrated by comparison with other methods.

Peifang Guo; Prabir Bhattacharya

2013-01-01T23:59:59.000Z

459

Detecting Plasmon Resonance Energy Transfer with Differential Interference Contrast Microscopy  

SciTech Connect

Gold nanoparticles are ideal probes for studying intracellular environments and energy transfer mechanisms due to their plasmonic properties. Plasmon resonance energy transfer (PRET) relies on a plasmonic nanoparticle to donate energy to a nearby resonant acceptor molecule, a process which can be observed due to the plasmonic quenching of the donor nanoparticle. In this study, a gold nanosphere was used as the plasmonic donor, while the metalloprotein cytochrome c was used as the acceptor molecule. Differential interference contrast (DIC) microscopy allows for simultaneous monitoring of complex environments and noble metal nanoparticles in real time. Using DIC and specially designed microfluidic channels, we were able to monitor PRET at the single gold particle level and observe the reversibility of PRET upon the introduction of phosphate-buffered saline to the channel. In an additional experiment, single gold particles were internalized by HeLa cells and were subsequently observed undergoing PRET as the cell hosts underwent morphological changes brought about by ethanol-induced apoptosis.

Augspurger, Ashley E. [Ames Laboratory; Stender, Anthony S. [Ames Laboratory; Han, Rui [Ames Laboratory; Fang, Ning [Ames Laboratory

2013-12-30T23:59:59.000Z

460

Protective Force Firearms Qualifications Courses, July 2011 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Protective Force Firearms Qualifications Courses, July 2011 Protective Force Firearms Qualifications Courses, July 2011 Protective Force Firearms Qualifications Courses, July 2011 July 2011 Firearms Qualifications Courses To describe the process by which U.S. Department of Energy (DOE) protective force (PF) firearms qualification courses are developed, reviewed, revised,validated, and approved. The process described herein applies to all PF firearms policy development participants; notably, the staff of the DOE Office of Security (HS-50), the DOE National Training Center (NTC) (HS-70), the DOE Firearms Policy Panel (FPP), the DOE Protective Forces Safety Committee (PFSC), the DOE Training Managers' Working Group (TMWG), the DOE Training Advisory Committee

Note: This page contains sample records for the topic "force microscopy afm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Weak and Repulsive Casimir Force in Piston Geometries  

E-Print Network (OSTI)

We study the Casimir force in piston-like geometries semiclassically. The force on the piston is finite and physical, but to leading semiclassical approximation depends strongly on the shape of the surrounding cavity. Whereas this force is attractive for pistons in a parallelepiped with flat cylinder head, for which the semiclassical approximation by periodic orbits is exact, this approximation to the force on the piston vanishes for a semi-cylindrical head and becomes repulsive for a cylinder of circular cross section with a hemispherical head. In leading semiclassical approximation the sign of the force is related to the generalized Maslov index of short periodic orbits between the piston and its casing.

Martin Schaden; Liviu Mateescu

2007-05-23T23:59:59.000Z

462

Atomic force microscope cantilever spring constant evaluation for higher mode oscillations: A kinetostatic method  

SciTech Connect

Our previous study of the particle mass sensor has shown a large ratio (up to thousands) between the spring constants of a rectangular cantilever in higher mode vibration and at the static bending or natural mode vibration. This has been proven by us through the derived nodal point position equation. That solution is good for a cantilever with the free end in noncontact regime and the probe shifted from the end to an effective section and contacting a soft object. Our further research shows that the same nodal position equation with the proper frequency equations may be used for the same spring constant ratio estimation if the vibrating at higher mode cantilever's free end has a significant additional mass clamped to it or that end is in permanent contact with an elastic or hard measurand object (reference cantilever). However, in the latter case, the spring constant ratio is much smaller (in tens) than in other mentioned cases at equal higher (up to fourth) vibration modes. We also present the spring constant ratio for a vibrating at higher eigenmode V-shaped cantilever, which is now in wide use for atomic force microscopy. The received results on the spring constant ratio are in good (within a few percent) agreement with the theoretical and experimental data published by other researchers. The knowledge of a possible spring constant transformation is important for the proper calibration and use of an atomic force microscope with vibrating cantilever in the higher eigenmodes for measurement and imaging with enlarged resolution.

Tseytlin, Yakov M. [Instrument Society of America, 20 Randall Street, Apt. 5G, Providence, Rhode Island 02904 (United States)

2008-02-15T23:59:59.000Z

463

USLCSG Task Force Meeting June 2003  

NLE Websites -- All DOE Office Websites (Extended Search)

All Task Force Meeting at SLAC All Task Force Meeting at SLAC June 15, 16, 2003 Meeting Agenda What's New! June 2003 Meeting Accommodations: The new SLAC Guest House is now available, but the block of rooms for the meeting has now been released, and space is first-come first-serve. If you want to use it, please book directly at SLAC Guest House. or let Naomi know ASAP. You need to mention Dave or Naomi's name as a host name. Daily rate is $50 + tax for the one full sized bed room (Standard room). Lunch on Sunday and Coffee services: The cafeteria is closed on Sunday, so we will order box lunches for meeting delegates. We will collect $10 per person to cover the cost of lunch on Sunday. Please pay $10 in cash to Naomi Nagahashi on Monday, June 16. If you need a receipt, she will provide one. We need a count of the lunches to provide, so please let Naomi know, if you need a box lunch, by Friday, June 6. On Monday, the cafeteria will be open for breakfast and lunch.

464

Self-force on an accelerated particle  

Science Journals Connector (OSTI)

We calculate the singular field of an accelerated point particle (scalar charge, electric charge or small gravitating mass) moving on an accelerated (nongeodesic) trajectory in a generic background spacetime. Using a mode-sum regularization scheme, we obtain explicit expressions for the self-force regularization parameters. We use a Lorentz gauge for the electromangetic and gravitational cases. This work extends the work of Barack and Ori [1] who demonstrated that the regularization parameters for a point particle in geodesic motion in a Schwarzschild spacetime can be described solely by the leading and subleading terms in the mode-sum (commonly known as the A and B terms) and that all terms of higher order in ? vanish upon summation (later they showed the same behavior for geodesic motion in Kerr [2], [3]). We demonstrate that these properties are universal to point particles moving through any smooth spacetime along arbitrary (accelerated) trajectories. Our renormalization scheme is based on, but not identical to, the Quinn-Wald axioms. As we develop our approach, we review and extend work showing that that different definitions of the singular field used in the literature are equivalent to our approach. Because our approach does not assume geodesic motion of the perturbing particle, we are able use our mode-sum formalism to explicitly recover a well-known result: The self-force on static scalar charges near a Schwarzschild black hole vanishes.

Thomas M. Linz; John L. Friedman; Alan G. Wiseman

2014-07-23T23:59:59.000Z

465

Casimir Friction Force for Moving Harmonic Oscillators  

E-Print Network (OSTI)

Casimir friction is analyzed for a pair of dielectric particles in relative motion. We first adopt a microscopic model for harmonically oscillating particles at finite temperature T moving non-relativistically with constant velocity. We use a statistical-mechanical description where time-dependent correlations are involved. This description is physical and direct, and, in spite of its simplicity, is able to elucidate the essentials of the problem. This treatment elaborates upon, and extends, an earlier theory of ours back in 1992. The energy change Delta E turns out to be finite in general, corresponding to a finite friction force. In the limit of zero temperature the formalism yields, however, Delta E ->0, this being due to our assumption about constant velocity, meaning slowly varying coupling. For couplings varying more rapidly, there will also be a finite friction force at T=0. As second part of our work, we consider the friction problem using time-dependent perturbation theory. The dissipation, basically a second order effect, is obtainable with the use of first order theory, the reason being the absence of cross terms due to uncorrelated phases of eigenstates. The third part of the present paper is to demonstrate explicitly the equivalence of our results with those recently obtained by Barton (2010); this being not a trivial task since the formal results are seemingly quite different from each other.

Johan S. Hye; Iver Brevik

2011-11-21T23:59:59.000Z

466

Interagency Energy Management Task Force Members | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Force Members Force Members Interagency Energy Management Task Force Members October 8, 2013 - 1:31pm Addthis The Interagency Energy Management Task Force is composed of Federal energy managers, members of Federal Energy Management Program (FEMP), and industry participants. The FEMP director serves as the executive director of the task force. Task Force Executive Director Dr. Timothy Unruh U.S. Department of Energy 202-586-5772 Task Force Members Mark Ewing General Services Administration 202-708-9296 Holger Fischer National Aeronautics and Space Administration 202-358-0416 Wayne Thalasinos National Aeronautics and Space Administration 202-358-3811 Mark Sprouse National Archives and Records Administration 301-837-3019 Leslie Ford Social Security Administration 410-594-0111 David Zimmerman

467

September 2012, Work Force Retention Work Group Status Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Work Force Retention Work Group Status Overview Work Force Retention Work Group Status Overview 2 Subgroups: Pro-Force and Non-Pro-Force Pro-Force Subgroup: Accomplishments: 1. Completion of 10 CFR 1046 [Protective Force Personnel Medical, Physical Readiness, Training, and Access Authorization Standards] as a final rule that includes modification efforts to address barriers to workforce retention. 2. Pro-Force (PF) union representative, Randy Lawson, identified this accomplishment as the single most significant step toward PF workforce retention in over 20 years. 3. Draft re-charter of PF Career Options Committee (PFCOC) to establish a PF Working Group approved by GC-63 and GC NNSA. Near Term Goals and Activities: 1. Publish 1046 as a final rule - publication anticipated this month.

468

Feature - Air Force Fellows helping work toward smarter diesel engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Force Fellows helping work toward smarter diesel engines Air Force Fellows helping work toward smarter diesel engines Air Force Fellows Clint Abell (left) and Jeff Gillen work on Smarter Diesel Engine (SDE) 21. The project involves using ion sensors to help the engine run at maximum efficiency. Air Force Fellows Clint Abell (left) and Jeff Gillen work on Smarter Diesel Engine (SDE) 21. The project involves using ion sensors to help the engine run at maximum efficiency. (Photo by Wes Agresta) One of the three core values of the Air Force is "excellence in all we do." So it should be no surprise that there are currently two Air Force officers here at Argonne studying ways to improve the efficiency of military vehicles. Lieutenant Colonel Jeff Gillen and Major Clint Abell are the fourth set of Air Force Fellows to spend time at Argonne, but the first to be stationed

469

Federal Energy Management Program: Interagency Energy Management Task Force  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Program About the Program Site Map Printable Version Share this resource Send a link to Federal Energy Management Program: Interagency Energy Management Task Force Members to someone by E-mail Share Federal Energy Management Program: Interagency Energy Management Task Force Members on Facebook Tweet about Federal Energy Management Program: Interagency Energy Management Task Force Members on Twitter Bookmark Federal Energy Management Program: Interagency Energy Management Task Force Members on Google Bookmark Federal Energy Management Program: Interagency Energy Management Task Force Members on Delicious Rank Federal Energy Management Program: Interagency Energy Management Task Force Members on Digg Find More places to share Federal Energy Management Program: Interagency Energy Management Task Force Members on AddThis.com...

470

CHARTER, Price-Anderson Act Task Force | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CHARTER, Price-Anderson Act Task Force CHARTER, Price-Anderson Act Task Force CHARTER, Price-Anderson Act Task Force This charter establishes the responsibilities of the Price-Anderson Act Task Force (Task Force). The Secretary of Energy has approved formation of this Task Force to review the need for the continuation or modification of the Price-Anderson Act, section 170 of the Atomic Energy Act of 1954, as amended (AEA), and to prepare a detailed report for submission to Congress as required by section 170p. of the AEA by August 1, 1998. CHARTER, Price-Anderson Act Task Force More Documents & Publications MEMORANDUM FOR THE SECRETARY Report to Congress on the Price-Anderson Act Appendix A. Notice of Inquiry: Preparation of Report to Congress on Price-Anderson Act. 62 Federal Register 68,272 (December 31, 1997)

471

Collisional effects on nonlinear ion drag force for small grains  

SciTech Connect

The ion drag force arising from plasma flow past an embedded spherical grain is calculated self-consistently and non-linearly using particle in cell codes, accounting for ion-neutral collisions. Using ion velocity distribution appropriate for ion drift driven by a force field gives wake potential and force greatly different from a shifted Maxwellian distribution, regardless of collisionality. The low-collisionality forces are shown to be consistent with estimates based upon cross-sections for scattering in a Yukawa (shielded) grain field, but only if non-linear shielding length is used. Finite collisionality initially enhances the drag force, but only by up to a factor of 2. Larger collisionality eventually reduces the drag force. In the collisional regime, the drift distribution gives larger drag than the shift distribution even at velocities where their collisionless drags are equal. Comprehensive practical analytic formulas for force that fit the calculations are provided.

Hutchinson, I. H.; Haakonsen, C. B. [Plasma Science and Fusion Center and Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)] [Plasma Science and Fusion Center and Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

2013-08-15T23:59:59.000Z

472

M. Bahrami ENSC 388 (F09) Forced Convection Heat Transfer 1 Forced Convection Heat Transfer  

E-Print Network (OSTI)

1 Forced Convection Heat Transfer Convection is the mechanism of heat transfer through a fluid / The convective heat transfer coefficient h strongly depends on the fluid properties and roughness of the solid. As a result, the heat transfer from the solid surface to the fluid layer adjacent to the surface

Bahrami, Majid

473

An electron microscopy study of wear in polysilicon microelectromechanical systems in ambient air  

E-Print Network (OSTI)

. © 2006 Elsevier B.V. All rights reserved. Keywords: Silicon; MEMS; Wear; Electron microscopy 1An electron microscopy study of wear in polysilicon microelectromechanical systems in ambient air D.H. Alsem a,b,c,, E.A. Stach d , M.T. Dugger e , M. Enachescu b , R.O. Ritchie a,b a Department of Materials

Ritchie, Robert

474

Laser-Scanning Coherent Anti-Stokes Raman Scattering Microscopy and Applications to Cell Biology  

E-Print Network (OSTI)

Laser-Scanning Coherent Anti-Stokes Raman Scattering Microscopy and Applications to Cell Biology Ji 11747-3157 USA ABSTRACT Laser-scanning coherent anti-Stokes Raman scattering (CARS) microscopy with fast., 1990). Duncan et al. constructed the first CARS microscope by use of two dye laser beams

Xie, Xiaoliang Sunney

475

ACQUISITION AND RECONSTRUCTION OF BRAIN TISSUE USING KNIFE-EDGE SCANNING MICROSCOPY  

E-Print Network (OSTI)

ACQUISITION AND RECONSTRUCTION OF BRAIN TISSUE USING KNIFE- EDGE SCANNING MICROSCOPY A Thesis Science #12;ACQUISITION AND RECONSTRUCTION OF BRAIN TISSUE USING KNIFE- EDGE SCANNING MICROSCOPY A Thesis) ______________________________ ______________________________ Ergun Akleman Valerie Taylor (Member) (Head of Department) December 2003 Major Subject: Computer Science

Keyser, John

476

Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene-based devices  

E-Print Network (OSTI)

Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene; accepted 24 July 2007; published online 15 August 2007 Raman microscopy of graphene was carried out over-band frequencies extracted from Raman spectra of the single-layer graphene are - 1.6±0.2 10-2 cm-1 /K and - 3

477

Fabrication of curved-line nanostructures on membranes for transmission electron microscopy investigations of domain walls  

E-Print Network (OSTI)

Fabrication of curved-line nanostructures on membranes for transmission electron microscopy, Cambridge CB2 3QZ, United Kingdom Available online 28 February 2006 Abstract We have fabricated curved-line ferromagnetic nanostructures on membranes for transmission electron microscopy investigations of the equilibrium

Dunin-Borkowski, Rafal E.

478

Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell Xiaojing Huang,1  

E-Print Network (OSTI)

Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell Xiaojing Huang,1 Johanna Nelson,1 eukaryotic cell using x-ray diffraction microscopy, or coherent x-ray diffraction imaging. By plunge freezingV x rays were recorded and reconstructed to reveal a budding yeast cell at a resolution better than 25

Mohseni, Hooman

479

Structural and electrical characterization of organic monolayers by Atomic Force Microscopy and through the nano-fabrication of a coplanar electrode-dielectric platform  

E-Print Network (OSTI)

deposition. Finally, electrical measurements are describedunderstanding of the electrical properties of ultra-thinsuch as the mobility of electrical carriers, the resistance

Martin, Florent

2011-01-01T23:59:59.000Z

480

PAPER www.rsc.org/loc | Lab on a Chip Open micro-fluidic system for atomic force microscopy-guided in situ  

E-Print Network (OSTI)

while performing the measurements, and minimization of electrochemical noise. Thus, we have developed electrochemical noise, which interferes with the measurements. Our laboratory and other researchers have succ-guided in situ electrochemical probing of a single cell WonHyoung Ryu,*a Zubin Huang,a Joong Sun Park,a Jeffrey

Note: This page contains sample records for the topic "force microscopy afm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Dissolution Kinetics, Step and Surface Morphology of Magnesite (104) Surfaces in Acidic Aqueous Solution at 60 C by Atomic Force Microscopy under Defined Hydrodynamic Conditions  

Science Journals Connector (OSTI)

Department of Geology and Geophysics, University of Wyoming, Laramie, Wyoming 82071, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, United Kingdom, and Geoscience and Environmental Technology Division, Lawrence Livermore National Laboratory, L-202, Livermore, California 94550 ... For an environmentally important example, soil specimens in the Vadose Zone at the Hanford, Washington (USA) radioactive waste storage facility have been found to contain calcium carbonate as a ubiquitous mineralogical component. ... 4,5 The strategy involves the dissolution of alkaline earth silicate minerals in aquifers coupled with the precipitation of alkaline earth and other carbonates during and following the injection of CO2 into the subsurface environment. ...

Steven R. Higgins; Lawrence H. Boram; Carrick M. Eggleston; Barry A. Coles; Richard G. Compton; Kevin G. Knauss

2002-06-12T23:59:59.000Z

482

Growth of ?-Amyloid(1?40) Protofibrils by Monomer Elongation and Lateral Association. Characterization of Distinct Products by Light Scattering and Atomic Force Microscopy  

Science Journals Connector (OSTI)

Soluble intermediates in A? fibrillogenesis, termed protofibrils, have been identified previously, and here we describe the in vitro formation and isolation of A?(1?40) protofibrils by size exclusion chromatography. ... Hydrodynamic radius (RH) measurements were made at room temperature with a DynaPro MSX instrument (Protein Solutions Inc., Charlottesville, VA) containing a gallium aluminum arsenide laser. ... The solubility of A?(1?43) in water was substantially decreased by addition of buffered NaCl (60). ...

Michael R. Nichols; Melissa A. Moss; Dana Kim Reed; Wen-Lang Lin; Rajendrani Mukhopadhyay; Jan H. Hoh; Terrone L. Rosenberry

2002-04-17T23:59:59.000Z

483

3D View Inside the Skeleton with X-ray Microscopy: Imaging Bone at the  

NLE Websites -- All DOE Office Websites (Extended Search)

3D View Inside the Skeleton with X-ray Microscopy: Imaging Bone 3D View Inside the Skeleton with X-ray Microscopy: Imaging Bone at the Nanoscale Scientists studying osteoporosis and other skeletal diseases are interested in the 3D structure of bone and its responses to conditions such as weightlessness, radiation (of particular interest to astronauts) and vitamin D deficiency. The current gold standard, micro-computed tomography (micro-CT), provides 3D images of trabeculae, the small interior struts of bone tissue, and electron microscopy can provide nanometer resolution of thin tissue slices. Hard X-ray transmission microscopy has provided the first 3D view of bone structure within individual trabeculae on the nanoscale. figure 1 Figure 1 Micro-CT (left) shows trabecular structure inside of bone. Transmission X-ray microscopy (TXM; center and right) can reveal localized details of osteocyte lacunae and their processes.

484

Experience proves forced fracture closure works  

SciTech Connect

Forced closure, or perhaps better-named ``reverse gravel packing,`` of fractures immediately following hydraulic fracturing with proppant and gelled fluids is a technique which, with rare exception, can be extremely beneficial to the success of almost every hydraulic fracture treatment. By proper planning of the rig-up to allow immediate flow-back, substantial quantities of polymer and load fluid can be removed while simultaneously negating undesirable proppant settling within fractures in the near wellbore area. Fracture smearing (dilution of proppant into an extending fracture) after shutdown can be negated. And in most cases, proppant production from the formation can be reduced. Discussions in the article explain why Ely and Associates has the confidence to make these claims after extensive hydraulic fracturing experience in many geographical areas.

Ely, J.W. [John Ely and Associates, Inc., Houston, TX (United States)

1996-01-01T23:59:59.000Z

485

Industrial Energy Conservation, Forced Internal Recirculation Burner  

SciTech Connect

The overall objective of this research project is to develop and evaluate an industrial low NOx burner for existing and new gas-fired combustion systems for intermediate temperature (1400 degree to 2000 degree F) industrial heating devices such as watertube boilers and process fluid heaters. A multi-phase effort is being pursued with decision points to determine advisability of continuance. The current contract over Phases II and III of this work. The objectives of each phase are as follows. Phase II - to design, fabricate, and evaluate prototype burners based on the Forced Internal Recirculation (FIR) concept. Phase III - to evaluate the performance of an FIR burner under actual operating conditions in a full-scale field test and establish the performance necessary for subsequent commercialization

Joseph Rabovitser

2003-06-19T23:59:59.000Z

486

Force 9 Energy | Open Energy Information  

Open Energy Info (EERE)

Energy Energy Jump to: navigation, search Name Force 9 Energy Place Amersham, United Kingdom Zip HP7 0UT Sector Wind energy Product Joint owner of Abercairny windfarm development. Coordinates 36.530602°, -82.602203° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.530602,"lon":-82.602203,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

487

Stability of nuclear forces versus weapons of mass destruction  

SciTech Connect

The model derived for nuclear missile exchanges is used to describe the interaction between two forces, of which one has nuclear weapons and the other has weapons of mass destruction (WMD). The model equations are solved analytically for exchanges, costs, and stability indices by analytically minimizing the cost of first strikes. The analysis is restricted to theater operations, as WMD are inferior to nuclear weapons in strategic counter force operations, but quite adequate for theater operations against exposed forces. The analysis treats only in-theater forces as companion papers show that ex-theater forces, which enter as survivable forces, cancel out of the theater balances treated here. Optimal nuclear weapon and WMD allocations are proportional to the opponent`s carriers and inversely proportional to one`s own weapons. Thus, as WMD increase, WMD allocations to nuclear forces fall, reflecting a shift from damage limiting to inflicting damage with surviving forces. Nuclear weapon kill probabilities degrade rapidly against dispersed forces. As they fall, their allocation to WMD falls sharply as they become ineffective and are reallocated to value. Thus, damage limiting is primarily effective for undispersed forces, which produces an incentive for the nuclear side to use his weapons while they are still effective.

Canavan, G.H.

1997-12-01T23:59:59.000Z

488

Investigation of Climate Forcing Agents on Tropical Belt Width Through the 21st Century  

E-Print Network (OSTI)

represents BC forcing (top), GHG forcing (middle) and SO 2forced by greenhouse gases (GHGs) produce this expansion,14 +/- .03 decade -1 for GHG and SO 2 forcings respectively

Ajoku, Osinachi

2014-01-01T23:59:59.000Z

489

Before Senate Subcommittee on Strategic Forces - Committee on Armed  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Senate Subcommittee on Strategic Forces - Committee on Armed Senate Subcommittee on Strategic Forces - Committee on Armed Services Before Senate Subcommittee on Strategic Forces - Committee on Armed Services Before Senate Subcommittee on Strategic Forces - Committee on Armed Services By: David Huizenga, Senior Advisor for Environmental Management Subject: FY 2013 Budget Request for Office of Environmental Management 3-14-12_Huizenga_FT.pdf More Documents & Publications Senior Advisor Huizenga's Written Statement before the House Energy and Water Development Subcommittee on Appropriations (March 21, 2012) Senior Advisor Huizenga's Written Statement before the House Armed Services Subcommittee on Strategic Forces (April 17, 2012) Senior Advisor Huizenga's Written Statement before the Senate Armed Services Subcommittee on Strategic Forces (March 14, 2012)

490

Multi-range force sensors utilizing shape memory alloys  

DOE Patents (OSTI)

The present invention provides a multi-range force sensor comprising a load cell made of a shape memory alloy, a strain sensing system, a temperature modulating system, and a temperature monitoring system. The ability of the force sensor to measure contact forces in multiple ranges is effected by the change in temperature of the shape memory alloy. The heating and cooling system functions to place the shape memory alloy of the load cell in either a low temperature, low strength phase for measuring small contact forces, or a high temperature, high strength phase for measuring large contact forces. Once the load cell is in the desired phase, the strain sensing system is utilized to obtain the applied contact force. The temperature monitoring system is utilized to ensure that the shape memory alloy is in one phase or the other.

Varma, Venugopal K. (Knoxville, TN)

2003-04-15T23:59:59.000Z

491

A Transmission Electron Microscopy Study of Presolar Hibonite  

Science Journals Connector (OSTI)

We report isotopic and microstructural data on five presolar hibonite grains (KH1, KH2, KH6, KH15, and KH21) identified in an acid residue of the Krymka LL3.1 ordinary chondrite. Isotopic measurements by secondary ion mass spectrometry (SIMS) verified a presolar circumstellar origin for the grains. Transmission electron microscopy (TEM) examination of the crystal structure and chemistry of the grains was enabled by in situ sectioning and lift-out with a focused-ion-beam scanning-electron microscope (FIB-SEM). Comparisons of isotopic compositions with models indicate that four of the five grains formed in low-mass stars that evolved through the red giant/asymptotic giant branches (RGBs/AGBs), whereas one grain formed in the ejecta of a Type II supernova. Selected-area electron-diffraction patterns show that all grains are single crystals of hibonite. Some grains contain minor structural perturbations (stacking faults) and small spreads in orientation that can be attributed to a combination of growth defects and mechanical processing by grain-grain collisions. The similar structure of the supernova grain to those from RGB/AGB stars indicates a similarity in the formation conditions. Radiation damage (e.g., point defects), if present, occurs below our detection limit. Of the five grains we studied, only one has the pure hibonite composition of CaAl12O19. All others contain minor amounts of Mg, Si, Ti, and Fe. The microstructural data are generally consistent with theoretical predictions, which constrain the circumstellar condensation temperature to a range of 1480-1743K, assuming a corresponding total gas pressure between 1 ? 106 and 1 ? 103atm. The TEM data were also used to develop a calibration for SIMS determination of Ti contents in oxide grains. Grains with extreme 18O depletions, indicating deep mixing has occurred in their parent AGB stars, are slightly Ti enriched compared with grains from stars without deep mixing, most likely reflecting differences in grain condensation conditions.

Thomas J. Zega; Conel M. O'D. Alexander; Larry R. Nittler; Rhonda M. Stroud

2011-01-01T23:59:59.000Z

492

Combined Atomic Force Microscope-Based Topographical Imaging and Nanometer Scale Resolved Proximal Probe Thermal Desorption/Electrospray Ionization-Mass Spectrometry  

SciTech Connect

Nanometer scale proximal probe thermal desorption/electrospray ionization mass spectrometry (TD/ESI-MS) was demonstrated for molecular surface sampling of caffeine from a thin film using a 30 nm diameter nano-thermal analysis (nano-TA) probe tip in an atomic force microscope (AFM) coupled via a vapor transfer line and ESI interface to a MS detection platform. Using a probe temperature of 350 C and a spot sampling time of 30 s, conical desorption craters 250 nm in diameter and 100 nm deep were created as shown through subsequent topographical imaging of the surface within the same system. Automated sampling of a 5 x 2 array of spots, with 2 m spacing between spots, and real time selective detection of the desorbed caffeine using tandem mass spectrometry was also demonstrated. Estimated from the crater volume (~2x106 nm3), only about 10 amol (2 fg) of caffeine was liberated from each thermal desorption crater in the thin film. These results illustrate a relatively simple experimental setup and means to acquire in automated fashion sub-micrometer scale spatial sampling resolution and mass spectral detection of materials amenable to TD. The ability to achieve MS-based chemical imaging with 250 nm scale spatial resolution with this system is anticipated.

Ovchinnikova, Olga S [ORNL; Nikiforov, Maxim [ORNL; Bradshaw, James A [ORNL; Jesse, Stephen [ORNL; Van Berkel, Gary J [ORNL

2011-01-01T23:59:59.000Z

493

Book Review of Handbook of Molecular Force Spectroscopy  

Science Journals Connector (OSTI)

The measurement of forces at the molecular level is an active and exciting area of research that has found application in a diverse range of disciplines, including chemistry, biology, and physics. ... In conclusion, Noys Handbook of Molecular Force Spectroscopy is both a timely and useful summary of fundamental aspects of molecular force spectroscopy, and I believe it would make a worthwhile addition to any good scientific library. ...

Matthew F. Paige

2008-06-04T23:59:59.000Z

494

Wave forces on monotower structures fitted with icebreaking cones  

E-Print Network (OSTI)

and theory presently used in the design of offshore tower structures. Presently, wave forces are predicted using a wave- structure interaction approach, diffraction theory, or some combination of the two. An alternative wave force theory was presented... of structures fitted with icebreaking cones. THEORETICAL DEVELOPMENT One of the major difficulties in analyzing the dynamic response of offshore structures is determining the wave-induced excitation forces. There are currently two methods of predicting wave...

Harrington, Michael Gerard

2012-06-07T23:59:59.000Z

495

Authorize_Changes_Contractor_Work_Force_Restructuring_Policy...  

Office of Environmental Management (EM)

rizeChangesContractorWorkForceRestructuringPolicy.pdf More Documents & Publications Workforce Restructuring Policy Draft Policy and Planning Guidance for Community Transition...

496

Colorado - Report of the Task Force on Statewide Transmission...  

Open Energy Info (EERE)

Permitting Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Colorado - Report of the Task Force on Statewide Transmission Siting and Permitting Abstract...

497

Air Force Enhanced Use Lease | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Force Renewable Energy Programs Federal Utility Partnership Working Group Meeting Notes NASAFPL Renewable Project Case Study: Space Coast Next Generation Solar Energy Center FEMP...

498

Hickam Air Force Base Fuel Cell Vehicles: Early Implementation Experience  

Energy.gov (U.S. Department of Energy (DOE))

This report sumarizes early implementation experience from an evaluation of two prototype fuel cell vehicles operating at Hickam Air Force Base in Honolulu, Hawaii.

499

Before Senate Subcommittee on Strategic Forces - Committee on...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

on Strategic Forces - Committee on Armed Services By: David Huizenga, Senior Advisor for Environmental Management Subject: FY 2013 Budget Request for Office of...

500

Before the Subcommittee on Strategic Forces - House Armed Services...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Written Statement by David Huizenga, Senior Advisor for Environmental Management For the Subcommittee on Strategic Forces - House Armed Services Committee 5-9-13David Huizenga FT...