National Library of Energy BETA

Sample records for force microscopy afm

  1. Electrostatic Force Microscopy Characterization of Trioctylphosphine Oxide Self-assembled Monolayers on Graphite

    E-Print Network [OSTI]

    orientation of SAMs. The invention of the scanning probe microscope (SPM)12,13 has provided scientists resolution by SPM. Electrostatic force microscopy (EFM),16 a variant of atomic force microscopy (AFM),13 can

  2. Detection of Percolating Paths in PMMA/CB Segregated Network Composites Using Electrostatic Force Microscopy and Conductive Atomic Force Microscopy

    SciTech Connect (OSTI)

    Waddell, J. [Georgia Institute of Technology; Ou, R. [Georgia Institute of Technology; Gupta, S. [Georgia Institute of Technology; Parker, A. [Georgia Institute of Technology; Gerhardt, Dr. Rosario [Georgia Institute of Technology; Seal, Katyayani [ORNL; Kalinin, Sergei V [ORNL; Baddorf, Arthur P [ORNL

    2009-01-01

    Composite specimens possessing polyhedral segregated network microstructures require a very small amount of nanosize filler, <1 vol %, to reach percolation because percolation occurs by accumulation of the fillers along the edges of the deformed polymer matrix particles. In this paper, electrostatic force microscopy (EFM) and conductive atomic force microscopy (C-AFM) were used to confirm the location of the nanosize fillers and the corresponding percolating paths in polymethyl methacrylate/carbon black composites. The EFM and C-AFM images revealed that the polyhedral polymer particles were coated with filler, primarily on the edges as predicted by the geometric models provided.

  3. Atomic force microscopy of nickel dot arrays with tuning fork and nanotube probe

    E-Print Network [OSTI]

    Chandrasekhar, Venkat

    Atomic force microscopy of nickel dot arrays with tuning fork and nanotube probe S. Rozhok,a) S microscopy are combined with the unique properties of carbon nanotubes to improve the spatial resolution of atomic force microscopy AFM images of nickel dot arrays. These arrays have high relief features

  4. Behaviour of nanocolloidal particles on mica: investigations using atomic force microscopy 

    E-Print Network [OSTI]

    Walker, Richard John

    2010-01-01

    In this thesis we used atomic force microscopy (AFM) to investigate systematically the behaviour of both electrostatically stabilised silica and sterically stabilised polystyrene (PS) colloidal systems on freshly cleaved ...

  5. Accurate capacitive metrology for atomic force microscopy

    E-Print Network [OSTI]

    Mazzeo, Aaron D. (Aaron David), 1979-

    2005-01-01

    This thesis presents accurate capacitive sensing metrology designed for a prototype atomic force microscope (AFM) originally developed in the MIT Precision Motion Control Lab. The capacitive measurements use a set of ...

  6. Chemical functionalization of AFM cantilevers

    E-Print Network [OSTI]

    Lee, Sunyoung, S.M. Massachusetts Institute of Technology

    2005-01-01

    Atomic force microscopy (AFM) has been a powerful instrument that provides nanoscale imaging of surface features, mainly of rigid metal or ceramic surfaces that can be insulators as well as conductors. Since it has been ...

  7. Potential contributions of noncontact atomic force microscopy for the future Casimir force measurements

    E-Print Network [OSTI]

    W. J. Kim; U. D. Schwarz

    2010-10-18

    Surface electric noise, i.e., the non-uniform distribution of charges and potentials on a surface, poses a great experimental challenge in modern precision force measurements. Such a challenge is encountered in a number of different experimental circumstances. The scientists employing atomic force microscopy (AFM) have long focused their efforts to understand the surface-related noise issues via variants of AFM techniques, such as Kelvin probe force microscopy or electric force microscopy. Recently, the physicists investigating quantum vacuum fluctuation phenomena between two closely-spaced objects have also begun to collect experimental evidence indicating a presence of surface effects neglected in their previous analyses. It now appears that the two seemingly disparate science communities are encountering effects rooted in the same surface phenomena. In this report, we suggest specific experimental tasks to be performed in the near future that are crucial not only for fostering needed collaborations between the two communities, but also for providing valuable data on the surface effects in order to draw the most realistic conclusion about the actual contribution of the Casimir force (or van der Waals force) between a pair of real materials.

  8. Very large-scale structures in sintered silica aerogels as evidenced by atomic force microscopy and ultra-small angle

    E-Print Network [OSTI]

    Demouchy, Sylvie

    Very large-scale structures in sintered silica aerogels as evidenced by atomic force microscopy of silica aerogels has been extensively studied mainly by scattering techniques (neutrons, X-rays, light) and atomic force microscopy (AFM) experiments have been carried out on aerogels at dierent steps of densi

  9. Imaging and quantitative data acquisition of biological cell walls with Atomic Force Microscopy and Scanning Acoustic Microscopy

    SciTech Connect (OSTI)

    Tittmann, B. R.; Xi, X.

    2014-09-01

    This chapter demonstrates the feasibility of Atomic Force Microscopy (AFM) and High Frequency Scanning Acoustic Microscopy (HF-SAM) as tools to characterize biological tissues. Both the AFM and the SAM have shown to provide imaging (with different resolution) and quantitative elasticity measuring abilities. Plant cell walls with minimal disturbance and under conditions of their native state have been examined with these two kinds of microscopy. After descriptions of both the SAM and AFM, their special features and the typical sample preparation is discussed. The sample preparation is focused here on epidermal peels of onion scales and celery epidermis cells which were sectioned for the AFM to visualize the inner surface (closest to the plasma membrane) of the outer epidermal wall. The nm-wide cellulose microfibrils orientation and multilayer structure were clearly observed. The microfibril orientation and alignment tend to be more organized in older scales compared with younger scales. The onion epidermis cell wall was also used as a test analog to study cell wall elasticity by the AFM nanoindentation and the SAM V(z) feature. The novelty in this work was to demonstrate the capability of these two techniques to analyze isolated, single layered plant cell walls in their natural state. AFM nanoindentation was also used to probe the effects of Ethylenediaminetetraacetic acid (EDTA), and calcium ion treatment to modify pectin networks in cell walls. The results suggest a significant modulus increase in the calcium ion treatment and a slight decrease in EDTA treatment. To complement the AFM measurements, the HF-SAM was used to obtain the V(z) signatures of the onion epidermis. These measurements were focused on documenting the effect of pectinase enzyme treatment. The results indicate a significant change in the V(z) signature curves with time into the enzyme treatment. Thus AFM and HF-SAM open the door to a systematic nondestructive structure and mechanical property study of complex biological cell walls. A unique feature of this approach is that both microscopes allow the biological samples to be examined in their natural fluid (water) environment.

  10. Physical mechanisms of megahertz vibrations and nonlinear detection in ultrasonic force and related microscopies

    SciTech Connect (OSTI)

    Bosse, J. L.; Huey, B. D. [Department of Materials Science and Engineering, 97 North Eagleville Road, Unit 3136, Storrs, Connecticut 06269-3136 (United States); Tovee, P. D.; Kolosov, O. V., E-mail: o.kolosov@lancaster.ac.uk [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2014-04-14

    Use of high frequency (HF) vibrations at MHz frequencies in Atomic Force Microscopy (AFM) advanced nanoscale property mapping to video rates, allowed use of cantilever dynamics for mapping nanomechanical properties of stiff materials, sensing ?s time scale phenomena in nanostructures, and enabled detection of subsurface features with nanoscale resolution. All of these methods critically depend on the generally poor characterized HF behaviour of AFM cantilevers in contact with a studied sample, spatial and frequency response of piezotransducers, and transfer of ultrasonic vibrations between the probe and a specimen. Focusing particularly on Ultrasonic Force Microscopy (UFM), this work is also applicable to waveguide UFM, heterodyne force microscopy, and near-field holographic microscopy, all methods that exploit nonlinear tip-surface force interactions at high frequencies. Leveraging automated multidimensional measurements, spectroscopic UFM (sUFM) is introduced to investigate a range of common experimental parameters, including piezotransducer excitation frequency, probed position, ultrasonic amplitude, cantilever geometry, spring constant, and normal force. Consistent with studies of influence of each of these factors, the data-rich sUFM signatures allow efficient optimization of ultrasonic-AFM based measurements, leading to best practices recommendations of using longer cantilevers with lower fundamental resonance, while at the same time increasing the central frequency of HF piezo-actuators, and only comparing results within areas on the order of few ?m{sup 2} unless calibrated directly or compared with in-the-imaged area standards. Diverse materials such as Si, Cr, and photoresist are specifically investigated. This work thereby provides essential insight into the reliable use of MHz vibrations with AFM and provides direct evidence substantiating phenomena such as sensitivity to adhesion, diminished friction for certain ultrasonic conditions, and the particular benefit of UFM and related methods for nanoscale mapping of stiff materials.

  11. Investigation of leakage current paths in n-GaN by conductive atomic force microscopy

    SciTech Connect (OSTI)

    Kim, Bumho; Park, Yongjo, E-mail: yp0520@snu.ac.kr, E-mail: eyoon@snu.ac.kr [Energy Semiconductor Research Center, Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270 (Korea, Republic of)] [Energy Semiconductor Research Center, Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270 (Korea, Republic of); Moon, Daeyoung; Nanishi, Yasushi [WCU Hybrid Materials Program, Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)] [WCU Hybrid Materials Program, Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Joo, Kisu [Energy Semiconductor Research Center, Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270 (Korea, Republic of) [Energy Semiconductor Research Center, Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270 (Korea, Republic of); Department of Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon 443-270 (Korea, Republic of); Oh, Sewoung [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)] [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Young Kuk [Korea Research Institute of Chemical Technology, Daejon 305-600 (Korea, Republic of)] [Korea Research Institute of Chemical Technology, Daejon 305-600 (Korea, Republic of); Yoon, Euijoon, E-mail: yp0520@snu.ac.kr, E-mail: eyoon@snu.ac.kr [Energy Semiconductor Research Center, Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270 (Korea, Republic of) [Energy Semiconductor Research Center, Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270 (Korea, Republic of); WCU Hybrid Materials Program, Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Department of Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon 443-270 (Korea, Republic of); Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2014-03-10

    We have investigated electrical characteristics of leakage current paths in n-GaN layer grown by metal-organic chemical vapor deposition with conductive-atomic force microscopy (C-AFM). The C-AFM mapping shows two kinds of leakage current paths existing in the n-GaN layer: open-core dislocation and pure screw dislocation. From the localized I-V curves measured by C-AFM, we confirmed that the open-core screw dislocation shows more significant leakage current. We explained these results in terms of a modified Schottky band model based on donor states formed by oxygen segregation at the (10?10) sidewall of the open-core screw dislocation.

  12. Nanometer-scale investigations by atomic force microscopy into the effect of different treatments on the surface structure of hair

    E-Print Network [OSTI]

    Durkan, C.; Wang, N.

    2014-09-15

    left behind by commercial products. Methods Atomic Force Microscopy (AFM) and related techniques. Results It can be directly seen that washing hair using commercial hair-care products removes deposits that naturally form on the shaft, revealing... . The factors determining which products a given consumer purchases include the brand, the cost, the scent and the perceived benefit. Hair shafts have traditionally been studied using scanning or transmission electron microscopy (SEM or TEM) 2...

  13. Robust Repetitive Controller for Fast AFM Imaging

    E-Print Network [OSTI]

    Necipoglu, Serkan; Has, Yunus; Guvenc, Levent; Basdogan, Cagatay

    2012-01-01

    Currently, Atomic Force Microscopy (AFM) is the most preferred Scanning Probe Microscopy (SPM) method due to its numerous advantages. However, increasing the scanning speed and reducing the interaction forces between the probe's tip and the sample surface are still the two main challenges in AFM. To meet these challenges, we take advantage of the fact that the lateral movements performed during an AFM scan is a repetitive motion and propose a Repetitive Controller (RC) for the z-axis movements of the piezo-scanner. The RC utilizes the profile of the previous scan line while scanning the current line to achieve a better scan performance. The results of the scanning experiments performed with our AFM set-up show that the proposed RC significantly outperforms a conventional PI controller that is typically used for the same task. The scan error and the average tapping forces are reduced by 66% and 58%, respectively when the scan speed is increased by 7-fold.

  14. Abstract--Automation has long been recognized as an im-portant goal in AFM (Atomic Force Microscope) nanomanipu-

    E-Print Network [OSTI]

    Southern California, University of

    Abstract--Automation has long been recognized as an im- portant goal in AFM (Atomic Force on the order of 10 nm, however, automation has re- mained an elusive goal, primarily because of the spatial multi-tip arrays) or by automating the manipulation process, thus bypassing the time-consuming and labor

  15. Detailed scanning probe microscopy tip models determined from simultaneous atom-resolved AFM and STM studies of the TiO2(110) surface

    E-Print Network [OSTI]

    Kühnle, Angelika

    scattering theory, we demonstrate how the state of the scanning probe microscopy SPM tip in the experiments may be determined. The analysis of a large number of experimental SPM images recorded with different-AFM and the tunneling current It images on TiO2 110 surface. The exact state of the SPM tip must, therefore

  16. Cross-sectional electrostatic force microscopy of thin-film solar cells

    SciTech Connect (OSTI)

    Ballif, C.; Moutinho, H. R.; Al-Jassim, M. M.

    2001-01-15

    In a recent work, we showed that atomic force microscopy (AFM) is a powerful technique to image cross sections of polycrystalline thin films. In this work, we apply a modification of AFM, namely, electrostatic force microscopy (EFM), to investigate the electronic properties of cleaved II--VI and multijunction thin-film solar cells. We cleave the devices in such a way that they are still working with their nominal photovoltaic efficiencies and can be polarized for the measurements. This allows us to differentiate between surface effects (work function and surface band bending) and bulk device properties. In the case of polycrystalline CdTe/CdS/SnO{sub 2}/glass solar cells, we find a drop of the EFM signal in the area of the CdTe/CdS interface ({+-}50 nm). This drop varies in amplitude and sign according to the applied external bias and is compatible with an n-CdS/p-CdTe heterojunction model, thereby invalidating the possibility of a deeply buried n-p CdTe homojunction. In the case of a triple-junction GaInP/GaAs/Ge device, we observe a variation of the EFM signal linked to both the material work-function differences and to the voltage bias applied to the cell. We attempt a qualitative explanation of the results and discuss the implications and difficulties of the EFM technique for the study of such thin-film devices.

  17. Controlled nanostructure fabrication using atomic force microscopy 

    E-Print Network [OSTI]

    Sapcharoenkun, Chaweewan

    2013-06-29

    Scanning probe microscopy (SPM) nanolithography has been found to be a powerful and low-cost approach for sub-100 nm patterning. In this thesis, the possibility of using a state-of-the-art SPM system to controllably ...

  18. Nanomechanical and topographical imaging of living cells by Atomic Force Microscopy with colloidal probes

    E-Print Network [OSTI]

    Luca Puricelli; Massimiliano Galluzzi; Carsten Schulte; Alessandro Podestà; Paolo Milani

    2015-02-05

    Atomic Force Microscopy (AFM) has a great potential as a tool to characterize mechanical and morphological properties of living cells; these properties have been shown to correlate with cells' fate and patho-physiological state in view of the development of novel early-diagnostic strategies. Although several reports have described experimental and technical approaches for the characterization of cell elasticity by means of AFM, a robust and commonly accepted methodology is still lacking. Here we show that micrometric spherical probes (also known as colloidal probes) are well suited for performing a combined topographic and mechanical analysis of living cells, with spatial resolution suitable for a complete and accurate mapping of cell morphological and elastic properties, and superior reliability and accuracy in the mechanical measurements with respect to conventional and widely used sharp AFM tips. We address a number of issues concerning the nanomechanical analysis, including the applicability of contact mechanical models and the impact of a constrained contact geometry on the measured elastic modulus (the finite-thickness effect). We have tested our protocol by imaging living PC12 and MDA-MB-231 cells, in order to demonstrate the importance of the correction of the finite-thickness effect and the change in cell elasticity induced by the action of a cytoskeleton-targeting drug.

  19. Imaging and measuring the biophysical properties of Fc gamma receptors on single macrophages using atomic force microscopy

    SciTech Connect (OSTI)

    Li, Mi; University of Chinese Academy of Sciences, Beijing 100049 ; Liu, Lianqing; Xi, Ning; Wang, Yuechao; Xiao, Xiubin; Zhang, Weijing

    2013-09-06

    Highlights: •Nanoscale cellular ultra-structures of macrophages were observed. •The binding affinities of Fc?Rs were measured directly on macrophages. •The nanoscale distributions of Fc?Rs were mapped on macrophages. -- Abstract: Fc gamma receptors (Fc?R), widely expressed on effector cells (e.g., NK cells, macrophages), play an important role in clinical cancer immunotherapy. The binding of Fc?Rs to the Fc portions of antibodies that are attached to the target cells can activate the antibody-dependent cell-mediated cytotoxicity (ADCC) killing mechanism which leads to the lysis of target cells. In this work, we used atomic force microscopy (AFM) to observe the cellular ultra-structures and measure the biophysical properties (affinity and distribution) of Fc?Rs on single macrophages in aqueous environments. AFM imaging was used to obtain the topographies of macrophages, revealing the nanoscale cellular fine structures. For molecular interaction recognition, antibody molecules were attached onto AFM tips via a heterobifunctional polyethylene glycol (PEG) crosslinker. With AFM single-molecule force spectroscopy, the binding affinities of Fc?Rs were quantitatively measured on single macrophages. Adhesion force mapping method was used to localize the Fc?Rs, revealing the nanoscale distribution of Fc?Rs on local areas of macrophages. The experimental results can improve our understanding of Fc?Rs on macrophages; the established approach will facilitate further research on physiological activities involved in antibody-based immunotherapy.

  20. Out of equilibrium GigaPa Young modulus of water nanobridge probed by Force Feedback Microscopy

    E-Print Network [OSTI]

    Carpentier, Simon; Costa, Luca; Vitorino, Miguel V; Charlaix, Elisabeth; Chevrier, Joel

    2015-01-01

    Because of capillary condensation, water droplets appear in nano/micropores. The large associated surface interactions can deeply influence macroscopic properties as in granular media. We report that dynamical properties of such nanobridge dramatically change when probed at different time scales. Using a novel AFM mode, the Force Feedback Microscopy, the gap between the nanotip and the surface is continuously varied, and we observe this change in the simultaneous measurements, at different frequencies, of the stiffness G'(N/m), the dissipative coefficient G"(kg/sec) together with the static force. As the measuring time approaches the microsecond, the liquid droplet exhibits a large positive stiffness (it is small and negative in the long time limit). Although clearly controlled by surface effects, it compares to the stiffness of a solid nanobridge with a 1 GigaPa Young modulus. We argue that as evaporation and condensation gradually lose efficiency, the contact line progressively becomes immobile, which expla...

  1. Bacterial Immobilization for Imaging by Atomic Force Microscopy

    SciTech Connect (OSTI)

    Allison, David P [ORNL; Sullivan, Claretta [Eastern Virginia Medical School; Mortensen, Ninell P [ORNL; Retterer, Scott T [ORNL; Doktycz, Mitchel John [ORNL

    2011-01-01

    AFM is a high-resolution (nm scale) imaging tool that mechanically probes a surface. It has the ability to image cells and biomolecules, in a liquid environment, without the need to chemically treat the sample. In order to accomplish this goal, the sample must sufficiently adhere to the mounting surface to prevent removal by forces exerted by the scanning AFM cantilever tip. In many instances, successful imaging depends on immobilization of the sample to the mounting surface. Optimally, immobilization should be minimally invasive to the sample such that metabolic processes and functional attributes are not compromised. By coating freshly cleaved mica surfaces with porcine (pig) gelatin, negatively charged bacteria can be immobilized on the surface and imaged in liquid by AFM. Immobilization of bacterial cells on gelatin-coated mica is most likely due to electrostatic interaction between the negatively charged bacteria and the positively charged gelatin. Several factors can interfere with bacterial immobilization, including chemical constituents of the liquid in which the bacteria are suspended, the incubation time of the bacteria on the gelatin coated mica, surface characteristics of the bacterial strain and the medium in which the bacteria are imaged. Overall, the use of gelatin-coated mica is found to be generally applicable for imaging microbial cells.

  2. Contact stiffness of layered materials for ultrasonic atomic force microscopy

    E-Print Network [OSTI]

    Contact stiffness of layered materials for ultrasonic atomic force microscopy G. G. Yaralioglu,a) F the contact stiffness between a layered material and an ultrasonic atomic force microscope UAFM tip of the method for modeling defects and power loss due to radiation in layered materials. © 2000 American

  3. On single-molecule DNA sequencing with atomic force microscopy using functionalized carbon nanotube probes

    E-Print Network [OSTI]

    Burns, Daniel James

    2004-01-01

    A novel DNA sequencing method is proposed based on the specific binding nature of nucleotides and measured by an atomic force microscope (AFM). A single molecule of DNA is denatured and immobilized on an atomically fiat ...

  4. The study of organic crystals by atomic force microscopy

    E-Print Network [OSTI]

    Chow, Ernest Ho Hin

    2014-07-01

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.16 2-D and 3-D height images of a chocolate sample obtained at various storage times. . . . . . . . . . . . . . . . . . . . . . . . . 25 2.17 AFM images of the {110} face of paracetamol crystals. . . . . . 26 2.18 AFM images of glycine crystals... BFDH growth morphology of ASA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.4 AFM 3-D images of ASA (001) surface under dissolution. . . . . 42 3.5 AFM Deflection images of ASA (100) face etched by water, ace- tone, and ethyl...

  5. Intermodulation electrostatic force microscopy for imaging surface photo-voltage

    SciTech Connect (OSTI)

    Borgani, Riccardo Forchheimer, Daniel; Thorén, Per-Anders; Haviland, David B.; Bergqvist, Jonas; Inganäs, Olle

    2014-10-06

    We demonstrate an alternative to Kelvin Probe Force Microscopy for imaging surface potential. The open-loop, single-pass technique applies a low-frequency AC voltage to the atomic force microscopy tip while driving the cantilever near its resonance frequency. Frequency mixing due to the nonlinear capacitance gives intermodulation products of the two drive frequencies near the cantilever resonance, where they are measured with high signal to noise ratio. Analysis of this intermodulation response allows for quantitative reconstruction of the contact potential difference. We derive the theory of the method, validate it with numerical simulation and a control experiment, and we demonstrate its utility for fast imaging of the surface photo-voltage on an organic photo-voltaic material.

  6. Polymer Filler Aging and Failure Studied by Lateral Force Microscopy

    SciTech Connect (OSTI)

    Ratto, T; Saab, A P

    2009-05-27

    In the present work, we study, via force microscopy, the basic physical interactions of a single bead of silica filler with a PDMS matrix both before and after exposure to gamma radiation. Our goal was to confirm our results from last year, and to explore force microscopy as a means of obtaining particle-scale polymer/filler interactions suitable for use as empirical inputs to a computational model consisting of an ensemble of silica beads embedded in a PDMS matrix. Through careful calibration of a conventional atomic force microscope, we obtained both normal and lateral force data that was fitted to yield adhesion, surface shear modulus, and friction of a 1 {micro}m silica bead in contact with PDMS layers of various thickness. Comparison of these terms before and after gamma exposure indicated that initially, radiation exposure lead to softening of the PDMS, but eventually resulted in stiffening. Simultaneously, adhesion between the polymer and silica decreased. This could indicate a serious failure path for filled PDMS exposed to radiation, whereby stiffening of the bulk polymer leads to loss of compressive elastic behavior, while a decrease in polymer filler adhesion results in an increased likelihood of stress failure under load. In addition to further testing of radiation damaged polymers, we also performed FEA modeling of silica beads in a silicone matrix using the shear modulus and adhesion values isolated from the force microscopy experiments as model inputs. The resulting simulation indicated that as a polymer stiffens due to impinging radiation, it also undergoes weakening of adhesion to the filler. The implication is that radiation induces a compound failure mode in filled polymer systems.

  7. On the use of peak-force tapping atomic force microscopy for quantification of the local elastic modulus in hardened cement paste

    SciTech Connect (OSTI)

    Trtik, Pavel, E-mail: pavel.trtik@empa.ch [Empa, Swiss Federal Laboratories for Materials Science and Technology, Duebendorf (Switzerland); Kaufmann, Josef [Empa, Swiss Federal Laboratories for Materials Science and Technology, Duebendorf (Switzerland); Volz, Udo [Bruker Nano GmbH, Mannheim (Germany)

    2012-01-15

    A surface of epoxy-impregnated hardened cement paste was investigated using a novel atomic force microscopy (AFM) imaging mode that allows for the quantitative mapping of the local elastic modulus. The analyzed surface was previously prepared using focussed ion beam milling. The same surface was also characterized by electron microscopy and energy-dispersive X-ray spectroscopy. We demonstrate the capability of this quantitative nanomechanical mapping to provide information on the local distribution of the elastic modulus (from about 1 to about 100 GPa) with a spatial resolution in the range of decananometers, that corresponds to that of low-keV back-scattered electron imaging. Despite some surface roughness which affects the measured nanomechanical properties it is shown that topography, adhesion and Young's modulus can be clearly distinguished. The quantitative mapping of the local elastic modulus is able to discriminate between phases in the cement paste microstructure that cannot be distinguished from the corresponding back-scattered electron images.

  8. An in-vivo study of electrical charge distribution on the bacterial cell wall by Atomic Force Microscopy in vibrating force mode

    E-Print Network [OSTI]

    Christian Marliere; Samia Dhahri

    2015-04-13

    We report an in-vivo electromechanical Atomic Force Microscopy (AFM) study of charge distribution on the cell wall of Gram plus Rhodococcus wratislaviensis bacteria, naturally adherent to a glass substrate, in physiological conditions. The method presented in this paper relies on a detailed study of AFM approach-retract curves giving the variation of the interaction force versus distance between tip and sample. In addition to classical height and mechanical (as stiffness) data, mapping of local electrical properties, as bacterial surface charge, was proved to be feasible at a spatial resolution better than few tens of nanometers. This innovative method relies on the measurement of the cantilever's surface stress through its deflection far from (higher than 10nm) the repulsive contact zone. The variations of surface stress come from modification of electrical surface charge of the cantilever (as in classical electrocapillary measurements) likely stemming from its charging during contact of both tip and sample electrical double layers. This method offers an important improvement in local electrical and electrochemical measurements at the solid-liquid interface particularly in high-molarity electrolytes when compared to technics focused on the direct use of electrostatic force. It thus opens a new way to directly investigate in-situ biological electrical surface processes involved in numerous practical and fundamental problems as bacterial adhesion, biofilm formation, microbial fuel cell, etc.

  9. Focused ion beam modification of atomic force microscopy tips for near-field scanning optical microscopy

    E-Print Network [OSTI]

    Krogmeier, Jeffrey R.; Dunn, Robert C.

    2001-12-01

    fabri- cation process and the need for expensive FIB instrumenta- tion, but these impediments may be minimized as the fabri- cation techniques are refined. Since these tips share many of the physical characteristics of AFM probes, they should be capable... fabri- cation process and the need for expensive FIB instrumenta- tion, but these impediments may be minimized as the fabri- cation techniques are refined. Since these tips share many of the physical characteristics of AFM probes, they should be capable...

  10. Selection of higher eigenmode amplitude based on dissipated power and virial contrast in bimodal atomic force microscopy

    SciTech Connect (OSTI)

    Diaz, Alfredo J.; Eslami, Babak; López-Guerra, Enrique A.; Solares, Santiago D., E-mail: ssolares@gwu.edu [Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742 (United States)

    2014-09-14

    This paper explores the effect of the amplitude ratio of the higher to the fundamental eigenmode in bimodal atomic force microscopy (AFM) on the phase contrast and the dissipated power contrast of the higher eigenmode. We explore the optimization of the amplitude ratio in order to maximize the type of contrast that is most relevant to the particular study. Specifically, we show that the trends in the contrast range behave differently for different quantities, especially the dissipated power and the phase, with the former being more meaningful than the latter (a similar analysis can be carried out using the virial, for which we also provide a brief example). Our work is based on numerical simulations using two different conservative-dissipative tip-sample models, including the standard linear solid and the combination of a dissipation coefficient with a conservative model, as well as experimental images of thin film Nafion{sup ®} proton exchange polymers. We focus on the original bimodal AFM method, where the higher eigenmode is driven with constant amplitude and frequency (i.e., in “open loop”).

  11. Atomic force microscopy investigation of the giant mimivirus

    SciTech Connect (OSTI)

    Kuznetsov, Yuri G.; Xiao Chuan; Sun Siyang; Raoult, Didier; Rossmann, Michael; McPherson, Alexander

    2010-08-15

    Mimivirus was investigated by atomic force microscopy in its native state following serial degradation by lysozyme and bromelain. The 750-nm diameter virus is coated with a forest of glycosylated protein fibers of lengths about 140 nm with diameters 1.4 nm. Fibers are capped with distinctive ellipsoidal protein heads of estimated Mr = 25 kDa. The surface fibers are attached to the particle through a layer of protein covering the capsid, which is in turn composed of the major capsid protein (MCP). The latter is organized as an open network of hexagonal rings with central depressions separated by 14 nm. The virion exhibits an elaborate apparatus at a unique vertex, visible as a star shaped depression on native particles, but on defibered virions as five arms of 50 nm width and 250 nm length rising above the capsid by 20 nm. The apparatus is integrated into the capsid and not applied atop the icosahedral lattice. Prior to DNA release, the arms of the star disengage from the virion and it opens by folding back five adjacent triangular faces. A membrane sac containing the DNA emerges from the capsid in preparation for fusion with a membrane of the host cell. Also observed from disrupted virions were masses of distinctive fibers of diameter about 1 nm, and having a 7-nm periodicity. These are probably contained within the capsid along with the DNA bearing sac. The fibers were occasionally observed associated with toroidal protein clusters interpreted as processive enzymes modifying the fibers.

  12. Structure and Dynamics of Dinucleosomes Assessed by Atomic Force Microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Filenko, Nina A.; Palets, Dmytro B.; Lyubchenko, Yuri L.

    2012-01-01

    Dynamics of nucleosomes and their interactions are important for understanding the mechanism of chromatin assembly. Internucleosomal interaction is required for the formation of higher-order chromatin structures. Although H1 histone is critically involved in the process of chromatin assembly, direct internucleosomal interactions contribute to this process as well. To characterize the interactions of nucleosomes within the nucleosome array, we designed a dinucleosome and performed direct AFM imaging. The analysis of the AFM data showed dinucleosomes are very dynamic systems, enabling the nucleosomes to move in a broad range along the DNA template. Di-nucleosomes in close proximity were observed, but their populationmore »was low. The use of the zwitterionic detergent, CHAPS, increased the dynamic range of the di-nucleosome, facilitating the formation of tight di-nucleosomes. The role of CHAPS and similar natural products in chromatin structure and dynamics is also discussed.« less

  13. Static Stern-Gerlach effect in magnetic force microscopy G. P. Berman,1

    E-Print Network [OSTI]

    Hammel, P. Chris

    Static Stern-Gerlach effect in magnetic force microscopy G. P. Berman,1 G. D. Doolen,1 P. C. Hammel February 2002 We examine static single-spin measurements using magnetic-force microscopy methods. We show, 07.79.Pk I. INTRODUCTION The Stern-Gerlach SG effect, one of the cornerstones of a quantum mechanics

  14. Deposition and atomic force microscopy of individual phthalocyanine polymers between nanofabricated electrodes

    E-Print Network [OSTI]

    Dekker, Cees

    Deposition and atomic force microscopy of individual phthalocyanine polymers between nanofabricated of cellulose using the Langmuir­Blodgett deposition technique. Atomic force microscopy was used to study- layer of an insulating molecule.6 We show that this method leads to a controlled deposition and strong

  15. Sensing Current and Forces with SPM

    SciTech Connect (OSTI)

    Park, Jeong Y.; Maier, Sabine; Hendriksen, Bas; Salmeron, Miquel

    2010-07-02

    Atomic force microscopy (AFM) and scanning tunneling microscopy (STM) are well established techniques to image surfaces and to probe material properties at the atomic and molecular scale. In this review, we show hybrid combinations of AFM and STM that bring together the best of two worlds: the simultaneous detection of atomic scale forces and conduction properties. We illustrate with several examples how the detection of forces during STM and the detection of currents during AFM can give valuable additional information of the nanoscale material properties.

  16. Kelvin Probe Force Microscopy for in situ Electrical Characterization of Organic Solar Cells

    E-Print Network [OSTI]

    Fisher, Frank

    Kelvin Probe Force Microscopy for in situ Electrical Characterization of Organic Solar Cells., University of Pittsburgh The most efficient organic solar cell today is made from blending conjugated donors and acceptors in bulk heterojunction organic solar cells. Most microscopic characterization

  17. Workshop on Atomic Force Microscopy, Nanometrology and More ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Swarna Addepalli 2012.12.17 One of my colleagues from our global research center in India, K.G. V. Siva Kumar (Sivakumar), recently attended a workshop on Atomic Force...

  18. Note: Artificial neural networks for the automated analysis of force map data in atomic force microscopy

    SciTech Connect (OSTI)

    Braunsmann, Christoph; Schäffer, Tilman E., E-mail: tilman.schaeffer@uni-tuebingen.de [Institute of Applied Physics and LISA, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen (Germany)

    2014-05-15

    Force curves recorded with the atomic force microscope on structured samples often show an irregular force versus indentation behavior. An analysis of such curves using standard contact models (e.g., the Sneddon model) would generate inaccurate Young's moduli. A critical inspection of the force curve shape is therefore necessary for estimating the reliability of the generated Young's modulus. We used a trained artificial neural network to automatically recognize curves of “good” and of “bad” quality. This is especially useful for improving the analysis of force maps that consist of a large number of force curves.

  19. Cross-Sectional Conductive Atomic Force Microscopy of CdTe/CdS Solar Cells: Effects of Etching and Back-Contact Processes; Preprint

    SciTech Connect (OSTI)

    Moutinho, H. R.; Dhere, R. G.; Jiang, C.-S.; Gessert, T. A.; Duda, A. M.; Young, M.; Metzger, W. K.; Li, X.; Al-Jassim, M. M.

    2006-05-01

    We investigated the effects of the etching processes using bromine and nitric-phosphoric acid solutions, as well as of Cu, in the bulk electrical conductivity of CdTe/CdS solar cells using conductive atomic force microscopy (C-AFM). Although the etching process can create a conductive layer on the surface of the CdTe, the layer is very shallow. In contrast, the addition of a thin layer of Cu to the surface creates a conductive layer inside the CdTe that is not uniform in depth, is concentrated at grains boundaries, and may short circuit the device if the CdTe is too thin. The etching process facilitates the Cu diffusion and results in thicker conductive layers. The existence of this inhomogeneous conductive layer directly affects the current transport and is probably the reason for needing thick CdTe in these devices.

  20. Effect of current compliance and voltage sweep rate on the resistive switching of HfO{sub 2}/ITO/Invar structure as measured by conductive atomic force microscopy

    SciTech Connect (OSTI)

    Wu, You-Lin Liao, Chun-Wei; Ling, Jing-Jenn

    2014-06-16

    The electrical characterization of HfO{sub 2}/ITO/Invar resistive switching memory structure was studied using conductive atomic force microscopy (AFM) with a semiconductor parameter analyzer, Agilent 4156C. The metal alloy Invar was used as the metal substrate to ensure good ohmic contact with the substrate holder of the AFM. A conductive Pt/Ir AFM tip was placed in direct contact with the HfO{sub 2} surface, such that it acted as the top electrode. Nanoscale current-voltage (I-V) characteristics of the HfO{sub 2}/ITO/Invar structure were measured by applying a ramp voltage through the conductive AFM tip at various current compliances and ramp voltage sweep rates. It was found that the resistance of the low resistance state (RLRS) decreased with increasing current compliance value, but resistance of high resistance state (RHRS) barely changed. However, both the RHRS and RLRS decreased as the voltage sweep rate increased. The reasons for this dependency on current compliance and voltage sweep rate are discussed.

  1. Data acquisition system for high speed atomic force microscopy Georg E. Fantner,a

    E-Print Network [OSTI]

    Hansma, Paul

    Data acquisition system for high speed atomic force microscopy Georg E. Fantner,a Paul Hegarty higher scan speeds, the need for data acquisition systems DAQ that are capable of handling the increased amounts of data in real time arises. We have developed a low cost data acquisition and scan control system

  2. The dissipated power in atomic force microscopy due to interactions with a capillary fluid layer

    E-Print Network [OSTI]

    Paul, Mark

    The dissipated power in atomic force microscopy due to interactions with a capillary fluid layer N July 2008; published online 23 September 2008 We study the power dissipated by the tip interactions of the model are entirely conservative and the dissipated power is due to the hysteretic nature

  3. E. Dan Dahlberg Magnetic Microscopy Center

    E-Print Network [OSTI]

    Dahlberg, E. Dan

    Coating Nanotube Bundle #12;Conventional EBD Topography Magnetism MFM Tip MFM Tip 1 µm Nickel Particles Beam Deposition (Spike) tips - Carbon Nanotube AFM/MFM tips High Resolution Magnetic Force Microscopy #12;Gonzo 500 nm #12;Carbon Nanotube MFM Uncoated Coated After Crash 300nm 6.7 µm 200 nm Multilayer

  4. Traction force microscopy on soft elastic substrates: a guide to recent computational advances

    E-Print Network [OSTI]

    Ulrich S. Schwarz; Jerome R. D. Soine

    2015-06-08

    The measurement of cellular traction forces on soft elastic substrates has become a standard tool for many labs working on mechanobiology. Here we review the basic principles and different variants of this approach. In general, the extraction of the substrate displacement field from image data and the reconstruction procedure for the forces are closely linked to each other and limited by the presence of experimental noise. We discuss different strategies to reconstruct cellular forces as they follow from the foundations of elasticity theory, including two- versus three-dimensional, inverse versus direct and linear versus non-linear approaches. We also discuss how biophysical models can improve force reconstruction and comment on practical issues like substrate preparation, image processing and the availability of software for traction force microscopy.

  5. A test method for determining adhesion forces and Hamaker constants of cementitious materials using atomic force microscopy

    SciTech Connect (OSTI)

    Lomboy, Gilson [Department of Civil, Construction, and Environmental Engineering, Iowa State University, Ames, Iowa 50011 (United States); Sundararajan, Sriram, E-mail: srirams@iastate.edu [Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011 (United States); Wang Kejin [Department of Civil, Construction, and Environmental Engineering, Iowa State University, Ames, Iowa 50011 (United States); Subramaniam, Shankar [Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2011-11-15

    A method for determining Hamaker constant of cementitious materials is presented. The method involved sample preparation, measurement of adhesion force between the tested material and a silicon nitride probe using atomic force microscopy in dry air and in water, and calculating the Hamaker constant using appropriate contact mechanics models. The work of adhesion and Hamaker constant were computed from the pull-off forces using the Johnson-Kendall-Roberts and Derjagin-Muller-Toropov models. Reference materials with known Hamaker constants (mica, silica, calcite) and commercially available cementitious materials (Portland cement (PC), ground granulated blast furnace slag (GGBFS)) were studied. The Hamaker constants of the reference materials obtained are consistent with those published by previous researchers. The results indicate that PC has a higher Hamaker constant than GGBFS. The Hamaker constant of PC in water is close to the previously predicted value C{sub 3}S, which is attributed to short hydration time ({<=} 45 min) used in this study.

  6. Interactions between collagen IX and biglycan measured by atomic force microscopy

    SciTech Connect (OSTI)

    Chen, C.-H. [Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX (United States); Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Taiwan (China); Yeh, M.-L. [Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX (United States); Geyer, Mark [Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX (United States); Wang, Gwo-Jaw [Department of Orthopedics, Kaohsiung Medical University School of Medicine, Kaohsiung, Taiwan (China); Huang, M.-H. [Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Taiwan (China); Heggeness, Michael H. [Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX (United States); Hoeoek, Magnus [Institute of Biosciences and Technology, Texas A and M University, Houston, TX (United States); Luo, Z.-P. [Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX (United States)]. E-mail: luo@bcm.tmc.edu

    2006-01-06

    The stability of the lattice-like type II collagen architecture of articular cartilage is paramount to its optimal function. Such stability not only depends on the rigidity of collagen fibrils themselves, but more importantly, on their interconnections. One known interconnection is through type IX and biglycan molecules. However, the mechanical properties of this interaction and its role in the overall stability remain unrevealed. Using atomic force microscopy, this study directly measured the mechanical strength (or the rupture force) of a single bond between collagen IX and biglycan. The results demonstrated that the rupture force of this single bond was 15 pN, which was significantly smaller than those of other known molecule interactions to date. This result suggested that type IX collagen and biglycan interaction may be the weak link in the cartilage collagen architecture, vulnerable to abnormal joint force and associated with disorders such as osteoarthritis.

  7. High-speed tapping-mode atomic force microscopy using a Q-controlled regular cantilever acting as the actuator: Proof-of-principle experiments

    SciTech Connect (OSTI)

    Balantekin, M.; Sat?r, S.; Torello, D.; De?ertekin, F. L.

    2014-12-15

    We present the proof-of-principle experiments of a high-speed actuation method to be used in tapping-mode atomic force microscopes (AFM). In this method, we do not employ a piezotube actuator to move the tip or the sample as in conventional AFM systems, but, we utilize a Q-controlled eigenmode of a cantilever to perform the fast actuation. We show that the actuation speed can be increased even with a regular cantilever.

  8. Evaluation of the electrical contact area in contact-mode scanning probe microscopy

    SciTech Connect (OSTI)

    Celano, Umberto E-mail: u.celano@gmail.com; Chintala, Ravi Chandra; Vandervorst, Wilfried; Hantschel, Thomas; Giammaria, Guido; Conard, Thierry; Bender, Hugo

    2015-06-07

    The tunneling current through an atomic force microscopy (AFM) tip is used to evaluate the effective electrical contact area, which exists between tip and sample in contact-AFM electrical measurements. A simple procedure for the evaluation of the effective electrical contact area is described using conductive atomic force microscopy (C-AFM) in combination with a thin dielectric. We characterize the electrical contact area for coated metal and doped-diamond tips operated at low force (<200 nN) in contact mode. In both cases, we observe that only a small fraction (<10?nm{sup 2}) of the physical contact (?100?nm{sup 2}) is effectively contributing to the transport phenomena. Assuming this reduced area is confined to the central area of the physical contact, these results explain the sub-10?nm electrical resolution observed in C-AFM measurements.

  9. Atomic Force Microscopy Studies of Lipophosphoglycan (LPG) Molecules in Lipid Bilayers

    SciTech Connect (OSTI)

    LAST, JULIE A.; HUBER, TINA; SASAKI, DARRYL Y.; SALVATORE, BRIAN; TURCO, SALVATORE J.

    2003-03-01

    Lipophosphoglycan (LPG) is a lypopolysaccharide found on the surface of the parasite Leishmania donovani that is thought to play an essential role in the infection of humans with leishamniasis. LPG acts as an adhesion point for the parasite to the gut of the sand fly, whose bite is responsible for transmitting the disease. In addition, LPG acts to inhibit protein kinase C (PKC) in the human macrophage, possibly by structural changes in the membrane. The Ca{sup 2+} ion is believed to play a role in the infection cycle, acting both as a crosslinker between LPG molecules and by playing a part in modulating PKC activity. To gain insight into the structure of LPG within a supported lipid membrane and into the structural changes that occur due to Ca{sup 2+} ions, we have employed the atomic force microscope (AFM). We have observed that the LPG molecules inhibit bilayer fusion, resulting in bilayer islands on the mica surface. One experiment suggests that the LPG molecules are parallel to the mica surface and that the structure of the LPG changes upon addition of Ca{sup 2+}, with an increase in the height of the LPG molecules from the bilayer surface and an almost complete coverage of LPG on the bilayer island.

  10. Multifrequency imaging in the intermittent contact mode of atomic force microscopy: beyond phase imaging

    SciTech Connect (OSTI)

    Guo, Senli; Santiago, Solares D; Mochalin, Vadym; Neitzel, Ioannis; Gogotsi, Yury G.; Kalinin, Sergei V; Jesse, Stephen

    2012-01-01

    Force-based scanning probe microscopies have emerged as a mainstay for probing structural and mechanical properties of materials on the nanometer and molecular scales. Despite tremendous progress achieved to date, the cantilever dynamics in single frequency scanning probe microscopies (SPM) is undefined due to having only two output variables. Here we demonstrate on diamond nanoparticles with different functionalization layers that the use of broad band detection by multiple frequency SPM allows complete information on tip-surface interactions in intermittent contact SPM to be acquired. The obtained data allows sub-3nm resolution even in ambient environment. By tuning the strength of tip-surface interaction, the information on surface state can be obtained.

  11. Three-Dimensional Quantification of Cellular Traction Forces and Mechanosensing of Thin Substrata by Fourier Traction Force Microscopy

    E-Print Network [OSTI]

    Juan C del Alamo; Ruedi Meili; Begoña Alvarez-Gonzalez; Baldomero Alonso-Latorre; Effie Bastounis; Richard Firtel; Juan C Lasheras

    2013-06-18

    We introduce a novel three-dimensional (3D) traction force microscopy (TFM) method motivated by the recent discovery that cells adhering on plane surfaces exert both in-plane and out-of-plane traction stresses. We measure the 3D deformation of the substratum on a thin layer near its surface, and input this information into an exact analytical solution of the elastic equilibrium equation. These operations are performed in the Fourier domain with high computational efficiency, allowing to obtain the 3D traction stresses from raw microscopy images virtually in real time. We also characterize the error of previous two-dimensional (2D) TFM methods that neglect the out-of-plane component of the traction stresses. This analysis reveals that, under certain combinations of experimental parameters (\\ie cell size, substratums' thickness and Poisson's ratio), the accuracy of 2D TFM methods is minimally affected by neglecting the out-of-plane component of the traction stresses. Finally, we consider the cell's mechanosensing of substratum thickness by 3D traction stresses, finding that, when cells adhere on thin substrata, their out-of-plane traction stresses can reach four times deeper into the substratum than their in-plane traction stresses. It is also found that the substratum stiffness sensed by applying out-of-plane traction stresses may be up to 10 times larger than the stiffness sensed by applying in-plane traction stresses.

  12. Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits

    DOE Patents [OSTI]

    Campbell, A.N.; Anderson, R.E.; Cole, E.I. Jr.

    1995-11-07

    A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits are disclosed. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits. 17 figs.

  13. Conductive atomic force microscopy study of local electronic transport in ZnTe thin films

    SciTech Connect (OSTI)

    Kshirsagar, Sachin D.; Krishna, M. Ghanashyam; Tewari, Surya P.

    2013-02-05

    ZnTe thin films obtained by the electron beam evaporation technique were subjected to thermal annealing at 500 Degree-Sign C for 2 hours. The as deposited films were amorphous but transformed to the crystalline state under influence of the thermal treatment. There is increase in optical absorption due to the heat treatment caused by increase in free carrier concentration. Conductive atomic force microscopy shows the presence of electronic inhomogeneities in the films. This is attributed to local compositional variations in the films. I-V analysis in these systems indicates formation of Schottky junction at the metal semiconductor (M-S) interface.

  14. Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits

    DOE Patents [OSTI]

    Campbell, Ann. N. (13170-B Central SE #188, Albuquerque, NM 87123); Anderson, Richard E. (2800 Tennessee NE, Albuquerque, NM 87110); Cole, Jr., Edward I. (2116 White Cloud NE, Albuquerque, NM 87112)

    1995-01-01

    A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits.

  15. Topography and Mechanical Property Mapping of International Simple Glass Surfaces with Atomic Force Microscopy

    SciTech Connect (OSTI)

    Hopf, Juliane [ORNL; Pierce, Eric M [ORNL

    2014-01-01

    Quantitative Nanomechanical Peak Force (PF-QNM) TappingModeTM atomic force microscopy measurements are presented for the first time on polished glass surfaces. The PF-QNM technique allows for topography and mechanical property information to be measured simultaneously at each pixel. Results for the international simple glass which represents a simplified version of SON68 glass suggests an average Young s modulus of 78.8 15.1 GPa is within the experimental error of the modulus measured for SON68 glass (83.6 2 GPa) with conventional approaches. Application of the PF-QNM technique will be extended to in situ glass corrosion experiments with the goal of gaining atomic-scale insights into altered layer development by exploiting the mechanical property differences that exist between silica gel (e.g., altered layer) and pristine glass surface.

  16. Enhanced efficiency in the excitation of higher modes for atomic force microscopy and mechanical sensors operated in liquids

    SciTech Connect (OSTI)

    Penedo, M., E-mail: mapenedo@imm.cnm.csic.es; Hormeño, S.; Fernández-Martínez, I.; Luna, M.; Briones, F. [IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres Cantos, Madrid (Spain); Raman, A. [Birck Nanotechnology Center and School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47904 (United States)

    2014-10-27

    Recent developments in dynamic Atomic Force Microscopy where several eigenmodes are simultaneously excited in liquid media are proving to be an excellent tool in biological studies. Despite its relevance, the search for a reliable, efficient, and strong cantilever excitation method is still in progress. Herein, we present a theoretical modeling and experimental results of different actuation methods compatible with the operation of Atomic Force Microscopy in liquid environments: ideal acoustic, homogeneously distributed force, distributed applied torque (MAC Mode™), photothermal and magnetostrictive excitation. From the analysis of the results, it can be concluded that magnetostriction is the strongest and most efficient technique for higher eigenmode excitation when using soft cantilevers in liquid media.

  17. Atomic-force microscopy and photoluminescence of nanostructured CdTe

    SciTech Connect (OSTI)

    Babentsov, V.; Sizov, F.; Franc, J.; Luchenko, A.; Svezhentsova, E. Tsybrii, Z.

    2013-09-15

    Low-dimensional CdTe nanorods with a diameter of 10-30 nm and a high aspect ratio that reaches 100 are studied. The nanorods are grown by the physical vapor transport method with the use of Bi precipitates on the substrates. In addition, thin films of closely packed CdTe nanorods with the transverse dimensions {approx}(100-200) nm are grown. Atomic-force microscopy shows that the cross sections of all of the nanorods were hexagonally shaped. By photoluminescence measurements, the inference about the wurtzite structure of CdTe is supported, and the structural quality, electron-phonon coupling, and defects are analyzed. On the basis of recent ab initio calculations, the nature of defects responsible for the formation of deep levels in the CdTe layers and bulk crystals are analyzed.

  18. A serial-kinematic nanopositioner for high-speed atomic force microscopy

    SciTech Connect (OSTI)

    Wadikhaye, Sachin P., E-mail: sachin.wadikhaye@uon.edu.au; Yong, Yuen Kuan; Reza Moheimani, S. O. [School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan, NSW (Australia)

    2014-10-15

    A flexure-guided serial-kinematic XYZ nanopositioner for high-speed Atomic Force Microscopy is presented in this paper. Two aspects influencing the performance of serial-kinematic nanopositioners are studied in this work. First, mass reduction by using tapered flexures is proposed to increased the natural frequency of the nanopositioner. 25% increase in the natural frequency is achieved due to reduced mass with tapered flexures. Second, a study of possible sensor positioning in a serial-kinematic nanopositioner is presented. An arrangement of sensors for exact estimation of cross-coupling is incorporated in the proposed design. A feedforward control strategy based on phaser approach is presented to mitigate the dynamics and nonlinearity in the system. Limitations in design approach and control strategy are discussed in the Conclusion.

  19. Direct determination of the local Hamaker constant of inorganic surfaces based on scanning force microscopy

    SciTech Connect (OSTI)

    Krajina, Brad A.; Kocherlakota, Lakshmi S.; Overney, René M., E-mail: roverney@u.washington.edu [Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-1750 (United States)

    2014-10-28

    The energetics involved in the bonding fluctuations between nanometer-sized silicon dioxide (SiO{sub 2}) probes and highly oriented pyrolytic graphite (HOPG) and molybdenum disulfide (MoS{sub 2}) could be quantified directly and locally on the submicron scale via a time-temperature superposition analysis of the lateral forces between scanning force microscopy silicon dioxide probes and inorganic sample surfaces. The so-called “intrinsic friction analysis” (IFA) provided direct access to the Hamaker constants for HOPG and MoS{sub 2}, as well as the control sample, calcium fluoride (CaF{sub 2}). The use of scanning probe enables nanoscopic analysis of bonding fluctuations, thereby overcoming challenges associated with larger scale inhomogeneity and surface roughness common to conventional techniques used to determine surface free energies and dielectric properties. A complementary numerical analysis based on optical and electron energy loss spectroscopy and the Lifshitz quantum electrodynamic theory of van der Waals interactions is provided and confirms quantitatively the IFA results.

  20. Modeling atomic force microscopy at LiNbO3 surfaces from first-principles

    E-Print Network [OSTI]

    Schmidt, Wolf Gero

    on different atomic tip models interacting with x-cut and z-cut LiNbO3 surfaces are calculated within density 30 years AFM has become a major tool for imaging and manipulating matter at the atomic scale [5]. Due of the converse piezoelectric effect to excite deformations of the sample with a metal-coated tip under alternat

  1. AFM imaging reveals the tetrameric structure of the TRPM8 channel

    SciTech Connect (OSTI)

    Stewart, Andrew P.; Egressy, Kinga; Lim, Annabel [Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD (United Kingdom)] [Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD (United Kingdom); Edwardson, J. Michael, E-mail: jme1000@cam.ac.uk [Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD (United Kingdom)

    2010-04-02

    Several members of the transient receptor potential (TRP) channel superfamily have been shown to assemble as tetramers. Here we have determined the subunit stoichiometry of the transient receptor potential M8 (TRPM8) channel using atomic force microscopy (AFM). TRPM8 channels were isolated from transfected cells, and complexes were formed between the channels and antibodies against a V5 epitope tag present on each subunit. The complexes were then subjected to AFM imaging. A frequency distribution of the molecular volumes of antibody decorated channels had a peak at 1305 nm{sup 3}, close to the expected size of a TRPM8 tetramer. The frequency distribution of angles between pairs of bound antibodies had two peaks, at 93{sup o} and 172{sup o}, confirming that the channel assembles as a tetramer. We suggest that this assembly pattern is common to all members of the TRP channel superfamily.

  2. AFM imaging reveals the tetrameric structure of the TRPC1 channel

    SciTech Connect (OSTI)

    Barrera, Nelson P. [Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD (United Kingdom); Shaifta, Yasin [Division of Asthma, Allergy and Lung Biology, King's College London, Guy's Hospital Campus, London SE1 1UL (United Kingdom); McFadzean, Ian [Sackler Institute of Pulmonary Pharmacology, Pharmaceutical Science Research Division, King's College London, Guy's Hospital Campus, London SE1 1UL (United Kingdom); Ward, Jeremy P.T. [Division of Asthma, Allergy and Lung Biology, King's College London, Guy's Hospital Campus, London SE1 1UL (United Kingdom); Henderson, Robert M. [Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD (United Kingdom); Edwardson, J. Michael [Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD (United Kingdom)]. E-mail: jme1000@cam.ac.uk

    2007-07-13

    We have determined the subunit stoichiometry of the transient receptor potential C1 (TRPC1) channel by imaging isolated channels using atomic force microscopy (AFM). A frequency distribution of the molecular volumes of individual channel particles had two peaks, at 170 and 720 nm{sup 3}, corresponding with the expected sizes of TRPC1 monomers and tetramers, respectively. Complexes were formed between TRPC1 channels and antibodies against a V5 epitope tag present on each subunit. The frequency distribution of angles between pairs of bound antibodies had two peaks, at 88{sup o} and 178{sup o}. This result again indicates that the channel assembles as a tetramer.

  3. Piezoelectricity and ferroelectricity of cellular polypropylene electrets films characterized by piezoresponse force microscopy

    SciTech Connect (OSTI)

    Miao, Hongchen; Sun, Yao; Zhou, Xilong; Li, Yingwei; Li, Faxin

    2014-08-14

    Cellular electrets polymer is a new ferroelectret material exhibiting large piezoelectricity and has attracted considerable attentions in researches and industries. Property characterization is very important for this material and current investigations are mostly on macroscopic properties. In this work, we conduct nanoscale piezoelectric and ferroelectric characterizations of cellular polypropylene (PP) films using piezoresponse force microscopy (PFM). First, both the single-frequency PFM and dual-frequency resonance-tracking PFM testings were conducted on the cellular PP film. The localized piezoelectric constant d{sub 33} is estimated to be 7–11pC/N by correcting the resonance magnification with quality factor and it is about one order lower than the macroscopic value. Next, using the switching spectroscopy PFM (SS-PFM), we studied polarization switching behavior of the cellular PP films. Results show that it exhibits the typical ferroelectric-like phase hysteresis loops and butterfly-shaped amplitude loops, which is similar to that of a poly(vinylidene fluoride) (PVDF) ferroelectric polymer film. However, both the phase and amplitude loops of the PP film are intensively asymmetric, which is thought to be caused by the nonzero remnant polarization after poling. Then, the D-E hysteresis loops of both the cellular PP film and PVDF film were measured by using the same wave form as that used in the SS-PFM, and the results show significant differences. Finally, we suggest that the ferroelectric-like behavior of cellular electrets films should be distinguished from that of typical ferroelectrics, both macroscopically and microscopically.

  4. Study of dynamic effects in microparticle adhesion using Atomic force microscopy 

    E-Print Network [OSTI]

    Kaushik, Anshul

    2005-02-17

    and Atomic force Microscope etc. Some of them are described below. 9 JKR apparatus for force measurements in contact mechanics (20): This apparatus is used to measure the adhesion force between a particle and a surface in contact. The apparatus... computer to get commands and send displacement information measured by a displacement sensor. This apparatus can be sealed in a thermal and humidity control chamber. The contact diameter between the samples is measured by a camera placed on top...

  5. A new ion sensing deep atomic force microscope

    SciTech Connect (OSTI)

    Drake, Barney; Randall, Connor; Bridges, Daniel; Hansma, Paul K.

    2014-08-15

    Here we describe a new deep atomic force microscope (AFM) capable of ion sensing. A novel probe assembly incorporates a micropipette that can be used both for sensing ion currents and as the tip for AFM imaging. The key advance of this instrument over previous ion sensing AFMs is that it uses conventional micropipettes in a novel suspension system. This paper focuses on sensing the ion current passively while using force feedback for the operation of the AFM in contact mode. Two images are obtained simultaneously: (1) an AFM topography image and (2) an ion current image. As an example, two images of a MEMS device with a microchannel show peaks in the ion current as the pipette tip goes over the edges of the channel. This ion sensing AFM can also be used in other modes including tapping mode with force feedback as well as in non-contact mode by utilizing the ion current for feedback, as in scanning ion conductance microscopy. The instrument is gentle enough to be used on some biological samples such as plant leaves.

  6. Method for imaging liquid and dielectric materials with scanning polarization force microscopy

    DOE Patents [OSTI]

    Hu, Jun (Berkeley, CA); Ogletree, D. Frank (El Cerrito, CA); Salmeron, Miguel (El Cerrito, CA); Xiao, Xudong (Kowloon, CN)

    1999-01-01

    The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged.

  7. Optical gradient force nano-imaging and -spectroscopy

    E-Print Network [OSTI]

    Yang, Honghua U

    2015-01-01

    Nanoscale forces play an important role in different scanning probe microscopies, most notably atomic force microscopy (AFM). In contrast, in scanning near-field optical microscopy (SNOM) a light-induced coupled local optical polarization between tip and sample is typically detected by scattering to the far field. Measurements of the optical gradient force associated with that optical near-field excitation would offer a novel optical scanning probe modality. Here we provide a generalized theory of optical gradient force nano-imaging and -spectroscopy. We quantify magnitude and distance dependence of the optical gradient force and its spectral response. We show that the optical gradient force is dispersive for single particle electronic and vibrational resonances, distinct from recent claims of its experimental observation. In contrast, the force can be absorptive for collective resonances. We provide a guidance for its measurements and distinction from competing processes such as thermal expansion.

  8. Atomic force microscopy and x-ray photoelectron spectroscopy investigations of the morphology and chemistry of a PdCl{sub 2}/SnCl{sub 2} electroless plating catalysis system adsorbed onto shape memory alloy particles

    SciTech Connect (OSTI)

    Silvain, J.F.; Fouassier, O.; Lescaux, S. [Institut de Chimie de la Matiere Condensee de Bordeaux (ICMCB) - CNRS, Universite de Bordeaux 1, 87 Avenue du Dr A. Schweitzer, F-33608 PESSAC (France); Veeco, Z.I. de la Gaudree, 11 Rue Marie Poussepin, F-91412 Dourdain (France)

    2004-11-01

    A study of the different stages of the electroless deposition of copper on micronic NiTi shape memory alloy particles activated by one-step and two-step methods has been conducted from both a chemical and a morphological point of view. The combination of x-ray photoelectron spectroscopy (XPS) measurements and atomic force microscopy (AFM) imaging has allowed detection of the distribution of the formed compounds and depth quantification and estimation of the surface topographic parameters. For the two-step method, at the sensitization of the early stages, it is observed by AFM that Sn is absorbed in form of clusters that tend to completely cover the surface and form a continuous film. XPS analysis have shown that Sn and Pd are first absorbed in form of oxide (SnO{sub 2} and PdO) and hydroxide [Sn(OH){sub 4}]. After the entire sensitization step, the NiTi substrate is covered with Sn-based compounds. After the sensitization and the activation steps the powder roughness increases. Behavior of the Sn and Pd growth for the one-step method does not follow the behavior found for the two-step method. Indeed, XPS analysis shows a three-dimensional (3D) growth of Pd clusters on top of a mixture of metallic tin, oxide (SnO) and hydroxide [Sn(OH){sub 2}]. These Pd clusters are covered with a thin layer of Pd-oxide contamination induced by the electroless process. The mean roughness for the one-step and two-step processes are equivalent. After copper deposition, the decrease of mean roughness is attributed to a filling of surface valleys, observed after the Sn-Pd coating step.

  9. In Situ Adsorption Studies at the Solid/Liquid Interface:Characterization of Biological Surfaces and Interfaces Using SumFrequency Generation Vibrational Spectroscopy, Atomic Force Microscopy,and Quartz Crystal Microbalance

    SciTech Connect (OSTI)

    Phillips, D.C.

    2006-05-16

    Sum frequency generation (SFG) vibrational spectroscopy, atomic force microscopy (AFM), and quartz crystal microbalance (QCM) have been used to study the molecular surface structure, surface topography and mechanical properties, and quantitative adsorbed amount of biological molecules at the solid-liquid interface. The molecular-level behavior of designed peptides adsorbed on hydrophobic polystyrene and hydrophilic silica substrates has been examined as a model of protein adsorption on polymeric biomaterial surfaces. Proteins are such large and complex molecules that it is difficult to identify the features in their structure that lead to adsorption and interaction with solid surfaces. Designed peptides which possess secondary structure provide simple model systems for understanding protein adsorption. Depending on the amino acid sequence of a peptide, different secondary structures ({alpha}-helix and {beta}-sheet) can be induced at apolar (air/liquid or air/solid) interfaces. Having a well-defined secondary structure allows experiments to be carried out under controlled conditions, where it is possible to investigate the affects of peptide amino acid sequence and chain length, concentration, buffering effects, etc. on adsorbed peptide structure. The experiments presented in this dissertation demonstrate that SFG vibrational spectroscopy can be used to directly probe the interaction of adsorbing biomolecules with a surface or interface. The use of well designed model systems aided in isolation of the SFG signal of the adsorbing species, and showed that surface functional groups of the substrate are sensitive to surface adsorbates. The complementary techniques of AFM and QCM allowed for deconvolution of the effects of surface topography and coverage from the observed SFG spectra. Initial studies of biologically relevant surfaces are also presented: SFG spectroscopy was used to study the surface composition of common soil bacteria for use in bioremediation of nuclear waste.

  10. Probing the elastic response of microalga Scenedesmus dimorphus in dry and aqueous environments through atomic force microscopy

    SciTech Connect (OSTI)

    Warren, K. M.; Mpagazehe, J. N.; Higgs, C. F., E-mail: prl@andrew.cmu.edu, E-mail: higgs@andrew.cmu.edu [Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, Pennsylvania 15213 (United States); LeDuc, P. R., E-mail: prl@andrew.cmu.edu, E-mail: higgs@andrew.cmu.edu [Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, Pennsylvania 15213 (United States); Departments of Biomedical Engineering and Biological Sciences, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213 (United States)

    2014-10-20

    With the re-emergence of microalgae as a replacement feedstock for petroleum-derived oils, researchers are working to understand its chemical and mechanical behavior. In this work, the mechanical properties of microalgae, Scenedesmus dimorphus, were investigated at the subcellular level to determine the elastic response of cells that were in an aqueous and dried state using nano-scale indentation through atomic force microscopy. The elastic modulus of single-celled S. dimorphus cells increased over tenfold from an aqueous state to a dried state, which allows us to better understand the biophysical response of microalgae to stress.

  11. Nanoscale characterization of solution-cast poly(vinylidene fluoride) thinfilms using atomic force microscopy 

    E-Print Network [OSTI]

    Jee, Tae Kwon

    2007-04-25

    This thesis research focuses on the characterization of thinfilms made of poly(vinylidene fluoride) (PVDF) using an atomic force microscope. Thinfilms of PVDF were fabricated by a spin coating method with different conditions and characterized using...

  12. Micro- and nanodomain imaging in uniaxial ferroelectrics: Joint application of optical, confocal Raman, and piezoelectric force microscopy

    SciTech Connect (OSTI)

    Shur, V. Ya., E-mail: vladimir.shur@urfu.ru; Zelenovskiy, P. S. [Ferroelectric Laboratory, Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation)

    2014-08-14

    The application of the most effective methods of the domain visualization in model uniaxial ferroelectrics of lithium niobate (LN) and lithium tantalate (LT) family, and relaxor strontium-barium niobate (SBN) have been reviewed in this paper. We have demonstrated the synergetic effect of joint usage of optical, confocal Raman, and piezoelectric force microscopies which provide extracting of the unique information about formation of the micro- and nanodomain structures. The methods have been applied for investigation of various types of domain structures with increasing complexity: (1) periodical domain structure in LN and LT, (2) nanodomain structures in LN, LT, and SBN, (3) nanodomain structures in LN with modified surface layer, (4) dendrite domain structure in LN. The self-assembled appearance of quasi-regular nanodomain structures in highly non-equilibrium switching conditions has been considered.

  13. A non-contact, thermal noise based method for the calibration of lateral deflection sensitivity in atomic force microscopy

    SciTech Connect (OSTI)

    Mullin, Nic Hobbs, Jamie K.

    2014-11-15

    Calibration of lateral forces and displacements has been a long standing problem in lateral force microscopies. Recently, it was shown by Wagner et al. that the thermal noise spectrum of the first torsional mode may be used to calibrate the deflection sensitivity of the detector. This method is quick, non-destructive and may be performed in situ in air or liquid. Here we make a full quantitative comparison of the lateral inverse optical lever sensitivity obtained by the lateral thermal noise method and the shape independent method developed by Anderson et al. We find that the thermal method provides accurate results for a wide variety of rectangular cantilevers, provided that the geometry of the cantilever is suitable for torsional stiffness calibration by the torsional Sader method, in-plane bending of the cantilever may be eliminated or accounted for and that any scaling of the lateral deflection signal between the measurement of the lateral thermal noise and the measurement of the lateral deflection is eliminated or corrected for. We also demonstrate that the thermal method may be used to characterize the linearity of the detector signal as a function of position, and find a deviation of less than 8% for the instrument used.

  14. Open-core screw dislocations in GaN epilayers observed by scanning force microscopy and high-resolution transmission electron microscopy

    E-Print Network [OSTI]

    Rohrer, Gregory S.

    -resolution transmission electron microscopy W. Qian, G. S. Rohrer, and M. Skowronski Department of Materials Science. K. Gaskill Laboratory for Advanced Material Synthesis, Naval Research Laboratory, Washington, DC of organometallic vapor phase epitaxy grown -GaN films using high-resolution transmission electron microscopy

  15. Characterizing absolute piezoelectric microelectromechanical system displacement using an atomic force microscope

    SciTech Connect (OSTI)

    Evans, J., E-mail: radiant@ferrodevices.com; Chapman, S., E-mail: radiant@ferrodevices.com [Radiant Technologies, Inc., 2835C Pan American Fwy NE, Albuquerque, New Mexico 87107 (United States)

    2014-08-14

    Piezoresponse Force Microscopy (PFM) is a popular tool for the study of ferroelectric and piezoelectric materials at the nanometer level. Progress in the development of piezoelectric MEMS fabrication is highlighting the need to characterize absolute displacement at the nanometer and Ångstrom scales, something Atomic Force Microscopy (AFM) might do but PFM cannot. Absolute displacement is measured by executing a polarization measurement of the ferroelectric or piezoelectric capacitor in question while monitoring the absolute vertical position of the sample surface with a stationary AFM cantilever. Two issues dominate the execution and precision of such a measurement: (1) the small amplitude of the electrical signal from the AFM at the Ångstrom level and (2) calibration of the AFM. The authors have developed a calibration routine and test technique for mitigating the two issues, making it possible to use an atomic force microscope to measure both the movement of a capacitor surface as well as the motion of a micro-machine structure actuated by that capacitor. The theory, procedures, pitfalls, and results of using an AFM for absolute piezoelectric measurement are provided.

  16. Characterization of microscale wear in a ploysilicon-based MEMS device using AFM and PEEM-NEXAFS spectromicroscopy.

    SciTech Connect (OSTI)

    Grierson, D. S.; Konicek, A. R.; Wabiszewski, G. E.; Sumant, A. V.; de Boer, M. P.; Corwin, A. D.; Carpick, R. W. (Center for Nanoscale Materials); ( PSC-USR); (Univ. of Wisconsin at Madison); (Univ. of Pennsylvania); (SNL)

    2009-12-01

    Mechanisms of microscale wear in silicon-based microelectromechanical systems (MEMS) are elucidated by studying a polysilicon nanotractor, a device specifically designed to conduct friction and wear tests under controlled conditions. Photoelectron emission microscopy (PEEM) was combined with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and atomic force microscopy (AFM) to quantitatively probe chemical changes and structural modification, respectively, in the wear track of the nanotractor. The ability of PEEM-NEXAFS to spatially map chemical variations in the near-surface region of samples at high lateral spatial resolution is unparalleled and therefore ideally suited for this study. The results show that it is possible to detect microscopic chemical changes using PEEM-NEXAFS, specifically, oxidation at the sliding interface of a MEMS device. We observe that wear induces oxidation of the polysilicon at the immediate contact interface, and the spectra are consistent with those from amorphous SiO{sub 2}. The oxidation is correlated with gouging and debris build-up in the wear track, as measured by AFM and scanning electron microscopy (SEM).

  17. High-speed force mapping on living cells with a small cantilever atomic force microscope

    SciTech Connect (OSTI)

    Braunsmann, Christoph; Seifert, Jan; Rheinlaender, Johannes; Schäffer, Tilman E., E-mail: Tilman.Schaeffer@uni-tuebingen [Institute of Applied Physics and LISA, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen (Germany)

    2014-07-15

    The imaging speed of the wide-spread force mapping mode for quantitative mechanical measurements on soft samples in liquid with the atomic force microscope (AFM) is limited by the bandwidth of the z-scanner and viscous drag forces on the cantilever. Here, we applied high-speed, large scan-range atomic force microscopy and small cantilevers to increase the speed of force mapping by ?10?100 times. This allowed resolving dynamic processes on living mouse embryonic fibroblasts. Cytoskeleton reorganization during cell locomotion, growth of individual cytoskeleton fibers, cell blebbing, and the formation of endocytic pits in the cell membrane were observed. Increasing the force curve rate from 2 to 300 Hz increased the measured apparent Young's modulus of the cells by about 10 times, which facilitated force mapping measurements at high speed.

  18. Ultrafast pump-probe force microscopy with nanoscale resolution Junghoon Jahng, Jordan Brocious, Dmitry A. Fishman, Steven Yampolsky, Derek Nowak, Fei Huang, Vartkess

    E-Print Network [OSTI]

    Potma, Eric Olaf

    Ultrafast pump-probe force microscopy with nanoscale resolution Junghoon Jahng, Jordan Brocious and reconfigurable setup for all-terahertz time-resolved pump-probe spectroscopy Rev. Sci. Instrum. 83, 053107 (2012); 10.1063/1.4717732 Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz

  19. Optical, ferroelectric, and piezoresponse force microscopy studies of pulsed laser deposited Aurivillius Bi?FeTi?O?? thin films

    SciTech Connect (OSTI)

    Kooriyattil, Sudheendran [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, P.O. Box 70377, San Juan, Puerto Rico 00936-8377 (United States); Department of Physics, Sree Kerala Varma College, Thrissur-680011, Kerala (India); Pavunny, Shojan P., E-mail: rkatiyar@uprrp.edu, E-mail: shojanpp@gmail.com; Barrionuevo, Danilo; Katiyar, Ram S., E-mail: rkatiyar@uprrp.edu, E-mail: shojanpp@gmail.com [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, P.O. Box 70377, San Juan, Puerto Rico 00936-8377 (United States)

    2014-10-14

    Bi?FeTi?O?? (BFTO) based Aurivillius ferroelectric thin films were fabricated on strontium ruthanate coated amorphous fused silica substrates using pulsed laser deposition technique. Optical, ferroelectric, and piezoresponse properties of these thin films were investigated. The estimated refractive index (n) and extinction coefficient (k) for these films were in the range from 2.40 to 2.59 and 0.012 to 0.19, respectively. The bandgap of the BFTO thin layers was estimated to be 2.88 eV. Domain switching and hysteresis loops of BFTO films were studied utilizing piezoresponse force microscopy (PFM). The measured apparent polarization (P{sub r}) and coercive field (E{sub c}) for the samples were 20 ?C/cm² and 250 kV/cm, respectively. The amplitude and phase hysteresis curves obtained from PFM characterization reveal that these films can be switched below 5 V. These results suggest that BFTO in thin film form is a promising material for photo ferroelectric and optoelectronic devices applications.

  20. Two-Dimensional Measurement of n+-p Asymmetrical Junctions in Multicrystalline Silicon Solar Cells using AFM-Based Electrical Techniques with Nanometer Resolution

    SciTech Connect (OSTI)

    Jiang, C. S.; Heath, J. T.; Moutinho, H. R.; Li, J. V.; Al-Jassim, M. M.

    2011-01-01

    Lateral inhomogeneities of modern solar cells demand direct electrical imaging with nanometer resolution. We show that atomic force microscopy (AFM)-based electrical techniques provide unique junction characterizations, giving a two-dimensional determination of junction locations. Two AFM-based techniques, scanning capacitance microscopy/spectroscopy (SCM/SCS) and scanning Kelvin probe force microscopy (SKPFM), were significantly improved and applied to the junction characterizations of multicrystalline silicon (mc-Si) cells. The SCS spectra were taken pixel by pixel by precisely controlling the tip positions in the junction area. The spectra reveal distinctive features that depend closely on the position relative to the electrical junction, which allows us to indentify the electrical junction location. In addition, SKPFM directly probes the built-in potential over the junction area modified by the surface band bending, which allows us to deduce the metallurgical junction location by identifying a peak of the electric field. Our results demonstrate resolutions of 10-40 nm, depending on the techniques (SCS or SKPFM). These direct electrical measurements with nanometer resolution and intrinsic two-dimensional capability are well suited for investigating the junction distribution of solar cells with lateral inhomogeneities.

  1. Two-Dimensional Measurement of n+-p Asymmetrical Junctions in Multicrystalline Silicon Solar Cells Using AFM-Based Electrical Techniques with Nanometer Resolution: Preprint

    SciTech Connect (OSTI)

    Jiang, C. S.; Moutinho, H. R.; Li, J. V.; Al-Jassim, M. M.; Heath, J. T.

    2011-07-01

    Lateral inhomogeneities of modern solar cells demand direct electrical imaging with nanometer resolution. We show that atomic force microscopy (AFM)-based electrical techniques provide unique junction characterizations, giving a two-dimensional determination of junction locations. Two AFM-based techniques, scanning capacitance microscopy/spectroscopy (SCM/SCS) and scanning Kelvin probe force microscopy (SKPFM), were significantly improved and applied to the junction characterizations of multicrystalline silicon (mc-Si) cells. The SCS spectra were taken pixel by pixel by precisely controlling the tip positions in the junction area. The spectra reveal distinctive features that depend closely on the position relative to the electrical junction, which allows us to indentify the electrical junction location. In addition, SKPFM directly probes the built-in potential over the junction area modified by the surface band bending, which allows us to deduce the metallurgical junction location by identifying a peak of the electric field. Our results demonstrate resolutions of 10-40 nm, depending on the techniques (SCS or SKPFM). These direct electrical measurements with nanometer resolution and intrinsic two-dimensional capability are well suited for investigating the junction distribution of solar cells with lateral inhomogeneities.

  2. Direct observation of electron emission from the grain boundaries of chemical vapour deposition diamond films by tunneling atomic force microscopy

    SciTech Connect (OSTI)

    Chatterjee, Vijay; Harniman, Robert; May, Paul W.; Barhai, P. K.

    2014-04-28

    The emission of electrons from diamond in vacuum occurs readily as a result of the negative electron affinity of the hydrogenated surface due to features with nanoscale dimensions, which can concentrate electric fields high enough to induce electron emission from them. Electrons can be emitted as a result of an applied electric field (field emission) with possible uses in displays or cold-cathode devices. Alternatively, electrons can be emitted simply by heating the diamond in vacuum to temperatures as low as 350?°C (thermionic emission), and this may find applications in solar energy generation or energy harvesting devices. Electron emission studies usually use doped polycrystalline diamond films deposited onto Si or metallic substrates by chemical vapor deposition, and these films have a rough, faceted morphology on the micron or nanometer scale. Electron emission is often improved by patterning the diamond surface into sharp points or needles, the idea being that the field lines concentrate at the points lowering the barrier for electron emission. However, there is little direct evidence that electrons are emitted from these sharp tips. The few reports in the literature that have studied the emission sites suggested that emission came from the grain boundaries and not the protruding regions. We now present direct observation of the emission sites over a large area of polycrystalline diamond using tunneling atomic force microscopy. We confirm that the emission current comes mostly from the grain boundaries, which is consistent with a model for emission in which the non-diamond phase is the source of electrons with a threshold that is determined by the surrounding hydrogenated diamond surface.

  3. ATOMIC FORCE LITHOGRAPHY OF NANO/MICROFLUIDIC CHANNELS FOR VERIFICATION AND MONITORING OF AQUEOUS SOLUTIONS

    SciTech Connect (OSTI)

    Mendez-Torres, A.; Torres, R.; Lam, P.

    2011-07-15

    The growing interest in the physics of fluidic flow in nanoscale channels, as well as the possibility for high sensitive detection of ions and single molecules is driving the development of nanofluidic channels. The enrichment of charged analytes due to electric field-controlled flow and surface charge/dipole interactions along the channel can lead to enhancement of sensitivity and limits-of-detection in sensor instruments. Nuclear material processing, waste remediation, and nuclear non-proliferation applications can greatly benefit from this capability. Atomic force microscopy (AFM) provides a low-cost alternative for the machining of disposable nanochannels. The small AFM tip diameter (< 10 nm) can provide for features at scales restricted in conventional optical and electron-beam lithography. This work presents preliminary results on the fabrication of nano/microfluidic channels on polymer films deposited on quartz substrates by AFM lithography.

  4. ATOMIC FORCE LITHOGRAPHY OF NANO MICROFLUIDIC CHANNELS FOR VERIFICATION AND MONITORING IN AQUEOUS SOLUTIONS

    SciTech Connect (OSTI)

    Torres, R.; Mendez-Torres, A.; Lam, P.

    2011-06-09

    The growing interest in the physics of fluidic flow in nanoscale channels, as well as the possibility for high sensitive detection of ions and single molecules is driving the development of nanofluidic channels. The enrichment of charged analytes due to electric field-controlled flow and surface charge/dipole interactions along the channel can lead to enhancement of sensitivity and limits-of-detection in sensor instruments. Nuclear material processing, waste remediation, and nuclear non-proliferation applications can greatly benefit from this capability. Atomic force microscopy (AFM) provides a low-cost alternative for the machining of disposable nanochannels. The small AFM tip diameter (< 10 nm) can provide for features at scales restricted in conventional optical and electron-beam lithography. This work presents preliminary results on the fabrication of nano/microfluidic channels on polymer films deposited on quartz substrates by AFM lithography.

  5. Spatially resolved low-frequency noise measured by atomic force microscopy Lynda Cockins, Yoichi Miyahara,* and Peter Grutter

    E-Print Network [OSTI]

    Grütter, Peter

    about the location of each trap even if a single trap is involved. Scanning tunneling microscopy has to traps located near noninsulating surfaces because a tunneling current of at least several picoamperes with surface InAs quantum dots and a buried two-dimensional electron gas. The observed noise exhibits

  6. Nanoscale Electromechanics of Ferroelectric and Biological Systems: A New Dimension in Scanning Probe Microscopy

    SciTech Connect (OSTI)

    Kalinin, Sergei V [ORNL; Rodriguez, Brian J [ORNL; Jesse, Stephen [ORNL; Karapetian, Edgar [ORNL; Mirman, B [Suffolk University, Boston; Eliseev, E. A. [National Academy of Science of Ukraine, Kiev, Ukraine; Morozovska, A. N. [National Academy of Science of Ukraine, Kiev, Ukraine

    2007-01-01

    Functionality of biological and inorganic systems ranging from nonvolatile computer memories and microelectromechanical systems to electromotor proteins and cellular membranes is ultimately based on the intricate coupling between electrical and mechanical phenomena. In the past decade, piezoresponse force microscopy (PFM) has been established as a powerful tool for nanoscale imaging, spectroscopy, and manipulation of ferroelectric and piezoelectric materials. Here, we give an overview of the fundamental image formation mechanism in PFM and summarize recent theoretical and technological advances. In particular, we show that the signal formation in PFM is complementary to that in the scanning tunneling microscopy (STM) and atomic force microscopy (AFM) techniques, and we discuss the implications. We also consider the prospect of extending PFM beyond ferroelectric characterization for quantitative probing of electromechanical behavior in molecular and biological systems and high-resolution probing of static and dynamic polarization switching processes in low-dimensional ferroelectric materials and heterostructures.

  7. Modeling and control of undesirable dynamics in atomic force microscopes

    E-Print Network [OSTI]

    El Rifai, Osamah M

    2002-01-01

    The phenomenal resolution and versatility of the atomic force microscope (AFM), has made it a widely-used instrument in nanotechnology. In this thesis, a detailed model of AFM dynamics has been developed. It includes a new ...

  8. Atomic Force Microscope

    SciTech Connect (OSTI)

    Day, R.D.; Russell, P.E.

    1988-12-01

    The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

  9. AFM pictures of the surfaces of glass RPC electrodes damaged by water vapor contamination

    E-Print Network [OSTI]

    T. Kubo; E. Nakano; Y. Teramoto

    2002-11-08

    We present surface pictures of the damaged electrodes from the Glass Resistive Plate Chambers (GRPCs) taken by an Atomic Force Microscope (AFM). For the test, a set of chambers were operated with freon mixed gas (damaged) and freonless gas (not damaged), contaminated with 1000 to 2000 ppm of water vapor. In the AFM pictures, clear differences in damage are seen between the electrodes in the chambers with the freon mixed gas and the freonless gas; a combination of freon and water vapor caused the damage.

  10. Design and control of high-speed and large-range atomic force microscope

    E-Print Network [OSTI]

    Soltani Bozchalooi, Iman, 1981-

    2015-01-01

    This thesis presents the design, control and instrumentation of a novel atomic force microscope (AFM). This AFM is capable of high-speed imaging while maintaining large out-of-plane and lateral scan ranges. The primary ...

  11. Schematic of a chemical AFM of lithographically

    E-Print Network [OSTI]

    Lee, Dongwon

    characterization Full-time professional staff T Surface Analysis ­ Auger electron spectroscopy, X, thermal analysis, mechanical testing, nanoindentation Structural Analysis ­ X-ray diffraction, small angleSchematic of a chemical AFM of lithographically carved thin film for an electronic nanochip

  12. High-speed atomic force microscope based on an astigmatic detection system

    SciTech Connect (OSTI)

    Liao, H.-S.; Chen, Y.-H.; Hwu, E.-T.; Chang, C.-S.; Hwang, I.-S., E-mail: ishwang@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Ding, R.-F.; Huang, H.-F.; Wang, W.-M. [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Huang, K.-Y. [Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2014-10-15

    High-speed atomic force microscopy (HS-AFM) enables visualizing dynamic behaviors of biological molecules under physiological conditions at a temporal resolution of 1s or shorter. A small cantilever with a high resonance frequency is crucial in increasing the scan speed. However, detecting mechanical resonances of small cantilevers is technically challenging. In this study, we constructed an atomic force microscope using a digital versatile disc (DVD) pickup head to detect cantilever deflections. In addition, a flexure-guided scanner and a sinusoidal scan method were implemented. In this work, we imaged a grating sample in air by using a regular cantilever and a small cantilever with a resonance frequency of 5.5 MHz. Poor tracking was seen at the scan rate of 50 line/s when a cantilever for regular AFM imaging was used. Using a small cantilever at the scan rate of 100 line/s revealed no significant degradation in the topographic images. The results indicate that a smaller cantilever can achieve a higher scan rate and superior force sensitivity. This work shows the potential for using a DVD pickup head in future HS-AFM technology.

  13. How to prepare AFM tip bundle (tip + ceramic plate)1 To assemble an AFM tip bundle by using an AFM tip on a holder chip and a used ceramic

    E-Print Network [OSTI]

    How to prepare AFM tip bundle (tip + ceramic plate)1 02/14/2008 Goal: To assemble an AFM tip bundle by using an AFM tip on a holder chip and a used ceramic plate, so that it is compatible with the Autoprobe CP AFM. Main Materials and tools: a. Used ceramic plates b. AFM tip on a holder chip (see fig. 1) c

  14. Molecular-scale investigations of structures and surface charge distribution of surfactant aggregates by three-dimensional force mapping

    SciTech Connect (OSTI)

    Suzuki, Kazuhiro; Oyabu, Noriaki; Matsushige, Kazumi; Yamada, Hirofumi [Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510 (Japan)] [Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510 (Japan); Kobayashi, Kei [The Hakubi Center for Advanced Research, Kyoto University, Katsura, Nishikyo, Kyoto 615-8520 (Japan)] [The Hakubi Center for Advanced Research, Kyoto University, Katsura, Nishikyo, Kyoto 615-8520 (Japan)

    2014-02-07

    Surface charges on nanoscale structures in liquids, such as biomolecules and nano-micelles, play an essentially important role in their structural stability as well as their chemical activities. These structures interact with each other through electric double layers (EDLs) formed by the counter ions in electrolyte solution. Although static-mode atomic force microscopy (AFM) including colloidal-probe AFM is a powerful technique for surface charge density measurements and EDL analysis on a submicron scale in liquids, precise surface charge density analysis with single-nanometer resolution has not been made because of its limitation of the resolution and the detection sensitivity. Here we demonstrate molecular-scale surface charge measurements of self-assembled micellar structures, molecular hemicylinders of sodium dodecyl sulfate (SDS), by three-dimensional (3D) force mapping based on frequency modulation AFM. The SDS hemicylindrical structures with a diameter of 4.8 nm on a graphite surface were clearly imaged. We have succeeded in visualizing 3D EDL forces on the SDS hemicylinder surfaces and obtaining the molecular-scale charge density for the first time. The results showed that the surface charge on the trench regions between the hemicylinders was much smaller than that on the hemicylinder tops. The method can be applied to a wide variety of local charge distribution studies, such as spatial charge variation on a single protein molecule.

  15. ORNL microscopy pencils patterns in polymers at the nanoscale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (865) 574-7308 ORNL microscopy pencils patterns in polymers at the nanoscale Oak Ridge National Laboratory researchers used atomic force microscopy to draw nanoscale patterns in a...

  16. Flow of wet powder in a conical centrifugal filter--an analytical model A.F.M. Bizard, D.D. Symons n

    E-Print Network [OSTI]

    Symons, Digby

    Flow of wet powder in a conical centrifugal filter--an analytical model A.F.M. Bizard, D.D. Symons 14 August 2011 Available online 25 August 2011 Keywords: Centrifugation Filtration Laminar flow the wall of the cone along a generator under centrifugal force, which also forces the fluid out of the cone

  17. Polymers with hydro-responsive topography identified using high throughput AFM of an acrylate microarray

    E-Print Network [OSTI]

    Hook, Andrew L.

    Atomic force microscopy has been applied to an acrylate polymer microarray to achieve a full topographic characterisation. This process discovered a small number of hydro-responsive materials created from monomers with ...

  18. Parametric effects in nanobeams and AFM

    SciTech Connect (OSTI)

    Claeyssen, J. C. R.; Tonetto, L.; Carvalho, J. B.; Copetti, R. D.

    2014-12-10

    Vibration dynamics of forced cantilever beams that are used in nanotechnology such as atomic force microscope modeling and carbon nanotubes is considered in terms of a fundamental response within a matrix framework. The modeling equations are written as a matrix differential equation subject to tip-sample general boundary conditions. At the junctions, where there are discontinuities due to different material or beam thickness, compatibility conditions are prescribed. Forced responses are given by convolution of the input load with the time domain Green matrix function. The corresponding matrix transfer function and modes of a multispan cantilever beam are determined in terms of solution basis of the same shape generated by a fundamental solution. Simulations were performed for a three stepped beam with a piezoelectric patch subject to pulse forcing terms and with surface effects.

  19. Growth direction and morphology of ZnO nanobelts revealed by combining in situ atomic force microscopy and polarized Raman spectroscopy

    E-Print Network [OSTI]

    Wang, Zhong L.

    Growth direction and morphology of ZnO nanobelts revealed by combining in situ atomic force of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA 2 School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, USA Received 26 June 2009; revised

  20. PAPER www.rsc.org/loc | Lab on a Chip Open micro-fluidic system for atomic force microscopy-guided in situ

    E-Print Network [OSTI]

    by light harvesting complexes, which funnel that energy into the reaction centers of the photosynthetic electron transport chain, causing a charge separation that provides the driving force to split water cells and has the potential to be exploited by direct extraction of energetic electrons from

  1. Investigating the aggregation of ?-amyloid peptide (A???) and its interactions with lipid bilayers using advanced microscopy techniques 

    E-Print Network [OSTI]

    Mari, Meropi

    2014-06-30

    that there are various different methods, such as AFM, CARS microscopy and Raman spectroscopy as well as neutron scattering that are capable of fast imaging. Overall, all these techniques contributed in a complementary study of A??? aggregation states under extreme...

  2. Optical system for high-speed Atomic Force Microscope

    E-Print Network [OSTI]

    Lim, Kwang Yong, S.M. Massachusetts Institute of Technology

    2010-01-01

    This thesis presents the design and development of an optical cantilever deflection sensor for a high speed Atomic Force Microscope (AFM). This optical sensing system is able to track a small cantilever while the X-Y scanner ...

  3. Low-temperature evolution of local polarization properties of PbZr{sub 0.65}Ti{sub 0.35}O{sub 3} thin films probed by piezoresponse force microscopy

    SciTech Connect (OSTI)

    Andreeva, N. V.; Filimonov, A. V.; Rudskoy, A. I.; Tyunina, M.; Pertsev, N. A. Vakhrushev, S. B.

    2014-03-17

    The temperature evolution of local polarization properties in epitaxial PbZr{sub 0.65}Ti{sub 0.35}O{sub 3} films is studied by the low-temperature piezoresponse force microscopy (PFM). Pronounced changes in the film polarization state, including apparent polarization rotations and possible transitions between single-domain and polydomain states of individual ferroelectric nanocolumns, are revealed on cooling from the room temperature to 8?K using PFM imaging. More than two-fold increase in the coercive voltage extracted from the piezoresponse hysteresis loops is found on cooling from 240 to 8?K. The results are explained by the thermodynamic theory of strained epitaxial perovskite ferroelectric films.

  4. True atomic-scale imaging of a spinel Li{sub 4}Ti{sub 5}O{sub 12}(111) surface in aqueous solution by frequency-modulation atomic force microscopy

    SciTech Connect (OSTI)

    Kitta, Mitsunori, E-mail: m-kitta@aist.go.jp; Kohyama, Masanori [Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Onishi, Hiroshi [Department of Chemistry, Graduate School of Science, Kobe University 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan)

    2014-09-15

    Spinel-type lithium titanium oxide (LTO; Li{sub 4}Ti{sub 5}O{sub 12}) is a negative electrode material for lithium-ion batteries. Revealing the atomic-scale surface structure of LTO in liquid is highly necessary to investigate its surface properties in practical environments. Here, we reveal an atomic-scale image of the LTO(111) surface in LiCl aqueous solution using frequency-modulation atomic force microscopy. Atomically flat terraces and single steps having heights of multiples of 0.5?nm were observed in the aqueous solution. Hexagonal bright spots separated by 0.6?nm were also observed on the flat terrace part, corresponding to the atomistic contrast observed in the ultrahigh vacuum condition, which suggests that the basic atomic structure of the LTO(111) surface is retained without dramatic reconstruction even in the aqueous solution.

  5. High-speed imaging upgrade for a standard sample scanning atomic force microscope using small cantilevers

    SciTech Connect (OSTI)

    Adams, Jonathan D.; Nievergelt, Adrian; Erickson, Blake W.; Yang, Chen; Dukic, Maja; Fantner, Georg E., E-mail: georg.fantner@epfl.ch [Ecole Polytechnique Fédérale de Lausanne, Lausanne (Switzerland)

    2014-09-15

    We present an atomic force microscope (AFM) head for optical beam deflection on small cantilevers. Our AFM head is designed to be small in size, easily integrated into a commercial AFM system, and has a modular architecture facilitating exchange of the optical and electronic assemblies. We present two different designs for both the optical beam deflection and the electronic readout systems, and evaluate their performance. Using small cantilevers with our AFM head on an otherwise unmodified commercial AFM system, we are able to take tapping mode images approximately 5–10 times faster compared to the same AFM system using large cantilevers. By using additional scanner turnaround resonance compensation and a controller designed for high-speed AFM imaging, we show tapping mode imaging of lipid bilayers at line scan rates of 100–500 Hz for scan areas of several micrometers in size.

  6. Transplanting assembly of carbon-nanotube-tipped atomic force microscope probes

    E-Print Network [OSTI]

    Soohyung, Kim

    Carbon-nanotube (CNT)-tipped atomic force microscope (AFM) probes were assembled in a deterministic and reproducible manner by transplanting a CNT bearing polymeric carrier to a microelectromechanical systems cantilever. ...

  7. Interaction Forces Measured Using AFM between Colloids and Surfaces Coated with Both Dextran and Protein

    E-Print Network [OSTI]

    a large proportion of polysaccharides. Proteins released by bacteria into solution can be rapidly adsorbed at a surface and can promote bacterial adhesion and the continuous secretion of proteins by bacteria during

  8. The World's Smallest Fountain Pen? The miniscule tip on an atomic-force microscope (AFM) helps

    E-Print Network [OSTI]

    Espinosa, Horacio D.

    , which range from pigments for creating patterns to organic materials for creating sensors, but they suffer from difficulties with maintaining a regular ink supply. The new "nanofountain probe" can paint

  9. High-Bandwidth AFM-Based Rheology Reveals that Cartilage is Most Sensitive to High Loading Rates at Early Stages of Impairment

    E-Print Network [OSTI]

    Tavakoli Nia, Hadi

    Utilizing a newly developed atomic-force-microscopy-based wide-frequency rheology system, we measured the dynamic nanomechanical behavior of normal and glycosaminoglycan (GAG)-depleted cartilage, the latter representing ...

  10. Functional photoacoustic microscopy 

    E-Print Network [OSTI]

    Zhang, Hao

    2009-06-02

    This dissertation focuses on laser-based noninvasive photoacoustic microscopy of subsurface structures in vivo. Photoacoustic microscopy is a hybrid imaging modality that combines the high-resolution advantage of ultrasonic imaging in deep tissue...

  11. Climate forcing Climate forcing

    E-Print Network [OSTI]

    MacKinnon, Jennifer

    parameters (solar distance factors) solar luminosity moon orbit volcanoes and other geothermal sources,000 years (large panels) and since 1750 (inset panels). Measurements are shown from ice cores (symbols forcings are shown on the right hand axes of the large panels. {Figure 6.4} !"#$#%&'(!&#)$&*$+#$,-.$/0

  12. Genome scanning : an AFM-based DNA sequencing technique

    E-Print Network [OSTI]

    Elmouelhi, Ahmed (Ahmed M.), 1979-

    2003-01-01

    Genome Scanning is a powerful new technique for DNA sequencing. The method presented in this thesis uses an atomic force microscope with a functionalized cantilever tip to sequence single stranded DNA immobilized to a mica ...

  13. Photothermal imaging scanning microscopy

    DOE Patents [OSTI]

    Chinn, Diane (Pleasanton, CA); Stolz, Christopher J. (Lathrop, CA); Wu, Zhouling (Pleasanton, CA); Huber, Robert (Discovery Bay, CA); Weinzapfel, Carolyn (Tracy, CA)

    2006-07-11

    Photothermal Imaging Scanning Microscopy produces a rapid, thermal-based, non-destructive characterization apparatus. Also, a photothermal characterization method of surface and subsurface features includes micron and nanoscale spatial resolution of meter-sized optical materials.

  14. Computational microscopy for sample analysis

    E-Print Network [OSTI]

    Ikoma, Hayato

    2014-01-01

    Computational microscopy is an emerging technology which extends the capabilities of optical microscopy with the help of computation. One of the notable example is super resolution fluorescence microscopy which achieves ...

  15. An improved proximity force approximation for electrostatics

    SciTech Connect (OSTI)

    Fosco, Cesar D.; Instituto Balseiro, Universidad Nacional de Cuyo, R8402AGP Bariloche ; Lombardo, Fernando C.; IFIBA ; Mazzitelli, Francisco D.

    2012-08-15

    A quite straightforward approximation for the electrostatic interaction between two perfectly conducting surfaces suggests itself when the distance between them is much smaller than the characteristic lengths associated with their shapes. Indeed, in the so called 'proximity force approximation' the electrostatic force is evaluated by first dividing each surface into a set of small flat patches, and then adding up the forces due two opposite pairs, the contributions of which are approximated as due to pairs of parallel planes. This approximation has been widely and successfully applied in different contexts, ranging from nuclear physics to Casimir effect calculations. We present here an improvement on this approximation, based on a derivative expansion for the electrostatic energy contained between the surfaces. The results obtained could be useful for discussing the geometric dependence of the electrostatic force, and also as a convenient benchmark for numerical analyses of the tip-sample electrostatic interaction in atomic force microscopes. - Highlights: Black-Right-Pointing-Pointer The proximity force approximation (PFA) has been widely used in different areas. Black-Right-Pointing-Pointer The PFA can be improved using a derivative expansion in the shape of the surfaces. Black-Right-Pointing-Pointer We use the improved PFA to compute electrostatic forces between conductors. Black-Right-Pointing-Pointer The results can be used as an analytic benchmark for numerical calculations in AFM. Black-Right-Pointing-Pointer Insight is provided for people who use the PFA to compute nuclear and Casimir forces.

  16. Time-Resolved AFM and XAFS Investigations of Nickel Surface Precipitate Dissolution Mechanisms

    E-Print Network [OSTI]

    Sparks, Donald L.

    Time-Resolved AFM and XAFS Investigations of Nickel Surface Precipitate Dissolution Mechanisms K. G that increase in stability with aging time. However, investigations into the stability of these surface, the relationship between aging time and stability is critical to predict potential mobility and fate of the metal

  17. A MEMS device for In Situ TEM/AFM/SEM/STM Testing of Carbon Nanotubes and Nanowires

    E-Print Network [OSTI]

    Espinosa, Horacio D.

    A MEMS device for In Situ TEM/AFM/SEM/STM Testing of Carbon Nanotubes and Nanowires H. D. Espinosa, Evanston, IL 60208-3111, USA ABSTRACT A MEMS device for in-situ TEM/AFM/SEM/STM testing of nano structures of a comb-drive actuator, specimen stage and a beam-type load sensor. The load and displacement

  18. Nonlinear vibrational microscopy

    DOE Patents [OSTI]

    Holtom, Gary R. (Richland, WA); Xie, Xiaoliang Sunney (Richland, WA); Zumbusch, Andreas (Munchen, DE)

    2000-01-01

    The present invention is a method and apparatus for microscopic vibrational imaging using coherent Anti-Stokes Raman Scattering or Sum Frequency Generation. Microscopic imaging with a vibrational spectroscopic contrast is achieved by generating signals in a nonlinear optical process and spatially resolved detection of the signals. The spatial resolution is attained by minimizing the spot size of the optical interrogation beams on the sample. Minimizing the spot size relies upon a. directing at least two substantially co-axial laser beams (interrogation beams) through a microscope objective providing a focal spot on the sample; b. collecting a signal beam together with a residual beam from the at least two co-axial laser beams after passing through the sample; c. removing the residual beam; and d. detecting the signal beam thereby creating said pixel. The method has significantly higher spatial resolution then IR microscopy and higher sensitivity than spontaneous Raman microscopy with much lower average excitation powers. CARS and SFG microscopy does not rely on the presence of fluorophores, but retains the resolution and three-dimensional sectioning capability of confocal and two-photon fluorescence microscopy. Complementary to these techniques, CARS and SFG microscopy provides a contrast mechanism based on vibrational spectroscopy. This vibrational contrast mechanism, combined with an unprecedented high sensitivity at a tolerable laser power level, provides a new approach for microscopic investigations of chemical and biological samples.

  19. Sensing mode atomic force microscope

    DOE Patents [OSTI]

    Hough, Paul V. C.; Wang, Chengpu

    2006-08-22

    An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.

  20. Sensing mode atomic force microscope

    DOE Patents [OSTI]

    Hough, Paul V.; Wang, Chengpu

    2004-11-16

    An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.

  1. Measuring Boltzmann's constant with a low-cost atomic force microscope: An undergraduate experiment

    E-Print Network [OSTI]

    Manalis, Scott

    to directly control it. Its pedagogical advantage is that students interact with a complete instrument system measurements, students learn to apply numerous concepts such as digital sampling, Fourier-domain analysis designed and built an inexpen- sive atomic force microscope AFM system that enables this type of hands

  2. Protective Force

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26

    Establishes requirements for management and operation of the DOE Protective Force (PF), establishes requirements for firearms operations and defines the firearms courses of fire. Cancels: DOE M 473.2-1A DOE M 473.2-2

  3. Protective Force

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-03-07

    The manual establishes requirements for management and operation of the DOE Protective Force, establishes requirements for firearms operations and defines the firearms courses of fire. Chg 1 dated 3/7/06. DOE M 470.4-3A cancels DOE M 470.4-3, Chg 1, Protective Force, dated 3-7-06, Attachment 2, Contractor Requirement Document (CRD) only (except for Section C). Chg 1, dated 3-7-06, cancels DOE M 470.4-3

  4. Multifunctional Composites and Devices for Sensing and Energy Harvesting 

    E-Print Network [OSTI]

    Cleveland, Michael Allen

    2011-08-08

    melting method, the magenetocaloric samples were created. Multi-length scales characterized using atomic force microscopy (AFM), optical microscopy, scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), X-Ray diffraction (XRD...

  5. Thin polymer films of block copolymers and blend/nanoparticle composites 

    E-Print Network [OSTI]

    Kalloudis, Michail

    2013-11-28

    In this thesis, atomic force microscopy (AFM), transmission electron microscopy (TEM) and optical microscopy techniques were used to investigate systematically the self-assembled nanostructure behaviour of two different ...

  6. Probing graphene defects and estimating graphene quality with optical microscopy

    SciTech Connect (OSTI)

    Lai, Shen [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Center for Human Interface Nanotechnology (HINT), Suwon 440-746 (Korea, Republic of); Kyu Jang, Sung [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Jae Song, Young, E-mail: yjsong@skku.edu [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Department of Physics, Sungkyunkwan University (SKKU), Suwon 440-746 (Korea, Republic of); Lee, Sungjoo, E-mail: leesj@skku.edu [SKKU Advanced Institute of Nanotechnology (SAINT), Suwon 440-746 (Korea, Republic of); Center for Human Interface Nanotechnology (HINT), Suwon 440-746 (Korea, Republic of); College of Information and Communication Engineering, Sungkyunkwan University (SKKU), Suwon 440-746 (Korea, Republic of)

    2014-01-27

    We report a simple and accurate method for detecting graphene defects that utilizes the mild, dry annealing of graphene/Cu films in air. In contrast to previously reported techniques, our simple approach with optical microscopy can determine the density and degree of dislocation of defects in a graphene film without inducing water-related damage or functionalization. Scanning electron microscopy, confocal Raman and atomic force microscopy, and X-ray photoelectron spectroscopy analysis were performed to demonstrate that our nondestructive approach to characterizing graphene defects with optimized thermal annealing provides rapid and comprehensive determinations of graphene quality.

  7. Ultrafast pump-probe force microscopy with nanoscale resolution

    E-Print Network [OSTI]

    2015-01-01

    Cerullo, “Confocal ultrafast pump-probe spectroscopy: A newand H. J. Maris, “Time-resolved pump-probe experiments withand U. Keller, “Femtosecond pump-porbe near-field optical

  8. Customized atomic force microscopy probe by focused-ion-beam...

    Office of Scientific and Technical Information (OSTI)

    that tall (18 m) cantilever tips fabricated by this approach reduce squeeze-film damping, which fits predictions from hydrodynamic theory, and results in an increased...

  9. Ultrasonic-Based Mode-Synthesizing Atomic Force Microscopy - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With WIPPfinal designUltrafast Transformations inmixtureboundaries

  10. Experimental Optical-quality geological calcite was cleaved into fragments. In situ atomic force microscope (AFM) imaging was

    E-Print Network [OSTI]

    Dickinson, J. Thomas

    of scanning (more scanned area at top versus more scanned area at the bottom) so it shows that both the upper equally to growth However, as shown below, the amount of total growth induced by the tip is related, 565-583 (1995). 22 J. I. Drever, The Geochemistry of Natural Waters, 3rd ed. (Prentice Hall, Upper

  11. Dynamic Transmission Electron Microscopy

    SciTech Connect (OSTI)

    Evans, James E.; Jungjohann, K. L.; Browning, Nigel D.

    2012-10-12

    Dynamic transmission electron microscopy (DTEM) combines the benefits of high spatial resolution electron microscopy with the high temporal resolution of ultrafast lasers. The incorporation of these two components into a single instrument provides a perfect platform for in situ observations of material processes. However, previous DTEM applications have focused on observing structural changes occurring in samples exposed to high vacuum. Therefore, in order to expand the pump-probe experimental regime to more natural environmental conditions, in situ gas and liquid chambers must be coupled with Dynamic TEM. This chapter describes the current and future applications of in situ liquid DTEM to permit time-resolved atomic scale observations in an aqueous environment, Although this chapter focuses mostly on in situ liquid imaging, the same research potential exists for in situ gas experiments and the successful integration of these techniques promises new insights for understanding nanoparticle, catalyst and biological protein dynamics with unprecedented spatiotemporal resolution.

  12. Heterogeneous Force Chains in Cellularized Biopolymer Network

    E-Print Network [OSTI]

    Liang, Long; Sun, Bo; Jiao, Yang

    2015-01-01

    Biopolymer Networks play an important role in coordinating and regulating collective cellular dynamics via a number of signaling pathways. Here, we investigate the mechanical response of a model biopolymer network due to the active contraction of embedded cells. Specifically, a graph (bond-node) model derived from confocal microscopy data is used to represent the network microstructure, and cell contraction is modeled by applying correlated displacements at specific nodes, representing the focal adhesion sites. A force-based stochastic relaxation method is employed to obtain force-balanced network under cell contraction. We find that the majority of the forces are carried by a small number of heterogeneous force chains emitted from the contracting cells. The force chains consist of fiber segments that either possess a high degree of alignment before cell contraction or are aligned due to the reorientation induced by cell contraction. Large fluctuations of the forces along different force chains are observed. ...

  13. Reinventing Pocket Microscopy

    E-Print Network [OSTI]

    Kamal, T; Lee, W M

    2015-01-01

    The key to the success of pocket microscopes stems from the convenience for anyone to magnify the fine details (tens of micrometres) of any object on-thespot. The capability with a portable microscope lets us surpass our limited vision and is commonly used in many areas of science, industry, education. The growth of imaging and computing power in smartphones is creating the possibility of converting your smartphone into a high power pocket microscope. In this article, we briefly describe the history of pocket microscopy and elucidate how mobile technologies are set to become the next platform for pocket microscopes

  14. Fourier plane imaging microscopy

    SciTech Connect (OSTI)

    Dominguez, Daniel, E-mail: daniel.dominguez@ttu.edu; Peralta, Luis Grave de [Department of Physics, Texas Tech University, Lubbock, Texas 79409 (United States); Nano Tech Center, Texas Tech University, Lubbock, Texas 79409 (United States); Alharbi, Nouf; Alhusain, Mdhaoui [Department of Physics, Texas Tech University, Lubbock, Texas 79409 (United States); Bernussi, Ayrton A. [Nano Tech Center, Texas Tech University, Lubbock, Texas 79409 (United States); Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2014-09-14

    We show how the image of an unresolved photonic crystal can be reconstructed using a single Fourier plane (FP) image obtained with a second camera that was added to a traditional compound microscope. We discuss how Fourier plane imaging microscopy is an application of a remarkable property of the obtained FP images: they contain more information about the photonic crystals than the images recorded by the camera commonly placed at the real plane of the microscope. We argue that the experimental results support the hypothesis that surface waves, contributing to enhanced resolution abilities, were optically excited in the studied photonic crystals.

  15. Characterization of Polymer Blends: Optical Microscopy (*Polarized, Interference and Phase Contrast Microscopy*) and Confocal Microscopy

    SciTech Connect (OSTI)

    Ramanathan, Nathan Muruganathan [ORNL; Darling, Seth B. [Argonne National Laboratory (ANL)

    2015-01-01

    Chapter 15 surveys the characterization of macro, micro and meso morphologies of polymer blends by optical microscopy. Confocal Microscopy offers the ability to view the three dimensional morphology of polymer blends, popular in characterization of biological systems. Confocal microscopy uses point illumination and a spatial pinhole to eliminate out-of focus light in samples that are thicker than the focal plane.

  16. Selective nano-patterning of graphene using a heated atomic force microscope tip

    SciTech Connect (OSTI)

    Choi, Young-Soo; Wu, Xuan; Lee, Dong-Weon, E-mail: mems@jnu.ac.kr [MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, Gwangju (Korea, Republic of)] [MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, Gwangju (Korea, Republic of)

    2014-04-15

    In this study, we introduce a selective thermochemical nano-patterning method of graphene on insulating substrates. A tiny heater formed at the end of an atomic force microscope (AFM) cantilever is optimized by a finite element method. The cantilever device is fabricated using conventional micromachining processes. After preliminary tests of the cantilever device, nano-patterning experiments are conducted with various conducting and insulating samples. The results indicate that faster scanning speed and higher contact force are desirable to reduce the sizes of nano-patterns. With the experimental condition of 1 ?m/s and 24 mW, the heated AFM tip generates a graphene oxide layer of 3.6 nm height and 363 nm width, on a 300 nm thick SiO{sub 2} layer, with a tip contact force of 100 nN.

  17. Hybrid near-field scanning optical microscopy tips for live cell measurements

    E-Print Network [OSTI]

    Kapkiai, Luka K.; Moore-Nichols, David; Carnell, Jonathan; Krogmeier, Jeffrey R.; Dunn, Robert C.

    2004-03-08

    atomic force microscopy cantilever. Imaging of fluorescent latex spheres suspended in an acetate matrix demonstrates the subdiffraction limited fluorescence and topography capabilities of the tips. The reduced spring constant of the hybrid tip is also...

  18. IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 8, NO. 3, SEPT. 2003 1 Atomic Force Microscope Probe based Controlled

    E-Print Network [OSTI]

    Sitti, Metin

    a piezoresistive AFM probe as a 1-D force sensor and nano-manipulator. In the experiments, 500 nm radius gold-coated-sized objects [1], [2], cutting [3], nano-lithography applications, etc. Hence, it can be changed from a passive observation tool to an active manipulation tool. Beside of these applications, there is another new emerging

  19. Atomic Force Microscope (Veeco Nanoman)

    E-Print Network [OSTI]

    Subramanian, Venkat

    · Place the holder in a docking station of the cantilever installation fixture and secure the probe in the groove with the spring clip Liquid Cell Docking Station In-air Probe Holder Docking Station In-air Probe Holder #12;Loading Probe to AFM Head · Fully tighten the dovetail knob (rotate clockwise) · Lift the AFM

  20. Heterogeneous Force Chains in Cellularized Biopolymer Network

    E-Print Network [OSTI]

    Long Liang; Christopher Jones; Bo Sun; Yang Jiao

    2015-08-18

    Biopolymer Networks play an important role in coordinating and regulating collective cellular dynamics via a number of signaling pathways. Here, we investigate the mechanical response of a model biopolymer network due to the active contraction of embedded cells. Specifically, a graph (bond-node) model derived from confocal microscopy data is used to represent the network microstructure, and cell contraction is modeled by applying correlated displacements at specific nodes, representing the focal adhesion sites. A force-based stochastic relaxation method is employed to obtain force-balanced network under cell contraction. We find that the majority of the forces are carried by a small number of heterogeneous force chains emitted from the contracting cells. The force chains consist of fiber segments that either possess a high degree of alignment before cell contraction or are aligned due to the reorientation induced by cell contraction. Large fluctuations of the forces along different force chains are observed. Importantly, the decay of the forces along the force chains is significantly slower than the decay of radially averaged forces in the system. These results suggest that the fibrous nature of biopolymer network structure can support long-range force transmission and thus, long-range mechanical signaling between cells.

  1. Ultrafast scanning tunneling microscopy

    SciTech Connect (OSTI)

    Botkin, D.A. [California Univ., Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)

    1995-09-01

    I have developed an ultrafast scanning tunneling microscope (USTM) based on uniting stroboscopic methods of ultrafast optics and scanned probe microscopy to obtain nanometer spatial resolution and sub-picosecond temporal resolution. USTM increases the achievable time resolution of a STM by more than 6 orders of magnitude; this should enable exploration of mesoscopic and nanometer size systems on time scales corresponding to the period or decay of fundamental excitations. USTM consists of a photoconductive switch with subpicosecond response time in series with the tip of a STM. An optical pulse from a modelocked laser activates the switch to create a gate for the tunneling current, while a second laser pulse on the sample initiates a dynamic process which affects the tunneling current. By sending a large sequence of identical pulse pairs and measuring the average tunnel current as a function of the relative time delay between the pulses in each pair, one can map the time evolution of the surface process. USTM was used to measure the broadband response of the STM`s atomic size tunnel barrier in frequencies from tens to hundreds of GHz. The USTM signal amplitude decays linearly with the tunnel junction conductance, so the spatial resolution of the time-resolved signal is comparable to that of a conventional STM. Geometrical capacitance of the junction does not appear to play an important role in the measurement, but a capacitive effect intimately related to tunneling contributes to the measured signals and may limit the ultimate resolution of the USTM.

  2. Use of Atomic Force Microscopy Force Measurements To Monitor Citrate Displacement by Amines on Gold in

    E-Print Network [OSTI]

    Chan, Derek Y C

    Special Research Centre, University of Melbourne, Parkville, Victoria 3052, Australia, and CSIRO Division of Chemicals and Polymers, Private Bag 10, Rosebank MDC, Clayton, Victoria 3169, Australia Received January 9 in clean, covered petri dishes in a laminar flow hood and rinsed with AR grade ethanol and blown dry

  3. Electrostrictive and electrostatic responses in contact mode voltage modulated Scanning Probe Microscopies

    SciTech Connect (OSTI)

    Eliseev, E. A.; Morozovska, A. N.; Ievlev, Anton; Balke, Nina; Maksymovych, Petro; Tselev, Alexander; Kalinin, Sergei V

    2014-01-01

    Electromechanical response of solids underpins image formation mechanism of several scanning probe microscopy techniques including the piezoresponse force microscopy (PFM) and electrochemical strain microscopy (ESM). While the theory of linear piezoelectric and ionic responses are well developed, the contributions of quadratic effects including electrostriction and capacitive tip-surface forces to measured signal remain poorly understood. Here we analyze the electrostrictive and capacitive contributions to the PFM and ESM signals and discuss the implications of the dielectric tip-surface gap on these interactions.

  4. Open Source Scanning Probe Microscopy Control Software package GXSM

    SciTech Connect (OSTI)

    Zahl, P.; Wagner, T.; Moller, R.; Klust, A.

    2010-05-01

    GXSM is a full featured and modern scanning probe microscopy (SPM) software. It can be used for powerful multidimensional image/data processing, analysis, and visualization. Connected to an instrument, it is operating many different flavors of SPM, e.g., scanning tunneling microscopy and atomic force microscopy or, in general, two-dimensional multichannel data acquisition instruments. The GXSM core can handle different data types, e.g., integer and floating point numbers. An easily extendable plug-in architecture provides many image analysis and manipulation functions. A digital signal processor subsystem runs the feedback loop, generates the scanning signals, and acquires the data during SPM measurements. The programmable GXSM vector probe engine performs virtually any thinkable spectroscopy and manipulation task, such as scanning tunneling spectroscopy or tip formation. The GXSM software is released under the GNU general public license and can be obtained via the internet.

  5. www.afm-journal.de 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 1

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    material dependent proper- ties of metal and semiconductor exhibit important functionalities in devices the geometrical and surface properties of the constituent semiconductor nanotips are engineered with controlledwww.afm-journal.de FULLPAPER © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 1 www.Materials

  6. Local detection of X-ray spectroscopies with an in-situ Atomic Force Microscope

    E-Print Network [OSTI]

    Rodrigues, Mario S; LE Denmat, Simon; Chevrier, Joel; Felici, Roberto; Comin, Fabio

    2008-01-01

    We show how the in situ combination of Scanning Probe Microscopies (SPM) with X-ray microbeams enables many new experiments in the synchrotron radiation domain. Our instrument is based on an optics free AFM/STM that can be directly installed on most of the SR X-ray end stations. The instrument can be simply used for AFM imaging of the investigated sample or it can be used for detection of photoemitted electrons with a sharp STM like tungsten tip, thus leading to locally measure the EXAFS signal. Alternatively one can measure the photons absorbed by the tip, thus locally detecting diffraction. In this paper, we show examples of both measurements. We also describe the experimental setup and the tip-beam interaction that is a key point for alignment procedures. We finally show how these features can be exploited in an extended variety of domains, nanosciences and nanomechanics, just to name a few.

  7. [Band electronic structures and crystal packing forces

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    We investigated the electronic and structural properties of low-dimensional materials and explored the structure-property correlations governing their physical properties. Progress was made on how to interpret the scanning tunneling microscopy and atomic force microscopy images of layered materials and on how to account for charge density wave instabilities in 2-D metals. Materials studied included transition metal chalcogenides, transition metal halides, organic conducting salts, Mo bronzes, A[sub 2]PdH[sub 2], fullerenes, squarate tetrahydrate polymers Fe, Cu(C[sub 4]O[sub 4])4[center dot]H[sub 2]O, BEDT salts, etc.

  8. Effect of cantilever geometry on the optical lever sensitivities and thermal noise method of the atomic force microscope

    SciTech Connect (OSTI)

    Sader, John E.; Lu, Jianing; Mulvaney, Paul

    2014-11-15

    Calibration of the optical lever sensitivities of atomic force microscope (AFM) cantilevers is especially important for determining the force in AFM measurements. These sensitivities depend critically on the cantilever mode used and are known to differ for static and dynamic measurements. Here, we calculate the ratio of the dynamic and static sensitivities for several common AFM cantilevers, whose shapes vary considerably, and experimentally verify these results. The dynamic-to-static optical lever sensitivity ratio is found to range from 1.09 to 1.41 for the cantilevers studied – in stark contrast to the constant value of 1.09 used widely in current calibration studies. This analysis shows that accuracy of the thermal noise method for the static spring constant is strongly dependent on cantilever geometry – neglect of these dynamic-to-static factors can induce errors exceeding 100%. We also discuss a simple experimental approach to non-invasively and simultaneously determine the dynamic and static spring constants and optical lever sensitivities of cantilevers of arbitrary shape, which is applicable to all AFM platforms that have the thermal noise method for spring constant calibration.

  9. Anisotropic and tunable characteristics of the colloidal behavior of metal oxide surfaces

    E-Print Network [OSTI]

    Bullard, Joseph Warren, 1978-

    2006-01-01

    The electroosmotic behavior of the rutile polymorph of titanium dioxide was explored as a function of crystallographic orientation. Atomic force microscopy (AFM) was employed to make high-resolution force spectroscopy ...

  10. High precision stereo profilometry

    E-Print Network [OSTI]

    Aumond, Bernardo Dantas, 1972-

    2001-01-01

    Metrological data from sample surfaces can be obtained by using a variety of profilome try methods. Atomic Force Microscopy (AFM), which relies on contact inter-atomic forces to extract topographical images of a sample, ...

  11. The future of electron microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, Yimei; Durr, Hermann

    2015-04-01

    Seeing is believing. So goes the old adage and seen evidence is undoubtedly satisfying because it can be interpreted easily, though not always correctly. For centuries, humans have developed such instruments as telescopes that observe the heavens and microscopes that reveal bacteria and viruses. The 2014 Nobel Prize in Chemistry was awarded to Eric Betzig, Stefan Hell, and William Moerner for their foundational work on superresolution fluorescence microscopy in which they overcame the Abbe diffraction limit for the resolving power of conventional light microscopes. (See Physics Today, December 2014, page 18.) That breakthrough enabled discoveries in biological research and testifiesmore »to the importance of modern microscopy.« less

  12. Optimization of THz Microscopy Imaging

    E-Print Network [OSTI]

    Niessen, Katherine A

    2015-01-01

    THz near field microscopy opens a new frontier in material science. High spatial resolution requires the detection crystal to have uniform and reproducible response. We present the THz near field spatial and temporal response of ZnTe and GaP and examine possible properties that give rise to the ZnTe degraded signal.

  13. Holographic microscopy of holographically trapped

    E-Print Network [OSTI]

    Weeks, Eric R.

    . Padgett, "Permanent 3D microstructures in a polymeric host created using holographic optical tweezers," J to organize microscopic materials into three-dimensional structures. In a complementary manner, holographicHolographic microscopy of holographically trapped three-dimensional structures Sang-Hyuk Lee

  14. Scanning standing-wave illumination microscopy : a path to nanometer resolution in X-ray microscopy

    E-Print Network [OSTI]

    Hong, Stanley Seokjong, 1977-

    2005-01-01

    X-ray microscopy can potentially combine the advantages of light microscopy with resolution approaching that of electron microscopy. In theory, x-ray microscopes can image unsectioned hydrated cells with nanometer resolution. ...

  15. Dynamic imaging with electron microscopy

    ScienceCinema (OSTI)

    Campbell, Geoffrey; McKeown, Joe; Santala, Melissa

    2014-05-30

    Livermore researchers have perfected an electron microscope to study fast-evolving material processes and chemical reactions. By applying engineering, microscopy, and laser expertise to the decades-old technology of electron microscopy, the dynamic transmission electron microscope (DTEM) team has developed a technique that can capture images of phenomena that are both very small and very fast. DTEM uses a precisely timed laser pulse to achieve a short but intense electron beam for imaging. When synchronized with a dynamic event in the microscope's field of view, DTEM allows scientists to record and measure material changes in action. A new movie-mode capability, which earned a 2013 R&D 100 Award from R&D Magazine, uses up to nine laser pulses to sequentially capture fast, irreversible, even one-of-a-kind material changes at the nanometer scale. DTEM projects are advancing basic and applied materials research, including such areas as nanostructure growth, phase transformations, and chemical reactions.

  16. An AFM Study of the Deformation and Nanorheology of Cross-Linked PDMS Droplets

    E-Print Network [OSTI]

    Attard, Phil

    and colloid stability,5 particle adhe- sion,5,7 and suspension rheology5,7 have been reported. These studies Interaction forces between a spherical silica probe and a cross-linked poly(dimethylsiloxane) (PDMS) colloidal. Rev. E 2001, 63, 061604). The moduli and the characteristic relaxation time of the PDMS colloid have

  17. Protective Force Program Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-06-30

    Provides detailed requirements to supplement DOE O 473.2, Protective Force Program, which establishes the requirements and responsibilities for management and operation of the Department of Energy (DOE) Protective Force (PF) Program. Does not cancel other directives.

  18. Castro with Carranzista Forces 

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    Casimir pistons are models in which finite Casimir forces can be calculated without any suspect renormalizations. It has been suggested that such forces are always attractive, but we present several counterexamples, notably ...

  19. Administering Work Force Discipline

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-05-14

    The order provides requirements and responsibilities for administering work force discipline and corrective actions. Supersedes DOE O 3750.1.

  20. Visual-servoing optical microscopy

    SciTech Connect (OSTI)

    Callahan, Daniel E; Parvin, Bahram

    2013-10-01

    The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time; quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.

  1. Visual-servoing optical microscopy

    DOE Patents [OSTI]

    Callahan, Daniel E. (Martinez, CA); Parvin, Bahram (Mill Valley, CA)

    2011-05-24

    The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time; quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.

  2. Visual-servoing optical microscopy

    DOE Patents [OSTI]

    Callahan, Daniel E. (Martinez, CA); Parvin, Bahram (Hercules, CA)

    2009-06-09

    The present invention provides methods and devices for the knowledge-based discovery and optimization of differences between cell types. In particular, the present invention provides visual servoing optical microscopy, as well as analysis methods. The present invention provides means for the close monitoring of hundreds of individual, living cells over time: quantification of dynamic physiological responses in multiple channels; real-time digital image segmentation and analysis; intelligent, repetitive computer-applied cell stress and cell stimulation; and the ability to return to the same field of cells for long-term studies and observation. The present invention further provides means to optimize culture conditions for specific subpopulations of cells.

  3. Scanning near-field optical microscopy based on the heterodyne phase-controlled oscillator method

    E-Print Network [OSTI]

    Texas at Austin. University of

    Scanning near-field optical microscopy based on the heterodyne phase-controlled oscillator method G and quality factor of the tip oscillations was used to control the scanning near-field optical microscope SNOM and to study the nature of the shear-force interaction routinely used in SNOM. Both optical and nonoptical

  4. Mechanical Property Measurements of Membranes and Viruses by Using Fluorescence Interference Contrast Microscopy and Atomic Force Microscopy

    E-Print Network [OSTI]

    Gui, Dong

    2013-01-01

    by Quasi-elastic Neutron Scattering. Biochemistry 41:13078-by Quasi-elastic Neutron Scattering. Biochemistry 41:13078-A small- angle neutron scattering study. Biochim. Biophys.

  5. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 14, NO. 1, JANUARY/FEBRUARY 2008 217 Spectral Self-Interference Fluorescence Microscopy

    E-Print Network [OSTI]

    resolution, we de- scribe and demonstrate a high-NA 4Pi microscopy system that per- forms spectral self of the Engineering Research Centers Program, in part by the Air Force Office of Scientific Research un- der Grant

  6. Forces from Connes' geometry

    E-Print Network [OSTI]

    Thomas Schucker

    2007-03-26

    We try to give a pedagogical introduction to Connes' derivation of the standard model of electro-magnetic, weak and strong forces from gravity.

  7. NUCLEAR PROXIMITY FORCES

    E-Print Network [OSTI]

    Randrup, J.

    2011-01-01

    One might summarize of nuclear potential energy has beendegree of freedom) for the nuclear interaction between anyUniversity of California. Nuclear Proximity Forces 'I< at

  8. Ultra-High Resolution Electron Microscopy for Catalyst Characterizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Ultra-High Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst Characterization...

  9. Communications Near-Field Fluorescence Microscopy of

    E-Print Network [OSTI]

    ** By Grace M. Credo and Steven K. Buratto* We use near-field scanning optical microscopy (NSOM) to probe. Buratto, G. M. Credo Department of Chemistry U

  10. Radiation-thermoacoustic microscopy of condensed media

    SciTech Connect (OSTI)

    Lyamshev, L.M.; Chelnokov, B.I.

    1984-07-01

    Possibilities are discussed for the application of scanning radiation-thermoacoustic microscopy, using different types of radiation, for microstructure analysis. (AIP)

  11. X-ray microscopy. Beyond ensemble averages

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ice, Gene E.; Budai, John D.

    2015-06-23

    This work exemplifies emerging tools to characterize local materials structure and dynamics, made possible by powerful X-ray synchrotron and transmission electron microscopy methods.

  12. Combining Quantitative Electrochemistry and Electron Microscopy...

    Office of Scientific and Technical Information (OSTI)

    Combining Quantitative Electrochemistry and Electron Microscopy to Study Reversible Lithiation of Silicon Nanowires. Citation Details In-Document Search Title: Combining...

  13. ORNL microscopy directly images problematic lithium dendrites...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    images of the nucleation and growth of lithium dendrite structures known to degrade lithium-ion batteries. ORNL electron microscopy captured the first real-time nanoscale...

  14. Electron Microscopy Catalysis Projects: Success Stories from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalysis Projects: Success Stories from the High Temperature Materials Laboratory (HTML) User Program Electron Microscopy Catalysis Projects: Success Stories from the High...

  15. Subwavelength optical microscopy in the far field 

    E-Print Network [OSTI]

    Sun, Qingqing; Al-Amri, M.; Scully, Marlan O.; Zubairy, M. Suhail.

    2011-01-01

    which we can obtain their distance and location information. This procedure also works for atomic separation above one wavelength and therefore provides a seamless microscopy....

  16. Protective Force Program Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-12-20

    Provides detailed requirements to supplement DOE O 473.2, PROTECTIVE FORCE PROGRAM, which establishes the requirements and responsibilities for management and operation of the Department of Energy (DOE) Protective Force (PF) Program. Change 1 revised pages in Chapters IV and VI on 12/20/2001.

  17. Switchable stiffness scanning microscope probe

    E-Print Network [OSTI]

    Mueller-Falcke, Clemens T. (Clemens Tobias)

    2005-01-01

    Atomic Force Microscopy (AFM) has rapidly gained widespread utilization as an imaging device and micro/nano-manipulator during recent years. This thesis investigates the new concept of a dual stiffness scanning probe with ...

  18. Fabrication of Molecular Devices 

    E-Print Network [OSTI]

    Walton, Katherine

    2011-08-04

    and dithiols were prepared on Au and GaAs surfaces. There chemical assembly was investigated using a combination of Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). The surface morphology and nanopatterning of these SAMs...

  19. Spectroscopic imaging in electron microscopy

    SciTech Connect (OSTI)

    Pennycook, Stephen J [ORNL; Colliex, C. [Universite Paris Sud, Orsay, France

    2012-01-01

    In the scanning transmission electron microscope, multiple signals can be simultaneously collected, including the transmitted and scattered electron signals (bright field and annular dark field or Z-contrast images), along with spectroscopic signals such as inelastically scattered electrons and emitted photons. In the last few years, the successful development of aberration correctors for the electron microscope has transformed the field of electron microscopy, opening up new possibilities for correlating structure to functionality. Aberration correction not only allows for enhanced structural resolution with incident probes into the sub-angstrom range, but can also provide greater probe currents to facilitate mapping of intrinsically weak spectroscopic signals at the nanoscale or even the atomic level. In this issue of MRS Bulletin, we illustrate the power of the new generation of electron microscopes with a combination of imaging and spectroscopy. We show the mapping of elemental distributions at atomic resolution and also the mapping of electronic and optical properties at unprecedented spatial resolution, with applications ranging from graphene to plasmonic nanostructures, and oxide interfaces to biology.

  20. Scanning probe microscopy competency development

    SciTech Connect (OSTI)

    Hawley, M.E.; Reagor, D.W.; Jia, Quan Xi

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The project collaborators developed an ultra-high vacuum scanning tunneling microscope (UHV-STM) capability, integrated it with existing scanning probe microscopes, and developed new, advanced air-based scanning force techniques (SPMs). Programmatic, basic, and industrially related laboratory research requires the existence of SPMs, as well as expertise capable of providing local nano-scale information. The UHV-STM capability, equipped with load-lock system and several surface science techniques, will allow introduction, examination, and reaction of surfaces prepared under well-controlled vacuum conditions, including the examination of morphology and local bonding associated with the initial stages of film growth under controlled growth conditions. The resulting capabilities will enable the authors to respond to a variety of problems requiring local characterization of conducting and nonconducting surfaces in liquids, air, and UHV.

  1. Nonlinear Dark-Field Microscopy Hayk Harutyunyan,

    E-Print Network [OSTI]

    Novotny, Lukas

    /20/2010 Published on Web: 11/16/2010 FIGURE 1. Illustration of the nonlinear dark-field imaging method. Two incidentNonlinear Dark-Field Microscopy Hayk Harutyunyan, Stefano Palomba, Jan Renger, Romain Quidant Dark-field microscopy is a background-free imaging method that provides high sensitivity and a large

  2. Distance dependence of the phase signal in eddy current microscopy

    E-Print Network [OSTI]

    Roll, Tino; Fischer, Ulrich; Schleberger, Marika

    2008-01-01

    Atomic force microscopy using a magnetic tip is a promising tool for investigating conductivity on the nano-scale. By the oscillating magnetic tip eddy currents are induced in the conducting parts of the sample which can be detected in the phase signal of the cantilever. However, the origin of the phase signal is still controversial because theoretical calculations using a monopole appoximation for taking the electromagnetic forces acting on the tip into account yield an effect which is too small by more than two orders of magnitude. In order to determine the origin of the signal we used especially prepared gold nano patterns embedded in a non-conducting polycarbonate matrix and measured the distance dependence of the phase signal. Our data clearly shows that the interacting forces are long ranged and therefore, are likely due to the electromagnetic interaction between the magnetic tip and the conducting parts of the surface. Due to the long range character of the interaction a change in conductivity of $\\Del...

  3. OOTW Force Design Tools

    SciTech Connect (OSTI)

    Bell, R.E.; Hartley, D.S.III; Packard, S.L.

    1999-05-01

    This report documents refined requirements for tools to aid the process of force design in Operations Other Than War (OOTWs). It recommends actions for the creation of one tool and work on other tools relating to mission planning. It also identifies the governmental agencies and commands with interests in each tool, from whom should come the user advisory groups overseeing the respective tool development activities. The understanding of OOTWs and their analytical support requirements has matured to the point where action can be taken in three areas: force design, collaborative analysis, and impact analysis. While the nature of the action and the length of time before complete results can be expected depends on the area, in each case the action should begin immediately. Force design for OOTWs is not a technically difficult process. Like force design for combat operations, it is a process of matching the capabilities of forces against the specified and implied tasks of the operation, considering the constraints of logistics, transport and force availabilities. However, there is a critical difference that restricts the usefulness of combat force design tools for OOTWs: the combat tools are built to infer non-combat capability requirements from combat capability requirements and cannot reverse the direction of the inference, as is required for OOTWs. Recently, OOTWs have played a larger role in force assessment, system effectiveness and tradeoff analysis, and concept and doctrine development and analysis. In the first Quadrennial Defense Review (QDR), each of the Services created its own OOTW force design tool. Unfortunately, the tools address different parts of the problem and do not coordinate the use of competing capabilities. These tools satisfied the immediate requirements of the QDR, but do not provide a long-term cost-effective solution.

  4. Single-Cell Adhesion Tests against Functionalized Microspheres Arrayed on AFM Cantilevers Confirm Heterophilic E-and N-Cadherin Binding

    E-Print Network [OSTI]

    Heinrich, Volkmar

    Single-Cell Adhesion Tests against Functionalized Microspheres Arrayed on AFM Cantilevers Confirm: vheinrich@ucdavis.edu Cadherins are calcium-dependent adhesion proteins that mediate vital physiological of processes like cadherin-medi- ated cell-cell adhesion. However, as long as each selected cell can only

  5. Protective Force Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-02-13

    To prescribe Department of Energy policy, responsibilities, and requirements for the management and operation of the Protective Force Program. Chg 1 dated 2-13-95. Cancels DOE O 5632.7 and DOE O 5632.8.

  6. Federal Protective Force

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-07-15

    This Manual establishes requirements for the management and operation of the Department of Energy (DOE) Federal protective forces (FPFs). Cancels DOE M 470.4-3, Chg 1. Canceled by DOE O 473.3.

  7. Conservative entropic forces

    E-Print Network [OSTI]

    Visser, Matt

    2011-01-01

    Entropic forces have recently attracted considerable attention as ways to reformulate, retrodict, and perhaps even "explain'" classical Newtonian gravity from a rather specific thermodynamic perspective. In this article I point out that if one wishes to reformulate classical Newtonian gravity in terms of an entropic force, then the fact that Newtonian gravity is described by a conservative force places significant constraints on the form of the entropy and temperature functions. (These constraints also apply to entropic reinterpretations of electromagnetism, and indeed to any conservative force derivable from a potential.) The constraints I will establish are sufficient to present real and significant problems for any reasonable variant of Verlinde's entropic gravity proposal, though for technical reasons the constraints established herein do not directly impact on either Jacobson's or Padmanabhan's versions of entropic gravity. In an attempt to resolve these issues, I will extend the usual notion of entropic...

  8. Weak nuclear forces cause the strong nuclear force

    E-Print Network [OSTI]

    E. L. Koschmieder

    2007-12-11

    We determine the strength of the weak nuclear force which holds the lattices of the elementary particles together. We also determine the strength of the strong nuclear force which emanates from the sides of the nuclear lattices. The strong force is the sum of the unsaturated weak forces at the surface of the nuclear lattices. The strong force is then about ten to the power of 6 times stronger than the weak force between two lattice points.

  9. Confusion around the tidal force and the centrifugal force

    E-Print Network [OSTI]

    Matsuda, Takuya; Boffin, Henri M J

    2015-01-01

    We discuss the tidal force, whose notion is sometimes misunderstood in the public domain literature. We discuss the tidal force exerted by a secondary point mass on an extended primary body such as the Earth. The tidal force arises because the gravitational force exerted on the extended body by the secondary mass is not uniform across the primary. In the derivation of the tidal force, the non-uniformity of the gravity is essential, and inertial forces such as the centrifugal force are not needed. Nevertheless, it is often asserted that the tidal force can be explained by the centrifugal force. If we literally take into account the centrifugal force, it would mislead us. We therefore also discuss the proper treatment of the centrifugal force.

  10. Spatially resolved quantitative mapping of thermomechanical properties and phase transition temperatures using scanning probe microscopy

    DOE Patents [OSTI]

    Jesse, Stephen; Kalinin, Sergei V; Nikiforov, Maxim P

    2013-07-09

    An approach for the thermomechanical characterization of phase transitions in polymeric materials (polyethyleneterephthalate) by band excitation acoustic force microscopy is developed. This methodology allows the independent measurement of resonance frequency, Q factor, and oscillation amplitude of a tip-surface contact area as a function of tip temperature, from which the thermal evolution of tip-surface spring constant and mechanical dissipation can be extracted. A heating protocol maintained a constant tip-surface contact area and constant contact force, thereby allowing for reproducible measurements and quantitative extraction of material properties including temperature dependence of indentation-based elastic and loss moduli.

  11. Photon tunnelling microscopy of polyethylene single crystals

    E-Print Network [OSTI]

    Srinivasarao, Mohan

    Photon tunnelling microscopy of polyethylene single crystals Mohan Srinivasarao* and Richard S:photon tunnellingmicroscopy;single crystals; polyethylene) INTRODUCTION The study of morphology of polymers is an area

  12. Data visualization of biological microscopy image analyses

    E-Print Network [OSTI]

    Scelfo, Tony (Tony W.)

    2006-01-01

    The Open Microscopy Environment (OME) provides biologists with a framework to store, analyze and manipulate large sets of image data. Current microscopes are capable of generating large numbers of images and when coupled ...

  13. Chapter One Microscopy of Soft Materials

    E-Print Network [OSTI]

    Weeks, Eric R.

    . Shaving cream is a common example. · Sand, composed of large solid particles in vacuum, air, or a liquid of these soft systems are often com- patible with conventional video microscopy. For example, consider food

  14. Ultra-high Resolution Electron Microscopy for Catalyst Characterizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    high Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst Characterization 2009 DOE Hydrogen Program and Vehicle...

  15. Ultra-High Resolution Electron Microscopy for Catalyst Characterizatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Ultra-High Resolution Electron Microscopy for Catalyst Characterization Ultra-high Resolution Electron Microscopy for Catalyst Characterization Catalyst...

  16. Work Force Discipline

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1983-03-23

    The order provides guidance and procedures and states responsibilities for maintaining work force discipline in DOE. Chg 1, dated 3-11-85; Chg 2, dated 1-6-86; Chg 3, dated 3-21-89; Chg 4, dated 8-2-90; Chg 5, dated 3-9-92; Chg 6, dated 8-21-92, cancels Chg 5.

  17. Protective Force Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-06-30

    Establishes policy, requirements, responsibilities, and authorities, for the management and operation of the Department of Energy (DOE) Protective Force (PF) Program. Extended until 7-7-06 by DOE N 251.64, dated 7-7-05 Cancels: DOE 5632.7A

  18. Contractor Protective Force

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-11-05

    This Manual establishes requirements for the management and operation of the U.S. Department of Energy contractor protective forces. Cancels: DOE M 470.4-3 Chg 1, CRD (Attachment 2) only, except for Section C. Canceled by DOE O 473.3.

  19. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mccomiskey, Allison

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  20. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mccomiskey, Allison

    2008-01-15

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  1. 2009NatureAmerica,Inc.Allrightsreserved. Nanoscale live-cell

    E-Print Network [OSTI]

    Cai, Long

    microscopy (SPM) is one approach to this problem and both atomic force microscopy (AFM) and scanning. Scanning ion conductance microscopy (SICM)3 is another form of SPM, which allows imaging of the cell other SPM techniques. This is because when the probe encounters a vertical structure, it inevitably

  2. Uncertainty in least-squares fits to the thermal noise spectra of nanomechanical resonators with applications to the atomic force microscope

    SciTech Connect (OSTI)

    Sader, John E.; Yousefi, Morteza; Friend, James R.; Melbourne Centre for Nanofabrication, Clayton, Victoria 3800

    2014-02-15

    Thermal noise spectra of nanomechanical resonators are used widely to characterize their physical properties. These spectra typically exhibit a Lorentzian response, with additional white noise due to extraneous processes. Least-squares fits of these measurements enable extraction of key parameters of the resonator, including its resonant frequency, quality factor, and stiffness. Here, we present general formulas for the uncertainties in these fit parameters due to sampling noise inherent in all thermal noise spectra. Good agreement with Monte Carlo simulation of synthetic data and measurements of an Atomic Force Microscope (AFM) cantilever is demonstrated. These formulas enable robust interpretation of thermal noise spectra measurements commonly performed in the AFM and adaptive control of fitting procedures with specified tolerances.

  3. Structural Characterization of Micromechanical Properties in Asphalt Using Atomic Force Microscopy 

    E-Print Network [OSTI]

    Allen, Robert Grover

    2012-02-14

    of the study was based on nano-indentation experiments performed within a micro-grid of asphalt phases in order to determine micromechanical properties such as stiffness, adhesion and elastic/plastic behavior. The change in microstructure...

  4. Atomic force microscopy study of the growth and annealing of Ge islands on Si(100)

    E-Print Network [OSTI]

    Liu, Bing; Berrie, Cindy L.; Kitajima, Takeshi; Bright, John; Leone, Stephen R.

    2002-03-01

    "superdome" (named b y W i n . iams et a/ . 1 5 ) . Superdomes will not only consume most o f t h e supersaturation, but also the surrounding small coherent islands. 1 6 This complicates the interpretation of island d e n -sity and size distribution...

  5. Reactivity of Ozone with Solid Potassium Iodide Investigated by Atomic Force Microscopy

    E-Print Network [OSTI]

    Brown, Matthew A.

    2008-01-01

    92697 2. Molecular Foundry, Lawrence Berkeley Nationalwere performed at the Molecular Foundry, Lawrence Berkeley

  6. Parallel Atomic Force Microscopy and NMR Spectroscopy To Investigate Self-Assembled Protein-Nucleotide Aggregates

    E-Print Network [OSTI]

    Dellaire, Graham

    - tially be quite useful for a wide variety of systems, since it would allow for the linkage of mesoscale

  7. Magnetic Force Microscopy Study of Zr2Co11 -Based Nanocrystalline Materials: Effect of Mo Addition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yue, Lanping; Jin, Yunlong; Zhang, Wenyong; Sellmyer, David J.

    2015-01-01

    The addition of Molybdenum was used to modify the nanostructure and enhance coercivity of rare-earth-free Zr2Co11-based nanocrystalline permanent magnets. The effect of Mo addition on magnetic domain structures of melt spun nanocrystalline Zr16Co84-xMox(x=0, 0.5, 1, 1.5, and 2.0) ribbons has been investigated. It was found that magnetic properties and local domain structures are strongly influenced by Mo doping. The coercivity of the samples increases with the increase in Mo content (x?1.5). The maximum energy product(BH)maxincreases with increasingxfrom 0.5?MGOe forx=0to a maximum value of 4.2?MGOe forx=1.5. The smallest domain size with a relativelymore »short magnetic correlation length of 128?nm and largest root-mean-square phase shift?rmsvalue of 0.66° are observed for thex=1.5. The optimal Mo addition promotes magnetic domain structure refinement and thus leads to a significant increase in coercivity and energy product in this sample.« less

  8. Atomic Force Microscopy of Photosystem II and Its Unit Cell Clustering Quantitatively Delineate the Mesoscale

    E-Print Network [OSTI]

    Geissler, Phillip

    the Mesoscale Variability in Arabidopsis Thylakoids Bibiana Onoa1 , Anna R. Schneider2 , Matthew D. Brooks3 Quantitatively Delineate the Mesoscale Variability in Arabidopsis Thylakoids. PLoS ONE 9(7): e101470. doi:10

  9. Mode-synthesizing atomic force microscopy and mode-synthesizing sensing

    DOE Patents [OSTI]

    Passain, Ali; Thundat, Thomas George; Tetard, Laurene

    2014-07-22

    A method of analyzing a sample that includes applying a first set of energies at a first set of frequencies to a sample and applying, simultaneously with the applying the first set of energies, a second set of energies at a second set of frequencies, wherein the first set of energies and the second set of energies form a multi-mode coupling. The method further includes detecting an effect of the multi-mode coupling.

  10. Investigations into Protein-Surface Interactions via Atomic Force Microscopy and Surface Plasmon Resonance

    E-Print Network [OSTI]

    Settle, Jenifer Kaye

    2012-08-31

    performed via surface plasmon resonance (SPR) to investigate the dynamics of this adsorption process on gold, and an amine-, carboxyl-, methyl- and hydroxyl-terminated SAM films. Chapter 4 provides background and investigation into F1-Adenosine triphosphate...

  11. Force microscopy of layering and friction in an ionic liquid Judith Hotha,b

    E-Print Network [OSTI]

    Mueser, Martin

    in the contact were observed, resulting in multiple possible friction values for the same applied normal load-viscosity, yet load- bearing lubricant [1-4]. The load-bearing ability stems from the formation of solvation and sacrificial layer in a rubbing contact, in which lost material can get replenished quasi-instantly from

  12. Reactivity of Ozone with Solid Potassium Iodide Investigated by Atomic Force Microscopy

    E-Print Network [OSTI]

    Brown, Matthew A.

    2008-01-01

    J. C. , Reactivity of ozone on solid potassium iodide.and mechanisms of aqueous ozone reactions with bromide,for Dry Deposition of Ozone to Seawater Surfaces. Journal of

  13. Imaging of single hairpin ribozymes in solution by atomic force microscopy

    E-Print Network [OSTI]

    Walter, Nils G.

    and Molecular Genetics, The University of Vermont, Burlington, Vermont 05405, USA ABSTRACT The hairpin ribozyme, The University of Vermont, Burlington, Vermont 05405, USA; email: John+Burke

  14. The Cellular Mechanoresponse: Single-Cell Studies by Atomic Force Microscopy

    E-Print Network [OSTI]

    Crow, Alexis Kohnstamm

    2011-01-01

    L. (2008). Life and times of a cellular bleb. Biophys J 94,2007). Self?assembled cellular microarrays patterned usingand Ingber, D.  E. (2006). Cellular adaptation to mechanical

  15. Mechanical Signaling Induced Cellular Remodeling Studied By Integrated Optical And Atomic Force Microscopy 

    E-Print Network [OSTI]

    Sreenivasappa, Harini Bytaraya

    2014-12-08

    Vascular wall composition and mechanics are important for cardiovascular physiology and pathology. The reciprocal interaction between cells and their microenvironment influence cellular adaptation to external mechanical cues through the remodeling...

  16. Integrated Atomic Force Microscopy Techniques for Analysis of Biomaterials : : Study of Membrane Proteins

    E-Print Network [OSTI]

    Connelly, Laura S.

    2014-01-01

    TECHNIQUES FOR ANALYSIS OF BIOMATERIALS: STUDY OF MEMBRANETECHNIQUES FOR ANALYSIS OF BIOMATERIALS: STUDY OF MEMBRANE

  17. A 4 K cryogenic probe for use in magnetic resonance force microscopy experiments

    SciTech Connect (OSTI)

    Smith, Doran D.; Alexson, Dimitri A. [U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783 (United States)] [U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783 (United States); Garbini, Joseph L. [Mechanical Engineering, University of Washington, Seattle, Washington 98195 (United States)] [Mechanical Engineering, University of Washington, Seattle, Washington 98195 (United States)

    2013-09-15

    The detailed design of a mechanically detected nuclear magnetic resonance probe using the SPAM (Springiness Preservation by Aligning Magnetization) geometry, operating at 4 K, in vacuum, and a several-Tesla magnetic field is described. The probe head is vibration-isolated well enough from the environment by a three-spring suspension system that the cantilever achieves thermal equilibrium with the environment without the aid of eddy current damping. The probe uses an ultra-soft Si cantilever with a Ni sphere attached to its tip, and magnetic resonance is registered as a change in the resonant frequency of the driven cantilever. The RF system uses frequency sweeps for adiabatic rapid passage using a 500 ?m diameter RF coil wound around a sapphire rod. The RF coil and optical fiber of the interferometer used to sense the cantilever's position are both located with respect to the cantilever using a Garbini micropositioner, and the sample stage is mounted on an Attocube nanopositioner.

  18. Applications of Atomic Force Microscopy in Biophysical Chemistry of Cells Valentin Lulevich,

    E-Print Network [OSTI]

    Liu, Gang-yu

    Lulevich, Fu-tong Liu, and Gang-yu Liu*, Department of Chemistry, UniVersity of California, DaVis, DaVis, California 95616, and Department of Dermatology, UniVersity of California at DaVis, Sacramento, California in all living cells and involves transport of intracellular products to the exterior of cells.6 Although

  19. Probing Nanotribological and Electrical Properties of Organic Molecular Films with Atomic Force Microscopy

    E-Print Network [OSTI]

    Weeks, Eric R.

    Graduate Group, University of California, Berkeley, California 3 Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California Summary: Structural aspects between na- nomechanical and charge transport properties of molecular films at the molecular scale

  20. Customized atomic force microscopy probe by focused-ion-beam-assisted tip

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing BacteriaConnect Collidertransfer (Journal Article) | SciTech Connect Customized

  1. Portable dual field gradient force multichannel flow cytometer device with a dual wavelength low noise detection scheme

    DOE Patents [OSTI]

    James, Conrad D; Galambos, Paul C; Derzon, Mark S; Graf, Darin C; Pohl, Kenneth R; Bourdon, Chris J

    2012-10-23

    Systems and methods for combining dielectrophoresis, magnetic forces, and hydrodynamic forces to manipulate particles in channels formed on top of an electrode substrate are discussed. A magnet placed in contact under the electrode substrate while particles are flowing within the channel above the electrode substrate allows these three forces to be balanced when the system is in operation. An optical detection scheme using near-confocal microscopy for simultaneously detecting two wavelengths of light emitted from the flowing particles is also discussed.

  2. Instrument Series: Microscopy Ultra-High Vacuum, Variable-

    E-Print Network [OSTI]

    (graphene), and formation of self-assembled monolayers. Thin film and cluster growth ­ characterizing AFM Operations Ì Includes AES, XPS, and LEED Ì Sample Preparation: Thin Film Growth, Ion Sputtering preparation ­ offers heating up to 1100 K, cooling down to 100 K, ion sputtering, evaporation sources for film

  3. RESEARCH NEWS VOLUME 12 ELECTRON MICROSCOPY SPECIAL ISSUE 7

    E-Print Network [OSTI]

    Espinosa, Horacio D.

    . The resolution of AFM is limited by the sharpness of the tip and its geometry. Unfortunately, tips degrade during, and a potentially biodegradable semiconductor, 5,5'-bis-(7-dodecyl-9H-fluoren-2-yl)- 2,2'-bithiophene (DDFTTF

  4. Force Modulator System

    SciTech Connect (OSTI)

    Redmond Clark

    2009-04-30

    Many metal parts manufacturers use large metal presses to shape sheet metal into finished products like car body parts, jet wing and fuselage surfaces, etc. These metal presses take sheet metal and - with enormous force - reshape the metal into a fully formed part in a manner of seconds. Although highly efficient, the forces involved in forming metal parts also damage the press itself, limit the metals used in part production, slow press operations and, when not properly controlled, cause the manufacture of large volumes of defective metal parts. To date, the metal-forming industry has not been able to develop a metal-holding technology that allows full control of press forces during the part forming process. This is of particular importance in the automotive lightweighting efforts under way in the US automotive manufacturing marketplace. Metalforming Controls Technology Inc. (MC2) has developed a patented press control system called the Force Modulator that has the ability to control these press forces, allowing a breakthrough in stamping process control. The technology includes a series of hydraulic cylinders that provide controlled tonnage at all points in the forming process. At the same time, the unique cylinder design allows for the generation of very high levels of clamping forces (very high tonnages) in very small spaces; a requirement for forming medium and large panels out of HSS and AHSS. Successful production application of these systems testing at multiple stamping operations - including Ford and Chrysler - has validated the capabilities and economic benefits of the system. Although this technology has been adopted in a number of stamping operations, one of the primary barriers to faster adoption and application of this technology in HSS projects is system cost. The cost issue has surfaced because the systems currently in use are built for each individual die as a custom application, thus driving higher tooling costs. This project proposed to better marry the die-specific Force Modulator technology with stamping presses in the form of a press cushion. This system would be designed to operate the binder ring for multiple parts, thus cutting the per-die cost of the technology. This study reports the results of technology field application. This project produced the following conclusions: (1) The Force Modulator system is capable of operating at very high tempos in the stamping environment; (2) The company can generate substantial, controlled holding tonnage (binder ring pressure) necessary to hold high strength steel parts for proper formation during draw operations; (3) A single system can be designed to operate with a family of parts, thus significantly reducing the per-die cost of a FM system; (4) High strength steel parts made with these systems appear to show significant quality improvements; (5) The amounts of steel required to make these parts is typically less than the amounts required with traditional blank-holding technologies; and (6) This technology will aid in the use of higher strength steels in auto and truck production, thus reducing weight and improving fuel efficiency.

  5. Is gravity entropic force?

    E-Print Network [OSTI]

    Rong-Jia Yang

    2014-09-11

    If we assume that the source of thermodynamic system, $\\rho$ and $p$, are also the source of gravity, thermal quantities, such as entropy, temperature, and chemical potential, can induce effects of gravity, or gravity can induce thermal effects. We find only for systems with constant temperature and zero chemical potential, gravity can be seen as an entropic force. The case for Newtonian approximation is discussed.

  6. Forced Granular Orifice Flow

    E-Print Network [OSTI]

    Zheng Peng; Hepeng Zheng; Yimin Jiang

    2009-09-06

    The flow of granular material through an orifice is studied experimentally as a function of force $F$ pushing the flow. It is found that the flow rate increases linearly with $F$ -- a new, unexpected result that is in contrast to the usual view that $F$, completely screened by an arch formed around the orifice, has no way of altering the rate. Employing energy balance, we show that this behavior results mainly from dissipation in the granular material.

  7. Four-wave mixing microscopy of nanostructures

    E-Print Network [OSTI]

    Potma, Eric Olaf

    Four-wave mixing microscopy of nanostructures Yong Wang, Chia-Yu Lin, Alexei Nikolaenko, Varun July 14, 2010; accepted July 27, 2010; published September 10, 2010 (Doc. ID 128079) The basics of four-wave. Four-Wave Mixing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2

  8. Femtosecond Optical Spectroscopy and Scanning Probe Microscopy

    E-Print Network [OSTI]

    Scherer, Norbert F.

    microscopy (FOS-SPM), is capable of spatial localization of optically induced phenomenon at intdaces. Spatially localized, time resolved spectroscopicmeasurements are achieved via couplingof the metal SPM tip to an optical field at the interhqe.[2,3] FOS-SPM has been shown to be capable of identqing and differentating

  9. Work Force Restructuring Activities

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Lacledeutilities.EnergyKirstin AlberiComputerMathewsWeiWork Force

  10. Application of Surface Spectroscopies and Microscopies to Elucidate Sorption Mechanisms on Oxide Surfaces

    E-Print Network [OSTI]

    Sparks, Donald L.

    -resolution transmission electron microscopy (HRTEM), and surface probing microscopy (SPM) were used to discern

  11. www.afm-journal.de 2011 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimAdv. Funct. Mater. 2011, XX, 19 1

    E-Print Network [OSTI]

    environmental conditions the gecko adhesive pads, by changing their hydro- phobicity under humid conditions their friction forces.[3,4] The van der Waals force is weak for a single small contact such as a spatula that the shear force could reach as high as 194 N.[6] Small scale tests often give high forces that are often

  12. Anomalous pH Dependent Stability Behavior of Surfactant-Free Nonpolar Oil Drops in Aqueous Electrolyte Solutions

    E-Print Network [OSTI]

    Chan, Derek Y C

    microscopy (AFM) force measurement techniques have allowed the direct measurement and theoretical (perfluoropentane) droplets, hydrocarbon (tetradecane) droplets, and a droplet and a flat mica surface of these interactive forces suggests that the DLVO theory cannot explain the observed behavior. The measured force

  13. Frontiers of in situ electron microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Haimei; Zhu, Yimei; Meng, Shirley Ying

    2015-01-01

    In situ transmission electron microscopy (TEM) has become an increasingly important tool for materials characterization. It provides key information on the structural dynamics of a material during transformations and the correlation between structure and properties of materials. With the recent advances in instrumentation, including aberration corrected optics, sample environment control, the sample stage, and fast and sensitive data acquisition, in situ TEM characterization has become more and more powerful. In this article, a brief review of the current status and future opportunities of in situ TEM is included. It also provides an introduction to the six articles covered by inmore »this issue of MRS Bulletin explore the frontiers of in situ electron microscopy, including liquid and gas environmental TEM, dynamic four-dimensional TEM, nanomechanics, ferroelectric domain switching studied by in situ TEM, and state-of-the-art atomic imaging of light elements (i.e., carbon atoms) and individual defects.« less

  14. Development of a quartz tuning-fork-based force sensor for measurements in the tens of nanoNewton force range during nanomanipulation experiments

    SciTech Connect (OSTI)

    Oiko, V. T. A. Rodrigues, V.; Ugarte, D.; Martins, B. V. C.; Silva, P. C.

    2014-03-15

    Understanding the mechanical properties of nanoscale systems requires new experimental and theoretical tools. In particular, force sensors compatible with nanomechanical testing experiments and with sensitivity in the nN range are required. Here, we report the development and testing of a tuning-fork-based force sensor for in situ nanomanipulation experiments inside a scanning electron microscope. The sensor uses a very simple design for the electronics and it allows the direct and quantitative force measurement in the 1–100 nN force range. The sensor response is initially calibrated against a nN range force standard, as, for example, a calibrated Atomic Force Microscopy cantilever; subsequently, applied force values can be directly derived using only the electric signals generated by the tuning fork. Using a homemade nanomanipulator, the quantitative force sensor has been used to analyze the mechanical deformation of multi-walled carbon nanotube bundles, where we analyzed forces in the 5–40 nN range, measured with an error bar of a few nN.

  15. New Developments in Transmission Electron Microscopy for Nanotechnology**

    E-Print Network [OSTI]

    Wang, Zhong L.

    New Developments in Transmission Electron Microscopy for Nanotechnology** By Zhong Lin Wang* 1. Electron Microscopy and Nanotechnology Nanotechnology, as an international initiative for science manufacturing are the foundation of nanotechnology. Tracking the historical background of why nanotechnology

  16. In-Situ Electron Microscopy of Electrical Energy Storage Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    es095unocic2011o.pdf More Documents & Publications In-Situ Electron Microscopy of Electrical Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage...

  17. In-Situ Electron Microscopy of Electrical Energy Storage Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    es095unocic2012p.pdf More Documents & Publications In-Situ Electron Microscopy of Electrical Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage...

  18. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Record-Setting Microscopy Illuminates Energy Storage Materials Print X-ray microscopy is powerful in that it can probe large volumes of material at high spatial resolution with...

  19. Quantum anti-centrifugal force

    E-Print Network [OSTI]

    M. A. Cirone; K. Rzazewski; W. P. Schleich; F. Straub; J. A. Wheeler

    2001-08-16

    In a two-dimensional world a free quantum particle of vanishing angular momentum experiences an attractive force. This force originates from a modification of the classical centrifugal force due to the wave nature of the particle. For positive energies the quantum anti-centrifugal force manifests itself in a bunching of the nodes of the energy wave functions towards the origin. For negative energies this force is sufficient to create a bound state in a two-dimensional delta function potential. In a counter-intuitive way the attractive force pushes the particle away from the location of the delta function potential. As a consequence, the particle is localized in a band-shaped domain around the origin

  20. Chemically-selective imaging of brain structures with CARS microscopy

    E-Print Network [OSTI]

    Xie, Xiaoliang Sunney

    Chemically-selective imaging of brain structures with CARS microscopy Conor L. Evans1§ , Xiaoyin Xu anti-Stokes Raman scattering (CARS) microscopy to image brain structure and pathology ex vivo. Although. Definitive diagnosis still requires brain biopsy in a significant number of cases. CARS microscopy

  1. Continuous Forcing Data, Darwin, Australia

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jakob, Christian

    2010-09-22

    Long term, large scale continuous forcing data set for three complete wet seasons (2004-2005, 2005-2006 and 2006-2007) in Darwin, Australia.

  2. Force As A Momentum Current

    SciTech Connect (OSTI)

    Munera, Hector A.

    2010-07-28

    Advantages of a neo-Cartesian approach to classical mechanics are noted. If conservation of linear momentum is the fundamental principle, Newton's three laws become theorems. A minor paradox in static Newtonian mechanics is identified, and solved by reinterpreting force as a current of momentum. Contact force plays the role of a mere midwife in the exchange of momentum; however, force cannot be eliminated from physics because it provides the numerical value for momentum current. In this sense, in a neo-Cartesian formulation of mechanics the concept of force becomes strengthened rather than weakened.

  3. Continuous Forcing Data, Darwin, Australia

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jakob, Christian

    Long term, large scale continuous forcing data set for three complete wet seasons (2004-2005, 2005-2006 and 2006-2007) in Darwin, Australia.

  4. Air Force Renewable Energy Programs

    Broader source: Energy.gov [DOE]

    Presentation covers Air Force Renewable Energy Programs and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  5. Studying The Kinetics Of Crystalline Silicon Nanoparticle Lithiation With In-Situ Transmission Electron Microscopy

    SciTech Connect (OSTI)

    Mcdowell, Matthew T.; Ryu, Ill; Lee, Seokwoo; Wang, Chong M.; Nix, William D.; Cui, Yi

    2012-11-27

    Silicon is an attractive high-capacity anode material for Li-ion batteries, but a comprehensive understanding of the massive ~300% volume change and fracture during lithiation/delithiation is necessary to reliably employ Si anodes. Here, in-situ transmission electron microscopy (TEM) of the lithiation of crystalline Si nanoparticles reveals that the reaction slows down as it progresses into the particle interior. Analysis suggests that this behavior is due to the influence of mechanical stress at the reaction front on the driving force for the reaction. These experiments give insight into the factors controlling the kinetics of this unique reaction.

  6. Sub-microsecond-resolution probe microscopy

    DOE Patents [OSTI]

    Ginger, David; Giridharagopal, Rajiv; Moore, David; Rayermann, Glennis; Reid, Obadiah

    2014-04-01

    Methods and apparatus are provided herein for time-resolved analysis of the effect of a perturbation (e.g., a light or voltage pulse) on a sample. By operating in the time domain, the provided method enables sub-microsecond time-resolved measurement of transient, or time-varying, forces acting on a cantilever.

  7. Fast electron microscopy via compressive sensing

    DOE Patents [OSTI]

    Larson, Kurt W; Anderson, Hyrum S; Wheeler, Jason W

    2014-12-09

    Various technologies described herein pertain to compressive sensing electron microscopy. A compressive sensing electron microscope includes a multi-beam generator and a detector. The multi-beam generator emits a sequence of electron patterns over time. Each of the electron patterns can include a plurality of electron beams, where the plurality of electron beams is configured to impart a spatially varying electron density on a sample. Further, the spatially varying electron density varies between each of the electron patterns in the sequence. Moreover, the detector collects signals respectively corresponding to interactions between the sample and each of the electron patterns in the sequence.

  8. New Microscopy Patent Awarded | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesofPublications64 2.251 2.211 2.196 2.172companies atNew Microscopy

  9. Steering the Self-Assembly of Octadecylamine Monolayers on Mica by Controlled Mechanical Energy Transfer from the AFM Tip

    SciTech Connect (OSTI)

    Benitez, J.J.; Heredia-Guerrero, J.A.; Salmeron, M.

    2010-06-24

    We have studied the effect of mechanical energy transfer from the tip of an Atomic Force Microscope on the dynamics of self-assembly of monolayer films of octadecylamine on mica. The formation of the self-assembled film proceeds in two successive stages, the first being a fast adsorption from solution that follows a Langmuir isotherm. The second is a slower process of island growth by aggregation of the molecules dispersed on the surface. We found that the dynamics of aggregation can be altered substantially by the addition of mechanical energy into the system through controlled tip-surface interactions. This leads to either the creation of pinholes in existing islands as a consequence of vacancy concentration, and to the assembly of residual molecules into more compact islands.

  10. [Band electronic structures and crystal packing forces]. Progress report, [March 1992--February 1993

    SciTech Connect (OSTI)

    Not Available

    1993-03-01

    We investigated the electronic and structural properties of low-dimensional materials and explored the structure-property correlations governing their physical properties. Progress was made on how to interpret the scanning tunneling microscopy and atomic force microscopy images of layered materials and on how to account for charge density wave instabilities in 2-D metals. Materials studied included transition metal chalcogenides, transition metal halides, organic conducting salts, Mo bronzes, A{sub 2}PdH{sub 2}, fullerenes, squarate tetrahydrate polymers Fe, Cu(C{sub 4}O{sub 4})4{center_dot}H{sub 2}O, BEDT salts, etc.

  11. Fabricating Nanoscale DNA Patterns with Gold Yulin Chen, Sheng-Chin Kung, David K. Taggart, Aaron R. Halpern, Reginald M. Penner, and

    E-Print Network [OSTI]

    for DNA diagnostics and detecting gene expression,1 (ii) generate ssDNA patterns for the adsorption a few serial deposition strategies such as e-beam deposition methods7,8 or dip-pen nanolithography9 . A combination of scanning electron microscopy (SEM), fluorescence, and atomic force microscopy (AFM

  12. Stochastic force in gravitational systems

    E-Print Network [OSTI]

    A. Del Popolo

    2001-05-10

    In this paper I study the probability distribution of the gravitational force in gravitational systems through numerical experiments. I show that Kandrup's (1980) and Antonuccio-Delogu & Atrio-Barandela's (1992) theories describe correctly the stochastic force probability distribution respectively in inhomogeneous and clustered systems. I find equations for the probability distribution of stochastic forces in finite systems, both homogeneous and clustered, which I use to compare the theoretical predictions with Montecarlo simulations of spherically symmetric systems. The agreement between theoretical predictions and simulations proves to be quite satisfactory.

  13. Thermal expansion recovery microscopy: Practical design considerations

    SciTech Connect (OSTI)

    Mingolo, N. Martínez, O. E.

    2014-01-15

    A detailed study of relevant parameters for the design and operation of a photothermal microscope technique recently introduced is presented. The technique, named thermal expansion recovery microscopy (ThERM) relies in the measurement of the defocusing introduced by a surface that expands and recovers upon the heating from a modulated source. A new two lens design is presented that can be easily adapted to commercial infinite conjugate microscopes and the sensitivity to misalignment is analyzed. The way to determine the beam size by means of a focus scan and the use of that same scan to verify if a thermoreflectance signal is overlapping with the desired ThERM mechanism are discussed. Finally, a method to cancel the thermoreflectance signal by an adequate choice of a nanometric coating is presented.

  14. Cell shape identification using digital holographic microscopy

    E-Print Network [OSTI]

    Zakrisson, Johan; Andersson, Magnus

    2015-01-01

    We present a cost-effective, simple and fast digital holographic microscopy method based upon Rayleigh-Sommerfeld back propagation for identification of the geometrical shape of a cell. The method was tested using synthetic hologram images generated by ray-tracing software and from experimental images of semi-transparent spherical beads and living red blood cells. Our results show that by only using the real part of the back-reconstructed amplitude the proposed method can provide information of the geometrical shape of the object and at the same time accurately determine the axial position of the object under study. The proposed method can be used in flow chamber assays for pathophysiological studies where fast morphological changes of cells are studied in high numbers and at different heights.

  15. Prediction of vehicle impact forces 

    E-Print Network [OSTI]

    Kaderka, Darrell Laine

    1990-01-01

    PREDICTION OF VEHICLE IMPACT FORCES A Thesis by DARRELL LAINE KADERKA Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1990 Major Subject...: Civil Engineering PREDICTION OF VEHICLE IMPACT FORCES A Thesis by DARRELL LAINE KADERKA Approved as to style and content by: C. Eugene Buth (Chair of Committee) W. ynn Beason (Member) I? D n E. B ay (Member) es T. P. Yao (Departmen Head) May...

  16. Is Gravity an Entropic Force?

    E-Print Network [OSTI]

    Shan Gao

    2011-07-16

    The remarkable connections between gravity and thermodynamics seem to imply that gravity is not fundamental but emergent, and in particular, as Verlinde suggested, gravity is probably an entropic force. In this paper, we will argue that the idea of gravity as an entropic force is debatable. It is shown that there is no convincing analogy between gravity and entropic force in Verlinde's example. Neither holographic screen nor test particle satisfies all requirements for the existence of entropic force in a thermodynamics system. Furthermore, we show that the entropy increase of the screen is not caused by its statistical tendency to increase entropy as required by the existence of entropic force, but in fact caused by gravity. Therefore, Verlinde's argument for the entropic origin of gravity is problematic. In addition, we argue that the existence of a minimum size of spacetime, together with the Heisenberg uncertainty principle in quantum theory, may imply the fundamental existence of gravity as a geometric property of spacetime. This may provide a further support for the conclusion that gravity is not an entropic force.

  17. Dynamics of Cell Shape and Forces on Micropatterned Substrates Predicted by a Cellular Potts Model

    E-Print Network [OSTI]

    Philipp J. Albert; Ulrich S. Schwarz

    2014-05-19

    Micropatterned substrates are often used to standardize cell experiments and to quantitatively study the relation between cell shape and function. Moreover, they are increasingly used in combination with traction force microscopy on soft elastic substrates. To predict the dynamics and steady states of cell shape and forces without any a priori knowledge of how the cell will spread on a given micropattern, here we extend earlier formulations of the two-dimensional cellular Potts model. The third dimension is treated as an area reservoir for spreading. To account for local contour reinforcement by peripheral bundles, we augment the cellular Potts model by elements of the tension-elasticity model. We first parameterize our model and show that it accounts for momentum conservation. We then demonstrate that it is in good agreement with experimental data for shape, spreading dynamics, and traction force patterns of cells on micropatterned substrates. We finally predict shapes and forces for micropatterns that have not yet been experimentally studied.

  18. X-Ray Microscopy Reveals How Crystal Mechanics Drive Battery...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microscopy Reveals How Crystal Mechanics Drive Battery Performance Print Rechargeable lithium-ion batteries power most portable electronics and are becoming more widely used in...

  19. In situ transmission electron microscopy investigation of the...

    Office of Scientific and Technical Information (OSTI)

    In situ transmission electron microscopy investigation of the interfacial reaction between Ni and Al during rapid heating in a nanocalorimeter Grapes, Michael D. Department of...

  20. In situ transmission electron microscopy investigation of the...

    Office of Scientific and Technical Information (OSTI)

    Published Article: In situ transmission electron microscopy investigation of the interfacial reaction between Ni and Al during rapid heating in a nanocalorimeter Title: In situ...

  1. Los Alamos: MST: MST-6: EML: Electron Microscopy Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is also greater flexibility in choice of standards and ZAF correction schemes. Digital Mapping and Imaging. Automated Stage capable of 1 micron steps. Geller Microscopy Wavelength...

  2. "Centrifugal Forces," Spring, 2015 Centrifugal Forces: Reading Russia's Regional Identities and Initiatives

    E-Print Network [OSTI]

    Huang, Wei

    "Centrifugal Forces," Spring, 2015 Centrifugal Forces: Reading Russia's Regional Identities and articulating their particular identities and interests. Proposals for "Centrifugal Forces" will resist "Moscow and periphery. "Centrifugal Forces" will be a three-day conference offering broad interdisciplinary perspectives

  3. Integration of contractile forces during tissue invagination

    E-Print Network [OSTI]

    Martin, Adam C.

    Contractile forces generated by the actomyosin cytoskeleton within individual cells collectively generate tissue-level force during epithelial morphogenesis. During Drosophila mesoderm invagination, pulsed actomyosin ...

  4. Forces in electromagnetic field and gravitational field

    E-Print Network [OSTI]

    Zihua Weng

    2011-03-31

    The force can be defined from the linear momentum in the gravitational field and electromagnetic field. But this definition can not cover the gradient of energy. In the paper, the force will be defined from the energy and torque in a new way, which involves the gravitational force, electromagnetic force, inertial force, gradient of energy, and some other new force terms etc. One of these new force terms can be used to explain why the solar wind varies velocity along the magnetic force line in the interplanetary space between the sun and the earth.

  5. Piezoelectric Potential Gated Field-Effect Transistor Based on a Free-Standing

    E-Print Network [OSTI]

    Huang, Yanyi

    -standing piezoelectric FET has potential applications like hearing aids, atomic force microscopy (AFM) cantileversPiezoelectric Potential Gated Field-Effect Transistor Based on a Free-Standing ZnO Wire Peng Fei report an external force triggered field-effect transistor based on a free-standing piezoelectric fine

  6. Complete information acquisition in scanning probe microscopy

    SciTech Connect (OSTI)

    Belianinov, Alex [ORNL; Kalinin, Sergei V [ORNL; Jesse, Stephen [ORNL

    2015-01-01

    In the last three decades, scanning probe microscopy (SPM) has emerged as a primary tool for exploring and controlling the nanoworld. A critical part of the SPM measurements is the information transfer from the tip-surface junction to a macroscopic measurement system. This process reduces the many degrees of freedom of a vibrating cantilever to relatively few parameters recorded as images. Similarly, the details of dynamic cantilever response at sub-microsecond time scales of transients, higher-order eigenmodes and harmonics are averaged out by transitioning to millisecond time scale of pixel acquisition. Hence, the amount of information available to the external observer is severely limited, and its selection is biased by the chosen data processing method. Here, we report a fundamentally new approach for SPM imaging based on information theory-type analysis of the data stream from the detector. This approach allows full exploration of complex tip-surface interactions, spatial mapping of multidimensional variability of material s properties and their mutual interactions, and SPM imaging at the information channel capacity limit.

  7. Sensing mode atomic force microscope

    DOE Patents [OSTI]

    Hough, Paul V. C. (Port Jefferson, NY); Wang, Chengpu (Upton, NY)

    2003-01-01

    An atomic force microscope utilizes a pulse release system and improved method of operation to minimize contact forces between a probe tip affixed to a flexible cantilever and a specimen being measured. The pulse release system includes a magnetic particle affixed proximate the probe tip and an electromagnetic coil. When energized, the electromagnetic coil generates a magnetic field which applies a driving force on the magnetic particle sufficient to overcome adhesive forces exhibited between the probe tip and specimen. The atomic force microscope includes two independently displaceable piezo elements operable along a Z-axis. A controller drives the first Z-axis piezo element to provide a controlled approach between the probe tip and specimen up to a point of contact between the probe tip and specimen. The controller then drives the first Z-axis piezo element to withdraw the cantilever from the specimen. The controller also activates the pulse release system which drives the probe tip away from the specimen during withdrawal. Following withdrawal, the controller adjusts the height of the second Z-axis piezo element to maintain a substantially constant approach distance between successive samples.

  8. Nuclear force in Lattice QCD

    E-Print Network [OSTI]

    T. T. Takahashi; T. Doi; H. Suganuma

    2006-01-05

    We perform the quenched lattice QCD analysis on the nuclear force (baryon-baryon interactions). We employ $20^3\\times 24$ lattice at $\\beta=5.7$ ($a\\simeq 0.19$ fm) with the standard gauge action and the Wilson quark action with the hopping parameters $\\kappa=0.1600, 0.1625, 0.1650$, and generate about 200 gauge configurations. We measure the temporal correlators of the two-baryon system which consists of heavy-light-light quarks. We extract the inter-baryon force as a function of the relative distance $r$. We also evaluate the contribution to the nuclear force from each ``Feynman diagram'' such as the quark-exchange diagram individually, and single out the roles of Pauli-blocking effects or quark exchanges in the inter-baryon interactions.

  9. Automatic HTS force measurement instrument

    DOE Patents [OSTI]

    Sanders, S.T.; Niemann, R.C.

    1999-03-30

    A device is disclosed for measuring the levitation force of a high temperature superconductor sample with respect to a reference magnet includes a receptacle for holding several high temperature superconductor samples each cooled to superconducting temperature. A rotatable carousel successively locates a selected one of the high temperature superconductor samples in registry with the reference magnet. Mechanism varies the distance between one of the high temperature superconductor samples and the reference magnet, and a sensor measures levitation force of the sample as a function of the distance between the reference magnet and the sample. A method is also disclosed. 3 figs.

  10. Automatic HTS force measurement instrument

    DOE Patents [OSTI]

    Sanders, Scott T. (Valparaiso, IN); Niemann, Ralph C. (Downers Grove, IL)

    1999-01-01

    A device for measuring the levitation force of a high temperature superconductor sample with respect to a reference magnet includes a receptacle for holding several high temperature superconductor samples each cooled to superconducting temperature. A rotatable carousel successively locates a selected one of the high temperature superconductor samples in registry with the reference magnet. Mechanism varies the distance between one of the high temperature superconductor samples and the reference magnet, and a sensor measures levitation force of the sample as a function of the distance between the reference magnet and the sample. A method is also disclosed.

  11. Work Force Planning for Public Power Utilities

    E-Print Network [OSTI]

    Work Force Planning for Public Power Utilities: Ensuring Resources to Meet Projected.............................................................................20 #12;ii Work Force Planning for Public Power Utilities #12;1 Work Force Planning for Public Power as a result of the aging work force; and · Public power utilities need to do more to plan for their future

  12. Solvent-induced forces in protein folding

    SciTech Connect (OSTI)

    Ben-Naim, A. (Hebrew Univ., Jerusalem (Israel))

    1990-08-23

    The solvent-induced forces between various groups on the protein are examined. It is found that the intramolecular hydrophilic forces are likely to be the strongest forces mediated through the solvent. It is argued that these are probably the most important solvent-induced driving forces in the process of protein folding.

  13. October 9, 2014- SEAB Task Force Meeting

    Broader source: Energy.gov [DOE]

    SECRETARY OF ENERGY ADVISORY BOARDTask Force Meeting on Technology Development for Environmental Management (EM)

  14. LABORATORY II FORCE AND CONSERVATION OF ENERGY

    E-Print Network [OSTI]

    Minnesota, University of

    on an object and its kinetic energy. · Define and use sine, cosine and tangent for a right triangleLABORATORY II FORCE AND CONSERVATION OF ENERGY Lab II - 1 After studying forces and material bodies the relationship between forces and energy conservation. Energy and forces, together, support an extremely

  15. Direct imaging of enhanced current collection on grain boundaries of Cu(In,Ga)Se{sub 2} solar cells

    SciTech Connect (OSTI)

    Kim, JunHo; Kim, SeongYeon; Jiang, Chun-Sheng; Ramanathan, Kannan; Al-Jassim, Mowafak M.

    2014-02-10

    We report on direct imaging of current collection by performing conductive atomic force microscopy (C-AFM) measurement on a complete Cu(In,Ga)Se{sub 2} solar cell. The localized current was imaged by milling away the top conductive layer of the device by repeated C-AFM scans. The result exhibits enhanced photocurrent collection on grain boundaries (GBs) of CIGS films, consistent with the argument for electric-field-assisted carrier collection on the GBs.

  16. Ecosystem Task Force Meeting Minutes

    E-Print Network [OSTI]

    New Hampshire, University of

    targets for future reductions? 3.1. No. We could work on those with the Task Force. Water Quality. How would growth affect water quality? 3.1. Are we following Rob's recommendations from storm water. 5. There is more work to be done to characterize lands to east as well as west. Waste Management

  17. LABORATORY I FORCES AND EQUILIBRIUM

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY I FORCES AND EQUILIBRIUM Lab I -1 In biological systems, most objects of interest system. OBJECTIVES: After successfully completing this laboratory, you should be able to: · Determine and 6), and chapter 15 (section 4). It is likely that you will be doing some of these laboratory

  18. Nuclear Force from String Theory

    E-Print Network [OSTI]

    Koji Hashimoto; Tadakatsu Sakai; Shigeki Sugimoto

    2010-03-09

    We compute nuclear force in a holographic model of QCD on the basis of a D4-D8 brane configuration in type IIA string theory. Repulsive core of nucleons is quite important in nuclear physics, but its origin has not been well-understood in strongly-coupled QCD. We find that string theory via gauge/string duality deduces this repulsive core at short distance between nucleons. Since baryons in the model are realized as solitons given by Yang-Mills instanton configuration on flavor D8-branes, ADHM construction of two instantons probes well the nucleon interaction at short scale, which provides the nuclear force quantitatively. We obtain, as well as a tensor force, a central force which is strongly repulsive as suggested in experiments and lattice results. In particular, the nucleon-nucleon potential V(r) (as a function of the distance) scales as 1/r^2, which is peculiar to the holographic model. We compare our results with one-boson exchange model using the nucleon-nucleon-meson coupling obtained in our previous paper (arXiv:0806.3122).

  19. The Engineering of Optical Conservative Force

    E-Print Network [OSTI]

    Du, Junjie; Ding, Kun; Du, Guiqiang; Lin, Zhifang; Chan, C T; Ng, Jack

    2015-01-01

    Optical forces have been fruitfully applied in a broad variety of areas that not only span the traditional scientific fields such as physics, chemistry, and biology, but also in more applied fields. It is customary and useful to split the optical force into the (conservative) gradient force and the (non-conservative) scattering and absorption force. These forces are different in attributes. The ability to tailor them will open great potential in fundamental optics and practical applications. Here, we present an analytical and a numerical approach to calculate these forces, and, with these tools, we create a fairly general class of 2D conservative optical force field. In general, particles immersed in an optical force do not obey equilibrium statistical mechanics, making the analysis complicated. With conservative forces, these issues are resolved.

  20. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing...

  1. Carmichael's Concise Review Microscopy is Only Skin Deep

    E-Print Network [OSTI]

    Heller, Eric

    Carmichael's Concise Review Microscopy is Only Skin Deep Stephen W. Carmichael Mayo Clinic. Coming Events 2011 EMAS 2011 May 15­19, 2011 Angers, France www.emas-web.net IUMAS-V May 22­27, 2011

  2. Imaging chromophores with undetectable fluorescence by stimulated emission microscopy

    E-Print Network [OSTI]

    Xie, Xiaoliang Sunney

    LETTERS Imaging chromophores with undetectable fluorescence by stimulated emission microscopy Wei, that is, spontaneous emission, is generally more sensitive than absorption measurement, and is widely used undetectable fluorescence because the spontaneous emission is dominated by theirfastnon-radiative decay3

  3. Classifying and Segmenting Microscopy Images Using Convolutional Multiple Instance Learning

    E-Print Network [OSTI]

    Oren Z. Kraus; Lei Jimmy Ba; Brendan Frey

    2015-11-17

    Convolutional neural networks (CNN) have achieved state of the art performance on both classification and segmentation tasks. Applying CNNs to microscopy images is challenging due to the lack of datasets labeled at the single cell level. We extend the application of CNNs to microscopy image classification and segmentation using multiple instance learning (MIL). We present the adaptive Noisy-AND MIL pooling function, a new MIL operator that is robust to outliers. Combining CNNs with MIL enables training CNNs using full resolution microscopy images with global labels. We base our approach on the similarity between the aggregation function used in MIL and pooling layers used in CNNs. We show that training MIL CNNs end-to-end outperforms several previous methods on both mammalian and yeast microscopy images without requiring any segmentation steps.

  4. Optical fiber based ultrashort pulse multispectral nonlinear optical microscopy 

    E-Print Network [OSTI]

    Larson, Adam Michael

    2009-05-15

    Nonlinear optical microscopy (NLOM) utilizing femtosecond laser pulses is well suited for imaging living tissues. This work reports on the design and development of an optical fiber based multispectral NLOM developed around ...

  5. Centrifugal force in Kerr geometry

    E-Print Network [OSTI]

    Sai Iyer; A R Prasanna

    1992-07-31

    We have obtained the correct expression for the centrifugal force acting on a particle at the equatorial circumference of a rotating body in the locally non-rotating frame of the Kerr geometry. Using this expression for the equilibrium of an element on the surface of a slowly rotating Maclaurin spheroid, we obtain the expression for the ellipticity (as discussed earlier by Abramowicz and Miller) and determine the radius at which the ellipticity is maximum.

  6. Combined confocal Raman and quantitative phase microscopy system for biomedical diagnosis

    E-Print Network [OSTI]

    Kang, Jeon Woong

    We have developed a novel multimodal microscopy system that incorporates confocal Raman, confocal reflectance, and quantitative phase microscopy (QPM) into a single imaging entity. Confocal Raman microscopy provides detailed ...

  7. Transmission electron microscopy characterization of Zircaloy-4 and ZIRLOTM oxide layers

    E-Print Network [OSTI]

    Motta, Arthur T.

    Transmission electron microscopy characterization of Zircaloy-4 and ZIRLOTM oxide layers Benoit de, and archived before and after the transition, are characterized using transmission electron microscopy improvement. Results obtained from transmission electron microscopy (TEM) samples archived just before

  8. Seeing the Atomic Orbital: First-Principles Study of the Effect of Tip Termination on Atomic Force Microscopy

    E-Print Network [OSTI]

    Simons, Jack

    , University of Utah, Salt Lake City, Utah 84112, USA 2 Center for High Performance Computing, University

  9. Probing Nanostructures for Photovoltaics: Using atomic force microscopy and other tools to characterize nanoscale materials for harvesting solar energy

    E-Print Network [OSTI]

    Zaniewski, Anna Monro

    2012-01-01

    literature . . . . . . 3.1.2 Photovoltaic cells based on CuConjugated polymer photovoltaic cells. Chem. Mater. , 16:for e?cient photovoltaic cells. Nature Nanotechnology, 6:

  10. Probing Nanostructures for Photovoltaics: Using atomic force microscopy and other tools to characterize nanoscale materials for harvesting solar energy

    E-Print Network [OSTI]

    Zaniewski, Anna Monro

    2012-01-01

    and Outlook Transparent top contact Rear contact Figure 3.10: Schematic of a solarsolar cells is a di?cult combination to fabricate. Summary and Future Outlooksolar cell surface to enable better light absorption. ?T = Summary and Future Outlook

  11. Novel approaches to investigate behaviors of bacteria by atomic force microscopy and circulating tumor cells through microfluidics

    E-Print Network [OSTI]

    Gray, David Steven

    2014-01-01

    The adaptability and apparent ingenuity of renegade and intruding cells within the human body present formidable challenges in warding off disease. As the longevity of humans increases, cancer will afflict greater numbers, ...

  12. Probing Nanostructures for Photovoltaics: Using atomic force microscopy and other tools to characterize nanoscale materials for harvesting solar energy

    E-Print Network [OSTI]

    Zaniewski, Anna Monro

    2012-01-01

    v List of Tables vii 1 Introduction 1.1 Photovoltaicsand J. V. Manca. Prog. Photovoltaics Res. Appl. , 15:713,polymer blends. Prog. Photovoltaics Res. Appl. , 15:727,

  13. A new technique for imaging Mineralized Fibrils on Bovine Trabecular Bone Fracture Surfaces by Atomic Force Microscopy

    E-Print Network [OSTI]

    Hansma, Paul

    A new technique for imaging Mineralized Fibrils on Bovine Trabecular Bone Fracture Surfaces coated with extrafibrillar mineral particles. The mineral particles are distinctly different in different collagen fibrils. If the observed particles can be verified to be native extrafibrillar mineral, this could

  14. Probing Nanostructures for Photovoltaics: Using atomic force microscopy and other tools to characterize nanoscale materials for harvesting solar energy

    E-Print Network [OSTI]

    Zaniewski, Anna Monro

    2012-01-01

    4.2.1 Organic solar cellOrganic Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.3.1 Organic solar cell materials . . . . .

  15. Probing Nanostructures for Photovoltaics: Using atomic force microscopy and other tools to characterize nanoscale materials for harvesting solar energy

    E-Print Network [OSTI]

    Zaniewski, Anna Monro

    2012-01-01

    solar cell e?ciency is calculated as: W ork E sun Given the total energy input of the sun, and equationEnergy balance equations were used to model the e?ciency of the solar

  16. Probing Nanostructures for Photovoltaics: Using atomic force microscopy and other tools to characterize nanoscale materials for harvesting solar energy

    E-Print Network [OSTI]

    Zaniewski, Anna Monro

    2012-01-01

    the many-layer-graphene/semiconductor interface by doping.opened, turning graphene into a semiconductor which could begraphene is sometimes referred to as a ’zero gap’ semiconductor. [

  17. Probing Nanostructures for Photovoltaics: Using atomic force microscopy and other tools to characterize nanoscale materials for harvesting solar energy

    E-Print Network [OSTI]

    Zaniewski, Anna Monro

    2012-01-01

    for conventionally produced multijunction cells, as variousfor nanorod based multijunction cells. Chapter 4 A one-stepGaInP/GaInAs/Ge multijunction solar cells. Applied Physics

  18. Development of a light force accelerometer

    E-Print Network [OSTI]

    Butts, David LaGrange

    2008-01-01

    In this work, the feasibility of a light force accelerometer was experimentally demonstrated. The light force accelerometer is an optical inertial sensor which uses focused laser light to levitate and trap glass microspheres ...

  19. Swept source optical coherence microscopy for pathological assessment of cancerous tissues

    E-Print Network [OSTI]

    Ahsen, Osman Oguz

    2013-01-01

    Optical coherence microscopy (OCM) combines optical coherence tomography (OCT) with confocal microscopy and enables depth resolved visualization of biological specimens with cellular resolution. OCM offers a suitable ...

  20. Competing magnetic anisotropies in an AFM-FM-AFM trilayer

    E-Print Network [OSTI]

    Bali, R.

    2010-01-01

    ° position under thermal activation, this must be its groundtowards 90° under thermal activation when warmed above 300ground state under thermal activation above T b, CoMn , and

  1. Nuclear Radiological Threat Task Force Established | National...

    National Nuclear Security Administration (NNSA)

    Radiological Threat Task Force Established | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  2. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking

    E-Print Network [OSTI]

    Simon L Dettmer; Ulrich F Keyser; Stefano Pagliara

    2014-08-19

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of these methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g. electrokinetic or dielectrophoretic forces.

  3. Chemistry 365: Force Constant Calculations David Ronis

    E-Print Network [OSTI]

    Ronis, David M.

    cost energy, and hence, there will no force in thy y or z directions (thereby resulting in 4 zero eigenChemistry 365: Force Constant Calculations © David Ronis McGill University Here is an example of a force constant matrix calculation. We will consider a diatomic molecule, where the two atoms interact

  4. RELATING CLIMATE FORCINGS AND CLIMATE RESPONSE

    E-Print Network [OSTI]

    Schwartz, Stephen E.

    RELATING CLIMATE FORCINGS AND CLIMATE RESPONSE Stephen E. Schwartz Upton NY USA Bern, Switzerland change are tightly correlated. Forcing by GHGs only leads to extremely low climate sensitivity, well to rapid changes in forcings by stratospheric volcanic aerosols. Climate sensitivity is quite low, probably

  5. Micromechanism linear actuator with capillary force sealing

    DOE Patents [OSTI]

    Sniegowski, Jeffry J. (Albuquerque, NM)

    1997-01-01

    A class of micromachine linear actuators whose function is based on gas driven pistons in which capillary forces are used to seal the gas behind the piston. The capillary forces also increase the amount of force transmitted from the gas pressure to the piston. In a major subclass of such devices, the gas bubble is produced by thermal vaporization of a working fluid. Because of their dependence on capillary forces for sealing, such devices are only practical on the sub-mm size scale, but in that regime they produce very large force times distance (total work) values.

  6. Lorentz-Force Hydrophone Characterization

    E-Print Network [OSTI]

    Grasland-Mongrain, Pol; Gilles, Bruno; Poizat, Adrien; Chapelon, Jean-Yves; Lafon, Cyril

    2014-01-01

    A Lorentz-force hydrophone consists of a thin wire placed inside a magnetic field. When under the influence of an ultrasound pulse, the wire vibrates and an electrical signal is induced by the Lorentz force that is proportional to the pulse amplitude. In this study a compact prototype of such a hydrophone is introduced and characterized, and the hydrodynamic model previously developed is refined. It is shown that the wire tension has a negligible effect on the measurement of pressure. The frequency response of the hydrophone reaches 1 MHz for wires with a diameter ranging between 70 and 400 \\micro m. The hydrophone exhibits a directional response such that the signal amplitude differs by less than 3dB as the angle of the incident ultrasound pulse varies from -20$^o$ and +20$^o$. The linearity of the measured signal is confirmed across the 50 kPa to 10 MPa pressure range, and an excellent resistance to cavitation is observed. This hydrophone is of interest for high pressure ultrasound measurements including Hi...

  7. Casimir force: an alternative treatment

    E-Print Network [OSTI]

    P. R. Silva

    2009-01-07

    The Casimir force between two parallel uncharged closely spaced metallic plates is evaluated in ways alternatives to those usually considered in the literature. In a first approximation we take in account the suppressed quantum numbers of a cubic box, representing a cavity which was cut in a metallic block. We combine these ideas with those of the MIT bag model of hadrons, but adapted to non-relativistic particles. In a second approximation we consider the particles occupying the energy levels of the Bohr atom, so that the Casimir force depends explicitly on the fine structure constant alpha. In both treatments, the mean energies which have explicit dependence on the particle mass and on the maximum occupied quantum number (related to the Fermi level of the system) at the beginning of the calculations, have these dependences mutually canceled at the end of them. Finally by comparing the averaged energies computed in both approximations, we are able to make an estimate of the value of the fine structure constant alpha.

  8. Direct measurement of thermophoretic forces

    E-Print Network [OSTI]

    Laurent Helden; Ralf Eichhorn; Clemens Bechinger

    2014-12-19

    We study the thermophoretic motion of a micron sized single colloidal particle in front of a flat wall by evanescent light scattering. To quantify thermophoretic effects we analyse the nonequilibrium steady state (NESS) of the particle in a constant temperature gradient perpendicular to the confining walls. We propose to determine thermophoretic forces from a 'generalized potential' associated with the probability distribution of the particle position in the NESS. Experimentally we demonstrate, how this spatial probability distribution is measured and how thermophoretic forces can be extracted with 10 fN resolution. By varying temperature gradient and ambient temperature, the temperature dependence of Soret coefficient $S_T(T)$ is determined for $r = 2.5 \\mu m$ polystyrene and $r = 1.35 \\mu m$ melamine particles. The functional form of $S_T(T)$ is in good agreement with findings for smaller colloids. In addition, we measure and discuss hydrodynamic effects in the confined geometry. The theoretical and experimental technique proposed here extends thermophoresis measurements to so far inaccessible particle sizes and particle solvent combinations.

  9. Static balance control and external force estimation using ground reaction forces

    E-Print Network [OSTI]

    Ito, Satoshi

    Static balance control and external force estimation using ground reaction forces Satoshi ITO1 In this paper, we consider a balance control with focus- ing on ground reaction forces. As an example of balance control, the static balance with constant external forces act- ing is treated. Ankle joint torque is used

  10. Imaging hydrated microbial extracellular polymers: Comparative analysis by electron microscopy

    SciTech Connect (OSTI)

    Dohnalkova, A.C.; Marshall, M. J.; Arey, B. W.; Williams, K. H.; Buck, E. C.; Fredrickson, J. K.

    2011-01-01

    Microbe-mineral and -metal interactions represent a major intersection between the biosphere and geosphere but require high-resolution imaging and analytical tools for investigating microscale associations. Electron microscopy has been used extensively for geomicrobial investigations and although used bona fide, the traditional methods of sample preparation do not preserve the native morphology of microbiological components, especially extracellular polymers. Herein, we present a direct comparative analysis of microbial interactions using conventional electron microscopy approaches of imaging at room temperature and a suite of cryogenic electron microscopy methods providing imaging in the close-to-natural hydrated state. In situ, we observed an irreversible transformation of the hydrated bacterial extracellular polymers during the traditional dehydration-based sample preparation that resulted in their collapse into filamentous structures. Dehydration-induced polymer collapse can lead to inaccurate spatial relationships and hence could subsequently affect conclusions regarding nature of interactions between microbial extracellular polymers and their environment.

  11. Study of Interactions Between Microbes and Minerals by Scanning Transmission X-Ray Microscopy (STXM)

    E-Print Network [OSTI]

    Benzerara, K; Tyliszczak, T

    2007-01-01

    Study of Interactions Between Microbes and Minerals by Scanning Transmission X-Ray Microscopy (STXM)

  12. Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research

    E-Print Network [OSTI]

    Moffet, Ryan C.

    2011-01-01

    polymer photoresists by scanning transmission x-ray microscopy. Journal of Vacuum Science and Technology

  13. Variable temperature electrochemical strain microscopy of Sm-doped ceria

    SciTech Connect (OSTI)

    Jesse, Stephen; Morozovska, A. N.; Kalinin, Sergei V; Eliseev, E. A.; Yang, Nan; Doria, Sandra; Tebano, Antonello

    2013-01-01

    Variable temperature electrochemical strain microscopy has been used to study the electrochemical activity of Sm-doped ceria as a function of temperature and bias. The electrochemical strain microscopy hysteresis loops have been collected across the surface at different temperatures and the relative activity at different temperatures has been compared. The relaxation behavior of the signal at different temperatures has been also evaluated to relate kinetic process during bias induced electrochemical reactions with temperature and two different kinetic regimes have been identified. The strongly non-monotonic dependence of relaxation behavior on temperature is interpreted as evidence for water-mediated mechanisms.

  14. Dark Forces At The Tevatron

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Buckley, Matt; Fileviez Perez, Pavel; Hooper, Dan; Neil, Ethan

    2011-08-19

    A simple explanation of the W + dijet excess recently reported by the CDF collaboration involves the introduction of a new gauge boson with sizable couplings to quarks, but with no or highly suppressed couplings to leptons. Anomaly-free theories which include such a leptophobic gauge boson must also include additional particle content, which may include a stable and otherwise viable candidate for dark matter. Based on the couplings and mass of the Z` required to generate the CDF excess, we predict such a dark matter candidate to possess an elastic scattering cross section with nucleons on the order of ?more »~ 10-40 cm2, providing a natural explanation for the signals reported by the CoGeNT and DAMA/LIBRA collaborations. In this light, CDF may be observing the gauge boson responsible for the force which mediates the interactions between the dark and visible matter of our universe.« less

  15. Nuclear Force from Lattice QCD

    E-Print Network [OSTI]

    N. Ishii; S. Aoki; T. Hatsuda

    2007-06-26

    Nucleon-nucleon (NN) potential is studied by lattice QCD simulations in the quenched approximation, using the plaquette gauge action and the Wilson quark action on a 32^4 (\\simeq (4.4 fm)^4) lattice. A NN potential V_{NN}(r) is defined from the equal-time Bethe-Salpeter amplitude with a local interpolating operator for the nucleon. By studying the NN interaction in the ^1S_0 and ^3S_1 channels, we show that the central part of V_{NN}(r) has a strong repulsive core of a few hundred MeV at short distances (r \\alt 0.5 fm) surrounded by an attractive well at medium and long distances. These features are consistent with the known phenomenological features of the nuclear force.

  16. Casimir force between integrable and chaotic pistons

    SciTech Connect (OSTI)

    Alvarez, Ezequiel; Mazzitelli, Francisco D.; Wisniacki, Diego A. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, and Instituto de Fisica de Buenos Aires, Concejo Nacional de Investigaciones Cientificas y Tecnicas, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); Monastra, Alejandro G. [Gerencia de Investigacion y Aplicaciones, Comision Nacional de Energia Atomica, Concejo Nacional de Investigaciones Cientificas y Tecnicas, Avenida General Paz 1499, 1650 San Martin (Argentina)

    2010-11-15

    We have computed numerically the Casimir force between two identical pistons inside a very long cylinder, considering different shapes for the pistons. The pistons can be considered quantum billiards, whose spectrum determines the vacuum force. The smooth part of the spectrum fixes the force at short distances and depends only on geometric quantities like the area or perimeter of the piston. However, correcting terms to the force, coming from the oscillating part of the spectrum which is related to the classical dynamics of the billiard, could be qualitatively different for classically integrable or chaotic systems. We have performed a detailed numerical analysis of the corresponding Casimir force for pistons with regular and chaotic classical dynamics. For a family of stadium billiards, we have found that the correcting part of the Casimir force presents a sudden change in the transition from regular to chaotic geometries. This suggests that there could be signatures of quantum chaos in the Casimir effect.

  17. Preparation of Samples for Light Microscopy Simple Wax Seal

    E-Print Network [OSTI]

    Fygenson, Deborah Kuchnir

    Preparation of Samples for Light Microscopy Simple Wax Seal Materials - Slide - Cover Slip - Paraffin Wax Candle - Pasteur Pipette (suggested size 5 3/4 inch) - Matches Preparation of the Slide - You may want to protect the work surface from melted wax. We use a sheet of aluminum foil taped

  18. Radio-frequency scanning tunnelling microscopy U. Kemiktarak1

    E-Print Network [OSTI]

    LETTERS Radio-frequency scanning tunnelling microscopy U. Kemiktarak1 , T. Ndukum3 , K. C. Schwab3 measurementsinmesoscopicelectronicsandmechanics. Broadband noise measurements across the tunnel junction using this radio-frequency STM available from nanoscale optical and electrical displacement detection tech- niques, and the radio

  19. Instrument Series: Microscopy Ultra-High Vacuum, Low-

    E-Print Network [OSTI]

    Instrument Series: Microscopy Ultra-High Vacuum, Low- Temperature Scanning Probe Microscope EMSL's ultra-high vacuum, low-temperature scanning probe microscope instrument, or UHV LT SPM range of surface analytical techniques at low temperature ­ enables ultra-violet/X-ray photoelectron

  20. Transient photoinduced diffractive solid immersion lens for infrared microscopy

    E-Print Network [OSTI]

    Palanker, Daniel

    plate structure on the surfaces of semiconductor wafers with high indices of refraction. Lenses properties were determined. We demonstrate that transient SILs can have lifetimes longer than 50 ps microscopy. A solid immersion lens SIL focuses radiation within a material of a high re- fractive index

  1. Visualizing Individual Carbon Nanotubes with Optical Microscopy Michael A. Novak,

    E-Print Network [OSTI]

    with Ag or TiO2 nanocrystals.21,22 Although this approach is high throughput, the deposited materialVisualizing Individual Carbon Nanotubes with Optical Microscopy Michael A. Novak, Sumedh Surwade carbon nanotubes (CNTs) on a silicon wafer using a conventional optical microscope. We show

  2. A national facility for biological cryo-electron microscopy

    SciTech Connect (OSTI)

    Saibil, Helen R.; Grünewald, Kay; Stuart, David I.

    2015-01-01

    This review provides a brief update on the use of cryo-electron microscopy for integrated structural biology, along with an overview of the plans for the UK national facility for electron microscopy being built at the Diamond synchrotron. Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided of the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback.

  3. POLYMER IMAGING WITH FRESNEL PROJECTION MICROSCOPY VU THIEN BINH1

    E-Print Network [OSTI]

    Peters, Achim

    1 POLYMER IMAGING WITH FRESNEL PROJECTION MICROSCOPY VU THIEN BINH1 , V. SEMET1 and N. GARCIA2 1 exploited in a compact low-energy electron microscope: the Fresnel Projection Microscope. Images size of the sources. The result is a high-resolution, low-energy electron microscope, the "Fresnel

  4. Optimal resolution in Fresnel incoherent correlation holographic fluorescence microscopy

    E-Print Network [OSTI]

    Rosen, Joseph

    Optimal resolution in Fresnel incoherent correlation holographic fluorescence microscopy Gary, Israel 4 rosen@ee.bgu.ac.il *gbrooker@jhu.edu Abstract: Fresnel Incoherent Correlation Holography (FINCH. Rosen and G. Brooker, "Digital spatially incoherent Fresnel holography," Opt. Lett. 32(8), 912­914 (2007

  5. An investigation of receiver probe development for magnetic resonance microscopy 

    E-Print Network [OSTI]

    Boyer, Jeffrey Scott

    1995-01-01

    . The objective of the research presented in this thesis is to extend the analysis and design of conventional RF coil systems to that for MR microscopy. Specifically, distinctions in terms of signal and noise are made between conventional RF coils and coils...

  6. Forces on laboratory model dredge cutterhead 

    E-Print Network [OSTI]

    Young, Dustin Ray

    2010-07-14

    coefficients (non-cavitating) - D, z = water depth ft d1, d2 = Cutting force coefficients (cavitating) - d50 = Mean grain diameter mm Dc = Depth of Cut in Dcutter = Diameter of cutterhead in ????1???? = Distance between cell1 to center of mass... redesigned cell1 to center of mass of cutter in z direction in ? = Phase shift rad ?c = Cavitation transition angle rad ???? = Axial cutting force lb ??? = Horizontal cutting force (F#nc represents non-cavitating) lb ???? = Vertical cutting...

  7. Force Modulation System for Vehicle Manufacturing | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System for Vehicle Manufacturing Force Modulation System for Vehicle Manufacturing Novel Technology Enables Energy-Efficient Production of High-Strength Steel Automotive Parts...

  8. David J. Gross and the Strong Force

    Office of Scientific and Technical Information (OSTI)

    described electromagnetism, the force that acts between charged particles, such as electrons and protons, and which governs all chemical interactions. That theory, called...

  9. Plasmonic lateral forces on chiral spheres

    E-Print Network [OSTI]

    Canaguier-Durand, Antoine

    2015-01-01

    We show that the optical force exerted on a finite size chiral sphere by a surface plasmon mode has a component along a direction perpendicular to the plasmon linear momentum. We reveal how this chiral lateral force, pointing in opposite directions for opposite enantiomers, stems from an angular-to-linear crossed momentum transfer involving the plasmon transverse spin angular momentum density and mediated by the chirality of the sphere. Our multipolar approach allows us discussing the inclusion of the recoil term in the force on a small sphere taken in the dipolar limit and observing sign inversions of the lateral chiral force when the size of the sphere increases.

  10. Interagency Energy Management Task Force Members

    Broader source: Energy.gov [DOE]

    The Interagency Energy Management Task Force is led by the Federal Energy Management Program director. Members include energy and sustainability managers from federal agencies.

  11. Reduction of the Casimir force using aerogels

    E-Print Network [OSTI]

    R. Esquivel-Sirvent

    2007-08-02

    By using silicon oxide based aerogels we show numerically that the Casimir force can be reduced several orders of magnitude, making its effect negligible in nanodevices. This decrease in the Casimir force is also present even when the aerogels are deposited on metallic substrates. To calculate the Casimir force we model the dielectric function of silicon oxide aerogels using an effective medium dielectric function such as the Clausius-Mossotti approximation. The results show that both the porosity of the aerogel and its thickness can be use as control parameters to reduce the magnitude of the Casimir force.

  12. Reduction of the Casimir force using aerogels

    E-Print Network [OSTI]

    Esquivel-Sirvent, R

    2007-01-01

    By using silicon oxide based aerogels we show numerically that the Casimir force can be reduced several orders of magnitude, making its effect negligible in nanodevices. This decrease in the Casimir force is also present even when the aerogels are deposited on metallic substrates. To calculate the Casimir force we model the dielectric function of silicon oxide aerogels using an effective medium dielectric function such as the Clausius-Mossotti approximation. The results show that both the porosity of the aerogel and its thickness can be use as control parameters to reduce the magnitude of the Casimir force.

  13. Towards Understanding the Mechanism of PETN Coarsening

    SciTech Connect (OSTI)

    Qiu, R; Overturf, G; Gee, R; Burnham, A; Weeks, B; De Yoreo, J

    2005-03-23

    The long-term goal is to determine the mechanism of PETN crystallization and coarsening at the solid-vapor interface and to quantify the thermodynamic and kinetic parameters that control those processes. We achieve this goal by investigating the surface evolution of synthetic PETN single crystals using in situ atomic force microscopy (AFM) at various temperatures.

  14. Institute for Electronics and Nanotechnology | Georgia Institute of Technology 345 Ferst Drive NW | Atlanta, GA 30318 | 404.894.5100 | info@ien.gatech.edu | www.ien.gatech.edu

    E-Print Network [OSTI]

    Garmestani, Hamid

    Scientific K-Alpha XPS X-ray Photoelectron Spectroscope > Selectable area spectroscopy and Ar sputter depth conductive-AFM and magnetic force microscopy > Provides analysis data on the electrical and mechanical Spectrometer > Excellent for characterizing multi-layer laminates, thin films, inclusions and subsurface

  15. 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim4318 www.advmat.de

    E-Print Network [OSTI]

    materials in energy storage devices, such as electrochemical capacitors, fuel cells, and lithium batteries such as composites and energy storages. Atomic force microscopy (AFM) is often used to characterize the mechanical or more different materials. For example, silicon coating on carbon nanotubes (CNTs) improves the thermal

  16. Molecular Caulk: A Pore Sealing Technology for Ultra-low k Dielectrics Jay J. Senkevich1

    E-Print Network [OSTI]

    Wang, Gwo-Ching

    chemical vapor (CVD) or atomic layer (ALD) deposition of the barrier layer, the gas-phase precursors have issues of the barrier layer/dielectric interface. Molecular Caulk is deposited via chemical vapor Caulk deposition on surface topology was measured by atomic force microscopy (AFM). Experimental

  17. Confocal microscopy study of colloidal sedimentation and crystallization 

    E-Print Network [OSTI]

    Beckham, Richard Edward

    2009-05-15

    Colloidal crystallization in sedimenting systems is an incompletely understood process, where the influence of interparticle forces on the three-dimensional (3-D) microstructure remains to be fully elucidated. This ...

  18. Microbial Cell Imaging

    SciTech Connect (OSTI)

    Doktycz, Mitchel John; Sullivan, Claretta; Mortensen, Ninell P; Allison, David P

    2011-01-01

    Atomic force microscopy (AFM) is finding increasing application in a variety of fields including microbiology. Until the emergence of AFM, techniques for ivnestigating processes in single microbes were limited. From a biologist's perspective, the fact that AFM can be used to generate high-resolution images in buffers or media is its most appealing feature as live-cell imaging can be pursued. Imaging living cells by AFM allows dynamic biological events to be studied, at the nanoscale, in real time. Few areas of biological research have as much to gain as microbiology from the application of AFM. Whereas the scale of microbes places them near the limit of resolution for light microscopy. AFM is well suited for the study of structures on the order of a micron or less. Although electron microscopy techniques have been the standard for high-resolution imaging of microbes, AFM is quickly gaining favor for several reasons. First, fixatives that impair biological activity are not required. Second, AFM is capable of detecting forces in the pN range, and precise control of the force applied to the cantilever can be maintained. This combination facilitates the evaluation of physical characteristics of microbes. Third, rather than yielding the composite, statistical average of cell populations, as is the case with many biochemical assays, the behavior of single cells can be monitored. Despite the potential of AFM in microbiology, there are several limitations that must be considered. For example, the time required to record an image allows for the study of gross events such as cell division or membrane degradation from an antibiotic but precludes the evaluation of biological reactions and events that happen in just fractions of a second. Additionally, the AFM is a topographical tool and is restricted to imaging surfaces. Therefore, it cannot be used to look inside cells as with opticla and transmission electron microscopes. other practical considerations are the limitation on the maximum scan size (roughly 100 x 100 {mu}m) and the restricted movement of the cantilever in the Z (or height) direction. In most commercial AFMs, the Z range is restricted to roughly 10 {mu}m such that the height of cells to be imaged must be seriously considered. Nevertheless, AFM can provide structural-functional information at nanometer resolution and do so in physiologically relevant environments. Further, instrumentation for scanning probe microscopy continues to advance. Systems for high-speed imaging are becoming available, and techniques for looking inside the cells are being demonstrated. The ability to combine AFM with other imaging modalities is likely to have an even greater impact on microbiological studies. AFM studies of intact microbial cells started to appear in the literature in the 1990s. For example, AFM studies of Saccharomyces cerevisiae examined buddings cars after cell division and detailed changes related to cell growth processes. Also, the first AFM studies of bacterial biofilms appeared. In the late 1990s, AFM studies of intact fungal spores described clear changes in spore surfaces upon germination, and studies of individual bacterial cells were also described. These early bacterial imaging studies examined changes in bacterial morphology due to antimicrobial peptides exposure and bacterial adhesion properties. The majority of these early studies were carried out on dried samples and took advantage of the resolving power of AFM. The lack of cell mounting procedures presented an impediment for cell imaging studies. Subsequently, several approaches to mounting microbial cells have been developed, and these techniques are described later. Also highlighted are general considerations for microbial imaging and a description of some of the various applications of AFM to microbiology.

  19. Quantum Force in a Superconductor

    E-Print Network [OSTI]

    A. V. Nikulov

    2001-04-23

    A contradiction of the Little-Parks experiment with the Ohm's law and other fundamental laws is explained. This explanation shows that the Little-Parks oscillations of the loop resistance are an experimental evidence of a direct (non-chaotic) Brownian motion. The Langevin force is connected with a change of the momentum circulation of superconducting pairs because of the quantization. Its average value can be non-zero because of the quantization. The existence of a direct Brownian motion contradicts to the principle on which the second law of thermodynamic is based. Therefore the Little-Parks experiment is evidence of a possibility of violation of the second law. In the last years other authors have stated also violation of the second law in different quantum systems: A.E.Allahverdyan and Th.M.Nieuwenhuizen, PRL 85, 1799 (2000); cond-mat/0011389; V.Capec and J.Bok, Czech.J. of Phys. 49, 1645 (1999); cond-mat/0012056; Physica A 290, 379 (2001); P. Weiss, Science News, 158, 234 (2000).

  20. Nuclear Force from Lattice QCD

    E-Print Network [OSTI]

    Noriyoshi ISHII; Sinya AOKI; Tetsuo HATSUDA

    2006-09-30

    The first lattice QCD result on the nuclear force (the NN potential) is presented in the quenched level. The standard Wilson gauge action and the standard Wilson quark action are employed on the lattice of the size 16^3\\times 24 with the gauge coupling beta=5.7 and the hopping parameter kappa=0.1665. To obtain the NN potential, we adopt a method recently proposed by CP-PACS collaboration to study the pi pi scattering phase shift. It turns out that this method provides the NN potentials which are faithful to those obtained in the analysis of NN scattering data. By identifying the equal-time Bethe-Salpeter wave function with the Schroedinger wave function for the two nucleon system, the NN potential is reconstructed so that the wave function satisfies the time-independent Schroedinger equation. In this report, we restrict ourselves to the J^P=0^+ and I=1 channel, which enables us to pick up unambiguously the ``central'' NN potential V_{central}(r). The resulting potential is seen to posses a clear repulsive core of about 500 MeV at short distance (r < 0.5 fm). Although the attraction in the intermediate and long distance regions is still missing in the present lattice set-up, our method is appeared to be quite promising in reconstructing the NN potential with lattice QCD.

  1. Designing for forces : an early-stage design program for axial-force structures

    E-Print Network [OSTI]

    Jordan, Alexander D. W. (Alexander David Weigert)

    2011-01-01

    Structures that carry most of their load through the axial forces of tension or compression are more materially efficient than standard structures. However, they are not as straightforward to design since the forces in the ...

  2. WCVM Research Task Force Report March 2011 WCVM Research Task Force

    E-Print Network [OSTI]

    Saskatchewan, University of

    #12; #12;WCVM Research Task Force Report ­ March 2011 p.1 WCVM Research Task Force Report MarchDeanFreemanforreaffirmingtheimportanceoftheresearchenterpriseatthe WCVMthroughtheinceptionoftheResearchTaskForceandpermittingcomplete autonomyinitsmachinations.Taskforcememberswouldalsoliketothankthefacultythat tooktimetofillouttheResearch

  3. Time history analysis of axial forces (Pass Through Forces) at joints in a braced frame

    E-Print Network [OSTI]

    Paschini, Vincent

    2012-01-01

    As buildings keep getting taller, traditional braced lateral systems take more loads. This generates a phenomenon at every joint of a frame called "Pass Through Force". Pass through forces come from the transfer of axial ...

  4. On Dual Configurational Forces SHAOFAN LIj

    E-Print Network [OSTI]

    Li, Shaofan

    they provide the dual energy­momentum tensor. Some previously unknown and yet interesting results in elasticity the configuration force (energy­momentum tensor) P and the dual configuration force (dual energy­momentum tensor) L energy­ momentum tensor (referred to as the dual energy­momentum tensor in this j Corresponding author

  5. Gravitational force between two electrons in superconductors

    E-Print Network [OSTI]

    Clovis Jacinto de Matos

    2007-11-19

    The attractive gravitational force between two electrons in superconductors is deduced from the Eddington-Dirac large number relation, together with Beck and Mackey electromagnetic model of vacuum energy in superconductors. This force is estimated to be weaker than the gravitational attraction between two electrons in the vacuum.

  6. Sponsored by Air Force Research Laboratory

    E-Print Network [OSTI]

    Salvaggio, Carl

    Sponsored by Air Force Research Laboratory Space Vehicles Directorate Directed Energy Directorate to partner with AFRL scientists and engineers on current research projects that are often the basis Phillips Scholars Phillips Scholars directed Energy Scholars directed Energy Scholars Air Force Research

  7. Sustainability Initiative Task Force Final Report

    E-Print Network [OSTI]

    Sheridan, Jennifer

    UW­Madison Sustainability Initiative Task Force Final Report October 2010 #12;We are pleased to present the final report of the campus Sustainability Task Force. This report fulfills the charge we gave to sustainability for consideration by UW­Madison's leadership and campus community. There are many reasons why

  8. Water Conservation Task Force (2014 Charge)

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Water Conservation Task Force (2014 Charge) The Task Force will advise the Chancellor and Campus Provost/Executive Vice Chancellor (CP/EVC) on current and past water use and provide recommendations on implementation of policies for potable water use reductions in support of The Regents Policy on Sustainable

  9. LABORATORY IV ELECTRIC FIELDS AND FORCES

    E-Print Network [OSTI]

    Minnesota, University of

    Lab IV - 1 LABORATORY IV ELECTRIC FIELDS AND FORCES Action-at-a-distance forces (gravitational and inspires the invention of new devices. The problems in this laboratory are primarily designed to give you through an electric field. OBJECTIVES: After successfully completing this laboratory, you should be able

  10. LABORATORY I ELECTRIC FIELDS AND FORCES

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY I ELECTRIC FIELDS AND FORCES Lab I - 1 The most fundamental forces are characterized the invention of new applications. The problems in this laboratory are primarily designed to give you practice visualizing fields and using the field concept in solving problems. In this laboratory, you will first explore

  11. An Adhesion Model for the Drag Force

    E-Print Network [OSTI]

    Dan Comanescu

    2008-01-28

    The paper present a model for the drag force between a resistive medium and a solid body using the hypothesis that the drag force is created by the adhesion of some particles of the resistive medium on the solid body's surface. The study focus on the mass evolution of the solid body.

  12. M. Bahrami ENSC 388 (F09) Forced Convection Heat Transfer 1 Forced Convection Heat Transfer

    E-Print Network [OSTI]

    Bahrami, Majid

    surface, and the type of the fluid flow (laminar or turbulent). Fig. 1: Forced convection fluid. Whereas in forced convection, the fluid is forced to flow over a surface or in a tube Boundary Layer Consider the flow of a fluid over a flat plate, the velocity and the temperature

  13. Air Force | Army | Marine Corps Navy & Coast Guard General of the Air Force/Army

    E-Print Network [OSTI]

    Air Force | Army | Marine Corps Navy & Coast Guard O-10 General of the Air Force/Army (Reserved Corps Navy & Coast Guard WarrantOfficers No Warrant Officer Rank Warrant Officer 1 Chief Warrant Officer Warrant Officer 5 Air Force Army Marine Corps Navy & Coast Guard E-9 Chief Master Sergeant of the Air

  14. Entropic forces generated by grafted semiflexible polymers

    E-Print Network [OSTI]

    Azam Gholami; Jan Wilhelm; Erwin Frey

    2006-03-09

    The entropic force exerted by the Brownian fluctuations of a grafted semiflexible polymer upon a rigid smooth wall are calculated both analytically and by Monte Carlo simulations. Such forces are thought to play an important role for several cellular phenomena, in particular, the physics of actin-polymerization-driven cell motility and movement of bacteria like Listeria. In the stiff limit, where the persistence length of the polymer is larger than its contour length, we find that the entropic force shows scaling behavior. We identify the characteristic length scales and the explicit form of the scaling functions. In certain asymptotic regimes we give simple analytical expressions which describe the full results to a very high numerical accuracy. Depending on the constraints imposed on the transverse fluctuations of the filament there are characteristic differences in the functional form of the entropic forces; in a two-dimensional geometry the entropic force exhibits a marked peak.

  15. An improved proximity force approximation for electrostatics

    E-Print Network [OSTI]

    C. D. Fosco; F. C. Lombardo; F. D. Mazzitelli

    2012-04-23

    A quite straightforward approximation for the electrostatic interaction between two perfectly conducting surfaces suggests itself when the distance between them is much smaller than the characteristic lengths associated to their shapes. Indeed, in the so called "proximity force approximation" the electrostatic force is evaluated by first dividing each surface into a set of small flat patches, and then adding up the forces due two opposite pairs, the contribution of which are approximated as due to pairs of parallel planes. This approximation has been widely and successfully applied to different contexts, ranging from nuclear physics to Casimir effect calculations. We present here an improvement on this approximation, based on a derivative expansion for the electrostatic energy contained between the surfaces. The results obtained could be useful to discuss the geometric dependence of the electrostatic force, and also as a convenient benchmark for numerical analyses of the tip-sample electrostatic interaction in atomic force microscopes.

  16. Measurement of tool forces in diamond turning

    SciTech Connect (OSTI)

    Drescher, J.; Dow, T.A.

    1988-12-01

    A dynamometer has been designed and built to measure forces in diamond turning. The design includes a 3-component, piezoelectric transducer. Initial experiments with this dynamometer system included verification of its predicted dynamic characteristics as well as a detailed study of cutting parameters. Many cutting experiments have been conducted on OFHC Copper and 6061-T6 Aluminum. Tests have involved investigation of velocity effects, and the effects of depth and feedrate on tool forces. Velocity has been determined to have negligible effects between 4 and 21 m/s. Forces generally increase with increasing depth of cut. Increasing feedrate does not necessarily lead to higher forces. Results suggest that a simple model may not be sufficient to describe the forces produced in the diamond turning process.

  17. Force localization in contracting cell layers

    E-Print Network [OSTI]

    Carina M. Edwards; Ulrich S. Schwarz

    2012-01-13

    Epithelial cell layers on soft elastic substrates or pillar arrays are commonly used as model systems for investigating the role of force in tissue growth, maintenance and repair. Here we show analytically that the experimentally observed localization of traction forces to the periphery of the cell layers does not necessarily imply increased local cell activity, but follows naturally from the elastic problem of a finite-sized contractile layer coupled to an elastic foundation. For homogeneous contractility, the force localization is determined by one dimensionless parameter interpolating between linear and exponential force profiles for the extreme cases of very soft and very stiff substrates, respectively. If contractility is sufficiently increased at the periphery, outward directed displacements can occur at intermediate positions, although the edge itself still retracts. We also show that anisotropic extracellular stiffness leads to force localization in the stiffer direction, as observed experimentally.

  18. Microfabricated high-bandpass foucault aperture for electron microscopy

    DOE Patents [OSTI]

    Glaeser, Robert; Cambie, Rossana; Jin, Jian

    2014-08-26

    A variant of the Foucault (knife-edge) aperture is disclosed that is designed to provide single-sideband (SSB) contrast at low spatial frequencies but retain conventional double-sideband (DSB) contrast at high spatial frequencies in transmission electron microscopy. The aperture includes a plate with an inner open area, a support extending from the plate at an edge of the open area, a half-circle feature mounted on the support and located at the center of the aperture open area. The radius of the half-circle portion of reciprocal space that is blocked by the aperture can be varied to suit the needs of electron microscopy investigation. The aperture is fabricated from conductive material which is preferably non-oxidizing, such as gold, for example.

  19. Biological imaging by soft x-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shapiro, D.; Thibault, P.; Beetz, T.; Elser, V.; Howells, M.; Jacobsen, C.; Kirz, J.; Lima, E.; Miao, H.; Neiman, A. M.; et al

    2005-10-25

    We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffractionmore »microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions.« less

  20. Microscopy with slow electrons: from LEEM to XPEEM

    ScienceCinema (OSTI)

    Bauer, Ernst [Arizona State University, Phoenix, Arizona, United States

    2010-01-08

    The short penetration and escape depth of electrons with energies below 1 keV make them ideally suited for the study of surfaces and ultrathin films. The combination of the low energy electrons and the high lateral resolution of a microscope produces a powerful method for the characterization of nanostructures on bulk samples, in particular if the microscope is equipped with an imaging energy filter and connected to a synchrotron radiation source. Comprehensive characterization by imaging, diffraction, and spectroscope of the structural, chemical, and magnetic properties is then possible. The Talk will describe the various imaging techniques in using reflected and emitted electrons in low-energy electron microscopy (LEEM) and x-ray photoemission electron microscopy (XPEEM), with an emphasis on magnetic materials with spin-polarized LEEM and x-ray magnetic circular dichroism PEEM. The talk with end with an outlook on future possibilities.

  1. Studying localized corrosion using liquid cell transmission electron microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chee, See Wee; Pratt, Sarah H.; Hattar, Khalid; Duquette, David; Ross, Frances M.; Hull, Robert

    2014-11-07

    Using liquid cell transmission electron microscopy (LCTEM), localized corrosion of Cu and Al thin films immersed in aqueous NaCl solutions was studied. We demonstrate that potentiostatic control can be used to initiate pitting and that local compositional changes, due to focused ion beam implantation of Au+ ions, can modify the corrosion susceptibility of Al films. A discussion on strategies to control the onset of pitting is also presented.

  2. Single beam Fourier transform digital holographic quantitative phase microscopy

    SciTech Connect (OSTI)

    Anand, A. Chhaniwal, V. K.; Mahajan, S.; Trivedi, V.; Faridian, A.; Pedrini, G.; Osten, W.; Dubey, S. K.; Javidi, B.

    2014-03-10

    Quantitative phase contrast microscopy reveals thickness or height information of a biological or technical micro-object under investigation. The information obtained from this process provides a means to study their dynamics. Digital holographic (DH) microscopy is one of the most used, state of the art single-shot quantitative techniques for three dimensional imaging of living cells. Conventional off axis DH microscopy directly provides phase contrast images of the objects. However, this process requires two separate beams and their ratio adjustment for high contrast interference fringes. Also the use of two separate beams may make the system more vulnerable to vibrations. Single beam techniques can overcome these hurdles while remaining compact as well. Here, we describe the development of a single beam DH microscope providing whole field imaging of micro-objects. A hologram of the magnified object projected on to a diffuser co-located with a pinhole is recorded with the use of a commercially available diode laser and an arrayed sensor. A Fourier transform of the recorded hologram directly yields the complex amplitude at the image plane. The method proposed was investigated using various phase objects. It was also used to image the dynamics of human red blood cells in which sub-micrometer level thickness variation were measurable.

  3. On photo-expansion and microlens formation in (GeS{sub 2}){sub 0.74}(Sb{sub 2}S{sub 3}){sub 0.26} chalcogenide glass

    SciTech Connect (OSTI)

    Knotek, P.; Tichy, L.

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ? Photo-expansion induced by sub-band-gap photons in GeSbS glass. ? One-step microlens formation. ? The topography of the microlenses detected by AFM and DHM. ? The good mechanical characteristics of the microlenses were obtained. ? Local light-induced overheating of the glass. -- Abstract: Photo-expansion of the bulk of (GeS{sub 2}){sub 0.74}(Sb{sub 2}S{sub 3}){sub 0.26} glass induced by sub-gap photons is studied employing specifically atomic force microscopy (AFM) namely an atomic force acoustic microscopy (AFAM) and a force spectroscopy and digital holographic microscopy. The results are discussed with respect to the possible role of light induced overheating in the process of photo-expansion.

  4. Field-regulated force by grafted polyelectrolytes

    E-Print Network [OSTI]

    Christian Seidel; Yury A. Budkov; Nikolay V. Brilliantov

    2014-11-08

    Generation of mechanical force regulated by external electric field is studied both theoretically and by molecular dynamics (MD) simulations. The force arises in deformable bodies linked to the free end of a grafted polyelectrolyte chain which is exposed to electric field that favours its adsorption. We consider a few target bodies with different force-deformation relations including (i) linear and (ii) cubic dependences as well as (iii) Hertzian-like force. Such force-deformation relations mimic the behaviour of (i) coiled and (ii) stretched polymer chains, respectively, or (iii) that of a squeezed colloidal particle. The magnitude of the arising force varies over a wide interval although the electric field alters within a relatively narrow range only. The predictions of our theory agree quantitatively well with the results of numerical simulations. Both cases of zero and finite electrical current are investigated and we do not obtain substantial differences in the force generated. The phenomenon studied could possibly be utilised to design, e.g., vice-like devices to fix nano-sized objects.

  5. Piezoresistive cantilever force-clamp system

    SciTech Connect (OSTI)

    Park, Sung-Jin; Petzold, Bryan C.; Pruitt, Beth L. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Goodman, Miriam B. [Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305 (United States)

    2011-04-15

    We present a microelectromechanical device-based tool, namely, a force-clamp system that sets or ''clamps'' the scaled force and can apply designed loading profiles (e.g., constant, sinusoidal) of a desired magnitude. The system implements a piezoresistive cantilever as a force sensor and the built-in capacitive sensor of a piezoelectric actuator as a displacement sensor, such that sample indentation depth can be directly calculated from the force and displacement signals. A programmable real-time controller operating at 100 kHz feedback calculates the driving voltage of the actuator. The system has two distinct modes: a force-clamp mode that controls the force applied to a sample and a displacement-clamp mode that controls the moving distance of the actuator. We demonstrate that the system has a large dynamic range (sub-nN up to tens of {mu}N force and nm up to tens of {mu}m displacement) in both air and water, and excellent dynamic response (fast response time, <2 ms and large bandwidth, 1 Hz up to 1 kHz). In addition, the system has been specifically designed to be integrated with other instruments such as a microscope with patch-clamp electronics. We demonstrate the capabilities of the system by using it to calibrate the stiffness and sensitivity of an electrostatic actuator and to measure the mechanics of a living, freely moving Caenorhabditis elegans nematode.

  6. Unveiling Stability Criteria of DNA-Carbon Nanotubes Constructs by Scanning Tunneling Microscopy and Computational Modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kilina, Svetlana; Yarotski, Dzmitry A.; Talin, A. Alec; Tretiak, Sergei; Taylor, Antoinette J.; Balatsky, Alexander V.

    2011-01-01

    We present a combined approach that relies on computational simulations and scanning tunneling microscopy (STM) measurements to reveal morphological properties and stability criteria of carbon nanotube-DNA (CNT-DNA) constructs. Application of STM allows direct observation of very stable CNT-DNA hybrid structures with the well-defined DNA wrapping angle of 63.4 ° and a coiling period of 3.3?nm. Using force field simulations, we determine how the DNA-CNT binding energy depends on the sequence and binding geometry of a single strand DNA. This dependence allows us to quantitatively characterize the stability of a hybrid structure with an optimal ?-stacking between DNA nucleotides andmore »the tube surface and better interpret STM data. Our simulations clearly demonstrate the existence of a very stable DNA binding geometry for (6,5) CNT as evidenced by the presence of a well-defined minimum in the binding energy as a function of an angle between DNA strand and the nanotube chiral vector. This novel approach demonstrates the feasibility of CNT-DNA geometry studies with subnanometer resolution and paves the way towards complete characterization of the structural and electronic properties of drug-delivering systems based on DNA-CNT hybrids as a function of DNA sequence and a nanotube chirality. « less

  7. High throughput 3D optical microscopy : from image cytometry to endomicroscopy

    E-Print Network [OSTI]

    Choi, Heejin

    2014-01-01

    Optical microscopy is an imaging technique that allows morphological mapping of intracellular structures with submicron resolution. More importantly, optical microscopy is a technique that can readily provide images with ...

  8. Cellular resolution ex vivo imaging of gastrointestinal tissues with coherence microscopy

    E-Print Network [OSTI]

    Fujimoto, James G.

    Optical coherence microscopy (OCM) combines confocal microscopy and optical coherence tomography (OCT) to improve imaging depth and contrast, enabling cellular imaging in human tissues. We aim to investigate OCM for ex ...

  9. Demonstration of the Lateral Casimir Force

    E-Print Network [OSTI]

    F. Chen; U. Mohideen; G. L. Klimchitskaya; V. M. Mostepanenko

    2002-01-19

    The lateral Casimir force between a sinusoidally corrugated gold coated plate and large sphere was measured for surface separations between 0.2 $\\mu$m to 0.3 $\\mu$m using an atomic force microscope. The measured force shows the required periodicity corresponding to the corrugations. It also exhibits the necessary inverse fourth power distance dependence. The obtained results are shown to be in good agreement with a complete theory taking into account the imperfectness of the boundary metal. This demonstration opens new opportunities for the use of the Casimir effect for lateral translation in microelectromechanical systems.

  10. Viscoelastic Study Using an Atomic Force Microscope Modified to Operate as a Nanorheometer

    E-Print Network [OSTI]

    Attard, Phil

    pharmaceutical compounds, through to polymer composites,blends,novelorganicsemiconductornetworks, and even,11,12 Although category I nanorheology can be conducted without any subsequent modification to the existing AFM

  11. Transmission electron microscopy examination of oxide layers formed on Zr alloys

    E-Print Network [OSTI]

    Motta, Arthur T.

    Transmission electron microscopy examination of oxide layers formed on Zr alloys Aylin Yilmazbayhan, United States Received 14 July 2005; accepted 31 October 2005 Abstract A transmission electron microscopy. In this work, cross-sectional transmission electron microscopy was used to determine the morphology

  12. Nuclear emission microscopies B.L. Doyle a,*, D.S. Walsh a

    E-Print Network [OSTI]

    Nuclear emission microscopies B.L. Doyle a,*, D.S. Walsh a , S.N. Renfrow a,b , G. Vizkelethy a,1 Abstract Alternatives to traditional nuclear microprobe analysis (NMA) emerged two years ago with the invention of ion electron emission microscopy (IEEM). With nuclear emission microscopy (NEM) the ion beam

  13. Scanning microscopy using a short-focal-length Fresnel zone plate

    E-Print Network [OSTI]

    Scanning microscopy using a short-focal-length Fresnel zone plate Ethan Schonbrun,* Winnie N. Ye demonstrate a form of scanning microscopy using a short-focal-length Fresnel zone plate and a low-NA relay. In this scheme, parallel scanning microscopy using a Fresnel zone-plate array would require only a single spatial

  14. Chiral Expansion, Renormalization and the Nuclear Force

    E-Print Network [OSTI]

    E. Ruiz Arriola; M. Pavon Valderrama

    2006-09-29

    The renormalization of singular chiral potentials as applied to NN scattering and the structure of the deuteron is discussed. It is shown how zero range theories may be implemented non-perturbatively as constrained from known long range NN forces.

  15. Qualifying Facility Wheeling Task Force-- Status Report 

    E-Print Network [OSTI]

    Panjavan, S.

    1989-01-01

    Docket No. 8650 that the PUCT review the applicability of certain parts of the wheeling rules, and in April the Commission appointed a task force composed of representatives from affected industries, utilities, and regulatory staff to review the wheeling...

  16. SCM Forcing Data Derived from NWP Analyses

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jakob, Christian

    2008-01-15

    Forcing data, suitable for use with single column models (SCMs) and cloud resolving models (CRMs), have been derived from NWP analyses for the ARM (Atmospheric Radiation Measurement) Tropical Western Pacific (TWP) sites of Manus Island and Nauru.

  17. Hill Air Force Base Energy Performance Contract 

    E-Print Network [OSTI]

    Leach, M. D.

    1996-01-01

    This paper describes a basewide energy performance contract in progress at Hill Air Force Base (AFB) near Ogden, Utah. This performance contract differs from many performance contracts in that energy conservation measures (ECMs) which provide short...

  18. Optical Force Measurements In Concentrated Colloidal Suspensions 

    E-Print Network [OSTI]

    Wilson, Laurence

    2007-01-01

    This work concerns the construction and testing of an optical tweezers-based force transducer, and its application to a hard-sphere colloidal system. A particle in an optical trap forward-scatters a fraction of the ...

  19. Treecodes for Potential and Force Approximations 

    E-Print Network [OSTI]

    Kannan, Kasthuri Srinivasan

    2009-05-15

    N-body problems encompass a variety of fields such as electrostatics, molecularbiology and astrophysics. If there are N particles in the system, the brute force algorithmfor these problems based on particle-particle ...

  20. Magnetic properties and transmission electron microscopy studies of Ni nanoparticles encapsulated in carbon nanocages and carbon nanotubes

    SciTech Connect (OSTI)

    He Chunnian; Zhao Naiqin Shi Chunsheng; Li Jiajun; Li Haipeng

    2008-08-04

    Three types of carbon nanomaterials, including bamboo-shaped carbon nanotubes with Ni encapsulated and hollow and Ni catalytic particles filled carbon nanocages, have been prepared by methane catalytic decomposition at a relatively low temperature. Transmission electron microscopy observations showed that fascinating fullerene-like Ni-C (graphitic) core-shell nanostructures predominated. Detailed examination of high-resolution transmission electron microscopy showed that the walls of bamboo-shaped carbon nanotubes with quasi-cone catalytic particles encapsulated consisted of oblique graphene planes with respect to the tube axis. The Ni particles encapsulated in the carbon nanocages were larger than that encapsulated in carbon nanotubes, but the diameters of the cores of hollow carbon nanocages were less than that of Ni particles encapsulated in carbon nanotubes, suggesting that the sizes of catalyst particles played an important role during carbon nanomaterial growth. The magnetic properties of the carbon nanomaterials were measured, which showed relatively large coercive force (H{sub c} = 138.4 O{sub e}) and good ferromagnetism (M{sub r}/M{sub s} = 0.325)

  1. Micromechanical apparatus for measurement of forces

    DOE Patents [OSTI]

    Tanner, Danelle Mary; Allen, James Joe

    2004-05-25

    A new class of micromechanical dynamometers has been disclosed which are particularly suited to fabrication in parallel with other microelectromechanical apparatus. Forces in the microNewton regime and below can be measured with such dynamometers which are based on a high-compliance deflection element (e.g. a ring or annulus) suspended above a substrate for deflection by an applied force, and one or more distance scales for optically measuring the deflection.

  2. Agencies Approve Bacteria TMDL Task Force Recommendations 

    E-Print Network [OSTI]

    Wythe, Kathy

    2007-01-01

    tx H2O | pg. 10 In June 2007 the Texas Commission onEnvironmental Quality (TCEQ) and the TexasState Soil and Water Conservation Board (TSSW- CB) approved the recommendations of the Bacteria Total Maximum Daily Load (TMDL) Task Force and asked... their agencies to update their TMDL guidance documents to reflect these recommendations. They also authorized establishing a multi-agency bacteria TMDL work group to examine the research and development needs identified in the task force report. Both TCEQ...

  3. Invited Review Article: Advanced light microscopy for biological space research

    SciTech Connect (OSTI)

    De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; Loon, Jack J. W. A. van

    2014-10-15

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  4. Simultaneous orientation and thickness mapping in transmission electron microscopy

    SciTech Connect (OSTI)

    Tyutyunnikov, Dmitry; Özdöl, V. Burak; Koch, Christoph T.

    2014-12-04

    In this paper we introduce an approach for simultaneous thickness and orientation mapping of crystalline samples by means of transmission electron microscopy. We show that local thickness and orientation values can be extracted from experimental dark-field (DF) image data acquired at different specimen tilts. The method has been implemented to automatically acquire the necessary data and then map thickness and crystal orientation for a given region of interest. We have applied this technique to a specimen prepared from a commercial semiconductor device, containing multiple 22 nm technology transistor structures. The performance and limitations of our method are discussed and compared to those of other techniques available.

  5. Simultaneous orientation and thickness mapping in transmission electron microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tyutyunnikov, Dmitry; Özdöl, V. Burak; Koch, Christoph T.

    2014-12-04

    In this paper we introduce an approach for simultaneous thickness and orientation mapping of crystalline samples by means of transmission electron microscopy. We show that local thickness and orientation values can be extracted from experimental dark-field (DF) image data acquired at different specimen tilts. The method has been implemented to automatically acquire the necessary data and then map thickness and crystal orientation for a given region of interest. We have applied this technique to a specimen prepared from a commercial semiconductor device, containing multiple 22 nm technology transistor structures. The performance and limitations of our method are discussed and comparedmore »to those of other techniques available.« less

  6. Video Microscopy of Colloidal Suspensions and Colloidal Crystals

    E-Print Network [OSTI]

    Piotr Habdas; Eric R. Weeks

    2002-04-23

    Colloidal suspensions are simple model systems for the study of phase transitions. Video microscopy is capable of directly imaging the structure and dynamics of colloidal suspensions in different phases. Recent results related to crystallization, glasses, and 2D systems complement and extend previous theoretical and experimental studies. Moreover, new techniques allow the details of interactions between individual colloidal particles to be carefully measured. Understanding these details will be crucial for designing novel colloidal phases and new materials, and for manipulating colloidal suspensions for industrial uses.

  7. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impacts onReal-TimeRecord-Setting Microscopy Illuminates Energy

  8. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impacts onReal-TimeRecord-Setting Microscopy Illuminates

  9. Record-Setting Microscopy Illuminates Energy Storage Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProtonAbout Us Hanford Site WideRecord-Setting Microscopy

  10. Before Senate Subcommittee on Strategic Forces - Committee on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Strategic Forces - Committee on Armed Services Before Senate Subcommittee on Strategic Forces - Committee on Armed Services By: David Huizenga, Senior Advisor for...

  11. July 15, 2014 SEAB Task Force Meeting on Technology Development...

    Energy Savers [EERE]

    Task Force Meeting on Technology Development for Environmental Management July 15, 2014 SEAB Task Force Meeting on Technology Development for Environmental Management July 15,...

  12. Government and Industry A Force for Collaboration at the Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Government and Industry A Force for Collaboration at the Energy Roadmap Update Workshop Government and Industry A Force for Collaboration at the Energy Roadmap Update Workshop...

  13. Building Bridges: Federal Agencies Join Forces to Promote Sustainable...

    Office of Environmental Management (EM)

    Building Bridges: Federal Agencies Join Forces to Promote Sustainable, Resilient Tribal Communities Building Bridges: Federal Agencies Join Forces to Promote Sustainable, Resilient...

  14. Zipping mechanism for force-generation by growing filament bundles

    E-Print Network [OSTI]

    Torsten Kuehne; Reinhard Lipowsky; Jan Kierfeld

    2011-03-02

    We investigate the force generation by polymerizing bundles of filaments, which form because of short-range attractive filament interactions. We show that bundles can generate forces by a zipping mechanism, which is not limited by buckling and operates in the fully buckled state. The critical zipping force, i.e. the maximal force that a bundle can generate, is given by the adhesive energy gained during bundle formation. For opposing forces larger than the critical zipping force, bundles undergo a force-induced unbinding transition. For larger bundles, the critical zipping force depends on the initial configuration of the bundles. Our results are corroborated by Monte Carlo simulations.

  15. Collaborative Utility Task Force Partners with DOE to Develop...

    Energy Savers [EERE]

    Collaborative Utility Task Force Partners with DOE to Develop Cyber Security Requirements for Advanced Metering Infrastructure Collaborative Utility Task Force Partners with DOE to...

  16. 6.641 Electromagnetic Fields, Forces, and Motion, Spring 2003

    E-Print Network [OSTI]

    Zahn, Markus, 1946-

    Electric and magnetic quasistatic forms of Maxwell's equations applied to dielectric, conduction, and magnetization boundary value problems. Electromagnetic forces, force densities, and stress tensors, including magnetization ...

  17. Climate Change Task Force Webinar Series | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Change Task Force Webinar Series Climate Change Task Force Webinar Series The four-part Climate Change Impacts and Indian Country webinar series provided tribal leaders an...

  18. Federal Task Force Sends Recommendations to President on Fostering...

    Energy Savers [EERE]

    Task Force Sends Recommendations to President on Fostering Clean Coal Technology Federal Task Force Sends Recommendations to President on Fostering Clean Coal Technology August 12,...

  19. Task Force for Strategic Developments to Blue Ribbon Commission...

    Office of Environmental Management (EM)

    Task Force for Strategic Developments to Blue Ribbon Commission Recommendations Task Force for Strategic Developments to Blue Ribbon Commission Recommendations Formed at the...

  20. Frontiers of in situ electron microscopy

    SciTech Connect (OSTI)

    Zheng, Haimei; Zhu, Yimei; Meng, Shirley Ying

    2015-01-01

    In situ transmission electron microscopy (TEM) has become an increasingly important tool for materials characterization. It provides key information on the structural dynamics of a material during transformations and the correlation between structure and properties of materials. With the recent advances in instrumentation, including aberration corrected optics, sample environment control, the sample stage, and fast and sensitive data acquisition, in situ TEM characterization has become more and more powerful. In this article, a brief review of the current status and future opportunities of in situ TEM is included. It also provides an introduction to the six articles covered by in this issue of MRS Bulletin explore the frontiers of in situ electron microscopy, including liquid and gas environmental TEM, dynamic four-dimensional TEM, nanomechanics, ferroelectric domain switching studied by in situ TEM, and state-of-the-art atomic imaging of light elements (i.e., carbon atoms) and individual defects.

  1. Collaborative Computational Project for Electron cryo-Microscopy

    SciTech Connect (OSTI)

    Wood, Chris; Burnley, Tom [Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA (United Kingdom); Patwardhan, Ardan [European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD (United Kingdom); Scheres, Sjors [MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH (United Kingdom); Topf, Maya [University of London, Malet Street, London WC1E 7HX (United Kingdom); Roseman, Alan [University of Manchester, Oxford Road, Manchester M13 9PT (United Kingdom); Winn, Martyn, E-mail: martyn.winn@stfc.ac.uk [Science and Technology Facilities Council, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA (United Kingdom)

    2015-01-01

    The Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) is a new initiative for the structural biology community, following the success of CCP4 for macromolecular crystallography. Progress in supporting the users and developers of cryoEM software is reported. The Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) has recently been established. The aims of the project are threefold: to build a coherent cryoEM community which will provide support for individual scientists and will act as a focal point for liaising with other communities, to support practising scientists in their use of cryoEM software and finally to support software developers in producing and disseminating robust and user-friendly programs. The project is closely modelled on CCP4 for macromolecular crystallography, and areas of common interest such as model fitting, underlying software libraries and tools for building program packages are being exploited. Nevertheless, cryoEM includes a number of techniques covering a large range of resolutions and a distinct project is required. In this article, progress so far is reported and future plans are discussed.

  2. Generation and Application of Bessel Beams in Electron Microscopy

    E-Print Network [OSTI]

    Vincenzo Grillo; Jérémie Harris; Gian Carlo Gazzadi; Roberto Balboni; Erfan Mafakheri; Mark R. Dennis; Stefano Frabboni; Robert W. Boyd; Ebrahim Karimi

    2015-05-28

    We report a systematic treatment of the holographic generation of electron Bessel beams, with a view to applications in electron microscopy. We describe in detail the theory underlying hologram patterning, as well as the actual electro-optical configuration used experimentally. We show that by optimizing our nanofabrication recipe, electron Bessel beams can be generated with efficiencies reaching $37 \\pm 3\\%$. We also demonstrate by tuning various hologram parameters that electron Bessel beams can be produced with many visible rings, making them ideal for interferometric applications, or in more highly localized forms with fewer rings, more suitable for imaging. We describe the settings required to tune beam localization in this way, and explore beam and hologram configurations that allow the convergences and topological charges of electron Bessel beams to be controlled. We also characterize the phase structure of the Bessel beams generated with our technique, using a simulation procedure that accounts for imperfections in the hologram manufacturing process. Finally, we discuss a specific potential application of electron Bessel beams in scanning transmission electron microscopy.

  3. An electron microscopy study of wear in polysilicon microelectromechanical systems.

    SciTech Connect (OSTI)

    Dugger, Michael Thomas; Enachescu, M. (Lawrence Berkeley National Lab); Stach, Eric A. (Lawrence Berkeley National Lab); Alsem, Daan Hein (Lawrence Berkeley National Lab); Ritchie, Robert O. (Lawrence Berkeley National Lab)

    2005-02-01

    Wear is a critical factor in determining the durability of microelectromechanical systems (MEMS). While the reliability of polysilicon MEMS has received extensive attention, the mechanisms responsible for this failure mode at the microscale have yet to be conclusively determined. We have used on-chip polycrystalline silicon side-wall friction MEMS specimens to study active mechanisms during sliding wear in ambient air. Worn parts were examined by analytical scanning and transmission electron microscopy, while local temperature changes were monitored using advanced infrared microscopy. Observations show that small amorphous debris particles ({approx}50-100 nm) are removed by fracture through the silicon grains ({approx}500 nm) and are oxidized during this process. Agglomeration of such debris particles into larger clusters also occurs. Some of these debris particles/clusters create plowing tracks on the beam surface. A nano-crystalline surface layer ({approx}20-200 nm), with higher oxygen content, forms during wear at and below regions of the worn surface; its formation is likely aided by high local stresses. No evidence of dislocation plasticity or of extreme local temperature increases was found, ruling out the possibility of high temperature-assisted wear mechanisms.

  4. Coupling EELS/EFTEM Imaging with Environmental Fluid Cell Microscopy

    SciTech Connect (OSTI)

    Unocic, Raymond R; Baggetto, Loic; Veith, Gabriel M; Dudney, Nancy J; More, Karren Leslie

    2012-01-01

    Insight into dynamically evolving electrochemical reactions and mechanisms encountered in electrical energy storage (EES) and conversion technologies (batteries, fuel cells, and supercapacitors), materials science (corrosion and oxidation), and materials synthesis (electrodeposition) remains limited due to the present lack of in situ high-resolution characterization methodologies. Electrochemical fluid cell microscopy is an emerging in-situ method that allows for the direct, real-time imaging of electrochemical processes within a fluid environment. This technique is facilitated by the use of MEMS-based biasing microchip platforms that serve the purpose of sealing the highly volatile electrolyte between two electron transparent SiNx membranes and interfacing electrodes to an external potentiostat for controlled nanoscale electrochemislly experiments [!]. In order to elucidate both stmctural and chemical changes during such in situ electrochemical experiments, it is impmtant to first improve upon the spatial resolution by utilizing energy-filtered transmission electron microscopy (EFTEM) (to minimize chromatic aben ation), then to detennine the chemical changes via electron energy loss spectroscopy (EELS). This presents a formidable challenge since the overall thickness through which electrons are scattered through the multiple layers of the cell can be on the order of hundreds of nanometers to microns, scattering through which has the deleterious effect of degrading image resolution and decreasing signal-to noise for spectroscopy [2].

  5. Enabling Force Sensing During Ground Locomotion: A Bio-Inspired, Multi-Axis, Composite Force Sensor Using Discrete Pressure Mapping

    E-Print Network [OSTI]

    Chuah, Meng Yee

    This paper presents a new force sensor design approach that maps the local sampling of pressure inside a composite polymeric footpad to forces in three axes, designed for running robots. Conventional multiaxis force sensors ...

  6. Force Density Balance inside the Hydrogen Atom

    E-Print Network [OSTI]

    Himpsel, F J

    2015-01-01

    Motivated by the long-debated question about the internal stability of the electron, the force densities acting on the charge density of the 1s electron in the H atom are investigated. The problem is mapped onto the canonical formalism for a classical Dirac field coupled to the electric field of an external point charge. An explicit calculation shows that the attractive Coulomb force density is balanced exactly at every point in space by the repulsive confinement force density. The latter requires evaluating the divergence of the stress tensor for the 1s solution of the Dirac equation. Such a local force balance goes beyond the global stability criteria that are usually given for the H atom. This concept is extended to the internal stability of any charged particle by investigating the force densities acting on its surrounding vacuum polarization. At large distances one has to consider only the charge density of virtual electrons and positrons, induced by a point charge in the vacuum of quantum electrodynamic...

  7. Force-extension curves of bacterial flagella

    E-Print Network [OSTI]

    Reinhard Vogel; Holger Stark

    2010-11-10

    Bacterial flagella assume different helical shapes during the tumbling phase of a bacterium but also in response to varying environmental conditions. Force-extension measurements by Darnton and Berg explicitly demonstrate a transformation from the coiled to the normal helical state [N.C. Darnton and H.C. Berg, Biophys. J. {92}, 2230 (2007)]. We here develop an elastic model for the flagellum based on Kirchhoff's theory of an elastic rod that describes such a polymorphic transformation and use resistive force theory to couple the flagellum to the aqueous environment. We present Brownian dynamics simulations that quantitatively reproduce the force-extension curves and study how the ratio $\\Gamma$ of torsional to bending rigidity and the extensional rate influence the response of the flagellum. An upper bound for $\\Gamma$ is given. Using clamped flagella, we show in an adiabatic approximation that the mean extension, where a local coiled-to-normal transition occurs first, depends on the logarithm of the extensional rate.

  8. Dynamical friction force exerted on spherical bodies

    E-Print Network [OSTI]

    O. Esquivel; B. Fuchs

    2007-04-30

    We present a rigorous calculation of the dynamical friction force exerted on a spherical massive perturber moving through an infinite homogenous system of field stars. By calculating the shape and mass of the polarization cloud induced by the perturber in the background system, which decelerates the motion of the perturber, we recover Chandrasekhar's drag force law with a modified Coulomb logarithm. As concrete examples we calculate the drag force exerted on a Plummer sphere or a sphere with the density distribution of a Hernquist profile. It is shown that the shape of the perturber affects only the exact form of the Coulomb logarithm. The latter converges on small scales, because encounters of the test and field stars with impact parameters less than the size of the massive perturber become inefficient. We confirm this way earlier results based on the impulse approximation of small angle scatterings.

  9. Dynamical friction force exerted on spherical bodies

    E-Print Network [OSTI]

    Esquivel, O

    2007-01-01

    We present a rigorous calculation of the dynamical friction force exerted on a spherical massive perturber moving through an infinite homogenous system of field stars. By calculating the shape and mass of the polarization cloud induced by the perturber in the background system, which decelerates the motion of the perturber, we recover Chandrasekhar's drag force law with a modified Coulomb logarithm. As concrete examples we calculate the drag force exerted on a Plummer sphere or a sphere with the density distribution of a Hernquist profile. It is shown that the shape of the perturber affects only the exact form of the Coulomb logarithm. The latter converges on small scales, because encounters of the test and field stars with impact parameters less than the size of the massive perturber become inefficient. We confirm this way earlier results based on the impulse approximation of small angle scatterings.

  10. Tidal Forces in Naked Singularity Backgrounds

    E-Print Network [OSTI]

    Goel, Akash; Roy, Pratim; Sarkar, Tapobrata

    2015-01-01

    The end stage of a gravitational collapse process can generically result in a black hole or a naked singularity. Here we undertake a comparative analysis of the nature of tidal forces in these backgrounds. The effect of such forces is generically exemplified by the Roche limit, which predicts the distance within which a celestial object disintegrates due to the tidal effects of a second more massive object. In this paper, using Fermi normal coordinates, we numerically compute the Roche limit for a class of non-rotating naked singularity backgrounds, and compare them with known results for Schwarzschild black holes. Our analysis indicates that there might be substantially large deviations in the magnitudes of tidal forces in naked singularity backgrounds, compared to the black hole cases. If observationally established, these can prove to be an effective indicator of the nature of the singularity at a galactic centre.

  11. On the nature of gravitational forces

    E-Print Network [OSTI]

    A. Del Popolo

    2008-01-07

    In this paper I show how the statistics of the gravitational field is changed when the system is characterized by a non-uniform distribution of particles. I show how the distribution functions W(dF/dt) giving the joint probability that a test particle is subject to a force F and an associated rate of change of F given by dF/dt, are modified by inhomogeneity. Then I calculate the first moment of dF/dt to study the effects of inhomogenity on dynamical friction. Finally I test, by N-Body simulations, that the theoretical W(F) and dF/dt describes correctly the experimental data and I find that the stochastic force distribution obtained for the evolved system is in good agreement with theory. Moreover, I find that in an inhomogeneous background the friction force is actually enhanced relative to the homogeneous case.

  12. Giant vacuum forces via transmission lines

    E-Print Network [OSTI]

    Ephraim Shahmoon; Igor Mazets; Gershon Kurizki

    2014-07-23

    Quantum electromagnetic fluctuations induce forces between neutral particles, known as the van der Waals (vdW) and Casimir interactions. These fundamental forces, mediated by virtual photons from the vacuum, play an important role in basic physics and chemistry, and in emerging technologies involving, e.g. micro-electromechanical systems or quantum information processing. Here we show that these interactions can be enhanced by many orders of magnitude upon changing the character of the mediating vacuum-modes. By considering two polarizable particles in the vicinity of any standard electric transmission line, along which photons can propagate in one dimension (1d), we find a much stronger and longer-range interaction than in free-space. This enhancement may have profound implications on many-particle and bulk systems, and impact the quantum technologies mentioned above. The predicted giant vacuum force is estimated to be measurable in a coplanar waveguide line.

  13. Recent Progress with the KWISP Force Sensor

    E-Print Network [OSTI]

    G. Cantatore; A. Gardikiotis; D. H. H. Hoffmann; M. Karuza; Y. K. Semertzidis; K. Zioutas

    2015-10-20

    The KWISP opto-mechanical force sensor has been built and calibrated in the INFN Trieste optics laboratory and is now under off-beam commissioning at CAST. It is designed to detect the pressure exerted by a flux of solar Chameleons on a thin (100 nm) Si$_3$N$_4$ micromembrane thanks to their direct coupling to matter. A thermally-limited force sensitivity of $1.5 \\cdot 10^{-14}~\\mbox{N}/\\sqrt{\\mbox{Hz}}$, corresponding to $7.5 \\cdot 10^{-16}~\\mbox{m}/\\sqrt{\\mbox{Hz}}$ in terms of displacement, has been obtained. An originally developed prototype chameleon chopper has been used in combination with the KWISP force sensor to conduct preliminary searches for solar chamaleons.

  14. Recent Progress with the KWISP Force Sensor

    E-Print Network [OSTI]

    Cantatore, G; Hoffmann, D H H; Karuza, M; Semertzidis, Y K; Zioutas, K

    2015-01-01

    The KWISP opto-mechanical force sensor has been built and calibrated in the INFN Trieste optics laboratory and is now under off-beam commissioning at CAST. It is designed to detect the pressure exerted by a flux of solar Chameleons on a thin (100 nm) Si$_3$N$_4$ micromembrane thanks to their direct coupling to matter. A thermally-limited force sensitivity of $1.5 \\cdot 10^{-14}~\\mbox{N}/\\sqrt{\\mbox{Hz}}$, corresponding to $7.5 \\cdot 10^{-16}~\\mbox{m}/\\sqrt{\\mbox{Hz}}$ in terms of displacement, has been obtained. An originally developed prototype chameleon chopper has been used in combination with the KWISP force sensor to conduct preliminary searches for solar chamaleons.

  15. Spray bottle apparatus with force multiply pistons

    DOE Patents [OSTI]

    Eschbach, Eugene A. (Richland, WA)

    1992-01-01

    The present invention comprises a spray bottle in which the pressure resulting from the gripping force applied by the user is amplified and this increased pressure used in generating a spray such as an aerosol or fluid stream. In its preferred embodiment, the invention includes a high pressure chamber and a corresponding piston which is operative for driving fluid out of this chamber at high pressure through a spray nozzle and a low pressure chamber and corresponding piston which is acted upon by the hydraulic pressure within the bottle resulting from the gripping force. The low pressure chamber and piston are of larger size than the high pressure chamber and piston. The pistons are rigidly connected so that the force created by the pressure acting on the piston in the low pressure chamber is transmitted to the piston in the high pressure chamber where it is applied over a more limited area thereby generating greater hydraulic pressure for use in forming the spray.

  16. Analytical Form of Forces in Hydrophobic Collapse

    E-Print Network [OSTI]

    J. Chakrabarti; Suman Dutta

    2015-05-29

    We calculate analytically the forces between two solvophobic solutes, considering a model system. We show that the effective interaction forces between two solvophobic solutes, mediated by the solvent, is attractive for short ranges, which decreases linearly with surface-to-surface separation s between the solutes and repulsive in the long range falling off as 1 / s 4 . The attraction originates from the unbalanced Laplace force at the liquid-gas interface, generated by the repulsive interaction with the solvent particles, around the solutes at small s. The long range part arises due to unbalanced osmotic pressure. We illustrate the calculations for the Lennard-Jones solvent. We discuss the general implication of our results in the context of hydrophobic collapse.

  17. 6/2015 E&M forces-1/8 ELECTRIC AND MAGNETIC FORCES

    E-Print Network [OSTI]

    Gustafsson, Torgny

    6/2015 E&M forces-1/8 ELECTRIC AND MAGNETIC FORCES PURPOSE: To study the deflection of a beam of electrons by electric and magnetic fields. APPARATUS: Electron beam tube, stand with coils, power supply the electrons strike a fluorescent screen. As the electrons move in the horizontal (x) direction, an electric

  18. Computing nonlinear force free coronal magnetic fields

    E-Print Network [OSTI]

    T. Wiegelmann; T. Neukirch

    2008-01-21

    Knowledge of the structure of the coronal magnetic field is important for our understanding of many solar activity phenomena, e.g. flares and CMEs. However, the direct measurement of coronal magnetic fields is not possible with present methods, and therefore the coronal field has to be extrapolated from photospheric measurements. Due to the low plasma beta the coronal magnetic field can usually be assumed to be approximately force free, with electric currents flowing along the magnetic field lines. There are both observational and theoretical reasons which suggest that at least prior to an eruption the coronal magnetic field is in a nonlinear force free state. Unfortunately the computation of nonlinear force free fields is way more difficult than potential or linear force free fields and analytic solutions are not generally available. We discuss several methods which have been proposed to compute nonlinear force free fields and focus particularly on an optimization method which has been suggested recently. We compare the numerical performance of a newly developed numerical code based on the optimization method with the performance of another code based on an MHD relaxation method if both codes are applied to the reconstruction of a semi-analytic nonlinear force-free solution. The optimization method has also been tested for cases where we add random noise to the perfect boundary conditions of the analytic solution, in this way mimicking the more realistic case where the boundary conditions are given by vector magnetogram data. We find that the convergence properties of the optimization method are affected by adding noise to the boundary data and we discuss possibilities to overcome this difficulty.

  19. "Centrifugal force: A gedanken experiment" - new surprises

    E-Print Network [OSTI]

    G. Z. Machabeli; A. D. Rogava

    1996-04-22

    A recently proposed "gedanken experiment" [G.Z. Machabeli and A.D. Rogava. Phys. Rev. A {\\bf 50}, 98 (1994)], exhibiting surprising behavior, is reexamined. A description of this behavior in terms of the laboratory inertial frame is presented, avoiding uncertainties arising due to a definition of a centrifugal force in relativity. The surprising analogy with the radial geodesic motion in Schwarzschild geometry is discovered. The definition of the centrifugal force, suggested by J.C. Miller and M.A. Abramowicz, is discussed.

  20. Stability of adhesion clusters under constant force

    E-Print Network [OSTI]

    T. Erdmann; U. S. Schwarz

    2004-01-27

    We solve the stochastic equations for a cluster of parallel bonds with shared constant loading, rebinding and the completely dissociated state as an absorbing boundary. In the small force regime, cluster lifetime grows only logarithmically with bond number for weak rebinding, but exponentially for strong rebinding. Therefore rebinding is essential to ensure physiological lifetimes. The number of bonds decays exponentially with time for most cases, but in the intermediate force regime, a small increase in loading can lead to much faster decay. This effect might be used by cell-matrix adhesions to induce signaling events through cytoskeletal loading.

  1. Time resolved electron microscopy for in situ experiments

    SciTech Connect (OSTI)

    Campbell, Geoffrey H. McKeown, Joseph T.; Santala, Melissa K.

    2014-12-15

    Transmission electron microscopy has functioned for decades as a platform for in situ observation of materials and processes with high spatial resolution. Yet, the dynamics often remain elusive, as they unfold too fast to discern at these small spatial scales under traditional imaging conditions. Simply shortening the exposure time in hopes of capturing the action has limitations, as the number of electrons will eventually be reduced to the point where noise overtakes the signal in the image. Pulsed electron sources with high instantaneous current have successfully shortened exposure times (thus increasing the temporal resolution) by about six orders of magnitude over conventional sources while providing the necessary signal-to-noise ratio for dynamic imaging. We describe here the development of this new class of microscope and the principles of its operation, with examples of its application to problems in materials science.

  2. Photoionization microscopy in terms of local frame transformation theory

    E-Print Network [OSTI]

    P. Giannakeas; F. Robicheaux; Chris H. Greene

    2014-10-27

    Two-photon ionization of an alkali-metal atom in the presence of a uniform electric field is investigated using a standardized form of local frame transformation and generalized quantum defect theory. The relevant long-range quantum defect parameters in the combined Coulombic plus Stark potential is calculated with eigenchannel R-matrix theory applied in the downstream parabolic coordinate $\\eta$. The present formulation permits us to express the corresponding microscopy observables in terms of the local frame transformation, and it gives a critical test of the accuracy of the Harmin-Fano theory permitting a scholastic investigation of the claims presented in Zhao {\\it et al.} [Phys. Rev. A 86, 053413 (2012)].

  3. Integrated fiducial sample mount and software for correlated microscopy

    SciTech Connect (OSTI)

    Timothy R McJunkin; Jill R. Scott; Tammy L. Trowbridge; Karen E. Wright

    2014-02-01

    A novel design sample mount with integrated fiducials and software for assisting operators in easily and efficiently locating points of interest established in previous analytical sessions is described. The sample holder and software were evaluated with experiments to demonstrate the utility and ease of finding the same points of interest in two different microscopy instruments. Also, numerical analysis of expected errors in determining the same position with errors unbiased by a human operator was performed. Based on the results, issues related to acquiring reproducibility and best practices for using the sample mount and software were identified. Overall, the sample mount methodology allows data to be efficiently and easily collected on different instruments for the same sample location.

  4. Cryo diffraction microscopy: Ice conditions and finite supports

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miao, H.; Downing, K.; Huang, X.; Kirz, J.; Marchesini, S.; Nelson, J.; Shapiro, D.; Steinbrener, J.; Stewart, A.; Jacobsen, C.

    2009-09-01

    Using a signal-to-noise ratio estimation based on correlations between multiple simulated images, we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy (XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated cells such as yeast, we find that XDM has the potential for delivering equivalent resolution imagesmore »using fewer photons. This can be an important advantage for studying radiation-sensitive biological and soft matter specimens.« less

  5. Reactor cell assembly for use in spectroscopy and microscopy applications

    DOE Patents [OSTI]

    Grindstaff, Quirinus; Stowe, Ashley Clinton; Smyrl, Norm; Powell, Louis; McLane, Sam

    2015-08-04

    The present disclosure provides a reactor cell assembly that utilizes a novel design and that is wholly or partially manufactured from Aluminum, such that reactions involving Hydrogen, for example, including solid-gas reactions and thermal decomposition reactions, are not affected by any degree of Hydrogen outgassing. This reactor cell assembly can be utilized in a wide range of optical and laser spectroscopy applications, as well as optical microscopy applications, including high-temperature and high-pressure applications. The result is that the elucidation of the role of Hydrogen in the reactions studied can be achieved. Various window assemblies can be utilized, such that high temperatures and high pressures can be accommodated and the signals obtained can be optimized.

  6. Handheld and low-cost digital holographic microscopy

    E-Print Network [OSTI]

    Shiraki, Atsushi; Shimobaba, Tomoyoshi; Masuda, Nobuyuki; Ito, Tomoyoshi

    2012-01-01

    This study developed handheld and low-cost digital holographic microscopy (DHM) by adopting an in-line type hologram, a webcam, a high power RGB light emitting diode (LED), and a pinhole. It cost less than 20,000 yen (approximately 250 US dollars at 80 yen/dollar), and was approximately 120 mm x 80 mm x 55 mm in size. In addition, by adjusting the recording-distance of a hologram, the lateral resolution power at the most suitable distance was 17.5 um. Furthermore, this DHM was developed for use in open source libraries, and is therefore low-cost and can be easily developed by anyone. In this research, it is the feature to cut down cost and size and to improve the lateral resolution power further rather than existing reports. This DHM will be a useful application in fieldwork, education, and so forth.

  7. Calibration of fluorescence resonance energy transfer in microscopy

    DOE Patents [OSTI]

    Youvan, Dougalas C.; Silva, Christopher M.; Bylina, Edward J.; Coleman, William J.; Dilworth, Michael R.; Yang, Mary M.

    2003-12-09

    Imaging hardware, software, calibrants, and methods are provided to visualize and quantitate the amount of Fluorescence Resonance Energy Transfer (FRET) occurring between donor and acceptor molecules in epifluorescence microscopy. The MicroFRET system compensates for overlap among donor, acceptor, and FRET spectra using well characterized fluorescent beads as standards in conjunction with radiometrically calibrated image processing techniques. The MicroFRET system also provides precisely machined epifluorescence cubes to maintain proper image registration as the sample is illuminated at the donor and acceptor excitation wavelengths. Algorithms are described that pseudocolor the image to display pixels exhibiting radiometrically-corrected fluorescence emission from the donor (blue), the acceptor (green) and FRET (red). The method is demonstrated on samples exhibiting FRET between genetically engineered derivatives of the Green Fluorescent Protein (GFP) bound to the surface of Ni chelating beads by histidine-tags.

  8. Calibration of fluorescence resonance energy transfer in microscopy

    DOE Patents [OSTI]

    Youvan, Douglas C. (San Jose, CA); Silva, Christopher M. (Sunnyvale, CA); Bylina, Edward J. (San Jose, CA); Coleman, William J. (Moutain View, CA); Dilworth, Michael R. (Santa Cruz, CA); Yang, Mary M. (San Jose, CA)

    2002-09-24

    Imaging hardware, software, calibrants, and methods are provided to visualize and quantitate the amount of Fluorescence Resonance Energy Transfer (FRET) occurring between donor and acceptor molecules in epifluorescence microscopy. The MicroFRET system compensates for overlap among donor, acceptor, and FRET spectra using well characterized fluorescent beads as standards in conjunction with radiometrically calibrated image processing techniques. The MicroFRET system also provides precisely machined epifluorescence cubes to maintain proper image registration as the sample is illuminated at the donor and acceptor excitation wavelengths. Algorithms are described that pseudocolor the image to display pixels exhibiting radiometrically-corrected fluorescence emission from the donor (blue), the acceptor (green) and FRET (red). The method is demonstrated on samples exhibiting FRET between genetically engineered derivatives of the Green Fluorescent Protein (GFP) bound to the surface of Ni chelating beads by histidine-tags.

  9. Lab 6: Forced Harmonic Motion Driven harmonic oscillation

    E-Print Network [OSTI]

    Gustafsson, Torgny

    Lab 6: Forced Harmonic Motion Driven harmonic oscillation Example: Atomic force microscope watch, circuit, ... #12;A constant energy flow at steady state ( )F t dF Rx= - 0oin ut PP + = #12;Forced harmonic t - = + #12;Forced harmonic oscillation (cont.) ( ) ( ) ( ) 0 2 2 0 cos 2 sin cos cosF m

  10. PHOTONIC NANOJET PHOTONIC NANOJET

    E-Print Network [OSTI]

    Poon, Andrew Wing On

    PHOTONIC NANOJET SCANNING MICROSCOPY PHOTONIC NANOJET SCANNING MICROSCOPY Project Members: LEE Yi Final Year Project (2004 ­ 2005) #12;OVERVIEW Photonic nanojet Photonic nanojet measurement Conventional Photonic Nanojet Scanning MicroscopePhotonic Nanojet Scanning Microscope AFM tip scanning AFM tip scanning

  11. Calculation of a fluctuating entropic force by phase space sampling

    E-Print Network [OSTI]

    Waters, James T

    2015-01-01

    A polymer chain pinned in space exerts a fluctuating force on the pin point in thermal equilibrium. The average of such fluctuating force is well understood from statistical mechanics as an entropic force, but little is known about the underlying force distribution. Here, we introduce two phase space sampling methods that can produce the equilibrium distribution of instantaneous forces exerted by a terminally pinned polymer. In these methods, both the positions and momenta of mass points representing a freely jointed chain are perturbed in accordance with the spatial constraints and the Boltzmann distribution of total energy. The constraint force for each conformation and momentum is calculated using Lagrangian dynamics. Using terminally pinned chains in space and on a surface, we show that the force distribution is highly asymmetric with both tensile and compressive forces. Most importantly, the mean of the distribution, which is equal to the entropic force, is not the most probable force even for long chain...

  12. Power Capping Via Forced Idleness Anshul Gandhi

    E-Print Network [OSTI]

    Harchol-Balter, Mor

    Power Capping Via Forced Idleness Anshul Gandhi Carnegie Mellon University anshulg@cs.cmu.edu Mor@us.ibm.com Abstract We introduce a novel power capping technique, IdleCap, that achieves higher effective server frequency for a given power constraint than existing techniques. IdleCap works by repeatedly alternating

  13. Casimir force between sharp-shaped conductors

    E-Print Network [OSTI]

    Mohammad F. Maghrebi; Sahand Jamal Rahi; Thorsten Emig; Noah Graham; Robert L. Jaffe; Mehran Kardar

    2010-10-15

    Casimir forces between conductors at the sub-micron scale cannot be ignored in the design and operation of micro-electromechanical (MEM) devices. However, these forces depend non-trivially on geometry, and existing formulae and approximations cannot deal with realistic micro-machinery components with sharp edges and tips. Here, we employ a novel approach to electromagnetic scattering, appropriate to perfect conductors with sharp edges and tips, specifically to wedges and cones. The interaction of these objects with a metal plate (and among themselves) is then computed systematically by a multiple-scattering series. For the wedge, we obtain analytical expressions for the interaction with a plate, as functions of opening angle and tilt, which should provide a particularly useful tool for the design of MEMs. Our result for the Casimir interactions between conducting cones and plates applies directly to the force on the tip of a scanning tunneling probe; the unexpectedly large temperature dependence of the force in these configurations should attract immediate experimental interest.

  14. Self-force approach for radiation reaction

    E-Print Network [OSTI]

    Lior M. Burko

    1999-12-13

    We overview the recently proposed mode-sum regularization prescription (MSRP) for the calculation of the local radiation-reaction forces, which are crucial for the orbital evolution of binaries. We then describe some new results which were obtained using MSRP, and discuss their importance for gravitational-wave astronomy.

  15. Separation problems and forcing Jindrich Zapletal

    E-Print Network [OSTI]

    Zapletal, Jindrich

    to a forcing preservation property, with a fusion type infinite game associated to it. As an application and K(X) its hyperspace of compact subsets of X. If J I K(X) are two collections of compact sets, one of compact sets or even J = K0 (X), the collection of countable compact subsets of X. For example, Pelant

  16. Manipulation of Colloids by Osmotic Forces

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Manipulation of Colloids by Osmotic Forces J´er´emie Palacci Pr´esent´ee pour l'obtention du titre . . . . . . . . . 15 1.1.2 Electro-osmosis for dummies . . . . . . . 16 1.1.3 Electro-osmotic flow in microchannel . . . . . . . 63 2.3 Trapping by rectified diffusio-phoresis . . . . . . 70 2.3.1 Osmotic trapping of colloids

  17. Open Access Task Force Open Access to

    E-Print Network [OSTI]

    Jiang, Huiqiang

    Libraries Initiative launched by National Science Foundation; Social Sciences Research Network (SSRN Library System rgmiller@pitt.edu #12;Open Access Task Force Open Access is... · A family of copyright · The only constraint on reproduction and distribution, and the only role for copyright in this domain

  18. The drag force during the transient regime

    E-Print Network [OSTI]

    Souza, P V S; de Oliveira, P M C

    2015-01-01

    In this paper, we analyze the drag force acting on a cylinder in a wind tunnel. The inspiration comes from an experimental result: a small, light ball falls on air; its speed increases, reaches a maximum, decreases and finally stabilizes. This surprising breaking behavior is due to the gradual formation of the so-called von K\\'arm\\'an street of air vortices behind the ball: while it is not completely formed, the transient drag force is smaller than the known steady state value and the ball can reach speeds higher than its final value. To show it, we treat the similar problem of a cylinder inside a wind tunnel suddenly switched on, by solving the Navier-Stokes dynamic equation. We use a finite difference method with successive relaxations on a grid. We also treat the case of a rotating cylinder, leading to the Magnus force. The novelty is the method we use to calculate these forces, which avoids the traditional surface integration of velocity gradients; the latter demands a very precise determination of the ve...

  19. LABORATORY VI MAGNETIC FIELDS AND FORCES

    E-Print Network [OSTI]

    Minnesota, University of

    Lab VI - 1 LABORATORY VI MAGNETIC FIELDS AND FORCES Magnetism plays a large role in our world for the differences as you go through the problems in this lab. In this set of laboratory problems, you will map: After successfully completing this laboratory, you should be able to: · Explain the differences

  20. Direct Lorentz force compensation flowmeter for electrolytes

    SciTech Connect (OSTI)

    Vasilyan, S. Froehlich, Th.

    2014-12-01

    A simplified method of contactless Lorentz force (LF) measurements for flow meters on electrolytes is described and realized. Modification and comparative representation are discussed against recently well-developed methods. Based on the catapult effect, that current carrying conductor experiences a repulsive force in a magnetic field, we demonstrate force measurement method of LF velocimetry applications by commonly known “electromagnetic force” compensation principle. Measurement approach through zero point stability is considered to minimize mechanical influences and avoid gravimetric uncertainties. Here, the current carrying wires are static fixed in the vicinity of magnet system at zero point stable position, while occurring deflection of magnets by electrolyte flow is compensated by external applied current within wires. Measurements performed by developed servo-system which drives control loop by means of optical position sensor for simplified (i) single wire and (ii) coil-like extended compensation schemes. Guided by experiments on electrolyte flow, we demonstrate the applicability of adopted principle for conductivities ranging from 2 to 20?S/m. Further improvements are discussed in agreement with the parameters of demonstration setup, straightforward theory, and experimental results. We argue that this method is potentially suitable for: (a) applications with higher conductivity like molten metal (order of 10{sup 6?}S/m) assuming spatial configuration of setup and (b) for lower range of conductivity (below 1?S/m) while this is strongly subject to stiffness of system and noise mainly mechanical and thermal radiations.

  1. Morphological properties of pillared layered materials investigated by electron microscopy technique 

    E-Print Network [OSTI]

    Navas de Mascianglioli, Margarit

    1993-01-01

    Scanning electron microscopy was used to investigate morphological features of a diverse range of pillared layered materials. Pillared layered zirconium phosphates, zirconium polyimine phosphonates and anion exchanger ...

  2. Normal-Incidence Photoemission Electron Microscopy (NI-PEEM) for Imaging Surface Plasmon Polaritons

    E-Print Network [OSTI]

    Aeschlimann, Martin

    Philip Kahl & Simone Wall & Christian Witt & Christian Schneider & Daniela Bayer & Alexander Fischer-incidence photoemission microscopy P. Kahl :S. Wall :C. Witt :M. Horn-von Hoegen : F.

  3. Transmission electron microscopy of whiskers and hillocks formed on Al films deposited onto a glass

    SciTech Connect (OSTI)

    Saka, H.; Fujino, S.; Kuroda, K. [Department of Quantum Engineering, Nagoya University, Nagoya 464-01 (Japan); Tsujimoto, K.; Tsuji, S. [Display Technology, IBM Japan, Ltd., Shimotsuruma, Yamato, Kanagawa 242 (Japan); Takatsuji, H. [Display Technology, IBM Japan, Ltd., Ichimiyake, Yasu-gun, Shiga 520-23 (Japan)

    1998-01-05

    Whiskers and hillocks formed on an Al film deposited onto a glass substrate have been observed by means of a variety of transmission electron microscopy technique.

  4. The Vertical Force-Couple Generator Shear waves may be generated by a force or force-couple acting on a single interface, or by vertical

    E-Print Network [OSTI]

    Kristoffersen, Yngve

    The Vertical Force-Couple Generator Shear waves may be generated by a force or force-couple acting is the Love-wave generator of Stoll and Bautista (1994) using a self erecting bottom sled towed behind generator was designed and built by Y. Kristoffersen (Fig. 1). A 150 kg flywheel is mounted in a case

  5. Air Force Research Laboratory Placement: Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson

    E-Print Network [OSTI]

    Alpay, S. Pamir

    engineering, chemistry, polymer science, physics, mechanical engineering, or related. Research experience, chemical engineering, chemistry, polymer science, physics, mechanical engineering, or related. The open Directorate, Wright-Patterson Air Force Base, Dayton OH Discipline(s): Materials science/engineering, chemical

  6. Band excitation method applicable to scanning probe microscopy

    DOE Patents [OSTI]

    Jesse, Stephen; Kalinin, Sergei V

    2013-05-28

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  7. Differential Dynamic Microscopy to characterize Brownian motion and bacteria motility

    E-Print Network [OSTI]

    David Germain; Mathieu Leocmach; Thomas Gibaud

    2015-11-03

    We have developed a lab work module where we teach undergraduate students how to quantify the dynamics of a suspension of microscopic particles, measuring and analyzing the motion of those particles at the individual level or as a group. Differential Dynamic Microscopy (DDM) is a relatively recent technique that precisely does that and constitutes an alternative method to more classical techniques such as dynamics light scattering (DLS) or video particle tracking (VPT). DDM consists in imaging a particle dispersion with a standard light microscope and a camera. The image analysis requires the students to code and relies on digital Fourier transform to obtain the intermediate scattering function, an autocorrelation function that characterizes the dynamics of the dispersion. We first illustrate DDM on the textbook case of colloids where we measure the diffusion coefficient. Then we show that DDM is a pertinent tool to characterize biologic systems such as motile bacteria i.e.bacteria that can self propel, where we not only determine the diffusion coefficient but also the velocity and the fraction of motile bacteria. Finally, so that our paper can be used as a tutorial to the DDM technique, we have joined to this article movies of the colloidal and bacterial suspensions and the DDM algorithm in both Matlab and Python to analyze the movies.

  8. Band excitation method applicable to scanning probe microscopy

    DOE Patents [OSTI]

    Jesse, Stephen (Knoxville, TN) [Knoxville, TN; Kalinin, Sergei V. (Knoxville, TN) [Knoxville, TN

    2010-08-17

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  9. High-resolution electron microscopy of advanced materials

    SciTech Connect (OSTI)

    Mitchell, T.E.; Kung, H.H.; Sickafus, K.E.; Gray, G.T. III; Field, R.D.; Smith, J.F.

    1997-11-01

    This final report chronicles a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The High-Resolution Electron Microscopy Facility has doubled in size and tripled in quality since the beginning of the three-year period. The facility now includes a field-emission scanning electron microscope, a 100 kV field-emission scanning transmission electron microscope (FE-STEM), a 300 kV field-emission high-resolution transmission electron microscope (FE-HRTEM), and a 300 kV analytical transmission electron microscope. A new orientation imaging microscope is being installed. X-ray energy dispersive spectrometers for chemical analysis are available on all four microscopes; parallel electron energy loss spectrometers are operational on the FE-STEM and FE-HRTEM. These systems enable evaluation of local atomic bonding, as well as chemical composition in nanometer-scale regions. The FE-HRTEM has a point-to-point resolution of 1.6 {angstrom}, but the resolution can be pushed to its information limit of 1 {angstrom} by computer reconstruction of a focal series of images. HRTEM has been used to image the atomic structure of defects such as dislocations, grain boundaries, and interfaces in a variety of materials from superconductors and ferroelectrics to structural ceramics and intermetallics.

  10. Raman Microscopy of Lithium-Manganese-Rich Cathodes

    SciTech Connect (OSTI)

    Ruther, Rose E [ORNL; Callender, Andrew F. [Tennessee Technological University; Zhou, Hui [ORNL; Martha, Surendra [Indian Institute of Technology, Hyderabad; Nanda, Jagjit [ORNL

    2014-01-01

    Lithium rich, manganese rich composites with general formula xLi2MnO3 (1-x)LiMO2 are promising candidates for high capacity and high voltage cathodes for lithium ion batteries. Lithium rich oxides crystallize as a nanocomposite of layered phases whose structure further evolves with electrochemical cycling. Raman spectroscopy is potentially a powerful tool to monitor the crystal chemistry and correlate phase changes with electrochemical behavior. While several groups have reported Raman spectra of lithium rich oxides, the data show considerable variability in terms of both the vibrational features observed and their interpretation. In this study Raman microscopy is used to investigate lithium-rich manganese-rich cathodes as a function of average charge and electrochemical cycling. LMR-NMC cycled at elevated temperature (60 C) has a modified crystal structure which may account for some of the observed increase in capacity. Contrary to some reports, no growth of a spinel phase is observed. However, analysis of the Raman spectra does indicate the structure of LMR-NMC deviates significantly from an ideal layered phase. The results also highlight the importance of using low laser power and large sample sizes to obtain consistent data sets.

  11. Casimir force at a knife's edge

    SciTech Connect (OSTI)

    Graham, Noah [Department of Physics, Middlebury College, Middlebury, Vermont 05753 (United States); Shpunt, Alexander; Rahi, Sahand Jamal; Kardar, Mehran [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Emig, Thorsten [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Institut fuer Theoretische Physik, Universitaet zu Koeln, Zuelpicher Strasse 77, 50937 Koeln (Germany); Laboratoire de Physique Theorique et Modeles Statistiques, CNRS UMR 8626, Batiment 100, Universite Paris-Sud, 91405 Orsay cedex (France); Jaffe, Robert L. [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Center for Theoretical Physics and Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2010-03-15

    The Casimir force has been computed exactly for only a few simple geometries, such as infinite plates, cylinders, and spheres. We show that a parabolic cylinder, for which analytic solutions to the Helmholtz equation are available, is another case where such a calculation is possible. We compute the interaction energy of a parabolic cylinder and an infinite plate (both perfect mirrors), as a function of their separation and inclination, H and {theta}, and the cylinder's parabolic radius R. As H/R{yields}0, the proximity force approximation becomes exact. The opposite limit of R/H{yields}0 corresponds to a semi-infinite plate, where the effects of edge and inclination can be probed.

  12. Friction forces on atoms after acceleration

    E-Print Network [OSTI]

    Francesco Intravaia; Vanik E. Mkrtchian; Stefan Buhmann; Stefan Scheel; Diego A. R. Dalvit; Carsten Henkel

    2015-02-04

    The aim of this paper is to revisit the calculation of atom-surface quantum friction in the quantum field theory formulation put forward by Barton [New J. Phys. 12 (2010) 113045]. We show that the power dissipated into field excitations and the associated friction force depend on how the atom is boosted from being initially at rest to a configuration in which it is moving at constant velocity (v) parallel to the planar interface. In addition, we point out that there is a subtle cancellation between the one-photon and part of the two-photon dissipating power, resulting in a leading order contribution to the frictional power which goes as v^4. These results are also confirmed by an alternative calculation of the average radiation force, which scales as v^3.

  13. AMBER Task Force February 2008 run report

    E-Print Network [OSTI]

    F. Malbet; G. Duvert; A. Chelli; P. Kern

    2008-08-08

    AMBER was installed in March 2004 in the VLTI focal lab of the VLT observatory in Cerro Paranal run by ESO. Since then, there have been 4 commissioning runs and additional VLTI infrastructure installed (IRIS, FINITO and ATs,...), but AMBER is not yet fulfilling all its initial specifications and some important primary science objectives cannot be achieved. At the consortium level, an action plan has been decided in Oct 2007 that created an AMBER Task Force (ATF) to understand and possibly cure the eventual technical issues. The objectives of the February 2008 run was mainly to bring AMBER into contractual specifications the accuracy of the absolute visibility, of the differential and of the closure phase through a fundamental analysis of the instrument status and limitations. This report is the official report of the AMBER Task Force.

  14. Synthesis and growth of HgI{sub 2} nanocrystals in a glass matrix: Heat treatment

    SciTech Connect (OSTI)

    Condeles, J. F. E-mail: ricssilva@yahoo.com.br; Silva, R. S. E-mail: ricssilva@yahoo.com.br; Silva, A. C. A.; Dantas, N. O.

    2014-08-14

    Mercury iodide (HgI{sub 2}) nanocrystals (NCs) were successfully grown in a barium phosphate glass matrix synthesized by fusion. Growth control of HgI{sub 2} NCs was investigated by Atomic Force Microscopy (AFM), Optical Absorption (OA), Fluorescence (FL), and X-ray diffraction (XRD). AFM images reveal the formation of HgI{sub 2} nanocrystals in host glass matrix. HgI{sub 2} NCs growth was evidenced by an OA and FL band red-shift with increasing annealing time. XRD measurements revealed the ? crystalline phase of the HgI{sub 2} nanocrystals.

  15. Repulsive and restoring Casimir forces with left-handed materials

    E-Print Network [OSTI]

    Yaping Yang; Ran Zeng; Shutian Liu; Hong Chen; Shiyao Zhu

    2008-03-24

    We investigate repulsive Casimir force between slabs containing left-handed materials with controllable electromagnetic properties. The sign of Casimir force is determined by the electric and magnetic properties of the materials, and it is shown that the formation of the repulsive force is related to the wave impedances of two slabs. The sign change of the Casimir force as a function of the distance is studied. Special emphasis is put on the restoring Casimir force which may be found to exist between perfectly conducting material and metamaterial slabs. This restoring force is a natural power for the system oscillation in vacuum and also can be used for system stabilization.

  16. Stall force of polymerizing microtubules and filament bundles

    E-Print Network [OSTI]

    Jaroslaw Krawczyk; Jan Kierfeld

    2011-02-10

    We investigate stall force and polymerization kinetics of rigid protofilaments in a microtubule or interacting filaments in bundles under an external load force in the framework of a discrete growth model. We introduce the concecpt of polymerization cycles to describe the stochastic growth kinetics, which allows us to derive an exact expression for the stall force. We find that the stall force is independent of ensemble geometry and load distribution. Furthermore, the stall force is proportional to the number of filaments and increases linearly with the strength of lateral filament interactions. These results are corroborated by simulations, which also show a strong influence of ensemble geometry on growth kinetics below the stall force.

  17. Force steps during viral DNA packaging ?

    E-Print Network [OSTI]

    Prashant K. Purohit; Jane' Kondev; Rob Phillips

    2003-09-22

    Biophysicists and structural biologists increasingly acknowledge the role played by the mechanical properties of macromolecules as a critical element in many biological processes. This change has been brought about, in part, by the advent of single molecule biophysics techniques that have made it possible to exert piconewton forces on key macromolecules and observe their deformations at nanometer length scales, as well as to observe the mechanical action of macromolecules such as molecular motors. This has opened up immense possibilities for a new generation of mechanical investigations that will respond to such measurements in an attempt to develop a coherent theory for the mechanical behavior of macromolecules under conditions where thermal and chemical effects are on an equal footing with deterministic forces. This paper presents an application of the principles of mechanics to the problem of DNA packaging, one of the key events in the life cycle of bacterial viruses with special reference to the nature of the internal forces that are built up during the DNA packaging process.

  18. Squeeze bottle apparatus with force multiplying pistons

    DOE Patents [OSTI]

    Moss, Owen R. (Cary, NC); Gordon, Norman R. (Kennewick, WA); DeFord, Henry S. (Kennewick, WA); Eschbach, Eugene A. (Richland, WA)

    1994-01-01

    The present invention comprises a spray bottle in which the pressure resulting from the gripping force applied by the user is amplified and this increased pressure used in generating a spray such as an aerosol or fluid stream. In its preferred embodiment, the invention includes a high pressure chamber and a corresponding piston which is operative for driving fluid out of this chamber at high pressure through a spray nozzle and a low pressure chamber, and a corresponding piston which is acted upon by the hydraulic pressure within the bottle resulting from the gripping force. The low pressure chamber and piston are of larger size than the high pressure chamber and piston. The pistons are rigidly connected so that the force created by the pressure acting on the piston in the low pressure chamber is transmitted to the piston in the high pressure chamber where it is applied over a more limited area, thereby generating greater hydraulic pressure for use in forming the spray.

  19. Laser-Scanning Coherent Anti-Stokes Raman Scattering Microscopy and Applications to Cell Biology

    E-Print Network [OSTI]

    Xie, Xiaoliang Sunney

    Laser-Scanning Coherent Anti-Stokes Raman Scattering Microscopy and Applications to Cell Biology Ji 11747-3157 USA ABSTRACT Laser-scanning coherent anti-Stokes Raman scattering (CARS) microscopy with fast., 1990). Duncan et al. constructed the first CARS microscope by use of two dye laser beams

  20. Optical imaging of non-fluorescent nanodiamonds in live cells using transient absorption microscopy

    E-Print Network [OSTI]

    Huang, Yanyi

    Optical imaging of non-fluorescent nanodiamonds in live cells using transient absorption microscopy non-fluorescent nanodiamonds in living cells using transient absorption microscopy. This label of nanodiamonds under various conditions, confirming the endocytosis mechanism. Optical probes for live cell

  1. LASER CONFOCAL MICROSCOPY AND GEOGRAPHIC INFORMATION SYSTEMS IN THE STUDY OF DENTAL MORPHOLOGY

    E-Print Network [OSTI]

    Jernvall, Jukka

    LASER CONFOCAL MICROSCOPY AND GEOGRAPHIC INFORMATION SYSTEMS IN THE STUDY OF DENTAL MORPHOLOGY be transferred to geographic information systems (GIS) as well as interpreted by surface rendering computer parameters using geographic information systems (GIS). We then present a laser confocal microscopy technique

  2. Spark-gap atomic emission microscopy. II. Improvements in resolution P. G. Van Patten,a)

    E-Print Network [OSTI]

    Myrick, Michael Lenn

    Spark-gap atomic emission microscopy. II. Improvements in resolution P. G. Van Patten,a) J. D. Noll which enhance performance in spark-gap atomic emission microscopy SGAEM experiments. SGAEM is a recent as small as 5 V, and intense atomic emission has been observed in such sparks. Small 1 nF , high

  3. Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene-based devices

    E-Print Network [OSTI]

    Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene; accepted 24 July 2007; published online 15 August 2007 Raman microscopy of graphene was carried out over-band frequencies extracted from Raman spectra of the single-layer graphene are - 1.6±0.2 10-2 cm-1 /K and - 3

  4. Ultrafast optical pump-probe spectroscopy is used to reveal the coexistence of coupled antiferromagnetic (AFM)/ferroelectric (FE) and ferromagnetic (FM) orders in multiferroic TbMnO3 films, which can guide researchers in creating new kinds of multiferroic materials.

    SciTech Connect (OSTI)

    Qi, Jingbo; Zhu, Jianxin; Trugman, Stuart A.; Taylor, Antoinette; Jia, Quanxi; Prasankumar, Rohit

    2012-07-06

    Multiferroic materials have attracted much interest in the past decade, due not only to their novel device applications, but also their manifestations of coupling and interactions between different order parameters (particularly electric polarization and magnetic order). Recently, much attention has been focused on perovskite manganites, RMnO{sub 3} (R = rare earth ions), due to the discovery of a large magnetoelectric effect in these materials. The first member of this family to be discovered was TbMnO{sub 3} (TMO), which is now well established as a typical magnetoelectric multiferroic. Extensive experimental and theoretical studies have already been done on single crystal TMO (SC-TMO). In brief, SC-TMO, with a distorted orthorhombic perovskite structure, has an antiferromagnetic (AFM) phase transition at T{sub N} {approx}40 K with sinusoidally ordered Mn moments. Below T{sub FE} {approx} 28 K, ferroelectric (FE) order develops owing to the appearance of cycloidal spiral spin structure. In contrast, there are relatively few reports describing the properties of TMO thin films (typically grown on SrTiO{sub 3} (STO) substrates). In general, thin films can enable new functionality in materials, as their physical parameters can be changed by modifying their structure via strain imposed by the substrate. Strain in particular has the potential to directly couple FE and FM orders, which is very rare. This could benefit electronic device applications by providing low power consumption, high speed operation, and greater electric/magnetic field controllability. Previous investigations of magnetic properties in TMO films revealed an unexpected ferromagnetic (FM) order, in contrast to SC-TMO. However, several important questions regarding these films are still unanswered for instance: (1) What mechanism induces FM order? (2) Can FM, sinusoidal AFM and spiral AFM (or FE) orders coexist? (3) Can FM order be coupled to FE order? To fully understand these unique materials, experimental techniques capable of dynamically unraveling the interplay between these degrees of freedom on an ultrafast timescale are needed. Here, we use ultrafast optical pump-probe spectroscopy to reveal coexisting coupled magnetic orders in epitaxial TMO thin films grown on (001)-STO, which were not observed in previous work. Our temperature (T)-dependent transient differential reflectivity ({Delta}R/R) measurements show clear signatures of sinusoidal AFM, spiral AFM (FE) and FM phases developing as the film thickness changes. We carry out first-principle density functional theory (DFT) calculations to explain the coupling between AFM/FE and FM orders. These results reveal that the coupling between different magnetic orders observed in our multiferroic TMO thin films may offer greater control of functionality as compared to bulk single crystal multiferroics.

  5. Adv. Funct. Mater. 2004, 14, No. 11, November http://www.afm-journal.de 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 1031 Schematic illustrations of three methods

    E-Print Network [OSTI]

    Wenseleers, Wim

    -assembly on friction-deposited polytetrafluoroethylene (PTFE). The back- ground shows a polarized optical microscopy image of a PTFE-primed HBC layer for which the PTFE layer was deliberately scratched to illustrate the preferential adsorption and columnar alignment on the PTFE-coated surface. Biomedical Materials An artificial

  6. Imaging doped silicon test structures using low energy electron microscopy.

    SciTech Connect (OSTI)

    Nakakura, Craig Yoshimi; Anderson, Meredith Lynn; Kellogg, Gary Lee

    2010-01-01

    This document is the final SAND Report for the LDRD Project 105877 - 'Novel Diagnostic for Advanced Measurements of Semiconductor Devices Exposed to Adverse Environments' - funded through the Nanoscience to Microsystems investment area. Along with the continuous decrease in the feature size of semiconductor device structures comes a growing need for inspection tools with high spatial resolution and high sample throughput. Ideally, such tools should be able to characterize both the surface morphology and local conductivity associated with the structures. The imaging capabilities and wide availability of scanning electron microscopes (SEMs) make them an obvious choice for imaging device structures. Dopant contrast from pn junctions using secondary electrons in the SEM was first reported in 1967 and more recently starting in the mid-1990s. However, the serial acquisition process associated with scanning techniques places limits on the sample throughput. Significantly improved throughput is possible with the use of a parallel imaging scheme such as that found in photoelectron emission microscopy (PEEM) and low energy electron microscopy (LEEM). The application of PEEM and LEEM to device structures relies on contrast mechanisms that distinguish differences in dopant type and concentration. Interestingly, one of the first applications of PEEM was a study of the doping of semiconductors, which showed that the PEEM contrast was very sensitive to the doping level and that dopant concentrations as low as 10{sup 16} cm{sup -3} could be detected. More recent PEEM investigations of Schottky contacts were reported in the late 1990s by Giesen et al., followed by a series of papers in the early 2000s addressing doping contrast in PEEM by Ballarotto and co-workers and Frank and co-workers. In contrast to PEEM, comparatively little has been done to identify contrast mechanisms and assess the capabilities of LEEM for imaging semiconductor device strictures. The one exception is the work of Mankos et al., who evaluated the impact of high-throughput requirements on the LEEM designs and demonstrated new applications of imaging modes with a tilted electron beam. To assess its potential as a semiconductor device imaging tool and to identify contrast mechanisms, we used LEEM to investigate doped Si test structures. In section 2, Imaging Oxide-Covered Doped Si Structures Using LEEM, we show that the LEEM technique is able to provide reasonably high contrast images across lateral pn junctions. The observed contrast is attributed to a work function difference ({Delta}{phi}) between the p- and n-type regions. However, because the doped regions were buried under a thermal oxide ({approx}3.5 nm thick), e-beam charging during imaging prevented quantitative measurements of {Delta}{phi}. As part of this project, we also investigated a series of similar test structures in which the thermal oxide was removed by a chemical etch. With the oxide removed, we obtained intensity-versus-voltage (I-V) curves through the transition from mirror to LEEM mode and determined the relative positions of the vacuum cutoffs for the differently doped regions. Although the details are not discussed in this report, the relative position in voltage of the vacuum cutoffs are a direct measure of the work function difference ({Delta}{phi}) between the p- and n-doped regions.

  7. Mechanical forces such as cell traction control cell growth, differ

    E-Print Network [OSTI]

    Salaita, Khalid

    Mechanical forces such as cell traction control cell growth, differ entiation, motility, which bind integrins (transmembrane receptors that relay mechanical signals from the extracellular the contribution of mechanical forces to cell behaviour and function. Eytan Zlotorynski TECHNIQUE DNA hairpins

  8. Microstructure effects for Casimir forces in chiral metamaterials

    E-Print Network [OSTI]

    Johnson, Steven G.

    We examine a recent prediction for the chirality dependence of the Casimir force in chiral metamaterials by numerical computation of the forces between the exact microstructures, rather than homogeneous approximations. ...

  9. UNITED STATES AIR FORCE OUTSIDE THE NATIONAL CAPITAL REGION

    E-Print Network [OSTI]

    program in order to reduce Federal employee's contribution to traffic congestion and air pollutionUNITED STATES AIR FORCE OUTSIDE THE NATIONAL CAPITAL REGION PUBLIC TRANSPORTATION BENEFIT PROGRAM): ____________ City (Residence): __________________________State: _______________ Zip Code: ________________ Air Force

  10. Forced cooling of underground electric power transmission lines : design manual

    E-Print Network [OSTI]

    Brown, Jay A.

    1978-01-01

    The methodology utilized for the design of a forced-cooled pipe-type underground transmission system is presented. The material is divided into three major parts: (1) The Forced-cooled Pipe-Type Underground Transmission ...

  11. FracFocus 2.0 Task Force Report

    Broader source: Energy.gov [DOE]

    This report presents the findings and recommendations for the Secretary of Energy Advisory Board (SEAB) Task Force on FracFocus. The Task Force was charged with reviewing how FracFocus 2.0 houses...

  12. Gregory H. Friedman: Before the Subcommittee on Strategic Forces...

    Energy Savers [EERE]

    Strategic Forces Committee on Armed Services U.S. House of Representatives Gregory H. Friedman: Before the Subcommittee on Strategic Forces Committee on Armed Services U.S. House...

  13. Small-Scale Forcing of a Turbulent Boundary Layer

    E-Print Network [OSTI]

    Lorkowski, Thomas

    In order to understand the effect of small scale forcing on turbulent flows and its implications on control, an experimental investigation is made into the forcing of the inertial scales in the wall region of a turbulent ...

  14. CENTRIFUGAL FORCES: READING RUSSIA'S REGIONAL IDENTITIES AND INITIATIVES

    E-Print Network [OSTI]

    Huang, Wei

    CENTRIFUGAL FORCES: READING RUSSIA'S REGIONAL IDENTITIES AND INITIATIVES Thursday, March 26 and Natural Heritage, Moscow, Russia), " : , " ("The Centrifugality of the Centripetal: Space, Identity and Industry as Centrifugal Forces in Tsarist Transcaucasia" Helen Hundley (History, Wichita State U

  15. V.P. Biden Hosts the Middle Class Task Force

    Broader source: Energy.gov [DOE]

    Secretary Chu will join Vice President Biden at the White House as he hosts a Middle Class Task Force event.

  16. Annual report on contractor work force restructuring, fiscal year 1997

    SciTech Connect (OSTI)

    NONE

    1998-03-01

    This report summarizes work force restructuring and community transition activities at all sites. It outlines work force restructuring activity for FY 1997, changing separation patterns, cost savings and separation costs, program assessment, activities to mitigate restructuring impacts, community transition activities, status of displaced workers, lessons learned, and emerging issues in worker and community transition. Work force restructuring and community transition activities for defense nuclear sites are summarized, as are work force restructuring activities at non-defense sites.

  17. Mechanical tugging force regulates the size of cellcell junctions

    E-Print Network [OSTI]

    Chen, Christopher S.

    Mechanical tugging force regulates the size of cell­cell junctions Zhijun Liua,1 , John L. Tanb,1 through the generation of mechanical forces at sites of cell­matrix and cell­cell contact. While increased mechanical load- ing at cell­matrix adhesions results in focal adhesion growth, whether forces drive changes

  18. The driving force of plate tectonics evaluated in spherical coordinates 

    E-Print Network [OSTI]

    Donahue, John Michael

    1985-01-01

    &' + Ri according to the force balance equation of Garison et al (1983) . The age weighting for a ridge-push driving force model is only the age, t. 13 magnetic linea tio ns I subduction boundary force vector FIG. 4. Trench segmentation scheme. I...

  19. Metabolic cost of generating horizontal forces during human running

    E-Print Network [OSTI]

    Kram, Rodger

    . Using a wind tunnel to apply horizontal impeding forces, Pugh (19) showed that the metabolic cost forces. Davies (5) compared the metabolic cost of running with wind resistance vs. wind assistanceMetabolic cost of generating horizontal forces during human running YOUNG-HUI CHANG AND RODGER KRAM

  20. Enhancing Optical Gradient Forces with Metamaterials Vincent Ginis,1

    E-Print Network [OSTI]

    Enhancing Optical Gradient Forces with Metamaterials Vincent Ginis,1 Philippe Tassin,2,* Costas M demonstrate how the optical gradient force between two waveguides can be enhanced using transformation optics perceived by light, resulting in a more than tenfold enhancement of the optical force. This process

  1. A lateral optical equilibrium in waveguide-resonator optical force

    E-Print Network [OSTI]

    Fan, Shanhui

    A lateral optical equilibrium in waveguide-resonator optical force Varat Intaraprasonk,1@stanford.edu Abstract: We consider the lateral optical force between a resonator and a waveguide, and study the possibility of an equilibrium that occurs solely from the optical force in such system. We prove analytically

  2. ADHESION FORCES BETWEEN MICA SURFACES IN UNDERSATURATED VAPORS OF HYDROCARBONS

    E-Print Network [OSTI]

    Matsuoka, Hiroshige

    ADHESION FORCES BETWEEN MICA SURFACES IN UNDERSATURATED VAPORS OF HYDROCARBONS H. MATSUOKA1 , T] or meniscus force [3], which have been neglected in the conventional and relatively large mechani- cal systems forces between mica surfaces in under- saturated vapors of several kind of hydrocarbon liquids are mea

  3. Constraints on muon-specific dark forces

    E-Print Network [OSTI]

    Savely G. Karshenboim; David McKeen; Maxim Pospelov

    2014-01-23

    The recent measurement of the Lamb shift in muonic hydrogen allows for the most precise extraction of the charge radius of the proton which is currently in conflict with other determinations based on $e-p$ scattering and hydrogen spectroscopy. This discrepancy could be the result of some new muon-specific force with O(1-100) MeV force carrier---in this paper we concentrate on vector mediators. Such an explanation faces challenges from the constraints imposed by the $g-2$ of the muon and electron as well as precision spectroscopy of muonic atoms. In this work we complement the family of constraints by calculating the contribution of hypothetical forces to the muonium hyperfine structure. We also compute the two-loop contribution to the electron parity violating amplitude due to a muon loop, which is sensitive to the muon axial-vector coupling. Overall, we find that the combination of low-energy constraints favors the mass of the mediator to be below 10 MeV, and that a certain degree of tuning is required between vector and axial-vector couplings of new vector particles to muons in order to satisfy constraints from muon $g-2$. However, we also observe that in the absence of a consistent standard model embedding, high energy weak-charged processes accompanied by the emission of new vector particles are strongly enhanced by $(E/m_V)^2$, with $E$ a characteristic energy scale and $m_V$ the mass of the mediator. In particular, leptonic $W$ decays impose the strongest constraints on such models completely disfavoring the remainder of the parameter space.

  4. Normal force controlled rheology for thermoreversible gels

    E-Print Network [OSTI]

    Bosi Mao; Thibaut Divoux; Patrick Snabre

    2015-08-07

    A wide range of thermoreversible gels are prepared by cooling down to ambient temperature hot aqueous solutions of polymers. During the sol-gel transition, such soft solids may experience a volume contraction leading to experimental issues regarding rheological measurements such as the stress-induced release of solvent, and the partial loss of contact between the sample and the shear cell. In this article, we revisit the formation of thermoreversible gels through a series of benchmark experiments conducted on agar gels in a plate-plate geometry. Monitoring the gelation with a constant gap results in an artificial drift of the gel elastic modulus $G'$ because of the sample contraction. We show that maintaining a constant normal force equals to zero instead of a constant gap allows $G'$ to reach a plateau as the gap variation compensates the sample contraction. The latter method provides a way to measure more reliably the gel linear properties with either rough or smooth boundary conditions, and allows us to quantify the sample contraction. Furthermore, we also unravel two subtle artifacts associated with metallic boundary conditions that may impact rheological measurements during the early stage of the gelation. We show that the slow oxidation of the plate by the solution and/or the presence of an oil layer around the sample, that is traditionally used to prevent evaporation, may both lead to a premature and artificial growth of $G'$ which should not be misinterpreted as the formation of a pre-gel. Finally, we illustrate the relevance of the controlled normal force protocol, by investigating the influence of thermal history on the mechanical properties of agar gels. Our work offers an extensive review of the artifacts associated with the rheology of thermoreversible gels and paves the way for a more systematic use of normal force controlled rheology.

  5. US Air Force Facility Energy Management Program - How Industry Can Help the Air Force Meet Its Objectives 

    E-Print Network [OSTI]

    Holden, P. C.; Kroop, R. H.

    1983-01-01

    This paper describes the Air Force's facility energy management program including how industry can help the Air Force meet its facility energy objectives. Background information on energy use and energy conservation efforts ...

  6. ARM - Midlatitude Continental Convective Clouds - Single Column Model Forcing (xie-scm_forcing)

    SciTech Connect (OSTI)

    Xie, Shaocheng; McCoy, Renata; Zhang, Yunyan

    2012-10-25

    The constrained variational objective analysis approach described in Zhang and Lin [1997] and Zhang et al. [2001]was used to derive the large-scale single-column/cloud resolving model forcing and evaluation data set from the observational data collected during Midlatitude Continental Convective Clouds Experiment (MC3E), which was conducted during April to June 2011 near the ARM Southern Great Plains (SGP) site. The analysis data cover the period from 00Z 22 April - 21Z 6 June 2011. The forcing data represent an average over the 3 different analysis domains centered at central facility with a diameter of 300 km (standard SGP forcing domain size), 150 km and 75 km, as shown in Figure 1. This is to support modeling studies on various-scale convective systems.

  7. ARM - Midlatitude Continental Convective Clouds - Single Column Model Forcing (xie-scm_forcing)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Xie, Shaocheng; McCoy, Renata; Zhang, Yunyan

    The constrained variational objective analysis approach described in Zhang and Lin [1997] and Zhang et al. [2001]was used to derive the large-scale single-column/cloud resolving model forcing and evaluation data set from the observational data collected during Midlatitude Continental Convective Clouds Experiment (MC3E), which was conducted during April to June 2011 near the ARM Southern Great Plains (SGP) site. The analysis data cover the period from 00Z 22 April - 21Z 6 June 2011. The forcing data represent an average over the 3 different analysis domains centered at central facility with a diameter of 300 km (standard SGP forcing domain size), 150 km and 75 km, as shown in Figure 1. This is to support modeling studies on various-scale convective systems.

  8. Coke cake behavior under compressive forces

    SciTech Connect (OSTI)

    Watakabe, S.; Takeda, T.; Itaya, H.; Suginobe, H.

    1997-12-31

    The deformation of the coke cake and load on the side wall during pushing were studied using an electric furnace equipped with a movable wall. Coke cake was found to deform in three stages under compressive forces. The coke cake was shortened in the pushing direction in the cake deformation stage, and load was generated on the side walls in the high wall load stage. Secondary cracks in the coke cake were found to prevent load transmission on the wall. The maximum load transmission rate was controlled by adjusting the maximum fluidity and mean reflectance of the blended coal.

  9. On Oscillations in the Social Force Model

    E-Print Network [OSTI]

    Kretz, Tobias

    2015-01-01

    The Social Force Model is one of the most prominent models of pedestrian dynamics. As such naturally much discussion and criticism has spawned around it, some of which concerns the existence of oscillations in the movement of pedestrians. This contribution is investigating under which circumstances, parameter choices, and model variants oscillations do occur and how this can be prevented. It is shown that oscillations can be excluded if the model parameters fulfill certain relations. The fact that with some parameter choices oscillations occur and with some not is exploited to verify a specific computer implementation of the model.

  10. EPA may force scrubbers on industry boilers

    SciTech Connect (OSTI)

    Hume, M.

    1985-05-13

    An Environmental Protection Agency (EPA) proposal requiring scrubber standards for industrial energy users will force industry to invest in the costly pollution control equipment used mostly by utilities today. The New Source Performance Standards (NSPS) for sulfur dioxide emissions will require either scrubbing or fluidized-bed combustion regardless of the fuel's sulfur content. Protests from the Council of Industrial Boiler Owners that this is an unfair burden on non-utility boilers note that scrubbing is more costly for smaller boilers, and that it could impede air quality improvement by discouraging the replacement of old boilers. EPA contests these claims.

  11. 136Sn and three body forces

    E-Print Network [OSTI]

    M. Saha Sarkar; S. Sarkar

    2014-11-10

    New experimental data on 2+ energies of 136,138Sn confirms the trend of lower 2+ excitation energies of even-even tin isotopes with N > 82 compared to those with N 4+)) of these nuclei, simultaneously, apart from one whose matrix elements have been changed empirically to produce mixed seniority states by weakening pairing. We have shown that the experimental result also shows good agreement with the theory in which three body forces have been included in a realistic interaction. The new theoretical results on transition probabilities have been discussed to identify the experimental quantities which will clearly distinguish between different views.

  12. Departmental Response: SEAB Task Force Recommendations on

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratoryof Energy ElevenLGJuly 2013Response: SEAB Task Force

  13. Sandia Energy - Air Force Research Laboratory Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis ofSample SULI Program StudentSandiaCOMMUNITYandAir Force

  14. air force | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largestnamedGroup!managementAdvancedair force |

  15. armed forces | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifiesValidation ofUV-RSS SpectralGOES &armed forces |

  16. DOE Contractor Work Force Restructuring Approval Thresholds

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle10 DOEEnvironmentalwith Recovery Act Funds |Work Force

  17. Conductivity and structure of ErAs nanoparticles embedded in GaAs pn junctions analyzed via conductive atomic force microscopy

    E-Print Network [OSTI]

    Yu, Edward T.

    in III-V semiconductors J. Appl. Phys. 111, 103706 (2012) Role of surface trap states on two-dimensional electron gas density in InAlN/AlN/GaN heterostructures Appl. Phys. Lett. 100, 152116 (2012) Free carrier studies of macroscopic tunnel junctions. VC 2012 American Institute of Physics. [http://dx.doi.org/10

  18. PAPER www.rsc.org/loc | Lab on a Chip Open micro-fluidic system for atomic force microscopy-guided in situ

    E-Print Network [OSTI]

    Photosynthesis in plant cells is a ubiquitous natural solar energy conversion process. Light energy is captured (but also sulfate and nitrite reduction).1 This process is very similar to the energy process of solar developed in our laboratory for in situ sub-cellular probing of electrochemical phenomena in living plant

  19. Structural and electrical characterization of organic monolayers by Atomic Force Microscopy and through the nano-fabrication of a coplanar electrode-dielectric platform

    E-Print Network [OSTI]

    Martin, Florent

    2011-01-01

    deposition. Finally, electrical measurements are describedunderstanding of the electrical properties of ultra-thinsuch as the mobility of electrical carriers, the resistance

  20. Structural and electrical characterization of organic monolayers by Atomic Force Microscopy and through the nano-fabrication of a coplanar electrode-dielectric platform

    E-Print Network [OSTI]

    Martin, Florent

    2011-01-01

    freeware molecular editor Avogadro 11 . Figure 3-1. a AFMsimulations using the Avogadro freeware show that a bilayerfrom the freeware Avogadro 11 . Using this freeware, one can