Sample records for footprinting co2 commercial

  1. New Directions: Potential Climate and Productivity Benefits from CO2 Capture in Commercial Buildings

    E-Print Network [OSTI]

    Gall, Elliott T; Nazaroff, William W

    2015-01-01T23:59:59.000Z

    air capture technologies. Although the carbon in metaboliccarbon footprint of commercial build- ings through active CO 2 capture. For dilute CO 2 levels, adsorption technologies

  2. CO2 MONITORING FOR DEMAND CONTROLLED VENTILATION IN COMMERCIAL BUILDINGS

    E-Print Network [OSTI]

    Fisk, William J.

    2010-01-01T23:59:59.000Z

    Transactions 105(2). Emmerich, S. J. and A. K. Persily (Fisk and de Almeida 1998; Emmerich and Persily 2001), CO 2Fisk and de Almeida 1998; Emmerich and Persily 2001; Apte

  3. A PILOT STUDY OF THE ACCURACY OF CO2 SENSORS IN COMMERCIAL BUILDINGS

    SciTech Connect (OSTI)

    Fisk, William; Fisk, William J.; Faulkner, David; Sullivan, Douglas P.

    2007-09-01T23:59:59.000Z

    Carbon dioxide (CO2) sensors are often deployed in commercial buildings to obtain CO2 data that are used to automatically modulate rates of outdoor air supply. The goal is to keep ventilation rates at or above design requirements and to save energy by avoiding ventilation rates exceeding design requirements. However, there have been many anecdotal reports of poor CO2 sensor performance in actual commercial building applications. This study evaluated the accuracy of 44 CO2 sensors located in nine commercial buildings to determine if CO2 sensor performance, in practice, is generally acceptable or problematic. CO2 measurement errors varied widely and were sometimes hundreds of parts per million. Despite its small size, this study provides a strong indication that the accuracy of CO2 sensors, as they are applied and maintained in commercial buildings, is frequently less than needed to measure typical values of maximum one-hour-average indoor-outdoor CO2 concentration differences with less than a 20percent error. Thus, we conclude that there is a need for more accurate CO2 sensors and/or better sensor maintenance or calibration procedures.

  4. Conversion of CO2 into Commercial Materials Using Carbon Feedstocks

    SciTech Connect (OSTI)

    Shen, Jian-Ping; Peters, Jonathan; Lail, Marty; Mobley, Paul; Turk, Brian

    2014-05-31T23:59:59.000Z

    In this project, our research focused on developing reaction chemistry that would support using carbon as a reductant for CO2 utilization that would permit CO2 consumption on a scale that would match or exceed anthropomorphic CO2 generation for energy production from fossil fuels. Armed with the knowledge that reactions attempting to produce compounds with an energy content greater than CO2 would be thermodynamically challenged and/or require significant amounts of energy, we developed a potential process that utilized a solid carbon source and recycled the carbon to effectively provide infinite time for the carbon to react. During testing of different carbon sources, we found a wide range of reaction rates. Biomass-derived samples had the most reactivity and coals and petcoke had the lowest. Because we had anticipated this challenge, we recognized that a catalyst would be necessary to improve reaction rates and conversion. From the data analysis of carbon samples, we recognized that alkali metals improved the reaction rate. Through parametric testing of catalyst formulations we were able to increase the reaction rate with petcoke by a factor of >70. Our efforts to identify the reaction mechanism to assist in improving the catalyst formulation demonstrated that the catalyst was catalyzing the extraction of oxygen from CO2 and using this extracted oxygen to oxidize carbon. This was a significant discovery in that if we could modify the catalyst formulation to permit controlled the oxidation, we would have a very power selective oxidation process. With selective oxidation, CO2 utilization could be effective used as one of the process steps in making many of the large volume commodity chemicals that support our modern lifestyles. The key challenges for incorporating these functionalities into the catalyst formulation were to make the oxidation selective and lower the temperature required for catalytic activity. We identified four catalyst families that had the potential to meet these challenges. Initial screening of the catalyst families did show that the reduction/oxidation activity did occur at lower temperatures and that these catalysts were able to cause carbon chain growth as well as C—C cleavage. A preliminary techno-economic feasibility of using petcoke/catalyst to produce a CO-rich syngas product was completed and showed significant economic promise. Testing of the different catalyst families demonstrated that Catalyst A was able to stably produce 5 sccm of ethylene/gram of catalyst at 900°C for one hour. For dry methane reforming, our Catalyst 4 was able to achieve production rates of > 10 sccm of CO and > 3 sccm of H2 per gram of catalyst at 600°C and 350 psig. Based on these developments, the potential for CO2 utilization in the production of large volume commodity chemicals is very promising.

  5. CO2 MONITORING FOR DEMAND CONTROLLED VENTILATION IN COMMERCIAL BUILDINGS

    SciTech Connect (OSTI)

    Fisk, William J.; Sullivan, Douglas P.; Faulkner, David; Eliseeva, Ekaterina

    2010-03-17T23:59:59.000Z

    Carbon dioxide (CO{sub 2}) sensors are often deployed in commercial buildings to obtain CO{sub 2} data that are used, in a process called demand-controlled ventilation, to automatically modulate rates of outdoor air ventilation. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. Demand controlled ventilation is most often used in spaces with highly variable and sometime dense occupancy. Reasonably accurate CO{sub 2} measurements are needed for successful demand controlled ventilation; however, prior research has suggested substantial measurement errors. Accordingly, this study evaluated: (a) the accuracy of 208 CO{sub 2} single-location sensors located in 34 commercial buildings, (b) the accuracy of four multi-location CO{sub 2} measurement systems that utilize tubing, valves, and pumps to measure at multiple locations with single CO{sub 2} sensors, and (c) the spatial variability of CO{sub 2} concentrations within meeting rooms. The field studies of the accuracy of single-location CO{sub 2} sensors included multi-concentration calibration checks of 90 sensors in which sensor accuracy was checked at multiple CO{sub 2} concentrations using primary standard calibration gases. From these evaluations, average errors were small, -26 ppm and -9 ppm at 760 and 1010 ppm, respectively; however, the averages of the absolute values of error were 118 ppm (16%) and 138 ppm (14%), at concentrations of 760 and 1010 ppm, respectively. The calibration data are generally well fit by a straight line as indicated by high values of R{sup 2}. The Title 24 standard specifies that sensor error must be certified as no greater than 75 ppm for a period of five years after sensor installation. At 1010 ppm, 40% of sensors had errors greater than {+-}75 ppm and 31% of sensors has errors greater than {+-}100 ppm. At 760 ppm, 47% of sensors had errors greater than {+-}75 ppm and 37% of sensors had errors greater than {+-}100 ppm. A significant fraction of sensors had errors substantially larger than 100 ppm. For example, at 1010 ppm, 19% of sensors had an error greater than 200 ppm and 13% of sensors had errors greater than 300 ppm. The field studies also included single-concentration calibration checks of 118 sensors at the concentrations encountered in the buildings, which were normally less than 500 ppm during the testing. For analyses, these data were combined with data from the calibration challenges at 510 ppm obtained during the multi-concentration calibration checks. For the resulting data set, the average error was 60 ppm and the average of the absolute value of error was 154 ppm. Statistical analyses indicated that there were statistically significant differences between the average accuracies of sensors from different manufacturers. Sensors with a 'single lamp single wavelength' design tended to have a statistically significantly smaller average error than sensors with other designs except for 'single lamp dual wavelength' sensors, which did not have a statistically significantly lower accuracy. Sensor age was not consistently a statistically significant predictor of error.

  6. Scaling considerations for a multi-megawatt class supercritical CO2 brayton cycle and commercialization.

    SciTech Connect (OSTI)

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Conboy, Thomas M.; Pasch, James Jay; Wright, Steven Alan; Rochau, Gary Eugene; Fuller, Robert Lynn [Barber-Nichols, Inc., Arvada, CO

    2013-11-01T23:59:59.000Z

    Small-scale supercritical CO2 demonstration loops are successful at identifying the important technical issues that one must face in order to scale up to larger power levels. The Sandia National Laboratories supercritical CO2 Brayton cycle test loops are identifying technical needs to scale the technology to commercial power levels such as 10 MWe. The small size of the Sandia 1 MWth loop has demonstration of the split flow loop efficiency and effectiveness of the Printed Circuit Heat Exchangers (PCHXs) leading to the design of a fully recuperated, split flow, supercritical CO2 Brayton cycle demonstration system. However, there were many problems that were encountered, such as high rotational speeds in the units. Additionally, the turbomachinery in the test loops need to identify issues concerning the bearings, seals, thermal boundaries, and motor controller problems in order to be proved a reliable power source in the 300 kWe range. Although these issues were anticipated in smaller demonstration units, commercially scaled hardware would eliminate these problems caused by high rotational speeds at small scale. The economic viability and development of the future scalable 10 MWe solely depends on the interest of DOE and private industry. The Intellectual Property collected by Sandia proves that the ~10 MWe supercritical CO2 power conversion loop to be very beneficial when coupled to a 20 MWth heat source (either solar, geothermal, fossil, or nuclear). This paper will identify a commercialization plan, as well as, a roadmap from the simple 1 MWth supercritical CO2 development loop to a power producing 10 MWe supercritical CO2 Brayton loop.

  7. PhD student in Energy Technology, specifically in Commercial refrigeration systems with CO2 as refrigerant

    E-Print Network [OSTI]

    Kazachkov, Ivan

    PhD student in Energy Technology, specifically in Commercial refrigeration systems with CO2 as refrigerant The School of Industrial Engineering and Management at the Royal Institute of Technology seeks a PhD student in Energy Technology, specifically Commercial refrigeration systems with CO2

  8. The Influence of a CO2 Pricing Scheme on Distributed Energy Resources in California's Commercial Buildings

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Lai, Judy; Cardoso, Goncalo; Megel, Olivier; Siddiqui, Afzal

    2010-06-01T23:59:59.000Z

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) is working with the California Energy Commission (CEC) to determine the potential role of commercial-sector distributed energy resources (DER) with combined heat and power (CHP) in greenhouse gas emissions (GHG) reductions. Historically, relatively little attention has been paid to the potential of medium-sized commercial buildings with peak electric loads ranging from 100 kW to 5 MW. In our research, we examine how these medium-sized commercial buildings might implement DER and CHP. The buildings are able to adopt and operate various technologies, e.g., photovoltaics (PV), on-site thermal generation, heat exchangers, solar thermal collectors, absorption chillers, batteries and thermal storage systems. We apply the Distributed Energy Resources Customer Adoption Model (DER-CAM), which is a mixed-integer linear program (MILP) that minimizes a site?s annual energy costs and/or CO2 emissions. Using 138 representative mid-sized commercial sites in California, existing tariffs of major utilities, and expected performance data of available technologies in 2020, we find the GHG reduction potential for these buildings. We compare different policy instruments, e.g., a CO2 pricing scheme or a feed-in tariff (FiT), and show their contributions to the California Air Resources Board (CARB) goals of additional 4 GW CHP capacities and 6.7 Mt/a GHG reduction in California by 2020. By applying different price levels for CO2, we find that there is competition between fuel cells and PV/solar thermal. It is found that the PV/solar thermal adoption increases rapidly, but shows a saturation at high CO2 prices, partly due to limited space for PV and solar thermal. Additionally, we find that large office buildings are good hosts for CHP in general. However, most interesting is the fact that fossil-based CHP adoption also increases with increasing CO2 prices. We will show service territory specific results since the attractiveness of DER varies widely by climate zone and service territory.

  9. THE CO2 ABATEMENT POTENTIAL OF CALIFORNIA'S MID-SIZED COMMERCIAL BUILDINGS

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Lipman, Tim; Megel, Olivier; Ganguly, Srirupa; Siddiqui, Afzal; Lai, Judy

    2009-12-31T23:59:59.000Z

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) is working with the California Energy Commission (CEC) todetermine the potential role of commercial sector distributed generation (DG) with combined heat and power (CHP) capability deployment in greenhouse gas emissions (GHG) reductions. CHP applications at large industrial sites are well known, and a large share of their potential has already been harvested. In contrast, relatively little attention has been paid to the potential of medium-sized commercial buildings, i.e. ones with peak electric loads ranging from 100 kW to 5 MW. We examine how this sector might implement DG with CHP in cost minimizing microgrids that are able to adopt and operate various energy technologies, such as solar photovoltaics (PV), on-site thermal generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We apply a mixed-integer linear program (MILP) that minimizes a site?s annual energy costs as its objective. Using 138 representative mid-sized commercial sites in California (CA), existing tariffs of three major electricity distribution ultilities, and performance data of available technology in 2020, we find the GHG reduction potential for this CA commercial sector segment, which represents about 35percent of total statewide commercial sector sales. Under the assumptions made, in a reference case, this segment is estimated to be capable of economically installing 1.4 GW of CHP, 35percent of the California Air Resources Board (CARB) statewide 4 GW goal for total incremental CHP deployment by 2020. However, because CARB?s assumed utilization is far higher than is found by the MILP, the adopted CHP only contributes 19percent of the CO2 target. Several sensitivity runs were completed. One applies a simple feed-in tariff similar to net metering, and another includes a generous self-generation incentive program (SGIP) subsidy for fuel cells. The feed-in tariff proves ineffective at stimulating CHP deployment, while the SGIP buy down is more powerful. The attractiveness of CHP varies widely by climate zone and service territory, but in general, hotter inlandareas and San Diego are the more attractive regions because high cooling loads achieve higher equipment utilization. Additionally, large office buildings are surprisingly good hosts for CHP, so large office buildings in San Diego and hotter urban centers emerge as promising target hosts. Overall the effect on CO2 emissions is limited, never exceeding 27 percent of the CARB target. Nonetheless, results suggest that the CO2 emissions abatement potential of CHP in mid-sized CA buildings is significant, and much more promising than is typically assumed.

  10. The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Lipman, Tim; Megel, Olivier; Ganguly, Srirupa; Siddiqui, Afzal; Lai, Judy

    2009-11-16T23:59:59.000Z

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) is working with the California Energy Commission (CEC) to determine the potential role of commercial sector distributed generation (DG) with combined heat and power (CHP) capability deployment in greenhouse gas emissions (GHG) reductions. CHP applications at large industrial sites are well known, and a large share of their potential has already been harvested. In contrast, relatively little attention has been paid to the potential of medium-sized commercial buildings, i.e., ones with peak electric loads ranging from 100 kW to 5 MW. We examine how this sector might implement DG with CHP in cost minimizing microgrids that are able to adopt and operate various energy technologies, such as solar photovoltaics (PV), on-site thermal generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We apply a mixed-integer linear program (MILP) that minimizes a site's annual energy costs as its objective. Using 138 representative mid-sized commercial sites in California (CA), existing tariffs of three major electricity distribution ultilities plus a natural gas company, and performance data of available technology in 2020, we find the GHG reduction potential for this CA commercial sector segment, which represents about 35percent of total statewide commercial sector sales. Under the assumptions made, in a reference case, this segment is estimated to be capable of economically installing 1.4 GW of CHP, 35percent of the California Air Resources Board (CARB) statewide 4 GW goal for total incremental CHP deployment by 2020. However, because CARB's assumed utilization is far higherthan is found by the MILP, the adopted CHP only contributes 19percent of the CO2 target. Several sensitivity runs were completed. One applies a simple feed-in tariff similar to net metering, and another includes a generous self-generation incentive program (SGIP) subsidy for fuel cells. The feed-in tariff proves ineffective at stimulating CHP deployment, while the SGIP buy down is more powerful. The attractiveness of CHP varies widely by climate zone and service territory, but in general, hotter inland areas and San Diego are the more attractive regions because high cooling loads achieve higher equipment utilization. Additionally, large office buildings are surprisingly good hosts for CHP, so large office buildings in San Diego and hotter urban centers emerge as promising target hosts. Overall the effect on CO2 emissions is limited, never exceeding 27percent of the CARB target. Nonetheless, results suggest that the CO2 emissions abatement potential of CHP in mid-sized CA buildings is significant, and much more promising than is typically assumed.

  11. The Influence of a CO2 Pricing Scheme on Distributed Energy Resources in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    The Influence of a CO2 Pricing Scheme on Distributed Energy5. Regional Results for the CO2 Pricing Scheme no-invest

  12. Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China

    E-Print Network [OSTI]

    Zhou, Nan

    2011-01-01T23:59:59.000Z

    Others* Air Conditioner Frozen Scenario Total CO2 EmissionsCO2 Emissions (million tonnes CO2)Improvement Scenario Total CO2 Emissions *Others include:

  13. Dynamics of Implementation of Mitigating Measures to Reduce CO2 Emissions from Commercial Aviation

    E-Print Network [OSTI]

    Kar, Rahul

    2010-07-13T23:59:59.000Z

    Increasing demand for air transportation and growing environmental concerns motivate the need to implement measures to reduce CO2 emissions from aviation. Case studies of historical changes in the aviation industry have ...

  14. A PILOT STUDY OF THE ACCURACY OF CO2 SENSORS IN COMMERCIAL BUILDINGS

    E-Print Network [OSTI]

    Fisk, William J.

    2008-01-01T23:59:59.000Z

    of Health Services. Emmerich, S.J. and Persily, A.K. (2001)Fisk and de. Almeida 1998, Emmerich and Persily 2001), CO 2ventilation (Apte 2006, Emmerich and Persily 2001, Fisk and

  15. Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    electricity savings would be 5450 TWh and CO2 emissions inelectricity savings would be 5450 TWh and annual CO2 emissionselectricity consumption could be reduced by 9503 TWh, and CO2 emissions

  16. Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    2050 China Energy and CO2 Emissions Report (in Chinese) (the energy saving and CO2 emission reduction potential of9503 TWh, and annual CO2 emissions would be 16% lower than

  17. Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    energy saving and CO2 emission reduction potential of theTWh and annual CO2 emissions reduction would be 35% lowerwould result in a CO2 emissions reduction of over 9.1

  18. Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China

    E-Print Network [OSTI]

    Zhou, Nan

    2011-01-01T23:59:59.000Z

    GW coal-fired power plants, and annual CO 2 emissions wouldGW coal-fired power plants, and annual CO 2 emissions would

  19. Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China

    E-Print Network [OSTI]

    Zhou, Nan

    2011-01-01T23:59:59.000Z

    heat pump water heater, rangehoods, ventilating fans, external power supply, vending machines, LED lamps, grid lighting, commercial

  20. Carbon Footprinting for the Food Industry

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    174-1 Carbon Footprinting for the Food Industry Tim Bowser FAPC Food Process Engineer FAPC-174 and Natural Resources Carbon footprinting in the food industry is an activity that determines the greenhouse.g. tons) of carbon dioxide (CO2) equivalent per functional unit (e.g. kg or liter of goods sold) (PAS2050

  1. Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China

    SciTech Connect (OSTI)

    Zhou, Nan; Fridley, David; McNeil, Michael; Zheng, Nina; Letschert, Virginie; Ke, Jing

    2011-04-01T23:59:59.000Z

    China has implemented a series of minimum energy performance standards (MEPS) for over 30 appliances, voluntary energy efficiency label for 40 products and a mandatory energy information label that covers 19 products to date. However, the impact of these programs and their savings potential has not been evaluated on a consistent basis. This paper uses modeling to estimate the energy saving and CO{sub 2} emission reduction potential of the appliances standard and labeling program for products for which standards are currently in place, under development or those proposed for development in 2010 under three scenarios that differ in the pace and stringency of MEPS development. In addition to a baseline 'Frozen Efficiency' scenario at 2009 MEPS level, the 'Continued Improvement Scenario' (CIS) reflects the likely pace of post-2009 MEPS revisions, and the likely improvement at each revision step. The 'Best Practice Scenario' (BPS) examined the potential of an achievement of international best practice efficiency in broad commercial use today in 2014. This paper concludes that under 'CIS', cumulative electricity consumption could be reduced by 9503 TWh, and annual CO{sub 2} emissions of energy used for all 37 products would be 16% lower than in the frozen efficiency scenario. Under a 'BPS' scenario for a subset of products, cumulative electricity savings would be 5450 TWh and annual CO{sub 2} emissions reduction of energy used for 11 appliances would be 35% lower.

  2. Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China

    SciTech Connect (OSTI)

    Zhou, Nan; Fridley, David; McNeill, Michael; Zheng, Nina; Letschert, Virginie; Ke, Jing; Saheb, Yamina

    2010-06-07T23:59:59.000Z

    China is now the world's largest producer and consumer of household appliances and commercial equipment. To address the growth of electricity use of the appliances, China has implemented a series of minimum energy performance standards (MEPS) for 30 appliances, and voluntary energy efficiency label for 40 products. Further, in 2005, China started a mandatory energy information label that covers 19 products to date. However, the impact of these standard and labeling programs and their savings potential has not been evaluated on a consistent basis. This research involved modeling to estimate the energy saving and CO{sub 2} emission reduction potential of the appliances standard and labeling program for products for which standards are currently in place, or under development and those proposed for development in 2010. Two scenarios that have been developed differ primarily in the pace and stringency of MEPS development. The 'Continued Improvement Scenario' (CIS) reflects the likely pace of post-2009 MEPS revisions, and the likely improvement at each revision step considering the technical limitation of the technology. The 'Best Practice Scenario' (BPS) examined the potential of an achievement of international best practice MEPS in 2014. This paper concludes that under the 'CIS' of regularly scheduled MEPS revisions to 2030, cumulative electricity consumption could be reduced by 9503 TWh, and annual CO{sub 2} emissions would be 16% lower than in the frozen efficiency scenario. Under a 'BPS' scenario for a subset of products, cumulative electricity savings would be 5450 TWh and annual CO{sub 2} emissions reduction would be 35% lower than in the frozen scenario.

  3. In-situ measurements of surface water pCO2 from commercial ships between 1994/5 and 2002 2005 show surprising results

    E-Print Network [OSTI]

    of residual between MLR output and observations of surface water pCO2 for Jul/Aug/Sep ­ 2002-2007 Root Mean Square of residual between MLR output and observations of surface water pCO2 for Jan/Feb/Mar ­ 2002-2007 Root Mean Square of residual between MLR output and observations of surface water pCO2 for 2004 Root

  4. Reducing the Carbon Footprint of Commercial Refrigeration Systems Using Life Cycle Climate Performance Analysis: From System Design to Refrigerant Options

    SciTech Connect (OSTI)

    Fricke, Brian A [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Vineyard, Edward Allan [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    In this paper, Life Cycle Climate Performance (LCCP) analysis is used to estimate lifetime direct and indirect carbon dioxide equivalent gas emissions of various refrigerant options and commercial refrigeration system designs, including the multiplex DX system with various hydrofluorocarbon (HFC) refrigerants, the HFC/R744 cascade system incorporating a medium-temperature R744 secondary loop, and the transcritical R744 booster system. The results of the LCCP analysis are presented, including the direct and indirect carbon dioxide equivalent emissions for each refrigeration system and refrigerant option. Based on the results of the LCCP analysis, recommendations are given for the selection of low GWP replacement refrigerants for use in existing commercial refrigeration systems, as well as for the selection of commercial refrigeration system designs with low carbon dioxide equivalent emissions, suitable for new installations.

  5. CO2 sequestration | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CO2 sequestration CO2 sequestration Leads No leads are available at this time. Low-Temperature Carbon Monoxide Oxidation Catalysed by Regenerable Atomically Dispersed Palladium on...

  6. Spatial Disaggregation of CO2 Emissions for the State of California

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2008-01-01T23:59:59.000Z

    Electricity Generation/CHP Residential Commercial Industrial Agricultural Transportation Percent of county CO2 emissions

  7. Pyrite footprinting of RNA

    SciTech Connect (OSTI)

    Schlatterer, Joerg C., E-mail: joerg.schlatterer@einstein.yu.edu [Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY (United States); Wieder, Matthew S. [Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY (United States)] [Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY (United States); Jones, Christopher D.; Pollack, Lois [School of Applied and Engineering Physics, Cornell University, Ithaca, NY (United States)] [School of Applied and Engineering Physics, Cornell University, Ithaca, NY (United States); Brenowitz, Michael [Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY (United States)] [Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY (United States)

    2012-08-24T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer RNA structure is mapped by pyrite mediated {sup {center_dot}}OH footprinting. Black-Right-Pointing-Pointer Repetitive experiments can be done in a powdered pyrite filled cartridge. Black-Right-Pointing-Pointer High {sup {center_dot}}OH reactivity of nucleotides imply dynamic role in Diels-Alderase catalysis. -- Abstract: In RNA, function follows form. Mapping the surface of RNA molecules with chemical and enzymatic probes has revealed invaluable information about structure and folding. Hydroxyl radicals ({sup {center_dot}}OH) map the surface of nucleic acids by cutting the backbone where it is accessible to solvent. Recent studies showed that a microfluidic chip containing pyrite (FeS{sub 2}) can produce sufficient {sup {center_dot}}OH to footprint DNA. The 49-nt Diels-Alder RNA enzyme catalyzes the C-C bond formation between a diene and a dienophile. A crystal structure, molecular dynamics simulation and atomic mutagenesis studies suggest that nucleotides of an asymmetric bulge participate in the dynamic architecture of the ribozyme's active center. Of note is that residue U42 directly interacts with the product in the crystallized RNA/product complex. Here, we use powdered pyrite held in a commercially available cartridge to footprint the Diels-Alderase ribozyme with single nucleotide resolution. Residues C39 to U42 are more reactive to {sup {center_dot}}OH than predicted by the solvent accessibility calculated from the crystal structure suggesting that this loop is dynamic in solution. The loop's flexibility may contribute to substrate recruitment and product release. Our implementation of pyrite-mediated {sup {center_dot}}OH footprinting is a readily accessible approach to gleaning information about the architecture of small RNA molecules.

  8. BNL | CO2 Laser

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CO2 Laser The ATF is one of the only two facilities worldwide operating picosecond, terawatt-class CO2 lasers. Our laser system consists of a picoseconds pulse-injector based on...

  9. Capture and Sequestration of CO2 at the Boise White Paper Mill

    SciTech Connect (OSTI)

    B.P. McGrail; C.J. Freeman; G.H. Beeman; E.C. Sullivan; S.K. Wurstner; C.F. Brown; R.D. Garber; D. Tobin E.J. Steffensen; S. Reddy; J.P. Gilmartin

    2010-06-16T23:59:59.000Z

    This report documents the efforts taken to develop a preliminary design for the first commercial-scale CO2 capture and sequestration (CCS) project associated with biomass power integrated into a pulp and paper operation. The Boise Wallula paper mill is located near the township of Wallula in Southeastern Washington State. Infrastructure at the paper mill will be upgraded such that current steam needs and a significant portion of the current mill electric power are supplied from a 100% biomass power source. A new biomass power system will be constructed with an integrated amine-based CO2 capture plant to capture approximately 550,000 tons of CO2 per year for geologic sequestration. A customized version of Fluor Corporation’s Econamine Plus™ carbon capture technology will be designed to accommodate the specific chemical composition of exhaust gases from the biomass boiler. Due to the use of biomass for fuel, employing CCS technology represents a unique opportunity to generate a net negative carbon emissions footprint, which on an equivalent emissions reduction basis is 1.8X greater than from equivalent fossil fuel sources (SPATH and MANN, 2004). Furthermore, the proposed project will offset a significant amount of current natural gas use at the mill, equating to an additional 200,000 tons of avoided CO2 emissions. Hence, the total net emissions avoided through this project equates to 1,100,000 tons of CO2 per year. Successful execution of this project will provide a clear path forward for similar kinds of emissions reduction that can be replicated at other energy-intensive industrial facilities where the geology is suitable for sequestration. This project also represents a first opportunity for commercial development of geologic storage of CO2 in deep flood basalt formations. The Boise paper mill site is host to a Phase II pilot study being carried out under DOE’s Regional Carbon Partnership Program. Lessons learned from this pilot study and other separately funded projects studying CO2 sequestration in basalts will be heavily leveraged in developing a suitable site characterization program and system design for permanent sequestration of captured CO2. The areal extent, very large thickness, high permeability in portions of the flows, and presence of multiple very low permeability flow interior seals combine to produce a robust sequestration target. Moreover, basalt formations are quite reactive with water-rich supercritical CO2 and formation water that contains dissolved CO2 to generate carbonate minerals, providing for long-term assurance of permanent sequestration. Sub-basalt sediments also exist at the site providing alternative or supplemental storage capacity.

  10. On carbon footprints and growing energy use

    SciTech Connect (OSTI)

    Oldenburg, C.M.

    2011-06-01T23:59:59.000Z

    Could fractional reductions in the carbon footprint of a growing organization lead to a corresponding real reduction in atmospheric CO{sub 2} emissions in the next ten years? Curtis M. Oldenburg, head of the Geologic Carbon Sequestration Program of LBNL’s Earth Sciences Division, considers his own organization's carbon footprint and answers this critical question? In addressing the problem of energy-related greenhouse gas (GHG) emissions and climate change, it is essential that we understand which activities are producing GHGs and the scale of emission for each activity, so that reduction efforts can be efficiently targeted. The GHG emissions to the atmosphere of an individual or group are referred to as the ‘carbon footprint’. This terminology is entirely appropriate, because 85% of the global marketed energy supply comes from carbon-rich fossil fuel sources whose combustion produces CO{sub 2}, the main GHG causing global climate change. Furthermore, the direct relation between CO2 emissions and fossil fuels as they are used today makes energy consumption a useful proxy for carbon footprint. It would seem to be a simple matter to reduce energy consumption across the board, both individually and collectively, to help reduce our carbon footprints and therefore solve the energyclimate crisis. But just how much can we reduce carbon footprints when broader forces, such as growth in energy use, cause the total footprint to simultaneously expand? In this feature, I present a calculation of the carbon footprint of the Earth Sciences Division (ESD), the division in which I work at Lawrence Berkeley National Laboratory (LBNL), and discuss the potential for reducing this carbon footprint. It will be apparent that in terms of potential future carbon footprint reductions under projections of expected growth, ESD may be thought of as a microcosm of the situation of the world as a whole, in which alternatives to the business-as-usual use of fossil fuels are needed if absolute GHG emission reductions are to be achieved.

  11. CO2.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STORAGE & ENHANCED OIL RECOVERY Objective R MOTC can play a signifi cant role in carbon dioxide (CO 2 ) storage and enhanced oil recovery technology development and fi eld...

  12. EMSL - CO2 sequestration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    co2-sequestration en Low-Temperature Carbon Monoxide Oxidation Catalysed by Regenerable Atomically Dispersed Palladium on Alumina. http:www.emsl.pnl.govemslwebpublications...

  13. Carbon Footprint Towson University

    E-Print Network [OSTI]

    Fath, Brian D.

    Carbon Footprint Towson University GHG Inventory for Educational Institutes Getting Starting.TM The Carbon Footprint 8 The Constellation Experience A Broad Inventory 1. Scope I-Direct Emissions works.TM The Carbon Footprint 10 The Constellation Experience A Broad Inventory 3. Scope III

  14. Capturing CO2 via reactions in nanopores.

    SciTech Connect (OSTI)

    Leung, Kevin; Nenoff, Tina Maria; Criscenti, Louise Jacqueline; Tang, Z [University of Cincinnati; Dong, J. H. [University of Cincinnati

    2008-10-01T23:59:59.000Z

    This one-year exploratory LDRD aims to provide fundamental understanding of the mechanism of CO2 scrubbing platforms that will reduce green house gas emission and mitigate the effect of climate change. The project builds on the team member's expertise developed in previous LDRD projects to study the capture or preferential retention of CO2 in nanoporous membranes and on metal oxide surfaces. We apply Density Functional Theory and ab initio molecular dynamics techniques to model the binding of CO2 on MgO and CaO (100) surfaces and inside water-filled, amine group functionalized silica nanopores. The results elucidate the mechanisms of CO2 trapping and clarify some confusion in the literature. Our work identifies key future calculations that will have the greatest impact on CO2 capture technologies, and provides guidance to science-based design of platforms that can separate the green house gas CO2 from power plant exhaust or even from the atmosphere. Experimentally, we modify commercial MFI zeolite membranes and find that they preferentially transmit H2 over CO2 by a factor of 34. Since zeolite has potential catalytic capability to crack hydrocarbons into CO2 and H2, this finding paves the way for zeolite membranes that can convert biofuel into H2 and separate the products all in one step.

  15. amine methanol, ether . Amine amine CO2

    E-Print Network [OSTI]

    Hong, Deog Ki

    IP [2012] 7 C O 2 (CO2) . CO2 amine methanol, ether . Amine amine CO2 CO2 .Amine CO2 (functional group) amine amine+ +promoter .Amine CO2 CO2 . . , methanol ether methanol, ether promoter CO2 CO2 H2S, COS CO2 . Methanol rectisol process, di-methylene ether polypropylene glycol selexol (-30oC) . CO2

  16. High Efficiency R-744 Commercial Heat Pump Water Heaters

    SciTech Connect (OSTI)

    Elbel, Dr. Stefan W.; Petersen, Michael

    2013-04-25T23:59:59.000Z

    The project investigated the development and improvement process of a R744 (CO2) commercial heat pump water heater (HPWH) package of approximately 35 kW. The improvement process covered all main components of the system. More specific the heat exchangers (Internal heat exchanger, Evaporator, Gas cooler) as well as the expansion device and the compressor were investigated. In addition, a comparison to a commercially available baseline R134a unit of the same capacity and footprint was made in order to compare performance as well as package size reduction potential.

  17. Ecological footprint of an organization: can it really be Gondran Natacha

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    's ability to meet human demand for biological resources' consumption and CO2 sequestration. The Ecological land, built-up land and carbon uptake land. For each component, the ecological footprint is obtained Footprint Network (for example, FAO for harvested products). Concerning the carbon emission factors

  18. Acid Gas Capture Using CO2-Binding Organic Liquids

    SciTech Connect (OSTI)

    Heldebrant, David J.; Koech, Phillip K.; Rainbolt, James E.; Zheng, Feng

    2010-11-10T23:59:59.000Z

    Current chemical CO2 scrubbing technology is primarily aqueous alkanolamine based. These systems rapidly bind CO2 (forming water-soluble carbamate and bicarbonate salts) however, the process has serious disadvantages. The concentration of monoethanolamine rarely exceeds 30 wt % due to the corrosive nature of the solution, and this reduces the maximum CO2 volumetric (?108 g/L) and gravimetric capacity (?7 wt%) of the CO2 scrubber. The ?30 wt % loading of ethanolamine also means that a large excess of water must be pumped and heated during CO2 capture and release, and this greatly increases the energy requirements especially considering the high specific heat of water (4 j/g-1K-1). Our approach is to switch to organic systems that chemically bind CO2 as liquid alkylcarbonate salts. Our CO2-binding organic liquids have higher CO2 solubility, lower specific heats, potential for less corrosion and lower binding energies for CO2 than aqueous systems. CO2BOLs also reversibly bind and release mixed sulfur oxides. Furthermore the CO2BOL system can be direct solvent replacements for any solvent based CO2 capture systems because they are commercially available reagents and because they are fluids they would not require extensive process re-engineering.

  19. 10 MW Supercritical CO2 Turbine Test

    SciTech Connect (OSTI)

    Turchi, Craig

    2014-01-29T23:59:59.000Z

    The Supercritical CO2 Turbine Test project was to demonstrate the inherent efficiencies of a supercritical carbon dioxide (s-CO2) power turbine and associated turbomachinery under conditions and at a scale relevant to commercial concentrating solar power (CSP) projects, thereby accelerating the commercial deployment of this new power generation technology. The project involved eight partnering organizations: NREL, Sandia National Laboratories, Echogen Power Systems, Abengoa Solar, University of Wisconsin at Madison, Electric Power Research Institute, Barber-Nichols, and the CSP Program of the U.S. Department of Energy. The multi-year project planned to design, fabricate, and validate an s-CO2 power turbine of nominally 10 MWe that is capable of operation at up to 700°C and operates in a dry-cooled test loop. The project plan consisted of three phases: (1) system design and modeling, (2) fabrication, and (3) testing. The major accomplishments of Phase 1 included: Design of a multistage, axial-flow, s-CO2 power turbine; Design modifications to an existing turbocompressor to provide s-CO2 flow for the test system; Updated equipment and installation costs for the turbomachinery and associated support infrastructure; Development of simulation tools for the test loop itself and for more efficient cycle designs that are of greater commercial interest; Simulation of s-CO2 power cycle integration into molten-nitrate-salt CSP systems indicating a cost benefit of up to 8% in levelized cost of energy; Identification of recuperator cost as a key economic parameter; Corrosion data for multiple alloys at temperatures up to 650ºC in high-pressure CO2 and recommendations for materials-of-construction; and Revised test plan and preliminary operating conditions based on the ongoing tests of related equipment. Phase 1 established that the cost of the facility needed to test the power turbine at its full power and temperature would exceed the planned funding for Phases 2 and 3. Late in Phase 1 an opportunity arose to collaborate with another turbine-development team to construct a shared s-CO2 test facility. The synergy of the combined effort would result in greater facility capabilities than either separate project could produce and would allow for testing of both turbine designs within the combined budgets of the two projects. The project team requested a no-cost extension to Phase 1 to modify the subsequent work based on this collaborative approach. DOE authorized a brief extension, but ultimately opted not to pursue the collaborative facility and terminated the project.

  20. Buildings, Commissioning, Efficiency, Comfort, and CO2

    E-Print Network [OSTI]

    Claridge, D. E.

    2006-01-01T23:59:59.000Z

    comfort, optimize energy use and identify retrofits for existing commercial and institutional buildings and central plant facilities. It includes the entire commissioning process from assessment through implementation and subsequent follow-up as necessary...Buildings, Commissioning, Efficiency, Comfort, and CO2 Asian Pacific Building Commissioning Conference ICEBONovember 8, 2006Shenzhen, ChinaPresented ByDavid E. ClaridgeEnergy Systems LaboratoryTexas A&M University Commissioning New Buildings...

  1. ASSESSMENT OF HOUSEHOLD CARBON FOOTPRINT REDUCTION POTENTIALS

    E-Print Network [OSTI]

    Masanet, Eric

    2010-01-01T23:59:59.000Z

    of  American household carbon footprint. ” Ecological and  limitations) of carbon footprint estimates toward of the art in carbon footprint analyses for California, 

  2. On carbon footprints and growing energy use

    E-Print Network [OSTI]

    Oldenburg, C.M.

    2012-01-01T23:59:59.000Z

    On carbon footprints and growing energy use Curtis M.reductions in the carbon footprint of a growing organizationhis own organization's carbon footprint and answers this

  3. CO2 interaction with geomaterials.

    SciTech Connect (OSTI)

    Guthrie, George D. (U.S. Department of Energy, Pittsburgh, PA); Al-Saidi, Wissam A. (University of Pittsburgh, Pittsburgh, PA); Jordan, Kenneth D. (University of Pittsburgh, Pittsburgh, PA); Voora, Vamsee, K. (University of Pittsburgh, Pittsburgh, PA); Romanov, Vyacheslav N. (U.S. Department of Energy, Pittsburgh, PA); Lopano, Christina L (U.S. Department of Energy, Pittsburgh, PA); Myshakin, Eugene M. (URS Corporation, Pittsburgh, PA); Hur, Tae Bong (University of Pittsburgh, Pittsburgh, PA); Warzinski, Robert P. (U.S. Department of Energy, Pittsburgh, PA); Lynn, Ronald J. (URS Corporation, Pittsburgh, PA); Howard, Bret H. (U.S. Department of Energy, Pittsburgh, PA); Cygan, Randall Timothy

    2010-09-01T23:59:59.000Z

    This work compares the sorption and swelling processes associated with CO2-coal and CO2-clay interactions. We investigated the mechanisms of interaction related to CO2 adsortion in micropores, intercalation into sub-micropores, dissolution in solid matrix, the role of water, and the associated changes in reservoir permeability, for applications in CO2 sequestration and enhanced coal bed methane recovery. The structural changes caused by CO2 have been investigated. A high-pressure micro-dilatometer was equipped to investigate the effect of CO2 pressure on the thermoplastic properties of coal. Using an identical dilatometer, Rashid Khan (1985) performed experiments with CO2 that revealed a dramatic reduction in the softening temperature of coal when exposed to high-pressure CO2. A set of experiments was designed for -20+45-mesh samples of Argonne Premium Pocahontas No.3 coal, which is similar in proximate and ultimate analysis to the Lower Kittanning seam coal that Khan used in his experiments. No dramatic decrease in coal softening temperature has been observed in high-pressure CO2 that would corroborate the prior work of Khan. Thus, conventional polymer (or 'geopolymer') theories may not be directly applicable to CO2 interaction with coals. Clays are similar to coals in that they represent abundant geomaterials with well-developed microporous structure. We evaluated the CO2 sequestration potential of clays relative to coals and investigated the factors that affect the sorption capacity, rates, and permanence of CO2 trapping. For the geomaterials comparison studies, we used source clay samples from The Clay Minerals Society. Preliminary results showed that expandable clays have CO2 sorption capacities comparable to those of coal. We analyzed sorption isotherms, XRD, DRIFTS (infrared reflectance spectra at non-ambient conditions), and TGA-MS (thermal gravimetric analysis) data to compare the effects of various factors on CO2 trapping. In montmorillonite, CO2 molecules may remain trapped for several months following several hours of exposure to high pressure (supercritical conditions), high temperature (above boiling point of water) or both. Such trapping is well preserved in either inert gas or the ambient environment and appears to eventually result in carbonate formation. We performed computer simulations of CO2 interaction with free cations (normal modes of CO2 and Na+CO2 were calculated using B3LYP / aug-cc-pVDZ and MP2 / aug-cc-pVDZ methods) and with clay structures containing interlayer cations (MD simulations with Clayff potentials for clay and a modified CO2 potential). Additionally, interaction of CO2 with hydrated Na-montmorillonite was studied using density functional theory with dispersion corrections. The sorption energies and the swelling behavior were investigated. Preliminary modeling results and experimental observations indicate that the presence of water molecules in the interlayer region is necessary for intercalation of CO2. Our preliminary conclusion is that CO2 molecules may intercalate into interlayer region of swelling clay and stay there via coordination to the interlayer cations.

  4. Co2 geological sequestration

    SciTech Connect (OSTI)

    Xu, Tianfu

    2004-11-18T23:59:59.000Z

    Human activities are increasingly altering the Earth's climate. A particular concern is that atmospheric concentrations of carbon dioxide (CO{sub 2}) may be rising fast because of increased industrialization. CO{sub 2} is a so-called ''greenhouse gas'' that traps infrared radiation and may contribute to global warming. Scientists project that greenhouse gases such as CO{sub 2} will make the arctic warmer, which would melt glaciers and raise sea levels. Evidence suggests that climate change may already have begun to affect ecosystems and wildlife around the world. Some animal species are moving from one habitat to another to adapt to warmer temperatures. Future warming is likely to exceed the ability of many species to migrate or adjust. Human production of CO{sub 2} from fossil fuels (such as at coal-fired power plants) is not likely to slow down soon. It is urgent to find somewhere besides the atmosphere to put these increased levels of CO{sub 2}. Sequestration in the ocean and in soils and forests are possibilities, but another option, sequestration in geological formations, may also be an important solution. Such formations could include depleted oil and gas reservoirs, unmineable coal seams, and deep saline aquifers. In many cases, injection of CO2 into a geological formation can enhance the recovery of hydrocarbons, providing value-added byproducts that can offset the cost of CO{sub 2} capture and sequestration. Before CO{sub 2} gas can be sequestered from power plants and other point sources, it must be captured. CO{sub 2} is also routinely separated and captured as a by-product from industrial processes such as synthetic ammonia production, H{sub 2} production, and limestone calcination. Then CO{sub 2} must be compressed into liquid form and transported to the geological sequestration site. Many power plants and other large emitters of CO{sub 2} are located near geological formations that are amenable to CO{sub 2} sequestration.

  5. CO2 Sequestration short course

    SciTech Connect (OSTI)

    DePaolo, Donald J. [Lawrence Berkeley National Laboratory; Cole, David R [The Ohio State University; Navrotsky, Alexandra [University of California-Davis; Bourg, Ian C [Lawrence Berkeley National Laboratory

    2014-12-08T23:59:59.000Z

    Given the public’s interest and concern over the impact of atmospheric greenhouse gases (GHGs) on global warming and related climate change patterns, the course is a timely discussion of the underlying geochemical and mineralogical processes associated with gas-water-mineral-interactions encountered during geological sequestration of CO2. The geochemical and mineralogical processes encountered in the subsurface during storage of CO2 will play an important role in facilitating the isolation of anthropogenic CO2 in the subsurface for thousands of years, thus moderating rapid increases in concentrations of atmospheric CO2 and mitigating global warming. Successful implementation of a variety of geological sequestration scenarios will be dependent on our ability to accurately predict, monitor and verify the behavior of CO2 in the subsurface. The course was proposed to and accepted by the Mineralogical Society of America (MSA) and The Geochemical Society (GS).

  6. Methanogenic Conversion of CO2 Into CH4

    SciTech Connect (OSTI)

    Stevens, S.H., Ferry, J.G., Schoell, M.

    2012-05-06T23:59:59.000Z

    This SBIR project evaluated the potential to remediate geologic CO2 sequestration sites into useful methane gas fields by application of methanogenic bacteria. Such methanogens are present in a wide variety of natural environments, converting CO2 into CH4 under natural conditions. We conclude that the process is generally feasible to apply within many of the proposed CO2 storage reservoir settings. However, extensive further basic R&D still is needed to define the precise species, environments, nutrient growth accelerants, and economics of the methanogenic process. Consequently, the study team does not recommend Phase III commercial application of the technology at this early phase.

  7. Development of a Sorption Enhanced Steam Hydrogasification Process for In-situ Carbon Dioxide (CO2) Removal and Enhanced Synthetic Fuel Production

    E-Print Network [OSTI]

    Liu, Zhongzhe

    2013-01-01T23:59:59.000Z

    with carbon capture and storage (BECCS) technology [6,7] .carbon dioxide emissions by major fuel, 2009…………….2 Fig.1.4 Schematic of CO 2 capture systems and technologies……………………………..carbon footprint. One unique technique is using in-situ CO 2 capture technology,

  8. An Investigation of CO2 Sequestration

    E-Print Network [OSTI]

    Saldin, Dilano

    An Investigation of CO2 Sequestration through Mineralization Conference on Sustainable Construction area and increased availability of CO2 for rapid carbonation. The hardened and carbonated materials Slag #12;Carbonation Chemistry Dissolution of CO2 in water. CO2(g) CO2(aq) Formation of carbonic acid

  9. Water Footprint | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Footprint Blue water represents water withdrawn from surface water and groundwater for feedstock irrigation and refinery processing. Blue water represents water withdrawn from...

  10. Surface CO2 leakage during the first shallow subsurface CO2 release experiment

    E-Print Network [OSTI]

    Lewicki, J.L.; Oldenburg, C.; Dobeck, L.; Spangler, L.

    2008-01-01T23:59:59.000Z

    numbered 0-6. Plots of F CO2 measured along the surface wellin Figure 2. Figure 2. Log F CO2 maps for measurements madeof soil CO 2 flux (F CO2 ). The surface leakage onset,

  11. What's your water footprint

    E-Print Network [OSTI]

    Jordan, Leslie

    2009-01-01T23:59:59.000Z

    tx H2O | pg. 21 What?s your water footprint? When it comes to your water use, do you tread lightly or are you an H2O Sasquatch? How much water do you think you consume every day? You might initially consider the length of your daily shower..., the time of day you run your sprinkler system, and how long the water runs while you brush your teeth. Conservation in such everyday tasks is important, but water experts have begun to use a more all-encompassing survey of water use by calculating...

  12. What's your water footprint?

    E-Print Network [OSTI]

    Jordan, Leslie

    2009-01-01T23:59:59.000Z

    tx H2O | pg. 21 What?s your water footprint? When it comes to your water use, do you tread lightly or are you an H2O Sasquatch? How much water do you think you consume every day? You might initially consider the length of your daily shower..., the time of day you run your sprinkler system, and how long the water runs while you brush your teeth. Conservation in such everyday tasks is important, but water experts have begun to use a more all-encompassing survey of water use by calculating...

  13. Predicting CO2-water interfacial tension under pressure and temperature conditions of geologic CO2 storage

    E-Print Network [OSTI]

    Nielsen, L.C.

    2013-01-01T23:59:59.000Z

    E EPM2- TIP4P2005 PPL- TIP4P2005 Predicted (f) a P ? CO2 2SE? CO2 2SE? CO2 2SE ? CO2 2SE ? CO2 2SE ? CO2 2SE a Surface excess CO

  14. 2014 Manufacturing Energy and Carbon Footprints: Definitions...

    Broader source: Energy.gov (indexed) [DOE]

    and Assumptions A number of key terms are used to interpret the manufacturing energy and carbon footprints. The terms associated with the energy footprint analysis are...

  15. Station Footprint: Separation Distances, Storage Options, and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Station Footprint: Separation Distances, Storage Options, and Pre-Cooling Station Footprint: Separation Distances, Storage Options, and Pre-Cooling This presentation by Aaron...

  16. UCSF Sustainability Baseline Assessment: Carbon Footprint Analysis

    E-Print Network [OSTI]

    Yamamoto, Keith

    UCSF Sustainability Baseline Assessment: Carbon Footprint Analysis Final Issue Date: March 21, 2010 #12;Carbon Footprint Analysis Background This chapter of the Sustainability Assessment focuses on UCSF

  17. 8, 73737389, 2008 Scientists' CO2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 8, 7373­7389, 2008 Scientists' CO2 emissions A. Stohl Title Page Abstract Introduction Publications on behalf of the European Geosciences Union. 7373 #12;ACPD 8, 7373­7389, 2008 Scientists' CO2 substantial emissions of carbon dioxide (CO2). In this pa- per, the CO2 emissions of the employees working

  18. 6, 1092910958, 2006 Regional scale CO2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 6, 10929­10958, 2006 Regional scale CO2 flux estimation using radon A. I. Hirsch Title Page Chemistry and Physics Discussions On using radon-222 and CO2 to calculate regional-scale CO2 fluxes A. I (Adam.Hirsch@noaa.gov) 10929 #12;ACPD 6, 10929­10958, 2006 Regional scale CO2 flux estimation using

  19. PLAINS CO2 REDUCTION (PCOR) PARTNERSHIP

    SciTech Connect (OSTI)

    Edward N. Steadman; Daniel J. Daly; Lynette L. de Silva; John A. Harju; Melanie D. Jensen; Erin M. O'Leary; Wesley D. Peck; Steven A. Smith; James A. Sorensen

    2006-01-01T23:59:59.000Z

    During the period of October 1, 2003, through September 30, 2005, the Plains CO2 Reduction (PCOR) Partnership, identified geologic and terrestrial candidates for near-term practical and environmentally sound carbon dioxide (CO2) sequestration demonstrations in the heartland of North America. The PCOR Partnership region covered nine states and three Canadian provinces. The validation test candidates were further vetted to ensure that they represented projects with (1) commercial potential and (2) a mix that would support future projects both dependent and independent of CO2 monetization. This report uses the findings contained in the PCOR Partnership's two dozen topical reports and half-dozen fact sheets as well as the capabilities of its geographic information system-based Decision Support System to provide a concise picture of the sequestration potential for both terrestrial and geologic sequestration in the PCOR Partnership region based on assessments of sources, sinks, regulations, deployment issues, transportation, and capture and separation. The report also includes concise action plans for deployment and public education and outreach as well as a brief overview of the structure, development, and capabilities of the PCOR Partnership. The PCOR Partnership is one of seven regional partnerships under Phase I of the U.S. Department of Energy National Energy Technology Laboratory's Regional Carbon Sequestration Partnership program. The PCOR Partnership, comprising 49 public and private sector members, is led by the Energy & Environmental Research Center at the University of North Dakota. The international PCOR Partnership region includes the Canadian provinces of Alberta, Saskatchewan, and Manitoba and the states of Montana (part), Wyoming (part), North Dakota, South Dakota, Nebraska, Missouri, Iowa, Minnesota, and Wisconsin.

  20. Modeling long-term CO2 storage, sequestration and cycling

    SciTech Connect (OSTI)

    Bacon, Diana H.

    2013-11-11T23:59:59.000Z

    The application of numerical and analytical models to the problem of storage, sequestration and migration of carbon dioxide in geologic formations is discussed. A review of numerical and analytical models that have been applied to CO2 sequestration are presented, as well as a description of frameworks for risk analysis. Application of models to various issues related to carbon sequestration are discussed, including trapping mechanisms, density convection mixing, impurities in the CO2 stream, changes in formation porosity and permeability, the risk of vertical leakage, and the impacts on groundwater resources if leakage does occur. A discussion of the development and application of site-specific models first addresses the estimation of model parameters and the use of natural analogues to inform the development of CO2 sequestration models, and then surveys modeling that has been done at two commercial-scale CO2 sequestration sites, Sleipner and In Salah, along with a pilot-scale injection sites used to study CO2 sequestration in saline aquifers (Frio) and an experimental site designed to test monitoring of CO2 leakage in the vadose zone (ZERT Release Facility).

  1. Short communication Satellite-derived surface water pCO2 and airsea CO2 fluxes

    E-Print Network [OSTI]

    Short communication Satellite-derived surface water pCO2 and air­sea CO2 fluxes in the northern for the estimation of the partial pressure of carbon dioxide (pCO2) and air­sea CO2 fluxes in the northern South), respectively, the monthly pCO2 fields were computed. The derived pCO2 was compared with the shipboard pCO2

  2. CALCULATING THE CARBON FOOTPRINT SUPPLY CHAIN FOR

    E-Print Network [OSTI]

    Su, Xiao

    CALCULATING THE CARBON FOOTPRINT SUPPLY CHAIN FOR THE SEMICONDUCTOR INDUSTRY By: Yasser Dessouky #12;Carbon Footprint Supply Chain Carbon Trust defines carbon footprint of a supply chain as follows: "The carbon footprint of a product is the carbon dioxide emitted across the supply chain for a single

  3. MODELING AND CONTROL OF A O2/CO2 GAS TURBINE CYCLE FOR CO2 CAPTURE

    E-Print Network [OSTI]

    Foss, Bjarne A.

    MODELING AND CONTROL OF A O2/CO2 GAS TURBINE CYCLE FOR CO2 CAPTURE Lars Imsland Dagfinn Snarheim and control of a semi-closed O2/CO2 gas turbine cycle for CO2 capture. In the first part the process predictive control, Gas turbines, CO2 capture 1. INTRODUCTION Gas turbines are widely used for power

  4. The Phase Inversion-based Coal-CO2 Slurry (PHICCOS) Feeding System

    E-Print Network [OSTI]

    The Phase Inversion-based Coal-CO2 Slurry (PHICCOS) Feeding System: Design, Coupled Multiscale. Commercially available feeding systems are based on coal-water slurry or lock hoppers. The earlier penalizes coal feeding system. The proposed Phase Inversion-based Coal-CO2 Slurry (PHICCOS) feeding system uses

  5. Comparison of solvents for post-combustion capture of CO2 by chemical absorption

    E-Print Network [OSTI]

    Kothandaraman, Anusha

    Post combustion absorption technologies represent one of the most commercially ready technologies for CO2 capture. Solvent selection is the critical consideration in post-combustion absorption capture technology. In order ...

  6. ATMOSPHERIC CO2 A GLOBAL LIMITING RESOURCE

    E-Print Network [OSTI]

    Schwartz, Stephen E.

    Carbondioxideatmosphericburden,PgC Land use Fossil CO2 from land use emissions ­ not fossil fuel combustion ­ was the dominant CO2 Comparison of CO2 mixing ratio from fossil fuel combustion and land use changes 400 380 360 340 cores 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Forcing,Wm -2 #12;ATMOSPHERIC CO2 EMISSIONS Time series 1700

  7. CO2-selective, Hybrid Membranes by Silation of Alumina

    SciTech Connect (OSTI)

    Luebke, D.R.; Pennline, H.W.

    2007-09-01T23:59:59.000Z

    Hybrid membranes are feasible candidates for the separation of CO2 from gas produced in coal-based power generation since they have the potential to combine the high selectivity of polymer membranes and the high permeability of inorganic membranes. An interesting method for producing hybrid membranes is the silation of an inorganic membrane. In this method, trichloro- or alkoxy-silanes interact with hydroxyl groups on the surface of ?-AlO3 or TiO2, binding organic groups to that surface. By varying the length of these organic groups on the organosilane, it should be possible to tailor the effective pore size of the membrane. Similarly, the addition of “CO2-phillic” groups to the silating agent allows for the careful control of surface affinity and the enhancement of surface diffusion mechanisms. This method of producing hybrid membranes selective to CO2 was first attempted by Hyun [1] who silated TiO2 with phenyltriethoxysilane. Later, Way [2] silated ?-AlO3 with octadecyltrichlorosilane. Both researchers were successful in producing membranes with improved selectivity toward CO2, but permeability was not maintained at a commercially applicable level. XPS data indicated that the silating agent did not penetrate into the membrane pores and separation actually occurred in a thin “polymer-like” surface layer. The present study attempts to overcome the mass transfer problems associated with this technique by producing the desired monolayer coverage of silane, and thus develop a highly-permeable CO2-selective hybrid membrane.

  8. 5, 33133340, 2005 SCIAMACHY CO2 and

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 5, 3313­3340, 2005 SCIAMACHY CO2 and aerosols S. Houweling et al. Title Page Abstract Evidence of systematic errors in SCIAMACHY-observed CO2 due to aerosols S. Houweling 1,2 , W. Hartmann 1 Commons License. 3313 #12;ACPD 5, 3313­3340, 2005 SCIAMACHY CO2 and aerosols S. Houweling et al. Title

  9. MEMBRANE PROCESS TO SEQUESTER CO2 FROM POWER PLANT FLUE GAS

    SciTech Connect (OSTI)

    Tim Merkel; Karl Amo; Richard Baker; Ramin Daniels; Bilgen Friat; Zhenjie He; Haiqing Lin; Adrian Serbanescu

    2009-03-31T23:59:59.000Z

    The objective of this project was to assess the feasibility of using a membrane process to capture CO2 from coal-fired power plant flue gas. During this program, MTR developed a novel membrane (Polaris™) with a CO2 permeance tenfold higher than commercial CO2-selective membranes used in natural gas treatment. The Polaris™ membrane, combined with a process design that uses a portion of combustion air as a sweep stream to generate driving force for CO2 permeation, meets DOE post-combustion CO2 capture targets. Initial studies indicate a CO2 separation and liquefaction cost of $20 - $30/ton CO2 using about 15% of the plant energy at 90% CO2 capture from a coal-fired power plant. Production of the Polaris™ CO2 capture membrane was scaled up with MTR’s commercial casting and coating equipment. Parametric tests of cross-flow and countercurrent/sweep modules prepared from this membrane confirm their near-ideal performance under expected flue gas operating conditions. Commercial-scale, 8-inch diameter modules also show stable performance in field tests treating raw natural gas. These findings suggest that membranes are a viable option for flue gas CO2 capture. The next step will be to conduct a field demonstration treating a realworld power plant flue gas stream. The first such MTR field test will capture 1 ton CO2/day at Arizona Public Service’s Cholla coal-fired power plant, as part of a new DOE NETL funded program.

  10. Samenvatting CO2 is het meest belangrijke broeikasgas. The concentratie van CO2 in de atmosfeer

    E-Print Network [OSTI]

    van den Brink, Jeroen

    Samenvatting CO2 is het meest belangrijke broeikasgas. The concentratie van CO2 in de atmosfeer brandstoffen en veranderingen in landgebruik. Toenemende concentraties van CO2 in de atmosfeer zullen naar toename van CO2 in de atmosfeer op de dynamiek van de microbiële gemeenschap in de directe omgeving van de

  11. MAC-Kaust Project P1 CO2 Sequestration Modeling of CO2 sequestration including parameter

    E-Print Network [OSTI]

    Turova, Varvara

    MAC-Kaust Project P1 ­ CO2 Sequestration Modeling of CO2 sequestration including parameter identification and numerical simulation M. Brokate, O. A. PykhteevHysteresis aspects of CO2 sequestration modeling K-H. Hoffmann, N. D. Botkin Objectives and methods of CO2 sequestration There is a popular belief

  12. How secure is CO2 storage? Leakage mechanisms of natural CO2 reservoirs

    E-Print Network [OSTI]

    How secure is CO2 storage? Leakage mechanisms of natural CO2 reservoirs Johannes Miocic, Stuart. The goal of CCS is to store carbon dioxide (CO2) in the subsurface for a long period of time (>10,000 yr).1 It is important that the stored CO2 does not leak from the reservoir to the surface . 3. Faults as leakage

  13. Surface controls on the characteristics of natural CO2 seeps: implications for engineered CO2 stores

    E-Print Network [OSTI]

    Haszeldine, Stuart

    of the CO2 seeps is most strongly governed by the flow properties of the outcropping rocks, and local emerge where valleys erode into CO2 aquifers, and these are typically high flux seeps. Seep type is knownSurface controls on the characteristics of natural CO2 seeps: implications for engineered CO2

  14. Manufacturing Energy and Carbon Footprint Definitions and Assumptions...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Understanding Manufacturing Energy and Carbon Footprints, October 2012 2010 Manufacturing Energy and Carbon Footprints: Definitions...

  15. The Importance of Carbon Footprint Estimation Boundaries

    E-Print Network [OSTI]

    Kammen, Daniel M.

    The Importance of Carbon Footprint Estimation Boundaries H . S C O T T M A T T H E W S , C H R I and organizations are pursuing "carbon footprint" projects to estimate their own contributions to global climate change. Protocol definitions from carbon registries help organizations analyze their footprints

  16. CO2-driven Enhanced Oil Recovery as a Stepping Stone to What?

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2010-07-14T23:59:59.000Z

    This paper draws heavily on the authors’ previously published research to explore the extent to which near term carbon dioxide-driven enhanced oil recovery (CO2-EOR) can be “a stepping stone to a long term sequestration program of a scale to be material in climate change risk mitigation.” The paper examines the historical evolution of CO2-EOR in the United States and concludes that estimates of the cost of CO2-EOR production or the extent of CO2 pipeline networks based upon this energy security-driven promotion of CO2-EOR do not provide a robust platform for spurring the commercial deployment of carbon dioxide capture and storage technologies (CCS) as a means of reducing greenhouse gas emissions. The paper notes that the evolving regulatory framework for CCS makes a clear distinction between CO2-EOR and CCS and the authors examine arguments in the technical literature about the ability for CO2-EOR to generate offsetting revenue to accelerate the commercial deployment of CCS systems in the electric power and industrial sectors of the economy. The authors conclude that the past 35 years of CO2-EOR in the U.S. have been important for boosting domestic oil production and delivering proven system components for future CCS systems. However, though there is no reason to suggest that CO2-EOR will cease to deliver these benefits, there is also little to suggest that CO2-EOR is a necessary or significantly beneficial step towards the commercial deployment of CCS as a means of addressing climate change.

  17. Modeling of CO2 storage in aquifers

    E-Print Network [OSTI]

    santos,,,

    Feb 6, 2011 ... atmosphere, increasing its temperature (greenhouse effect). To minimize climate change impacts, geological sequestration of CO2 is an ...

  18. QGESS: CO2 Impurity Design Parameters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    limits Component Unit (Max unless Otherwise noted) Carbon Steel Pipeline Enhanced Oil Recovery Saline Reservoir Sequestration Saline Reservoir CO 2 & H 2 S Co- sequestration...

  19. The supply chain of CO2 emissions

    E-Print Network [OSTI]

    Davis, S. J; Peters, G. P; Caldeira, K.

    2011-01-01T23:59:59.000Z

    emissions from traded fossil fuels; Top), production (F Pr )Regional, and National Fossil-Fuel CO 2 Emissions (Carbonfrom the burning of fossil fuels are conventionally

  20. Assessing the health risks of natural CO2 seeps in Italy

    SciTech Connect (OSTI)

    Roberts, J.J.; Wood, R.A.; Haszeldine, R.S. [Scottish Carbon Capture and Storage, School of GeoSciences, Grant Institute, University of Edinburgh, West Mains Road, Edinburgh EH9 3JW, Scotland (United Kingdom)

    2011-10-04T23:59:59.000Z

    Industrialized societies which continue to use fossil fuel energy sources are considering adoption of Carbon Capture and Storage (CCS) technology to meet carbon emission reduction targets. Deep geological storage of CO2 onshore faces opposition regarding potential health effects of CO2 leakage from storage sites. There is no experience of commercial scale CCS with which to verify predicted risks of engineered storage failure. Studying risk from natural CO2 seeps can guide assessment of potential health risks from leaking onshore CO2 stores. Italy and Sicily are regions of intense natural CO2 degassing from surface seeps. These seeps exhibit a variety of expressions, characteristics (e.g., temperature/ flux), and location environments. Here we quantify historical fatalities from CO2 poisoning using a database of 286 natural CO2 seeps in Italy and Sicily. We find that risk of human death is strongly influenced by seep surface expression, local conditions (e.g., topography and wind speed), CO2 flux, and human behavior. Risk of accidental human death from these CO2 seeps is calculated to be 10-8 year-1 to the exposed population. This value is significantly lower than that of many socially accepted risks. Seepage from future storage sites is modeled to be less than Italian natural flux rates. With appropriate hazard management, health risks from unplanned seepage at onshore storage sites can be adequately minimized.

  1. CO2 MONITORING FOR DEMAND CONTROLLED VENTILATION IN COMMERCIAL BUILDINGS

    E-Print Network [OSTI]

    Fisk, William J.

    2010-01-01T23:59:59.000Z

    use of demand control ventilation systems in general officethe demand controlled ventilation system increased the ratedemand controlled ventilation systems will, because of poor

  2. CO2 MONITORING FOR DEMAND CONTROLLED VENTILATION IN COMMERCIAL BUILDINGS

    E-Print Network [OSTI]

    Fisk, William J.

    2010-01-01T23:59:59.000Z

    Laboratory-based evaluations of nine sensors with largespecified existing sensor for evaluation. In the prior fieldIn summary, these evaluations of faulty sensors did not

  3. CO2 MONITORING FOR DEMAND CONTROLLED VENTILATION IN COMMERCIAL BUILDINGS

    E-Print Network [OSTI]

    Fisk, William J.

    2010-01-01T23:59:59.000Z

    evaluations of the performance of sensor electronics and measurements of the output of infrared sources within sensors

  4. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    E-Print Network [OSTI]

    Fridley, David G.

    2008-01-01T23:59:59.000Z

    Case 25 Figure 9 CO2 Emissions from Commercial Buildings (27 Figure 12 CO2 Emissions by Sector (Primary Energy,16 Office Building CO2 Emissions (Reference Case, Primary

  5. Capturing CO2 from Air Anca Timofte

    E-Print Network [OSTI]

    Fischlin, Andreas

    emissions through renewable fuels · Storage of fluctuating renewable energies · Short-term: Substitute concentrated CO2 from atmospheric air Renewable energy source for Climeworks and subsequent fuel synthesis in Greenhouses Beverage Carbonation CO2 Supply for Renewable Fuel Synthesis #12;5 Climeworks plant delivers

  6. Legal Implications of CO2 Ocean Storage

    E-Print Network [OSTI]

    Legal Implications of CO2 Ocean Storage Jason Heinrich Working Paper Laboratory for Energy the deployment of CO2 storage technologies used in the marine environment. This paper will address some of the legal issues involved in ocean storage of carbon dioxide from a US perspective. The following paragraphs

  7. 2, 711743, 2006 Glacial CO2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    CO2 change: a simple "hypsometric effect" on deep-ocean carbon sequestration? L. C. Skinner Godwin carbon sequestration, this mechanism may help to significantly reduce the "deficit" of explained glacialCPD 2, 711­743, 2006 Glacial CO2 sequestration L. C. Skinner Title Page Abstract Introduction

  8. 4, 23852405, 2007 CO2 and climate

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    BGD 4, 2385­2405, 2007 CO2 and climate affect European carbon ballance R. Harrison and C. Jones Competing roles of rising CO2 and climate change in the contemporary European carbon balance R. Harrison and C. Jones Met Office, Hadley Centre for Climate Change, Exeter, EX1 3PB, UK Received: 13 April 2007

  9. CO2 Capture with Enzyme Synthetic Analogue

    SciTech Connect (OSTI)

    Harry Cordatos

    2010-11-08T23:59:59.000Z

    Overview of an ongoing, 2 year research project partially funded by APRA-E to create a novel, synthetic analogue of carbonic anhydrase and incorporate it into a membrane for removal of CO2 from flue gas in coal power plants. Mechanism background, preliminary feasibility study results, molecular modeling of analogue-CO2 interaction, and program timeline are provided.

  10. Prospects for Subsurface CO2 Sequestration

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    Prospects for Subsurface CO2 Sequestration Abbas Firoozabadi and Philip Cheng Dept. of Chemical in Wiley InterScience (www.interscience.wiley.com). Keywords: CO2 sequestration, mixing, diffusion coal in the future. Coal has a high carbon to hydrogen ratio while natural gas, the premium fuel

  11. Study of CO2 Mobility Control in Heterogeneous Media Using CO2 Thickening Agents

    E-Print Network [OSTI]

    Al Yousef, Zuhair

    2012-10-19T23:59:59.000Z

    CO2 injection is an effective method for performing enhanced oil recovery (EOR). There are several factors that make CO2 useful for EOR, including promoting swelling, reducing oil viscosity, decreasing oil density, and vaporizing and extracting...

  12. Dynamics of CO2 fluxes and concentrations during a shallow subsurface CO2 release

    SciTech Connect (OSTI)

    Lewicki, J.L.; Hilley, G.E.; Dobeck, L.; Spangler, L.

    2009-09-01T23:59:59.000Z

    A field facility located in Bozeman, Montana provides the opportunity to test methods to detect, locate, and quantify potential CO2 leakage from geologic storage sites. From 9 July to 7 August 2008, 0.3 t CO2 d{sup -1} were injected from a 100-m long, {approx}2.5 m deep horizontal well. Repeated measurements of soil CO2 fluxes on a grid characterized the spatio-temporal evolution of the surface leakage signal and quantified the surface leakage rate. Infrared CO2 concentration sensors installed in the soil at 30 cm depth at 0 to 10 m from the well and at 4 cm above the ground at 0 and 5 m from the well recorded surface breakthrough of CO2 leakage and migration of CO2 leakage through the soil. Temporal variations in CO2 concentrations were correlated with atmospheric and soil temperature, wind speed, atmospheric pressure, rainfall, and CO2 injection rate.

  13. Sustainable Carbon Sequestration: Increasing CO2-Storage Efficiency through a CO2-Brine Displacement Approach

    E-Print Network [OSTI]

    Akinnikawe, Oyewande

    2012-10-19T23:59:59.000Z

    CO2 sequestration is one of the proposed methods for reducing anthropogenic CO2 emissions to the atmosphere and therefore mitigating global climate change. Few studies on storing CO2 in an aquifer have been conducted on a regional scale. This study...

  14. Sustainable Carbon Sequestration: Increasing CO2-Storage Efficiency through a CO2-Brine Displacement Approach 

    E-Print Network [OSTI]

    Akinnikawe, Oyewande

    2012-10-19T23:59:59.000Z

    CO2 sequestration is one of the proposed methods for reducing anthropogenic CO2 emissions to the atmosphere and therefore mitigating global climate change. Few studies on storing CO2 in an aquifer have been conducted on a regional scale. This study...

  15. Inventory of Carbon Dioxide (CO2) Emissions at Pacific Northwest National Laboratory

    SciTech Connect (OSTI)

    Judd, Kathleen S.; Kora, Angela R.; Shankle, Steve A.; Fowler, Kimberly M.

    2009-06-29T23:59:59.000Z

    The Carbon Management Strategic Initiative (CMSI) is a lab-wide initiative to position the Pacific Northwest National Laboratory (PNNL) as a leader in science, technology and policy analysis required to understand, mitigate and adapt to global climate change as a nation. As part of an effort to walk the talk in the field of carbon management, PNNL conducted its first carbon dioxide (CO2) emissions inventory for the 2007 calendar year. The goal of this preliminary inventory is to provide PNNL staff and management with a sense for the relative impact different activities at PNNL have on the lab’s total carbon footprint.

  16. Computational Evaluation of Metal-Organic Frameworks for CO2 Capture

    E-Print Network [OSTI]

    Yu, Jiamei

    2013-03-20T23:59:59.000Z

    of commercial CCS projects. Depending on the generation of CO2, there are mainly three basic CO2 separation and capture options: pre-combustion capture, oxy-fuel combustion and post-combustion capture.4 Pre-combustion capture mainly involves the reactions..., the expensive cost and the public resistance for new construction of plants are other concerns. Oxy-fuel combustion requires pure oxygen rather than air for the burning, therefore, the production of pure oxygen significantly increases the cost...

  17. CO2 Saline Storage Demonstration in Colorado Sedimentary Basins: Applied Studies in Reservoir Assessment and Dynamic Processes Affecting Industrial Operations

    SciTech Connect (OSTI)

    Nummedal, Dag; Sitchler, Alexis; McCray, John; Mouzakis, Katherine; Glossner, Andy; Mandernack, Kevin; Gutierrez, Marte; Doran, Kevin; Pranter, Matthew; Rybowiak, Chris

    2012-09-30T23:59:59.000Z

    This multitask research project was conducted in anticipation of a possible future increase in industrial efforts at CO2 storage in Colorado sedimentary basins. Colorado is already the home to the oldest Rocky Mountain CO2 storage site, the Rangely Oil Field, where CO2-EOR has been underway since the 1980s. The Colorado Geological Survey has evaluated storage options statewide, and as part of the SW Carbon Sequestration Partnership the Survey, is deeply engaged in and committed to suitable underground CO2 storage. As a more sustainable energy industry is becoming a global priority, it is imperative to explore the range of technical options available to reduce emissions from fossil fuels. One such option is to store at least some emitted CO2 underground. In this NETL-sponsored CO2 sequestration project, the Colorado School of Mines and our partners at the University of Colorado have focused on a set of the major fundamental science and engineering issues surrounding geomechanics, mineralogy, geochemistry and reservoir architecture of possible CO2 storage sites (not limited to Colorado). Those are the central themes of this final report and reported below in Tasks 2, 3, 4, and 6. Closely related to these reservoir geoscience issues are also legal, environmental and public acceptance concerns about pore space accessibility—as a precondition for CO2 storage. These are addressed in Tasks 1, 5 and 7. Some debates about the future course of the energy industry can become acrimonius. It is true that the physics of combustion of hydrocarbons makes it impossible for fossil energy to attain a carbon footprint anywhere nearly as low as that of renewables. However, there are many offsetting benefits, not the least that fossil energy is still plentiful, it has a global and highly advanced distribution system in place, and the footprint that the fossil energy infrastructure occupies is orders of magnitude smaller than renewable energy facilities with equivalent energy capacity. Finally, inexpensive natural gas here in North America is pushing coal for electricity generation off the market, thus reducing US CO2 emissions faster than any other large industrialized nation. These two big factors argue for renewed efforts to find technology solutions to reduce the carbon footprint (carbon dioxide as well as methane and trace gases) of conventional and unconventional oil and gas. One major such technology component is likely to be carbon capture, utilization and storage.

  18. Post-Combustion and Pre-Combustion CO2 Capture Solid Sorbents

    SciTech Connect (OSTI)

    Siriwardane, R.V.; Stevens, R.W.; Robinson, Clark

    2007-11-01T23:59:59.000Z

    Combustion of fossil fuels is one of the major sources of the greenhouse gas CO2. Pressure swing adsorption/sorption (PSA/PSS) and temperature swing adsorption/sorption (TSA/TSS) are some of the potential techniques that could be utilized for removal of CO2 from fuel gas streams. It is very important to develop sorbents to remove CO2 from fuel gas streams that are applicable for a wide range of temperatures. NETL researchers have developed novel CO2 capture sorbents for low, moderate, and high temperature applications. A novel liquid impregnated solid sorbent was developed for CO2 removal in the temperature range of ambient to 60 °C. The sorbent is regenerable at 60 – 80 °C. The sorbent formulations were prepared to be suitable for various reactor configurations (i.e., fixed and fluidized bed). Minimum fluidization gas velocities were also determined. Multi-cycle tests conducted in an atmospheric bench scale reactor with simulated flue gas indicated that the sorbent retains its CO2 sorption capacity with a CO2 removal efficiency of approximately 99% and was unaffected by presence of water vapor. The sorbent was subsequently commercially prepared by Süd Chemie to determine the viability of the sorbent for mass production. Subsequent testing showed that the commercially-synthesized sorbent possesses the same properties as the lab-synthesized equivalent. An innovative solid sorbent containing mixture of alkali earth and alkali compounds was developed for CO2 removal at 200 – 315°C from high pressure gas streams suitable for IGCC systems. The sorbent showed very high capacity for CO2 removal from a gas streams containing 28% CO2 at 200 °C and at 20 atm during a lab scale reactor test. This sorbent can be regenerated at 20 atm and at 375 °C utilizing a gas stream containing steam. High pressure enhanced the CO2 sorption process. Bench scale testing showed consistent capacities and regenerability. A unique high temperature solid sorbent was developed for CO2 capture at temperatures of 500 – 700°C. Bench scale testing of the sorbent yielded very high CO2 capture capacity from a gas stream containing 10% CO2, 30% H2, 15% H2O, and 25% He. Regeneration of the sorbent is possible at 800 – 900 °C.

  19. The Smart Grid: An Estimation of the Energy and CO2 Benefits

    SciTech Connect (OSTI)

    Pratt, Robert G.; Balducci, Patrick J.; Gerkensmeyer, Clint; Katipamula, Srinivas; Kintner-Meyer, Michael CW; Sanquist, Thomas F.; Schneider, Kevin P.; Secrest, Thomas J.

    2010-01-27T23:59:59.000Z

    This report articulates nine mechanisms by which the smart grid can reduce energy use and carbon impacts associated with electricity generation and delivery. The quantitative estimates of potential reductions in electricity sector energy and associated CO2 emissions presented are based on a survey of published results and simple analyses. This report does not attempt to justify the cost effectiveness of the smart grid, which to date has been based primarily upon the twin pillars of cost-effective operation and improved reliability. Rather, it attempts to quantify the additional energy and CO2 emission benefits inherent in the smart grid’s potential contribution to the nation’s goal of mitigating climate change by reducing the carbon footprint of the electric power system.

  20. The Smart Grid: An Estimation of the Energy and CO2 Benefits

    SciTech Connect (OSTI)

    Pratt, Robert G.; Balducci, Patrick J.; Gerkensmeyer, Clint; Katipamula, Srinivas; Kintner-Meyer, Michael CW; Sanquist, Thomas F.; Schneider, Kevin P.; Secrest, Thomas J.

    2010-01-15T23:59:59.000Z

    This report articulates nine mechanisms by which the smart grid can reduce energy use and carbon impacts associated with electricity generation and delivery. The quantitative estimates of potential reductions in electricity sector energy and associated CO2 emissions presented are based on a survey of published results and simple analyses. This report does not attempt to justify the cost effectiveness of the smart grid, which to date has been based primarily upon the twin pillars of cost-effective operation and improved reliability. Rather, it attempts to quantify the additional energy and CO2 emission benefits inherent in the smart grid’s potential contribution to the nation’s goal of mitigating climate change by reducing the carbon footprint of the electric power system.

  1. Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II

    SciTech Connect (OSTI)

    George J. Koperna Jr.; Vello A. Kuuskraa; David E. Riestenberg; Aiysha Sultana; Tyler Van Leeuwen

    2009-06-01T23:59:59.000Z

    This report serves as the final technical report and users manual for the 'Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II SBIR project. Advanced Resources International has developed a screening tool by which users can technically screen, assess the storage capacity and quantify the costs of CO2 storage in four types of CO2 storage reservoirs. These include CO2-enhanced oil recovery reservoirs, depleted oil and gas fields (non-enhanced oil recovery candidates), deep coal seems that are amenable to CO2-enhanced methane recovery, and saline reservoirs. The screening function assessed whether the reservoir could likely serve as a safe, long-term CO2 storage reservoir. The storage capacity assessment uses rigorous reservoir simulation models to determine the timing, ultimate storage capacity, and potential for enhanced hydrocarbon recovery. Finally, the economic assessment function determines both the field-level and pipeline (transportation) costs for CO2 sequestration in a given reservoir. The screening tool has been peer reviewed at an Electrical Power Research Institute (EPRI) technical meeting in March 2009. A number of useful observations and recommendations emerged from the Workshop on the costs of CO2 transport and storage that could be readily incorporated into a commercial version of the Screening Tool in a Phase III SBIR.

  2. Analysis of CO2 Separation from Flue Gas, Pipeline Transportation, and Sequestration in Coal

    SciTech Connect (OSTI)

    Eric P. Robertson

    2007-09-01T23:59:59.000Z

    This report was written to satisfy a milestone of the Enhanced Coal Bed Methane Recovery and CO2 Sequestration task of the Big Sky Carbon Sequestration project. The report begins to assess the costs associated with separating the CO2 from flue gas and then injecting it into an unminable coal seam. The technical challenges and costs associated with CO2 separation from flue gas and transportation of the separated CO2 from the point source to an appropriate sequestration target was analyzed. The report includes the selection of a specific coal-fired power plant for the application of CO2 separation technology. An appropriate CO2 separation technology was identified from existing commercial technologies. The report also includes a process design for the chosen technology tailored to the selected power plant that used to obtain accurate costs of separating the CO2 from the flue gas. In addition, an analysis of the costs for compression and transportation of the CO2 from the point-source to an appropriate coal bed sequestration site was included in the report.

  3. Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    processes to reduce the carbon footprint of concrete. Thelargest share of energy and carbon footprint of the concreteproduct have a negative carbon footprint because they are

  4. Manufacturing Energy and Carbon Footprints (2006 MECS)

    Broader source: Energy.gov [DOE]

    Energy and Carbon Footprints provide a mapping of energy from supply to end use in manufacturing. They show us where energy is used and lost—and where greenhouse gases (GHGs) are emitted. Footprints are available below for 15 manufacturing sectors (representing 94% of all manufacturing energy use) and for U.S. manufacturing as a whole. Analysis of these footprints is also available in the U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis report.

  5. 2010 Manufacturing Energy and Carbon Footprints: Definitions...

    Broader source: Energy.gov (indexed) [DOE]

    key terms and details assumptions and references used in the Manufacturing Energy and Carbon Footprints (2010 MECS) Definitions and Assumptions for the Manufacturing Energy and...

  6. Understanding Manufacturing Energy and Carbon Footprints, October...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Understanding the 2010 Manufacturing Energy and Carbon Footprints U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis Cement...

  7. co2 capture | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CO2 Capture Technology Meeting Dates: June 23-26, 2015 Registration Fee: 360.00 Venue: 300 West Station Square Drive Pittsburgh, PA 15219-1122 Phone: (412)261-2000...

  8. Version 3.0 SOP 4 --p(CO2) October 12, 2007 (p(CO2))

    E-Print Network [OSTI]

    Version 3.0 SOP 4 -- p(CO2) October 12, 2007 91 SOP 4 (p(CO2)) - 1. . microatmospheres . (20°C 250-2000 µatm) (mole fraction) . 2. CO2 (mole fraction) . 2 2(CO ) (CO( ) . . Frit . #12;October 12, 2007 SOP 4 -- p(CO2) Version 3.0 92 CO2 CO2 2 . p(CO2) (1) . 4. 3

  9. Atmospheric CO2 concentrations during ancient greenhouse climates were similar

    E-Print Network [OSTI]

    Ahmad, Sajjad

    Atmospheric CO2 concentrations during ancient greenhouse climates were similar to those predicted atmospheric CO2 concentrations (½CO2atm) during Earth's ancient greenhouse episodes is essential for accurately predicting the response of future climate to elevated CO2 levels. Empirical estimates of ½CO2atm

  10. Separation of CO2 from flue gas using electrochemical cells

    SciTech Connect (OSTI)

    Pennline, H.W; Granite, E.J.; Luebke, D.R; Kitchin, J.R; Landon, J.; Weiland, L.M.

    2010-06-01T23:59:59.000Z

    ABSTRACT Past research with high temperature molten carbonate electrochemical cells has shown that carbon dioxide can be separated from flue gas streams produced by pulverized coal combustion for power generation, However, the presence of trace contaminants, i.e" sulfur dioxide and nitric oxides, will impact the electrolyte within the cell. If a lower temperature cell could be devised that would utilize the benefits of commercially-available, upstream desulfurization and denitrification in the power plant, then this CO2 separation technique can approach more viability in the carbon sequestration area, Recent work has led to the assembly and successful operation of a low temperature electrochemical cell. In the proof-of-concept testing with this cell, an anion exchange membrane was sandwiched between gas-diffusion electrodes consisting of nickel-based anode electrocatalysts on carbon paper. When a potential was applied across the cell and a mixture of oxygen and carbon dioxide was flowed over the wetted electrolyte on the cathode side, a stream of CO2 to O2 was produced on the anode side, suggesting that carbonate/ bicarbonate ions are the CO2 carrier in the membrane. Since a mixture of CO 2 and 02 is produced, the possibility exists to use this stream in oxy-firing of additional fuel. From this research, a novel concept for efficiently producing a carbon dioxide rich effiuent from combustion of a fossil fuel was proposed. Carbon dioxide and oxygen are captured from the flue gas of a fossilfuel combustor by one or more electrochemical cells or cell stacks. The separated stream is then transferred to an oxy-fired combustor which uses the gas stream for ancillary combustion, ultimately resulting in an effluent rich in carbon dioxide, A portion of the resulting flow produced by the oxy-fired combustor may be continuously recycled back into the oxy-fired combustor for temperature control and an optimal carbon dioxide rich effluent.

  11. UNIVERSITY OF CAPE TOWN CARBON FOOTPRINT REPORT 2012

    E-Print Network [OSTI]

    Jarrett, Thomas H.

    UNIVERSITY OF CAPE TOWN CARBON FOOTPRINT REPORT 2012 Analysis carried out by: ENERGY RESEARCH ..................................................................................................................3 1.1 What is a Carbon Footprint?.......................................................................................4 1.2 Background to Carbon Footprinting at UCT

  12. Growth, CO2 Consumption, and H2 Production of Anabaena variabilis ATCC 29413-U under Different Irradiances and CO2 Concentrations

    E-Print Network [OSTI]

    Berberoglu, Halil; Barra, Natasha; Pilon, Laurent; Jay, Jenny

    2008-01-01T23:59:59.000Z

    Phase Medium Irradiance ? H2 ? CO2 Maximum Reported Ratesa) Specific CO 2 uptake rate, ? CO2 (kg CO 2 /kg dry cell/h)

  13. Comparing Existing Pipeline Networks with the Potential Scale of Future U.S. CO2 Pipeline Networks

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2008-02-29T23:59:59.000Z

    There is growing interest regarding the potential size of a future U.S. dedicated CO2 pipeline infrastructure if carbon dioxide capture and storage (CCS) technologies are commercially deployed on a large scale. In trying to understand the potential scale of a future national CO2 pipeline network, comparisons are often made to the existing pipeline networks used to deliver natural gas and liquid hydrocarbons to markets within the U.S. This paper assesses the potential scale of the CO2 pipeline system needed under two hypothetical climate policies and compares this to the extant U.S. pipeline infrastructures used to deliver CO2 for enhanced oil recovery (EOR), and to move natural gas and liquid hydrocarbons from areas of production and importation to markets. The data presented here suggest that the need to increase the size of the existing dedicated CO2 pipeline system should not be seen as a significant obstacle for the commercial deployment of CCS technologies.

  14. Selection of coals of different maturities for CO2 Storage by modelling of CH4 and CO2 adsorption isotherms

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    rue de la Férollerie, 45072 Orléans Cedex, France Abstract CO2 injection in unmineable coal seams capacities on various coals for the future modelling of CO2 injection in coal seams. Keywords: CO2 storage is estimated from 3 up to 200 GtCO2 therefore CO2 storage in coal seams is one of the potential types

  15. Hopewell Beneficial CO2 Capture for Production of Fuels, Fertilizer and Energy

    SciTech Connect (OSTI)

    UOP; Honeywell Resins & Chemicals; Honeywell Process Solutions; Aquaflow Bionomics Ltd

    2010-09-30T23:59:59.000Z

    For Phase 1 of this project, the Hopewell team developed a detailed design for the Small Scale Pilot-Scale Algal CO2 Sequestration System. This pilot consisted of six (6) x 135 gallon cultivation tanks including systems for CO2 delivery and control, algal cultivation, and algal harvesting. A feed tank supplied Hopewell wastewater to the tanks and a receiver tank collected the effluent from the algal cultivation system. The effect of environmental parameters and nutrient loading on CO2 uptake and sequestration into biomass were determined. Additionally the cost of capturing CO2 from an industrial stack emission at both pilot and full-scale was determined. The engineering estimate evaluated Amine Guard technology for capture of pure CO2 and direct stack gas capture and compression. The study concluded that Amine Guard technology has lower lifecycle cost at commercial scale, although the cost of direct stack gas capture is lower at the pilot scale. Experiments conducted under high concentrations of dissolved CO2 did not demonstrate enhanced algae growth rate. This result suggests that the dissolved CO2 concentration at neutral pH was already above the limiting value. Even though dissolved CO2 did not show a positive effect on biomass growth, controlling its value at a constant set-point during daylight hours can be beneficial in an algae cultivation stage with high algae biomass concentration to maximize the rate of CO2 uptake. The limited enhancement of algal growth by CO2 addition to Hopewell wastewater was due at least in part to the high endogenous CO2 evolution from bacterial degradation of dissolved organic carbon present at high levels in the wastewater. It was found that the high level of bacterial activity was somewhat inhibitory to algal growth in the Hopewell wastewater. The project demonstrated that the Honeywell automation and control system, in combination with the accuracy of the online pH, dissolved O2, dissolved CO2, turbidity, Chlorophyll A and conductivity sensors is suitable for process control of algae cultivation in an open pond systems. This project concluded that the Hopewell wastewater is very suitable for algal cultivation but the potential for significant CO2 sequestration from the plant stack gas emissions was minimal due to the high endogenous CO2 generation in the wastewater from the organic wastewater content. Algae cultivation was found to be promising, however, for nitrogen remediation in the Hopewell wastewater.

  16. System-level modeling for geological storage of CO2

    E-Print Network [OSTI]

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2006-01-01T23:59:59.000Z

    of Geologic Storage of CO2, in Carbon Dioxide Capture forFormations - Results from the CO2 Capture Project: GeologicBenson, Process Modeling of CO2 Injection into Natural Gas

  17. Satellite remote sounding of mid-tropospheric CO 2

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    and Y. L. Yung (2006), CO 2 in the upper troposphere:derivatives with application to CO 2 , Geophys. Res. Lett. ,feasibility of monitoring CO 2 from high-resolution infrared

  18. International Symposium on Site Characterization for CO2 Geological Storage

    E-Print Network [OSTI]

    Tsang, Chin-Fu

    2006-01-01T23:59:59.000Z

    WITH SITE SCREENING AND SELECTION FOR CO 2 STORAGE D. A.77 ASSESSING AND EXPANDING CO 2 STORAGE CAPACITY IN DEPLETEDFOR CO 2 GEOLOGICAL STORAGE IN CENTRAL COAL BASIN (NORTHERN

  19. International Symposium on Site Characterization for CO2 Geological Storage

    E-Print Network [OSTI]

    Tsang, Chin-Fu

    2006-01-01T23:59:59.000Z

    CONSTRAIN CO2 INJECTION FEASIBILITY: TEAPOT DOME EOR PILOTEOR, and coupled process modeling will investigate the total system including preliminary estimates of CO2

  20. abiotic co2 flows: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    into the potential behavior and the operational parameters of CO2 sequestration at CO2-EOR s... Dai, Zhenxue; Fessenden-Rahn, Julianna; Middleton, Richard; Pan, Feng; Jia,...

  1. af co2 fra: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    into the potential behavior and the operational parameters of CO2 sequestration at CO2-EOR s... Dai, Zhenxue; Fessenden-Rahn, Julianna; Middleton, Richard; Pan, Feng; Jia,...

  2. Summary Report on CO2 Geologic Sequestration & Water Resources Workshop

    E-Print Network [OSTI]

    Varadharajan, C.

    2013-01-01T23:59:59.000Z

    F Monitoring studies above EOR-CO2 fields Weyburn-MidaleTexas •? Over 30 years of CO2-EOR •? Sampled outside of

  3. Modeling CO2 Sequestration in a Saline Reservoir and Depleted...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling CO 2 Sequestration in a Saline Reservoir and Depleted Oil Reservoir to Evaluate The Regional CO 2 Sequestration Potential of The Ozark Plateau Aquifer System,...

  4. Reaction of Water-Saturated Supercritical CO2 with Forsterite...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water-Saturated Supercritical CO2 with Forsterite: Evidence for Magnesite Formation at Low Temperatures. Reaction of Water-Saturated Supercritical CO2 with Forsterite: Evidence for...

  5. Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration. Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration. Abstract: A novel EOR method using...

  6. Cryogenic CO2 Formation on Oxidized Gold Clusters Synthesized...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cryogenic CO2 Formation on Oxidized Gold Clusters Synthesized via Reactive Layer Assisted Deposition. Cryogenic CO2 Formation on Oxidized Gold Clusters Synthesized via Reactive...

  7. From CO2 to Methanol via Novel Nanocatalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From CO2 to Methanol via Novel Nanocatalysts Print Researchers have found novel nanocatalysts that lower the barrier to converting carbon dioxide (CO2)-an abundant greenhouse...

  8. Geologic CO2 sequestration inhibits microbial growth | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    community and could improve overall efficiency of CO2 sequestration. The Science Carbon dioxide (CO2) sequestration in deep subsurface environments has received...

  9. numerical methodology to model and monitor co2 sequestration

    E-Print Network [OSTI]

    santos,,,

    CO2 sequestration is a means of mitigating the greenhouse effect [1]. Geologic sequestration involves injecting CO2 into a target geologic formation at depths ...

  10. Variations in 13 C discrimination during CO2 exchange by

    E-Print Network [OSTI]

    as to differential diffusivities of 13 CO2 and 12 CO2 in air (Farquhar, O'Leary & Berry 1982; O'Leary 1984

  11. CO2 Compression | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8Critical4CO2 Compression CO2

  12. Development of Novel CO2 Adsorbents for Capture of CO2 from Flue Gas

    SciTech Connect (OSTI)

    Fauth, D.J.; Filburn, T.P. (University of Hartford, West Hartford, CT); Gray, M.L.; Hedges, S.W.; Hoffman, J.; Pennline, H.W.; Filburn, T.

    2007-06-01T23:59:59.000Z

    Capturing CO2 emissions generated from fossil fuel-based power plants has received widespread attention and is considered a vital course of action for CO2 emission abatement. Efforts are underway at the Department of Energy’s National Energy Technology Laboratory to develop viable energy technologies enabling the CO2 capture from large stationary point sources. Solid, immobilized amine sorbents (IAS) formulated by impregnation of liquid amines within porous substrates are reactive towards CO2 and offer an alternative means for cyclic capture of CO2 eliminating, to some degree, inadequacies related to chemical absorption by aqueous alkanolamine solutions. This paper describes synthesis, characterization, and CO2 adsorption properties for IAS materials previously tested to bind and release CO2 and water vapor in a closed loop life support system. Tetraethylenepentamine (TEPA), acrylonitrile-modified tetraethylenepentamine (TEPAN), and a single formulation consisting of TEPAN and N, N’-bis(2-hydroxyethyl)ethylenediamine (BED) were individually supported on a poly (methyl methacrylate) (PMMA) substrate and examined. CO2 adsorption profiles leading to reversible CO2 adsorption capacities were obtained using thermogravimetry. Under 10% CO2 in nitrogen at 25°C and 1 atm, TEPA supported on PMMA over 60 minutes adsorbed ~3.2 mmol/g{sorbent} whereas, TEPAN supported on PMMA along with TEPAN and BED supported on PMMA adsorbed ~1.7 mmol/g{sorbent} and ~2.3 mmol/g{sorbent} respectively. Cyclic experiments with a 1:1 weight ratio of TEPAN and BED supported on poly (methyl methacrylate) beads utilizing a fixed-bed flow system with 9% CO2, 3.5% O2, nitrogen balance with trace gas constituents were studied. CO2 adsorption capacity was ~ 3 mmols CO2/g{sorbent} at 40°C and 1.4 atm. No beneficial effect on IAS performance was found using a moisture-laden flue gas mixture. Tests with 750 ppmv NO in a humidified gas stream revealed negligible NO sorption onto the IAS. A high SO2 concentration resulted in incremental loss in IAS performance and revealed progressive degrees of “staining” upon testing. Adsorption of SO2 by the IAS necessitates upstream removal of SO2 prior to CO2 capture.

  13. ASSESSMENT OF HOUSEHOLD CARBON FOOTPRINT REDUCTION POTENTIALS

    SciTech Connect (OSTI)

    Kramer, Klaas Jan; Homan, Greg; Brown, Rich; Worrell, Ernst; Masanet, Eric

    2009-04-15T23:59:59.000Z

    The term ?household carbon footprint? refers to the total annual carbon emissions associated with household consumption of energy, goods, and services. In this project, Lawrence Berkeley National Laboratory developed a carbon footprint modeling framework that characterizes the key underlying technologies and processes that contribute to household carbon footprints in California and the United States. The approach breaks down the carbon footprint by 35 different household fuel end uses and 32 different supply chain fuel end uses. This level of end use detail allows energy and policy analysts to better understand the underlying technologies and processes contributing to the carbon footprint of California households. The modeling framework was applied to estimate the annual home energy and supply chain carbon footprints of a prototypical California household. A preliminary assessment of parameter uncertainty associated with key model input data was also conducted. To illustrate the policy-relevance of this modeling framework, a case study was conducted that analyzed the achievable carbon footprint reductions associated with the adoption of energy efficient household and supply chain technologies.

  14. Summary IsotoperatioanalysesofatmosphericCO2 atnatu-ral abundance have significant potential for contributing to our

    E-Print Network [OSTI]

    Ehleringer, Jim

    --300 µl is accomplished by linking a commercially available, trace gas condenser and gas chromatograph advances in isotope ratio mass spec- trometry allow for rapid, on-line analysis of small volumes of CO2 dioxide in atmospheric air. Routine analysis of carbon dioxide in air volumes of approxi- mately 50

  15. Porous Hexacyanometalates for CO2 capture applications

    SciTech Connect (OSTI)

    Motkuri, Radha K.; Thallapally, Praveen K.; McGrail, B. Peter

    2013-07-30T23:59:59.000Z

    Prussian blue analogues of M3[Fe(CN)6]2 x H2O (where M=Fe, Mn and Ni) were synthesized, characterized and tested for their gas sorption capabilities. The sorption studies reveal that, these Prussian blue materials preferentially sorb CO2 over N2 and CH4 at low pressure (1bar).

  16. Ocean Acidification: The Other CO2 Problem

    E-Print Network [OSTI]

    Childress, Michael J.

    reserved 1941-1405/09/0115-0169$20.00 Key Words biogeochemistry, calcification, carbon dioxide, climate of calcium carbonate saturation states, which impacts shell-forming marine organisms from plankton to benthic for marine organisms to adapt to increasing CO2 and broader implications for ocean ecosystems are not well

  17. Aquifer Management for CO2 Sequestration 

    E-Print Network [OSTI]

    Anchliya, Abhishek

    2010-07-14T23:59:59.000Z

    Storage of carbon dioxide is being actively considered for the reduction of green house gases. To make an impact on the environment CO2 should be put away on the scale of gigatonnes per annum. The storage capacity of deep saline aquifers...

  18. Projecting human development and CO2 emissions

    E-Print Network [OSTI]

    Costa, Luís; Kropp, Jürgen P

    2012-01-01T23:59:59.000Z

    We estimate cumulative CO2 emissions during the period 2000 to 2050 from developed and developing countries based on the empirical relationship between CO2 per capita emissions (due to fossil fuel combustion and cement production) and corresponding HDI. In order to project per capita emissions of individual countries we make three assumptions which are detailed below. First, we use logistic regressions to fit and extrapolate the HDI on a country level as a function of time. This is mainly motivated by the fact that the HDI is bounded between 0 and 1 and that it decelerates as it approaches 1. Second, we employ for individual countries the correlations between CO2 per capita emissions and HDI in order to extrapolate their emissions. This is an ergodic assumption. Third, we let countries with incomplete data records evolve similarly as their close neighbors (in the emissions-HDI plane, see Fig. 1 in the main text) with complete time series of CO2 per capita emissions and HDI. Country-based emissions estimates a...

  19. Northern California CO2 Reduction Project

    SciTech Connect (OSTI)

    Hymes, Edward

    2010-06-16T23:59:59.000Z

    C6 Resources LLC, a wholly owned subsidiary of Shell Oil Company, worked with the US Department of Energy (DOE) under a Cooperative Agreement to develop the Northern California CO2 Reduction Project. The objective of the Project is to demonstrate the viability of using Carbon Capture and Sequestration (CCS) to reduce existing greenhouse gas emissions from industrial sources on a large-scale. The Project will capture more than 700,000 metric tonnes of CO2 per year, which is currently being vented to the atmosphere from the Shell Martinez Refinery in Contra Costa County. The CO2 will be compressed and dehydrated at the refinery and then transported via pipeline to a sequestration site in a rural area in neighboring Solano County. The CO2 will be sequestered into a deep saline formation (more than two miles underground) and will be monitored to assure secure, long-term containment. The pipeline will be designed to carry as much as 1,400,000 metric tonnes of CO2 per year, so additional capacity will be available to accommodate CO2 captured from other industrial sources. The Project is expected to begin operation in 2015. The Project has two distinct phases. The overall objective of Phase 1 was to develop a fully definitive design basis for the Project. The Cooperative Agreement with the DOE provided cost sharing for Phase 1 and the opportunity to apply for additional DOE cost sharing for Phase 2, comprising the design, construction and operation of the Project. Phase 1 has been completed. DOE co-funding is provided by the American Recovery and Reinvestment Act (ARRA) of 2009. As prescribed by ARRA, the Project will stimulate the local economy by creating manufacturing, transportation, construction, operations, and management jobs while addressing the need to reduce greenhouse gas emissions at an accelerated pace. The Project, which will also assist in meeting the CO2 reduction requirements set forth in California?s Climate Change law, presents a major opportunity for both the environment as well as the region. C6 Resources is conducting the Project in collaboration with federally-funded research centers, such as Lawrence Berkeley National Lab and Lawrence Livermore National Lab. C6 Resources and Shell have identified CCS as one of the critical pathways toward a worldwide goal of providing cleaner energy. C6 Resources, in conjunction with the West Coast Regional Carbon Sequestration Partnership (WESTCARB), has conducted an extensive and ongoing public outreach and CCS education program for local, regional and state-wide stakeholders. As part of a long term relationship, C6 Resources will continue to engage directly with community leaders and residents to ensure public input and transparency. This topical report summarizes the technical work from Phase 1 of the Project in the following areas: ? Surface Facility Preliminary Engineering: summarizes the preliminary engineering work performed for CO2 capture, CO2 compression and dehydration at the refinery, and surface facilities at the sequestration site ? Pipeline Preliminary Engineering: summarizes the pipeline routing study and preliminary engineering design ? Geologic Sequestration: summarizes the work to characterize, model and evaluate the sequestration site ? Monitoring, Verification and Accounting (MVA): summarizes the MVA plan to assure long-term containment of the sequestered CO2

  20. CALCULATING THE CARBON FOOTPRINT SUPPLY CHAIN FOR THE

    E-Print Network [OSTI]

    Su, Xiao

    CALCULATING THE CARBON FOOTPRINT SUPPLY CHAIN FOR THE SEMICONDUCTOR INDUSTRY A LEARNING TOOL By a complete supply chain #12;Carbon Footprint Supply Chain Carbon Trust defines carbon footprint of a supply chain as follows: "The carbon footprint of a product is the carbon dioxide emitted across the supply

  1. Regional Analysis of Building Distributed Energy Costs and CO2 Abatement: A U.S. - China Comparison

    SciTech Connect (OSTI)

    Mendes, Goncalo; Feng, Wei; Stadler, Michael; Steinbach, Jan; Lai, Judy; Zhou, Nan; Marnay, Chris; Ding, Yan; Zhao, Jing; Tian, Zhe; Zhu, Neng

    2014-04-09T23:59:59.000Z

    The following paper conducts a regional analysis of the U.S. and Chinese buildings? potential for adopting Distributed Energy Resources (DER). The expected economics of DER in 2020-2025 is modeled for a commercial and a multi-family residential building in different climate zones. The optimal building energy economic performance is calculated using the Distributed Energy Resources Customer Adoption Model (DER CAM) which minimizes building energy costs for a typical reference year of operation. Several DER such as combined heat and power (CHP) units, photovoltaics, and battery storage are considered. The results indicate DER have economic and environmental competitiveness potential, especially for commercial buildings in hot and cold climates of both countries. In the U.S., the average expected energy cost savings in commercial buildings from DER CAM?s suggested investments is 17percent, while in Chinese buildings is 12percent. The electricity tariffs structure and prices along with the cost of natural gas, represent important factors in determining adoption of DER, more so than climate. High energy pricing spark spreads lead to increased economic attractiveness of DER. The average emissions reduction in commercial buildings is 19percent in the U.S. as a result of significant investments in PV, whereas in China, it is 20percent and driven by investments in CHP. Keywords: Building Modeling and Simulation, Distributed Energy Resources (DER), Energy Efficiency, Combined Heat and Power (CHP), CO2 emissions 1. Introduction The transition from a centralized and fossil-based energy paradigm towards the decentralization of energy supply and distribution has been a major subject of research over the past two decades. Various concerns have brought the traditional model into question; namely its environmental footprint, its structural inflexibility and inefficiency, and more recently, its inability to maintain acceptable reliability of supply. Under such a troubled setting, distributed energy resources (DER) comprising of small, modular, electrical renewable or fossil-based electricity generation units placed at or near the point of energy consumption, has gained much attention as a viable alternative or addition to the current energy system. In 2010, China consumed about 30percent of its primary energy in the buildings sector, leading the country to pay great attention to DER development and its applications in buildings. During the 11th Five Year Plan (FYP), China has implemented 371 renewable energy building demonstration projects, and 210 photovoltaics (PV) building integration projects. At the end of the 12th FYP, China is targeting renewable energy to provide 10percent of total building energy, and to save 30 metric tons of CO2 equivalents (mtce) of energy with building integrated renewables. China is also planning to implement one thousand natural gas-based distributed cogeneration demonstration projects with energy utilization rates over 70percent in the 12th FYP. All these policy targets require significant DER systems development for building applications. China?s fast urbanization makes building energy efficiency a crucial economic issue; however, only limited studies have been done that examine how to design and select suitable building energy technologies in its different regions. In the U.S., buildings consumed 40percent of the total primary energy in 2010 [1] and it is estimated that about 14 billion m2 of floor space of the existing building stock will be remodeled over the next 30 years. Most building?s renovation work has been on building envelope, lighting and HVAC systems. Although interest has emerged, less attention is being paid to DER for buildings. This context has created opportunities for research, development and progressive deployment of DER, due to its potential to combine the production of power and heat (CHP) near the point of consumption and delivering multiple benefits to customers, such as cost

  2. Root-derived CO2 efflux via xylem stream rivals soil CO2 efflux.

    SciTech Connect (OSTI)

    Aubrey, Doug, P.; Teskey, Robert, O.

    2009-07-01T23:59:59.000Z

    • Respiration consumes a large portion of annual gross primary productivity in forest ecosystems and is dominated by belowground metabolism. Here, we present evidence of a previously unaccounted for internal CO2 flux of large magnitude from tree roots through stems. If this pattern is shown to persist over time and in other forests, it suggests that belowground respiration has been grossly underestimated. • Using an experimental Populus deltoides plantation as a model system, we tested the hypothesis that a substantial portion of the CO2 released from belowground autotrophic respiration remains within tree root systems and is transported aboveground through the xylem stream rather than diffusing into the soil atmosphere. • On a daily basis, the amount of CO2 that moved upward from the root system into the stem via the xylem stream (0.26 mol CO2 m?2 d?1) rivalled that which diffused from the soil surface to the atmosphere (0.27 mol CO2 m?2 d?1). We estimated that twice the amount of CO2 derived from belowground autotrophic respiration entered the xylem stream as diffused into the soil environment. • Our observations indicate that belowground autotrophic respiration consumes substantially more carbohydrates than previously recognized and challenge the paradigm that all root-respired CO2 diffuses into the soil atmosphere.

  3. CO2 Storage and Sink Enhancements: Developing Comparable Economics

    E-Print Network [OSTI]

    CO2 Storage and Sink Enhancements: Developing Comparable Economics B.R. Bock1 , R.G. Rhudy2 , and H technologies and practices under development for CO2 storage and sink enhancement, including options. For the geologic and ocean storage options, CO2 capture costs from another project were added to the costs of CO2

  4. Original article Limitation of photosynthetic activity by CO2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Original article Limitation of photosynthetic activity by CO2 availability in the chloroplasts to resistances opposing the CO2 fluxes in the mesophyll of tree leaves. To validate this assertion, values of CO2 CO2 assimilation and respiration rate measurement, and using the known electron requirements (four

  5. CO2 levels during the greenhouse of the Paleocene

    E-Print Network [OSTI]

    Shull, Kenneth R.

    CO2 levels during the greenhouse of the Paleocene Eocene Thermal Maximum (PETM) Francesca A. Mc, Boulder #12;Estimating paleopCO2 0 5 10 15 20 25 30 0 500 1000 1500 2000 2500 3000 Meter Level, start of CIE=0 pCO2 pCO2 values using different calculation methods Bulk nalk For the past 250 years human

  6. CO2 enrichment increases carbon and nitrogen input from

    E-Print Network [OSTI]

    CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest Colleen2 Ecological Society of America, 2008 #12;#12;#12;#12;#12;+ [CO2] #12;+ Net primary production + [CO2] #12;+ Net primary production + [CO2] + C and N storage in biomass #12;+ Net primary production

  7. Cost Assessment of CO2 Sequestration by Mineral Carbonation 

    E-Print Network [OSTI]

    Yeboah, F. E.; Yegulalp, T. M.; Singh, H.

    2006-01-01T23:59:59.000Z

    Cost Assessment of CO2 Sequestration by Mineral Carbonation Frank E. Yeboah Tuncel M. Yegulalp Harmohindar Singh Research Associate Professor Professor Center for Energy Research... them carbon dioxide (CO 2 ). This paper assesses the cost of sequestering CO 2 produced by a ZEC power plant using solid sequestration process. INTRODUCTION CO 2 is produced when electrical energy is generated using conventional fossil...

  8. Cost Assessment of CO2 Sequestration by Mineral Carbonation

    E-Print Network [OSTI]

    Yeboah, F. E.; Yegulalp, T. M.; Singh, H.

    2006-01-01T23:59:59.000Z

    Cost Assessment of CO2 Sequestration by Mineral Carbonation Frank E. Yeboah Tuncel M. Yegulalp Harmohindar Singh Research Associate Professor Professor Center for Energy Research... them carbon dioxide (CO 2 ). This paper assesses the cost of sequestering CO 2 produced by a ZEC power plant using solid sequestration process. INTRODUCTION CO 2 is produced when electrical energy is generated using conventional fossil...

  9. CO2 Sequestration Modeling Using Pattern Recognition and Data Mining;

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    carbon dioxide (CO2) sequestration process is to ensure a sustained confinement of the injected CO2CO2 Sequestration Modeling Using Pattern Recognition and Data Mining; Case Study of SACROC field, USA Abstract Capturing carbon dioxide (CO2) from industrial and energy-related sources and depositing

  10. Physical Constraints on Geologic CO2 Sequestration in Low-Volume Basalt Formations

    SciTech Connect (OSTI)

    Ryan M. Pollyea; Jerry P. Fairley; Robert K. Podgorney; Travis L. McLing

    2014-03-01T23:59:59.000Z

    Deep basalt formations within large igneous provinces have been proposed as target reservoirs for carbon capture and sequestration on the basis of favorable CO2-water-rock reaction kinetics that suggest carbonate mineralization rates on the order of 102–103 d. Although these results are encouraging, there exists much uncertainty surrounding the influence of fracture-controlled reservoir heterogeneity on commercial-scale CO2 injections in basalt formations. This work investigates the physical response of a low-volume basalt reservoir to commercial-scale CO2 injections using a Monte Carlo numerical modeling experiment such that model variability is solely a function of spatially distributed reservoir heterogeneity. Fifty equally probable reservoirs are simulated using properties inferred from the deep eastern Snake River Plain aquifer in southeast Idaho, and CO2 injections are modeled within each reservoir for 20 yr at a constant mass rate of 21.6 kg s–1. Results from this work suggest that (1) formation injectivity is generally favorable, although injection pressures in excess of the fracture gradient were observed in 4% of the simulations; (2) for an extensional stress regime (as exists within the eastern Snake River Plain), shear failure is theoretically possible for optimally oriented fractures if Sh is less than or equal to 0.70SV; and (3) low-volume basalt reservoirs exhibit sufficient CO2 confinement potential over a 20 yr injection program to accommodate mineral trapping rates suggested in the literature.

  11. Healthy habits: reducing our carbon footprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy or creating waste? Big changes for a smaller carbon footprint and less pollution The Lab is working to reduce emissions by nearly 30 percent from energy use in...

  12. Using CO2 & Algae to Treat Wastewater and

    E-Print Network [OSTI]

    Keller, Arturo A.

    Using CO2 & Algae to Treat Wastewater and Produce Biofuel Feedstock Tryg Lundquist Cal Poly State of the Industry and Growth · Algae's Role in WW Treatment · CO2's New Role · Research at Cal Poly · Future Work/MG 0.3 MGD average flow per facility #12;Reclaimed Algae Bacteria O2 CO2 N Organics N P CO2 P CO2 Waste

  13. The response of soil CO2 ux to changes in atmospheric CO2, nitrogen supply and plant diversity

    E-Print Network [OSTI]

    Minnesota, University of

    The response of soil CO2 ¯ux to changes in atmospheric CO2, nitrogen supply and plant diversity J O. Paul, MN 55108 USA Abstract We measured soil CO2 ¯ux over 19 sampling periods that spanned two growing three major anthropogenic global changes: atmos- pheric carbon dioxide (CO2) concentration, nitrogen (N

  14. An estimate of monthly global emissions of anthropogenic CO2: Impact on the seasonal cycle of atmospheric CO2

    E-Print Network [OSTI]

    Hoffman, Forrest M.

    An estimate of monthly global emissions of anthropogenic CO2: Impact on the seasonal cycle of anthropogenic CO2 are presented. Approximating the seasonal CO2 emission cycle using a 2-harmonic Fourier series with regions of strong anthropogenic CO2 emissions. Citation: Erickson, D. J., III, R. T. Mills, J. Gregg, T. J

  15. Continuous CO2 extractor and methods

    SciTech Connect (OSTI)

    None listed

    2010-06-15T23:59:59.000Z

    The purpose of this CRADA was to assist in technology transfer from Russia to the US and assist in development of the technology improvements and applications for use in the U.S. and worldwide. Over the period of this work, ORNL has facilitated design, development and demonstration of a low-pressure liquid extractor and development of initial design for high-pressure supercritical CO2 fluid extractor.

  16. Aquifer Management for CO2 Sequestration

    E-Print Network [OSTI]

    Anchliya, Abhishek

    2010-07-14T23:59:59.000Z

    to the Computer Modeling Group (CMG) and Kappa Engineering for providing the uninterrupted license of the software packages. I am grateful to Mr. Bob Brugman from CMG for his help with the GEM-GHG (Green House Gas) module of CMG. I would like to extend my... biological sinks of CO 2 and decreasing the carbon intensity of fossil fuels should be considered. Out of all the potential mitigation options for stabilizing atmospheric GHG concentrations, including injection into deep oceans, depleted oil reservoirs...

  17. 10-MW Supercritical-CO2 Turbine

    Broader source: Energy.gov [DOE]

    This fact sheet describes a 10-megawatt supercritical carbon dioxide turbine project, awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The research team, led by NREL, intends to showcase the turbomachinery for a new cycle—the supercritical carbon dioxide (s-CO2) Brayton cycle. The cycle is being optimized and tested at conditions representing dry cooling in desert environments, thereby accurately simulating real-world concentrating solar power system operating conditions.

  18. Uncertainty analyses of CO2 plume expansion subsequent to wellbore CO2 leakage into aquifers

    SciTech Connect (OSTI)

    Hou, Zhangshuan; Bacon, Diana H.; Engel, David W.; Lin, Guang; Fang, Yilin; Ren, Huiying; Fang, Zhufeng

    2014-08-01T23:59:59.000Z

    In this study, we apply an uncertainty quantification (UQ) framework to CO2 sequestration problems. In one scenario, we look at the risk of wellbore leakage of CO2 into a shallow unconfined aquifer in an urban area; in another scenario, we study the effects of reservoir heterogeneity on CO2 migration. We combine various sampling approaches (quasi-Monte Carlo, probabilistic collocation, and adaptive sampling) in order to reduce the number of forward calculations while trying to fully explore the input parameter space and quantify the input uncertainty. The CO2 migration is simulated using the PNNL-developed simulator STOMP-CO2e (the water-salt-CO2 module). For computationally demanding simulations with 3D heterogeneity fields, we combined the framework with a scalable version module, eSTOMP, as the forward modeling simulator. We built response curves and response surfaces of model outputs with respect to input parameters, to look at the individual and combined effects, and identify and rank the significance of the input parameters.

  19. SUBTASK 2.19 – OPERATIONAL FLEXIBILITY OF CO2 TRANSPORT AND STORAGE

    SciTech Connect (OSTI)

    Jensen, Melanie; Schlasner, Steven; Sorensen, James; Hamling, John

    2014-12-31T23:59:59.000Z

    Carbon dioxide (CO2) is produced in large quantities during electricity generation and by industrial processes. These CO2 streams vary in terms of both composition and mass flow rate, sometimes substantially. The impact of a varying CO2 stream on pipeline and storage operation is not fully understood in terms of either operability or infrastructure robustness. This study was performed to summarize basic background from the literature on the topic of operational flexibility of CO2 transport and storage, but the primary focus was on compiling real-world lessons learned about flexible operation of CO2 pipelines and storage from both large-scale field demonstrations and commercial operating experience. Modeling and pilot-scale results of research in this area were included to illustrate some of the questions that exist relative to operation of carbon capture and storage (CCS) projects with variable CO2 streams. It is hoped that this report’s real-world findings provide readers with useful information on the topic of transport and storage of variable CO2 streams. The real-world results were obtained from two sources. The first source consisted of five full-scale, commercial transport–storage projects: Sleipner, Snøhvit, In Salah, Weyburn, and Illinois Basin–Decatur. These scenarios were reviewed to determine the information that is available about CO2 stream variability/intermittency on these demonstration-scale projects. The five projects all experienced mass flow variability or an interruption in flow. In each case, pipeline and/or injection engineers were able to accommodate any issues that arose. Significant variability in composition has not been an issue at these five sites. The second source of real- world results was telephone interviews conducted with experts in CO2 pipeline transport, injection, and storage during which commercial anecdotal information was acquired to augment that found during the literature search of the five full-scale projects. The experts represented a range of disciplines and hailed from North America and Europe. Major findings of the study are that compression and transport of CO2 for enhanced oil recovery (EOR) purposes in the United States has shown that impurities are not likely to cause transport problems if CO2 stream composition standards are maintained and pressures are kept at 10.3 MPa or higher. Cyclic, or otherwise intermittent, CO2 supplies historically have not impacted in-field distribution pipeline networks, wellbore integrity, or reservoir conditions. The U.S. EOR industry has demonstrated that it is possible to adapt to variability and intermittency in CO2 supply through flexible operation of the pipeline and geologic storage facility. This CO2 transport and injection experience represents knowledge that can be applied in future CCS projects. A number of gaps in knowledge were identified that may benefit from future research and development, further enhancing the possibility for widespread application of CCS. This project was funded through the Energy & Environmental Research Center–U.S. Department of Energy Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding was provided by the IEA Greenhouse Gas R&D Programme.

  20. Gulf of Mexico Miocene CO2 Site Characterization Mega Transect

    SciTech Connect (OSTI)

    Meckel, Timothy; Trevino, Ramon

    2014-09-30T23:59:59.000Z

    This project characterized the Miocene-age sub-seafloor stratigraphy in the near-offshore portion of the Gulf of Mexico adjacent to the Texas coast. The large number of industrial sources of carbon dioxide (CO2) in coastal counties and the high density of onshore urbanization and environmentally sensitive areas make this offshore region extremely attractive for long-term storage of carbon dioxide emissions from industrial sources (CCS). The study leverages dense existing geologic data from decades of hydrocarbon exploration in and around the study area to characterize the regional geology for suitability and storage capacity. Primary products of the study include: regional static storage capacity estimates, sequestration “leads” and prospects with associated dynamic capacity estimates, experimental studies of CO2-brine-rock interaction, best practices for site characterization, a large-format ‘Atlas’ of sequestration for the study area, and characterization of potential fluid migration pathways for reducing storage risks utilizing novel high-resolution 3D (HR3D) seismic surveys. In addition, three subcontracted studies address source-to-sink matching optimization, offshore well bore management and environmental aspects. The various geologic data and interpretations are integrated and summarized in a series of cross-sections and maps, which represent a primary resource for any near-term commercial deployment of CCS in the area. The regional study characterized and mapped important geologic features (e.g., Clemente-Tomas fault zone, the regionally extensive Marginulina A and Amphistegina B confining systems, etc.) that provided an important context for regional static capacity estimates and specific sequestration prospects of the study. A static capacity estimate of the majority of the Study area (14,467 mi2) was estimated at 86 metric Gigatonnes. While local capacity estimates are likely to be lower due to reservoir-scale characteristics, the offshore Miocene interval is a storage resource of National interest for providing CO2 storage as an atmospheric emissions abatement strategy. The natural petroleum system was used as an analog to infer seal quality and predict possible migration pathways of fluids in an engineered system of anthropogenic CO2 injection and storage. The regional structural features (e.g., Clemente-Tomas fault zone) that exert primary control on the trapping and distribution of Miocene hydrocarbons are expected to perform similarly for CCS. Industrial?scale CCS will require storage capacity utilizing well?documented Miocene hydrocarbon (dominantly depleted gas) fields and their larger structural closures, as well as barren (unproductive, brine?filled) closures. No assessment was made of potential for CO2 utilization for enhanced oil and gas recovery. The use of 3D numerical fluid flow simulations have been used in the study to greatly assist in characterizing the potential storage capacity of a specific reservoir. Due to the complexity of geologic systems (stratigraphic heterogeneity) and inherent limitations on producing a 3D geologic model, these simulations are typically simplified scenarios that explore the influence of model property variability (sensitivity study). A specific site offshore San Luis Pass (southern Galveston Island) was undertaken successfully, indicating stacked storage potential. Downscaling regional capacity estimates to the local scale (and the inverse) has proven challenging, and remains an outstanding gap in capacity assessments. In order to characterize regional seal performance and identify potential brine and CO2 leakage pathways, results from three high-resolution 3D (HR3D) seismic datasets acquired by the study using novel HR3D (P-Cable) acquisition system showed steady and significant improvements in data quality because of improved acquisition and processing technique. Finely detailed faults and stratigraphy in the shallowest 1000 milliseconds (~800 m) of data allowed for the identification and mapping of unconformable surfaces including what is probably

  1. An Indigenous Application for Estimating Carbon footprint of academia library systems based on life cycle assessment

    E-Print Network [OSTI]

    Garg, Saurabh; David Dornfeld

    2008-01-01T23:59:59.000Z

    FOR ESTIMATING CARBON FOOTPRINT OF ACADEMIA LIBRARY SYSTEMSacross the world. A carbon footprint is a measure of thethat can calculate the carbon footprint of a library system

  2. IS THE TAIL WAGGING THE DOG? AN EMPIRICAL ANALYSIS OF CORPORATE CARBON FOOTPRINTS AND FINANCIAL PERFORMANCE

    E-Print Network [OSTI]

    Delmas, Magali A; Nairn-Birch, Nicholas S.

    2011-01-01T23:59:59.000Z

    The importance of carbon footprint estimation boundaries.ANALYSIS OF CORPORATE CARBON FOOTPRINTS AND FINANCIALANALYSIS OF CORPORATE CARBON FOOTPRINTS AND FINANCIAL

  3. The impact of mineral fertilizers on the carbon footprint of crop production

    E-Print Network [OSTI]

    Brentrup, Frank

    2009-01-01T23:59:59.000Z

    the GHG emissions (“carbon footprint”) of crop production inMaterials and methods – “carbon footprint” calculation basedLCA) principles A carbon footprint is “the total set of

  4. Manufacturing Energy and Carbon Footprint - Sector: Computer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for) Electricity Export 0 Combustion Emissions (MMT CO 2 e Million Metric Tons Carbon Dioxide Equivalent) Total Emissions Offsite Emissions + Onsite Emissions Energy...

  5. Manufacturing Energy and Carbon Footprint - Sector: Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for) Electricity Export 1 Combustion Emissions (MMT CO 2 e Million Metric Tons Carbon Dioxide Equivalent) Total Emissions Offsite Emissions + Onsite Emissions Energy...

  6. A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage

    E-Print Network [OSTI]

    Apps, J.A.

    2006-01-01T23:59:59.000Z

    Units Current Plant MEA CO 2 Recovery O 2 fired, Direct CO 2 Compression` MEA/MDEA CO 2 Recovery Steam

  7. co2-transport | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :,2013 NETL CO2 CaptureTransport Cost

  8. Coupled reservoir-geomechanical analysis of CO2 injection and ground deformations at In Salah, Algeria

    E-Print Network [OSTI]

    Rutqvist, J.

    2010-01-01T23:59:59.000Z

    CO 2 sequestration; In Salah; geomechanics; ground surfaceCO 2 injection, geomechanics, and ground surface

  9. INFLUENCE OF CAPILLARY PRESSURE ON CO2 STORAGE AND MONITORING

    E-Print Network [OSTI]

    Santos, Juan

    volume - 1 + + = + - 1 + = : 2 solubility in brine : 2 formation volume factor : brine formation volume factor The Black-Oil formulation = - - = - - Darcy's Empirical Law + = 1 - = : capillary pressure brine brine CO2 CO2 #12;· The numerical solution was obtained

  10. atmospheric co2 face: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Duke Forest free-air CO2 enrichment (FACE) study. Rates of An Katul, Gabriel 11 Soil carbon sequestration in a pine forest after 9 years of atmospheric CO2 enrichment...

  11. air co2 enrichment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with increasing CO2 between ambient (1.0x California at Santa Cruz, University of 13 Soil carbon sequestration in a pine forest after 9 years of atmospheric CO2 enrichment...

  12. Formation Damage due to CO2 Sequestration in Saline Aquifers

    E-Print Network [OSTI]

    Mohamed, Ibrahim Mohamed 1984-

    2012-10-25T23:59:59.000Z

    Carbon dioxide (CO2) sequestration is defined as the removal of gas that would be emitted into the atmosphere and its subsequent storage in a safe, sound place. CO2 sequestration in underground formations is currently being considered to reduce...

  13. Near Miscible CO2 Application to Improve Oil Recovery

    E-Print Network [OSTI]

    Bui, Ly H.

    2010-07-26T23:59:59.000Z

    Carbon dioxide (CO2) injection for enhanced oil recovery is a proven technology. CO2 injection is normally operated at a pressure above the minimum miscibility pressure (MMP), which is determined by crude oil composition and reservoir conditions...

  14. International Symposium on Site Characterization for CO2 Geological Storage

    E-Print Network [OSTI]

    Tsang, Chin-Fu

    2006-01-01T23:59:59.000Z

    157 WELL INTEGRITY IN CO 2 ENVIRONMENTS: PERFORMANCE, RISK,of CO 2 injection, wells integrity and long term behavior ofcan compromise the well integrity and thus its functional

  15. Quantum Chemistry of CO2 Interaction with Swelling Clays | netl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of carbon dioxide (CO2). The minerals may affect the reservoir storage capacity as well as the integrity of its natural seals such as caprock formations. CO2 interaction...

  16. From CO2 to Methanol via Novel Nanocatalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From CO2 to Methanol via Novel Nanocatalysts From CO2 to Methanol via Novel Nanocatalysts Print Wednesday, 03 December 2014 00:00 Researchers have found novel nanocatalysts that...

  17. Enhanced Geothermal Systems (EGS) with CO2 as Heat Transmission...

    Open Energy Info (EERE)

    problems of aqueous fluids, make heretofore inaccessible energy resources available for human use, and provide ancillary benefits by using and storing CO2. A CO2-based EGS is...

  18. Summary Report on CO2 Geologic Sequestration & Water Resources Workshop

    E-Print Network [OSTI]

    Varadharajan, C.

    2013-01-01T23:59:59.000Z

    projects based CO 2 enhanced oil recovery in the US. Energydeveloped for CO 2 -enhanced oil recovery. In: 16th SPE/DOEpurposes such as enhanced oil recovery (EOR) and enhanced

  19. CO2 Capture by Absorption with Potassium Carbonate

    E-Print Network [OSTI]

    Rochelle, Gary T.

    CO2 Capture by Absorption with Potassium Carbonate First Quarterly Report 2007 Quarterly Progress of this work is to improve the process for CO2 capture by alkanolamine absorption/stripping by developing

  20. CO2 Capture by Absorption with Potassium Carbonate

    E-Print Network [OSTI]

    Rochelle, Gary T.

    CO2 Capture by Absorption with Potassium Carbonate Fourth Quarterly Report 2006 Quarterly Progress of this work is to improve the process for CO2 capture by alkanolamine absorption/stripping by developing

  1. Formation Damage due to CO2 Sequestration in Saline Aquifers 

    E-Print Network [OSTI]

    Mohamed, Ibrahim Mohamed 1984-

    2012-10-25T23:59:59.000Z

    the amount of CO2 emitted into the atmosphere. However, a better understanding of the chemical and physical interactions between CO2, water, and formation rock is necessary before sequestration. These interactions can be evaluated by the change in mineral...

  2. International Symposium on Site Characterization for CO2 Geological Storage

    E-Print Network [OSTI]

    Tsang, Chin-Fu

    2006-01-01T23:59:59.000Z

    WITH HETEROGENEITY IN OIL AND GAS RESERVOIRS APPLIED TO CO 2sedimentary basins, oil and gas fields, and industrial CO 2Harr, C.L. , 1996, Paradox oil and gas potential of the Ute

  3. CO2 capture processes in power plants - Le captage du CO2 dans les centrales thermiques

    E-Print Network [OSTI]

    Chakib Bouallou

    2010-08-12T23:59:59.000Z

    This review is devoted to assess and compare various processes aiming at recover CO2 from power plants fed with natural gas (NGCC) and pulverized coal (PC). These processes are post combustion CO2 capture using chemical solvents, natural gas reforming for pre-combustion capture and oxy-fuel combustion with cryogenic recovery of CO2. These processes were evaluated to give some clues for choosing the best option for each type of power plant. The comparison of these various concepts suggests that, in the short and medium term, chemical absorption is the most interesting process for NGCC power plants. For CP power plants, oxy-combustion can be a very interesting option, as well as post-combustion capture by chemical solvents.

  4. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Cement Industry

    E-Print Network [OSTI]

    Morrow III, William R.

    2014-01-01T23:59:59.000Z

    Model Inputs Emissions Factors CO2 Emission factor for grid tonne CO2/MWh)  CO2 Emission factor for fuel  (tonne CO2/TJ)Improvements and CO2 Emission Reduction Potentials in the

  5. electroseismic monitoring of co2 sequestration: a finite element ...

    E-Print Network [OSTI]

    Fabio Zyserman

    Keywords: Electroseismic Modeling, Poroelasticity, CO2 sequestration, Finite element methods. 2000 AMS ... carbon dioxide emissisons into the atmosphere.

  6. Gravity monitoring of CO2 movement during sequestration: Model studies

    E-Print Network [OSTI]

    Gasperikova, E.

    2008-01-01T23:59:59.000Z

    form of enhanced petroleum production as CO 2 is injected.for monitoring production in petroleum reservoirs. The cost

  7. CO2 stabilization, climate change and the terrestrial carbon sink

    E-Print Network [OSTI]

    White, Andrew

    CO2 stabilization, climate change and the terrestrial carbon sink A N D R E W W H I T E , * M E L V, Hybrid v4.1, with a subdaily timestep, was driven by increasing CO2 and transient climate output from scenarios were used: (i) IS92a, giving 790 ppm CO2 by 2100, (ii) CO2 stabilization at 750 ppm by 2225

  8. Summary Report on CO2 Geologic Sequestration & Water Resources Workshop

    E-Print Network [OSTI]

    Varadharajan, C.

    2013-01-01T23:59:59.000Z

    potential CO 2 storage and water extraction projects based on the effort’s findings DOE’s Interagency CCS

  9. Gravity monitoring of CO2 movement during sequestration: Model studies

    E-Print Network [OSTI]

    Gasperikova, E.

    2008-01-01T23:59:59.000Z

    combined CO 2 enhanced oil recovery (EOR) and sequestrationMODEL The enhanced oil recovery (EOR)/sequestration

  10. Metal Organic Framework Research: High Throughput Discovery of Robust Metal Organic Framework for CO2 Capture

    SciTech Connect (OSTI)

    None

    2010-08-01T23:59:59.000Z

    IMPACCT Project: LBNL is developing a method for identifying the best metal organic frameworks for use in capturing CO2 from the flue gas of coal-fired power plants. Metal organic frameworks are porous, crystalline compounds that, based on their chemical structure, vary considerably in terms of their capacity to grab hold of passing CO2 molecules and their ability to withstand the harsh conditions found in the gas exhaust of coal-fired power plants. Owing primarily to their high tunability, metal organic frameworks can have an incredibly wide range of different chemical and physical properties, so identifying the best to use for CO2 capture and storage can be a difficult task. LBNL uses high-throughput instrumentation to analyze nearly 100 materials at a time, screening them for the characteristics that optimize their ability to selectively adsorb CO2 from coal exhaust. Their work will identify the most promising frameworks and accelerate their large-scale commercial development to benefit further research into reducing the cost of CO2 capture and storage.

  11. Comparing Existing Pipeline Networks with the Potential Scale of Future U.S. CO2 Pipeline Networks

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2009-04-20T23:59:59.000Z

    There is growing interest regarding the potential size of a future U.S. dedicated carbon dioxide (CO2) pipeline infrastructure if carbon dioxide capture and storage (CCS) technologies are commercially deployed on a large scale within the United States. This paper assesses the potential scale of the CO2 pipeline system needed under two hypothetical climate policies (so called WRE450 and WRE550 stabilization scenarios) and compares this to the extant U.S. pipeline infrastructures used to deliver CO2 for enhanced oil recovery (EOR), and to move natural gas and liquid hydrocarbons from areas of production and importation to markets. The analysis reveals that between 11,000 and 23,000 additional miles of dedicated CO2 pipeline might be needed in the U.S. before 2050 across these two cases. While that is a significant increase over the 3,900 miles that comprise the existing national CO2 pipeline infrastructure, it is critically important to realize that the demand for additional CO2 pipeline capacity will unfold relatively slowly and in a geographically dispersed manner as new dedicated CCS-enabled power plants and industrial facilities are brought online. During the period 2010-2030, the growth in the CO2 pipeline system is on the order of a few hundred to less than a thousand miles per year. In comparison during the period 1950-2000, the U.S. natural gas pipeline distribution system grew at rates that far exceed these projections in growth in a future dedicated CO2 pipeline system. This analysis indicates that the need to increase the size of the existing dedicated CO2 pipeline system should not be seen as a major obstacle for the commercial deployment of CCS technologies in the U.S. Nevertheless, there will undoubtedly be some associated regulatory and siting issues to work through but these issues should not be unmanageable based on the size of infrastructure requirements alone.

  12. CO2 Injection in the Subsurface Kjetil Haugen

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    fuel. Nevertheless, natural gas combustion results in sub- stantial quantities of CO2. Instead Warming Fossil fuels produce CO2 upon combustion. CO2 is a greenhouse gas and contributes to global warm. Thus, replacing oil and coal with less carbon-intensive natural gas, is probably the fastest way

  13. Post-Combustion CO2 Capture 11 -13 July 2010

    E-Print Network [OSTI]

    Post-Combustion CO2 Capture Workshop 11 - 13 July 2010 Tufts European Center Talloires, France Institute | | Clean Air Task Force | | Asia Clean Energy Innovation Initiative | #12;Post-Combustion CO2 Capture Workshop 11 - 13 July 2010 Talloires, France PROCEEDINGS: Post-Combustion CO2 Capture Workshop

  14. ORIGINAL ARTICLE Navajo SandstonebrineCO2 interaction: implications

    E-Print Network [OSTI]

    Zhu, Chen

    ORIGINAL ARTICLE Navajo Sandstone­brine­CO2 interaction: implications for geological carbon to the injected CO2 is largely unknown. Experiments involving the reac- tion of Navajo Sandstone with acidic brine experiment examined sandstone interaction with CO2-impregnated brine; the second experiment examined

  15. A Numerical Investigation of Wettability Alteration during Immiscible CO2

    E-Print Network [OSTI]

    Hossain, M. Enamul

    A Numerical Investigation of Wettability Alteration during Immiscible CO2 Flooding Process, April 2012 #12;2 Table of Contest Abstract 3 Introduction 3 Literature Review 5 CO2 Flooding 7 New alteration during CO2 flooding. However, limited research on numerical and/or analytical modeling

  16. Original article Interactive effects of elevated CO2, O3,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Original article Interactive effects of elevated CO2, O3, and soil water deficit on spring wheat of elevated carbon dioxide (CO2), ozone (O3), and soil water deficit on spring wheat (Triticum aestivum L. cv consisting of two O3levels (ambient and 1.5-times ambient) in combination with two CO2levels (ambient

  17. Cimpor inventa nova frmula para reduzir pegada de CO2

    E-Print Network [OSTI]

    Instituto de Sistemas e Robotica

    Cimpor inventa nova fórmula para reduzir pegada de CO2 CIMENTO. A Cimpor descobriu uma nova fórmula para produzir ci- mento que lhe permitirá reduzir a pegada de CO 2 em 25%. Segundo as contas da as fábricas do grupo, seriam emitidos menos quatro milhões de toneladas de CO 2 por ano, o que permitiria uma

  18. results and benefits... Birmingham Cutting your CO2

    E-Print Network [OSTI]

    Everest, Graham R

    results and benefits... Birmingham Cutting your CO2 Birmingham City Council July 2007 c a s e s t u of the BirminghamCutting CO2 campaign, news items, display materials etc. · Advising on pledge gathering materials system was launched in July 2007 as part of the `Birmingham Cutting Your CO2' campaign. By the end

  19. Aquatic primary production in a high-CO2 world

    E-Print Network [OSTI]

    Fussman, Gregor

    Aquatic primary production in a high-CO2 world Etienne Low-De´carie, Gregor F. Fussmann, and Graham-Penfield, Montreal, QC, H3A 1B1, Canada Here, we provide a review of the direct effect of increas- ing CO2 on aquatic: the assessment of theories about limitation of productivity and the integration of CO2 into the co

  20. CO2 Emissions Mitigation and Technological Advance: An

    E-Print Network [OSTI]

    PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Updated Analysis of Advanced/2003) #12;PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Analysis of Advanced Technology of atmospheric CO2 concentrations at 450 parts per million by volume (ppmv) and 550 ppmv in MiniCAM. Each

  1. CO2-avskiljning med syrgasfrbrnning -nya tekniska mjligheter

    E-Print Network [OSTI]

    Lemurell, Stefan

    CO2-avskiljning med syrgasförbränning - nya tekniska möjligheter Klas Andersson Avd. Energiteknik Chalmers Tekniska Högskola Chalmers Energikonferens 14 december 2012 #12;· Combustion and CO2 capture with power and industrial sectors #12;Air-Fuel Combustion Air Fuel Flue gas CO2: 10-20 % N2: 60

  2. Central serotonin neurons are required for arousal to CO2

    E-Print Network [OSTI]

    Central serotonin neurons are required for arousal to CO2 Gordon F. Buchanana,b,1 and George B neurons are stimulated by CO2, and sero- tonin activates thalamocortical networks, we hypothesized any arousal response to inhalation of 10% CO2 (with 21% O2 in balance N2) but had normal arousal

  3. Center for By-Products Utilization CO2 SEQUESTRATION

    E-Print Network [OSTI]

    Saldin, Dilano

    climate change, reduced GHGs, improved air quality, CO2 reduction & sequestration, and carbon offsets. #12 for the development of a technology for the carbon dioxide (CO2) sequestration in non-air entrained concreteCenter for By-Products Utilization CO2 SEQUESTRATION IN NON-AIR ENTRAINED CONCRETE By Tarun R. Naik

  4. Chemical Looping Combustion for inherent CO2 capture in a

    E-Print Network [OSTI]

    Evaluate CLC using syngas as fuel Effect of fuel Effect of operating conditions Use CLC for CO2-capture Reactor System O2,N2 CO2,H2O To CO2 recovery and compression #12;15 Clean syngas from different gasifiers

  5. CO2 Capture by Absorption with Potassium Carbonate

    E-Print Network [OSTI]

    Rochelle, Gary T.

    CO2 Capture by Absorption with Potassium Carbonate First Quarterly Report 2006 Quarterly Progress the process for CO2 capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous.................................................................................................................................... 8 Task 1 ­ Modeling Performance of Absorption/Stripping of CO2 with Aqueous K2CO3 Promoted

  6. CO2 Capture by Absorption with Potassium Carbonate

    E-Print Network [OSTI]

    Rochelle, Gary T.

    CO2 Capture by Absorption with Potassium Carbonate Third Quarterly Report 2006 Quarterly Progress of this work is to improve the process for CO2 capture by alkanolamine absorption/stripping by developing...................................................................................................................................11 Task 1 ­ Modeling Performance of Absorption/Stripping of CO2 with Aqueous K2CO3 Promoted

  7. CO2 Capture by Absorption with Potassium Carbonate

    E-Print Network [OSTI]

    Rochelle, Gary T.

    CO2 Capture by Absorption with Potassium Carbonate Second Quarterly Report 2006 Quarterly Progress of this work is to improve the process for CO2 capture by alkanolamine absorption/stripping by developing.................................................................................................................................. 10 Task 1 ­ Modeling Performance of Absorption/Stripping of CO2 with Aqueous K2CO3 Promoted

  8. Study of CO2 Mobility Control Using Cross-linked Gel Conformance Control and CO2 Viscosifiers in Heterogeneous Media

    E-Print Network [OSTI]

    Cai, Shuzong

    2011-10-21T23:59:59.000Z

    CO2 has been widely used as a displacement fluid in both immiscible and miscible displacement processes to obtain tertiary recovery from the field. There are several problems associated with the application of CO2 flooding, especially when...

  9. Directed Technical Change and the Adoption of CO2 Abatement Technology: The Case of CO2 Capture and Storage

    E-Print Network [OSTI]

    Otto, Vincent M.

    This paper studies the cost effectiveness of combining traditional environmental policy, such as CO2 trading schemes, and technology policy that has aims of reducing the cost and speeding the adoption of CO2 abatement ...

  10. Treading Lightly Steps Toward Reducing Our Carbon Footprint

    E-Print Network [OSTI]

    Wong, Pak Kin

    Treading Lightly Steps Toward Reducing Our Carbon Footprint This is one section of The University reducing the UA's carbon footprint. The Facilities Management recycling and waste department supports long

  11. Streamlined carbon footprint computation : case studies in the food industry

    E-Print Network [OSTI]

    Lee, Yin Jin

    2013-01-01T23:59:59.000Z

    One of the greatest barriers in product Carbon Footprinting is the large amount of time and effort required for data collection across the supply chain. Tesco's decision to downsize their carbon footprint project from the ...

  12. Research Project on CO2 Geological Storage and Groundwater Resources: Water Quality Effects Caused by CO2 Intrusion into Shallow Groundwater

    E-Print Network [OSTI]

    Birkholzer, Jens

    2008-01-01T23:59:59.000Z

    Changes in Response to CO2 Leakage from Deep Geologicalstudy mineral trapping for CO2 disposal in deep arenaceousconstituents as function of P(CO2)? function of P(CO2)? – –

  13. INTEGRATING MEA REGENERATION WITH CO2 COMPRESSION AND PEAKING TO REDUCE CO2 CAPTURE COSTS

    E-Print Network [OSTI]

    Rochelle, Gary T.

    system with no compression heat recovery, CO2 vapor recompression heat recovery, and multipressure stripping with and without vapor recompression heat recovery. These configurations were simulated using of power for sale to the grid based on 500 MW unit ) clearly outweighed the modest increases in capital

  14. Rate Determination of the CO2* Chemiluminescence Reaction CO + O + M = CO2* + M

    E-Print Network [OSTI]

    Kopp, Madeleine Marissa, 1987-

    2012-10-15T23:59:59.000Z

    flame characteristics, such as fuel consumption rate, heat release rate, and H-atom concentration. In 2002, Kim et al. [2] made detailed spectral measurements in SI, HCCI, and SCCI engines from various excited state species and determined that CO2...

  15. Predicting CO2-water interfacial tension under pressure and temperature conditions of geologic CO2 storage

    E-Print Network [OSTI]

    Nielsen, L.C.

    2013-01-01T23:59:59.000Z

    within ± 15% of nominal P. EPM2-SPC/E DZ- SPC/E PPL-SPC/EEPM2- TIP4P2005 PPL- TIP4P2005 Predicted (f) a P ? CO2 2SE ?to C and O atoms (Table 1). The PPL model (In Het Panhuis et

  16. CINETIQUES DE SORPTION DU CO2 DANS LE CADRE DU STOCKAGE GEOLOGIQUE DU CO2 DANS LE CHARBON

    E-Print Network [OSTI]

    Boyer, Edmond

    PROCESSES OF CO2 SORPTION FOR CO2 STORAGE IN COAL SEAMS Delphine CHARRIERE1, 2 , Zbigniew POKRYSZKA1 storage in coal seams and the enhancement on coalbed methane production requires information on the gas sorption mechanism of kinetics. In this work, both sorption kinetics of CO2 and CH4 are studied onto a coal

  17. Estimating the supply and demand for deep geologic CO2 storage capacity over the course of the 21st Century: A meta-analysis of the literature

    SciTech Connect (OSTI)

    Dooley, James J.

    2013-08-05T23:59:59.000Z

    Whether there is sufficient geologic CO2 storage capacity to allow CCS to play a significant role in mitigating climate change has been the subject of debate since the 1990s. This paper presents a meta- analysis of a large body of recently published literature to derive updated estimates of the global deep geologic storage resource as well as the potential demand for this geologic CO2 storage resource over the course of this century. This analysis reveals that, for greenhouse gas emissions mitigation scenarios that have end-of-century atmospheric CO2 concentrations of between 350 ppmv and 725 ppmv, the average demand for deep geologic CO2 storage over the course of this century is between 410 GtCO2 and 1,670 GtCO2. The literature summarized here suggests that -- depending on the stringency of criteria applied to calculate storage capacity – global geologic CO2 storage capacity could be: 35,300 GtCO2 of “theoretical” capacity; 13,500 GtCO2 of “effective” capacity; 3,900 GtCO2, of “practical” capacity; and 290 GtCO2 of “matched” capacity for the few regions where this narrow definition of capacity has been calculated. The cumulative demand for geologic CO2 storage is likely quite small compared to global estimates of the deep geologic CO2 storage capacity, and therefore, a “lack” of deep geologic CO2 storage capacity is unlikely to be an impediment for the commercial adoption of CCS technologies in this century.

  18. Water footprint assessment of crop production in Shaanxi, China

    E-Print Network [OSTI]

    Vellekoop, Michel

    #12;i Water footprint assessment of crop production in Shaanxi, China Bachelor Thesis Civil, Yangling, China Keywords: Agricultural crops, water footprint, Shaanxi province, CROPWAT #12;ii #12;iii ABSTRACT The water footprint, introduced by professor A.Y. Hoekstra, is an indicator of freshwater use

  19. Ris-R-Report Emerging product carbon footprint standards and

    E-Print Network [OSTI]

    Risø-R-Report Emerging product carbon footprint standards and schemes and their possible trade Bolwig and Peter Gibbon Title: Emerging product carbon footprint standards and schemes and their possible, use and disposal. The outcome of these calculations is referred to as "product carbon footprints

  20. EIS-0473: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project (PCCS), Fort Bend County, TX

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a proposal to provide financial assistance for a project proposed by NRG Energy, Inc (NRG). DOE selected NRG’s proposed W.A. Parish Post-Combustion CO2 Capture and Sequestration Project for a financial assistance award through a competitive process under the Clean Coal Power Initiative Program. NRG would design, construct and operate a commercial-scale carbon dioxide (CO2) capture facility at its existing W.A. Parish Generating Station in Fort Bend County, Texas; deliver the CO2 via a new pipeline to the existing West Ranch oil field in Jackson County, Texas, for use in enhanced oil recovery operations; and demonstrate monitoring techniques to verify the permanence of geologic CO2 storage.

  1. Evaluating atmospheric CO2 inversions at multiple scales over a highly-inventoried agricultural landscape.

    SciTech Connect (OSTI)

    Schuh, Andrew E.; Lauvaux, Thomas; West, Tristram O.; Denning, A.; Davis, Kenneth J.; Miles, Natasha; Richardson, S. J.; Uliasz, Marek; Lokupitiya, Erandathie; Cooley, Dan; Andrews, Arlyn; Ogle, Stephen

    2013-05-01T23:59:59.000Z

    An intensive regional research campaign was conducted by the North American Carbon Program (NACP) in 2005 to study the carbon cycle of the highly productive agricultural regions of the Midwestern United States. Forty-_ve di_erent associated projects were spawned across _ve U.S. agencies over the course of nearly a decade involving hundreds of researchers. The primary objective of the project was to investigate the ability of atmospheric inversion techniques to use highly calibrated CO2 mixing ratio data to estimate CO2 exchange over the major croplands of the U.S. Statistics from densely monitored crop production, consisting primarily corn and soybeans, provided the backbone of a well-studied\\bottom up"flux estimate that was used to evaluate the atmospheric inversion results. Three different inversion systems, representing spatial scales varying from high resolution mesoscale, to continental, to global, coupled to different transport models and optimization techniques were compared to the bottom up" inventory estimates. The mean annual CO2-C sink for 2007 from the inversion systems ranged from 120 TgC to 170 TgC, when viewed across a wide variety of inversion setups, with the best" point estimates ranging from 145 TgC to 155 TgC. Inversion-based mean C sink estimates were generally slightly stronger, but statistically indistinguishable,from the inventory estimate whose mean C sink was 135 TgC. The inversion results showed temporal correlations at seasonal lengths while week to week correlations remained low. Comparisons were made between atmospheric transport yields of the two regional inversion systems, which despite having different influence footprints in space and time due to differences in underlying transport models and external forcings, showed similarity when aggregated in space and time.

  2. Spatial Relationships of Sector-Specific Fossil-fuel CO2 Emissions in the United States

    SciTech Connect (OSTI)

    Zhou, Yuyu; Gurney, Kevin R.

    2011-07-01T23:59:59.000Z

    Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision-makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are driven by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multi-state spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multi-state perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements. Keywords: Fossil-fuel; Carbon dioxide emissions; Sectoral; Spatial cluster; Emissions mitigation policy

  3. Sequestration of Dissolved CO2 in the Oriskany Formation

    SciTech Connect (OSTI)

    Dilmore, R.M.; Allen, D.E. (Salem State College, Salem, MA); McCarthy-Jones, J.R.; Hedges, S.W.; Soong, Yee

    2008-04-15T23:59:59.000Z

    Experiments were conducted to determine the solubility of CO2 in a natural brine solution of the Oriskany formation under elevated temperature and pressure conditions. These data were collected at temperatures of 22 and 75 °C and pressures between 100 and 450 bar. Experimentally determined data were compared with CO2 solubility predictions using a model developed by Duan and Sun (Chem. Geol. 2003, 193, 257-271). Model results compare well with Oriskany brine CO2 solubility data collected experimentally, suggesting that the Duan and Sun model is a reliable tool for estimating solution CO2 capacity in high salinity aquifers in the temperature and pressure range evaluated. The capacity for the Oriskany formation to sequester dissolved CO2 was calculated using results of the solubility models, estimation of the density of CO2 saturated brine, and available geographic information system (GIS) information on the formation depth and thickness. Results indicate that the Oriskany formation can hold approximately 0.36 gigatonnes of dissolved CO2 if the full basin is considered. When only the region where supercritical CO2 can exist (temperatures greater than 31° C and pressures greater than 74 bar) is considered, the capacity of the Oriskany formation to sequester dissolved CO2 is 0.31 gigatonnes. The capacity estimate considering the potential to sequester free-phase supercritical CO2 if brine were displaced from formation pore space is 8.8 gigatonnes in the Oriskany formation.

  4. Supersonic Technology for CO2 Capture: A High Efficiency Inertial CO2 Extraction System

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    IMPACCT Project: Researchers at ATK and ACENT Laboratories are developing a device that relies on aerospace wind-tunnel technologies to turn CO2 into a condensed solid for collection and capture. ATK’s design incorporates a special nozzle that converges and diverges to expand flue gas, thereby cooling it off and turning the CO2 into solid particles which are removed from the system by a cyclonic separator. This technology is mechanically simple, contains no moving parts and generates no chemical waste, making it inexpensive to construct and operate, readily scalable, and easily integrated into existing facilities. The increase in the cost to coal-fired power plants associated with introduction of this system would be 50% less than current technologies.

  5. Improved Efficiency of Miscible CO2 Floods and Enhanced Prospects for CO2 Flooding Heterogeneous Reservoirs

    SciTech Connect (OSTI)

    Grigg, Reid B.; Schechter, David S.

    1999-10-15T23:59:59.000Z

    The goal of this project is to improve the efficiency of miscible CO2 floods and enhance the prospects for flooding heterogeneous reservoirs. This report provides results of the second year of the three-year project that will be exploring three principles: (1) Fluid and matrix interactions (understanding the problems). (2) Conformance control/sweep efficiency (solving the problems. 3) Reservoir simulation for improved oil recovery (predicting results).

  6. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Cement Industry

    E-Print Network [OSTI]

    Morrow III, William R.

    2014-01-01T23:59:59.000Z

    Factors CO2 Emission factor for grid electricity  (tonne CO2 Savings Figure 6. 2010-2030 Electricity and Electricity-Base CO 2 Emissions

  7. Estimation of CO2 Emissions from China's Cement Production: Methodologies and Uncertainties

    E-Print Network [OSTI]

    Ke, Jing

    2014-01-01T23:59:59.000Z

    L. , 2006. Discussion of CO2 emission reduction in ChineseFurther discussion of CO2 emission reduction in Chinesecalculation method of CO2 emissions of cement production.

  8. Uncertainty quantification for CO2 sequestration and enhanced oil recovery

    E-Print Network [OSTI]

    Dai, Zhenxue; Fessenden-Rahn, Julianna; Middleton, Richard; Pan, Feng; Jia, Wei; Lee, Si-Yong; McPherson, Brian; Ampomah, William; Grigg, Reid

    2014-01-01T23:59:59.000Z

    This study develops a statistical method to perform uncertainty quantification for understanding CO2 storage potential within an enhanced oil recovery (EOR) environment at the Farnsworth Unit of the Anadarko Basin in northern Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil-water flow and reactive transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major uncertainty metrics: net CO2 injection, cumulative oil production, cumulative gas (CH4) production, and net water injection. A global sensitivity and response surface analysis indicates that reservoir permeability, porosity, and thickness are the major intrinsic reservoir parameters that control net CO2 injection/storage and oil/gas recovery rates. The well spacing and the initial water saturation also have large impact on the oil/gas recovery rates. Further, this study has revealed key insights into the potential behavior and the operational parameters of CO2 sequestration at CO2-EOR s...

  9. Supported polyethylenimine adsorbents for CO2 capture from flue gas

    SciTech Connect (OSTI)

    Fauth, D.J.; Gray, M.L.; Pennline, H.W.

    2008-10-01T23:59:59.000Z

    Anthropogenic CO2 emissions produced from fossil fuel combustion are believed to contribute to undesired consequences in global climate. Major contributors towards CO2 emissions are fossil fuel-fired power plants for electricity production. For this reason, CO2 capture from flue gas streams together with permanent sequestration in geologic formations is being considered a viable solution towards mitigation of the major greenhouse gas1. Technologies based on chemical absorption with alkanolamines have been assessed for first generation CO2 post-combustion capture primarily due to its advanced stage of development. However, limitations associated with these chemical solvents (i.e., low CO2 loadings, amine degradation by oxygen, equipment corrosion) manifest themselves in high capital and operating costs with reduced thermal efficiencies. Therefore, necessary design and development of alternative, lower cost approaches for CO2 capture from coal-fired combustion streams are warranted.

  10. Transient studies of an Integrated Gasification Combined Cycle (IGCC) plant with CO2 capture

    SciTech Connect (OSTI)

    Bhattacharyya, D.; Turton, R.; Zitney, S.

    2010-01-01T23:59:59.000Z

    Next-generation coal-fired power plants need to consider the option for CO2 capture as stringent governmental mandates are expected to be issued in near future. Integrated gasification combined cycle (IGCC) plants are more efficient than the conventional coal combustion processes when the option for CO2 capture is considered. However, no IGCC plant with CO2 capture currently exists in the world. Therefore, it is important to consider the operability and controllability issues of such a plant before it is commercially built. To facilitate this objective, a detailed plant-wide dynamic simulation of an IGCC plant with 90% CO2 capture has been developed in Aspen Plus Dynamics{reg_sign}. The plant considers a General Electric Energy (GEE)-type downflow radiant-only gasifier followed by a quench section. A two-stage water gas shift (WGS) reaction is considered for conversion of CO to CO2. A two-stage acid gas removal (AGR) process based on a physical solvent is simulated for selective capture of H2S and CO2. Compression of the captured CO2 for sequestration, an oxy-Claus process for removal of H2S and NH3, black water treatment, and the sour water treatment are also modeled. The tail gas from the Claus unit is recycled to the SELEXOL unit. The clean syngas from the AGR process is sent to a gas turbine followed by a heat recovery steam generator. This turbine is modeled as per published data in the literature. Diluent N2 is used from the elevated-pressure ASU for reducing the NOx formation. The heat recovery steam generator (HRSG) is modeled by considering generation of high-pressure, intermediate-pressure, and low-pressure steam. All of the vessels, reactors, heat exchangers, and the columns have been sized. The basic IGCC process control structure has been synthesized by standard guidelines and existing practices. The steady state results are validated with data from a commercial gasifier. In the future grid-connected system, the plant should satisfy the environmental targets and quality of the feed to other sections, wherever applicable, without violating the operating constraints, and without sacrificing the efficiency. However, it was found that the emission of acid gases may far exceed the environmental targets and the overshoot of some of the key variables may be unacceptable under transient operation while following the load. A number of operational strategies and control configurations is explored for achieving these stringent requirements. The transient response of the plant is also studied by perturbing a number of key inputs.

  11. Recovery Act: Innovative CO2 Sequestration from Flue Gas Using Industrial Sources and Innovative Concept for Beneficial CO2 Use

    SciTech Connect (OSTI)

    Dando, Neal; Gershenzon, Mike; Ghosh, Rajat

    2012-07-31T23:59:59.000Z

    field testing of a biomimetic in-duct scrubbing system for the capture of gaseous CO2 coupled with sequestration of captured carbon by carbonation of alkaline industrial wastes. The Phase 2 project, reported on here, combined efforts in enzyme development, scrubber optimization, and sequestrant evaluations to perform an economic feasibility study of technology deployment. The optimization of carbonic anhydrase (CA) enzyme reactivity and stability are critical steps in deployment of this technology. A variety of CA enzyme variants were evaluated for reactivity and stability in both bench scale and in laboratory pilot scale testing to determine current limits in enzyme performance. Optimization of scrubber design allowed for improved process economics while maintaining desired capture efficiencies. A range of configurations, materials, and operating conditions were examined at the Alcoa Technical Center on a pilot scale scrubber. This work indicated that a cross current flow utilizing a specialized gas-liquid contactor offered the lowest system operating energy. Various industrial waste materials were evaluated as sources of alkalinity for the scrubber feed solution and as sources of calcium for precipitation of carbonate. Solids were mixed with a simulated sodium bicarbonate scrubber blowdown to comparatively examine reactivity. Supernatant solutions and post-test solids were analyzed to quantify and model the sequestration reactions. The best performing solids were found to sequester between 2.3 and 2.9 moles of CO2 per kg of dry solid in 1-4 hours of reaction time. These best performing solids were cement kiln dust, circulating dry scrubber ash, and spray dryer absorber ash. A techno-economic analysis was performed to evaluate the commercial viability of the proposed carbon capture and sequestration process in full-scale at an aluminum smelter and a refinery location. For both cases the in-duct scrubber technology was compared to traditional amine- based capture. Incorporation of the laboratory results showed that for the application at the aluminum smelter, the in-duct scrubber system is more economical than traditional methods. However, the reverse is true for the refinery case, where the bauxite residue is not effective enough as a sequestrant, combined with challenges related to contaminants in the bauxite residue accumulating in and fouling the scrubber absorbent. Sensitivity analyses showed that the critical variables by which process economics could be improved are enzyme concentration, efficiency, and half-life. At the end of the first part of the Phase 2 project, a gate review (DOE Decision Zero Gate Point) was conducted to decide on the next stages of the project. The original plan was to follow the pre-testing phase with a detailed design for the field testing. Unfavorable process economics, however, resulted in a decision to conclude the project before moving to field testing. It is noted that CO2 Solutions proposed an initial solution to reduce process costs through more advanced enzyme management, however, DOE program requirements restricting any technology development extending beyond 2014 as commercial deployment timeline did not allow this solution to be undertaken.

  12. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    SciTech Connect (OSTI)

    Devenney, Martin; Gilliam, Ryan; Seeker, Randy

    2014-06-01T23:59:59.000Z

    The objective of this project is to demonstrate an innovative process to mineralize CO2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO2 from the flue gas of a power production facility in Moss Landing, CA as well as flue gas from coal combustion. This topical report covers Phase 2b, which is the construction phase of pilot demonstration subsystems that make up the integrated plant. The subsystems included are the mineralization subsystem, the Alkalinity Based on Low Energy (ABLE) subsystem, the waste calcium oxide processing subsystem, and the fiber cement board production subsystem. The fully integrated plant is now capable of capturing CO2 from various sources (gas and coal) and mineralizing into a reactive calcium carbonate binder and subsequently producing commercial size (4ftx8ft) fiber cement boards. The topical report provides a description of the “as built” design of these subsystems and the results of the commissioning activities that have taken place to confirm operability. At the end of Phase 2b, the CCMP pilot demonstration is fully ready for testing.

  13. Center for Nanoscale Control of Geologic CO2 (EFRC) - Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary The objective of the DOE Energy Frontier Research Center (EFRC) for Nanoscale Control of Geologic CO2 (NCGC) is to use new investigative tools, combined with experiments...

  14. The geomechanics of CO2 storage in deep sedimentary formations

    E-Print Network [OSTI]

    Rutqvist, J.

    2013-01-01T23:59:59.000Z

    The geomechanics of CO 2 storage in deep sedimentaryThis paper provides a review of the geomechanics andmodeling of geomechanics associated with geologic carbon

  15. Summary Report on CO2 Geologic Sequestration & Water Resources Workshop

    E-Print Network [OSTI]

    Varadharajan, C.

    2013-01-01T23:59:59.000Z

    CO 2 Geological Storage and Ground Water Resources U.S.and Ground Water Protection Council (GWPC) State and Federal Statutes Storage,

  16. Advanced Post-Combustion CO2 Capture Prepared for the

    E-Print Network [OSTI]

    Advanced Post-Combustion CO2 Capture Prepared for the Clean Air Task Force under a grant from...................................................................................... 3 2. Current Status of Post-Combustion Capture

  17. accelerating co2 emissions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    based on the empirical relationship between CO2 per capita emissions (due to fossil fuel combustion and cement production) and corresponding HDI. In order to project per capita...

  18. Consumption-based accounting of CO2 emissions

    E-Print Network [OSTI]

    Davis, S. J; Caldeira, K.

    2010-01-01T23:59:59.000Z

    Soviet Union (Ukraine, Kazakhstan, Belarus, and Russia),kg CO 2 /$GDP FSS Ukraine Kazakhstan Iran East Asia BelarusAsia China South Africa Kazakhstan Malaysia Russia Thailand

  19. The geomechanics of CO2 storage in deep sedimentary formations

    E-Print Network [OSTI]

    Rutqvist, J.

    2013-01-01T23:59:59.000Z

    strain and microseismicity, well integrity, caprock sealingstrain and microseismicity, well integrity, caprock sealingactions. 7 WELLBORE INTEGRITY The well design of a deep CO 2

  20. Summary Report on CO2 Geologic Sequestration & Water Resources Workshop

    E-Print Network [OSTI]

    Varadharajan, C.

    2013-01-01T23:59:59.000Z

    Efforts Investigating Water Extraction •! LLNL –! Active CObenefits of various water extraction, treatment, and reuseof CO 2 storage and water extraction scenarios –! Technical

  1. Influence of capillary pressure on CO2 storage and monitoring

    E-Print Network [OSTI]

    gabriela

    solutions to mitigate the greenhouse effect. We are interested in analyzing the influence of capillary pressure on CO2 in- jection, storage and monitoring in saline ...

  2. Micromodel Investigations of CO2 Exsolution from Carbonated Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of CO2 Exsolution from Carbonated Water in Sedimentary Rocks. Abstract: In this study, carbon dioxide exsolution from carbonated water is directly observed under reservoir...

  3. CO2 exposure at pressure impacts metabolism and stress responses...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the model sulfate-reducing bacterium Desulfovibrio vulgaris Abstract: Geologic carbon dioxide (CO2) sequestration drives physical and geochemical changes in deep...

  4. Enhanced Geothermal Systems (EGS) with CO2as Heat Transmission...

    Broader source: Energy.gov (indexed) [DOE]

    Program eere.energy.gov * The project started in FY10 * Collaboration between LBNL (Pruess) and INL (Redden) - Berkeley leads modeling, CO 2 -brine flow and heat...

  5. Quantum Alloys Offer Prospects for CO2 Management Technologies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radical new catalysts capable of converting CO2 emissions into fuels, chemicals, and plastics. Their unique discovery involves shrinking gold into a system consisting of just 25...

  6. atmospheric co2 content: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3...

  7. atmospheric co2 concentrations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3...

  8. atmospheric co2 concentration: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3...

  9. atmospheric co2 laser: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3...

  10. atmospheric co2 measurements: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3...

  11. atmospheric co2 variations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3...

  12. atmospheric co2 mixing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3...

  13. ORNL/CDIAC-160 Climatological Distributions of pH, pCO2, Total CO2, Alkalinity,

    E-Print Network [OSTI]

    ORNL/CDIAC-160 NDP-094 Climatological Distributions of pH, pCO2, Total CO2, Alkalinity, and CaCO3, Alkalinity, and CaCO3 Saturation in the Global Surface Ocean. ORNL/CDIAC-160, NDP-094. Carbon Dioxide, total CO2 concentration (TCO2), and the degree of CaCO3 saturation for the global surface ocean waters

  14. A Theoretical Study of CO2 Anions on Anatase (101) Surface. ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CO2 Anions on Anatase (101) Surface. A Theoretical Study of CO2 Anions on Anatase (101) Surface. Abstract: Binding configurations of CO2 and CO2 - on perfect and oxygen-deficient...

  15. Inducinga CO2 leak into ashallow aquifer (CO2FieldLab EUROGIA+ project): Monitoring the CO2 plume in groundwaters.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    (saline aquifer, depleted oil/gas reservoir), aquifers are ubiquitousin the overlying sedimentary pile in case of unwanted CO2leakages from a storage site. Independently from the nature of the reservoir

  16. Solid molecular basket sorbent for CO2 capture from gas streams with low CO2 concentration at ambient conditions

    SciTech Connect (OSTI)

    Wang, Xiaoxing [Pennsylvania State University; Ma, Xiaoliang [Pennsylvania State University; Schwartz, Viviane [ORNL; Clark, Jason C [ORNL; Overbury, Steven {Steve} H [ORNL; Zhao, Shuqi [Pennsylvania State University, University Park, PA; Xu, Xiaochun [Pennsylvania State University; Song, Chunshan [Pennsylvania State University

    2012-01-01T23:59:59.000Z

    In this paper, a solid molecular basket sorbent, 50 wt% PEI/SBA-15 was studied for CO2 capture from gas streams with low CO2 concentration at ambient conditions. The sorbent was able to effectively and selectively capture CO2 from a gas stream containing 1% CO2 at 75 C, with a breakthrough and saturation capacity of 63.1 and 66.7 mg/g, respectively, and a selectivity of 14 for CO2/CO and 185 for CO2/Ar. The sorption performance of the sorbent was influenced greatly by the operating temperature. The CO2-TPD study showed that the sorbent could be regenerated at mild conditions (50-110 C) and was stable in the cyclical operations for at least 20 cycles. Furthermore, the possibility for CO2 capture from air using the PEI/SBA-15 sorbent was studied by FTIR and proved by TPD. A capacity of 22.5 mg/g was attained at 75 C via TPD method using a simulated air with 400 ppmv CO2 in N2.

  17. Leakage and Sepage of CO2 from Geologic Carbon Sequestration Sites: CO2 Migration into Surface Water

    E-Print Network [OSTI]

    Oldenburg, Curt M.; Lewicki, Jennifer L.

    2005-01-01T23:59:59.000Z

    from geologic carbon sequestration sites: unsaturated zoneCO 2 from Geologic Carbon Sequestration Sites, Vadose Zoneseepage from geologic carbon sequestration sites may occur.

  18. EGS rock reactions with Supercritical CO2 saturated with water and water saturated with Supercritical CO2

    SciTech Connect (OSTI)

    Earl D. Mattson; Travis L. McLing; William Smith; Carl Palmer

    2013-02-01T23:59:59.000Z

    EGS using CO2 as a working fluid will likely involve hydro-shearing low-permeability hot rock reservoirs with a water solution. After that process, the fractures will be flushed with CO2 that is maintained under supercritical conditions (> 70 bars). Much of the injected water in the main fracture will be flushed out with the initial CO2 injection; however side fractures, micro fractures, and the lower portion of the fracture will contain connate water that will interact with the rock and the injected CO2. Dissolution/precipitation reactions in the resulting scCO2/brine/rock systems have the potential to significantly alter reservoir permeability, so it is important to understand where these precipitates form and how are they related to the evolving ‘free’ connate water in the system. To examine dissolution / precipitation behavior in such systems over time, we have conducted non-stirred batch experiments in the laboratory with pure minerals, sandstone, and basalt coupons with brine solution spiked with MnCl2 and scCO2. The coupons are exposed to liquid water saturated with scCO2 and extend above the water surface allowing the upper portion of the coupons to be exposed to scCO2 saturated with water. The coupons were subsequently analyzed using SEM to determine the location of reactions in both in and out of the liquid water. Results of these will be summarized with regard to significance for EGS with CO2 as a working fluid.

  19. Novel CO2 Foam Concepts and Injection Schemes for Improving CO2 Sweep Efficiency in Sandstone and Carbonate Hydrocarbon Formations

    SciTech Connect (OSTI)

    Nguyen, Quoc; Hirasaki, George; Johnston, Keith

    2014-12-31T23:59:59.000Z

    We explored cationic, nonionic and zwitterionic surfactants to identify candidates that have the potential to satisfy all the key requirements for CO2 foams in EOR. We have examined the formation, texture, rheology and stability of CO2 foams as a function of the surfactant structure and formulation variables including temperature, pressure, water/CO2 ratio, surfactant concentration, salinity and concentration of oil. Furthermore, the partitioning of surfactants between oil and water as well as CO2 and water was examined in conjunction with adsorption measurements on limestone by the Hirasaki lab to develop strategies to optimize the transport of surfactants in reservoirs.

  20. Single photon ionization of van der Waals clusters with a soft x-ray laser: ,,CO2...n and ,,CO2...n,,H2O...m

    E-Print Network [OSTI]

    Rocca, Jorge J.

    Single photon ionization of van der Waals clusters with a soft x-ray laser: ,,CO2...n and ,,CO2...n 2006; published online 20 October 2006 Pure neutral CO2 n clusters and mixed CO2 n H2O m clustersV. The distribution of pure CO2 n clusters decreases roughly exponentially with increasing cluster size. During

  1. Greener Solvent Selection and Solvent Recycling for CO2 Capture Economically removing CO2 from the flue gases of coal-fired power plants would alleviate concerns

    E-Print Network [OSTI]

    Ben-Arie, Jezekiel

    to remove CO2 from dilute gas streams because they have very high affinity for CO2. Unfortunately high solvents that balance high affinity for CO2 with ease of solvent recovery and reuse. Because the numberGreener Solvent Selection and Solvent Recycling for CO2 Capture Economically removing CO2 from

  2. Development of Novel CO2 Adsorbents for Capture of CO2 from Flue Gas

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The itemAIR57451 CleanFOR IMMEDIATE RELEASENovel CO 2

  3. Intercomparison of simulation models for CO2 disposal in underground storage reservoirs

    E-Print Network [OSTI]

    Pruess, Karsten; Tsang, Chin-Fu; Law, David; Oldenburg, Curt

    2001-01-01T23:59:59.000Z

    oil recovery (EOR) using CO2 requires an understanding ofexperience with using CO2 for EOR projects (SPE, 1999), and

  4. Quantifying Regional Economic Impacts of CO2 Intensity Targets in China

    E-Print Network [OSTI]

    Zhang, Da

    2012-09-01T23:59:59.000Z

    To address rising energy use and CO2 emissions, China’s leadership has enacted energy and CO2 intensity

  5. What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions

    E-Print Network [OSTI]

    G. Fridley, David

    2010-01-01T23:59:59.000Z

    CO2 mitigation potential and costs in China's electricityCO2 mitigation potential and costs in China's electricity

  6. Original article Responses to elevated atmospheric CO2 concentration

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Original article Responses to elevated atmospheric CO2 concentration and nitrogen supply of Quercus* School of Forest Resources and Conservation, University of Florida, 326 Newins-Ziegler Hall, Gainesville. Elevated [CO2] increased biomass production only in the high-N treatment. Fine root/foliage mass ratio

  7. Comprehensive Monitoring of CO2 Sequestration in Subalpine Forest Ecosystems

    E-Print Network [OSTI]

    Han, Richard Y.

    , carbon sequestration, ecosystem, multi-tier, multi-modal, multi-scale, self organized, sensor array to comprehensively monitor ecosystem carbon sequestration. The network consists of CO2, Weather (pressureComprehensive Monitoring of CO2 Sequestration in Subalpine Forest Ecosystems and Its Relation

  8. HYDROMECHANICAL CHARACTERIZATION FOR SITE SELECTION IN CO2 PERMANENT

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    -BarcelonaTech), Barcelona, Spain 3 Energy City Foundation (CIUDEN), Spanish Government CO2 Geological Storage Programme (Vilarrasa et al., 2011, Energy Procedia) Trees killed by CO2 leakage in Mammoth Mountains (Farrar et al EQUATIONS Mass conservation equation Darcy's law Momentum balance Effective stress Hooke's law (linear

  9. The contribution of CO2 capture and storage

    E-Print Network [OSTI]

    The contribution of CO2 capture and storage to a sustainable energy system Policy brief the prospects of CO2 capture and storage (CCS) technologies in the power sector. Based on the results of 10. The uncertainties, particularly in storage capacities, are large. Using conservative estimates in line with the IPCC

  10. European and Global Perspectives for CO2 Capture and Storage

    E-Print Network [OSTI]

    European and Global Perspectives for CO2 Capture and Storage Heleen Groenenberg, Martine Uyterlinde, ECN Policy Studies, The Netherlands Abstract CO2 capture and storage (CCS) is increasingly mentioned a large point source, compression, transport and subsequent storage in a geological reservoir, the ocean

  11. Ex post evaluations of CO2 based taxes: a survey

    E-Print Network [OSTI]

    Watson, Andrew

    of fossil fuels, and which are introduced with the explicit intention of abating CO2 emissions. This paper and, especially, subsidies, has been called into question. Secondly, the CO2-based taxes themselves and subsidies), it is unlikely that they have been cost-effective (in the sense of attaining their environmental

  12. Distribution of anthropogenic CO2 in the Pacific Ocean

    E-Print Network [OSTI]

    Distribution of anthropogenic CO2 in the Pacific Ocean C. L. Sabine,1 R. A. Feely,2 R. M. Key,3 J] This work presents an estimate of anthropogenic CO2 in the Pacific Ocean based on measurements from the WOCE tracers; 9355 Information Related to Geographic Region: Pacific Ocean; KEYWORDS: Pacific Ocean

  13. arbon dioxide (CO2 atmosphere has increased by

    E-Print Network [OSTI]

    responsive to rising atmospheric CO2 concentration than C3 species. In the southwestern United States substrate for photosynthetic energy acquisition by life, the process of using light energy to combine CO2 surface and scale up to affect the landscape water balance. Thus, through its impacts on plant water use

  14. The Energy and CO2 Emissions Impact of

    E-Print Network [OSTI]

    for developing renewable electricity--wind, solar, and biomass-- would require expansion on an unprecedentedThe Energy and CO2 Emissions Impact of Renewable Energy Development in China Xiliang Zhang, Tianyu://globalchange.mit.edu/ Printed on recycled paper #12;1 The Energy and CO2 Emissions Impact of Renewable Energy Development

  15. Oxidation in Environments with Elevated CO2 Levels

    SciTech Connect (OSTI)

    Gordon H. Holcomb

    2009-05-01T23:59:59.000Z

    Efforts to reduce greenhouse gas emissions from fossil energy power productions focus primarily on either pre- or post-combustion removal of CO2. The research presented here examines corrosion and oxidation issues associated with two types of post-combustion CO2 removal processes—oxyfuel combustion in refit boilers and oxyfuel turbines.

  16. Falsification Of The Atmospheric CO2 Greenhouse Effects

    E-Print Network [OSTI]

    Learned, John

    Falsification Of The Atmospheric CO2 Greenhouse Effects Within The Frame Of Physics Version 4 Gerlich and Ralf D. Tscheuschner Abstract The atmospheric greenhouse effect, an idea that many authors Of The Atmospheric CO2 Greenhouse Effects . . . 3 Contents Abstract 2 1 Introduction 6 1.1 Problem background

  17. Chemical Impact of Elevated CO2on Geothermal Energy Production

    Broader source: Energy.gov [DOE]

    This is a two phase project to assess the geochemical impact of CO2on geothermal energy production by: analyzing the geochemistry of existing geothermal fields with elevated natural CO2; measuring realistic rock-water rates for geothermal systems using laboratory and field-based experiments to simulate production scale impacts.

  18. Variations in 13 C discrimination during CO2 exchange1

    E-Print Network [OSTI]

    exchange. Observed 13 were described well by the classical model of5 Farquhar, O'Leary & Berry (1982 enzymes, as well as to differential diffusivities of 13 CO2 and 12 CO2 in air9 (O'Leary, 1984; Farquhar, O'Leary

  19. CO2 Capture by Absorption with Potassium Carbonate

    E-Print Network [OSTI]

    Rochelle, Gary T.

    CO2 Capture by Absorption with Potassium Carbonate Third Quarterly Report 2005 Quarterly Progress absorption/stripping by developing an alternative solvent, aqueous K2CO3 promoted by piperazine. Modeling.................................................................................................................................. 11 Task 1 ­ Modeling Performance of Absorption/Stripping of CO2 with Aqueous K2CO3 Promoted

  20. CO2 Capture by Absorption with Potassium Carbonate

    E-Print Network [OSTI]

    Rochelle, Gary T.

    CO2 Capture by Absorption with Potassium Carbonate Fourth Quarterly Report 2005 Quarterly Progress absorption/stripping by developing an alternative solvent, aqueous K2CO3 promoted by piperazine. In Campaign.................................................................................................................................... 9 Task 1 ­ Modeling Performance of Absorption/Stripping of CO2 with Aqueous K2CO3 Promoted

  1. Exsolution Enhanced Oil Recovery with Concurrent CO2 Sequestration

    SciTech Connect (OSTI)

    Zuo, Lin; Benson, Sally M.

    2013-01-01T23:59:59.000Z

    A novel EOR method using carbonated water injection followed by depressurization is introduced. Results from micromodel experiments are presented to demonstrate the fundamental principles of this oil recovery method. A depressurization process (1 MPa/hr) was applied to a micromodel following carbonated water injection (Ca ? 10-5). The exsolved CO2 in water-filled pores blocked water flow in swiped portions and displaced water into oil-filled pores. Trapped oil after the carbonated water injection was mobilized by sequentially invading water. This method's self-distributed mobility control and local clogging was tested in a sandstone sample under reservoir conditions. A 10% incremental oil recovery was achieved by lowering the pressure 2 MPa below the CO2 liberation pressure. Additionally, exsolved CO2 resides in the pores of a reservoir as an immobile phase with a high residual saturation after oil production, exhibiting a potential synergy opportunity between CO2 EOR and CO2 sequestration

  2. Diffusion of CO2 During Hydrate Formation and Dissolution

    SciTech Connect (OSTI)

    Franklin M. Orr, Jr.

    2002-08-20T23:59:59.000Z

    Experiments were performed to measure the rate of diffusion of CO2 through hydrate films. Hydrate films were created in a capillary tube, and the growth of the hydrate film was measured. Difficulties were encountered in creating hydrate repeatedly, and some non-uniform growth of the films was observed. Sufficient observations were obtained to demonstrate that hydrate growth occurs preferentially on the hydrate/water side of the interface, rather than at the hydrate/CO2 interface. Diffusion coefficients were estimated from observations of the rate of growth of the hydrate film along with estimates of the solubility of CO2 in water and of the concentration gradient across the hydrate layer. The experimental observations indicate that hydrate formation occurs much more rapidly at the hydrate water interface than at the hydrate/CO2 interface. Any growth of hydrate at the CO2/hydrate interface was too slow to be observed at the time scale of the experiments. That observation is consistent with the idea that CO2 can move more easily through the hydrate, presumably by hopping between hydrate cages, than water can move through the hydrate, presumably by lattice hopping. Estimated diffusion coefficients were in the range 1-3E-06 cm2/sec. Those values are about an order of magnitude lower than the diffusion coefficient for CO2 in liquid water, but four orders of magnitude larger than the value for diffusion of CO2 in a solid. The rate of diffusion through the hydrate controls both the creation of new hydrate at the hydrate/water interface and the rate at which CO2 dissolves in the liquid water and diffuses away from the hydrate layer. Formation of a hydrate layer reduces the rate at which CO2 dissolves in liquid water.

  3. Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2

    E-Print Network [OSTI]

    Pruess, K.

    2010-01-01T23:59:59.000Z

    Could Sequestration of CO2 be Combined with the DevelopmentTOUGH2 Code for Studies of CO2 Storage in Saline Aquifers,and J. Ennis- King. CO2-H2O Mixtures in the Geological

  4. Odors that Modify CO2 Receptor Activity in Insects and Their Effect on Innate CO2-Mediated Behavior and Neuronal Plasticity

    E-Print Network [OSTI]

    Turner, Stephanie

    2010-01-01T23:59:59.000Z

    Intermediates in Insect CO2 Sensory Systems. Science Certel,2007). The molecular basis of CO2 reception in Drosophila.J. (2004). Floral CO2 Reveals Flower Profitability to Moths.

  5. Fact #693: September 19, 2011 Average Vehicle Footprint for Cars...

    Energy Savers [EERE]

    and the average track width of the vehicle. The upcoming Corporate Average Fuel Economy (CAFE) Standards have fuel economy targets based on the vehicle footprint. The...

  6. Manufacturing Energy and Carbon Footprint - Sector: Iron and...

    Broader source: Energy.gov (indexed) [DOE]

    Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006) Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006)...

  7. Ris Energy Report 6 CO2 capture and storage 2 6.1 What is CO2 capture and storage?

    E-Print Network [OSTI]

    2 Gas, oil Air O2 H2 Raw material Gas, ammonia, steel Air/O2 Steam Figure 15: the three main to produce more Co2 per unit of product than a plant without CCS (upper bar). With ef- fective Co2 removal mines. The last two of these, known re- spectively as enhanced oil recovery (EOR) and enhanced coal bed

  8. GAS HYDRATE EQUILIBRIA FOR CO2-N2 AND CO2-CH4 GAS MIXTURES, EXPERIMENTS AND MODELLING

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    steelmaking plants, gas or coal power plants, chemical plants or natural gas production plants. Facing are by definition localized at the plants, like e.g. steelmaking plants, gas or coal power plants, chemical plants be in the order of several cubic meters of CO2 per second. In power plants, the concentration of CO2 is generally

  9. Predicting PVT data for CO2brine mixtures for black-oil simulation of CO2 geological storage

    E-Print Network [OSTI]

    Santos, Juan

    Predicting PVT data for CO2­brine mixtures for black-oil simulation of CO2 geological storage efficiency of the black-oil approach promote application of black-oil simulation for large-scale geological into geological formations has been considered as a potential method to mitigate climate change. Accurate

  10. Measurements of fluxes of water vapour, CO2 and pCO2 are obtained from a coastal site in

    E-Print Network [OSTI]

    Measurements of fluxes of water vapour, CO2 and pCO2 are obtained from a coastal site in Sweden study national reports UK The first eleven SOLAS projects supported by the Natural Environment Research the atmosphere, including biological interactions affecting DMS production and the role of upwelling in trace gas

  11. Gas Hydrate Equilibria for CO2-N2 and CO2-CH4 gas mixtures Experimental studies and Thermodynamic Modelling

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Gas Hydrate Equilibria for CO2-N2 and CO2-CH4 gas mixtures ­ Experimental studies and Thermodynamic of experimental data on the phase equilibrium of gas hydrates in the presence of binary gas mixtures comprising CO of the gas phase as well as the hydrate phase without the need to sample the hydrate. The experimental

  12. PVTx properties of the CO2H2O and CO2H2ONaCl systems below 647 K: Assessment of experimental data

    E-Print Network [OSTI]

    Polly, David

    PVTx properties of the CO2­H2O and CO2­H2O­NaCl systems below 647 K: Assessment of experimental-composition (PVTx) properties for the CO2­H2O and CO2­H2O­NaCl systems. This paper presents a comprehensive review. Keywords: CO2 sequestration; PVTx properties; Volume; Density; Thermodynamic modeling 1. Introduction CO2­H

  13. CO2 Capture with Liquid-to-Solid Absorbents: CO2 Capture Process Using Phase-Changing Absorbents

    SciTech Connect (OSTI)

    None

    2010-10-01T23:59:59.000Z

    IMPACCT Project: GE and the University of Pittsburgh are developing a unique CO2 capture process in which a liquid absorbent, upon contact with CO2, changes into a solid phase. Once in solid form, the material can be separated and the CO2 can be released for storage by heating. Upon heating, the absorbent returns to its liquid form, where it can be reused to capture more CO2. The approach is more efficient than other solventbased processes because it avoids the heating of extraneous solvents such as water. This ultimately leads to a lower cost of CO2 capture and will lower the additional cost to produce electricity for coal-fired power plants that retrofit their facilities to include this technology.

  14. Combustion-Assisted CO2 Capture Using MECC Membranes

    SciTech Connect (OSTI)

    Sherman, Steven R [ORNL; Gray, Dr. Joshua R. [Savannah River National Laboratory (SRNL), Aiken, S.C.; Brinkman, Dr. Kyle S. [Savannah River National Laboratory (SRNL), Aiken, S.C.; Huang, Dr. Kevin [University of South Carolina, Columbia

    2012-01-01T23:59:59.000Z

    Mixed Electron and Carbonate ion Conductor (MECC) membranes have been proposed as a means to separate CO2 from power plant flue gas. Here a modified MECC CO2 capture process is analyzed that supplements retentate pressurization and permeate evacuation as a means to create a CO2 driving force with a process assisted by the catalytic combustion of syngas on the permeate side of the membrane. The combustion reactions consume transported oxygen, making it unavailable for the backwards transport reaction. With this change, the MECC capture system becomes exothermic, and steam for electricity production may be generated from the waste heat. Greater than 90% of the CO2 in the flue gas may be captured, and a compressed CO2 product stream is produced. A fossil-fueled power plant using this process would consume 14% more fuel per unit electricity produced than a power plant with no CO2 capture system, and has the potential to meet U.S. DOE s goal that deployment of a CO2 capture system at a fossil-fueled power plant should not increase the cost of electricity from the combined facility by more than 30%.

  15. Footprinter(tm) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information HydroFontana, California: EnergyFootprinter(tm)

  16. Natural CO2 Analogs for Carbon Sequestration

    SciTech Connect (OSTI)

    Scott H. Stevens; B. Scott Tye

    2005-07-31T23:59:59.000Z

    The report summarizes research conducted at three naturally occurring geologic CO{sub 2} fields in the US. The fields are natural analogs useful for the design of engineered long-term storage of anthropogenic CO{sub 2} in geologic formations. Geologic, engineering, and operational databases were developed for McElmo Dome in Colorado; St. Johns Dome in Arizona and New Mexico; and Jackson Dome in Mississippi. The three study sites stored a total of 2.4 billion t (46 Tcf) of CO{sub 2} equivalent to 1.5 years of power plant emissions in the US and comparable in size with the largest proposed sequestration projects. The three CO{sub 2} fields offer a scientifically useful range of contrasting geologic settings (carbonate vs. sandstone reservoir; supercritical vs. free gas state; normally pressured vs. overpressured), as well as different stages of commercial development (mostly undeveloped to mature). The current study relied mainly on existing data provided by the CO{sub 2} field operator partners, augmented with new geochemical data. Additional study at these unique natural CO{sub 2} accumulations could further help guide the development of safe and cost-effective design and operation methods for engineered CO{sub 2} storage sites.

  17. INTERNATIONAL COLLABORATION ON CO2 SEQUESTRATION

    SciTech Connect (OSTI)

    Howard J. Herzog; E. Eric Adams

    2005-04-01T23:59:59.000Z

    On December 4, 1997, the US Department of Energy (DOE), the New Energy and Industrial Technology Development Organization of Japan (NEDO), and the Norwegian Research Council (NRC) entered into a ''Project Agreement for International Collaboration on CO{sub 2} Ocean Sequestration''. Government organizations from Japan, Canada, and Australia, and a Swiss/Swedish engineering firm later joined the agreement, which outlined a research strategy for ocean carbon sequestration via direct injection. The members agreed to an initial field experiment, with the hope that if the initial experiment was successful, there would be subsequent field evaluations of increasingly larger scale to evaluate environmental impacts of sequestration and the potential for commercialization. This report is a summary of the evolution of the collaborative effort, the supporting research, and results for the International Collaboration on CO{sub 2} Ocean Sequestration. Almost 100 papers and reports resulted from this collaboration, including 18 peer reviewed journal articles, 46 papers, 28 reports, and 4 graduate theses. A full listing of these publications is in the reference section.

  18. Accepted Manuscript Carbon Footprint and emergy combination for Eco-Environmental assessment of

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Accepted Manuscript Carbon Footprint and emergy combination for Eco- Environmental assessment Corre O, Feidt M, Carbon Footprint and emergy combination for Eco- Environmental assessment of cleaner ACCEPTED MANUSCRIPT 1 CARBON FOOTPRINT AND EMERGY COMBINATION FOR ECO- ENVIRONMENTAL ASSESSMENT OF CLEANER

  19. Et notat til "det elektriske CO2 projekt". Med udgangspunkt i de studerendes CO2 tips analyseres CO2 emissionen i de forskellige belysningssituationer. De forskellige tips ses p projektets hjemmeside

    E-Print Network [OSTI]

    1 Et notat til "det elektriske CO2 projekt". Med udgangspunkt i de studerendes CO2 tips analyseres CO2 emissionen i de forskellige belysningssituationer. De forskellige tips ses på projektets hjemmeside www.co2tips.dk Indholdsfortegnelse EL-FORBRUG TIL BELYSNING I HUSHOLDNINGER

  20. Co2(CO)8 Mediated PausonKhand Reaction (PKR)

    E-Print Network [OSTI]

    Stoltz, Brian M.

    1 Co2(CO)8 Mediated Pauson­Khand Reaction (PKR) Nathan Bennett May 11, 2009 R1 R2 R5 R6R4 R3 + Co2(CO)8 Promoter / Solvent CO atmosphere O R1 R2 R6 R5 R3 R4 X n R R' (n = 1-3) X = O, NR'', CR''2 Co2(CO)8 Promoter / Solvent CO atmosphere X n R O R' Pauson-Khand Reaction (PKR) General Information R1 R

  1. Applications of mineral carbonation to geological sequestration of CO2

    SciTech Connect (OSTI)

    O'Connor, William K.; Rush, G.E.

    2005-01-01T23:59:59.000Z

    Geological sequestration of CO2 is a promising near-term sequestration methodology. However, migration of the CO2 beyond the natural reservoir seals could become problematic, thus the identification of means to enhance the natural seals could prove beneficial. Injection of a mineral reactant slurry could provide a means to enhance the natural reservoir seals by supplying the necessary cations for precipitation of mineral carbonates. The subject study evaluates the merit of several mineral slurry injection strategies by conduct of a series of laboratory-scale CO2 flood tests on whole core samples of the Mt. Simon sandstone from the Illinois Basin.

  2. International Collaboration on CO2 Sequestration

    SciTech Connect (OSTI)

    Peter H. Israelsson; E. Eric Adams

    2007-06-30T23:59:59.000Z

    On December 4, 1997, the US Department of Energy (USDOE), the New Energy and Industrial Technology Development Organization of Japan (NEDO), and the Norwegian Research Council (NRC) entered into a Project Agreement for International Collaboration on CO{sub 2} Ocean Sequestration. Government organizations from Japan, Canada, and Australia, and a Swiss/Swedish engineering firm later joined the agreement, which outlined a research strategy for ocean carbon sequestration via direct injection. The members agreed to an initial field experiment, with the hope that if the initial experiment was successful, there would be subsequent field evaluations of increasingly larger scale to evaluate environmental impacts of sequestration and the potential for commercialization. The evolution of the collaborative effort, the supporting research, and results for the International Collaboration on CO{sub 2} Ocean Sequestration were documented in almost 100 papers and reports, including 18 peer-reviewed journal articles, 46 papers, 28 reports, and 4 graduate theses. These efforts were summarized in our project report issued January 2005 and covering the period August 23, 1998-October 23, 2004. An accompanying CD contained electronic copies of all the papers and reports. This report focuses on results of a two-year sub-task to update an environmental assessment of acute marine impacts resulting from direct ocean sequestration. The approach is based on the work of Auerbach et al. [6] and Caulfield et al. [20] to assess mortality to zooplankton, but uses updated information concerning bioassays, an updated modeling approach and three modified injection scenarios: a point release of negatively buoyant solid CO{sub 2} hydrate particles from a moving ship; a long, bottom-mounted diffuser discharging buoyant liquid CO{sub 2} droplets; and a stationary point release of hydrate particles forming a sinking plume. Results suggest that in particular the first two discharge modes could be successfully designed to largely avoid zooplankton mortality. Sub-lethal and ecosystem effects are discussed qualitatively, but not analyzed quantitatively.

  3. Comprehensive carbon footprint analysis of the value chains

    E-Print Network [OSTI]

    , carbon sequestration) VTT: expertise in sustainability assessment (life cycle analysis, carbon footprint of wood supply 2.Carbon sequestration Managed stand Unmanaged stand photos: Erkki Oksanen/Metla #12;VTT of the results Quality - wood & biomass Biodiversity Carbon - sequestration - footprint Economics - cost

  4. ESM 271 Carbon Footprints and Carbon Accounting Instructor: Sangwon Suh

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    1 ESM 271 Carbon Footprints and Carbon Accounting Instructor: Sangwon Suh Bren hall 3422, suh: Homework (1 for each week @10%): 40% Personal carbon account (report): 30% Final exam: 30% Course schedule Week 1: Introduction to carbon footprint and carbon account - Background: carbon awareness, major

  5. Center for Nanoscale Control of Geologic CO2 (EFRC) - Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manager (Energy Sciences Area, LBNL) An organization chart of the Center for Nanoscale Control of Geologic CO2 Research Teams: Thrust 1: Fractured Shale Ian Bourg, Thrust 1 Lead,...

  6. co2-use-reuse | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    provide economic benefits for fossil fuel-fired power plants or industrial processes. CO2 utilization through enhanced oil recovery (EOR) could also be pursued as a means to...

  7. Canada’s Bitumen Industry Under CO2 Constraints

    E-Print Network [OSTI]

    Chen, Y.-H. Henry

    We investigate the effects of implementing CO2 emissions reduction policies on Canada’s oil sands industry, the largest of its kind in the world. The production of petroleum products from oils sands involves extraction of ...

  8. atmospheric co2 enrichment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Soil carbon sequestration in a pine forest after 9 years of atmospheric CO2 enrichment...

  9. High Co2 Emissions Through Porous Media- Transport Mechanisms...

    Open Energy Info (EERE)

    to estimate the total magmatic or metamorphic CO2 released from such areas. To assess the performance of accumulation chamber systems at fluxes one to three orders of magnitude...

  10. Implications of "peak oil" for atmospheric CO2 and climate

    E-Print Network [OSTI]

    Kharecha, P A

    2007-01-01T23:59:59.000Z

    Peaking of global oil production may have a large effect on future atmospheric CO2 amount and climate change, depending upon choices made for subsequent energy sources. We suggest that, if estimates of oil and gas reserves by the Energy Information Administration are realistic, it is feasible to keep atmospheric CO2 from exceeding approximately 450 ppm, provided that future exploitation of the huge reservoirs of coal and unconventional fossil fuels incorporates carbon capture and sequestration. Existing coal-fired power plants, without sequestration, must be phased out before mid-century to achieve this limit on atmospheric CO2. We also suggest that it is important to "stretch" oil reserves via energy efficiency, thus avoiding the need to extract liquid fuels from coal or unconventional fossil fuels. We argue that a rising price on carbon emissions is probably needed to keep CO2 beneath the 450 ppm ceiling.

  11. Electron Transfer Dynamics in Photocatalytic CO2 Conversion ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    etc.) to slowly convert stored CO2 into more useful products such as methane and methanol. Photocatalysis is the acceleration of a light-induced reaction in the presence of a...

  12. International Symposium on Site Characterization for CO2 Geological Storage

    E-Print Network [OSTI]

    Tsang, Chin-Fu

    2006-01-01T23:59:59.000Z

    quantitative models enables linking risk to the failure of a specific component, for ex- ample using sensitivity analysis.analysis of the Risks associated to well leakage: aquifer contamination and CO 2 release. Quantitative

  13. THERMOCATALYTIC CO2-FREE PRODUCTION OF HYDROGEN FROM HYDROCARBON FUELS

    E-Print Network [OSTI]

    for the process efficiency. However these impurities may result in contamination of hydrogen by CO, CO2 and H2S which should be removed from the product gas using methanation and H2S scrubbing steps, respectively. 11

  14. Modeling the release of CO2 in the deep ocean

    E-Print Network [OSTI]

    Liro, Christopher R.

    1991-01-01T23:59:59.000Z

    The idea of capturing and disposing of carbon dioxide (CO2) from the flue gas of fossil fuel-fired power plants has recently received attention as a possible mitigation strategy to counteract potential global warming due ...

  15. System-level modeling for geological storage of CO2

    E-Print Network [OSTI]

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2006-01-01T23:59:59.000Z

    CO 2 escapes the reservoir through the abandoned well. Theof the abandoned well and the gas reservoir is calculated by4 reservoir 1.e-12 1.e-14 8.4e-4 Fracture or abandoned well

  16. International Symposium on Site Characterization for CO2 Geological Storage

    E-Print Network [OSTI]

    Tsang, Chin-Fu

    2006-01-01T23:59:59.000Z

    in depleted or abandoned oil and gas reservoirs; how- ever,abandoned wells represent a potentially direct route from reservoirabandoned in the 1930s with no barrier installed after it encountered a natural CO 2 reservoir

  17. International Symposium on Site Characterization for CO2 Geological Storage

    E-Print Network [OSTI]

    Tsang, Chin-Fu

    2006-01-01T23:59:59.000Z

    in depleted or abandoned oil and gas reservoirs; how- ever,oil well abandoned in the 1930s with no barrier installed after it encountered a natural CO 2 reservoir

  18. The geomechanics of CO2 storage in deep sedimentary formations

    E-Print Network [OSTI]

    Rutqvist, J.

    2013-01-01T23:59:59.000Z

    such as depleted oil and gas reservoirs, unminable coaltakes place in depleted oil or gas reservoirs (IAE, 2003).of CO 2 in depleted oil and gas reservoirs. J Can Pet

  19. International Symposium on Site Characterization for CO2 Geological Storage

    E-Print Network [OSTI]

    Tsang, Chin-Fu

    2006-01-01T23:59:59.000Z

    IN DEPLETED AND NEAR- DEPLETED OIL RESERVOIRS V. A. KuuskraaDEPLETED AND NEAR-DEPLETED OIL RESERVOIRS Vello A. Kuuskraaof CO 2 in a depleted oil reservoir: an overview,

  20. Bees, Balloons, Pollen Used as Novel CO2 Monitoring Approach

    Broader source: Energy.gov [DOE]

    Researchers at the Office of Fossil Energy's National Energy Technology Laboratory have discovered an innovative way to use bees, pollen, and helium-filled balloons to verify that no carbon dioxide (CO2) leaks from carbon sequestration sites.

  1. DOE Manual Studies 11 Major CO2 Geologic Storage Formations

    Broader source: Energy.gov [DOE]

    A comprehensive study of 11 geologic formations suitable for permanent underground carbon dioxide (CO2) storage is contained in a new manual issued by the U.S. Department of Energy.

  2. Novel CO2-Thickeners for Improved Mobility Control

    SciTech Connect (OSTI)

    Enick, Dr. Robert M.; Beckman, Dr. Eric J.; Hamilton, Dr. Andrew

    2002-01-15T23:59:59.000Z

    The objective of this contract was to design, synthesize, and characterize thickening agents for dense carbon dioxide and to evaluate their solubility and viscosity-enhancing potential in CO2.

  3. International Symposium on Site Characterization for CO2 Geological Storage

    E-Print Network [OSTI]

    Tsang, Chin-Fu

    2006-01-01T23:59:59.000Z

    carbon dioxide-enhanced oil recovery project as a prototypeCO 2 injection for enhanced oil recovery. Indeed, most near-as well as Enhanced Oil Recovery projects. REFERENCES

  4. Improving CO2 Efficiency for Recovering Oil in Heterogeneous Reservoirs

    SciTech Connect (OSTI)

    Grigg, Reid B.; Svec, Robert K.

    2003-03-10T23:59:59.000Z

    The work strived to improve industry understanding of CO2 flooding mechanisms with the ultimate goal of economically recovering more of the U.S. oil reserves. The principle interests are in the related fields of mobility control and injectivity.

  5. Geologic controls influencing CO2 loss from a leaking well.

    SciTech Connect (OSTI)

    Hopkins, Polly L.; Martinez, Mario J.; McKenna, Sean Andrew; Klise, Katherine A.

    2010-12-01T23:59:59.000Z

    Injection of CO2 into formations containing brine is proposed as a long-term sequestration solution. A significant obstacle to sequestration performance is the presence of existing wells providing a transport pathway out of the sequestration formation. To understand how heterogeneity impacts the leakage rate, we employ two dimensional models of the CO2 injection process into a sandstone aquifer with shale inclusions to examine the parameters controlling release through an existing well. This scenario is modeled as a constant-rate injection of super-critical CO2 into the existing formation where buoyancy effects, relative permeabilities, and capillary pressures are employed. Three geologic controls are considered: stratigraphic dip angle, shale inclusion size and shale fraction. In this study, we examine the impact of heterogeneity on the amount and timing of CO2 released through a leaky well. Sensitivity analysis is performed to classify how various geologic controls influence CO2 loss. A 'Design of Experiments' approach is used to identify the most important parameters and combinations of parameters to control CO2 migration while making efficient use of a limited number of computations. Results are used to construct a low-dimensional description of the transport scenario. The goal of this exploration is to develop a small set of parametric descriptors that can be generalized to similar scenarios. Results of this work will allow for estimation of the amount of CO2 that will be lost for a given scenario prior to commencing injection. Additionally, two-dimensional and three-dimensional simulations are compared to quantify the influence that surrounding geologic media has on the CO2 leakage rate.

  6. CO2 Emissions Mitigation and Technological Advance: An

    E-Print Network [OSTI]

    PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Updated Analysis of Advanced/2003) #12;PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Analysis of Advanced Technology electricity 16.9 29.0 44.7 65.7 89.2 114.3 145.2 174.8 EJ/yr building trad biomass 23.5 29.9 32.1 27.9 22.9 17

  7. CO2 Removal using a Synthetic Analogue of Carbonic Anhydrase

    SciTech Connect (OSTI)

    Harry Cordatos

    2010-09-14T23:59:59.000Z

    Project attempts to develop a synthetic analogue for carbonic anhydrase and incorporate it in a membrane for separation of CO2 from coal power plant flue gas. Conference poster presents result of first 9 months of project progress including concept, basic system architecture and membrane properties target, results of molecular modeling for analogue - CO2 interaction, and next steps of testing analogue resistance to flue gas contaminants.

  8. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Iron and Steel Industry

    E-Print Network [OSTI]

    Morrow III, William R.

    2014-01-01T23:59:59.000Z

    Improvement and CO2 Emission Reduction Potentials in theUS $/GJ- saved) CO2 Emissions Reduction (Mt CO 2 ) CCF RankUS$/GJ- saved) CO2 Emissions Reduction (Mt CO 2 ) * The

  9. Dynamic micro-mapping of CO2 sorption in coal

    SciTech Connect (OSTI)

    Radlinski, Andrzej Pawell [ORNL; Melnichenko, Yuri B [ORNL; Cheng, Gang [ORNL; Mastalerz, Maria [Indiana Geological Survey

    2009-01-01T23:59:59.000Z

    We have applied X-ray and neutron small-angle scattering techniques (SAXS, SANS and USANS) to study the interaction between fluids and porous media in the particular case of sub- and super-critical CO2 sorption in coal. These techniques are demonstrated to give unique, pore-size-specific insights into the kinetics of CO2 sorption in a wide range of coal pores (nano to meso), and to provide data that may be used to determine the density of the sorbed CO2. We observed densification of the adsorbed CO2 by a factor up to five compared to the free fluid at the same (p,T) conditions. Our results indicate that details of CO2 sorption into coal pores differ greatly between different coals and depend on the amount of mineral matter dispersed in the coal matrix: a purely organic matrix absorbs more CO2 per unit volume than one contaminated with mineral matter, but mineral matter markedly accelerates the sorption kinetics.

  10. CO2 leakage up from a geological storage site to shallow fresh groundwater: CO2-water-rock interaction assessment and

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    CO2 leakage up from a geological storage site to shallow fresh groundwater: CO2-water repository requires the investigation of the potential CO2 leakage back into fresh groundwater, particularly sensitive monitoring techniques in order to detect potential CO2 leaks and their magnitude as well

  11. Life Cycle Inventory of CO2 in an Enhanced Oil Recovery System

    E-Print Network [OSTI]

    Jaramillo, Paulina

    identified as a method of sequestering CO2 recovered from power plants. In CO2- flood EOR, CO2 is injected in EOR projects, thus reducing the amount of CO2 emitted into the atmosphere. This claim, however with sequestration via CO2- flood EOR under a number of different scenarios and explores the impact of various

  12. Intracranial Pressure Variation Associated with Changes in End-Tidal CO2

    E-Print Network [OSTI]

    Intracranial Pressure Variation Associated with Changes in End-Tidal CO2 Sunghan Kim, James Mc that the partial pressure of arterial CO2 (PaCO2) can affect cerebral blood flow, cerebral blood volume, and therefore ICP. The end-tidal CO2 (ETCO2) is usually monitored by clinicians as a proxy for PaCO2. We show

  13. Abstract Atmospheric CO2 partial pressure (pCO2) was as low as 18 Pa during the Pleistocene and is projected to

    E-Print Network [OSTI]

    Antonovics, Janis

    Abstract Atmospheric CO2 partial pressure (pCO2) was as low as 18 Pa during the Pleistocene and is projected to increase from 36 to 70 Pa CO2 before the end of the 21st century. High pCO2 often increases the growth and repro- duction of C3 annuals, whereas low pCO2 decreases growth and may reduce or prevent

  14. Uk’e koley (no footprint) Project

    SciTech Connect (OSTI)

    Winnestaffer, Jessica E.D. [Chickaloon Native Village] [Chickaloon Native Village

    2014-03-30T23:59:59.000Z

    Chickaloon Native Village is a federally-recognized Alaska Native Tribe that has long been devoted to being a good steward to the environment, understanding that it is our responsibility to take care of the land that has been loaned to us for the short time we are here. The goal of this project was to conduct a feasibility study to assess the energy uses, loads, and efficiencies for all of our current Tribally owned and operated buildings and rental housing units, to determine if it makes economic and environmental sense to install renewable energy systems on each building to lower our carbon footprints and to decrease our dependence on fossil fuels. The goal was met and we have developed a plan for installing renewable energy systems on several Tribal buildings where the benefits will be most notable.

  15. Regional Per Capita Solar Electric Footprint for the United States

    SciTech Connect (OSTI)

    Denholm, P.; Margolis, R.

    2007-12-01T23:59:59.000Z

    In this report, we quantify the state-by-state per-capita 'solar electric footprint' for the United States. We use state-level data on population, electricity consumption, economic activity and solar insolation, along with solar photovoltaic (PV) array packing density data to develop a range of estimates of the solar electric footprint. We find that the solar electric footprint, defined as the land area required to supply all end-use electricity from solar photovoltaics, is about 181 m2 per person in the United States. Two key factors that influence the magnitude of the state-level solar electric footprint include how industrial energy is allocated (based on location of use vs. where goods are consumed) and the assumed distribution of PV configurations (flat rooftop vs. fixed tilt vs. tracking). The solar electric footprint is about 0.6% of the total land area of the United States with state-level estimates ranging from less than 0.1% for Wyoming to about 9% for New Jersey. We also compare the solar electric footprint to a number of other land uses. For example, we find that the solar electric footprint is equal to less than 2% of the land dedicated to cropland and grazing in the United States.

  16. Inventory of China's Energy-Related CO2 Emissions in 2008

    E-Print Network [OSTI]

    Fridley, David

    2011-01-01T23:59:59.000Z

    China’s 2008 Thermal Electricity Sector CO 2 Emissions byheat. Share of thermal electricity sector’s CO 2 emissionsheat. Share of thermal electricity sector’s CO 2 emissions

  17. Leakage of CO2 from geologic storage: Role of secondary accumulation at shallow depth

    E-Print Network [OSTI]

    Pruess, K.

    2008-01-01T23:59:59.000Z

    Large Releases from CO2 Storage Reservoirs: Analogs,S.T. Nelson. Natural Leaking CO2-charged Systems as AnalogsY. Sano, and H.U. Schmincke. CO2-rich Gases from Lakes Nyos

  18. On CO2 Behavior in the Subsurface, Following Leakage from a Geologic Storage Reservoir

    E-Print Network [OSTI]

    Pruess, Karsten

    2006-01-01T23:59:59.000Z

    1 - 16, 1987. Skinner, L. CO2 Blowouts: An Emerging Problem,Assessment for Underground CO2 Storage, paper 234, presentedReservoir Performance Risk in CO2 Storage Projects, paper

  19. Regulation, Allocation, and Leakage in Cap-and-Trade Markets for CO2

    E-Print Network [OSTI]

    Bushnell, Jim B; Chen, Yihsu

    2009-01-01T23:59:59.000Z

    and Philippe Quirion. Co2 abatement, competitiveness andDaniel Kahn. Allocation of co2 emissions al- lowances in theA short-run case analysis of co2 leakage and nox and so2

  20. A Theoretical Study of CO2 Anions on Anatase (101) Surface. ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications A Theoretical Study of CO2 Anions on Anatase (101) Surface. A Theoretical Study of CO2 Anions on Anatase (101) Surface. Abstract: Binding configurations of CO2 and...

  1. Does low stomatal conductance or photosynthetic capacity enhance growth at elevated CO2 in Arabidopsis thaliana?

    E-Print Network [OSTI]

    Easlon, Hsien M; Carlisle, Eli; McKay, John K; Bloom, Arnold J

    2015-01-01T23:59:59.000Z

    enhance growth at elevated CO 2 ? To whom correspondence mayDoes low g enhance growth at elevated CO 2 ? Does lowenhance growth at elevated CO 2 in Arabidopsis thaliana?

  2. Single-well Low Temperature CO2- based Engineered Geothemal System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Single-well Low Temperature CO2- based Engineered Geothemal System Single-well Low Temperature CO2- based Engineered Geothemal System Single-well Low Temperature CO2- based...

  3. Inventory of China's Energy-Related CO2 Emissions in 2008

    E-Print Network [OSTI]

    Fridley, David

    2011-01-01T23:59:59.000Z

    China's 2008 Total CO 2 Emissions from Energy Consumption:10. China's 2008 Total CO 2 Emissions from Energy: Sectoral16 Table 11. China's 2008 CO 2 Emissions from Energy:

  4. DOI: 10.1002/cssc.201000032 The Immobility of CO2 in Marine Sediments Beneath 1500

    E-Print Network [OSTI]

    Schrag, Daniel

    to capture CO2 produced at indus- trial facilities and approaches to inject the CO2 into geologic of buoyant CO2 in terrestrial reservoirs that often contain fractures, faults, and abandoned wells and may

  5. Automobile Fuel; Economy and CO2 Emissions in Industrialized Countries: Troubling Trends through 2005/6

    E-Print Network [OSTI]

    Schipper, Lee

    2008-01-01T23:59:59.000Z

    Energy Savings and CO2 Emissions Implications. J. ofcommitment to reduce CO2 emissions from new passenger carsACEA’s Commitment on CO2 Emission Reductions from Passenger

  6. Regulation, Allocation, and Leakage in Cap-and-Trade Markets for CO2

    E-Print Network [OSTI]

    Bushnell, Jim B; Chen, Yihsu

    2009-01-01T23:59:59.000Z

    Daniel Kahn. Allocation of co2 emissions al- lowances in theRasmussen. Allocation of co2 emissions permits: A generalthe aggregate annual CO2 emissions for each of the key

  7. Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry

    E-Print Network [OSTI]

    Ke, Jing

    2013-01-01T23:59:59.000Z

    2050 China Energy and CO2 Emissions Report. Science Press,Energy Savings and CO2 Emissions Reduction of China’s CementEnergy Savings and CO2 Emissions Reduction of China’s Cement

  8. Inventory of China's Energy-Related CO2 Emissions in 2008

    E-Print Network [OSTI]

    Fridley, David

    2011-01-01T23:59:59.000Z

    of unadjusted energy-related CO2 emissions is attributed toEMISSIONS- T C EMISSIONS -T CO2 TOTAL Energy EmissionsEMISSIONS- T C EMISSIONS -T CO2 Coal Coke and Other

  9. What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions

    E-Print Network [OSTI]

    G. Fridley, David

    2010-01-01T23:59:59.000Z

    China Energy and CO2 Emissions Report (CEACER). Beijing:Oil consumption and CO2 emissions in China’s road transport:Growth, Oil Demand and CO2 Emissions through 2050. Report

  10. Challenges and opportunities in accounting for non-energy use CO2 emissions: an editorial comment

    E-Print Network [OSTI]

    Masanet, Eric; Sathaye, Jayant

    2009-01-01T23:59:59.000Z

    carbon dioxide (NEU-CO2) emissions, represent a signi?cantSimply described, NEU-CO2 emissions are generated via twoData permitting, NEU-CO2 emissions arising from energy

  11. Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry

    E-Print Network [OSTI]

    Ke, Jing

    2013-01-01T23:59:59.000Z

    Energy Savings and CO2 Emissions Reduction of China’s CementEnergy Savings and CO2 Emissions Reduction of China’s Cementenergy savings and CO2 emission reduction potentials are

  12. Surface Ocean CO2 Atlas (SOCAT) gridded data products

    SciTech Connect (OSTI)

    Sabine, Christopher [NOAA Pacific Marine Environmental Laboratory; Hankin, S. [Pacific Northwest National Laboratory (PNNL); Koyuk, H [Joint Institute for the Study of the Atmosphere and Ocean, University of Washington; Bakker, D C E [School of Environmental Sciences, University of East Anglia, Norwich, UK; Pfeil, B [Geophysical Institute, University of Bergen; Uni Research AS, Bergen, Norway; Olsen, A [Bjerknes Centre for Climate Research, UNIFOB AS, Bergen, Norway; Metzl, N [Universite Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Kozyr, Alexander [ORNL; Fassbender, A [School of Oceanography, University of Washington, Seattle, WA; Manke, A [Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration; Malczyk, J [Jetz Laboratory, Department of Ecology and Evolutionary Biology, Yale University; Akl, J [CSIRO Wealth from Oceans Flagship, Hobart, Tasmania, Australia; Alin, S R [Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration; Bellerby, R G J [Geophysical Institute, University of Bergen, Bergen, Norway; Borges, A [University of Liege, Chemical Oceanography Unit, Institut de Physique, Liege, Belgium; Boutin, J [Universite Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Brown, P J [School of Environmental Sciences, University of East Anglia, Norwich, UK; Cai, W-J [Department of Marine Sciences, University of Georgia; Chavez, F P [Monterey Bay Aquarium Research Institute, Moss Landing, CA; Chen, A [Institute of Marine Geology and Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan; Cosa, C [Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration; Feely, R A [Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration; Gonzalez-Davila, M [Universidad de Las Palmas de Gran Canaria, Facultad de Ciencias del Mar, Las Palmas de Gran Canaria,; Goyet, C [Institut de Modélisation et d'Analyse en Géo-Environnement et Santé, Université de Perpignan; Hardman-Mountford, N [CSIRO, Marine and Atmospheric Research, Wembley, Western Australia, Australia; Heinze, C [Geophysical Institute, University of Bergen, Bergen, Norway; Hoppema, M [Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany; Hunt, C W [Ocean Process Analysis Lab, University of New Hampshire, Durham, New Hampshire; Hydes, D [National Oceanography Centre, Southampton, UK; Ishii, M [Japan Meteorological Agency, Meteorological Research Institute, Tsukuba, Japan; Johannessen, T [Geophysical Institute, University of Bergen, Bergen, Norway; Key, R M [Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey; Kortzinger, A [GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany; Landschutzer, P [School of Environmental Sciences, University of East Anglia, Norwich, UK; Lauvset, S K [Geophysical Institute, University of Bergen, Bergen, Norway; Lefevre, N [Université Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Lenton, A [Centre for Australian Weather and Climate Research, Hobart, Tasmania, Australia; Lourantou, A [Université Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Merlivat, L [Université Pierre et Marie Curie, LOCEAN/IPSL, Paris, France; Midorikawa, T [Nagasaki Marine Observatory, Nagasaki, Japan; Mintrop, L [MARIANDA, Kiel, Germany; Miyazaki, C [Faculty of Environmental Earth Science, Hokkaido University, Hokkaido, Japan; Murata, A [Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan; Nakadate, A [Marine Division, Global Environment and Marine Department, Japan Meteorological Agency, Tokyo, Japan; Nakano, Y [Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan; Nakaoka, S [National Institute for Environmental Studies (NIES), Tsukuba, Japan; Nojiri, Y [National Institute for Environmental Studies, Tsukuba, Japan; et al.

    2013-01-01T23:59:59.000Z

    A well documented, publicly available, global data set for surface ocean carbon dioxide (CO2) parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT) project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC). SOCAT version 1.5 was made public in September 2011 and holds 6.3 million quality controlled surface CO2 data from the global oceans and coastal seas, spanning four decades (1968 2007). The SOCAT gridded data is the second data product to come from the SOCAT project. Recognizing that some groups may have trouble working with millions of measurements, the SOCAT gridded product was generated to provide a robust regularly spaced fCO2 product with minimal spatial and temporal interpolation which should be easier to work with for many applications. Gridded SOCAT is rich with information that has not been fully explored yet, but also contains biases and limitations that the user needs to recognize and address.

  13. Weeks Island gravity stable CO2 pilot: Final report

    SciTech Connect (OSTI)

    Johnston, J.R.; Perry, G.E.

    1989-01-01T23:59:59.000Z

    The Weeks Island ''S'' sand Reservoir B (''S'' RB) gravity-stable CO2 field test was completed during February 1988. Injection started in October 1978 and production began in January 1981 in this high-permeability, steeply-dipping sandstone reservoir. About 264,000 barrels of oil or 65 percent of the starting volume has been recovered. A 24-percent pore-volume slug of CO2 mixed with about six mole percent of natural gas (mostly methane) was injected at the start of the pilot. Since 1983, produced CO2 plus hydrocarbon gases have been recycled. CO2 usage statistics are 9.34 MCF/BO with recycle and 3.24 MCF/BO based on purchased CO2. Previous annual reports document the pilot design, implementation, and early results for the 1977 to June 1981 time period. This report is a review of early pilot history and a more detailed account of the post June 1981 results and overall interpretation. A reservoir-simulation history match of pilot performance plus core and log data from a 1983 swept-zone evaluation well are described in this report. A brief description of the production facility and an account of the corrosion control program are also included. 11 refs., 34 figs.

  14. CO2 Sequestration in Unmineable Coal Seams: Potential Environmental Impacts

    SciTech Connect (OSTI)

    Hedges, S.W.; Soong, Yee; McCarthy Jones, J.R.; Harrison, D.K.; Irdi, G.A.; Frommell, E.A.; Dilmore, R.M.; Pique, P.J.; Brown, T.D

    2005-09-01T23:59:59.000Z

    An initial investigation into the potential environmental impacts of CO2 sequestration in unmineable coal seams has been conducted, focusing on changes in the produced water during enhanced coalbed methane (ECBM) production using a CO2 injection process (CO2-ECBM). Two coals have been used in this study, the medium volatile bituminous Upper Freeport coal (APCS 1) of the Argonne Premium Coal Samples series, and an as-mined Pittsburgh #8 coal, which is a high volatile bituminous coal. Coal samples were reacted with either synthetic produced water or field collected produced water and gaseous carbon dioxide at 40 ?C and 50 bar to evaluate the potential for mobilizing toxic metals during CO2-ECBM/sequestration. Microscopic and x-ray diffraction analysis of the post-reaction coal samples clearly show evidence of chemical reaction, and chemical analysis of the produced water shows substantial changes in composition. These results suggest that changes to the produced water chemistry and the potential for mobilizing toxic trace elements from coalbeds are important factors to be considered when evaluating deep, unmineable coal seams for CO2 sequestration.

  15. Molecular Dynamics Simulations of CO2 Formation in Interstellar Ices

    E-Print Network [OSTI]

    Arasa, Carina; van Dishoeck, Ewine F; Kroes, Geert-Jan

    2013-01-01T23:59:59.000Z

    CO2 ice is one of the most abundant components in ice-coated interstellar ices besides H2O and CO, but the most favorable path to CO2 ice is still unclear. Molecular dynamics calculations on the ultraviolet photodissociation of different kinds of CO-H2O ice systems have been performed at 10 K in order to demonstrate that the reaction between CO and an OH molecule resulting from H2O photodissociation through the first excited state is a possible route to form CO2 ice. However, our calculations, which take into account different ice surface models, suggest that there is another product with a higher formation probability ((3.00+-0.07)x10-2), which is the HOCO complex, whereas the formation of CO2 has a probability of only (3.6+-0.7)x10-4. The initial location of the CO is key to obtain reaction and form CO2: the CO needs to be located deep into the ice. The HOCO complex becomes trapped in the cold ice surface in the trans-HOCO minimum because it quickly loses its internal energy to the surrounding ice, preventi...

  16. Progress on Footprint Reduction at the Hanford Site - 12406

    SciTech Connect (OSTI)

    McKenney, Dale E. [CH2M HILL, Plateau Remediation Company, Richland, Washington 99352 (United States); Seeley, Paul [Cenibark International, Inc., Richland, Washington 99352 (United States); Farabee, Al [U.S. Department of Energy, Richland Operations Office, Richland, Washington 99352 (United States)

    2012-07-01T23:59:59.000Z

    The Department of Energy (DOE) Office of Environmental Management (EM) continues to reduce the footprint of legacy sites throughout the EM complex. Footprint reduction is being accomplished by focusing cleanup activities on decontamination and demolition of excess contaminated facilities, soil and groundwater remediation, and solid waste disposition. All of these initiatives are being accomplished with established technologies in proven regulatory frameworks. Ultimately, completion of these environmental cleanup activities will reduce the monitoring and maintenance costs associated with managing large federal facilities, allowing EM to place more focus on other high priority cleanup efforts and facilitate a successful transition to land-term stewardship of these sites. Through the American Recovery and Reinvestment Act (ARRA) investment, the Department's cleanup footprint has been reduced by 45 percent to date, from 2411 km{sup 2} (931 mi{sup 2}) to 1336 km{sup 2} (516 mi{sup 2}s). With this significant progress on footprint reduction, the Department is on track towards their goal to reduce its overall footprint by approximately 90 percent by 2015. In addition, some areas cleaned up may become available for alternate uses (i.e. recreation, conservation, preservation, industrialization or development). Much of the work to reduce the complex's footprint occurred at the Savannah River Site in South Carolina and the Hanford Site in Washington, but cleanup continues across the complex. Footprint reduction is progressing well at the Hanford Site, supported predominantly through ARRA investment. To date, 994 km{sup 2} (384 mi{sup 2}) (65%) of footprint reduction have been achieved at Hanford, with a goal to achieve a 90% reduction by Fiscal Year 2015. The DOE EM and DOE Richland Operations Office, continue to make great progress to reduce the legacy footprint of the Hanford Site. Footprint reduction is being accomplished by focusing cleanup activities on decontamination and demolition of excess facilities, both contaminated and uncontaminated, waste site cleanup activities, and debris pile removal. All of these activities can be accomplished with proven technologies and within established regulatory frameworks. Footprint reduction goals for Fiscal Year 2011 were exceeded, largely with the help of ARRA funding. As cleanup projects are completed and the total area requiring cleanup shrinks, overall costs for surveillance and maintenance operations and infrastructure services decrease. This work completion and decrease in funding requirements to maintain waste sites and antiquated facilities allows more focus on high priority site missions (i.e. groundwater remediation, tank waste disposition, etc.) and moves Site areas closer to transition from EM to the Legacy Management program. The progress in the Hanford footprint reduction effort will help achieve success in these other important mission areas. (authors)

  17. CATALYST CATALYSTADSORBENT ADSORBENT HCS + H2O H2 + CO2

    E-Print Network [OSTI]

    Southern California, University of

    - CO2 Adsorbent Effect of Membrane Properties On HAMR performance 3.190.3883--H2O --54.30.0248Ar --67 CATALYST CATALYSTADSORBENT ADSORBENT C O 2CO2 CO2 CO2 HCS + H2O H2 + CO2 Mork Family Department of Chemical using hydrotalcite-type CO2 adsorbents and nanoporous H2-selective carbon molecular sieve membranes (CMS

  18. Thermal desorption of CH4 retained in CO2 ice

    E-Print Network [OSTI]

    R. Luna; C. Millan; M. Domingo; M. A. Satorre

    2008-01-21T23:59:59.000Z

    CO2 ices are known to exist in different astrophysical environments. In spite of this, its physical properties (structure, density, refractive index) have not been as widely studied as those of water ice. It would be of great value to study the adsorption properties of this ice in conditions related to astrophysical environments. In this paper, we explore the possibility that CO2 traps relevant molecules in astrophysical environments at temperatures higher than expected from their characteristic sublimation point. To fulfil this aim we have carried out desorption experiments under High Vacuum conditions based on a Quartz Crystal Microbalance and additionally monitored with a Quadrupole Mass Spectrometer. From our results, the presence of CH4 in the solid phase above the sublimation temperature in some astrophysical scenarios could be explained by the presence of several retaining mechanisms related to the structure of CO2 ice.

  19. Thermal desorption of CH4 retained in CO2 ice

    E-Print Network [OSTI]

    Luna, R; Domingo, M; Satorre, M A

    2008-01-01T23:59:59.000Z

    CO2 ices are known to exist in different astrophysical environments. In spite of this, its physical properties (structure, density, refractive index) have not been as widely studied as those of water ice. It would be of great value to study the adsorption properties of this ice in conditions related to astrophysical environments. In this paper, we explore the possibility that CO2 traps relevant molecules in astrophysical environments at temperatures higher than expected from their characteristic sublimation point. To fulfil this aim we have carried out desorption experiments under High Vacuum conditions based on a Quartz Crystal Microbalance and additionally monitored with a Quadrupole Mass Spectrometer. From our results, the presence of CH4 in the solid phase above the sublimation temperature in some astrophysical scenarios could be explained by the presence of several retaining mechanisms related to the structure of CO2 ice.

  20. air-sea co2 flux: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    into the potential behavior and the operational parameters of CO2 sequestration at CO2-EOR s... Dai, Zhenxue; Fessenden-Rahn, Julianna; Middleton, Richard; Pan, Feng; Jia,...

  1. Diesel Passenger Car Technology for Low Emissions and CO2 Compliance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Passenger Car Technology for Low Emissions and CO2 Compliance Diesel Passenger Car Technology for Low Emissions and CO2 Compliance Cost effective reduction of legislated emissions...

  2. Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry

    E-Print Network [OSTI]

    Ke, Jing

    2013-01-01T23:59:59.000Z

    The CO2 emissions from external production of electricityCO2) emissions from fossil fuel combustion, as well as the consumption of large amount of electricity,

  3. Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry

    E-Print Network [OSTI]

    Ke, Jing

    2013-01-01T23:59:59.000Z

    dioxide (CO2) emissions from fossil fuel combustion, as wellCO2 emissions (including cement process and fossil fuel combustion

  4. Use of experience curves to estimate the future cost of power plants with CO2 capture

    E-Print Network [OSTI]

    Rubin, Edward S.; Yeh, Sonia; Antes, Matt; Berkenpas, Michael; Davison, John

    2007-01-01T23:59:59.000Z

    2004. Experience curves for power plant emission controlassessments of fossil fuel power plants with CO 2 capturethe future cost of power plants with CO 2 capture Edward S.

  5. Leakage of CO2 from geologic storage: Role of secondary accumulation at shallow depth

    E-Print Network [OSTI]

    Pruess, K.

    2008-01-01T23:59:59.000Z

    adiabatic (= no external heat supply) expansion of CO 2 toCO 2 without external heat supply will cause temperatures toenables more sustained heat supply from the surroundings,

  6. Automobile Fuel; Economy and CO2 Emissions in Industrialized Countries: Troubling Trends through 2005/6

    E-Print Network [OSTI]

    Schipper, Lee

    2008-01-01T23:59:59.000Z

    s Commitment on CO2 Emission Reductions from Passenger Cars.is a small extra reduction in CO2 emissions per km due to a

  7. COLLOQUIUM: "The Environmental Footprint of Shale Gas Extraction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 9, 2013, 4:15pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: "The Environmental Footprint of Shale Gas Extraction and Hydraulic Fracturing" Professor Robert Jackson Duke...

  8. A Review of Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2014-01-01T23:59:59.000Z

    efficiency and CO2 Emission-reduction Technologies forefficiency and CO2 Emission- reduction Technologies forefficiency and CO2 Emission-reduction Technologies The

  9. A quantitative comparison of the cost of employing EOR-coupled CSS supplemented with secondary DSF storage for two large CO2 point sources

    SciTech Connect (OSTI)

    Davidson, Casie L.; Dahowski, Robert T.; Dooley, James J.

    2011-04-18T23:59:59.000Z

    This paper explores the impact of the temporally dynamic demand for CO2 for enhanced hydrocarbon recovery with CO2 storage. Previous evaluations of economy-wide CO2 capture and geologic storage (CCS) deployment have typically applied a simplifying assumption that 100% of the potential storage capacity for a given formation is available on the first day of the analysis, and that the injection rate impacts only the number of wells required to inject a given volume of fluid per year, making it a cost driver rather than a technical one. However, as discussed by Dahowski and Bachu [1], storing CO2 in a field undergoing CO2 flooding for enhanced oil recovery (EOR) is subject to a set of constraints to which storage in DSFs is not, and these constraints combined with variable demand for CO2 may strongly influence the ability of an EOR field to serve as a baseload storage formation for commercial scale CCS projects undertaken as a means of addressing climate change mitigation targets. This analysis assumes that CCS is being undertaken in order to reduce CO2 emissions from the industrial sources evaluated and that there is enough of a disincentive associated with venting CO2 to the atmosphere that any CO2 not used within the EOR field will be stored in a suitable nearby deep saline formation (DSF). The authors have applied a CO2 demand profile to two cases chosen to illustrate the differences in cost impacts of employing EOR-based CCS as a part of a given source’s CCS portfolio. The first scenario is a less-than-ideal case in which a single EOR field is used for storage and all CO2 not demanded by the EOR project is stored in a DSF; the second scenario is designed to optimize costs by minimizing storage in the DSF and maximizing lower-cost EOR-based storage. Both scenarios are evaluated for two facilities emitting 3 and 6 MtCO2/y, corresponding to a natural gas processing facility and an IGCC electric power plant, respectively. Annual and lifetime average CO2 transport and storage costs are presented, and the impact of added capture and compression costs on overall project economics is examined.

  10. Adsorption and Strain: The CO2-Induced Swelling of Coal

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Adsorption and Strain: The CO2-Induced Swelling of Coal M. Vandamme1 , L. Brochard2 , B. Lecampion3.07.014 #12;Abstract Enhanced coal bed methane recovery (ECBM) consists in injecting carbon dioxide in coal gets adsorbed at the surface of the coal pores, which causes the coal to swell. This swelling

  11. THERMOCATALYTIC CO2-FREE PRODUCTION OF HYDROGEN FROM

    E-Print Network [OSTI]

    remain limited .... until some cost effective carbon sequestration option for distributed production production of hydrogen and carbon from hydrocarbon fuels with minimal CO2 emissions. Relevance. It is significantly more challenging to cost effectively sequester these [distributed] smaller volume carbon emissions

  12. CHARACTERIZATION OF MIXED CO2-TBPB HYDRATE FOR REFRIGERATION APPLICATIONS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    CHARACTERIZATION OF MIXED CO2-TBPB HYDRATE FOR REFRIGERATION APPLICATIONS Pascal Clain , Anthony storage and distribution in refrigeration applications. Previous studies show that these hydrates are able.s] INTRODUCTION Secondary refrigeration is a method using a neutral fluid for cold distribution in order

  13. Carbonation: An Efficient and Economical Process for CO2 Sequestration

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Carbonation: An Efficient and Economical Process for CO2 Sequestration Tarun R Naik1 and Rakesh sequestration. Most of the studies related to the carbonation are limited to its effects on corrosion. The possibility of using carbonation process as a direct means for carbon dioxide sequestration is yet

  14. SecuestrodeCO2enestructurasgeolgicas Modelacin numrica de

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    Kioto Responsables del 55% de las emisiones se comprometen reducir en 5% el total de emisiones respecto forma diferente A España le corresponde no aumentar en mas de 15% sus emisiones respecto a 1990 En 2006enestructurasgeológicas Una forma de disminuir emisiones: Almacenamiento de CO2 en estructuras geológicas Yacimientos de

  15. Challenges in elevated CO2 experiments on forests

    E-Print Network [OSTI]

    , Bangor, UK 8 Queens College, City University of New York, NY, USA 9 Lund University, Lund, Sweden 10 concentrations in future experiments to better predict the effects of climate change? Plantations and natural. Forest ecosystems under climate change Carbon dioxide (CO2) is the most important greenhouse gas emitted

  16. CO2 as a raw material for chemistry : an

    E-Print Network [OSTI]

    Canet, Léonie

    to chemical products capable of being energy vectors (CH3OH, CH3OCH3, EtOH, ... ) · Access to chemical intermediates from biomass · CO2 accelerates production of biomass · Ex microalgae biofuel, chemicals, .. · Ex energy: 803 kJ/mol ( 192 kcal/mol) #12;Paris, 09/07/20139 Chemical valorisations : an industrial

  17. Reduction of CO2 emissions and utilization of slag

    E-Print Network [OSTI]

    Zevenhoven, Ron

    emissions is 314 #12;CO2 sequestration by mineral carbonation. Con- crete and steel manufacturers produce from carbonate-free slag products (Slag2PCC Plus) Hiilidioksidipäästöjen vähentäminen ja Email: ron.zevenhoven@abo.fi Abstract By producing precipitated calcium carbonate (PCC) from a carbonate

  18. ACID GASES IN CO2-RICH SUBSURFACE GEOLOGIC ENVIRONMENTS

    SciTech Connect (OSTI)

    Chialvo, Ariel A [ORNL] [ORNL; Vlcek, Lukas [ORNL] [ORNL; Cole, David [Ohio State University] [Ohio State University

    2013-01-01T23:59:59.000Z

    The analysis of species behavior involving dilute fluid environments has been crucial for the advance of modern solvation thermodynamics through molecular-based formalisms to guide the development of macroscopic regression tools in the description of fluid behavior and correlation of experimental data (Chialvo 2013). Dilute fluid environments involving geologic formations are of great theoretical and practical relevance regardless of the thermodynamic state conditions. The most challenging systems are those involving highly compressible and reactive confined environments, i.e., where small perturbations of pressure and/or temperature can trigger considerable density changes. This in turn can alter significantly the species solvation, their preferential solvation, and consequently, their reactivity with one another and with the surrounding mineral surfaces whose outcome is the modification of the substrate porosity and permeability, and ultimately, the integrity of the mineral substrates. Considering that changes in porosity and permeability resulting from dissolution and precipitation phenomena in confined environments are at the core of the aqueous CO2-mineral interactions, and that caprock integrity (e.g., sealing capacity) depends on these key parameters, it is imperative to gain fundamental understanding of the mineral-fluid interfacial phenomena and fluid-fluid equilibria under mineral confinement at subsurface conditions. In order to undertand the potential effects of acid gases as contaminants of supercritical CO2 streams, in the next section we will discuss the thermodynamic behavior of CO2 fluid systems by addressing two crucial issues in the context of carbon capture, utilization and sequestration (CCUS) technologies: (i) Why should we consider (acid gas) CO2 impurities? and (ii) Why are CO2 fluid - mineral interactions of paramount relevance?

  19. Commercial Lighting

    Broader source: Energy.gov [DOE]

    Commercial lighting accounts for more than 20 percent of total commercial building energy use. The Energy Department works to reduce lighting energy use through research and deployment.

  20. Commercial Weatherization

    Broader source: Energy.gov [DOE]

    Commercial buildings consume 19 percent of the energy used in the U.S. Learn how the Energy Department is supporting research and deployment on commercial weatherization.

  1. The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    energy technologies, such as solar photovoltaics (PV), on-technology even in 2020. Please note that these calculations also consider solar thermal and PV,

  2. The Influence of a CO2 Pricing Scheme on Distributed Energy Resources in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    would eliminate fossil based CHP systems is wrong and largevery attractive sites for CHP-enabled DG systems. References1973E Darrow, K. et al. (2009), “CHP Market Assessment,”

  3. The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    Darrow, K et al. (2009), “CHP Market Assessment” Integratedwith combined heat and power (CHP) capability deployment ingas emissions (GHG) reductions. CHP applications at large

  4. THE CO2 ABATEMENT POTENTIAL OF CALIFORNIA'S MID-SIZED COMMERCIAL BUILDINGS

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    21 Figure 10. Adopted CHP Capacities by Forecasting Zones (Electricity Generation from CHP by Forecasting Zones (FZs),12. Capacity Factors for CHP by Forecasting Zones (FZs),

  5. THE CO2 ABATEMENT POTENTIAL OF CALIFORNIA'S MID-SIZED COMMERCIAL BUILDINGS

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    intercept) independent of installed capacity that representsof statewide incremental installed CHP capacity in 2020. 2.0during the day. Installed CHP capacity in midsized buildings

  6. The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    intercept) independent of installed capacity that representscost ($) o o k 1 k 2 k 3 a k 1 k 2 installed capacity (kW)discrete technologies installed capacity (kW) continuous

  7. The Influence of a CO2 Pricing Scheme on Distributed Energy Resources in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    solar/calculators/PVWATTS/version1/ Firestone, R. , (2004), “Distributed Energy Resources Customersolar thermal collectors, absorption chillers, batteries and thermal storage systems. We apply the Distributed Energy Resources Customer

  8. The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    heat exchangers, solar thermal collectors, absorptioncells; • photovoltaics (PV) and solar thermal collectors; •for application of solar thermal and recovered heat to end-

  9. The Influence of a CO2 Pricing Scheme on Distributed Energy Resources in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    heat exchangers, solar thermal collectors, absorptionis competition between fuel cells and PV/solar thermal.It is found that the PV/solar thermal adoption increases

  10. THE CO2 ABATEMENT POTENTIAL OF CALIFORNIA'S MID-SIZED COMMERCIAL BUILDINGS

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    heat exchangers, solar thermal collectors, absorptionfuel cells; photovoltaics (PV) and solar thermal collectors;for application of solar thermal and recovered heat to end-

  11. The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    database, ITRON, http://capabilities.itron.com/ceusweb/ Firestone, R, (2004), “Distributed Energy Resources Customer Adoption Model Technology

  12. THE CO2 ABATEMENT POTENTIAL OF CALIFORNIA'S MID-SIZED COMMERCIAL BUILDINGS

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    database, ITRON, Firestone, R, (2004), “Distributed Energy Resources Customer Adoption Model Technology

  13. THE CO2 ABATEMENT POTENTIAL OF CALIFORNIA'S MID-SIZED COMMERCIAL BUILDINGS

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    utility electricity and natural gas purchases, plus amortized capital and maintenance costs for any distributed generation (distributed generation (DG) or combined heat and power (CHP), and all energy needs to be purchased from the utility.

  14. The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    utility electricity and natural gas purchases, plus amortized capital and maintenance costs for any distributed generation (

  15. New Directions: Potential Climate and Productivity Benefits from CO2 Capture in Commercial Buildings

    E-Print Network [OSTI]

    Gall, Elliott T; Nazaroff, William W

    2015-01-01T23:59:59.000Z

    Fennell, P.S. , 2014. Carbon capture and storage update.that require solutions for carbon capture from buildings to

  16. THE CO2 ABATEMENT POTENTIAL OF CALIFORNIA'S MID-SIZED COMMERCIAL BUILDINGS

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    heat exchanger internal combustion engine Los Angeleschiller. ICE: Internal combustion engine, GT: Gas turbine,indicate that internal combustion engines (ICEs) with heat

  17. THE CO2 ABATEMENT POTENTIAL OF CALIFORNIA'S MID-SIZED COMMERCIAL BUILDINGS

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    Annual Electricity and Natural Gas Use for the Forecasting34 Figure B4. Natural Gas Use by Building38 Figure B6. Natural Gas by End-

  18. The Influence of a CO2 Pricing Scheme on Distributed Energy Resources in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    2003), “Distributed Energy Resources Customer AdoptionGas-Fired Distributed Energy Resource Characterizations,”National Renewable Energy Resource Laboratory, Golden, CO,

  19. Accuracy of CO2 sensors in commercial buildings: a pilot study

    E-Print Network [OSTI]

    Fisk, William J.; Faulkner, David; Sullivan, Douglas P.

    2006-01-01T23:59:59.000Z

    of Health Services. Emmerich SJ and Persily AK (2001) Staeventilation (Apte 2006, Emmerich and Persily 2001, Fisk and

  20. THE CO2 ABATEMENT POTENTIAL OF CALIFORNIA'S MID-SIZED COMMERCIAL BUILDINGS

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    costs is important. Lead-acid batteries on the other hand,intercept costs (US$) lead acid batteries absorption chiller

  1. The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    costs is important. Lead-acid batteries on the other hand,thermal lead acid absorption solar photo- storage batteries

  2. The Influence of a CO2 Pricing Scheme on Distributed Energy Resources in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    costs is important. Lead-acid batteries on the other hand,with HX (MW) adopted lead acid batteries (MWh) adopted solarwith HX (MW) adopted lead acid batteries (MWh) adopted solar

  3. The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    PV) and solar thermal collectors; • conventional batteries,exchangers, solar thermal collectors, absorption chillers,

  4. The Influence of a CO2 Pricing Scheme on Distributed Energy Resources in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    PV) and solar thermal collectors; • conventional batteries,exchangers, solar thermal collectors, absorption chillers,

  5. THE CO2 ABATEMENT POTENTIAL OF CALIFORNIA'S MID-SIZED COMMERCIAL BUILDINGS

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    absorption chillers that use waste heat for cooling (Stadlerdirect-fired natural gas chillers, waste heat or solar heat;with HX can utilize waste heat for heating or cooling

  6. The Influence of a CO2 Pricing Scheme on Distributed Energy Resources in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    chillers that use waste heat for cooling (see also Stadlerdirect-fired natural gas chillers, waste heat or solar heat;time to be able to utilize waste heat from CHP systems. Of

  7. The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01T23:59:59.000Z

    chillers that use waste heat for cooling (see also Stadlerfired natural gas chillers, waste heat or solar heat; •with HX can utilize waste heat for heating or cooling

  8. Rechargeable Li/CO2O2 (2 : 1) battery and Li/CO2 Yali Liu, Rui Wang, Yingchun Lyu, Hong Li* and Liquan Chen

    E-Print Network [OSTI]

    Wang, Wei Hua

    Rechargeable Li/CO2­O2 (2 : 1) battery and Li/CO2 battery Yali Liu, Rui Wang, Yingchun Lyu, Hong Li* and Liquan Chen A Li/CO2­O2 (2 : 1, volume ratio) battery and a Li/CO2 battery with discharging specific capacities of 1808 mA h gÀ1 and 1032 mA h gÀ1 , respectively, are reported. Li2CO3 is the main discharge

  9. THE ECONOMICS OF CO2 SEPARATION AND CAPTURE Howard J. Herzog

    E-Print Network [OSTI]

    economic source of CO2, especially for use in enhanced oil recovery (EOR) operations where CO2 is injected the price of oil dropped in the mid-1980s, the recovered CO2 was too expensive for EOR operations, forcingTHE ECONOMICS OF CO2 SEPARATION AND CAPTURE Howard J. Herzog Principal Research Engineer MIT Energy

  10. The Anthropogenic Perturbation of Atmospheric CO2 and the Climate System

    E-Print Network [OSTI]

    Fortunat, Joos

    of carbon dioxide (CO2), a powerful greenhouse gas (GHG), are redistributed within the climate system

  11. Soil CO2 production and surface flux at four climate observatories in eastern Canada

    E-Print Network [OSTI]

    Soil CO2 production and surface flux at four climate observatories in eastern Canada David Risk the climatic controls on soil respiration. We use subsurface CO2 concentrations, surface CO2 flux and detailed physical monitoring of the subsurface regime to examine physical controls on soil CO2 production. Results

  12. Observations and simulations of synoptic, regional, and local variations in atmospheric CO2

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    Observations and simulations of synoptic, regional, and local variations in atmospheric CO2 Jih] Synoptic events may play an important role in determining the CO2 spatial distribution and temporal 2001, which had the most significant CO2 concentration variation in our case pool. The CO2

  13. Constraint of the CO2 rise by new atmospheric carbon isotopic measurements during the last deglaciation

    E-Print Network [OSTI]

    Chappellaz, Jérôme

    Click Here for Full Article Constraint of the CO2 rise by new atmospheric carbon isotopic increase of atmospheric carbon dioxide (CO2) during the last glacialinterglacial climatic transition remain debated. We analyzed the parallel evolution of CO2 and its stable carbon isotopic ratio (d13 CO2

  14. CO2 Capture and Utilization for Enhanced Oil Poul Jacob Vilhelmsen1

    E-Print Network [OSTI]

    CO2 Capture and Utilization for Enhanced Oil Recovery Poul Jacob Vilhelmsen1 , William Harrar2 Hørsholm Denmark 1 Abstract CO2 is an international theme and the cap-and-trade systems under. A possible technical step to reduce atmospheric emissions is CO2 capture and the utilisation of the CO2

  15. CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration

    E-Print Network [OSTI]

    Lehmann, Johannes

    CO2 efflux from Amazonian headwater streams represents a significant fate for deep soil respiration amounts of CO2 to the atmosphere, while the magnitude of CO2 degassing from small streams remains a major was as terrestrially-respired CO2 dissolved within soils, over 90% of which evaded to the atmosphere within headwater

  16. Edinburgh Research Explorer Can seasonal and interannual variation in landscape CO2 fluxes

    E-Print Network [OSTI]

    Millar, Andrew J.

    Edinburgh Research Explorer Can seasonal and interannual variation in landscape CO2 fluxes be detected by atmospheric observations of CO2 concentrations made at a tall tower? Citation for published in landscape CO2 fluxes be detected by atmospheric observations of CO2 concentrations made at a tall tower

  17. Physical controls on the isotopic composition of soil-respired CO2

    E-Print Network [OSTI]

    Physical controls on the isotopic composition of soil-respired CO2 Nick Nickerson1 and Dave Risk1] Measurement of the isotopic composition of soil and soil-respired CO2 (d13 CO2) has become an invaluable tool in understanding the effects of diffusive transport on soil CO2 isotopic composition, it is crucial

  18. Large CO2 disequilibria in tropical lakes Humberto Marotta,1,2

    E-Print Network [OSTI]

    Wehrli, Bernhard

    Large CO2 disequilibria in tropical lakes Humberto Marotta,1,2 Carlos M. Duarte,2 Sebastian Sobek,3 November 2009. [1] On the basis of a broad compilation of data on pCO2 in surface waters, we show tropical lakes to be, on average, far more supersaturated and variable in CO2 (geometric mean ± SE pCO2 = 1804

  19. Quantum Leaps in CO2 Detection Robert Byrne, Ph.D.

    E-Print Network [OSTI]

    Meyers, Steven D.

    Quantum Leaps in CO2 Detection Robert Byrne, Ph.D. USF chemical oceanographers are making quantum. #12;Quantum Leaps in CO2 Detection Robert Byrne, Ph.D. When deployed on shipboard our shipboard leaps in measuring carbon dioxide (CO2) in the oceans and measuring the interactions of CO2 between

  20. A numerical procedure to model and monitor CO2 sequestration in

    E-Print Network [OSTI]

    Santos, Juan

    sequestration over very long periods of time. · The analysis of CO2 underground storage safety in the long term procedure to model and monitor CO2 sequestration in aquifers ­ p. #12;Introduction. I · Storage of CO2 (31.6C, 7.38 MPa). · First industrial scale CO2 injection project: Sleipner gas field (North Sea

  1. A numerical procedure to model and monitor CO2 sequestration in aquifers

    E-Print Network [OSTI]

    Santos, Juan

    sequestration over very long periods of time. The analysis of CO2 underground storage safety in the long term procedure to model and monitor CO2 sequestration in aquifers ­ p. #12;Introduction. I Storage of CO2 (31.6C, 7.38 MPa). First industrial scale CO2 injection project: Sleipner gas field (North Sea

  2. Mathematical models as tools for probing long-term safety of CO2 storage

    E-Print Network [OSTI]

    Pruess, Karsten

    2010-01-01T23:59:59.000Z

    reservoirs, with large capacity for CO 2 storage (Bradshaw and Dance, 2004; Bachu, 2008). Improperly abandoned

  3. Production of Hydrogen and Electricity from Coal with CO2 Capture

    E-Print Network [OSTI]

    1 Production of Hydrogen and Electricity from Coal with CO2 Capture Princeton University: Tom use (transportation and heating) responsible for ~2/3 of global CO2 emissions · CO2 capture energy carriers are needed: electricity and hydrogen. · If CO2 sequestration is viable, fossil fuel

  4. Enhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification

    E-Print Network [OSTI]

    are a strong motivation to reduce CO2 emissions from industrial processes. Burning of fossil fuel to generate electricity is a major source of CO2 in the atmosphere, but the capture and sequestration of CO2 from flue gasEnhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification Youn-Sang Bae

  5. Extracting CO2 from seawater: Climate change mitigation and renewable liquid fuel

    E-Print Network [OSTI]

    Homes, Christopher C.

    Extracting CO2 from seawater: Climate change mitigation and renewable liquid fuel Matthew Eisaman and their impact · Technology: Extracting CO2 from seawater · Application: Renewable liquid fuel #12;Outline: Renewable liquid fuel #12;The data on atmospheric CO2 2000 years ago http://cdiac.ornl.gov/trends/co2

  6. Wavelength dependence of prepulse laser beams on EUV emission from CO2 reheated Sn plasma

    E-Print Network [OSTI]

    Harilal, S. S.

    Wavelength dependence of prepulse laser beams on EUV emission from CO2 reheated Sn plasma J. R. The expanding plume was then reheated by a 35 ns CO2 laser operating at 10.6 m. The role of prepulse wavelength, Tanaka et al.11 demonstrated the advantages of using a CO2 laser for generating higher CE. The CO2 LPP

  7. Carbonation of alkaline paper mill waste to reduce CO2 greenhouse gas emissions into the atmosphere

    E-Print Network [OSTI]

    Montes-Hernandez, German

    Carbonation of alkaline paper mill waste to reduce CO2 greenhouse gas emissions into the atmosphere of anthropogenic emission of greenhouse gases into the atmosphere such as CO2, CH4, N2O and CFCs. The CO2 emissions to reflect, adsorb and emit the solar energy. However, the continuous emissions of CO2 into the atmosphere

  8. 3D modelling of the early Martian Climate under a denser CO2 atmosphere: Temperatures and CO2 ice clouds

    E-Print Network [OSTI]

    Forget, Francois; Millour, Ehouarn; Madeleine, Jean-Baptiste; Kerber, Laura; Leconte, Jeremy; Marcq, Emmanuel; Haberle, Robert M

    2012-01-01T23:59:59.000Z

    On the basis of geological evidence, it is often stated that the early martian climate was warm enough for liquid water to flow on the surface thanks to the greenhouse effect of a thick atmosphere. We present 3D global climate simulations of the early martian climate performed assuming a faint young sun and a CO2 atmosphere with pressure between 0.1 and 7 bars. The model includes a detailed radiative transfer model using revised CO2 gas collision induced absorption properties, and a parameterisation of the CO2 ice cloud microphysical and radiative properties. A wide range of possible climates is explored by using various values of obliquities, orbital parameters, cloud microphysic parameters, atmospheric dust loading, and surface properties. Unlike on present day Mars, for pressures higher than a fraction of a bar, surface temperatures vary with altitude because of the adiabatic cooling and warming of the atmosphere when it moves vertically. In most simulations, CO2 ice clouds cover a major part of the planet...

  9. Stomatal proxy record of CO2 concentrations from the last termination suggests an important role for CO2 at climate change transitions

    E-Print Network [OSTI]

    Wohlfarth, Barbara

    Stomatal proxy record of CO2 concentrations from the last termination suggests an important role for CO2 at climate change transitions Margret Steinthorsdottir a,*, Barbara Wohlfarth a , Malin E2 reconstruction Betula nana Sweden a b s t r a c t A new stomatal proxy-based record of CO2

  10. 1M. Panahi, S. Skogestad ' Optimal Operation of a CO2 Capturing Plant for a Wide Range of Disturbances' Optimal Operation of a CO2 Capturing

    E-Print Network [OSTI]

    Skogestad, Sigurd

    1M. Panahi, S. Skogestad ' Optimal Operation of a CO2 Capturing Plant for a Wide Range of Disturbances' Optimal Operation of a CO2 Capturing Plant for a Wide Range of Disturbances Mehdi Panahi Sigurd Skogestad 18.10.2011 AIChE Annual Meeting #12;2M. Panahi, S. Skogestad ' Optimal Operation of a CO2

  11. ULTimateCO2 : A FP7 European Project dedicated to the understanding of the long term fate of geologically stored CO2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ULTimateCO2 : A FP7 European Project dedicated to the understanding of the long term fate of geologically stored CO2 Audigane, P.1 , Brown, S.2 , Dimier A.3 , Frykman P.4 , Gherardi F.5 , Le Gallo Y.6 Recherches Géologiques et minières - France 2 CO2SENSE limited, United Kingdom 3 EIFER, EIFER europaisches

  12. Experimental assessment of CO2-mineral-toxic ion interactions in a1 simplified freshwater aquifer: Implications for CO2 leakage from deep2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Experimental assessment of CO2-mineral-toxic ion interactions in a1 simplified freshwater aquifer: Implications for CO2 leakage from deep2 geological storage3 4 German Montes-Hernandez*a , François Renarda, b : 10.1021/es3053448 #12;2 Abstract1 The possible intrusion of CO2 into a given freshwater aquifer due

  13. Semi-analytical model of brine and CO2 leakage through an abandoned plugged well. Applications for determining an Area of Review and CO2 leakage rate

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Semi-analytical model of brine and CO2 leakage through an abandoned plugged well. Applications for determining an Area of Review and CO2 leakage rate Arnaud Réveillère, Jérémy Rohmer, Frédéric Wertz / contact the leak, and of CO2,g as a first approach. Compared to the state of the art, it adds the possibility

  14. Experimental Assessment of CO2Mineral-Toxic Ion Interactions in a Simplified Freshwater Aquifer: Implications for CO2 Leakage from

    E-Print Network [OSTI]

    that remobilization of trace elements by CO2 intrusion is not a universal physicochemical effect. In fact goethite, a decrease in pH resulting from CO2 intrusion could reactivate the adsorption of Se(IV) and As(V) if goethite, arsenite As(III) is significantly adsorbed on goethite, but is partially remobilized by CO2 intrusion

  15. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Iron and Steel Industry

    E-Print Network [OSTI]

    Morrow III, William R.

    2014-01-01T23:59:59.000Z

    Efficiency Improvement and CO2 Emission Reduction PotentialsModel Inputs Emissions Factors CO2 Emission factor for grid electricity (tonne CO2/MWh)  CO2 Emission factor for fuel (

  16. Incorporating the Effect of Price Changes on CO2-Equivalent Emissions From Alternative-Fuel Lifecycles: Scoping the Issues

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01T23:59:59.000Z

    function of CO2 taxes (or CO2 emission limits) 10 . b) Taxesrefinery process areas CO2 emissions from the control of COfertilizer use. CH4 and CO2 emissions from soil (parameters

  17. AGRY 598/FNR 598 Ecological Footprints, Spring 2010 Pfendler 203, TTh, 1:30 -2:45 pm

    E-Print Network [OSTI]

    Jackson, Scott A.

    that residents of Tippecanoe County can use to quantify their stormwater footprint, carbon footprint and backyard this tool. Students will learn how to: o Quantify a stormwater footprint o Quantify a carbon footprint o1/5 Syllabus AGRY 598/FNR 598 Ecological Footprints, Spring 2010 Pfendler 203, TTh, 1:30 - 2:45 pm

  18. A method for quick assessment of CO2 storage capacity in closed and semi-closed saline formations

    E-Print Network [OSTI]

    Zhou, Q.; Birkholzer, J.; Tsang, C.F.; Rutqvist, J.

    2008-01-01T23:59:59.000Z

    buoyancy effects, residual water saturation, etc. (Bachu and1 ) Residual CO 2 saturation Residual water saturation CO 2

  19. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    Factors CO2 Emission factor for grid electricity (tonnePotential for Electricity Saving and CO2 Emission Reduction

  20. Economically Efficient Operation of CO2 Capturing Process Part I: Self-optimizing Procedure for Selecting the Best Controlled Variables

    E-Print Network [OSTI]

    Skogestad, Sigurd

    the greenhouse gas CO2 that causes global warming. Due to the effect of CO2 emissions on global warming

  1. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    Improvement and CO2 Emission Reduction Potentials in theElectricity Saving and CO2 Emission Reduction in the Iron

  2. Research project on CO2 geological storage and groundwaterresources: Large-scale hydrological evaluation and modeling of impact ongroundwater systems

    SciTech Connect (OSTI)

    Birkholzer, Jens; Zhou, Quanlin; Rutqvist, Jonny; Jordan,Preston; Zhang,K.; Tsang, Chin-Fu

    2007-10-24T23:59:59.000Z

    If carbon dioxide capture and storage (CCS) technologies areimplemented on a large scale, the amounts of CO2 injected and sequesteredunderground could be extremely large. The stored CO2 then replaces largevolumes of native brine, which can cause considerable pressureperturbation and brine migration in the deep saline formations. Ifhydraulically communicating, either directly via updipping formations orthrough interlayer pathways such as faults or imperfect seals, theseperturbations may impact shallow groundwater or even surface waterresources used for domestic or commercial water supply. Possibleenvironmental concerns include changes in pressure and water table,changes in discharge and recharge zones, as well as changes in waterquality. In compartmentalized formations, issues related to large-scalepressure buildup and brine displacement may also cause storage capacityproblems, because significant pressure buildup can be produced. Toaddress these issues, a three-year research project was initiated inOctober 2006, the first part of which is summarized in this annualreport.

  3. Biomass Energy for Transport and Electricity: Large scale utilization under low CO2 concentration scenarios

    SciTech Connect (OSTI)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-01-25T23:59:59.000Z

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to stabilize atmospheric concentrations of CO2 at 400ppm and 450ppm. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. The costs of processing and transporting biomass energy at much larger scales than current experience are also incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the dominant source. A key finding of this paper is the role that carbon dioxide capture and storage (CCS) technologies coupled with commercial biomass energy can play in meeting stringent emissions targets. Despite the higher technology costs of CCS, the resulting negative emissions used in combination with biomass are a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels and shows that both technologies are important contributors to liquid fuels production, with unique costs and emissions characteristics. Through application of the GCAM integrated assessment model, it becomes clear that, given CCS availability, bioenergy will be used both in electricity and transportation.

  4. Photodesorption of ices I: CO, N2 and CO2

    E-Print Network [OSTI]

    Karin I. Oberg; Ewine F. van Dishoeck; Harold Linnartz

    2009-01-23T23:59:59.000Z

    A longstanding problem in astrochemistry is how molecules can be maintained in the gas phase in dense inter- and circumstellar regions. Photodesorption is a non-thermal desorption mechanism, which may explain the small amounts of observed cold gas in cloud cores and disk mid-planes. This paper aims to determine the UV photodesorption yields and to constrain the photodesorption mechanisms of three astrochemically relevant ices: CO, N2 and CO2. In addition, the possibility of co-desorption in mixed and layered CO:N2 ices is explored. The ice photodesorption is studied experimentally under ultra high vacuum conditions and at 15-60 K using a hydrogen discharge lamp (7-10.5 eV). The ice desorption during irradiation is monitored by reflection absorption infrared spectroscopy of the ice and simultaneous mass spectrometry of the desorbed molecules. Both the UV photodesorption yields per incident photon and the photodesorption mechanisms are molecule specific. CO photodesorbs without dissociation from the surface layer of the ice. N2, which lacks an electronic transition in this wavelength range, has a photodesorption yield that is more than an order of magnitude lower. This yield increases significantly due to co-desorption when N2 is mixed in with or layered on top of CO ice. CO2 photodesorbs through dissociation and subsequent recombination from the top 10 layers of the ice. At low temperatures (15-18 K) the derived photodesorption yields are 2.7x10^-3 and CO2 photodesorption yield is 1.2x10^-3x(1-e^(-X/2.9)) + 1.1x10^-3x(1-e^(-X/4.6)) molecules photon-1, where X is the ice thickness in monolayers and the two parts of the expression represent a CO2 and CO photodesorption pathway.

  5. Measures of the environmental footprint of the front end of the nuclear fuel cycle

    SciTech Connect (OSTI)

    E. Schneider; B. Carlsen; E. Tavrides; C. van der Hoeven; U. Phathanapirom

    2013-11-01T23:59:59.000Z

    Previous estimates of environmental impacts associated with the front end of the nuclear fuel cycle (FEFC) have focused primarily on energy consumption and CO2 emissions. Results have varied widely. This work builds upon reports from operating facilities and other primary data sources to build a database of front end environmental impacts. This work also addresses land transformation and water withdrawals associated with the processes of the FEFC. These processes include uranium extraction, conversion, enrichment, fuel fabrication, depleted uranium disposition, and transportation. To allow summing the impacts across processes, all impacts were normalized per tonne of natural uranium mined as well as per MWh(e) of electricity produced, a more conventional unit for measuring environmental impacts that facilitates comparison with other studies. This conversion was based on mass balances and process efficiencies associated with the current once-through LWR fuel cycle. Total energy input is calculated at 8.7 x 10- 3 GJ(e)/MWh(e) of electricity and 5.9 x 10- 3 GJ(t)/MWh(e) of thermal energy. It is dominated by the energy required for uranium extraction, conversion to fluoride compound for subsequent enrichment, and enrichment. An estimate of the carbon footprint is made from the direct energy consumption at 1.7 kg CO2/MWh(e). Water use is likewise dominated by requirements of uranium extraction, totaling 154 L/MWh(e). Land use is calculated at 8 x 10- 3 m2/MWh(e), over 90% of which is due to uranium extraction. Quantified impacts are limited to those resulting from activities performed within the FEFC process facilities (i.e. within the plant gates). Energy embodied in material inputs such as process chemicals and fuel cladding is identified but not explicitly quantified in this study. Inclusion of indirect energy associated with embodied energy as well as construction and decommissioning of facilities could increase the FEFC energy intensity estimate by a factor of up to 2.

  6. IMPLEMENTING A NOVEL CYCLIC CO2 FLOOD IN PALEOZOIC REEFS

    SciTech Connect (OSTI)

    James R. Wood; W. Quinlan; A. Wylie

    2004-01-01T23:59:59.000Z

    Recycled CO2 will be used in this demonstration project to produce bypassed oil from the Silurian Dover 35 pinnacle reef (Otsego County) in the Michigan Basin. Contract negotiations by our industry partner to gain access to the CO2 supply have been completed and the State of Michigan has issued an order to allow operation of the project. Injection of CO2 is scheduled to begin in February, 2004. Subsurface characterization is being completed using well log tomography animations and 3D visualizations to map facies distributions and reservoir properties in two reefs, the Belle River Mills and Chester 18 Fields. The Belle River Mills and Chester18 fields are being used as type-fields because they have excellent log and/or core data coverage. Amplitude slicing of the normalized gamma ray and core permeability and core porosity curves is showing trends that indicate significant heterogeneity and compartmentalization in these reservoirs associated with the original depositional fabric of the rocks. Digital and hard copy data continues to be compiled for the Niagaran reefs in the Michigan Basin. Technology transfer took place through technical presentations regarding visualization of the heterogeneity of the Niagaran reefs. An oral presentation was given at the AAPG Eastern Section Meeting and a booth at the same meeting was used to meet one-on-one with operators.

  7. Coal-Derived Warm Syngas Purification and CO2 Capture-Assisted Methane Production

    SciTech Connect (OSTI)

    Dagle, Robert A.; King, David L.; Li, Xiaohong S.; Xing, Rong; Spies, Kurt A.; Zhu, Yunhua; Rainbolt, James E.; Li, Liyu; Braunberger, B.

    2014-10-31T23:59:59.000Z

    Gasifier-derived syngas from coal has many applications in the area of catalytic transformation to fuels and chemicals. Raw syngas must be treated to remove a number of impurities that would otherwise poison the synthesis catalysts. Inorganic impurities include alkali salts, chloride, sulfur compounds, heavy metals, ammonia, and various P, As, Sb, and Se- containing compounds. Systems comprising multiple sorbent and catalytic beds have been developed for the removal of impurities from gasified coal using a warm cleanup approach. This approach has the potential to be more economic than the currently available acid gas removal (AGR) approaches and improves upon currently available processes that do not provide the level of impurity removal that is required for catalytic synthesis application. Gasification also lends itself much more readily to the capture of CO2, important in the regulation and control of greenhouse gas emissions. CO2 capture material was developed and in this study was demonstrated to assist in methane production from the purified syngas. Simultaneous CO2 sorption enhances the CO methanation reaction through relaxation of thermodynamic constraint, thus providing economic benefit rather than simply consisting of an add-on cost for carbon capture and release. Molten and pre-molten LiNaKCO3 can promote MgO and MgO-based double salts to capture CO2 with high cycling capacity. A stable cycling CO2 capacity up to 13 mmol/g was demonstrated. This capture material was specifically developed in this study to operate in the same temperature range and therefore integrate effectively with warm gas cleanup and methane synthesis. By combining syngas methanation, water-gas-shift, and CO2 sorption in a single reactor, single pass yield to methane of 99% was demonstrated at 10 bar and 330oC when using a 20 wt% Ni/MgAl2O4 catalyst and a molten-phase promoted MgO-based sorbent. Under model feed conditions both the sorbent and catalyst exhibited favorable stability after multiple test cycles. The cleanup for warm gas cleanup of inorganics was broken down into three major steps: chloride removal, sulfur removal, and the removal for a multitude of trace metal contaminants. Na2CO3 was found to optimally remove chlorides at an operating temperature of 450ºC. For sulfur removal two regenerable ZnO beds are used for bulk H2S removal at 450ºC (<5 ppm S) and a non-regenerable ZnO bed for H2S polishing at 300ºC (<40 ppb S). It was also found that sulfur from COS could be adsorbed (to levels below our detection limit of 40 ppb) in the presence of water that leads to no detectable slip of H2S. Finally, a sorbent material comprising of Cu and Ni was found to be effective in removing trace metal impurities such as AsH3 and PH3 when operating at 300ºC. Proof-of-concept of the integrated cleanup process was demonstrated with gasifier-generated syngas produced at the Western Research Institute using Wyoming Decker Coal. When operating with a ~1 SLPM feed, multiple inorganic contaminant removal sorbents and a tar-reforming bed was able to remove the vast majority of contaminants from the raw syngas. A tar-reforming catalyst was employed due to the production of tars generated from the gasifier used in this particular study. It is envisioned that in a real application a commercial scale gasifier operating at a higher temperature would produce lesser amount of tar. Continuous operation of a poison-sensitive copper-based WGS catalyst located downstream from the cleanup steps resulted in successful demonstration. ?

  8. International Symposium on Site Characterization for CO2 Geological Storage

    E-Print Network [OSTI]

    Tsang, Chin-Fu

    2006-01-01T23:59:59.000Z

    potential large-scale commercial projects involving CCS. Apotential risks to human health and the environment from the application of CCS

  9. Consumption-based accounting of CO2 emissions

    E-Print Network [OSTI]

    Davis, S. J; Caldeira, K.

    2010-01-01T23:59:59.000Z

    all “commercial” primary energy: fossil fuels, nuclear, andintensity of energy embodied in trade fossil fuels Kayafossil fuel inputs (22). We further adjusted regional energy

  10. Baseline ecological footprint of Sandia National Laboratories, New Mexico.

    SciTech Connect (OSTI)

    Coplen, Amy K.; Mizner, Jack Harry,; Ubechel, Norion M.

    2009-01-01T23:59:59.000Z

    The Ecological Footprint Model is a mechanism for measuring the environmental effects of operations at Sandia National Laboratories in Albuquerque, New Mexico (SNL/NM). This analysis quantifies environmental impact associated with energy use, transportation, waste, land use, and water consumption at SNL/NM for fiscal year 2005 (FY05). Since SNL/NM's total ecological footprint (96,434 gha) is greater than the waste absorption capacity of its landholdings (338 gha), it created an ecological deficit of 96,096 gha. This deficit is equal to 886,470lha, or about 3,423 square miles of Pinyon-Juniper woodlands and desert grassland. 89% of the ecological footprint can be attributed to energy use, indicating that in order to mitigate environmental impact, efforts should be focused on energy efficiency, energy reduction, and the incorporation of additional renewable energy alternatives at SNL/NM.

  11. Nanoplasmonic molecular ruler for nuclease activity and DNA footprinting

    DOE Patents [OSTI]

    Chen, Fanqing Frank; Liu, Gang L; Lee, Luke P

    2013-10-29T23:59:59.000Z

    This invention provides a nanoplasmonic molecular ruler, which can perform label-free and real-time monitoring of nucleic acid (e.g., DNA) length changes and perform nucleic acid footprinting. In various embodiments the ruler comprises a nucleic acid attached to a nanoparticle, such that changes in the nucleic acid length are detectable using surface plasmon resonance. The nanoplasmonic ruler provides a fast and convenient platform for mapping nucleic acid-protein interactions, for nuclease activity monitoring, and for other footprinting related methods.

  12. STOMP Subsurface Transport Over Multiple Phases: STOMP-CO2 and STOMP-CO2e Guide: Version 1.0

    SciTech Connect (OSTI)

    White, Mark D.; Bacon, Diana H.; McGrail, B. Peter; Watson, David J.; White, Signe K.; Zhang, Z. F.

    2012-04-03T23:59:59.000Z

    This STOMP (Subsurface Transport Over Multiple Phases) guide document describes the theory, use, and application of the STOMP-CO2 and STOMP-CO2e operational modes. These operational modes of the STOMP simulator are configured to solve problems involving the sequestration of CO2 in geologic saline reservoirs. STOMP-CO2 is the isothermal version and STOMP-CO2e is the nonisothermal version. These core operational modes solve the governing conservation equations for component flow and transport through geologic media; where, the STOMP-CO2 components are water, CO2 and salt and the STOMP-CO2e operational mode also includes an energy conservation equation. Geochemistry can be included in the problem solution via the ECKEChem (Equilibrium-Conservation-Kinetic-Equation Chemistry) module, and geomechanics via the EPRMech (Elastic-Plastic-Rock Mechanics) module. This addendum is designed to provide the new user with a full guide for the core capabilities of the STOMP-CO2 and -CO2e simulators, and to provide the experienced user with a quick reference on implementing features. Several benchmark problems are provided in this addendum, which serve as starting points for developing inputs for more complex problems and as demonstrations of the simulator’s capabilities.

  13. Effects of CO2 on H2O band profiles and band strengths in mixed H2O:CO2 ices

    E-Print Network [OSTI]

    Karin I. Oberg; Helen J. Fraser; A. C. Adwin Boogert; Suzanne E. Bisschop; Guido W. Fuchs; Ewine F. van Dishoeck; Harold Linnartz

    2006-10-25T23:59:59.000Z

    H2O is the most abundant component of astrophysical ices. In most lines of sight it is not possible to fit both the H2O 3 um stretching, the 6 um bending and the 13 um libration band intensities with a single pure H2O spectrum. Recent Spitzer observations have revealed CO2 ice in high abundances and it has been suggested that CO2 mixed into H2O ice can affect relative strengths of the 3 um and 6 um bands. We used laboratory infrared transmission spectroscopy of H2O:CO2 ice mixtures to investigate the effects of CO2 on H2O ice spectral features at 15-135 K. We find that the H2O peak profiles and band strengths are significantly different in H2O:CO2 ice mixtures compared to pure H2O ice. In all H2O:CO2 mixtures, a strong free-OH stretching band appears around 2.73 um, which can be used to put an upper limit on the CO2 concentration in the H2O ice. The H2O bending mode profile also changes drastically with CO2 concentration; the broad pure H2O band gives way to two narrow bands as the CO2 concentration is increased. This makes it crucial to constrain the environment of H2O ice to enable correct assignments of other species contributing to the interstellar 6 um absorption band. The amount of CO2 present in the H2O ice of B5:IRS1 is estimated by simultaneously comparing the H2O stretching and bending regions and the CO2 bending mode to laboratory spectra of H2O, CO2, H2O:CO2 and HCOOH.

  14. Experimental investigation of the permeability and selectivity of supported ionic liquid membranes for CO2/He separation at temperatures up to 125° C

    SciTech Connect (OSTI)

    Ilconich, J.B.; Myers, C.R.; Pennline, H.W.; Luebke, D.R.

    2007-07-01T23:59:59.000Z

    Supported liquid membranes have been prepared by impregnation of commercial porous polymer films with the ionic liquid 1-n-hexyl-3- methylimidazolium bis(trifluoromethanesulfonyl)imide. The ionic liquid has been characterized, and the membranes have been tested to determine performance in the selective separation of CO2 from He. Experiments were conducted in a constant pressure system, and pure gas permeability/selectivity data are reported. Membranes prepared with polysulfone supports have been found to be stable to 125 °C. The CO2 permeability of the membranes increases from 744 to 1200 barrer as the temperature increases from 37 to 125 °C. The CO2/He selectivity decreased from 8.7 to 3.1 over the same temperature range.

  15. INDEPENDENT VERIFICATION REVIEW AND SURVEY of the Argonne National Laboratory Building 301 Footprint

    SciTech Connect (OSTI)

    E.N. Bailey

    2010-05-26T23:59:59.000Z

    INDEPENDENT VERIFICATION REVIEW AND SURVEY of the Argonne National Laboratory Building 301 Footprint, Argonne Illinois 5061-SR-01-0

  16. Reducing the Environmental Footprint and Economic Costs of Automotive Manufacturing through an Alternative Energy Supply

    E-Print Network [OSTI]

    Yuan, Chris; Dornfeld, David

    2009-01-01T23:59:59.000Z

    Footprint, Alternative Energy, Cost of Ownership ABSTRACTmanufacturing is to use alternative energies to partiallyassesses three alternative energy technologies, including

  17. CO2 Heat Pump Water Heater | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState6Report, March003MEAM,ofCO2 Heat Pump

  18. CO2 Injection Begins in Illinois | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState6Report, March003MEAM,ofCO2 Heat

  19. CO2 Injection in Kansas Oilfield Could Greatly Increase Production,

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState6Report, March003MEAM,ofCO2

  20. CO2 Heat Pump Water Heater | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding Removal OngoingCERCLA SitesCHICAGOof Energy CNG in OKC:CO2

  1. Pre-Combustion CO2 Control | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical Information STIP MapNotes:4DAQPre-Combustion CO2

  2. Shell Future Fuels and CO2 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey JumpAirPower Partners Wind FarmSheep Valleyand CO2

  3. 2015 CO2 Capture Technology Meeting | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, 2014 2014February 2015June5 CO2 Capture

  4. co2 capture meeting | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :,2013 NETL CO2 Capture Technology

  5. co2-saline-storage | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :,2013 NETL CO2 Capture

  6. co2-use-reuse | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :,2013 NETL CO2 CaptureTransport

  7. co2_ch4exchange | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :,2013 NETL CO2 CaptureTransport12

  8. From CO2 to Methanol via Novel Nanocatalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof Energy Forrestal NTFusion Energy SciencesFrom CO2 to

  9. From CO2 to Methanol via Novel Nanocatalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof Energy Forrestal NTFusion Energy SciencesFrom CO2 toFrom

  10. From CO2 to Methanol via Novel Nanocatalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof Energy Forrestal NTFusion Energy SciencesFrom CO2

  11. The net carbon footprint of a newly created boreal hydroelectric reservoir

    E-Print Network [OSTI]

    Long, Bernard

    The net carbon footprint of a newly created boreal hydroelectric reservoir Cristian R. Teodoru,1 present here the first comprehensive assessment of the carbon (C) footprint associated with the creation-term at rates exceeding the carbon footprint of the pre-flood landscape, although the sources of C supporting

  12. GreenColo: Incentivizing Tenants for Reducing Carbon Footprint in Colocation Data Centers

    E-Print Network [OSTI]

    Ren, Shaolei

    1 GreenColo: Incentivizing Tenants for Reducing Carbon Footprint in Colocation Data Centers energy consumption of data centers worldwide has resulted in a large carbon footprint, raising serious their servers for carbon efficiency. In this paper, we aim at minimizing the carbon footprint of geo

  13. REVIEW PAPER Strategies for reducing the carbon footprint of field crops

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    REVIEW PAPER Strategies for reducing the carbon footprint of field crops for semiarid areas emission. To provide the potential solution, we estimated the carbon footprint [i.e., the total amount the effect of crop sequences on the carbon footprint of durum wheat. Key strategies for reducing the carbon

  14. Carbon Dioxide Footprint of the Northwest Power System Comments submitted by Grant County Public Utility District

    E-Print Network [OSTI]

    Carbon Dioxide Footprint of the Northwest Power System Comments submitted by Grant County Public paper: Carbon Dioxide Footprint of the Northwest Power System, dated September 13, 2007. The Grant done a very thorough job of assessing the current and future carbon dioxide footprints of the Northwest

  15. Supervisory Control and Data Acquisition System Design for CO2 Enhanced Oil Recovery

    E-Print Network [OSTI]

    Sekhon, Jasjeet S.

    with low production rates such as CO2 enhanced oil recovery (EOR). This paper proposes a SCADA systemSupervisory Control and Data Acquisition System Design for CO2 Enhanced Oil Recovery Xie Lu College

  16. Assessing velocity and impedance changes due to CO2 saturation using interferometry on repeated seismic sources.

    E-Print Network [OSTI]

    Boyer, Edmond

    , Barcelona : Spain (2010)" #12;Introduction The role played by the industrial emission of carbon dioxide (CO2) in climate change has been well documented. Geological sequestration is a process to store CO2

  17. Advanced Development Of The Coal Fired Oxyfuel Process With CO2...

    Open Energy Info (EERE)

    Coal Fired Oxyfuel Process With CO2 Separation ADECOS Jump to: navigation, search Name: Advanced Development Of The Coal-Fired Oxyfuel Process With CO2 Separation (ADECOS) Place:...

  18. CO2 - Based Demand-Controlled Ventilation Control Strategies for Multi-Zone HVAC Systems

    E-Print Network [OSTI]

    Nassif, N.

    2011-01-01T23:59:59.000Z

    CO2-based demand-controlled ventilation DCV strategy offers a great opportunity to reduce energy consumption in HVAC systems while providing the required ventilation. However, implementing CO2-based DCV under ASHRAE 62.1.2004 through 2010...

  19. 10. The Influence of Atmospheric CO2, Temperature, and Water on the Abundance of

    E-Print Network [OSTI]

    Ehleringer, Jim

    BP sugars, starch phosphoenol pyruvate CO2 C4 acid pyruvate CO2 C4 acid PGA RuBP sugars, starch Figure 10 pathways contributing to global primary productivity, with Crassulacean Acid Metabolism (CAM), a third

  20. Structure and Dynamics of Forsterite-scCO2/H2O Interfaces as...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forsterite-scCO2H2O Interfaces as a Function of Water Content. Structure and Dynamics of Forsterite-scCO2H2O Interfaces as a Function of Water Content. Abstract: Molecular...

  1. Up-Scaling Geochemical Reaction Rates Accompanying Acidic CO2-Saturated Brine Flow in Sandstone Aquifers

    E-Print Network [OSTI]

    New York at Stoney Brook, State University of

    1 Up-Scaling Geochemical Reaction Rates Accompanying Acidic CO2-Saturated Brine Flow in Sandstone models. As a step toward this, network flow models were used to simulate the flow of CO2-saturated brine

  2. 9,997,638 Metric Tons of CO2 Injected as of April 9, 2015 | Department...

    Broader source: Energy.gov (indexed) [DOE]

    This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

  3. Effects of Hydration and Oxygen Vacancy on CO2 Adsorption and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydration and Oxygen Vacancy on CO2 Adsorption and Activation on ?-Ga2O3(100). Effects of Hydration and Oxygen Vacancy on CO2 Adsorption and Activation on ?-Ga2O3(100)....

  4. Structure and Dynamics of CO2 on Rutile TiO2(110)-1×1....

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure and Dynamics of CO2 on Rutile TiO2(110)-1×1. Abstract: Adsorption, binding, and diffusion of CO2 molecules on rutile TiO2(110) model surfaces was...

  5. 9,805,742 Metric Tons of CO2 Injected as of February 27, 2015...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

  6. 9,981,117 Metric Tons of CO2 Injected as of April 2, 2015 | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

  7. Forsterite [Mg2SiO4)] Carbonation in Wet Supercritical CO2: An...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forsterite Mg2SiO4) Carbonation in Wet Supercritical CO2: An in situ High Pressure X-Ray Diffraction Study. Forsterite Mg2SiO4) Carbonation in Wet Supercritical CO2: An in situ...

  8. Spatio-temporal changes in CO2 emissions during the second ZERT...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spatio-temporal changes in CO2 emissions during the second ZERT injection, August-September 2008. Spatio-temporal changes in CO2 emissions during the second ZERT injection,...

  9. Active Oxygen Vacancy Site for Methanol Synthesis from CO2 Hydrogenati...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oxygen Vacancy Site for Methanol Synthesis from CO2 Hydrogenation on In2O3(110): A DFT Study. Active Oxygen Vacancy Site for Methanol Synthesis from CO2 Hydrogenation on...

  10. CO2 interaction with aquifer and seal on geological timescales: the Miller oilfield, UK North Sea 

    E-Print Network [OSTI]

    Lu, Jiemin

    2008-01-01T23:59:59.000Z

    Carbon Capture and Storage (CCS) has been identified as a feasible technology to reduce CO2 emissions whilst permitting the continued use of fossil fuels. Injected CO2 must remain efficiently isolated from the atmosphere ...

  11. Promotional effect of CO2 on desulfation processes for pre-sulfated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Promotional effect of CO2 on desulfation processes for pre-sulfated Pt BaOAl2O3 lean NOx trap catalysts. Promotional effect of CO2 on desulfation processes for pre-sulfated Pt...

  12. Methanol Synthesis from CO2 Hydrogenation over a Pd4/In2O3 Model...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synthesis from CO2 Hydrogenation over a Pd4In2O3 Model Catalyst: A Combined DFT and Kinetic Study. Methanol Synthesis from CO2 Hydrogenation over a Pd4In2O3 Model Catalyst: A...

  13. Influence of Rock Types on Seismic Monitoring of CO2 Sequestration in Carbonate Reservoirs 

    E-Print Network [OSTI]

    Mammadova, Elnara

    2012-10-19T23:59:59.000Z

    ) techniques such as high pressure CO2 injection may normally be required to recover oil in place in carbonate reservoirs. This study addresses how different rock types can influence the seismic monitoring of CO2 sequestration in carbonates. This research...

  14. Catalytic roles of Co0 and Co2+ during steam reforming of ethanol...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    roles of Co0 and Co2+ during steam reforming of ethanol on CoMgO catalysts . Catalytic roles of Co0 and Co2+ during steam reforming of ethanol on CoMgO catalysts . Abstract:...

  15. Highlights of the 2009 SEG summer research workshop on "CO2 Sequestration Geophysics"

    E-Print Network [OSTI]

    Lumley, D.

    2010-01-01T23:59:59.000Z

    on “CO 2 Sequestration Geophysics” David Lumley (U. W.on “CO 2 Sequestration Geophysics” was held August 23-27,sequestration: Model Studies: Geophysics, 73, WA105-WA112.

  16. FOSSIL ENERGY, CO2, CLIMATE CHANGE, AND THE AEROSOL PROBLEM Stephen E. Schwartz

    E-Print Network [OSTI]

    been masked by the aerosol cooling forcing. Allowable future CO2 emissions so as not to commit of the greenhouse gas forcing due to cooling forcing by tropospheric aerosols; as aerosols, unlike CO2, are short

  17. 9,355,469 Metric Tons of CO2 Injected as of January 29, 2015...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

  18. 9,449,421 Metric Tons of CO2 Injected as of February 12, 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This carbon dioxide (CO2) has been injected in the United States as part of DOE's Clean Coal Research, Development, and Demonstration Programs. One million metric tons of CO2 is...

  19. Influence of Rock Types on Seismic Monitoring of CO2 Sequestration in Carbonate Reservoirs

    E-Print Network [OSTI]

    Mammadova, Elnara

    2012-10-19T23:59:59.000Z

    ) techniques such as high pressure CO2 injection may normally be required to recover oil in place in carbonate reservoirs. This study addresses how different rock types can influence the seismic monitoring of CO2 sequestration in carbonates. This research...

  20. On Leakage andSeepage of CO2 from Geologic Storage Sites intoSurface Water

    SciTech Connect (OSTI)

    Oldenburg, C.M.; Lewicki, J.L.

    2005-10-14T23:59:59.000Z

    Geologic carbon sequestration is the capture ofanthropogenic carbon dioxide (CO2) and its storage in deep geologicformations. The processes of CO2 seepage into surface water aftermigration through water-saturated sediments are reviewed. Natural CO2 andCH4 fluxes are pervasive in surface-water environments and are goodanalogues to potential leakage and seepage of CO2. Buoyancy-driven bubblerise in surface water reaches a maximum velocity of approximately 30 cms-1. CO2 rise in saturated porous media tends to occur as channel flowrather than bubble flow. A comparison of ebullition versus dispersive gastransport for CO2 and CH4 shows that bubble flow will dominate overdispersion in surface water. Gaseous CO2 solubility in variable-salinitywaters decreases as pressure decreases leading to greater likelihood ofebullition and bubble flow in surface water as CO2 migratesupward.