National Library of Energy BETA

Sample records for foothills pipe lines

  1. Emergency pipe line repair connects subsea pipe lines

    SciTech Connect (OSTI)

    Lerique, M.P.; Thiberge, P. ); Wright, N. )

    1990-11-01

    Emergency repair of any subsea line pipe must form a high-integrity, metal-to-metal seal. This paper presents a remote, diverless repair system that utilizes master flanges, a connector and a spool piece to repair line pipe in deep offshore waters.

  2. O.A.R. 734-055 - Pole Lines, Buried Cables, Pipe lines, Signs...

    Open Energy Info (EERE)

    rules outline the requirements for location, installation, construction, maintenance and use of pole lines, buried cables, pipe lines, signs miscellaneous operations...

  3. Monitoring pipe line stress due to ground displacement

    SciTech Connect (OSTI)

    Greenwood, J.H. Jr.

    1986-04-01

    Northwest Pipeline Corp. has a large-diameter natural gas pipe line system from Ignacio, Colo., to Sumas, Wash. At Douglas Pass in Colorado, large landslides required several sections of the line to be relocated outside the slide areas: 4,400 ft of new line in April 1962 and 3,200 ft in March 1963. No serious disruptions occurred for the next 16 years. Then in July 1979, some 1,200 ft had to be relocated. From 1980 to date, many landslides in the Douglas Pass area have caused new deformations, with the springs of 1983 and 1984 being the worst years. In 1980, Northwest Pipeline began engineering and geotechnical studies of the landslide problems. These led to instrumentation and pipe monitoring which indicated that pipe failure can be predicted and prevented if important slope deformations or increases in pipe stresses are detected early enough to implement some mitigating measures. Excavation of the pipe to relieve the stresses was used in most cases. The method was so successful that no pipe failure occurred in 1984 within instrumented sections, in spite of the exceptionally bad climatic conditions experienced.

  4. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect (OSTI)

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-10-31

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  5. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect (OSTI)

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-12-01

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  6. The development of mathematical model for cool down technique in the LNG pipe-line system

    SciTech Connect (OSTI)

    Hamaogi, Kenji; Takatani, Kouji; Kosugi, Sanai; Fukunaga, Takeshi

    1999-07-01

    An increase in demand for LNG as energy source can be expected since LNG is clean, in stable supply and produces low levels of carbon dioxide. Expansion of various LNG plants is planned. However, the optimal design of the LNG pipe-line systems has not yet been determined since the LNG transport phenomenon is not yet fully understood clearly. For example, in the LNG pipe-line system, large temperature gradients occur when the LNG transport starts. Therefore, although the necessity to cool down the pipe in order to minimize serious deformation is clear, the studies to understand it quantitatively have not been carried out. In this study, experiments on a commercial plant scale and a computer simulation, made up of structural analysis and two phase flow simulation were carried out to establish a prediction model of pipe deformation and to understand the phenomenon in the pipe.

  7. Portable jet pump system with pump lowered down hole and raised with coiled pipe and return line

    SciTech Connect (OSTI)

    Black, J.B.

    1988-01-12

    This patent describes a portable jet pump with the jet pump lowered down hole and raised with uncoiling and coiling of pipe and return line comprising: a portable well jet pump system including, a jet pump connected to a pipe and a return line that are feedable from the coiled state and in return back to the coiled state on pipe coil reel means and on return line coil reel means, respectively; first drive means for the pipe coil reel means, and second drive means for the return line coil reel means for uncoiling the pipe and the return line to lower the jet pump down a well and for coiling of the pipe and the return line in withdrawing the jet pump from a well; transport means mounting the portable well jet pump system for movement to wells to be pumped and from well to well; wherein the pipe is flexible tubing; and the return line is a flexible tube return line; a first flexible tubing guide roller is mounted on the transport means for properly guided entrance into and withdrawal of the pipe flexible tubing from a well; and a second flexible tubing guide roller mounted on the transport means for properly guided entrance into and withdrawal of the flexible tube return line from a well.

  8. METHOD AND APPARATUS FOR THE DETECTION OF LEAKS IN PIPE LINES

    DOE Patents [OSTI]

    Jefferson, S.; Cameron, J.F.

    1961-11-28

    A method is described for detecting leaks in pipe lines carrying fluid. The steps include the following: injecting a radioactive solution into a fluid flowing in the line; flushing the line clear of the radioactive solution; introducing a detector-recorder unit, comprising a radioactivity radiation detector and a recorder which records the detector signal over a time period at a substantially constant speed, into the line in association with a go-devil capable of propelling the detector-recorder unit through the line in the direction of the fluid flow at a substantia1ly constant velocity; placing a series of sources of radioactivity at predetermined distances along the downstream part of the line to make a characteristic signal on the recorder record at intervals corresponding to the location of said sources; recovering the detector-recorder unit at a downstream point along the line; transcribing the recorder record of any radioactivity detected during the travel of the detector- recorder unit in terms of distance along the line. (AEC)

  9. Pipe line companies to install 14,766 miles of lines in 1994

    SciTech Connect (OSTI)

    Ives, G. Jr.

    1994-01-01

    This paper reviews the historical and projected pipeline construction activities in the US and around the world. It gives mileage values for all types of oil and gas transmission lines, both on and offshore. Tables provides information on the diameters of these pipelines and information on compressor stations planned and constructed. Known major construction projects are listed by company name with a brief description of the proposed project.

  10. Chromium-bearing UOE line pipe for service in wet carbon dioxide environment

    SciTech Connect (OSTI)

    Ishikawa, H.; Terada, Y.; Ogata, Y.; Denpo, K.; Tamehiro, H.; Ogawa, H.; Shinada, K.

    1995-12-31

    In order to prevent preferential corrosion in pipeline welds by means of chromium addition, a study was made on the effect of chromium content on the corrosion resistance of line pipe in a wet carbon dioxide environment. It was found that the addition of 0.6% chromium to the base material reduces the corrosion rate to half that of chromium-free steels without sacrificing field weldability and low-temperature toughness, and that the addition of 0.3% more chromium to the seam weld metal than in the base material prevents the preferential corrosion of the weld. The galvanic current between the base material and the weld metal was proved to be responsible for the preferential corrosion of the weld. The chromium addition prevents the preferential corrosion though the formation of spinel-type corrosion products composed of (Fe,Cr){sub 3}O{sub 4} with high impedance. The UOE pipe manufactured on the basis of the above findings showed excellent low-temperature toughness and field weldability as well as good corrosion resistance in a wet carbon dioxide environment.

  11. The design of steel for high strength line pipe requiring excellent notch toughness and corrosion properties for arctic applications

    SciTech Connect (OSTI)

    DeCaux, G.; Golini, F.; Rayner, T.J.

    1998-12-31

    Due to the cold climate and environmental requirements of Alaska`s North Slope and Western Canada`s oil production areas, line pipe steels intended for use in these areas must display not only high strength as required, but superior toughness. Additionally,if the line pipe is to be used in aggressive sour gas (i.e., H{sub 2}S containing) environments it must also have excellent resistance to hydrogen induced cracking (HIC). Such a steel has been designed, through selective chemistry, clean steel-making practices, nonmetallic inclusion control, and hot mill process control, that is capable of meeting stringent line pipe specifications covering X65 grade line pipe in Arctic service temperatures. This paper also examined the effect that hot rolling finishing temperature had on notch toughness. Steel-making knowledge developed for lower strength, HIC resistant X52 grade steel has been employed for the development of a X65 grade steel. Results of trial heats will be presented.

  12. Foothill Transit Battery Electric Bus Demonstration Results

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Foothill Transit Battery Electric Bus Demonstration Results Leslie Eudy, Robert Prohaska, Kenneth Kelly, and Matthew Post National Renewable Energy Laboratory Technical Report NREL/TP-5400-65274 January 2016 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

  13. RF transmission line and drill/pipe string switching technology for down-hole telemetry

    DOE Patents [OSTI]

    Clark, David D.; Coates, Don M.

    2007-08-14

    A modulated reflectance well telemetry apparatus having an electrically conductive pipe extending from above a surface to a point below the surface inside a casing. An electrical conductor is located at a position a distance from the electrically conductive pipe and extending from above the surface to a point below the surface. Modulated reflectance apparatus is located below the surface for modulating well data into a RF carrier transmitted from the surface and reflecting the modulated carrier back to the surface. A RF transceiver is located at the surface and is connected between the electrically conductive pipe and the electrical conductor for transmitting a RF signal that is confined between the electrically conductive well pipe and the electrical conductor to the modulated reflectance apparatus, and for receiving reflected data on the well from the modulated reflectance apparatus.

  14. Foothills Parkway Section 8B Final Environmental Report, Volume 1

    SciTech Connect (OSTI)

    Blasing, T.J.; Cada, G.F.; Carer, M.; Chin, S.M.; Dickerman, J.A.; Etnier, D.A.; Gibson, R.; Harvey, M.; Hatcher, B.; Lietzske, D.; Mann, L.K.; Mulholland, P.J.; Petrich, C.H.; Pounds, L.; Ranney, J.; Reed, R.M.; Ryan, P.F.; Schweitzer, M.; Smith, D.; Thomason, P.; Wade, M.C.

    1999-07-01

    In 1994, Oak Ridge National Laboratory (ORNL) was tasked by the National Park Service (NPS) to prepare an Environmental Report (ER) for Section 8B of the Foothills Parkway in the Great Smoky Mountains National Park (GSMNP). Section 8B represents 27.7 km (14.2 miles) of a total of 115 km (72 miles) of the planned Foothills Parkway and would connect the Cosby community on the east to the incorporated town of Pittman Center to the west.

  15. Flexible ocean upwelling pipe

    DOE Patents [OSTI]

    Person, Abraham

    1980-01-01

    In an ocean thermal energy conversion facility, a cold water riser pipe is releasably supported at its upper end by the hull of the floating facility. The pipe is substantially vertical and has its lower end far below the hull above the ocean floor. The pipe is defined essentially entirely of a material which has a modulus of elasticity substantially less than that of steel, e.g., high density polyethylene, so that the pipe is flexible and compliant to rather than resistant to applied bending moments. The position of the lower end of the pipe relative to the hull is stabilized by a weight suspended below the lower end of the pipe on a flexible line. The pipe, apart from the weight, is positively buoyant. If support of the upper end of the pipe is released, the pipe sinks to the ocean floor, but is not damaged as the length of the line between the pipe and the weight is sufficient to allow the buoyant pipe to come to a stop within the line length after the weight contacts the ocean floor, and thereafter to float submerged above the ocean floor while moored to the ocean floor by the weight. The upper end of the pipe, while supported by the hull, communicates to a sump in the hull in which the water level is maintained below the ambient water level. The sump volume is sufficient to keep the pipe full during heaving of the hull, thereby preventing collapse of the pipe.

  16. SULFUR REMOVAL FROM PIPE LINE NATURAL GAS FUEL: APPLICATION TO FUEL CELL POWER GENERATION SYSTEMS

    SciTech Connect (OSTI)

    King, David L.; Birnbaum, Jerome C.; Singh, Prabhakar

    2003-11-21

    Pipeline natural gas is being considered as the fuel of choice for utilization in fuel cell-based distributed generation systems because of its abundant supply and the existing supply infrastructure (1). For effective utilization in fuel cells, pipeline gas requires efficient removal of sulfur impurities (naturally occurring sulfur compounds or sulfur bearing odorants) to prevent the electrical performance degradation of the fuel cell system. Sulfur odorants such as thiols and sulfides are added to pipeline natural gas and to LPG to ensure safe handling during transportation and utilization. The odorants allow the detection of minute gas line leaks, thereby minimizing the potential for explosions or fires.

  17. AutoPIPE Extract Program

    Energy Science and Technology Software Center (OSTI)

    1993-07-02

    The AutoPIPE Extract Program (APEX) provides an interface between CADAM (Computer Aided Design and Manufacturing) Release 21 drafting software and the AutoPIPE, Version 4.4, piping analysis program. APEX produces the AutoPIPE batch input file that corresponds to the piping shown in a CADAM model. The card image file contains header cards, material cards, and pipe cross section cards as well as tee, bend, valve, and flange cards. Node numbers are automatically generated. APEX processes straightmore » pipe, branch lines and ring geometries.« less

  18. CRAD, Nuclear Facility Construction- Piping and Pipe Supports Inspection- March 29, 2012

    Broader source: Energy.gov [DOE]

    Nuclear Facility Construction - Piping and Pipe Supports Inspection Criteria, Approach and Lines of Inquiry (HSS CRAD 45-52, Rev. 0)

  19. Technical Letter Report Assessment of Ultrasonic Phased Array Inspection Method for Welds in Cast Austenitic Stainless Steel Pressurizer Surge Line Piping JCN N6398, Task 1B

    SciTech Connect (OSTI)

    Diaz, Aaron A.; Cinson, Anthony D.; Crawford, Susan L.; Mathews, Royce; Moran, Traci L.; Anderson, Michael T.

    2009-07-28

    Research is being conducted for the U.S. Nuclear Regulatory Commission (NRC) at the Pacific Northwest National Laboratory (PNNL) to assess the effectiveness and reliability of advanced nondestructive examination (NDE) methods for the inspection of light water reactor components. The scope of this research encompasses primary system pressure boundary materials including cast austenitic stainless steels (CASS); dissimilar metal welds; piping with corrosion-resistant cladding; weld overlays, inlays and onlays; and far-side examinations of austenitic piping welds. A primary objective of this work is to evaluate various NDE methods to assess their ability to detect, localize, and size cracks in coarse-grained steel components. In this effort, PNNL supports cooperation with Commissariat à l’Energie Atomique (CEA) to assess reliable inspection of CASS materials. The NRC Project Manager has established a cooperative effort with the Institut de Radioprotection et de Surete Nucleaire (IRSN). CEA, under funding from IRSN, are supporting collaborative efforts with the NRC and PNNL. Regarding its work on the NDE of materials, CEA is providing its modeling software (CIVA) in exchange for PNNL offering expertise and data related to phased-array detection and sizing, acoustic attenuation, and back scattering on CASS materials. This collaboration benefits the NRC because CEA performs research and development on CASS for Électricité de France (EdF). This technical letter report provides a summary of a technical evaluation aimed at assessing the capabilities of phased-array (PA) ultrasonic testing (UT) methods as applied to the inspection of welds in CASS pressurizer (PZR) surge line nuclear reactor piping. A set of thermal fatigue cracks (TFCs) was implanted into three CASS PZR surge-line specimens (pipe-to-elbow welds) that were fabricated using vintage CASS materials formed in the 1970s, and flaw responses from these cracks were used to evaluate detection and sizing

  20. B Plant process piping replacement feasibility study

    SciTech Connect (OSTI)

    Howden, G.F.

    1996-02-07

    Reports on the feasibility of replacing existing embedded process piping with new more corrosion resistant piping between cells and between cells and a hot pipe trench of a Hanford Site style canyon facility. Provides concepts for replacement piping installation, and use of robotics to replace the use of the canyon crane as the primary means of performing/supporting facility modifications (eg, cell lining, pipe replacement, equipment reinstallation) and operational maintenenace.

  1. APEX. AutoPIPE Extract Program

    SciTech Connect (OSTI)

    Cline, B.E.

    1992-07-01

    The AutoPIPE Extract Program (APEX) provides an interface between CADAM (Computer Aided Design and Manufacturing) Release 21 drafting software and the AutoPIPE, Version 4.4, piping analysis program. APEX produces the AutoPIPE batch input file that corresponds to the piping shown in a CADAM model. The card image file contains header cards, material cards, and pipe cross section cards as well as tee, bend, valve, and flange cards. Node numbers are automatically generated. APEX processes straight pipe, branch lines and ring geometries.

  2. Pipe connector

    DOE Patents [OSTI]

    Sullivan, Thomas E.; Pardini, John A.

    1978-01-01

    A safety test facility for testing sodium-cooled nuclear reactor components includes a reactor vessel and a heat exchanger submerged in sodium in the tank. The reactor vessel and heat exchanger are connected by an expansion/deflection pipe coupling comprising a pair of coaxially and slidably engaged tubular elements having radially enlarged opposed end portions of which at least a part is of spherical contour adapted to engage conical sockets in the ends of pipes leading out of the reactor vessel and in to the heat exchanger. A spring surrounding the pipe coupling urges the end portions apart and into engagement with the spherical sockets. Since the pipe coupling is submerged in liquid a limited amount of leakage of sodium from the pipe can be tolerated.

  3. Technical Letter Report Assessment of Ultrasonic Phased Array Testing for Cast Austenitic Stainless Steel Pressurizer Surge Line Piping Welds and Thick Section Primary System Cast Piping Welds JCN N6398, Task 2A

    SciTech Connect (OSTI)

    Diaz, Aaron A.; Denslow, Kayte M.; Cinson, Anthony D.; Morra, Marino; Crawford, Susan L.; Prowant, Matthew S.; Cumblidge, Stephen E.; Anderson, Michael T.

    2008-07-21

    Research is being conducted for the NRC at PNNL to assess the effectiveness and reliability of advanced NDE methods for the inspection of LWR components. The scope of this research encompasses primary system pressure boundary materials including cast austenitic stainless steels (CASS), dissimilar metal welds (DMWs), piping with corrosion-resistant cladding, weld overlays, and far-side examinations of austenitic piping welds. A primary objective of this work is to evaluate various NDE methods to assess their ability to detect, localize, and size cracks in coarse-grained steel components. This interim technical letter report (TLR) provides a synopsis of recent investigations at PNNL aimed at evaluating the capabilities of phased-array (PA) ultrasonic testing (UT) methods as applied to the inspection of CASS welds in nuclear reactor piping. A description of progress, recent developments and interim results are provided.

  4. Industrial Strength Pipes

    Energy Science and Technology Software Center (OSTI)

    2006-01-23

    Industrial Strength Pipes (ISP) is a toolkit for construction pipeline applications using the UNIX pipe and filter model.

  5. Pipe gripper

    DOE Patents [OSTI]

    Moyers, S.M.

    1975-12-16

    A device for gripping the exterior surface of a pipe or rod is described which has a plurality of wedges, each having a concave face which engages the outer surface of the pipe and each having a smooth face opposing the concave face. The wedges are seated on and their grooved concave faces are maintained in circular alignment by tapered axial segments of an opening extending through a wedge-seating member. The wedges are allowed to slide across the tapered axial segments so that such a sliding movement acts to vary the diameter of the circular alignment.

  6. Nondestructive evaluation of new coiled tubing and pipe

    SciTech Connect (OSTI)

    Stanley, R.K.

    1996-09-01

    The nondestructive testing (NDT) and evaluation (NDE) of coiled tubing and pipe during manufacture has not previously been described. This paper outlines the NDE methods employed during the production of such material, along with flaw removal criteria. This paper describes coiled tubing and pipe up to 3.5 inches diameter for both downhole and line pipe use.

  7. Automated internal pipe cutting device

    DOE Patents [OSTI]

    Godlewski, William J.; Haffke, Gary S.; Purvis, Dale; Bashar, Ronald W.; Jones, Stewart D.; Moretti, Jr., Henry; Pimentel, James

    2003-01-21

    The invention is a remotely controlled internal pipe cutting device primarily used for cutting pipes where the outside of the pipe is inaccessible at the line where the cut is to be made. The device includes an axial ram within a rotational cylinder which is enclosed in a housing. The housing is adapted for attachment to an open end of the pipe and for supporting the ram and cylinder in cantilever fashion within the pipe. A radially movable cutter, preferably a plasma arc torch, is attached to the distal end of the ram. A drive mechanism, containing motors and mechanical hardware for operating the ram and cylinder, is attached to the proximal end of the housing. The ram and cylinder provide for moving the cutter axially and circumferentially, and a cable assembly attached to a remote motor provide for the movement of the cutter radially, within the pipe. The control system can be adjusted and operated remotely to control the position and movement of the cutter to obtain the desired cut. The control system can also provide automatic standoff control for a plasma arc torch.

  8. Pipe squeezing tools; Lightweight hydraulic units provide quick shutoff

    SciTech Connect (OSTI)

    Not Available

    1988-06-01

    A line of hydraulic pipe squeezers for steel and plastic pipelines are presented. They provide gas utilities and gathering pipeline operators with a simple, effective method to cut off the flow during maintenance and emergency operations. The line includes models for steel pipe from 3/4 to 8-in. and plastic pipe from 2- to 12-in. Light enough to be carried and operated by one man, the squeezer can effectively shut off 99% to 100% of the flow through the pipe. Applications of the pipe squeezers are discussed.

  9. Ultrasonic pipe assessment

    DOE Patents [OSTI]

    Thomas, Graham H.; Morrow, Valerie L.; Levie, Harold; Kane, Ronald J.; Brown, Albert E.

    2003-12-23

    An ultrasonic pipe or other structure assessment system includes an ultrasonic transducer positioned proximate the pipe or other structure. A fluid connection between the ultrasonic transducer and the pipe or other structure is produced. The ultrasonic transducer is moved relative to the pipe or other structure.

  10. On Line Enrichment Monitor (OLEM) UF6 Tests for 1.5" Sch40 SS Pipe, Revision 1

    SciTech Connect (OSTI)

    March-Leuba, José A.; Garner, Jim; Younkin, Jim; Simmons, Darrell W.

    2016-01-01

    gas within the unit header pipe as a function of time. The OLEM components have been tested on ORNL UF6 flow loop. Data were collected at five different enrichment levels (0.71%, 2.97%, 4.62%, 6.0%, and 93.7%) at several pressure conditions. The test data were collected in the standard OLEM N.4242 file format for each of the conditions with a 10-minute sampling period and then averaged over the span of constant pressures. Analysis of the collected data has provided enrichment constants that can be used for 1.5” stainless steel schedule 40 pipe measurement sites. The enrichment constant is consistent among all the wide range of enrichment levels and pressures used.

  11. Foothills Parkway Section 8B Final Environmental Report, Volume 5, Appendices J-M

    SciTech Connect (OSTI)

    Blasing, T.J.; Cada, G.F.; Carer, M.; Chin, S.M.; Dickerman, J.A.; Etnier, D.A.; Gibson, R.; Harvey, M.; Hatcher, B.; Lietzske, D.; Mann, L.K.; Mulholland, P.J.; Petrich, C.H.; Pounds, L.; Ranney, J.; Reed, R.M.; Ryan, P.F.; Schweitzer, M.; Smith, D.; Thomason, P.; Wade, M.C.

    1999-07-01

    In 1994, Oak Ridge National Laboratory (ORNL) was tasked by the National Park Service (NPS) to prepare an Environmental Report (ER) for Section 8B of the Foothills Parkway in the Great Smoky Mountains National Park (GSMNP). Section 8B represents 27.7 km (14.2 miles) of a total of 115 km (72 miles) of the planned Foothills Parkway and would connect the Cosby community on the east to the incorporated town of Pittman Center to the west. The major deliverables for the project are listed. From August 1995 through October 1996, NPS, GSMNP, and ORNL staff interacted with Federal Highway Administration staff to develop a conceptual design plan for Section 8B with the intent of protecting critical resources identified during the ER process to the extent possible. In addition, ORNL arranged for bioengineering experts to discuss techniques that might be employed on Section 8B with NPS, GSMNP, and ORNL staff during September 1996. For the purposes of this ER, there are two basic alternatives under consideration: (1) a build alternative and (2) a no-build alternative. Within the build alternative are a number of options including constructing Section 8B with no interchanges, constructing Section 8B with an interchange at SR 416 or U.S. 321, constructing Section 8B with a spur road on Webb Mountain, and considering operation of Section 8B both before and after the operation of Section 8C. The no-build alternative is considered the no-action alternative and is not to construct Section 8B. This volume of the ER consists of Appendices J through M, which describe potential impacts regarding traffic, noise, and aesthetics. The results of the traffic studies described in these appendices resulted in the following conclusions: Unacceptable levels of service will occur on numerous roads within and outside of the park increasingly in the Mure based upon current and future regional growth. However, the results of the traffic assessment indicated that there would be no significant or

  12. Reusable pipe flange covers

    DOE Patents [OSTI]

    Holden, James Elliott; Perez, Julieta

    2001-01-01

    A molded, flexible pipe flange cover for temporarily covering a pipe flange and a pipe opening includes a substantially round center portion having a peripheral skirt portion depending from the center portion, the center portion adapted to engage a front side of the pipe flange and to seal the pipe opening. The peripheral skirt portion is formed to include a plurality of circumferentially spaced tabs, wherein free ends of the flexible tabs are formed with respective through passages adapted to receive a drawstring for pulling the tabs together on a back side of the pipe flange.

  13. Subsea well with retrievable piping deck

    SciTech Connect (OSTI)

    Pokladnik, R.L.; Valka, W.A.

    1984-03-27

    An apparatus and method for drilling and completing a subsea well located at the seabed using a retrievable piping deck. The apparatus includes a template supported on the seabed, the retrievable piping deck supported on the template, a plurality of wellheads supported on the template and a plurality of Christmas trees supported on the wellheads. The piping deck has preinstalled flow lines and hydraulic lines to conduct well fluid from the Christmas trees to the surface and to conduct hydraulic control fluid from the surface to the trees. In addition to the Christmas trees, a well fluid manifold and a gaseous-liquid component separator can be supported on the template. The fluid connections between the Christmas trees and the hydraulic and flow lines and between the manifold and separator and the hydraulic and flow lines are accomplished by vertically oriented stab-in connectors. After installation of the template and drilling of the wells, the piping deck is lowered independently to the template and coupled thereto and then the Christmas trees and manifold-separator are lowered to the template and into fluid communication with the piping deck hydraulic and flow lines.

  14. Characterization of Pipes, Drain Lines, and Ducts using the Pipe...

    Office of Scientific and Technical Information (OSTI)

    ... There are a variety of organic scintillator compounds, such ... at GJPO provides the framework for the commercial ... Heavy metal and VOC sensors are also being investigated as ...

  15. Characterization of Pipes, Drain Lines, and Ducts using the Pipe...

    Office of Scientific and Technical Information (OSTI)

    Authors: C.D. Cremer D.T. Kendrick E. Cramer Contractor: Science and Engineering ... 505-884-2300) Science and Engineering Associates, Inc. 6100 Uptown Blvd., NE ...

  16. Dual manifold heat pipe evaporator

    DOE Patents [OSTI]

    Adkins, Douglas R. (Albuquerque, NM); Rawlinson, K. Scott (Albuquerque, NM)

    1994-01-01

    An improved evaporator section for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes.

  17. Dual manifold heat pipe evaporator

    DOE Patents [OSTI]

    Adkins, D.R.; Rawlinson, K.S.

    1994-01-04

    An improved evaporator section is described for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes. 1 figure.

  18. Foothills Parkway Section 8B Final Environmental Report, Volume 3, Appendix D

    SciTech Connect (OSTI)

    Blasing, T.J.; Cada, G.F.; Carer, M.; Chin, S.M.; Dickerman, J.A.; Etnier, D.A.; Gibson, R.; Harvey, M.; Hatcher, B.; Lietzske, D.; Mann, L.K.; Mulholland, P.J.; Petrich, C.H.; Pounds, L.; Ranney, J.; Reed, R.M.; Ryan, P.F.; Schweitzer, M.; Smith, D.; Thomason, P.; Wade, M.C.

    1999-07-01

    In 1994, Oak Ridge National Laboratory (ORNL) was tasked by the National Park Service (NPS) to prepare an Environmental Report (ER) for Section 8B of the Foothills Parkway in the Great Smoky Mountains National Park (GSMNP). Section 8B represents 27.7 km (14.2 miles) of a total of 115 km (72 miles) of the planned Foothills Parkway and would connect the Cosby community on the east to the incorporated town of Pittman Center to the west. The major deliverables for the project are listed. From August 1995 through October 1996, NPS, GSMNP, and ORNL staff interacted with Federal Highway Administration staff to develop a conceptual design plan for Section 8B with the intent of protecting critical resources identified during the ER process to the extent possible. In addition, ORNL arranged for bioengineering experts to discuss techniques that might be employed on Section 8B with NPS, GSMNP, and ORNL staff during September 1996. For the purposes of this ER, there are two basic alternatives under consideration: (1) a build alternative and (2) a no-build alternative. Within the build alternative are a number of options including constructing Section 8B with no interchanges, constructing Section 8B with an interchange at SR416 or U.S. 321, constructing Section 8B with a spur road on Webb Mountain, and considering operation of Section 8B both before and after the operation of Section 8C. The no-build alternative is considered the no-action alternative and is not to construct Section 8B. This volume of the ER inventories the fishes and benthic macroinvertebrates inhabiting the aquatic ecosystems potentially affected by the proposed construction of Section 8B. Stream biological surveys were completed at 31 stream sites during the Fall of 1994. The sampling strategy for both invertebrates and fish was to survey the different taxa from all available habitats. For benthic invertebrates, a standardized qualitative manual collection technique was employed for all 31 stations. For fish

  19. Foothills Parkway Section 8B Final Environmental Report, Volume 6, Appendix N

    SciTech Connect (OSTI)

    Blasing, T.J.; Cada, G.F.; Carer, M.; Chin, S.M.; Dickerman, J.A.; Etnier, D.A.; Gibson, R.; Harvey, M.; Hatcher, B.; Lietzske, D.; Mann, L.K.; Mulholland, P.J.; Petrich, C.H.; Pounds, L.; Ranney, J.; Reed, R.M.; Ryan, P.F.; Schweitzer, M.; Smith, D.; Thomason, P.; Wade, M.C.

    1999-07-01

    In 1994, Oak Ridge National Laboratory (ORNL) was tasked by the National Park Service (NPS) to prepare an Environmental Report (ER) for Section 8B of the Foothills Parkway in the Great Smoky Mountains National Park (GSMNP). Section 8B represents 27.7 km (14.2 miles) of a total of 115 km (72 miles) of the planned Foothills Parkway and would connect the Cosby community on the east to the incorporated town of Pittman Center to the west. The major deliverables for the project are listed. From August 1995 through October 1996, NPS, GSMNP, and ORNL staff interacted with Federal Highway Administration staff to develop a conceptual design plan for Section 8B with the intent of protecting critical resources identified during the ER process to the extent possible. In addition, ORNL arranged for bioengineering experts to discuss techniques that might be employed on Section 8B with NPS, GSMNP, and ORNL staff during September 1996. For the purposes of this ER, there are two basic alternatives under consideration: (1) a build alternative and (2) a no-build alternative. Within the build alternative are a number of options including constructing Section 8B with no interchanges, constructing Section 8B with an interchange at SR 416 or U.S. 321, constructing Section 8B with a spur road on Webb Mountain, and considering operation of Section 8B both before and after the operation of Section 8C. The no-build alternative is considered the no-action alternative and is not to construct Section 8B. This volume of the ER documents the results of the architectural, historical, and cultural resources assessment for the entire Section 8B ROW that was completed in May 1995 to document the architectural, historical, and cultural resources located within the project area. The assessment included evaluation of the potential for cultural (i.e., rural historic) landscapes in the area of the ROW. The assessment showed that one National Register-listed property is located 0.3 mile south of the ROW

  20. Foothills Parkway Section 8B Final Environmental Report, Volume 4, Appendices E-I

    SciTech Connect (OSTI)

    Blasing, T.J.; Cada, G.F.; Carer, M.; Chin, S.M.; Dickerman, J.A.; Etnier, D.A.; Gibson, R.; Harvey, M.; Hatcher, B.; Lietzske, D.; Mann, L.K.; Mulholland, P.J.; Petrich, C.H.; Pounds, L.; Ranney, J.; Reed, R.M.; Ryan, P.F.; Schweitzer, M.; Smith, D.; Thomason, P.; Wade, M.C.

    1999-07-01

    In 1994, Oak Ridge National Laboratory (ORNL) was tasked by the National Park Service (NPS) to prepare an Environmental Report (ER) for Section 8B of the Foothills Parkway in the Great Smoky Mountains National Park (GSMNP). Section 8B represents 27.7 km (14.2 miles) of a total of 115 km (72 miles) of the planned Foothills Parkway and would connect the Cosby community on the east to the incorporated town of Pittman Center to the west. The major deliverables for the project are listed. From August 1995 through October 1996, NPS, GSMNP, and ORNL staff interacted with Federal Highway Administration staff to develop a conceptual design plan for Section 8B with the intent of protecting critical, resources identified during the ER process to the extent possible. In addition, ORNL arranged for bioengineering experts to discuss techniques that might be employed on Section 8B with NPS, GSMNP, and ORNL staff during September 1996. For the purposes of this ER, there are two basic alternatives under consideration: (1) a build alternative and (2) a no-build alternative. Within the build alternative are a number of options including constructing Section 8B with no interchanges, constructing Section 8B with an interchange at SR 416 or U.S. 321, constructing Section 8B with a spur road on Webb Mountain, and considering operation of Section 8B both before and after the operation of Section 8C. The no-build alternative is considered the no-action alternative and is not to construct Section 8B. This volume of the ER consists of Appendices E through I (all ecological survey reports), which are summarized individually in the sections that follow. The following conclusions result from the completion of these surveys and the ER impact analysis: (1) Forest clearing should be limited as much as possible; (2) Disturbed areas should be replanted with native trees; (3) Drainages should be bridged rather than leveled with cut and fill; (4) For areas of steep slopes and potential erosion

  1. Abrasion resistant heat pipe

    DOE Patents [OSTI]

    Ernst, Donald M. (Leola, PA)

    1984-10-23

    A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  2. Abrasion resistant heat pipe

    DOE Patents [OSTI]

    Ernst, D.M.

    1984-10-23

    A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  3. Internal pipe attachment mechanism

    DOE Patents [OSTI]

    Bast, R.M.; Chesnut, D.A.; Henning, C.D.; Lennon, J.P.; Pastrnak, J.W.; Smith, J.A.

    1994-12-13

    An attachment mechanism is described for repairing or extending fluid carrying pipes, casings, conduits, etc. utilizing one-way motion of spring tempered fingers to provide a mechanical connection between the attachment mechanism and the pipe. The spring tempered fingers flex to permit insertion into a pipe to a desired insertion depth. The mechanical connection is accomplished by reversing the insertion motion and the mechanical leverage in the fingers forces them outwardly against the inner wall of the pipe. A seal is generated by crushing a sealing assembly by the action of setting the mechanical connection. 6 figures.

  4. Pipe crawler apparatus

    DOE Patents [OSTI]

    Hovis, Gregory L.; Erickson, Scott A.; Blackmon, Bruce L.

    2002-01-01

    A pipe crawler apparatus particularly useful for 3-inch and 4-inch diameter pipes is provided. The pipe crawler apparatus uses a gripping apparatus in which a free end of a piston rod is modified with a bearing retaining groove. Bearings, placed within the groove, are directed against a camming surface of three respective pivoting support members. The non-pivoting ends of the support members carry a foot-like gripping member that, upon pivoting of the support member, engages the interior wall of the pipe.

  5. Internal pipe attachment mechanism

    DOE Patents [OSTI]

    Bast, Richard M.; Chesnut, Dwayne A.; Henning, Carl D.; Lennon, Joseph P.; Pastrnak, John W.; Smith, Joseph A.

    1994-01-01

    An attachment mechanism for repairing or extending fluid carrying pipes, casings, conduits, etc. utilizing one-way motion of spring tempered fingers to provide a mechanical connection between the attachment mechanism and the pipe. The spring tempered fingers flex to permit insertion into a pipe to a desired insertion depth. The mechanical connection is accomplished by reversing the insertion motion and the mechanical leverage in the fingers forces them outwardly against the inner wall of the pipe. A seal is generated by crushing a sealing assembly by the action of setting the mechanical connection.

  6. Application of LBB to a nozzle-pipe interface

    SciTech Connect (OSTI)

    Yu, Y.J.; Sohn, G.H.; Kim, Y.J.

    1997-04-01

    Typical LBB (Leak-Before-Break) analysis is performed for the highest stress location for each different type of material in the high energy pipe line. In most cases, the highest stress occurs at the nozzle and pipe interface location at the terminal end. The standard finite element analysis approach to calculate J-Integral values at the crack tip utilizes symmetry conditions when modeling near the nozzle as well as away from the nozzle region to minimize the model size and simplify the calculation of J-integral values at the crack tip. A factor of two is typically applied to the J-integral value to account for symmetric conditions. This simplified analysis can lead to conservative results especially for small diameter pipes where the asymmetry of the nozzle-pipe interface is ignored. The stiffness of the residual piping system and non-symmetries of geometry along with different material for the nozzle, safe end and pipe are usually omitted in current LBB methodology. In this paper, the effects of non-symmetries due to geometry and material at the pipe-nozzle interface are presented. Various LBB analyses are performed for a small diameter piping system to evaluate the effect a nozzle has on the J-integral calculation, crack opening area and crack stability. In addition, material differences between the nozzle and pipe are evaluated. Comparison is made between a pipe model and a nozzle-pipe interface model, and a LBB PED (Piping Evaluation Diagram) curve is developed to summarize the results for use by piping designers.

  7. Polyethylene (PE) pipe electrofusion

    SciTech Connect (OSTI)

    Demonchy, M.Y. ); Fallou, M.J. )

    1990-09-01

    Gaz de France has developed a standardized electrofusion process for high quality polyethylene (PE) pipe assemblies. Techniques include an automated bar code and a self-regulating fusion process. The author discusses the electrofusion technique and pipe plugging, underpressure tie-in and repair applications and the influence of external factors.

  8. Heat pipe methanator

    DOE Patents [OSTI]

    Ranken, William A.; Kemme, Joseph E.

    1976-07-27

    A heat pipe methanator for converting coal gas to methane. Gravity return heat pipes are employed to remove the heat of reaction from the methanation promoting catalyst, transmitting a portion of this heat to an incoming gas pre-heat section and delivering the remainder to a steam generating heat exchanger.

  9. Extendable pipe crawler

    DOE Patents [OSTI]

    Hapstack, Mark

    1991-01-01

    A pipe crawler having a front leg assembly and a back leg assembly connected together by two air cylinders, each leg assembly having four extendable legs and a pair of actuators for sliding the extendable legs radially outward to increase the range of the legs when the pipe crawler enters a section of a pipe having a larger diameter. The crawler crawls by "inchworm"-like motion, the front leg assembly and back leg assembly alternately engaging and disengaging the wall of the pipe to hold the pipe crawler as the air cylinders alternately advance the front leg assembly and bring up the rear leg assembly. The pair of actuators of each leg assembly are parallel, adjacent and opposing acting so that each slides two adjacent extendable legs radially outward.

  10. Extendable pipe crawler

    DOE Patents [OSTI]

    Hapstack, M.

    1991-05-28

    A pipe crawler is described having a front leg assembly and a back leg assembly connected together by two air cylinders, each leg assembly having four extendable legs and a pair of actuators for sliding the extendable legs radially outward to increase the range of the legs when the pipe crawler enters a section of a pipe having a larger diameter. The crawler crawls by inchworm'-like motion, the front leg assembly and back leg assembly alternately engaging and disengaging the wall of the pipe to hold the pipe crawler as the air cylinders alternately advance the front leg assembly and bring up the rear leg assembly. The pair of actuators of each leg assembly are parallel, adjacent and opposing acting so that each slides two adjacent extendable legs radially outward. 5 figures.

  11. Electrical transmission line diametrical retainer

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2004-12-14

    The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within down hole components. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to with stand the tension and compression of drill pipe during routine drilling cycles.

  12. Flexible ultrasonic pipe inspection apparatus

    DOE Patents [OSTI]

    Jenkins, C.F.; Howard, B.D.

    1994-01-01

    Pipe crawlers, pipe inspection {open_quotes}rabbits{close_quotes} and similar vehicles are widely used for inspecting the interior surfaces of piping systems, storage tanks and process vessels for damaged or flawed structural features. This paper describes the design of a flexible, modular ultrasonic pipe inspection apparatus.

  13. Nashville Gas treads carefully to replace pipe

    SciTech Connect (OSTI)

    1997-06-01

    The private gas utility, Nashville Gas, was responsible for replacing damaged or inadequate 2- and 4-inch steel gas lines beneath Music City, USA. The line replacements required either size for size or upsizing. The first choice was directional drilling, which was quickly determined to be unpractical because of rocky soil conditions. The second option was open trenching. Undoubtedly, trenching would mean having to contend with angry residents and tourists, since gas lines ran beneath yards, mature trees, sidewalks, roadways, and railways. In addition to the negative social factors, trenching would require additional funds for substantial landscaping and pavement replacement. It at all possible, a no-dig alternative was desired. Nashville Gas found Grundomat piercing tools which create a bore, then pushes pipe back through it. These same tools can simultaneously pull in pipe. These tools were customized for the Nashville project.

  14. Small pipe characterization system (SPCS) conceptual design

    SciTech Connect (OSTI)

    Anderson, M.O.; Ferrante, T.A.; McKay, M.D.

    1995-01-01

    Throughout the Department of Energy (DOE) complex there are many facilities that have been identified for Decontamination and Decommissioning (D&D). As processes are terminated or brought off-line, facilities are placed on the inactive list, and facility managers and site contractors are required to assure a safe and reliable decommissioning and transition of these facilities to a clean final state. Decommissioning of facilities requires extensive reliable characterization, decontamination and in some cases dismantlement. Characterization of piping systems throughout the DOE complex is becoming more and more necessary. In addition to decommissioning activities, characterization activities are performed as part of surveillance and maintenance (S&M). Because of the extent of contamination, all inactive facilities require some type of S&M. These S&M activities include visual assessment, equipment and material accounting, and maintenance. The majority of the inactive facilities have piping systems 3 inches or smaller that are inaccessible because they are contaminated, imbedded in concrete, or run through hot cells. Many of these piping systems have been inactive for a number of years and there exists no current system condition information or the historical records are poor and/or missing altogether. Many of these piping systems are placed on the contaminated list, not because of known contamination, but because of the risk of internal contamination. Many of the piping systems placed on the contamination list may not have internal contamination. Because there is a potential however, they are treated as such. The cost of D&D can be greatly reduced by identifying and removing hot spot contamination, leaving clean piping to be removed using conventional methods. Accurate characterization of these piping systems is essential before, during and after all D&D activities.

  15. Miniature pipe crawler tractor

    DOE Patents [OSTI]

    McKay, Mark D.; Anderson, Matthew O.; Ferrante, Todd A.; Willis, W. David

    2000-01-01

    A pipe crawler tractor may comprise a half tractor assembly having a first base drive wheel, a second base drive wheel, and a top drive wheel. The drive wheels are mounted in spaced-apart relation so that the top drive wheel is positioned between the first and second base drive wheels. The mounting arrangement is also such that the first and second base drive wheels contact the inside surface of the pipe at respective first and second positions and so that the top drive wheel contacts the inside surface of the pipe at a third position, the third position being substantially diametrically opposed to the first and second positions. A control system connected to the half tractor assembly controls the rotation of the first base wheel, the second base wheel, and the top drive wheel to move the half tractor assembly within the pipe.

  16. Freezable heat pipe

    DOE Patents [OSTI]

    Ernst, Donald M.; Sanzi, James L.

    1981-02-03

    A heat pipe whose fluid can be repeatedly frozen and thawed without damage to the casing. An additional part is added to a conventional heat pipe. This addition is a simple porous structure, such as a cylinder, self-supporting and free standing, which is dimensioned with its diameter not spanning the inside transverse dimension of the casing, and with its length surpassing the depth of maximum liquid.

  17. Response margins of the dynamic analysis of piping systems

    SciTech Connect (OSTI)

    Johnson, J.J.; Benda, B.J.; Chuang, T.Y.; Smith, P.D.

    1984-04-01

    This report is organized as follows: Section 2 describes the three piping systems of the Zion nuclear power plant which formed the basis of the present study. The auxiliary feedwater (AFW) piping from steam generator to containment, the residual heat removal (RHR) and safety injection piping in the auxiliary building, and the reactor coolant loops (RCL) including a portion of the branch lines were analyzed. Section 3 describes the analysis methods and the analyses performed. Section 4 presents the numerical results; the principal results presented as comparisons of response calculated by best estimate time history analysis methods vs. the SRP response spectrum technique. Section 5 draws conclusions from the results. Appendix A contains a brief description of the mathematical models that defined the structures containing the three piping systems. Response from these models provided input to the piping models. Appendix B provides a detailed derivation of the pseudostatic mode approach to the multisupport time history analysis method used in this study.

  18. Fast reactor power plant design having heat pipe heat exchanger

    DOE Patents [OSTI]

    Huebotter, P.R.; McLennan, G.A.

    1984-08-30

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  19. Fast reactor power plant design having heat pipe heat exchanger

    DOE Patents [OSTI]

    Huebotter, Paul R.; McLennan, George A.

    1985-01-01

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  20. BOA II: pipe-asbestos insulation removal system

    SciTech Connect (OSTI)

    Schempf, H.; Mutschler; Boehmke, S.; Chemel, B.; Piepgras, C.

    1996-12-31

    BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to high labor costs and high level of radioactive contamination, making manual removal costly and inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee.

  1. Wedgethread pipe connection

    DOE Patents [OSTI]

    Watts, John D.

    2003-06-17

    Several embodiments of a wedgethread pipe connection are disclosed that have improved makeup, sealing, and non-loosening characteristics. In one embodiment, an open wedgethread is disclosed that has an included angle measured in the gap between the stab flank and the load flank to be not less than zero, so as to prevent premature wedging between mating flanks before the position of full makeup is reached, as does occur between trapped wedgethreads wherein the included angle is less than zero. The invention may be used for pipe threads large or small, as a flush joint, with collars, screwed into plates or it may even be used to reversibly connect such as solid posts to base members where a wide makeup torque range is desired. This Open wedgethread, as opposed to trapped wedgethreads, provides a threaded pipe connection that: is more cost-effective; can seal high pressure gas; can provide selectively a connection strength as high as the pipe strength; assures easy makeup to the desired position of full makeup within a wide torque range; may have a torque strength as high as the pipe torque strength; is easier to manufacture; is easier to gage; and is less subject to handling damage.

  2. Remotely operated pipe connector

    DOE Patents [OSTI]

    Josefiak, Leonard J.; Cramer, Charles E.

    1988-01-01

    An apparatus for remotely assembling and disassembling a Graylock type coctor between a pipe and a closure for the pipe includes a base and a receptacle on the base for the closure. The pipe is moved into position vertically above the closure by a suitable positioning device such that the flange on the pipe is immediately adjacent and concentric with the flange on the closure. A moving device then moves two semicircular collars from a position free of the closure to a position such that the interior cam groove of each collar contacts the two flanges. Finally, a tensioning device automatically allows remote tightening and loosening of a nut and bolt assembly on each side of the collar to cause a seal ring located between the flanges to be compressed and to seal the closure. Release of the pipe and the connector is accomplished in the reverse order. Preferably, the nut and bolt assembly includes an elongate shaft portion on which a removable sleeve is located.

  3. Composite drill pipe

    DOE Patents [OSTI]

    Leslie, James C.; Leslie, II, James C.; Heard, James; Truong, Liem , Josephson; Marvin , Neubert; Hans

    2008-12-02

    A composite pipe segment is formed to include tapered in wall thickness ends that are each defined by opposed frustoconical surfaces conformed for self centering receipt and intimate bonding contact within an annular space between corresponding surfaces of a coaxially nested set of metal end pieces. The distal peripheries of the nested end pieces are then welded to each other and the sandwiched and bonded portions are radially pinned. The composite segment may include imbedded conductive leads and the axial end portions of the end pieces are shaped to form a threaded joint with the next pipe assembly that includes a contact ring in one pipe assembly pierced by a pointed contact in the other to connect the corresponding leads across the joint.

  4. Apparatus for inspecting piping

    DOE Patents [OSTI]

    Zollingger, W.T.; Appel, D.K.; Park, L.R.

    1995-03-21

    An inspection rabbit is described for inspecting piping systems having severe bends therein. The rabbit consists of a flexible, modular body containing a miniaturized eddy current inspection probe, a self-contained power supply for proper operation of the rabbit, an outer surface that allows ease of movement through piping systems and means for transmitting data generated by the inspection device. The body is preferably made of flexible polyvinyl chloride (PVC) tubing or, alternatively, silicone rubber with a shrink wrapping of polytetrafluoroethylene (TEFLON{trademark}). The body is formed to contain the power supply, preferably a plurality of batteries, and a spool of communication wire that connects to a data processing computer external to the piping system. 6 figures.

  5. Apparatus for inspecting piping

    DOE Patents [OSTI]

    Zollingger, W. Thor; Appel, D. Keith; Park, Larry R.

    1995-01-01

    An inspection rabbit for inspecting piping systems having severe bends therein. The rabbit consists of a flexible, modular body containing a miniaturized eddy current inspection probe, a self-contained power supply for proper operation of the rabbit, an outer surface that allows ease of movement through piping systems and means for transmitting data generated by the inspection device. The body is preferably made of flexible polyvinyl chloride (PVC) tubing or, alternatively, silicone rubber with a shrink wrapping of polytetrafluoroethylene (TEFLON.RTM.). The body is formed to contain the power supply, preferably a plurality of batteries, and a spool of communication wire that connects to a data processing computer external to the piping system.

  6. Apparatus for moving a pipe inspection probe through piping

    DOE Patents [OSTI]

    Zollinger, W.T.; Appel, D.K.; Lewis, G.W.

    1995-07-18

    A method and apparatus are disclosed for controllably moving devices for cleaning or inspection through piping systems, including piping systems with numerous piping bends therein, by using hydrostatic pressure of a working fluid introduced into the piping system. The apparatus comprises a reservoir or other source for supplying the working fluid to the piping system, a launch tube for admitting the device into the launcher and a reversible, positive displacement pump for controlling the direction and flow rate of the working fluid. The device introduced into the piping system moves with the flow of the working fluid through the piping system. The launcher attaches to the valved ends of a piping system so that fluids in the piping system can recirculate in a closed loop. The method comprises attaching the launcher to the piping system, supplying the launcher with working fluid, admitting the device into the launcher, pumping the working fluid in the direction and at the rate desired so that the device moves through the piping system for pipe cleaning or inspection, removing the device from the launcher, and collecting the working fluid contained in the launcher. 8 figs.

  7. Apparatus for moving a pipe inspection probe through piping

    DOE Patents [OSTI]

    Zollinger, W. Thor; Appel, D. Keith; Lewis, Gregory W.

    1995-01-01

    A method and apparatus for controllably moving devices for cleaning or inspection through piping systems, including piping systems with numerous piping bends therein, by using hydrostatic pressure of a working fluid introduced into the piping system. The apparatus comprises a reservoir or other source for supplying the working fluid to the piping system, a launch tube for admitting the device into the launcher and a reversible, positive displacement pump for controlling the direction and flow rate of the working fluid. The device introduced into the piping system moves with the flow of the working fluid through the piping system. The launcher attaches to the valved ends of a piping system so that fluids in the piping system can recirculate in a closed loop. The method comprises attaching the launcher to the piping system, supplying the launcher with working fluid, admitting the device into the launcher, pumping the working fluid in the direction and at the rate desired so that the device moves through the piping system for pipe cleaning or inspection, removing the device from the launcher, and collecting the working fluid contained in the launcher.

  8. Heat pipes and use of heat pipes in furnace exhaust

    DOE Patents [OSTI]

    Polcyn, Adam D.

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  9. Heat pipe array heat exchanger

    DOE Patents [OSTI]

    Reimann, Robert C.

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  10. Guidable pipe plug

    DOE Patents [OSTI]

    Glassell, Richard L.; Babcock, Scott M.; Lewis, Benjamin E.

    2001-01-01

    A plugging device for closing an opening defined by an end of a pipe with sealant comprises a cap, an extension, an inner seal, a guide, and at least one stop. The cap has an inner surface which defines a chamber adapted for retaining the sealant. The chamber is dimensioned slightly larger than the end so as to receive the end. The chamber and end define a gap therebetween. The extension has a distal end and is attached to the inner surface opposite the distal end. The inner seal is attached to the extension and sized larger than the opening. The guide is positioned forward of the inner seal and attached to the distal end. The guide is also dimensioned to be inserted into the opening. The stop is attached to the extender, and when the stop is disposed in the pipe, the stop is movable with respect to the conduit in one direction and also prevents misalignment of the cap with the pipe. A handle can also be included to allow the cap to be positioned robotically.

  11. Igniter for gas discharge pipe with a flame detection system

    SciTech Connect (OSTI)

    Guerra, R.E.

    1990-03-06

    This patent describes a method of burning waste gas, using an igniter of the type having a nozzle, a main gas conduit extending to the nozzle, and an electrical spark means for creating a spark in the nozzle. It comprises: mounting the igniter to a waste gas discharge pipe with the nozzle directed across the opening of the gas discharge pipe; supplying a gaseous fuel to the main gas conduit; igniting the gaseous fuel with the electrical spark means, creating a flame for igniting the waste gas being discharged from the gas discharge pipe; providing the igniter with an auxiliary gas line extending to the vicinity of the nozzle; and supplying a second and lower volume source of waste gas to the auxiliary gas line for burning at the nozzle.

  12. Fracture properties evaluation of stainless steel piping for LBB applications

    SciTech Connect (OSTI)

    Kim, Y.J.; Seok, C.S.; Chang, Y.S.

    1997-04-01

    The objective of this paper is to evaluate the material properties of SA312 TP316 and SA312 TP304 stainless steels and their associated welds manufactured for shutdown cooling line and safety injection line of nuclear generating stations. A total of 82 tensile tests and 58 fracture toughness tests on specimens taken from actual pipes were performed and the effect of various parameters such as the pipe size, the specimen orientation, the test temperature and the welding procedure on the material properties are discussed. Test results show that the effect of the test temperature on the fracture toughness was significant while the effects of the pipe size and the specimen orientation on the fracture toughness were negligible. The material properties of the GTAW weld metal was in general higher than those of the base metal.

  13. Project W-320, 241-C-106 sluicing: Piping calculations. Volume 4

    SciTech Connect (OSTI)

    Bailey, J.W.

    1998-07-24

    This supporting document has been prepared to make the FDNW calculations for Project W-320 readily retrievable. The objective of this calculation is to perform the structural analysis of the Pipe Supports designed for Slurry and Supernate transfer pipe lines in order to meet the requirements of applicable ASME codes. The pipe support design loads are obtained from the piping stress calculations W320-27-I-4 and W320-27-I-5. These loads are the total summation of the gravity, pressure, thermal and seismic loads. Since standard typical designs are used for each type of pipe support such as Y-Stop, Guide and Anchors, each type of support is evaluated for the maximum loads to which this type of supports are subjected. These loads are obtained from the AutoPipe analysis and used to check the structural adequacy of these supports.

  14. Deployment, release and recovery of ocean riser pipes

    DOE Patents [OSTI]

    Person, Abraham; Wetmore, Sherman B.; McNary, James F.

    1980-11-18

    An ocean thermal energy conversion facility includes a long pipe assembly which is supported at its upper end by the hull of the floating facility. Cold water flows to the facility from deep in the ocean. The pipe assembly comprises an elongate pipe construction and a weight connected to the lower end of the construction by a line of selected length. A floatation collar is connected to the construction at its upper end to cause the construction to have positive buoyancy and a center of buoyancy closer to the upper end of the construction than its center of mass. The weight renders the entire pipe assembly negatively buoyant. In the event that support of the pipe assembly should be lost, as by release of the assembly from the facility hull in an emergency, the assembly sinks to the ocean floor where it is moored by the weight. The pipe construction floats submerged above the ocean floor in a substantially vertical attitude which facilitates recovery of the assembly.

  15. Large-bore pipe decontamination

    SciTech Connect (OSTI)

    Ebadian, M.A.

    1998-01-01

    The decontamination and decommissioning (D and D) of 1200 buildings within the US Department of Energy-Office of Environmental Management (DOE-EM) Complex will require the disposition of miles of pipe. The disposition of large-bore pipe, in particular, presents difficulties in the area of decontamination and characterization. The pipe is potentially contaminated internally as well as externally. This situation requires a system capable of decontaminating and characterizing both the inside and outside of the pipe. Current decontamination and characterization systems are not designed for application to this geometry, making the direct disposal of piping systems necessary in many cases. The pipe often creates voids in the disposal cell, which requires the pipe to be cut in half or filled with a grout material. These methods are labor intensive and costly to perform on large volumes of pipe. Direct disposal does not take advantage of recycling, which could provide monetary dividends. To facilitate the decontamination and characterization of large-bore piping and thereby reduce the volume of piping required for disposal, a detailed analysis will be conducted to document the pipe remediation problem set; determine potential technologies to solve this remediation problem set; design and laboratory test potential decontamination and characterization technologies; fabricate a prototype system; provide a cost-benefit analysis of the proposed system; and transfer the technology to industry. This report summarizes the activities performed during fiscal year 1997 and describes the planned activities for fiscal year 1998. Accomplishments for FY97 include the development of the applicable and relevant and appropriate regulations, the screening of decontamination and characterization technologies, and the selection and initial design of the decontamination system.

  16. Electrical Transmission Line Diametrical Retention Mechanism

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe

    2006-01-03

    The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within downhole components. The invention allows a transmission line to be attached to the internal diameter of drilling components that have a substantially uniform drilling diameter. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to withstand the tension and compression of drill pipe during routine drilling cycles.

  17. Pipe crawler with stabilizing midsection

    DOE Patents [OSTI]

    Zollinger, William T.; Treanor, Richard C.

    1994-01-01

    A pipe crawler having a midsection that provides the stability and flexibty to allow the pipe crawler to negotiate curved and uneven segments of piping while traveling through piping systems. The pipe crawler comprises a front leg assembly, a rear leg assembly, a midsection with a gimbal at each end for connecting the midsection to the front and rear leg assemblies in a flexible manner, and an air cylinder for changing the distance between the front and rear leg assemblies. The pipe crawler moves in "inch worm" fashion with the front and rear leg assemblies alternating between an extended and a retracted position as the air cylinder moves the retracted leg assembly forward. The midsection has a plurality of legs extending radially for holding the midsection within a maximum displacement from the piping axis so that the gimbals are not pivoted to extreme angles where they might lock up or seize. When the midsection is displaced sufficiently, its legs with wheels on each end engage the interior surface of the piping and prevent further displacement. Using two gimbals divides the angle between the planes defined by the front and rear leg assemblies which also helps to prevent excessive gimbal pivoting.

  18. Pipe crawler with stabilizing midsection

    DOE Patents [OSTI]

    Zollinger, W.T.; Treanor, R.C.

    1994-12-27

    A pipe crawler is described having a midsection that provides the stability and flexibility to allow the pipe crawler to negotiate curved and uneven segments of piping while traveling through piping systems. The pipe crawler comprises a front leg assembly, a rear leg assembly, a midsection with a gimbal at each end for connecting the midsection to the front and rear leg assemblies in a flexible manner, and an air cylinder for changing the distance between the front and rear leg assemblies. The pipe crawler moves in ''inch worm'' fashion with the front and rear leg assemblies alternating between an extended and a retracted position as the air cylinder moves the retracted leg assembly forward. The midsection has a plurality of legs extending radially for holding the midsection within a maximum displacement from the piping axis so that the gimbals are not pivoted to extreme angles where they might lock up or seize. When the midsection is displaced sufficiently, its legs with wheels on each end engage the interior surface of the piping and prevent further displacement. Using two gimbals divides the angle between the planes defined by the front and rear leg assemblies which also helps to prevent excessive gimbal pivoting. 5 figures.

  19. Vapor spill pipe monitor

    DOE Patents [OSTI]

    Bianchini, G.M.; McRae, T.G.

    1983-06-23

    The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

  20. Promethus Hot Leg Piping Concept

    SciTech Connect (OSTI)

    AM Girbik; PA Dilorenzo

    2006-01-24

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  1. Flexible ultrasonic pipe inspection apparatus

    DOE Patents [OSTI]

    Jenkins, Charles F.; Howard, Boyd D.

    1998-01-01

    A flexible, modular ultrasonic pipe inspection apparatus, comprising a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present.

  2. Cryogenic flexible pipes for offshore LNG-LPG production

    SciTech Connect (OSTI)

    Dumay, J.M.

    1981-01-01

    Available in long, flexible pieces (up to several miles), the high-performance Coflexip pipe comprises four basic layers: (1) an interlocked, spiraled-steel carcass to resist crushing and prevent deformation, (2) an inner thermoplastic sheath to render the line internally leakproof, (3) two cross-laid steel-wire armors to oppose the stresses induced by internal pressure, and (4) an external thermoplastic sheath to ensure water-tightness and resist corrosion. Coflexip pipe is particularly suitable for transporting cryogenic liquids such as LNG from, for example, an offshore liquefaction plant.

  3. BOA: Asbestos Pipe-Insulation Abatement Robot System

    SciTech Connect (OSTI)

    Schempf, H.

    1996-06-01

    The BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to the high labor costs and high level of radioactive contamination, making manual removal extremely costly and highly inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee.

  4. BOA: Pipe-asbestos insulation removal robot system

    SciTech Connect (OSTI)

    Schempf, H.; Bares, J.; Schnorr, W.

    1995-10-01

    The BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to the high labor costs and high level of radioactive contamination, making manual removal extremely costly and highly inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee.

  5. Piping benchmark problems for the ABB/CE System 80+ Standardized Plant

    SciTech Connect (OSTI)

    Bezler, P.; DeGrassi, G.; Braverman, J.; Wang, Y.K.

    1994-07-01

    To satisfy the need for verification of the computer programs and modeling techniques that will be used to perform the final piping analyses for the ABB/Combustion Engineering System 80+ Standardized Plant, three benchmark problems were developed. The problems are representative piping systems subjected to representative dynamic loads with solutions developed using the methods being proposed for analysis for the System 80+ standard design. It will be required that the combined license licensees demonstrate that their solution to these problems are in agreement with the benchmark problem set. The first System 80+ piping benchmark is a uniform support motion response spectrum solution for one section of the feedwater piping subjected to safe shutdown seismic loads. The second System 80+ piping benchmark is a time history solution for the feedwater piping subjected to the transient loading induced by a water hammer. The third System 80+ piping benchmark is a time history solution of the pressurizer surge line subjected to the accelerations induced by a main steam line pipe break. The System 80+ reactor is an advanced PWR type.

  6. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    SciTech Connect (OSTI)

    Kiran M. Kothari; Gerard T. Pittard

    2005-07-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. Bell-and-spigot joints that connect pipe sections together tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple castiron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs with the pipe in service by traveling through the pipe, cleaning each joint surface, and installing a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, minimize excavation, avoid traffic disruption, and eliminate any requirement to interrupt service to customers (which would result in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of old cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct safe repair operations on live mains.

  7. Corrugated pipe adhesive applicator apparatus

    DOE Patents [OSTI]

    Shirey, Ray A. (North Grafton, MA)

    1983-06-14

    Apparatus for coating selected portions of the troughs of a corrugated pipe within an adhesive includes a support disposed within the pipe with a reservoir containing the adhesive disposed on the support. A pump, including a spout, is utilized for supplying the adhesive from the reservoir to a trough of the pipe. A rotatable applicator is supported on the support and contacts the trough of the pipe. The applicator itself is sized so as to fit within the trough, and contacts the adhesive in the trough and spreads the adhesive in the trough upon rotation. A trough shield, supported by the support and disposed in the path of rotation of the applicator, is utilized to prevent the applicator from contacting selected portions of the trough. A locator head is also disposed on the support and provides a way for aligning the spout, the applicator, and the trough shield with the trough.

  8. Corrugated pipe adhesive applicator apparatus

    DOE Patents [OSTI]

    Shirey, R.A.

    1983-06-14

    Apparatus for coating selected portions of the troughs of a corrugated pipe with an adhesive includes a support disposed within the pipe with a reservoir containing the adhesive disposed on the support. A pump, including a spout, is utilized for supplying the adhesive from the reservoir to a trough of the pipe. A rotatable applicator is supported on the support and contacts the trough of the pipe. The applicator itself is sized so as to fit within the trough, and contacts the adhesive in the trough and spreads the adhesive in the trough upon rotation. A trough shield, supported by the support and disposed in the path of rotation of the applicator, is utilized to prevent the applicator from contacting selected portions of the trough. A locator head is also disposed on the support and provides a way for aligning the spout, the applicator, and the trough shield with the trough. 4 figs.

  9. Pipe weld crown removal device

    DOE Patents [OSTI]

    Sword, Charles K.; Sette, Primo J.

    1992-01-01

    A device is provided for grinding down the crown of a pipe weld joining aligned pipe sections so that the weld is substantially flush with the pipe sections joined by the weld. The device includes a cage assembly comprising a pair of spaced cage rings adapted to be mounted for rotation on the respective pipe sections on opposite sides of the weld, a plurality of grinding wheels, supported by the cage assembly for grinding down the crown of the weld, and a plurality of support shafts, each extending longitudinally along the joined pipe sections, parallel thereto, for individually mounting respective grinding wheels. Each end of the support shafts is mounted for rotation in a bearing assembly housed within a radially directed opening in a corresponding one of the cage rings so as to provide radial movement of the associated shaft, and thus of the associated grinding wheel, towards and away from the weld. A first drive sprocket provides rotation of the cage assembly around the pipe sections while a second drive unit, driven by a common motor, provides rotation of the grinding wheels.

  10. Piping inspection round robin

    SciTech Connect (OSTI)

    Heasler, P.G.; Doctor, S.R.

    1996-04-01

    The piping inspection round robin was conducted in 1981 at the Pacific Northwest National Laboratory (PNNL) to quantify the capability of ultrasonics for inservice inspection and to address some aspects of reliability for this type of nondestructive evaluation (NDE). The round robin measured the crack detection capabilities of seven field inspection teams who employed procedures that met or exceeded the 1977 edition through the 1978 addenda of the American Society of Mechanical Engineers (ASME) Section 11 Code requirements. Three different types of materials were employed in the study (cast stainless steel, clad ferritic, and wrought stainless steel), and two different types of flaws were implanted into the specimens (intergranular stress corrosion cracks (IGSCCs) and thermal fatigue cracks (TFCs)). When considering near-side inspection, far-side inspection, and false call rate, the overall performance was found to be best in clad ferritic, less effective in wrought stainless steel and the worst in cast stainless steel. Depth sizing performance showed little correlation with the true crack depths.

  11. Reduce Pumping Costs through Optimum Pipe Sizing: Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    power required depends on flow rate, pipe size (diameter), overall pipe length, pipe characteristics (surface roughness, material, etc.), and properties of the fluid being pumped. ...

  12. High temperature lined conduits, elbows and tees

    DOE Patents [OSTI]

    De Feo, Angelo (Passaic, NJ); Drewniany, Edward (Bergen, NJ)

    1982-01-01

    A high temperature lined conduit comprising, a liner, a flexible insulating refractory blanket around and in contact with the liner, a pipe member around the blanket and spaced therefrom, and castable rigid refractory material between the pipe member and the blanket. Anchors are connected to the inside diameter of the pipe and extend into the castable material. The liner includes male and female slip joint ends for permitting thermal expansion of the liner with respect to the castable material and the pipe member. Elbows and tees of the lined conduit comprise an elbow liner wrapped with insulating refractory blanket material around which is disposed a spaced elbow pipe member with castable refractory material between the blanket material and the elbow pipe member. A reinforcing band is connected to the elbow liner at an intermediate location thereon from which extend a plurality of hollow tubes or pins which extend into the castable material to anchor the lined elbow and permit thermal expansion. A method of fabricating the high temperature lined conduit, elbows and tees is also disclosed which utilizes a polyethylene layer over the refractory blanket after it has been compressed to maintain the refractory blanket in a compressed condition until the castable material is in place. Hot gases are then directed through the interior of the liner for evaporating the polyethylene and setting the castable material which permits the compressed blanket to come into close contact with the castable material.

  13. A Novel MagPipe Pipeline transportation system using linear motor drives

    SciTech Connect (OSTI)

    Fang, J.R.; Montgomery, D.B.; Roderick, L.

    2009-11-15

    A novel capsule pipeline transportation system using linear motor drives, called Magplane MagPipe, is under development with the intention to replace trucks and railways for hauling materials from the mine to the rail head, power plant, or processing plant with reduced operating cost and energy consumption. The initial demonstration of a MagPipe line in Inner Mongolia will be a 500-m-long double-pipe coal transport system with the design transportation capacity of 3 Mega-Mg per year. The pipeline consists of 6-m-long plastic pipe modules with an I-beam suspension system inside the pipe to carry sets of five coupled capsules. The pipe will also contain noncontinuous motor winding modules spaced at 50-m intervals. A set of Halbach-arrayed permanent magnets on the bottom of the capsules interact with the linear motor windings to provide propulsion. The motor is driven by variable frequency drives outside the pipe to control the speed. This paper briefly describes the overall MagPipe pipeline transportation system, including the preliminary conclusions of the linear synchronous motor analysis.

  14. Magnetic refrigeration apparatus with heat pipes

    DOE Patents [OSTI]

    Barclay, J.A.; Prenger, F.C. Jr.

    1985-10-25

    A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe or pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

  15. Magnetic refrigeration apparatus with heat pipes

    DOE Patents [OSTI]

    Barclay, John A.; Prenger, Jr., F. Coyne

    1987-01-01

    A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe of pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

  16. Heat pipe device and heat pipe fabricating process

    SciTech Connect (OSTI)

    Busch, C.H.

    1982-08-10

    An energy saving liquid to liquid heat exchanger for a dishwasher or like device discharging hot waste water comprising a hot water tank for holding the waste water from the dishwasher and having inlet and outlet pipes, a cold water tank for holding the fresh water going to a water heater and having inlet and outlet pipes, the cold water tank disposed on top of the hot water tank, a bundle of heat pipes containing low boiling refrigerant disposed inside of the two tanks so as to extract heat from the hot water tank and give it up to the cold water tank, whereby the temperature of the fresh water leaving the heat exchanger is higher than its entering temperature.

  17. Development and Manufacture of Cost-Effective Composite Drill Pipe

    SciTech Connect (OSTI)

    James C. Leslie

    2008-12-31

    fields up to 74 kilohertz (KHz), a removable section of copper wire can be placed inside the composite pipe to short the tool joints electrically allowing electromagnetic signals inside the collar to induce and measure the same within the rock formation. By embedding a pair of wires in the composite section and using standard drill pipe box and pin ends equipped with a specially developed direct contact joint electrical interface, power can be supplied to measurement-while-drilling (MWD) and logging-while-drilling (LWD) bottom hole assemblies. Instantaneous high-speed data communications between near drill bit and the surface are obtainable utilizing this 'smart' drilling technology. The composite drill pipe developed by ACPT has been field tested successfully in several wells nationally and internationally. These tests were primarily for short radius and ultra short radius directional drilling. The CDP in most cases performed flawlessly with little or no appreciable wear. ACPT is currently marketing a complete line of composite drill collars, subs, isolators, casing, and drill pipe to meet the drilling industry's needs and tailored to replace metal for specific application requirements.

  18. Pipe crawler with extendable legs

    DOE Patents [OSTI]

    Zollinger, William T.

    1992-01-01

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler.

  19. Pipe crawler with extendable legs

    DOE Patents [OSTI]

    Zollinger, W.T.

    1992-06-16

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler. 8 figs.

  20. Flexible ultrasonic pipe inspection apparatus

    DOE Patents [OSTI]

    Jenkins, C.F.; Howard, B.D.

    1998-06-23

    A flexible, modular ultrasonic pipe inspection apparatus, comprises a flexible, hollow shaft that carries a plurality of modules, including at least one rotatable ultrasonic transducer, a motor/gear unit, and a position/signal encoder. The modules are connected by flexible knuckle joints that allow each module of the apparatus to change its relative orientation with respect to a neighboring module, while the shaft protects electrical wiring from kinking or buckling while the apparatus moves around a tight corner. The apparatus is moved through a pipe by any suitable means, including a tether or drawstring attached to the nose or tail, differential hydraulic pressure, or a pipe pig. The rotational speed of the ultrasonic transducer and the forward velocity of the apparatus are coordinated so that the beam sweeps out the entire interior surface of the pipe, enabling the operator to accurately assess the condition of the pipe wall and determine whether or not leak-prone corrosion damage is present. 7 figs.

  1. Centrally activated pipe snubbing system

    DOE Patents [OSTI]

    Cawley, William E.

    1985-01-01

    An electromechanical pipe snubbing system and an electromechanical pipe snubber. In the system, each pipe snubber, in a set of pipe snubbers, has an electromechanical mechanism to lock and unlock the snubber. A sensor, such as a seismometer, measures a quantity related to making a snubber locking or unlocking decision. A control device makes an electrical connection between a power supply and each snubber's electromechanical mechanism to simultaneously lock each snubber when the sensor measurement indicates a snubber locking condition. The control device breaks the connection to simultaneously unlock each snubber when the sensor measurement indicates a snubber unlocking condition. In the snubber, one end of the shaft slides within a bore in one end of a housing. The other end of the shaft is rotatably attached to a pipe; the other end of the housing is rotatively attached to a wall. The snubber's electromechanical mechanism locks the slidable end of the shaft to the housing and unlocks that end from the housing. The electromechanical mechanism permits remote testing and lockup status indication for each snubber.

  2. Heavy rains hamper Louisiana gas line

    SciTech Connect (OSTI)

    Horner, C.

    1983-06-01

    Despite heavy rains and flooding a 36-mile gas pipeline loop for Transcontinental Gas Pipe Line Corp. was completed from north of Starks (at the end of Transco's south Louisiana lateral) to the Lake Charles area. Somastic-coated, 42-in. grade X-60 pipe comprises 90% of the route. The contract included multiple 30-42 in. fabrications, installation of six 42-in. gate valves, and expansion of the Gillis compressor station.

  3. Self-cleaning inlet screen to an ocean riser pipe

    SciTech Connect (OSTI)

    Wetmore, S.B.; Person, A.

    1980-06-17

    A long, vertically disposed ocean water upwelling pipe, such as a cold water riser in an ocean thermal energy conversion facility, is fitted at its lower inlet end with a self-cleaning inlet screen. The screen includes a right conical frustum of loose metal netting connected at its larger upper end to the lower end of the pipe. A heavy, negatively buoyant closure is connected across the lower end of the frustum. A weight is suspended below the closure on a line which passes loosely through the closure into the interior of the screen. The line tends to stay stationary as the lower end of the pipe moves, as in response to ocean current vortex shedding and other causes, thus causing the closure to rattle on the line and to shake the netting. The included half-angle of the frustum is approximately 20 so that, on shaking of the netting, marine life accumulated on the netting becomes loose and falls free of the netting. 6 claims.

  4. INSPECTION OF FUSION JOINTS IN PLASTIC PIPE

    SciTech Connect (OSTI)

    Alex Savitski; Connie Reichert; John Coffey

    2005-07-13

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost effective method of assessing the quality of fusion joints in the field exists. Visual examination and pressure testing are current non-destructive approaches, which do not provide any assurance about the long-term pipeline performance. This project will develop, demonstrate, and validate an in-situ non-destructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system will include a laser based image-recognition system that will automatically generate and interpret digital images of pipe joints and assign them a pass/fail rating, which eliminates operator bias in evaluating joint quality. A Weld Zone Inspection Method (WZIM) is being developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation and reveal the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and tensile testing. There appears to be a direct correlation between the WZIM and tensile testing results. Although WZIM appears to be more sensitive than tensile testing can verify, the approach appears valid.

  5. Inspection of Fusion Joints in Plastic Pipe

    SciTech Connect (OSTI)

    Connie Reichert

    2005-09-01

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost-effective method exists for assessing the quality of fusion joints in the field. Visual examination and pressure testing are current nondestructive approaches, which do not provide any assurance about the long-term pipeline performance. This project developed, demonstrated, and validated an in-situ nondestructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system includes a laser-based image-recognition system that automatically generates and interprets digital images of pipe joints and assigns them a pass/fail rating, which eliminates operator bias in evaluating joint quality. An EWI-patented process, the Weld Zone Inspection Method (WZIM) was developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation, which reveals the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and two destructive forms of testing: short-term tensile testing and long-term creep rupture testing. There appears to be a direct correlation between the WZIM and the destructive testing results. Although WZIM appears to be more sensitive than destructive testing can verify, the approach appears valid.

  6. Cryogenic & Gas System Piping Pressure Tests (A Collection of PT Permits)

    SciTech Connect (OSTI)

    Rucinski, Russell A.; /Fermilab

    2002-08-22

    This engineering note is a collection of pipe pressure testing documents for various sections of piping for the D-Zero cryogenic and gas systems. High pressure piping must conform with FESHM chapter 5031.1. Piping lines with ratings greater than 150 psig have a pressure test done before the line is put into service. These tests require the use of pressure testing permits. It is my intent that all pressure piping over which my group has responsibility conforms to the chapter. This includes the liquid argon and liquid helium and liquid nitrogen cryogenic systems. It also includes the high pressure air system, and the high pressure gas piping of the WAMUS and MDT gas systems. This is not an all inclusive compilation of test documentation. Some piping tests have their own engineering note. Other piping section test permits are included in separate safety review documents. So if it isn't here, that doesn't mean that it wasn't tested. D-Zero has a back up air supply system to add reliability to air compressor systems. The system includes high pressure piping which requires a review per FESHM 5031.1. The core system consists of a pressurized tube trailer, supply piping into the building and a pressure reducing regulator tied into the air compressor system discharge piping. Air flows from the trailer if the air compressor discharge pressure drops below the regulator setting. The tube trailer is periodically pumped back up to approximately 2000 psig. A high pressure compressor housed in one of the exterior buildings is used for that purpose. The system was previously documented, tested and reviewed for Run I, except for the recent addition of piping to and from the high pressure compressor. The following documents are provided for review of the system: (1) Instrument air flow schematic, drg. 3740.000-ME-273995 rev. H; (2) Component list for air system; (3) Pressure testing permit for high pressure piping; (4) Documentation from Run I contained in D-Zero Engineering note

  7. Geographic Resource Map of Frozen Pipe Probabilities

    Broader source: Energy.gov [DOE]

    Presentation slide details a resource map showing the probability of frozen pipes in the geographic United States.

  8. Hydrogen Piping Experience in Chevron Refining

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Piping Experience in Chevron Refining Ned Niccolls Materials Engineer Chevron Energy Technology Company Hydrogen Pipeline Working Group Workshop August 30-31, 2005 Outline 2 Overall perspectives from long term use of hydrogen piping in refining. Piping specifications and practices. The (few) problem areas. Related industry work: American Petroleum Institute corrosion and materials work on high temperature hydrogen attack. Overall Perspectives 3 Few problems with hydrogen piping operating at

  9. Evaluation of cracking in the 241-AZ tank farm ventilation line at the Hanford Site

    SciTech Connect (OSTI)

    ANANTATMULA, R.P.

    1999-10-20

    In the period from April to October of 1988, a series of welding operations on the outside of the AZ Tank Farm ventilation line piping at the Hanford Site produced unexpected and repeated cracking of the austenitic stainless steel base metal and of a seam weld in the pipe. The ventilation line is fabricated from type 304L stainless steel pipe of 24 inch diameter and 0.25 inch wall thickness. The pipe was wrapped in polyethylene bubble wrap and buried approximately 12 feet below grade. Except for the time period between 1980 and 1987, impressed current cathodic protection has been applied to the pipe since its installation in 1974. The paper describes the history of the cracking of the pipe, the probable cracking mechanisms, and the recommended future action for repair/replacement of the pipe.

  10. Heat pipes for industrial waste heat recovery

    SciTech Connect (OSTI)

    Merrigan, M.A.

    1981-01-01

    Development work on the high temperature ceramic recuperator at Los Alamos National Laboratory is described and involved material investigations, fabrication methods development, compatibility tests, heat pipe operation, and the modeling of application conditions based on current industrial usage. Solid ceramic heat pipes, ceramic coated refractory pipes, and high-temperature oxide protected metallic pipes have been investigated. Economic studies of the use of heat-pipe based recuperators in industrial furnaces have been conducted and payback periods determined as a function of material, fabrication, and installation cost.

  11. Leak before break evaluation for main steam piping system made of SA106 Gr.C

    SciTech Connect (OSTI)

    Yang, Kyoung Mo; Jee, Kye Kwang; Pyo, Chang Ryul; Ra, In Sik

    1997-04-01

    The basis of the leak before break (LBB) concept is to demonstrate that piping will leak significantly before a double ended guillotine break (DEGB) occurs. This is demonstrated by quantifying and evaluating the leak process and prescribing safe shutdown of the plant on the basis of the monitored leak rate. The application of LBB for power plant design has reduced plant cost while improving plant integrity. Several evaluations employing LBB analysis on system piping based on DEGB design have been completed. However, the application of LBB on main steam (MS) piping, which is LBB applicable piping, has not been performed due to several uncertainties associated with occurrence of steam hammer and dynamic strain aging (DSA). The objective of this paper is to demonstrate the applicability of the LBB design concept to main steam lines manufactured with SA106 Gr.C carbon steel. Based on the material properties, including fracture toughness and tensile properties obtained from the comprehensive material tests for base and weld metals, a parametric study was performed as described in this paper. The PICEP code was used to determine leak size crack (LSC) and the FLET code was used to perform the stability assessment of MS piping. The effects of material properties obtained from tests were evaluated to determine the LBB applicability for the MS piping. It can be shown from this parametric study that the MS piping has a high possibility of design using LBB analysis.

  12. Underground pipe inspection device and method

    DOE Patents [OSTI]

    Germata, Daniel Thomas (Wadsworth, IL)

    2009-02-24

    A method and apparatus for inspecting the walls of an underground pipe from inside the pipe in which an inspection apparatus having a circular planar platform having a plurality of lever arms having one end pivotably attached to one side of the platform, having a pipe inspection device connected to an opposite end, and having a system for pivoting the lever arms is inserted into the underground pipe, with the inspection apparatus oriented with the planar platform disposed perpendicular to the pipe axis. The plurality of lever arms are pivoted toward the inside wall of the pipe, contacting the inside wall with each inspection device as the apparatus is conveyed along a length of the underground pipe.

  13. QER- Comment of Association of Oil Pipe Lines

    Office of Energy Efficiency and Renewable Energy (EERE)

    Please find attached AOPL's comments to DOE's safety discussion in preparation for the New Orleans, LA public meeting. Thanks, John

  14. Heat-Pipe Wick Characterization

    SciTech Connect (OSTI)

    JONES II,JERRY LEE

    2000-08-15

    The development of liquid metal heat-pipes for use in solar powered Stirling engines has led to an in-depth analysis of heat-pipe wick properties. To model the flow of liquid sodium through the wick its two-phase permeability measurement is of interest. The permeability will be measured by constructing a test cell made up of a wick sample sintered to a manifold. Measuring the volumetric flow rate through the wick will allow for a determination of the wick's permeability as a function of pressure. Currently, simple estimates of permeability as a function of vapor fraction of a porous media are being used as a model to calculate the two-phase permeability. The above mentioned experiment will be used to test the existing formulas validity. The plan is to make use of a known procedure for testing permeability and apply those techniques to a felt-metal wick. The results will be used to verify and/or modify the two-phase permeability estimates. With the increasing desire to replace directly illuminated engines with the much more efficient heat-pipe apparatus it is inherently clear that the usefulness of known wick properties will make wick permeability design a simpler process.

  15. Hot Leg Piping Materials Issues

    SciTech Connect (OSTI)

    V. Munne

    2006-07-19

    With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the space nuclear power plant (SNPP) for Project Prometheus (References a and b) the reactor outlet piping was recognized to require a design that utilizes internal insulation (Reference c). The initial pipe design suggested ceramic fiber blanket as the insulation material based on requirements associated with service temperature capability within the expected range, very low thermal conductivity, and low density. Nevertheless, it was not considered to be well suited for internal insulation use because its very high surface area and proclivity for holding adsorbed gases, especially water, would make outgassing a source of contaminant gases in the He-Xe working fluid. Additionally, ceramic fiber blanket insulating materials become very friable after relatively short service periods at working temperatures and small pieces of fiber could be dislodged and contaminate the system. Consequently, alternative insulation materials were sought that would have comparable thermal properties and density but superior structural integrity and greatly reduced outgassing. This letter provides technical information regarding insulation and materials issues for the Hot Leg Piping preconceptual design developed for the Project Prometheus space nuclear power plant (SNPP).

  16. Piping inspection carriage having axially displaceable sensor

    DOE Patents [OSTI]

    Zollinger, William T.; Treanor, Richard C.

    1994-01-01

    A pipe inspection instrument carriage for use with a pipe crawler for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has a y-arm mounted distally thereon for axially aligning the inspection instrumentation and a mounting block, a linear actuator and axial movement arm for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has a rotation motor and gear assembly for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure.

  17. Piping inspection carriage having axially displaceable sensor

    DOE Patents [OSTI]

    Zollinger, W.T.; Treanor, R.C.

    1994-12-06

    A pipe inspection instrument carriage is described for use with a pipe crawler for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has a Y-arm mounted distally thereon for axially aligning the inspection instrumentation and a mounting block, a linear actuator and axial movement arm for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has a rotation motor and gear assembly for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure. 4 figures.

  18. Downhole pipe selection for acoustic telemetry

    DOE Patents [OSTI]

    Drumheller, Douglas S.

    1995-01-01

    A system for transmitting signals along a downhole string including a plurality of serially connected tubular pipes such as drill or production pipes, a transmitter for transmitting a signal along the string and a receiver for receiving the signal placed along the string at a location spaced from said transmitting means, wherein the pipes between the transmitter and the receiver are ordered according to length of tube to minimize loss of signal from said transmitter to said receiver.

  19. Downhole pipe selection for acoustic telemetry

    DOE Patents [OSTI]

    Drumheller, D.S.

    1995-12-19

    A system is described for transmitting signals along a downhole string including a plurality of serially connected tubular pipes such as drill or production pipes, a transmitter for transmitting a signal along the string and a receiver for receiving the signal placed along the string at a location spaced from said transmitting means, wherein the pipes between the transmitter and the receiver are ordered according to length of tube to minimize loss of signal from said transmitter to said receiver. 7 figs.

  20. SEISMIC DESIGN EVALUATION GUIDELINES FOR BURIED PIPING FOR THE...

    Office of Scientific and Technical Information (OSTI)

    and safcty requirements for the inner (core) pipe and the outer pipe, 2. the effect of ... The inner (or core) pipe is designed to convey waste and is intended to remain leak tight ...

  1. Pipe downchute stormwater drainage system

    SciTech Connect (OSTI)

    Gross, W.E.

    1995-12-31

    SCS Engineers (SCS) was provided with the challenge of developing a completely enclosed pipe downchute system for stormwater drainage at the Fresh Kills Landfill in New York City, the largest landfill in the world. With a total landfill drainage subshed totaling over 1000 acres, and an average yearly precipitation at the site of approximately 4.2 feet, the final constructed stormwater drainage system would capture and convey over 591 million gallons of stormwater runoff per year, and discharge it into 17 stormwater basins.This paper describes the drainage system.

  2. Non-intrusive ultrasonic liquid-in-line detector for small diameter tubes. [Patent application

    DOE Patents [OSTI]

    Piper, T.C.

    1980-09-24

    An arrangement for detecting liquids in a line, using non-intrusive ultrasonic techniques is disclosed. In this arrangement, four piezoelectric crystals are arranged in pairs about a 0.078 inch o.d. pipe. An ultrasonic tone burst is transmitted along the pipe, between crystal pairs, and the amplitude of the received tone burst indicates the absence/presence of liquid in the pipe.

  3. Non-intrusive ultrasonic liquid-in-line detector for small diameter tubes

    DOE Patents [OSTI]

    Piper, Thomas C.

    1982-01-01

    An arrangement for deleting liquid in a line, using non-intrusive ultrasonic techniques is disclosed. In this arrangement, four piezoelectric crystals are arranged in pairs about a 0.072 inch o.d. pipe. An ultrasonic tone burst is transmitted along the pipe, between crystal pairs, and the amplitude of the received tone burst indicates the absence/presence of liquid in the pipe.

  4. NUCLEAR REACTORS; PIPES; SEISMIC EFFECTS; SUPPORTS; DYNAMIC LOADS...

    Office of Scientific and Technical Information (OSTI)

    Limit analysis of pipe clamps Flanders, H.E. Jr. 22 GENERAL STUDIES OF NUCLEAR REACTORS; PIPES; SEISMIC EFFECTS; SUPPORTS; DYNAMIC LOADS; HEAT TRANSFER; HYDRAULICS; REACTOR SAFETY;...

  5. Seismic design evaluation guidelines for buried piping for the...

    Office of Scientific and Technical Information (OSTI)

    Seismic design evaluation guidelines for buried piping for the DOE HLW Facilities Citation Details In-Document Search Title: Seismic design evaluation guidelines for buried piping ...

  6. Heat pipe with embedded wick structure

    DOE Patents [OSTI]

    Adkins, D.R.; Shen, D.S.; Tuck, M.R.; Palmer, D.W.; Grafe, V.G.

    1998-06-23

    A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas. 7 figs.

  7. Heat pipe with embedded wick structure

    DOE Patents [OSTI]

    Adkins, Douglas Ray; Shen, David S.; Tuck, Melanie R.; Palmer, David W.; Grafe, V. Gerald

    1998-01-01

    A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas.

  8. Heat pipe with embedded wick structure

    DOE Patents [OSTI]

    Adkins, Douglas Ray (Albuquerque, NM); Shen, David S. (Albuquerque, NM); Tuck, Melanie R. (Albuquerque, NM); Palmer, David W. (Albuquerque, NM); Grafe, V. Gerald (Corrales, NM)

    1999-01-01

    A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas.

  9. Digital X-ray Pipe Inspector Software

    Energy Science and Technology Software Center (OSTI)

    2009-10-29

    The Digital X-ray Pipe Inspector software requires a digital x-ray image of a pipe as input to the program, such as the image in Attachment A Figure 1. The image may be in a variety of software formats such as bitmap, jpeg, tiff, DICOM or DICONDE. The software allows the user to interactively select a region of interest from the image for analysis. This software is used to analyze digital x-ray images of pipes tomore » evaluate loss of wall thickness. The software specifically provides tools to analyze the image in (a) the pipe walls, (b) between the pipe walls. Traditional software uses only the information at the pipe wall while this new software also evaluates the image between the pipewalls. This makes the inspection process faster, more thorough, more efficient, and reduces expensive reshots. Attachment A Figure 2 shows a region of interest (a green box) drawn by the user around an anomaly in the pipe wall. This area is automatically analyzed by the external pipe wall tool with the result shown in Attachment A Figure 3. The edges of the pipe wall are detected and highlighted in yellow and areas where the wall thickness in less the the minimum wall threshold are shown in red. These measurements are typically made manually in other software programs, which lead to errors and inconsistency because the location of the edges are estimated by the user. Attachment A Figure 4 shows a region of interest (a green box) drawn by the user between the pipe walls. As can be seen there are intensity anomalies that correspond to wall defects. However, this information is not used directly by other software programs. In order to fully investigate these anomalies, the pipe would be reinspected in a different orientation to attempt to obtain a view of the anomaly in the pipe wall rather than the interior of the pipe. The pipe may need to be x-rayed a number of times to obtain the correct orientation. This is very costly and time consuming. The new software can perform the

  10. Solar Heat-Pipe Receiver Wick Modeling

    SciTech Connect (OSTI)

    Andraka, C.E.

    1998-12-21

    Stirling-cycle engines have been identified as a promising technology for the conversion of concentrated solar energy into usable electrical power. In previous experimented work, we have demonstrated that a heat pipe receiver can significantly improve system performance-over a directly-illuminated heater head. The design and operating conditions of a heat pipe receiver differ significantly from typical laboratory heat pipes. New wick structures have been developed to exploit the characteristics of the solar generation system. Typically, these wick structures allow vapor generation within the wick. Conventional heat pipe models do not handle this enhancement yet it can more than double the performance of the wick. In this study, I develop a steady-state model of a boiling-enhanced wick for a solar heat pipe receiver. The model is used for design-point calculations and is written in FORTRAN90. Some limited comparisons have been made with actual test data.

  11. Glass heat pipe evacuated tube solar collector

    DOE Patents [OSTI]

    McConnell, Robert D.; Vansant, James H.

    1984-01-01

    A glass heat pipe is adapted for use as a solar energy absorber in an evacuated tube solar collector and for transferring the absorbed solar energy to a working fluid medium or heat sink for storage or practical use. A capillary wick is formed of granular glass particles fused together by heat on the inside surface of the heat pipe with a water glass binder solution to enhance capillary drive distribution of the thermal transfer fluid in the heat pipe throughout the entire inside surface of the evaporator portion of the heat pipe. Selective coatings are used on the heat pipe surface to maximize solar absorption and minimize energy radiation, and the glass wick can alternatively be fabricated with granular particles of black glass or obsidian.

  12. IPIRG programs - advances in pipe fracture technology

    SciTech Connect (OSTI)

    Wilkowski, G.; Olson, R.; Scott, P.

    1997-04-01

    This paper presents an overview of the advances made in fracture control technology as a result of the research performed in the International Piping Integrity Research Group (IPIRG) program. The findings from numerous experiments and supporting analyses conducted to investigate the behavior of circumferentially flawed piping and pipe systems subjected to high-rate loading typical of seismic events are summarized. Topics to be discussed include; (1) Seismic loading effects on material properties, (2) Piping system behavior under seismic loads, (3) Advances in elbow fracture evaluations, and (4) {open_quotes}Real{close_quotes} piping system response. The presentation for each topic will be illustrated with data and analytical results. In each case, the state-of-the-art in fracture mechanics prior to the first IPIRG program will be contrasted with the state-of-the-art at the completion of the IPIRG-2 program.

  13. Corrugated Metal Pipe Market Research | OpenEI Community

    Open Energy Info (EERE)

    Corrugated Metal Pipe Market Research Home There are currently no posts in this category. Syndicate...

  14. Pipe crawlers: Versatile adaptations for real applications

    SciTech Connect (OSTI)

    Hapstack, M.; Talarek, T.R.

    1990-01-01

    A problem at the Savannah River Site requires the unique application of a pipe crawler. A number of stainless steel pipes buried in concrete require ultrasonic inspection of the heat affected zones of the welds for detection of flaws or cracks. The paper describes the utilization of an inch-worm motion pipe crawler which negotiates a 90 degree reducing elbow with significant changes in diameter and vertical sections before entering the area of concern. After a discussion of general considerations and problem description, special requirements to meet the objectives and the design approach regarding the tractor, control system, instrument carriage, and radiation protection are discussed. 2 refs., 11 figs. (MB)

  15. Characterization of radioactive contamination inside pipes with the Pipe Explorer{sup trademark} system

    SciTech Connect (OSTI)

    Cremer, C.D.; Lowry, W.; Cramer, E.

    1995-10-01

    The U.S. Department of Energy`s nuclear facility decommissioning program needs to characterize radiological contamination inside piping systems before the pipe can be recycled, remediated, or disposed. Historically, this has been attempted using hand held survey instrumentation, surveying only the accessible exterior portions of pipe systems. Difficulty, or inability of measuring threshold surface contamination values, worker exposure, and physical access constraints have limited the effectiveness of this approach. Science and Engineering associates, Inc. under contract with the DOE Morgantown Energy Technology Center has developed and demonstrated the Pipe Explorer{trademark} system, which uses an inverting membrane to transport various characterization sensors into pipes. The basic process involves inverting (turning inside out) a tubular impermeable membrane under air pressure. A characterization sensor is towed down the interior of the pipe by the membrane.

  16. Table B1. Pipe Manufacturer Compatibility with Ethanol Blends

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    B1. Pipe Manufacturer Compatibility with Ethanol Blends Manufacturer Product Model Ethanol Compatibility Piping-All Companies have UL 971 listing for E100 Advantage Earth Products Piping 1.5", 2", 3", 4" E0-E100 Brugg Piping FLEXWELL-HL, SECON-X, NITROFLEX, LPG E0-E100 Franklin Fueling Piping Franklin has third-party certified piping compatible with up to E85. Contact manufacturer for specific part numbers. E0-E85 OPW Piping FlexWorks, KPS, Pisces (discontinued) E0-E100 NOV

  17. Evaluation of clamp effects on LMFBR piping systems

    SciTech Connect (OSTI)

    Jones, G.L.

    1980-01-01

    Loop-type liquid metal breeder reactor plants utilize thin-wall piping to mitigate through-wall thermal gradients due to rapid thermal transients. These piping loops require a support system to carry the combined weight of the pipe, coolant and insulation and to provide attachments for seismic restraints. The support system examined here utilizes an insulated pipe clamp designed to minimize the stresses induced in the piping. To determine the effect of these clamps on the pipe wall a non-linear, two-dimensional, finite element model of the clamp, insulation and pipe wall was used to determine the clamp/pipe interface load distributions which were then applied to a three-dimensional, finite element model of the pipe. The two-dimensional interaction model was also utilized to estimate the combined clamp/pipe stiffness.

  18. Alpha detection in pipes using an inverting membrane scintillator

    SciTech Connect (OSTI)

    Kendrick, D.T.; Cremer, C.D.; Lowry, W.

    1995-10-01

    Characterization of surface alpha emitting contamination inside enclosed spaces such as piping systems presents an interesting radiological measurement challenge. Detection of these alpha particles from the exterior of the pipe is impossible since the alpha particles are completely absorbed by the pipe wall. Traditional survey techniques, using hand-held instruments, simply can not be used effectively inside pipes. Science and Engineering Associates, Inc. is currently developing an enhancement to its Pipe Explorer{trademark} system that will address this challenge. The Pipe Explorer{trademark} uses a unique sensor deployment method where an inverted tubular membrane is propagated through complex pipe runs via air pressure. The inversion process causes the membrane to fold out against the pipe wall, such that no part of the membrane drags along the pipe wall. This deployment methodology has been successfully demonstrated at several DOE sites to transport specially designed beta and gamma, scintillation detectors into pipes ranging in length up to 250 ft.

  19. Reliability Estimation for Double Containment Piping

    SciTech Connect (OSTI)

    L. Cadwallader; T. Pinna

    2012-08-01

    Double walled or double containment piping is considered for use in the ITER international project and other next-generation fusion device designs to provide an extra barrier for tritium gas and other radioactive materials. The extra barrier improves confinement of these materials and enhances safety of the facility. This paper describes some of the design challenges in designing double containment piping systems. There is also a brief review of a few operating experiences of double walled piping used with hazardous chemicals in different industries. This paper recommends approaches for the reliability analyst to use to quantify leakage from a double containment piping system in conceptual and more advanced designs. The paper also cites quantitative data that can be used to support such reliability analyses.

  20. Heat pipe effect in porous medium

    SciTech Connect (OSTI)

    Joseph, M.

    1992-12-01

    In this thesis a parametric study of the thermal and hydrologic characteristics of the fractured porous tuffs at Yucca Mountain, Nevada was conducted. The effects of different fracture and matrix properties including permeability, thermal conductivity, specific heat, porosity, and tortuosity on heat pipe performance in the vicinity of the waste package were observed. Computer simulations were carried out using TOUGH code on a Cray YMP-2 supercomputer. None of the fracture parameters affected the heat pipe performance except the mobility of the liquid in the fracture. Matrix permeability and thermal conductivity were found to have significant effect on the heat pipe performance. The effect of mass injection was studied for liquid water and air injected at the fracture boundary. A high rate of mass injection was required to produce any effect on the heat pipe. The fracture-matrix equilibrium is influenced by the matrix permeability and the matrix thermal conductivity.

  1. Dehumidifying Heat Pipes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dehumidifying Heat Pipes Dehumidifying Heat Pipes In order to make a room comfortable in hot, humid climates, an air conditioner must lower the indoor humidity level as well as the air temperature. If an air conditioner fails to lower the humidity adequately, the air will be cool, but will feel uncomfortably damp. Inappropriately sized air conditioners are prone to this problem; large units quickly cool the air, but cycle off before they can properly dehumidify it. In extremely humid climates,

  2. Cesium heat-pipe thermostat

    SciTech Connect (OSTI)

    Wu, F.; Song, D.; Sheng, K.; Wu, J.; Yi, X.; Yu, Z.

    2013-09-11

    In this paper the authors report a newly developed Cesium Heat-Pipe Thermostat (Cs HPT) with the operation range of 400 C to 800 C. The working medium is cesium (Cs) of 99.98% purity and contains no radioisotope. A Cs filing device is developed which can prevent Cs being in contact with air. The structural material is stainless steel. A 5000 h test has been made to confirm the compatibility between cesium and stainless steel. The Cs HPT has several thermometer wells of 220mm depth with different diameters for different sizes of thermometers. The temperature uniformity of the Cs HPT is 0.06 C to 0.20 C. A precise temperature controller is used to ensure the temperature fluctuation within 0.03 C. The size of Cs HPT is 380mm320mm280mm with foot wheels for easy moving. The thermostat has been successfully used for the calibration of industrial platinum resistance thermometers and thermocouples.

  3. Apparatus and method for detecting leaks in piping

    DOE Patents [OSTI]

    Trapp, Donald J. (Aiken, SC)

    1994-01-01

    A method and device for detecting the location of leaks along a wall or piping system, preferably in double-walled piping. The apparatus comprises a sniffer probe, a rigid cord such as a length of tube attached to the probe on one end and extending out of the piping with the other end, a source of pressurized air and a source of helium. The method comprises guiding the sniffer probe into the inner pipe to its distal end, purging the inner pipe with pressurized air, filling the annulus defined between the inner and outer pipe with helium, and then detecting the presence of helium within the inner pipe with the probe as is pulled back through the inner pipe. The length of the tube at the point where a leak is detected determines the location of the leak in the pipe.

  4. Apparatus and method for detecting leaks in piping

    DOE Patents [OSTI]

    Trapp, D.J.

    1994-12-27

    A method and device are disclosed for detecting the location of leaks along a wall or piping system, preferably in double-walled piping. The apparatus comprises a sniffer probe, a rigid cord such as a length of tube attached to the probe on one end and extending out of the piping with the other end, a source of pressurized air and a source of helium. The method comprises guiding the sniffer probe into the inner pipe to its distal end, purging the inner pipe with pressurized air, filling the annulus defined between the inner and outer pipe with helium, and then detecting the presence of helium within the inner pipe with the probe as is pulled back through the inner pipe. The length of the tube at the point where a leak is detected determines the location of the leak in the pipe. 2 figures.

  5. Instrumentation for monitoring buried pipe behavior during backfilling

    SciTech Connect (OSTI)

    McGrath, T.J.; Selig, E.T.; Webb, M.C.

    1999-07-01

    An extensive instrumentation plan was devised to monitor buried pipe behavior, soil behavior and pipe-soil interaction during backfilling. The emphasis of the instrumentation plan was to monitor these parameters under different installation techniques without impeding construction operations. Different types and sizes of pipe were selected for installation in trenches excavated in undisturbed in situ soil conditions. Installation variables included in situ soil conditions, trench widths, backfill material (including controlled low strength material), haunching effort, and compaction methods. A total of fourteen tests, each including reinforced concrete, corrugated steel, and corrugated HDPE, were conducted. Eleven of the installations were conducted with 900 mm inside diameter pipe and three with 1,500 mm inside diameter pipe. The pipes were buried to a cover depth of 1.2 m. Measurements of pipe shape, pipe strains, pipe-soil interface pressures, soil density, soil stresses, and soil strains were collected. Pipe shape changes were measured by a custom built profilometer. Custom designed bending beam pressure transducers were used in the steel pipe to measure interface pressures. Most of the instrumentation performed well and measured results were within the range expected. Pipe-soil interaction effects were effectively measured with the instruments selected. Pipe shape changes were a very valuable parameter for investigating pipe-soil interaction.

  6. Probability of pipe fracture in the primary coolant loop of a PWR plant. Volume 5: probabilistic fracture mechanics analysis. Final report

    SciTech Connect (OSTI)

    Harris, D.O.; Lim, E.Y.; Dedhia, D.D.

    1981-08-01

    The purpose of the portion of the Load Combination Program covered in this volume was to estimate the probability of a seismic induced loss-of-coolant accident (LOCA) in the primary piping of a commercial pressurized water reactor (PWR). Such results are useful in rationally assessing the need to design reactor primary piping systems for the simultaneous occurrence of these two potentially high stress events. The primary piping system at Zion I was selected for analysis. Attention was focussed on the girth butt welds in the hot leg, cold leg and cross-over leg, which are centrifugally cast austenitic stainless steel lines with nominal outside diameters of 32 - 37 inches.

  7. Cast-stone sectors for lining bends in pipework

    SciTech Connect (OSTI)

    Chechulin, V.A.; Novikov, A.I.; Karpov, V.M.; Sotnik, A.A.; Sedyshev, B.L.

    1987-03-01

    The authors disclose an efficient method for lining the bends of pipelines used to deliver coal dust to the burners of coal-fired power plants or to transport coal slurries in mining and preparation enterprises. The method consists of melting a wear-resistant silicate compound and casting it in the form of rings whose increased width on the outboard side accounts for the angle of the bend when the rings are installed consecutively inside the pipe. Enhanced service life estimations and cost benefit analyses are given for pipe bends thus lined in both of the above applications.

  8. Heat pipes for use in a magnetic field

    DOE Patents [OSTI]

    Werner, Richard W.; Hoffman, Myron A.

    1983-01-01

    A heat pipe configuration for use in a magnetic field environment of a fusion reactor. Heat pipes for operation in a magnetic field when liquid metal working fluids are used are optimized by flattening of the heat pipes having an unobstructed annulus which significantly reduces the adverse side region effect of the prior known cylindrically configured heat pipes. The flattened heat pipes operating in a magnetic field can remove 2--3 times the heat as a cylindrical heat pipe of the same cross sectional area.

  9. Heat pipes for use in a magnetic field

    DOE Patents [OSTI]

    Werner, R.W.; Hoffman, M.A.

    1983-07-19

    A heat pipe configuration for use in a magnetic field environment of a fusion reactor is disclosed. Heat pipes for operation in a magnetic field when liquid metal working fluids are used are optimized by flattening of the heat pipes having an unobstructed annulus which significantly reduces the adverse side region effect of the prior known cylindrically configured heat pipes. The flattened heat pipes operating in a magnetic field can remove 2--3 times the heat as a cylindrical heat pipe of the same cross sectional area. 4 figs.

  10. ESR Process Instabilities while Melting Pipe Electrodes

    SciTech Connect (OSTI)

    Melgaard, D.K.; Shelmidine, G.J.

    1999-01-06

    With the demonstration of the viability of using the electroslag remelting process for the decontamination of radionuclides, interest has increased in examining the unique aspects associated with melting steel pipe electrodes. These electrodes consist of several nested pipes, welded concentrically to atop plate. Since these electrodes can be half as dense as a solid electrode, they present unique challenges to the standard algorithms used in controlling the melting process. Naturally the electrode must be driven down at a dramatically increased speed. However, since the heat transfer is greatly influenced and enhanced with the increased area to volume ratio, considerable variation in the melting rate of the pipes has been found. Standard control methods can become unstable as a result of the variation at increased speeds, particularly at shallow immersion depths. The key to good control lies in the understanding of the melting process. Several experiments were conducted to observe the characteristics of the melting using two different control modes. By using a pressure transducer to monitor the pressure inside the pipes, the venting of the air trapped inside the electrode was observed. The measurements reveal that for a considerable amount of time. the pipes are not completely immersed in the slag, allowing the gas inside to escape without the formation of bubbles. This result has implications for the voltage swing as well as for the decontamination reactions.

  11. Key results for the NRC`s Short Cracks in Piping and Piping Welds Research Program

    SciTech Connect (OSTI)

    Wilkowski, G.; Krishnaswamy, P.; Brust, F.

    1995-04-01

    The overall objective of the Short Cracks in Piping and Piping Welds Program is to verify and improve engineering analyses to predict the fracture behavior of circumferentially cracked pipe under quasi-static loading with particular attention to crack lengths typically used in LBB or flaw evaluation criteria. The USNCRC program at Battelle was initiated in March 1990 and is scheduled to be completed in December 1994. This paper discusses key results from the overall program with particular emphasis on the efforts since the last WRSIM meeting. The program consists of eight technical tasks as listed below: task 1 short through-wall-cracked (TWC) pipe evaluations; task 2 short surface-cracked (SC) pipe evaluations; task 3 bi-metallic weld crack evaluations; task 4 dynamic strain aging and crack instabilities; task 5 fracture evaluations of anisotropic pipe; task 6 crack-opening-area evaluations; task 7 NRCPIPE code improvements; task 8 additional efforts. Task 8 is a collection of new efforts initiated during the coarse of the program. A list of the full-scale pipe experiments in this program is given in Table 1. All of the experiments have been completed. The most recent accomplishments in each of the tasks listed above are discussed below. The details of all the results in the eight tasks are published in the semiannual reports as well as topical reports from the program.

  12. Corrugated Pipe as a Beam Dechirper

    SciTech Connect (OSTI)

    Bane, K.L.F.; Stupakov, G.; /SLAC

    2012-04-20

    We have studied the use of a metallic pipe with small corrugations for the purpose of passively dechirping, through its wakefield, a short, intense electron bunch. The corrugated pipe is attractive for this purpose because its wake: (i) has near maximal possible amplitude for a given aperture and (ii) has a relatively large oscillation wave length, even when the aperture is small. We showed how the corrugated structure can satisfy dechirping requirements encountered in the NGLS project at LBNL. We found that a linear chirp of -40 MeV/mm can be induced by an NGLS-like beam, by having it pass through a corrugated, metallic pipe of radius 3 mm, length 8.2 m, and corrugation parameters full depth 450 {mu}m and period 1000 {mu}m. This structure is about 15 times as effective in the role of dechirper as an S-band accelerator structure used passively.

  13. Savings Project: Insulate Hot Water Pipes for Energy Savings...

    Energy Savers [EERE]

    Hot Water Pipes for Energy Savings Savings Project: Insulate Hot Water Pipes for Energy Savings Addthis Project Level Medium Energy Savings 8-12 annually Time to Complete 3 hours ...

  14. Liquid-Filled Piping System Analysis

    Energy Science and Technology Software Center (OSTI)

    1993-07-07

    WHAM6 is used to calculate pressure and velocity transients in liquid-filled piping networks. It can be applied to multiloop complex piping networks consisting of dead ends, elbows, orifices, multiple-branch tees, changes of flow passage cross section, check valves, pumps, pressurizers or tanks, and exit valves or breaks. Hydraulic losses are considered. Transients can be initiated either by closure or opening of one or more exit valves (equivalent to system ruptures) or by a prescribed gasmore » pressure history in a pressurizer tank.« less

  15. Code System for Static and Dynamic Piping System Analysis.

    Energy Science and Technology Software Center (OSTI)

    2000-07-07

    EPIPE is used for design or design evaluation of complex large piping systems. The piping systems can be viewed as a network of straight pipe elements (or tangents) and curved elements (pipe bends) interconnected at joints (or nodes) with intermediate supports and anchors. The system may be subject to static loads such as thermal, dead weight, internal pressure, or dynamic loads such as earthquake motions and flow-induced vibrations, or any combination of these.

  16. Passive ice freezing-releasing heat pipe

    DOE Patents [OSTI]

    Gorski, Anthony J.; Schertz, William W.

    1982-01-01

    A heat pipe device has been developed which permits completely passive ice formation and periodic release of ice without requiring the ambient temperature to rise above the melting point of water. This passive design enables the maximum amount of cooling capacity to be stored in the tank.

  17. Characterization of radioactive contamination inside pipes with the Pipe Explorer{trademark} system. Final report

    SciTech Connect (OSTI)

    Cremer, C.D.; Kendrick, D.T.; Lowry, W.; Cramer, E.

    1997-09-30

    The Department of Energy (DOE) is currently in the process of decommissioning and dismantling many of its nuclear materials processing facilities that have been in use for several decades. Site managers throughout the DOE complex must employ the safest and most cost effective means to characterize, remediate and recycle or dispose of hundreds of miles of potentially contaminated piping and duct work. The DOE discovered that standard characterization methods were inadequate for its pipes, drains, and ducts because many of the systems are buried or encased. In response to the DOE`s need for a more specialized characterization technique, Science and Engineering Associates, Inc. (SEA) developed the Pipe Explorer{trademark} system through a DOE Office of Science and Technology (OST) contract administered through the Federal Energy Technology Center (FETC). The purpose of this report is to serve as a comprehensive overview of all phases of the Pipe Explorer{trademark} development project. The report is divided into 6 sections. Section 2 of the report provides an overview of the Pipe Explorer{trademark} system, including the operating principles of using an inverting membrane to tow sensors into pipes. The basic components of the characterization system are also described. Descriptions of the various deployment systems are given in Section 3 along with descriptions of the capabilities of the deployment systems. During the course of the development project 7 types of survey instruments were demonstrated with the Pipe Explorer{trademark} and are a part of the basic toolbox of instruments available for use with the system. These survey tools are described in Section 4 along with their typical performance specifications. The 4 demonstrations of the system are described chronologically in Section 5. The report concludes with a summary of the history, status, and future of the Pipe Explorer{trademark} system in Section 6.

  18. Botas line repaired ahead of schedule

    SciTech Connect (OSTI)

    Not Available

    1991-11-01

    This paper reports on damaged sections of Botas' dual 30-in. gas line carrying USSR gas across the Marmara Sea to Turkey that were replaced 30 days ahead of contract schedule. Tefken Construction and Installation Co., Inc., Istanbul, working under a $4-million contract, replaced two sections on one of the dual lines near Ambarli, Turkey, within a two-month period. The offshore system stretches 33-mi under the Marmara Sea with some pipe laid at 262-ft maximum water depths. The scope of the project was to replace a 426-ft offshore approach to the northern shoreline and a 984-ft onshore section, which were damaged by a submarine landslide.

  19. Steam bubble collapse induced water hammer in draining pipes

    SciTech Connect (OSTI)

    Griffith, P.; Silva, R.J.

    1991-08-01

    When hot steam replaces cold condensate in a horizontal or almost horizontal pipe, a steam bubble collapse induced water hammer often results. The effect of condensate drainage velocity and pipe declination on the incidence of steam bubble collapse induced water hammer is investigated experimentally. Declining the pipe more than 2.4{degrees} allows drainage velocities up to 3 ft/sec (1m/s) in a two inch (5 cm) pipe without water hammer. A semi-empirical theory allows extrapolation to other pressures, pipe sizes and inclinations. 4 refs.

  20. 241-AY-102 Leak Detection Pit Drain Line Inspection Report

    SciTech Connect (OSTI)

    Boomer, Kayle D.; Engeman, Jason K.; Gunter, Jason R.; Joslyn, Cameron C.; Vazquez, Brandon J.; Venetz, Theodore J.; Garfield, John S.

    2014-01-20

    This document provides a description of the design components, operational approach, and results from the Tank AY-102 leak detection pit drain piping visual inspection. To perform this inspection a custom robotic crawler with a deployment device was designed, built, and operated by IHI Southwest Technologies, Inc. for WRPS to inspect the 6-inch leak detection pit drain line.

  1. Replacement of alloy 800H superheated steam line

    SciTech Connect (OSTI)

    Barbier, R.A.; Bullock, J.W. [Sterling Chemicals, Texas City, TX (United States)

    1996-07-01

    Sterling Chemicals utilizes alloy 800HT (UNS N08811) piping for superheated steam service in its styrene dehydrogenation unit. An engineering project to replace these lines was recently completed. Material acquisition, shop fabrication, inspection requirements, and field erection will be highlighted in this paper.

  2. Line Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grand Coulee Transmission Line Replacement Project Hooper Springs McNary-John Day Montana-to-Washington Transmission System Upgrade Project - M2W Olympia-Grand Coulee No. 1...

  3. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    SciTech Connect (OSTI)

    Kiran M. Kothari; Gerard T. Pittard

    2003-06-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast-iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and attaching a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service (which results in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1-Program Management was previously completed. Two reports, one describing the program management plan and the other consisting of the technology assessment, were submitted to the DOE COR in the first quarter. Task 2-Establishment of Detailed Design Specifications and Task 3-Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves are now well underway. First-quarter activities included conducting detailed analyses to determine the capabilities of coiled-tubing locomotion for entering and repairing gas mains and the first design iteration of the joint-sealing sleeve. The maximum horizontal reach of coiled tubing inside a pipeline before buckling prevents further access was calculated for a wide

  4. Transient One-dimensional Pipe Flow Analyzer

    Energy Science and Technology Software Center (OSTI)

    1986-04-08

    TOPAZ-SNLL, the Transient One- dimensional Pipe flow AnalyZer code, is a user-friendly computer program for modeling the heat transfer, fluid mechanics, and thermodynamics of multi-species gas transfer in arbitrary arrangements of pipes, valves, vessels, and flow branches. Although the flow conservation equations are assumed to be one-dimensional and transient, multidimensional features of internal fluid flow and heat transfer may be accounted for using the available quasi-steady flow correlations (e.g., Moody friction factor correlation and variousmore » form loss and heat transfer correlations). Users may also model the effects of moving system boundaries such as pistons, diaphragms, and bladders. The features of fully compressible flow are modeled, including the propagation of shocks and rarefaction waves, as well as the establishment of multiple choke points along the flow path.« less

  5. Corrosion failures of austenitic stainless steel piping

    SciTech Connect (OSTI)

    Louthan, M.R. Jr.

    1993-10-01

    The safe and efficient operation of many chemical/industrial systems requires the continued integrity of the process piping; this is achieved through a complex series of interactions influenced by design, fabrication, construction, operation, inspection and lay-up requirements. Potential material-enviroment interactions are frequently, if evaluated at all, relegated to secondary considerations. This tendency virtually assures corrosion induced degradation of the process piping systems. Pitting, crevice attack, stress cracking, microbiologically influenced corrosion, intergranular attack and corrosion fatigue have caused leaks, cracks, failures and shutdown of numerous process systems. This paper uses the lessons learned from failure analysis to emphasize the importance of an integrated material program to system success. The necessity of continuing evaluation if also emphasized through examples of failures which were associated with materials-environment interactions caused by slight alterations of processes and/or systems.

  6. Pipe Explorer{trademark} surveying system. Innovative technology summary report

    SciTech Connect (OSTI)

    Not Available

    1999-06-01

    The US Department of Energy`s (DOE) Chicago Operations Office and the DOE`s Federal Energy Technology Center (FETC) developed a Large Scale Demonstration Project (LSDP) at the Chicago Pile-5 Research Reactor (CP-5) at Argonne National Laboratory-East (ANL). The objective of the LSDP is to demonstrate potentially beneficial decontamination and decommissioning (D and D) technologies in comparison with current baseline technologies. The Pipe Explorer{trademark} system was developed by Science and Engineering Associates, Inc. (SEA), Albuquerque, NM as a deployment method for transporting a variety of survey tools into pipes and ducts. Tools available for use with the system include alpha, beta and gamma radiation detectors; video cameras; and pipe locator beacons. Different versions of this technology have been demonstrated at three other sites; results of these demonstrations are provided in an earlier Innovative Technology Summary Report. As part of a D and D project, characterization radiological contamination inside piping systems is necessary before pipes can be recycled, remediated or disposed. This is usually done manually by surveying over the outside of the piping only, with limited effectiveness and risk of worker exposure. The pipe must be accessible to workers, and embedded pipes in concrete or in the ground would have to be excavated at high cost and risk of exposure to workers. The advantage of the Pipe Explorer is its ability to perform in-situ characterization of pipe internals.

  7. Heat pipe wick with structural enhancement

    DOE Patents [OSTI]

    Andraka, Charles E.; Adkins, Douglas R.; Moreno, James B.; Rawlinson, K. Scott; Showalter, Steven K.; Moss, Timothy A.

    2003-11-18

    Heat pipe wick structure wherein a stout sheet of perforated material overlays a high performance wick material such as stainless steel felt affixed to a substrate. The inventive structure provides a good flow path for working fluid while maintaining durability and structural stability independent of the structure (or lack of structure) associated with the wick material. In one described embodiment, a wick of randomly laid .about.8 micron thickness stainless steel fibers is sintered to a metal substrate and a perforated metal overlay.

  8. Determination of leakage areas in nuclear piping

    SciTech Connect (OSTI)

    Keim, E.

    1997-04-01

    For the design and operation of nuclear power plants the Leak-Before-Break (LBB) behavior of a piping component has to be shown. This means that the length of a crack resulting in a leak is smaller than the critical crack length and that the leak is safely detectable by a suitable monitoring system. The LBB-concept of Siemens/KWU is based on computer codes for the evaluation of critical crack lengths, crack openings, leakage areas and leakage rates, developed by Siemens/KWU. In the experience with the leak rate program is described while this paper deals with the computation of crack openings and leakage areas of longitudinal and circumferential cracks by means of fracture mechanics. The leakage areas are determined by the integration of the crack openings along the crack front, considering plasticity and geometrical effects. They are evaluated with respect to minimum values for the design of leak detection systems, and maximum values for controlling jet and reaction forces. By means of fracture mechanics LBB for subcritical cracks has to be shown and the calculation of leakage areas is the basis for quantitatively determining the discharge rate of leaking subcritical through-wall cracks. The analytical approach and its validation will be presented for two examples of complex structures. The first one is a pipe branch containing a circumferential crack and the second one is a pipe bend with a longitudinal crack.

  9. SEALING LARGE-DIAMETER CAST-IRON PIPE JOINTS UNDER LIVE CONDITIONS

    SciTech Connect (OSTI)

    Kiran M. Kothari; Gerard T. Pittard

    2003-01-01

    Utilities in the U.S. operate over 75,000 km (47,000 miles) of old cast-iron pipes for gas distribution. The bell-and-spigot joints tend to leak as these pipes age. Current repair practices are costly and highly disruptive. The objective of this program is to design, test and commercialize a robotic system capable of sealing multiple cast-iron bell and spigot joints from a single pipe entry point. The proposed system will perform repairs while the pipe remains in service by traveling through the pipe, cleaning each joint surface, and attaching a stainless-steel sleeve lined with an epoxy-impregnated felt across the joint. This approach will save considerable time and labor, avoid traffic disruption, and eliminate any requirement to interrupt service (which results in enormous expense to utilities). Technical challenges include: (1) repair sleeves must compensate for diametric variation and eccentricity of cast-iron pipes; (2) the assembly must travel long distances through pipes containing debris; (3) the pipe wall must be effectively cleaned in the immediate area of the joint to assure good bonding of the sleeve; and (4) an innovative bolt-on entry fitting is required to conduct repair operations on live mains. The development effort is divided into eleven tasks. Task 1--Program Management was previously completed. Two reports, one describing the program management plan and the other consisting of the technology assessment, were submitted to the DOE COR in the first quarter. Task 2--Establishment of Detailed Design Specifications and Task 3--Design and Fabricate Ratcheting Stainless-Steel Repair Sleeves are now well underway. First-quarter activities included conducting detailed analyses to determine the capabilities of coiled-tubing locomotion for entering and repairing gas mains and the first design iteration of the joint-sealing sleeve. The maximum horizontal reach of coiled tubing inside a pipeline before buckling prevents further access was calculated for a

  10. Pipe overpack container for trasuranic waste storage and shipment

    DOE Patents [OSTI]

    Geinitz, Richard R.; Thorp, Donald T.; Rivera, Michael A.

    1999-01-01

    A Pipe Overpack Container for transuranic waste storage and shipment. The system consists of a vented pipe component which is positioned in a vented, insulated 55 gallon steel drum. Both the vented pipe component and the insulated drum are capable of being secured to prevent the contents from leaving the vessel. The vented pipe component is constructed of 1/4 inch stainless steel to provide radiation shielding. Thus, allowing shipment having high Americium-241 content. Several Pipe Overpack Containers are then positioned in a type B, Nuclear Regulatory Commission (NRC) approved, container. In the current embodiment, a TRUPACT-II container was employed and a maximum of fourteen Pipe Overpack Containers were placed in the TRUPACT-II. The combination received NRC approval for the shipment and storage of transuranic waste.

  11. Evaluation of Trenchless Installation Technology for Radioactive Wastewater Piping Applications

    SciTech Connect (OSTI)

    Robinson, Sharon M; Jubin, Robert Thomas; Patton, Bradley D; Sullivan, Nicholas M; Bugbee, Kathy P

    2009-09-01

    sanitary sewer and natural gas pipeline industries, they have been used far less in contaminated environments. Although trenchless technologies have been used at ORNL in limited applications to install new potable water and gas lines, the technologies have not been used in radioactive applications. This study evaluates the technical risks, benefits, and economics for installing gravity drained and pressurized piping using trenchless technologies compared to conventional installation methods for radioactive applications under ORNL geological conditions. A range of trenchless installation technologies was reviewed for this report for general applicability for replacing existing contaminated piping and/or installing new pipelines in potentially contaminated areas. Installation methods that were determined to have potential for use in typical ORNL contaminated environments were then evaluated in more detail for three specific ORNL applications. Each feasible alternative was evaluated against the baseline conventional open trench installation method using weighted criteria in the areas of environment, safety, and health (ES&H); project cost and schedule; and technical operability. The formulation of alternatives for evaluation, the development of selection criteria, and the scoring of alternatives were performed by ORNL staff with input from vendors and consultants. A description of the evaluation methodology and the evaluation results are documented in the following sections of this report.

  12. CRAD, Equipment and Piping Labeling Assessment Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment and Piping Labeling Assessment Plan CRAD, Equipment and Piping Labeling Assessment Plan Performance Objective: To verify that facility equipment and piping are labeled in a manner such that facility personnel are able to positively identify equipment they operate. To ensure that an effective labeling program is in effect to reduce operator and maintenance errors from incorrect identification of equipment, to increase training effectiveness by tracing the actual facility system as

  13. Hydrogen Piping Experience in Chevron Refining | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Piping Experience in Chevron Refining Hydrogen Piping Experience in Chevron Refining Overall Perspectives: Few problems with hydrogen piping operating at ambient to at least 800F and pressures up to at least 3000psia as long as we stay within well-defined limits hpwgw_chevronrefining_niccolls.pdf (373.32 KB) More Documents & Publications DOE Hydrogen Pipeline Working Group Workshop Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines A Review of Stress Corrosion

  14. Robotic platform for traveling on vertical piping network

    DOE Patents [OSTI]

    Nance, Thomas A; Vrettos, Nick J; Krementz, Daniel; Marzolf, Athneal D

    2015-02-03

    This invention relates generally to robotic systems and is specifically designed for a robotic system that can navigate vertical pipes within a waste tank or similar environment. The robotic system allows a process for sampling, cleaning, inspecting and removing waste around vertical pipes by supplying a robotic platform that uses the vertical pipes to support and navigate the platform above waste material contained in the tank.

  15. Concrete as secondary containment for interior wall embedded waste lines

    SciTech Connect (OSTI)

    Porter, C.L.

    1993-10-01

    Throughout the Department of Energy (DOE) complex are numerous facilities that handle hazardous waste solutions. Secondary containment of tank systems and their ancillary piping is a major concern for existing facilities. The Idaho Division of Environmental Quality was petitioned in 1990 for an Equivalent Device determination regarding secondary containment of waste lines embedded in interior concrete walls. The petition was granted, however it expires in 1996. To address the secondary containment issue, additional studies were undertaken. One study verified the hypothesis that an interior wall pipe leak would follow the path of least resistance through the naturally occurring void found below a rigidly supported pipe and pass into an adjacent room where detection could occur, before any significant deterioration of the concrete takes place. Other tests demonstrated that with acidic waste solutions rebar and cold joints are not an accelerated path to the environment. The results from these latest studies confirm that the subject configuration meets all the requirements of secondary containment

  16. A pipe cleaning machine: ERIP recommendation No. 571

    SciTech Connect (OSTI)

    Bratcher, H. Jr.; Hinick, M.B.; Balsam, J.W.

    1992-06-12

    The subject invention, ``A Pipe Cleaning Machine,`` known as ``Buffy,`` is a device that strips pipeline of its coating down to the metal. The apparatus consists of a series of motor-driven metal brushes mounted on a ring structure that fits the around the pipe`s circumference. Once stripped, the pipeline may or may not be abrasive-blasted, but is then coated and wrapped, and the trench is back-filled. Present models of the Buffy can be used on pipe up to 36`` in diameter. One of the device`s unique features is its ability to operate while the pipeline remains in service.

  17. Reduce Pumping Costs Through Optimum Pipe Sizing | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduce Pumping Costs Through Optimum Pipe Sizing (October 2005) (209.25 KB) More Documents & Publications Select an Energy-Efficient Centrifugal Pump Effect of Intake on Compressor ...

  18. International Piping Integrity Research Group (IPIRG) Program. Final report

    SciTech Connect (OSTI)

    Wilkowski, G.; Schmidt, R.; Scott, P.

    1997-06-01

    This is the final report of the International Piping Integrity Research Group (IPIRG) Program. The IPIRG Program was an international group program managed by the U.S. Nuclear Regulatory Commission and funded by a consortium of organizations from nine nations: Canada, France, Italy, Japan, Sweden, Switzerland, Taiwan, the United Kingdom, and the United States. The program objective was to develop data needed to verify engineering methods for assessing the integrity of circumferentially-cracked nuclear power plant piping. The primary focus was an experimental task that investigated the behavior of circumferentially flawed piping systems subjected to high-rate loadings typical of seismic events. To accomplish these objectives a pipe system fabricated as an expansion loop with over 30 meters of 16-inch diameter pipe and five long radius elbows was constructed. Five dynamic, cyclic, flawed piping experiments were conducted using this facility. This report: (1) provides background information on leak-before-break and flaw evaluation procedures for piping, (2) summarizes technical results of the program, (3) gives a relatively detailed assessment of the results from the pipe fracture experiments and complementary analyses, and (4) summarizes advances in the state-of-the-art of pipe fracture technology resulting from the IPIRG program.

  19. Design of megawatt power level heat pipe reactors (Technical...

    Office of Scientific and Technical Information (OSTI)

    pipe reactors An important niche for nuclear energy is the need for power at remote locations removed from a reliable electrical grid. Nuclear energy has potential applications at ...

  20. Heat pipe with improved wick structures

    DOE Patents [OSTI]

    Benson, David A.; Robino, Charles V.; Palmer, David W.; Kravitz, Stanley H.

    2000-01-01

    An improved planar heat pipe wick structure having projections formed by micromachining processes. The projections form arrays of interlocking, semi-closed structures with multiple flow paths on the substrate. The projections also include overhanging caps at their tops to increase the capillary pumping action of the wick structure. The capped projections can be formed in stacked layers. Another layer of smaller, more closely spaced projections without caps can also be formed on the substrate in between the capped projections. Inexpensive materials such as Kovar can be used as substrates, and the projections can be formed by electrodepositing nickel through photoresist masks.

  1. Gas lines chasing huge northeastern market

    SciTech Connect (OSTI)

    Watts, J.

    1982-03-01

    Gas for the Northeastern US market is the driving force behind three proposed projects to bring Canadian gas to the New England-New York area: the 360-mile New England States pipeline (Algonquin Gas Transmission Co., Transcontinental Gas Pipe Line Corp., Texas Eastern Transmission Corp., and Nova, an Alberta Corp.); the 261-mile Boundary Gas project (with Boundary Gas Inc., a consortium of 14 gas utilities with Tennessee Gas Pipeline Co. providing transportation); and the 158-mile Niagara pipeline (Transcontinental Gas Pipe Line Corp.). Although none has yet received government (US and Canadian) approval, at least one project - the New England States line - is expected to be operational by 1984, bringing 305 million CF of natural gas daily for US residential and industrial markets. Both countries stand to benefit from the three projects. For Canada, the sale of gas to New England provides a steady market for massive quantities of gas makes building a pipeline from gas-rich Alberta (that will also serve eastern Canada) economically feasible, and ensures the existence of a transportation network in the Maritime provinces for use when production begins off Newfoundland and Nova Scotia. For the US, the gas from Canada will help reduce the nation's dependence on foreign oil and provide additional supplies during the peakload winter season.

  2. Erosion/corrosion-induced pipe wall thinning in US Nuclear Power...

    Office of Scientific and Technical Information (OSTI)

    Erosioncorrosion-induced pipe wall thinning in US Nuclear Power Plants Citation Details In-Document Search Title: Erosioncorrosion-induced pipe wall thinning in US Nuclear Power ...

  3. Load-deflection characteristics of small bore insulated pipe clamps

    SciTech Connect (OSTI)

    Severud, L.K.; Clark, G.L.

    1982-01-01

    High temperature LMFBR piping is subject to rapid temperature changes during transient events. Typically, this pipe is supported by specially designed insulated pipe clamps to prevent excessive thermal stress from developing during these transients. The special insulated clamps used on both FFTF and CRBR piping utilize a Belleville spring arrangement to compensate for pipe thermal expansion. Analysis indicates that this produces a non-linear, directionally sensitive clamp spring rate. Since these spring rates influence the seismic response of a supported piping system, it was deemed necessary to evaluate them further by test. This has been accomplished for the FFTF clamps. A more standard insulated pipe clamp, which does not incorporate Belleville springs to accommodate thermal expansion, was also tested. This type clamp is simple in design, and economically attractive. It may have wide application prospects for use in LMFBR small bore auxiliary piping operating at temperatures below 427/sup 0/C. Load deflection tests were conducted on 2.54 CM and 7.62 CM diameter samples of these commercial clamps.

  4. Computational model of miniature pulsating heat pipes.

    SciTech Connect (OSTI)

    Martinez, Mario J.; Givler, Richard C.

    2013-01-01

    The modeling work described herein represents Sandia National Laboratories (SNL) portion of a collaborative three-year project with Northrop Grumman Electronic Systems (NGES) and the University of Missouri to develop an advanced, thermal ground-plane (TGP), which is a device, of planar configuration, that delivers heat from a source to an ambient environment with high efficiency. Work at all three institutions was funded by DARPA/MTO; Sandia was funded under DARPA/MTO project number 015070924. This is the final report on this project for SNL. This report presents a numerical model of a pulsating heat pipe, a device employing a two phase (liquid and its vapor) working fluid confined in a closed loop channel etched/milled into a serpentine configuration in a solid metal plate. The device delivers heat from an evaporator (hot zone) to a condenser (cold zone). This new model includes key physical processes important to the operation of flat plate pulsating heat pipes (e.g. dynamic bubble nucleation, evaporation and condensation), together with conjugate heat transfer with the solid portion of the device. The model qualitatively and quantitatively predicts performance characteristics and metrics, which was demonstrated by favorable comparisons with experimental results on similar configurations. Application of the model also corroborated many previous performance observations with respect to key parameters such as heat load, fill ratio and orientation.

  5. CODIFICATION OF FIBER REINFORCED COMPOSITE PIPING

    SciTech Connect (OSTI)

    Rawls, G.

    2012-10-10

    The goal of the overall project is to successfully adapt spoolable FRP currently used in the oil industry for use in hydrogen pipelines. The use of FRP materials for hydrogen service will rely on the demonstrated compatibility of these materials for pipeline service environments and operating conditions. The ability of the polymer piping to withstand degradation while in service, and development of the tools and data required for life management are imperative for successful implementation of these materials for hydrogen pipeline. The information and data provided in this report provides the technical basis for the codification for fiber reinforced piping (FRP) for hydrogen service. The DOE has invested in the evaluation of FRP for the delivery for gaseous hydrogen to support the development of a hydrogen infrastructure. The codification plan calls for detailed investigation of the following areas: System design and applicable codes and standards; Service degradation of FRP; Flaw tolerance and flaw detection; Integrity management plan; Leak detection and operational controls evaluation; Repair evaluation. The FRP codification process started with commercially available products that had extensive use in the oil and gas industry. These products have been evaluated to assure that sufficient structural integrity is available for a gaseous hydrogen environment.

  6. Uncertainty analysis for probabilistic pipe fracture evaluations in LBB applications

    SciTech Connect (OSTI)

    Rahman, S.; Ghadiali, N.; Wilkowski, G.

    1997-04-01

    During the NRC`s Short Cracks in Piping and Piping Welds Program at Battelle, a probabilistic methodology was developed to conduct fracture evaluations of circumferentially cracked pipes for application to leak-rate detection. Later, in the IPIRG-2 program, several parameters that may affect leak-before-break and other pipe flaw evaluations were identified. This paper presents new results from several uncertainty analyses to evaluate the effects of normal operating stresses, normal plus safe-shutdown earthquake stresses, off-centered cracks, restraint of pressure-induced bending, and dynamic and cyclic loading rates on the conditional failure probability of pipes. systems in BWR and PWR. For each parameter, the sensitivity to conditional probability of failure and hence, its importance on probabilistic leak-before-break evaluations were determined.

  7. New pipe-lay method proposed for under water

    SciTech Connect (OSTI)

    Not Available

    1980-03-31

    The ''ice-hole bottom pull'' technique of pipelaying, developed by Polar Gas Ltd. for the laying of pipe across M'Clure Strait between Melville and Victoria Islands, Can., since the ice at some points is too thick to allow installation of a continuous trench, is described in detail, including the drilling of holes 2 km apart and insulating them to prevent refreezing; pulling the pipe from hole to hole via a series of increasingly heavy cables; undersea welding of the pipe after it is pulled into place; and the need to lay pipe in a tunnel at least 45 m below the sea bottom near shore and in other areas subject to ice scour, where the pipe could be damaged by exceptionally thick ice.

  8. Pipe Crawler{reg_sign} internal piping characterization system - deactivation and decommissioning focus area. Innovative Technology Summary Report

    SciTech Connect (OSTI)

    1998-02-01

    Pipe Crawler{reg_sign} is a pipe surveying system for performing radiological characterization and/or free release surveys of piping systems. The technology employs a family of manually advanced, wheeled platforms, or crawlers, fitted with one or more arrays of thin Geiger Mueller (GM) detectors operated from an external power supply and data processing unit. Survey readings are taken in a step-wise fashion. A video camera and tape recording system are used for video surveys of pipe interiors prior to and during radiological surveys. Pipe Crawler{reg_sign} has potential advantages over the baseline and other technologies in areas of cost, durability, waste minimization, and intrusiveness. Advantages include potentially reduced cost, potential reuse of the pipe system, reduced waste volume, and the ability to manage pipes in place with minimal disturbance to facility operations. Advantages over competing technologies include potentially reduced costs and the ability to perform beta-gamma surveys that are capable of passing regulatory scrutiny for free release of piping systems.

  9. Material property evaluations of bimetallic welds, stainless steel saw fusion lines, and materials affected by dynamic strain aging

    SciTech Connect (OSTI)

    Rudland, D.; Scott, P.; Marschall, C.; Wilkowski, G.

    1997-04-01

    Pipe fracture analyses can often reasonably predict the behavior of flawed piping. However, there are material applications with uncertainties in fracture behavior. This paper summarizes work on three such cases. First, the fracture behavior of bimetallic welds are discussed. The purpose of the study was to determine if current fracture analyses can predict the response of pipe with flaws in bimetallic welds. The weld joined sections of A516 Grade 70 carbon steel to F316 stainless steel. The crack was along the carbon steel base metal to Inconel 182 weld metal fusion line. Material properties from tensile and C(T) specimens were used to predict large pipe response. The major conclusion from the work is that fracture behavior of the weld could be evaluated with reasonable accuracy using properties of the carbon steel pipe and conventional J-estimation analyses. However, results may not be generally true for all bimetallic welds. Second, the toughness of austenitic steel submerged-arc weld (SAW) fusion lines is discussed. During large-scale pipe tests with flaws in the center of the SAW, the crack tended to grow into the fusion line. The fracture toughness of the base metal, the SAW, and the fusion line were determined and compared. The major conclusion reached is that although the fusion line had a higher initiation toughness than the weld metal, the fusion-line J-R curve reached a steady-state value while the SAW J-R curve increased. Last, carbon steel fracture experiments containing circumferential flaws with periods of unstable crack jumps during steady ductile tearing are discussed. These instabilities are believed to be due to dynamic strain aging (DSA). The paper discusses DSA, a screening criteria developed to predict DSA, and the ability of the current J-based methodologies to assess the effect of these crack instabilities. The effect of loading rate on the strength and toughness of several different carbon steel pipes at LWR temperatures is also discussed.

  10. Rapid pressure cycle effects on flexible pipe

    SciTech Connect (OSTI)

    Hill, R.T.; Upchurch, J.L.; McMahan, J.M. Jr.

    1995-12-01

    The use of subsea satellite wells tied back to a central manifold unit is a field development concept currently being used by operating companies for staged production of either commingled oil or gas. Remote platform operated control systems that couple the satellite wells and manifold require that safe operating pressure cycle parameters be established for all subsea components. Because of start-up and shut-in procedures, extreme pressure variations in the form of rapid pressurization and depressurization must be considered. This paper describes the test procedures, equipment and results specific to the evaluation of high pressure non-bonded flexible pipe used for subsea production jumpers between satellite wells and manifold system. Recommendation of safe rates of pressurization and depressurization are included.

  11. Development and Manufacture of Cost Effective Composite Drill Pipe

    SciTech Connect (OSTI)

    James C. Leslie; James C. Leslie II; Lee Truong; James T. Heard; Steve Loya

    2006-02-20

    This technical report presents the engineering research, process development and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report presents progress made from October 1, 2004 through September 30, 2005 and contains the following discussions: (1) Qualification Testing; (2) Prototype Development and Testing of ''Smart Design'' Configuration; (3) Field Test Demonstration; and (4) Commercial order for SR-CDP from Torch International. The objective of this contract is to develop and demonstrate ''cost effective'' Composite Drill Pipe. It is projected that this drill pipe will weigh less than half of its steel counter part. The resultant weight reduction will provide enabling technology that will increase the lateral distance that can be reached from an offshore drilling platform and the depth of water in which drilling and production operations can be carried out. Further, composite drill pipe has the capability to carry real time signal and power transmission within the pipe walls. CDP can also accommodate much shorter drilling radius than is possible with metal drill pipe. As secondary benefits, the lighter weight drill pipe can increase the storage capability of floating off shore drilling platforms and provide substantial operational cost savings.

  12. Radiation detector system having heat pipe based cooling

    DOE Patents [OSTI]

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  13. Theoretical and experimental investigation of heat pipe solar collector

    SciTech Connect (OSTI)

    Azad, E.

    2008-09-15

    Heat pipe solar collector was designed and constructed at IROST and its performance was measured on an outdoor test facility. The thermal behavior of a gravity assisted heat pipe solar collector was investigated theoretically and experimentally. A theoretical model based on effectiveness-NTU method was developed for evaluating the thermal efficiency of the collector, the inlet, outlet water temperatures and heat pipe temperature. Optimum value of evaporator length to condenser length ratio is also determined. The modelling predictions were validated using experimental data and it shows that there is a good concurrence between measured and predicted results. (author)

  14. Characterization of modified 9 Cr-1 Mo steel extruded pipe

    SciTech Connect (OSTI)

    Sikka, V.K.; Hart, M.D.

    1985-04-01

    The fabrication of hot-extruded pipe of modified 9 Cr-1 Mo steel at Cameron Iron Works is described. The report also deals with the tempering response; tensile, Charpy impact, and creep properties; and microstructure of the hot-extruded pipe. The tensile properties of the pipe are compared with the average and average -1.65 standard error of estimate curves for various product forms of several commercial heats of this alloy. The creep-rupture properties are compared with the average curve for various product forms of the commercial heats.

  15. Vacuum pipe for e/sup +/e/sup -/ interactions

    SciTech Connect (OSTI)

    Hoard, C.T.

    1982-10-01

    The design, fabrication and testing of the beryllium vacuum chamber within the Mark II detector at SLAC is described. The Be chamber encloses one interaction point of the PEP circulating ring and is a part of its beam pipe. The Be chamber is captured within the Secondary Vertex Detector (SVD), a drift chamber, which is in turn centered in the Mark II drift chamber. Both ends of the beryllium pipe are brazed to aluminum/stainless transitions for connection to stainless steel bellows. A concentric radiation-screen liner of titanium foil runs the full length of the beryllium pipe.

  16. Project Profile: High Temperature Heat Pipe Receiver for Parabolic Trough

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Collectors (SuNLaMP) | Department of Energy High Temperature Heat Pipe Receiver for Parabolic Trough Collectors (SuNLaMP) Project Profile: High Temperature Heat Pipe Receiver for Parabolic Trough Collectors (SuNLaMP) Funding Program: SuNLaMP SunShot Subprogram: CSP Location: Los Alamos National Laboratory, Los Alamos, NM SunShot Award Amount: $3,000,000 This project, done in partnership with Norwich Technologies, focuses on the development of heat pipe receiver technology for use with

  17. Piping support system for liquid-metal fast-breeder reactor

    DOE Patents [OSTI]

    Brussalis, Jr., William G.

    1984-01-01

    A pipe support consisting of a rigid link pivotally attached to a pipe and an anchor, adapted to generate stress or strain in the link and pipe due to pipe thermal movement, which stress or strain can oppose further pipe movement and generally provides pipe support. The pipe support can be used in multiple combinations with other pipe supports to form a support system. This support system is most useful in applications in which the pipe is normally operated at a constant elevated or depressed temperature such that desired stress or strain can be planned in advance of pipe and support installation. The support system is therefore especially useful in steam stations and in refrigeration equipment.

  18. Seismic Capacity of Threaded, Brazed, and Grooved Pipe Joints

    Office of Environmental Management (EM)

    joints * 4 tests o Brazed (copper) * 4 tests Grooved Couplings o Catalog items o ASTM A106 Grade B piping o ASTM A 536 couplings o Lateral deflections imposed well above...

  19. Composite drill pipe and method for forming same

    DOE Patents [OSTI]

    Leslie, James C; Leslie, II, James C; Heard, James; Truong, Liem V; Josephson, Marvin

    2012-10-16

    A lightweight and durable drill pipe string capable of short radius drilling formed using a composite pipe segment formed to include tapered wall thickness ends that are each defined by opposed frustoconical surfaces conformed for self-aligning receipt and intimate bonding contact within an annular space between corresponding surfaces of a coaxially nested set of metal end pieces and a set of nonconductive sleeves. The distal peripheries of the nested end pieces and sleeves are then welded to each other and the sandwiched and bonded portions are radially pinned. The composite segment may include imbedded conductive leads and the axial end portions of the end pieces are shaped to form a threaded joint with the next pipe assembly that includes contact rings in the opposed surfaces of the pipe joint for contact together.

  20. Evaluation of Characterization Techniques for Iron Pipe Corrosion...

    Office of Scientific and Technical Information (OSTI)

    Films A common problem faced by drinking water studies is that of properly characterizing ... Fe (hydr)oxides used to simulate the iron pipe used in municipal drinking-water systems. ...

  1. Performance characteristics of recently developed high-performance heat pipes

    SciTech Connect (OSTI)

    Schlitt, R.

    1995-01-01

    For future space projects such as Earth orbiting platforms, space stations, but also Moon or Mars bases, the need to manage waste heat up to 100 kW has been identified. For this purpose large heat pipe radiators have been proposed with heat pipe lengths of 15 m and heat transport capabilities up to 4 kW. It is demonstrated that conventional axially grooved heat pipes can be improved to provide 1 kWm heat transport capability. Higher heat loads can be handled only by high-composite wick designs with large liquid cross sections and circumferential grooves in the evaporator. With these high-performance heat pipes, heat transfer coefficients of about 200 kW/m{sup 2}K and transport capabilities of 2 kW over 15 m can be reached. Configurations with liquid fillets and axially tapered liquid channels are proposed to improve the ability of the highly composite wick to prime.

  2. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    SciTech Connect (OSTI)

    Tanaka, T.; Shimizu, S.; Ogata, Y.

    1997-04-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.

  3. Instability and Transition in Bent Pipes | Argonne Leadership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instability and Transition in Bent Pipes Event Sponsor: Mathematics and Computer Science Division LANS Seminar Start Date: Jul 13 2016 - 3:00pm BuildingRoom: Building 240Room ...

  4. Recycled Natural Gas Pipes Shore Up Green Building - News Feature...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    true and tested like "off the shelf" steel is standard practice in building construction. ... The steel natural gas pipe used in the RSF was purchased from a company that specializes ...

  5. SEISMIC CAPACITY OF THREADED, BRAZED AND GROOVED PIPE JOINTS

    Broader source: Energy.gov [DOE]

    Seismic Capacity of Threaded, Brazed and Grooved Pipe Joints Brent Gutierrez, PhD, PE George Antaki, PE, F.ASME DOE NPH Conference October 25-26, 2011

  6. Solid0Core Heat-Pipe Nuclear Batterly Type Reactor

    SciTech Connect (OSTI)

    Ehud Greenspan

    2008-09-30

    This project was devoted to a preliminary assessment of the feasibility of designing an Encapsulated Nuclear Heat Source (ENHS) reactor to have a solid core from which heat is removed by liquid-metal heat pipes (HP).

  7. Commercial high efficiency dehumidification systems using heat pipes

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    An improved heat pipe design using separately connected two-section one-way flow heat pipes with internal microgrooves instead of wicks is described. This design is now commercially available for use to increase the dehumidification capacity of air conditioning systems. The design also includes a method of introducing fresh air into buildings while recovering heat and controlling the humidity of the incoming air. Included are applications and case studies, load calculations and technical data, and installation, operation, and maintenance information.

  8. Aerogel Impregnated Polyurethane Piping and Duct Insulation | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Aerogel Impregnated Polyurethane Piping and Duct Insulation Aerogel Impregnated Polyurethane Piping and Duct Insulation Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review emrgtech28_hess_040413.pdf (1.11 MB) More Documents & Publications WICF Certification, Compliance and Enforcement webinar New Code Compliance Briefs Assist in Resolving Codes and Standards Concerns in Energy Innovations Building America Best Practices Series: Volume 12.

  9. SATURATED-SUBCOOLED STRATIFIED FLOW IN HORIZONTAL PIPES

    SciTech Connect (OSTI)

    Richard Schultz

    2010-08-01

    Advanced light water reactor systems are designed to use passive emergency core cooling systems with horizontal pipes that provide highly subcooled water from water storage tanks or passive heat exchangers to the reactor vessel core under accident conditions. Because passive systems are driven by density gradients, the horizontal pipes often do not flow full and thus have a free surface that is exposed to saturated steam and stratified flow is present.

  10. Development and Manufacture of Cost Effective Composite Drill Pipe

    SciTech Connect (OSTI)

    James C. Leslie; James C. Leslie, II; Lee Truong; James T. Heard

    2006-09-29

    This technical report presents the engineering research, process development and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report presents progress made from October 1, 2005 through September 30, 2006 and contains the following discussions: Qualification Testing; Prototype Development and Testing of ''Smart Design'' Configuration; Field Test Demonstration; Development of Ultra-Short Radius Composite Drill Pipe (USR-CDP); and Development of Smart USR-CDP.

  11. Heat pipe radiation cooling evaluation: Task 2 concept studies report

    SciTech Connect (OSTI)

    Silverstein, C.C.

    1991-10-01

    This report presents the result of Task 2, Concept Studies for Heat Pipe Radiation Cooling (HPRC), which was performed for Los Alamos National Laboratory under Contract 9-XT1-U9567. Studies under a prior contract defined a reference HPRC conceptual design for hypersonic aircraft engines operating at Mach 5 and an altitude of 80,000 ft. Task 2 involves the further investigation of heat pipe radiation cooling (HPRC) systems for additional design and operating conditions.

  12. Flexible pipe crawling device having articulated two axis coupling

    DOE Patents [OSTI]

    Zollinger, W.T.

    1994-05-10

    An apparatus is described for moving through the linear and non-linear segments of piping systems. The apparatus comprises a front leg assembly, a rear leg assembly, a mechanism for extension and retraction of the front and rear leg assembles with respect to each other, such as an air cylinder, and a pivoting joint. One end of the flexible joint attaches to the front leg assembly and the other end to the air cylinder, which is also connected to the rear leg assembly. The air cylinder allows the front and rear leg assemblies to progress through a pipe in inchworm' fashion, while the joint provides the flexibility necessary for the pipe crawler to negotiate non-linear piping segments. The flexible connecting joint is coupled with a spring-force suspension system that urges alignment of the front and rear leg assemblies with respect to each other. The joint and suspension system cooperate to provide a firm yet flexible connection between the front and rear leg assemblies to allow the pivoting of one with respect to the other while moving around a non-linear pipe segment, but restoring proper alignment coming out of the pipe bend. 4 figures.

  13. Flexible pipe crawling device having articulated two axis coupling

    DOE Patents [OSTI]

    Zollinger, William T.

    1994-01-01

    An apparatus for moving through the linear and non-linear segments of piping systems. The apparatus comprises a front leg assembly, a rear leg assembly, a mechanism for extension and retraction of the front and rear leg assembles with respect to each other, such as an air cylinder, and a pivoting joint. One end of the flexible joint attaches to the front leg assembly and the other end to the air cylinder, which is also connected to the rear leg assembly. The air cylinder allows the front and rear leg assemblies to progress through a pipe in "inchworm" fashion, while the joint provides the flexibility necessary for the pipe crawler to negotiate non-linear piping segments. The flexible connecting joint is coupled with a spring-force suspension system that urges alignment of the front and rear leg assemblies with respect to each other. The joint and suspension system cooperate to provide a firm yet flexible connection between the front and rear leg assemblies to allow the pivoting of one with respect to the other while moving around a non-linear pipe segment, but restoring proper alignment coming out of the pipe bend.

  14. An investigation of corrosion in liquid-metal heat pipes

    SciTech Connect (OSTI)

    Adkins, D.R.; Rawlinson, K.S.; Andraka, C.E.; Showalter, S.K.; Moreno, J.B.; Moss, T.A.; Cordiero, P.G.

    1998-08-01

    Research is underway to develop a 75-kW heat pipe to transfer solar energy from the focus of a parabolic dish concentrator to the heater tubes of a Stirling engine. The high flux levels and high total power level encountered in this application have made it necessary to use a high-performance wick structure with fibers on the order of 4 to 8 microns in diameter. This fine wick structure is highly susceptible to corrosion damage and plugging, as dissolved contaminants plate out on the evaporator surface. Normal operation of the heat pipe also tends to concentrate contaminants in localized areas of the evaporator surface where heat fluxes are the highest. Sandia National Laboratories is conducting a systematic study to identify procedures that reduce corrosion and contamination problems in liquid-metal heat pipes. A series of heat pipes are being tested to explore different options for cleaning heat-pipe systems. Models are being developed to help understand the overall importance of operating parameters on the life of heat-pipe systems. In this paper, the authors present their efforts to reduce corrosion damage.

  15. Report of ad hoc OTEC cold water pipe committee

    SciTech Connect (OSTI)

    Barr, R.; Giannotti, J.; Deuchler, W.; Scotti, R.; Stadter, J.; Walsh, J. P.; Weiss, R.

    1980-02-01

    Now that the design work on the pilot plant is scheduled to start in the near future, DOE has considered it essential that an overall look be taken at the cold water pipe design process. The VSE Corporation, in its role as a support contractor to DOE, was tasked to organize a small study group to answer the question, Where do we stand on the verification of the computer models of the cold water pipe response by experimental measurements. The committee has studied all the available results of the cold water pipe development program. This report summarizes those results. The development and present capabilities of the computer programs used to calculate the response of a cold water pipe attached to a platform under known at-sea conditions are discussed. The various cold water pipe designs that have been done using the computer programs are summarized. The experiments that have been conducted up to the present time to measure the response of cold water pipes at-sea and in experimental tanks are described. The results of these experiments are presented. The experimental results are compared with the predictions made with the analytical computer programs. Conclusions drawn as a result of this analysis are presented and some recommendations are made. (WHK)

  16. Conductor design for the VLHC transmission line magnet

    SciTech Connect (OSTI)

    Foster, G.W.; Kashikhin, V.; McAshan, M.; Mazur, P.O.; Piekarz, H.; Volk, J.T.; Walker, R.

    1999-03-01

    The transmission line magnet [1] is under development for the Very Large Hadron Collider (VLHC) at Fermilab with the expectation that it’s cost will be several times less (per Tesla-meter) than conventional superconducting magnets. It is a dual-aperture warm-iron superferric magnet built around an 80kA superconducting transmission line. The superconductor consists of 8 Rutherford (SSC Outer) cables in an Invar pipe jacket. The conductor design requirements and development program is described. A 100kA conductor test facility based on inductive coupling is described.

  17. Plains and Eastern Clean Line Transmission Line: Comment from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plains and Eastern Clean Line Transmission Line: Comment from Mr. Dyer Plains and Eastern Clean Line Transmission Line: Comment from Sheila Beck Plains and Eastern Clean Line ...

  18. Plains and Eastern Clean Line Transmission Line: Comment from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plains and Eastern Clean Line Transmission Line: Comment from Change.org Plains and Eastern Clean Line Transmission Line: Comment from Mr. Leftwich Plains and Eastern Clean Line ...

  19. Decontamination Process of Internal Part Pipes - 13442

    SciTech Connect (OSTI)

    Ladet, X.; Sozet, O.; Cabanillas, P.; Macia, G.; Moggia, F.; Damerval, F.

    2013-07-01

    The Marcoule Site, created in 1955 is one of the first nuclear sites in France. It combines the activities of the Research Centre of the French Atomic Energy Commission (CEA) and AREVA industrial operations. Today, a large part of the operations on this site consists of the cleaning and the dismantling of nuclear Installations, once the end of their life cycle has been reached. An example can be the reprocessing plant UP1. This unit, started in 1958 has been stopped in 1997 and its dismantling started quickly thereafter. Technical challenges of the UP1 dismantling are mainly linked to a very high risk of exposure due to a large variety of contaminated equipments and residuals of fission products, potential sources of irradiation. The dismantling of Hall 71 is a typical example of such challenge. This paper will present a solution developed by AREVA Clean-Up business unit, in collaboration with COFIM Industry, to remove contamination incrusted inside the pipes before starting the cutting operations, thus reducing irradiation risk. (authors)

  20. Testing of Stirling engine solar reflux heat-pipe receivers

    SciTech Connect (OSTI)

    Rawlinson, S.; Cordeiro, P.; Dudley, V.; Moss, T.

    1993-07-01

    Alkali metal heat-pipe receivers have been identified as a desirable interface to couple a Stirling-cycle engine with a parabolic dish solar concentrator. The reflux receiver provides power nearly isothermally to the engine heater heads while de-coupling the heater head design from the solar absorber surface design. The independent design of the receiver and engine heater head leads to high system efficiency. Heat pipe reflux receivers have been demonstrated at approximately 30 kW{sub t} power throughput by others. This size is suitable fm engine output powers up to 10 kW{sub e}. Several 25-kW{sub e}, Stirling-cycle engines exist, as well as designs for 75-kW{sub t} parabolic dish solar concentrators. The extension of heat pipe technology from 30 kW{sub t} to 75 kW{sub t} is not trivial. Heat pipe designs are pushed to their limits, and it is critical to understand the flux profiles expected from the dish, and the local performance of the wick structure. Sandia has developed instrumentation to monitor and control the operation of heat pipe reflux receivers to test their throughput limits, and analytical models to evaluate receiver designs. In the past 1.5 years, several heat pipe receivers have been tested on Sandia`s test bed concentrators (TBC`s) and 60-kW{sub t} solar furnace. A screen-wick heat pipe developed by Dynatherm was tested to 27.5 kW{sub t} throughput. A Cummins Power Generation (CPG)/Thermacore 30-kW{sub t} heat pipe was pushed to a throughput of 41 kW{sub t} to verify design models. A Sandia-design screen-wick and artery 75-kW{sub t} heat pipe and a CPG/Thermacore 75-kW{sub t} sintered-wick heat pipe were also limit tested on the TBC. This report reviews the design of these receivers, and compares test results with model predictions.

  1. A STRUCTURAL INTEGRITY ASSESSMENT OF UNDERGROUND PIPING ASSOCIATED WITH THE TRANSFER OF RADIOACTIVE WASTE

    SciTech Connect (OSTI)

    Wiersma, B

    2006-04-25

    Radioactive wastes are confined in 49 underground storage tanks at the Savannah River Site. The waste is transported between tanks via underground transfer piping. An assessment of the structural integrity of the transfer piping was performed to ensure that the present condition of the piping was sound and to provide life expectancy estimates for the piping based on anticipated service. The assessment reviewed the original design of the piping, the potential and observed degradation mechanisms, the results from past inspections of the piping, and a Fitness-For-Service evaluation for a section of piping that experienced pitting in a locally thinned area. The assessment concluded that the piping was structurally sound. Assuming that service conditions remain the same, the piping will remain functional for its intended service life.

  2. Increasing throughput of multiplexed electrical bus in pipe-lined architecture

    DOE Patents [OSTI]

    Asaad, Sameh; Brezzo, Bernard V; Kapur, Mohit

    2014-05-27

    Techniques are disclosed for increasing the throughput of a multiplexed electrical bus by exploiting available pipeline stages of a computer or other system. For example, a method for increasing a throughput of an electrical bus that connects at least two devices in a system comprises introducing at least one signal hold stage in a signal-receiving one of the two devices, such that a maximum frequency at which the two devices are operated is not limited by a number of cycles of an operating frequency of the electrical bus needed for a signal to propagate from a signal-transmitting one of the two devices to the signal-receiving one of the two devices. Preferably, the signal hold stage introduced in the signal-receiving one of the two devices is a pipeline stage re-allocated from the signal-transmitting one of the two devices.

  3. Foam insulated transfer line test report

    SciTech Connect (OSTI)

    Squier, D.M.

    1994-06-01

    Miles of underground insulated piping will be installed at the Hanford site to transfer liquid waste. Significant cost savings may be realized by using pre-fabricated polyurethane foam insulated piping. Measurements were made on sections of insulated pipe to determine the insulation`s resistance to axial expansion of the pipe, the force required to compress the foam in the leg of an expansion loop and the time required for heat up and cool down of a buried piping loop. These measurements demonstrated that the peak axial force increases with the amount of adhesion between the encasement pipe and the insulation. The compressive strength of the foam is too great to accommodate the thermal growth of long straight pipe sections into the expansion loops. Mathematical models of the piping system`s thermal behavior can be refined by data from the heated piping loop.

  4. Application of bounding spectra to seismic design of piping based on the performance of above ground piping in power plants subjected to strong motion earthquakes

    SciTech Connect (OSTI)

    Stevenson, J.D.

    1995-02-01

    This report extends the potential application of Bounding Spectra evaluation procedures, developed as part of the A-46 Unresolved Safety Issue applicable to seismic verification of in-situ electrical and mechanical equipment, to in-situ safety related piping in nuclear power plants. The report presents a summary of earthquake experience data which define the behavior of typical U.S. power plant piping subject to strong motion earthquakes. The report defines those piping system caveats which would assure the seismic adequacy of the piping systems which meet those caveats and whose seismic demand are within the bounding spectra input. Based on the observed behavior of piping in strong motion earthquakes, the report describes the capabilities of the piping system to carry seismic loads as a function of the type of connection (i.e. threaded versus welded). This report also discusses in some detail the basic causes and mechanisms for earthquake damages and failures to power plant piping systems.

  5. Flow and evaporation in single micrometer and nanometer scale pipes

    SciTech Connect (OSTI)

    Velasco, A. E.; Yang, C.; Siwy, Z. S.; Taborek, P.; Toimil-Molares, M. E.

    2014-07-21

    We report measurements of pressure driven flow of fluids entering vacuum through a single pipe of micrometer or nanometer scale diameter. Nanopores were fabricated by etching a single ion track in polymer or mica foils. A calibrated mass spectrometer was used to measure the flow rates of nitrogen and helium through pipes with diameter ranging from 10??m to 31?nm. The flow of gaseous and liquid nitrogen was studied near 77?K, while the flow of helium was studied from the lambda point (2.18?K) to above the critical point (5.2?K). Flow rates were controlled by changing the pressure drop across the pipe in the range 031 atm. When the pressure in the pipe reached the saturated vapor pressure, an abrupt flow transition was observed. A simple viscous flow model is used to determine the position of the liquid/vapor interface in the pipe. The observed mass flow rates are consistent with no slip boundary conditions.

  6. Crack stability analysis of low alloy steel primary coolant pipe

    SciTech Connect (OSTI)

    Tanaka, T.; Kameyama, M.; Urabe, Y.

    1997-04-01

    At present, cast duplex stainless steel has been used for the primary coolant piping of PWRs in Japan and joints of dissimilar material have been applied for welding to reactor vessels and steam generators. For the primary coolant piping of the next APWR plants, application of low alloy steel that results in designing main loops with the same material is being studied. It means that there is no need to weld low alloy steel with stainless steel and that makes it possible to reduce the welding length. Attenuation of Ultra Sonic Wave Intensity is lower for low alloy steel than for stainless steel and they have advantageous inspection characteristics. In addition to that, the thermal expansion rate is smaller for low alloy steel than for stainless steel. In consideration of the above features of low alloy steel, the overall reliability of primary coolant piping is expected to be improved. Therefore, for the evaluation of crack stability of low alloy steel piping to be applied for primary loops, elastic-plastic future mechanics analysis was performed by means of a three-dimensioned FEM. The evaluation results for the low alloy steel pipings show that cracks will not grow into unstable fractures under maximum design load conditions, even when such a circumferential crack is assumed to be 6 times the size of the wall thickness.

  7. An Energy Signature Scheme for Steam Trap Assessment and Flow Rate Estimation Using Pipe-Induced Acoustic Measurements

    SciTech Connect (OSTI)

    Olama, Mohammed M; Allgood, Glenn O; Kuruganti, Phani Teja; Lake, Joe E

    2012-01-01

    The US Congress has passed legislation dictating that all government agencies establish a plan and process for improving energy efficiencies at their sites. In response to this legislation, Oak Ridge National Laboratory (ORNL) has recently conducted a pilot study to explore the deployment of a wireless sensor system for a real-time measurement-based energy efficiency optimization framework within the steam distribution system within the ORNL campus. We make assessments on the real-time status of the distribution system by observing the state measurements of acoustic sensors mounted on the steam pipes/traps/valves. In this paper, we describe a spectral-based energy signature scheme that interprets acoustic vibration sensor data to estimate steam flow rates and assess steam traps health status. Experimental results show that the energy signature scheme has the potential to identify different steam trap health status and it has sufficient sensitivity to estimate steam flow rate. Moreover, results indicate a nearly quadratic relationship over the test region between the overall energy signature factor and flow rate in the pipe. The analysis based on estimated steam flow and steam trap status helps generate alerts that enable operators and maintenance personnel to take remedial action. The goal is to achieve significant energy-saving in steam lines by monitoring and acting on leaking steam pipes/traps/valves.

  8. Anonymous Help Line

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Anonymous Help Line Ombuds Anonymous Help Line Committed to the fair and equitable treatment of all employees, contractors, and persons doing business with the Laboratory. Contact...

  9. Line Equipment Operator

    Broader source: Energy.gov [DOE]

    There are several Line Equipment Operator positions located in Washington and Oregon. A successful candidate in this position will perform Line Equipment Operator work operating trucks and all...

  10. Benchmark Gamma Spectroscopy Measurements of Uranium Hexafluoride in Aluminmum Pipe with a Sodium Iodide Detector

    SciTech Connect (OSTI)

    March-Leuba, Jose A; Uckan, Taner; Gunning, John E; Brukiewa, Patrick D; Upadhyaya, Belle R; Revis, Stephen M

    2010-01-01

    ) and an enrichment monitor (EM). Development of the FM is primarily the responsibility of Oak Ridge National Laboratory, and development of the EM is primarily the responsibility of Los Alamos National Laboratory. The FM will measure {sup 235}U mass flow rate by combining information from measuring the UF{sub 6} volumetric flow rate and the {sup 235}U density. The UF{sub 6} flow rate will be measured using characteristics of the process pumps used in product and tail UF{sub 6} header process lines of many GCEPs, and the {sup 235}U density will be measured using commercially available sodium iodide (NaI) gamma ray scintillation detectors. This report describes the calibration of the portion of the FM that measures the {sup 235}U density. Research has been performed to define a methodology and collect data necessary to perform this calibration without the need for plant declarations. The {sup 235}U density detector is a commercially available system (GammaRad made by Amptek, www.amptek.com) that contains the NaI crystal, photomultiplier tube, signal conditioning electronics, and a multichannel analyzer (MCA). Measurements were made with the detector system installed near four {sup 235}U sources. Two of the sources were made of solid uranium, and the other two were in the form of UF{sub 6} gas in aluminum piping. One of the UF{sub 6} gas sources was located at ORNL and the other at LANL. The ORNL source consisted of two pipe sections (schedule 40 aluminum pipe of 4-inch and 8-inch outside diameter) with 5.36% {sup 235}U enrichment, and the LANL source was a 4-inch schedule 40 aluminum pipe with 3.3% {sup 235}U enrichment. The configurations of the detector on these test sources, as well as on long straight pipe configurations expected to exist at GCEPs, were modeled using the computer code MCNP. The results of the MCNP calculations were used to define geometric correction factors between the test source and the GCEP application. Using these geometric correction factors

  11. The LBB methodology application results performed on the safety related piping of NPP V-1 in Jaslovske Bohunice

    SciTech Connect (OSTI)

    Kupca, L.; Beno, P.

    1997-04-01

    A broad overview of the leak before break (LBB) application to the Slovakian V-1 nuclear power plant is presented in the paper. LBB was applied to the primary cooling circuit and surge lines of both WWER 440 type units, and also used to assess the integrity of safety related piping in the feed water and main steam systems. Experiments and calculations performed included analyses of stresses, material mechanical properties, corrosion, fatigue damage, stability of heavy component supports, water hammer, and leak rates. A list of analysis results and recommendations are included in the paper.

  12. Energy dissipation in oscillating flow through straight and coiled pipes

    SciTech Connect (OSTI)

    Olson, J.R.; Swift, G.W.

    1996-10-01

    The energy dissipation is reported for oscillating flow in U-shaped pipes with 180{degree}, 540{degree}, and 900{degree} curves at the base of the U. Analysis permits separation of the dissipation in the straight and curved portions of the pipe. Using water, water/glycerine mixtures, liquid nitrogen, and helium gas, the dissipation was measured for fluid flow regimes (Reynolds number, quality factor, and pipe curvature) which have not previously been reported. Measured loss in the straight portion is compared to numerical solutions using a turbulent quasisteady representation of the wall shear stress. Measured loss in the curved portion is compared to simple theory. The results are applicable to thermoacoustic devices. {copyright} {ital 1996 Acoustical Society of America.}

  13. Terahertz Radiation from a Pipe with Small Corrugations

    SciTech Connect (OSTI)

    Bane, K.L.F.; Stupakov, G.; /SLAC

    2012-01-26

    We have studied through analytical and numerical methods the use of a relativistic electron bunch to drive a metallic beam pipe with small corrugations for the purpose of generating terahertz radiation. For the case of a pipe with dimensions that do not change along its length, we have shown that - with reasonable parameters - one can generate a narrow-band radiation pulse with frequency {approx}1 THz, and total energy of a few milli-Joules. The pulse length tends to be on the order of tens of picoseconds. We have also shown that, if the pipe radius is tapered along its length, the generated pulse will end up with a frequency chirp; if the pulse is then made to pass through a compressor, its final length can be reduced to a few picoseconds and its peak power increased to 1 GW. We have also shown that wall losses tend to be significant and need to be included in the structure design.

  14. HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPE SYSTEMS

    SciTech Connect (OSTI)

    Leishear, R

    2010-05-02

    Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions exist. Pipe ruptures at nuclear facilities were attributed to hydrogen explosions inside pipelines, in nuclear facilities, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents an ignition source for hydrogen was questionable, but these accidents, demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein.

  15. Performance indicators for solar pipes with phase change storage

    SciTech Connect (OSTI)

    Sokolov, M.; Keizman, Y. )

    1991-01-01

    Performance indicators for a solar pipe system in which solar radiation is stored as latent heat of a phase changing material are proposed. These performance indicators are aimed at serving as a yardstick by which such multivariables systems are evaluated. The indicators are the melt and solidification times obtained for standardized systems and conditions. These indicators enable the comparison between the suitability of systems with different materials and configurations to store and release thermal energy. The indicators are obtained from numerical solutions of the nonlinear heat conduction problem of the axisymmetric liquid-solid interface motion within the solar pipe. Longitudinal dimension required for the determination of the solidification time is added by an axial superposition of axisymmetric sections. This simplified approach enables a simple numerical solution for an otherwise complicated problem. Estimates of performance characteristics that are based on a simplified model and realistic materials point to the practical potential of solar pipe utilization.

  16. Piping and equipment resistance to seismic-generated missiles

    SciTech Connect (OSTI)

    LaSalle, F.R.; Golbeg, P.R.; Chenault, D.M.

    1992-02-01

    For reactor and nuclear facilities, both Title 10, Code of Federal Regulations, Part 50, and US Department of Energy Order 6430.1A require assessments of the interaction of non-Safety Class 1 piping and equipment with Safety Class 1 piping and equipment during a seismic event to maintain the safety function. The safety class systems of nuclear reactors or nuclear facilities are designed to the applicable American Society of Mechanical Engineers standards and Seismic Category 1 criteria that require rigorous analysis, construction, and quality assurance. Because non-safety class systems are generally designed to lesser standards and seismic criteria, they may become missiles during a safe shutdown earthquake. The resistance of piping, tubing, and equipment to seismically generated missiles is addressed in the paper. Gross plastic and local penetration failures are considered with applicable test verification. Missile types and seismic zones of influence are discussed. Field qualification data are also developed for missile evaluation.

  17. A comparative examination of the fire performance of pipe insulation

    SciTech Connect (OSTI)

    Babrauskas, V.

    1996-12-31

    A standard method for evaluating the fire performance of pipe insulation is not available in North America. In Europe, however, the regional standards organization NORDTEST has had available for several years now a method specifically designed for this purpose. The NORDTEST NT FIRE 036 test is a full-scale room fire test where the pipe insulation is installed along the ceiling and subjected to a gas burner fire. Four classes of performance (Class I through III, plus unrated) are used to evaluate the products. In the present work, 4 different pipe insulation products, representing the most common materials used for this purpose, have been examined according to this test. The results showed that rock wool insulation gave the best fire performance, with phenolic foam being in the least safe rated category. Synthetic foam rubber and polyethylene insulation products gave intermediate performance. 12 refs., 3 figs., 11 tabs.

  18. Hybrid sodium heat pipe receivers for dish/Stirling systems

    SciTech Connect (OSTI)

    Laing, D.; Reusch, M.

    1997-12-31

    The design of a hybrid solar/gas heat pipe receiver for the SBP 9 kW dish/Stirling system using a United Stirling AB V160 Stirling engine and the results of on-sun testing in alternative and parallel mode will be reported. The receiver is designed to transfer a thermal power of 35 kW. The heat pipe operates at around 800 C, working fluid is sodium. Operational options are solar-only, gas augmented and gas-only mode. Also the design of a second generation hybrid heat pipe receiver currently developed under a EU-funded project, based on the experience gained with the first hybrid receiver, will be reported. This receiver is designed for the improved SPB/L. and C.-10 kW dish/Stirling system with the reworked SOLO V161 Stirling engine.

  19. Southern Asia future plans feature long-distance lines

    SciTech Connect (OSTI)

    Not Available

    1991-11-01

    This paper reports that although pipe line mileage working, planned and under study has dipped slightly from 47,346 km (29,420 mi) to 44,853 km (27,871 mi), Southern Asia continues to hold a strong position for future projects with some of the most interesting programs in the international market. Two dramatic, long-distance natural gas transmission, gathering and lateral networks continue to hold the future pipe line construction spotlight in Southern Asia. The Association of South East Asian Nations (ASEAN) continues to study a 7,830 km (4,865 mi) gas transmission system. With an estimated cost of $10 billion, the system includes some 6,276 km (3,900 mi) of transmission lines, with 1,094 km (680 mi) offshore. Group members include Brunei, Indonesia, Malaysia, the Philippines, Singapore and Thailand. The second project, the Trans-Asian Pipeline System, involves 3,380 km (2,100 mi) of transmission lines from the Iran's Bandar Abbas gas field across Pakistan to a terminal at Calcutta, India.

  20. Felt-metal-wick heat-pipe solar receiver

    SciTech Connect (OSTI)

    Andraka, C.E.; Adkins, D.R.; Moss, T.A.; Cole, H.M.; Andreas, N.H.

    1994-12-31

    Reflux heat-pipe receivers have been identified as a desirable interface to couple a Stirling-cycle engine with a parabolic dish solar concentrator. The reflux receiver provides power nearly isothermally to the engine heater heads while decoupling the heater head design from the solar absorber surface design. The independent design of the receiver and engine heater head leads to higher system efficiency. Heat pipe reflux receivers have been demonstrated at approximately 65 kW{sub t} power throughput. Several 25 to 30-kW{sub e} Stirling-cycle engines are under development, and will soon be incorporated in commercial dish-Stirling systems. These engines will require reflux receivers with power throughput limits reaching 90-kW{sub t}. The extension of heat pipe technology from 60 kW{sub t} to 100 kW{sub t} is not trivial. Current heat pipe wick technology is pushed to its limits. It is necessary to develop and test advanced wick structure technologies to perform this task. Sandia has developed and begun testing a Bekaert Corporation felt metal wick structure fabricated by Porous Metal Products Inc. This wick is about 95% porous, and has liquid permeability a factor of 2 to 8 times higher than conventional technologies for a given maximum pore radius. The wick has been successfully demonstrated in a bench-scale heat pipe, and a full-scale on-sun receiver has been fabricated. This report details the wick design, characterization and installation into a heat pipe receiver, and the results of the bench-scale tests are presented. The wick performance is modeled, and the model results are compared to test results.

  1. Investigation of guided waves propagation in pipe buried in sand

    SciTech Connect (OSTI)

    Leinov, Eli; Cawley, Peter; Lowe, Michael J.S.

    2014-02-18

    The inspection of pipelines by guided wave testing is a well-established method for the detection of corrosion defects in pipelines, and is currently used routinely in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised because of attenuation of the waves caused by energy radiating into the soil. Moreover, the variability of soil conditions dictates different attenuation characteristics, which in-turn results in different, unpredictable, test ranges. We investigate experimentally the propagation and attenuation characteristics of guided waves in pipes buried in fine sand using a well characterized full scale experimental apparatus. The apparatus consists of an 8 inch-diameter, 5.6-meters long steel pipe embedded over 3 meters of its length in a rectangular container filled with fine sand, and an air-bladder for the application of overburden pressure. Longitudinal and torsional guided waves are excited in the pipe and recorded using a transducer ring (Guided Ultrasonics Ltd). Acoustic properties of the sand are measured independently in-situ and used to make model predictions of wave behavior in the buried pipe. We present the methodology and the systematic measurements of the guided waves under a range of conditions, including loose and compacted sand. It is found that the application of overburden pressure modifies the compaction of the sand and increases the attenuation, and that the measurement of the acoustic properties of sand allows model prediction of the attenuation of guided waves in buried pipes with a high level of confidence.

  2. Beam Fields and Energy Dissipation Inside the the BE Beam Pipe...

    Office of Scientific and Technical Information (OSTI)

    Cooling water will run between these two pipes. Gold and nickel will be sputtered (several microns) onto the beryllium pipe at different sides. The Maxwell equations for the beam ...

  3. Portable apparatus and method for assisting in the removal and emplacement of pipe strings in boreholes

    DOE Patents [OSTI]

    Mitchell, Brian R.

    2005-03-22

    A portable pipe installation/removal support apparatus for assisting in the installation/removal of a series of connectable pipe strings from a ground-level borehole. The support apparatus has a base, an upright extending from the base, and, in an exemplary embodiment, a pair of catch arms extending from the upright to define a catch platform. The pair of catch arms serves to hold an upper connector end of a pipe string at an operator-convenient standing elevation by releasably catching an underside of a pipe coupler connecting two pipe strings of the series of connectable pipe strings. This enables an operator to stand upright while coupling/uncoupling the series of connectable pipe strings during the installation/removal thereof from the ground-level borehole. Additionally, a process for installing and a process for removing a series of connectable pipe strings is disclosed utilizing such a support apparatus.

  4. A Model For Stress-Controlled Pipe Growth | Open Energy Information

    Open Energy Info (EERE)

    Stress-Controlled Pipe Growth Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Model For Stress-Controlled Pipe Growth Abstract The rock...

  5. OTEC Cold Water Pipe-Platform Sub-System Dynamic Interaction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OTEC Cold Water Pipe-Platform Sub-System Dynamic Interaction Validation (OPPSDIV) OTEC Cold Water Pipe-Platform Sub-System Dynamic Interaction Validation (OPPSDIV) OTEC Cold Water ...

  6. What Have You Done to Ensure Your Water Pipes are Efficient and...

    Energy Savers [EERE]

    Have You Done to Ensure Your Water Pipes are Efficient and Safe? What Have You Done to Ensure Your Water Pipes are Efficient and Safe? March 17, 2011 - 7:30am Addthis This week, ...

  7. Foothills Bio Energies | Open Energy Information

    Open Energy Info (EERE)

    Carolina Zip: 28645 Sector: Renewable Energy Product: Project developer in renewable energy matters, and especially in biodiesel. Coordinates: 35.91533, -81.540094 Show...

  8. DEVELOPMENT AND MANUFACTURE OF COST EFFECTIVE COMPOSITE DRILL PIPE

    SciTech Connect (OSTI)

    James C. Leslie; James C. Leslie II; Lee Truong; James T. Heard; Peter Manekas

    2005-03-18

    This technical report presents the engineering research, process development and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report presents progress made from October 1, 2003 through September 30, 2004 and contains the following discussions: (1) Direct Electrical Connection for Rotary Shoulder Tool Joints; (2) Conductors for inclusion in the pipe wall (ER/DW-CDP); (3) Qualify fibers from Zoltek; (4) Qualify resin from Bakelite; (5) First commercial order for SR-CDP from Integrated Directional Resources (SR-CDP); and (6) Preparation of papers for publication and conference presentations.

  9. Have You Looked at Your Pipes Lately? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Looked at Your Pipes Lately? Have You Looked at Your Pipes Lately? March 14, 2011 - 1:27pm Addthis Elizabeth Spencer Communicator, National Renewable Energy Laboratory You know, it doesn't matter that some of you are probably already thinking about spring. It doesn't matter that the bulk of winter is over for a lot of you. I'm going to say this anyway, because sometime, someday, it might be useful. Or, well, it might not be if you live in Florida. But for the rest of you, I will repeat this

  10. Assessing Equivalent Viscous Damping Using Piping System test Results

    SciTech Connect (OSTI)

    Nie, J.; Morante, R.

    2010-07-18

    The specification of damping for nuclear piping systems subject to seismic-induced motions has been the subject of many studies and much controversy. Damping estimation based on test data can be influenced by numerous factors, consequently leading to considerable scatter in damping estimates in the literature. At present, nuclear industry recommendations and nuclear regulatory guidance are not consistent on the treatment of damping for analysis of nuclear piping systems. Therefore, there is still a need to develop a more complete and consistent technical basis for specification of appropriate damping values for use in design and analysis. This paper summarizes the results of recent damping studies conducted at Brookhaven National Laboratory.