Sample records for foot thousand btu

  1. Accurate BTU Measurement

    E-Print Network [OSTI]

    Hosseini, S.; Rusnak, J. J.

    1 represents a typical arrangement in which heat is supplied to, or absorbed by the difference in temperatures of a working fluid, generally water. (See Ref. 1). Supply (TIl- Supply (Tl1 E E Heat (BTU) He.' ~ Exchange Exchange Relurn (T2... rate (BTU/unit time) ? m Mass flow rate (lb/unit time) hI' h2 = Specific enthalpy of supply and return liquid (BTU/lb) BTU C p - Average specific heat (--~----) IboF Equations 1, 2 are instantaneous values for heat flow or energy transferred...

  2. c37a.xls

    Gasoline and Diesel Fuel Update (EIA)

    2 per Building (million Btu) per Square Foot (thousand Btu) per Building (thousand dollars) per Square Foot (dollars) per Thousand Pounds (dollars) All Buildings...

  3. BTU Accounting for Industry

    E-Print Network [OSTI]

    Redd, R. O.

    1979-01-01T23:59:59.000Z

    , salesmen cars, over the highway trucks, facilities startup, waste used as fuel and fuels received for storage. This is a first step in the DOE's effort to establish usage guidelines for large industrial users and, we note, it requires BTU usage data...-generated electricity, heating, ventilating, air conditioning, in-plant transportation, ore hauling, raw material storage and finished product warehousing. Categories which are excluded are corporate and divisional offices, basic research, distribution centers...

  4. A Requirement for Significant Reduction in the Maximum BTU Input...

    Energy Savers [EERE]

    A Requirement for Significant Reduction in the Maximum BTU Input Rate of Decorative Vented Gas Fireplaces Would Impose Substantial Burdens on Manufacturers A Requirement for...

  5. "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data from03.4 Relative2.4942

  6. "Economic","per Employee","of Value Added","of Shipments" "Characteristic(a)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data from03.4 Relative2.49422

  7. Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) in DelawareTotal ConsumptionThousand CubicfromDryFoot)

  8. Environmental Permitting of a Low-BTU Coal Gasification Facility

    E-Print Network [OSTI]

    Murawczyk, C.; Stewart, J. T.

    1983-01-01T23:59:59.000Z

    that merits serious consideration since only relatively small modifications to the existing oil or gas burner system may be required, and boiler derating can be minimized. The environmental permitting and planning process for a low-Btu coal gasification...

  9. Environmental Permitting of a Low-BTU Coal Gasification Facility 

    E-Print Network [OSTI]

    Murawczyk, C.; Stewart, J. T.

    1983-01-01T23:59:59.000Z

    that merits serious consideration since only relatively small modifications to the existing oil or gas burner system may be required, and boiler derating can be minimized. The environmental permitting and planning process for a low-Btu coal gasification...

  10. Report: An Updated Annual Energy Outlook 2009 Reference Case...

    U.S. Energy Information Administration (EIA) Indexed Site

    3,96.27132416,97.48834229,98.7328186,100.0090332,101.3084106,102.6172562,103.9295502 " Energy Consumption Intensity" " (thousand Btu per square foot)" " Delivered Energy...

  11. Report: An Updated Annual Energy Outlook 2009 Reference Case...

    U.S. Energy Information Administration (EIA) Indexed Site

    3,96.26745605,97.52584839,98.82666779,100.167244,101.5404816,102.9384232,104.3544464 " Energy Consumption Intensity" " (thousand Btu per square foot)" " Delivered Energy...

  12. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    Btu) District Heat Energy Intensity (thousand Btusquare foot) Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  13. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    Btu) Natural Gas Energy Intensity (thousand Btusquare foot) Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  14. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    (trillion Btu) Fuel Oil Energy Intensity (thousand Btusquare foot) Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  15. Property:Geothermal/CapacityBtuHr | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid Jump to:Docket Number JumpAnnualGenBtuYrCapacityBtuHr

  16. U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb MarDecade Year-0Sales (Billion CubicConsumption

  17. EIS-0007: Low Btu Coal Gasification Facility and Industrial Park

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared this environmental impact statement which evaluates the potential environmental impacts that may be associated with the construction and operation of a low-Btu coal gasification facility and the attendant industrial park in Georgetown, Scott County, Kentucky.

  18. Illinois Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess thanThousand Cubic Feet) YearFoot)

  19. New Jersey Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough,Cubic Foot)perper Thousand

  20. Missouri Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off) Shale%73Thousand CubicFoot)

  1. Wyoming Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousand Cubic%perYear JanFoot) Year Jan Feb Mar

  2. South Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProvedFeet)Thousand Cubic7. Net5:EnergyCubic Foot) Decade

  3. Vermont Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year JanThousand Cubic Feet) YearDay)Foot)

  4. Virginia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year JanThousand CubicFoot) Decade Year-0 Year-1

  5. Washington Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year JanThousandYear Jan FebCubic Foot) Decade

  6. Property:Geothermal/AnnualGenBtuYr | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska:PrecourtOid Jump to:Docket Number JumpAnnualGenBtuYr Jump to:

  7. BTU International DUK International JV | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtria PowerAxeonBCHP ScreeningBLMBSABTBTR NewBTU

  8. Wyoming Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousand Cubic%perYear JanFoot)Year Jan Feb Mar

  9. High Btu gas from peat. Existing social and economic conditions

    SciTech Connect (OSTI)

    Not Available

    1981-08-01T23:59:59.000Z

    In 1980, the Minnesota Gas Company (Minnegasco) submitted a proposal to the US Department of Energy entitled, A Feasibility Study - High Btu Gas from Peat. The proposed study was designed to assess the overall viability of the design, construction and operation of a commercial facility for the production of high-Btu substitute natural gas (SNG) from Minnesota peat. On September 30, 1980, Minnegasco was awarded a grant by the Department of Energy to perform the proposed study. In order to complete the study, Minnegasco assembled an experienced project team with the wide range of expertise required. In addition, the State of Minnesota agreed to participate in an advisory capacity. The items to be investigated by the project team during the feasibility study include peat harvesting, dewatering, gasification process design, economic and risk assessment, site evaluation, environmental and socioeconomic impact assessment. Ertec (The Earth Technology Corporation) was selected to conduct the site evaluation and environmental assessment portions of the feasibility study. The site evaluation was completed in March of 1981 with the submittal of the first of several reports to Minnegasco. This report describes the existing social and economic conditions of the proposed project area in northern Minnesota. The baseline data presented will be used to assess the significance of potential project impacts in subsequent phases of the feasibility study. Wherever possible, the data base was established using 1980 Bureau of Census statistics. However, where the 1980 data were not yet available, the most recent information is presented. 11 figures, 46 tables.

  10. The Mansfield Two-Stage, Low BTU Gasification System: Report of Operations 

    E-Print Network [OSTI]

    Blackwell, L. T.; Crowder, J. T.

    1983-01-01T23:59:59.000Z

    The least expensive way to produce gas from coal is by low Btu gasification, a process by which coal is converted to carbon monoxide and hydrogen by reacting it with air and steam. Low Btu gas, which is used near its point of production, eliminates...

  11. Vol. 30 no. 14 2014, pages 20912092 BIOINFORMATICS MESSAGE FROM THE ISCB doi:10.1093/bioinformatics/btu117

    E-Print Network [OSTI]

    Radivojac, Predrag

    .1093/bioinformatics/btu117 Advance Access publication March 3, 2014 The automated function prediction SIG looks back

  12. Subtask 3.16 - Low-BTU Field Gas Application to Microturbines

    SciTech Connect (OSTI)

    Darren Schmidt; Benjamin Oster

    2007-06-15T23:59:59.000Z

    Low-energy gas at oil production sites presents an environmental challenge to the sites owners. Typically, the gas is managed in flares. Microturbines are an effective alternative to flaring and provide on-site electricity. Microturbines release 10 times fewer NOx emissions than flaring, on a methane fuel basis. The limited acceptable fuel range of microturbines has prevented their application to low-Btu gases. The challenge of this project was to modify a microturbine to operate on gases lower than 350 Btu/scf (the manufacturer's lower limit). The Energy & Environmental Research Center successfully operated a Capstone C30 microturbine firing gases between 100-300 Btu/scf. The microturbine operated at full power firing gases as low as 200 Btu/scf. A power derating was experienced firing gases below 200 Btu/scf. As fuel energy content decreased, NO{sub x} emissions decreased, CO emissions increased, and unburned hydrocarbons remained less than 0.2 ppm. The turbine was self-started on gases as low as 200 Btu/scf. These results are promising for oil production facilities managing low-Btu gases. The modified microturbine provides an emission solution while returning valuable electricity to the oilfield.

  13. Ten Thousand Years of Solitude

    SciTech Connect (OSTI)

    Benford, G. (Los Alamos National Lab., NM (USA) California Univ., Irvine, CA (USA). Dept. of Physics); Kirkwood, C.W. (Los Alamos National Lab., NM (USA) Arizona State Univ., Tempe, AZ (USA). Coll. of Business Administration); Harry, O. (Los Alamos National Lab., NM (USA)); Pasqualetti, M.J. (Los Alamos National Lab., NM (USA) Arizona State Univ., Tempe, AZ (USA))

    1991-03-01T23:59:59.000Z

    This report documents the authors work as an expert team advising the US Department of Energy on modes of inadvertent intrusion over the next 10,000 years into the Waste Isolation Pilot Project (WIPP) nuclear waste repository. Credible types of potential future accidental intrusion into the WIPP are estimated as a basis for creating warning markers to prevent inadvertent intrusion. A six-step process is used to structure possible scenarios for such intrusion, and it is concluded that the probability of inadvertent intrusion into the WIPP repository over the next ten thousand years lies between one and twenty-five percent. 3 figs., 5 tabs.

  14. The Mansfield Two-Stage, Low BTU Gasification System: Report of Operations

    E-Print Network [OSTI]

    Blackwell, L. T.; Crowder, J. T.

    1983-01-01T23:59:59.000Z

    the high costs of oxygen and methanation required to produce gas that can be transmitted over long distance. Standard low Btu fixed bed gasifiers have historically been plagued by three constraints; namely, the production of messy tars and oils...

  15. Recent regulatory experience of low-Btu coal gasification. Volume III. Supporting case studies

    SciTech Connect (OSTI)

    Ackerman, E.; Hart, D.; Lethi, M.; Park, W.; Rifkin, S.

    1980-02-01T23:59:59.000Z

    The MITRE Corporation conducted a five-month study for the Office of Resource Applications in the Department of Energy on the regulatory requirements of low-Btu coal gasification. During this study, MITRE interviewed representatives of five current low-Btu coal gasification projects and regulatory agencies in five states. From these interviews, MITRE has sought the experience of current low-Btu coal gasification users in order to recommend actions to improve the regulatory process. This report is the third of three volumes. It contains the results of interviews conducted for each of the case studies. Volume 1 of the report contains the analysis of the case studies and recommendations to potential industrial users of low-Btu coal gasification. Volume 2 contains recommendations to regulatory agencies.

  16. Sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L. (Schenectady, NY)

    1980-01-01T23:59:59.000Z

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is disclosed. The combustor includes several separately removable combustion chambers each having an annular sectoral cross section and a double-walled construction permitting separation of stresses due to pressure forces and stresses due to thermal effects. Arrangements are described for air-cooling each combustion chamber using countercurrent convective cooling flow between an outer shell wall and an inner liner wall and using film cooling flow through liner panel grooves and along the inner liner wall surface, and for admitting all coolant flow to the gas path within the inner liner wall. Also described are systems for supplying coal gas, combustion air, and dilution air to the combustion zone, and a liquid fuel nozzle for use during low-load operation. The disclosed combustor is fully air-cooled, requires no transition section to interface with a turbine nozzle, and is operable at firing temperatures of up to 3000.degree. F. or within approximately 300.degree. F. of the adiabatic stoichiometric limit of the coal gas used as fuel.

  17. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data from03.4B Winter13

  18. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data from03.4B Winter134

  19. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data from03.4B Winter1343

  20. "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic Characteristic(b)","(million Btu)","(thousand Btu)","(thousand Btu)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data from03.4B Winter13434

  1. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess than 200Decade Year-0YearThousand

  2. Henry Hub Natural Gas Spot Price (Dollars per Million Btu)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess than 200Decade Year-0YearThousandYear Jan

  3. Vol. 30 ISMB 2014, pages i9i18 BIOINFORMATICS doi:10.1093/bioinformatics/btu259

    E-Print Network [OSTI]

    Moret, Bernard

    Vol. 30 ISMB 2014, pages i9­i18 BIOINFORMATICS doi:10.1093/bioinformatics/btu259 Evaluating synteny

  4. ThousandWorlds Collected Issue 1

    E-Print Network [OSTI]

    Multiple Contributors

    1986-01-01T23:59:59.000Z

    NDtfbRLDS COLLECTED Covers: Carol Walske Dedication Welcome to ThousandWorlds Background to ThousandWorlds cartoon It's A Man's World That Share of Glory/The Father The Gem of Harrrow (filk) That Share of Glory/The Uncles The Gdnvue Saga, Downport version...

  5. An analytical investigation of primary zone combustion temperatures and NOx production for turbulent jet flames using low-BTU fuels 

    E-Print Network [OSTI]

    Carney, Christopher Mark

    1995-01-01T23:59:59.000Z

    The objective of this research project was to identify and determine the effect of jet burner operating variables that influence combustion of low-BTU gases. This was done by simulating the combustion of a low-BTU fuel in a jet flame and predicting...

  6. An analytical investigation of primary zone combustion temperatures and NOx production for turbulent jet flames using low-BTU fuels

    E-Print Network [OSTI]

    Carney, Christopher Mark

    1995-01-01T23:59:59.000Z

    The objective of this research project was to identify and determine the effect of jet burner operating variables that influence combustion of low-BTU gases. This was done by simulating the combustion of a low-BTU fuel in a jet flame and predicting...

  7. An Evaluation of Low-BTU Gas from Coal as an Alternate Fuel for Process Heaters

    E-Print Network [OSTI]

    Nebeker, C. J.

    1982-01-01T23:59:59.000Z

    As the price gap between oil and natural gas and coal continues to widen, Monsanto has carefully searched out and examined opportunities to convert fuel use to coal. Preliminary studies indicate that the low-btu gas produced by fixed-bed, air blown...

  8. SELF CHECKOUT Wow! Thousands of people

    E-Print Network [OSTI]

    Fisher, Kathleen

    PLASTIC A3CANNED GOODS Wow! Thousands of people are responding to our messages..... 83% in TX, 17% in FL STORAGE AND HOSTING CENTER The gas station energy costs are down 15%! What is the status of construction

  9. Determination of performance characteristics of a one-cylinder diesel engine modified to burn low-Btu (lignite) gas

    E-Print Network [OSTI]

    Blacksmith, James Richard

    1979-01-01T23:59:59.000Z

    DETERMINATION OF PERFORMANCE CHARACTERISTICS OF A ONE-CYLINDER DIESEL ENGINE MODIFIED TO BURN LOW-BTU (LIGNITE) GAS A Thesis JAMES RICHARD BLACKSMITH Submitted to the Graduate College of Texas A86YI University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1979 Major Subject: Mechanical Engineering DETERMINATION OF PERFORMANCE CHARACTERISTICS OF A ONE-CYLINDER DIESEL ENGINE MODIFIED TO BURN LOW-BTU (LIGNITE) GAS A Thesis by JAMES RICHARD BLACKSMITH...

  10. Low/medium-Btu coal-gasification assessment program for specific sites of two New York utilities

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    The scope of this study is to investigate the technical and economic aspects of coal gasification to supply low- or medium-Btu gas to the two power plant boilers selected for study. This includes the following major studies (and others described in the text): investigate coals from different regions of the country, select a coal based on its availability, mode of transportation and delivered cost to each power plant site; investigate the effects of burning low- and medium-Btu gas in the selected power plant boilers based on efficiency, rating and cost of modifications and make recommendations for each; and review the technical feasibility of converting the power plant boilers to coal-derived gas. The following two coal gasification processes have been used as the basis for this Study: the Combustion Engineering coal gasification process produces a low-Btu gas at approximately 100 Btu/scf at near atmospheric pressure; and the Texaco coal gasification process produces a medium-Btu gas at 292 Btu/scf at 800 psig. The engineering design and economics of both plants are described. Both plants meet the federal, state, and local environmental requirements for air quality, wastewater, liquid disposal, and ground level disposal of byproduct solids. All of the synthetic gas alternatives result in bus bar cost savings on a yearly basis within a few years of start-up because the cost of gas is assumed to escalate at a lower rate than that of fuel oil, approximately 4 to 5%.

  11. Understanding Utility Rates or How to Operate at the Lowest $/BTU

    E-Print Network [OSTI]

    Phillips, J. N.

    . The lower the energy rating (KW/Ton or KW/HP or KW/BTU) the more efficient the equipment and the less demand draw on the electric power plants, thereby reducing the need to build new power plants. To encourage DSM, utilities give rebates for high...: Bob Allwein, Oklahoma Natural Gas Company. Dick Landry, Gulf States Utility. Curtis Williford, Entex Gas Company. Bret McCants, Central Power and Light Company. Frank Tanner, Southern Union. Patric Coon, West Texas utilities. ESL-IE-93...

  12. U.S. Heat Content of Natural Gas Deliveries to Other Sectors Consumers (BTU

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr MayNov-14 Dec-14 Jan-15 Feb-15(BTU perper

  13. Foote Hydroelectric Plant spillway rehabilitation

    SciTech Connect (OSTI)

    Sowers, D.L. [Consumers Power Co., Jackson, MI (United States); Hasan, N.; Gertler, L.R. [Raytheon Infrastructures Services, New York, NY (United States)

    1996-10-01T23:59:59.000Z

    In 1993 the spillway of the 9 MW Foote Hydroelectric Plant located on the AuSable River, near Oscoda, Michigan was rehabilitated. The Foote Plant, built in 1917, is owned and operated by Consumers Power Company. In the 76 years of continuous operation the spillway had deteriorated such that much of the concrete and associated structure needed to be replaced to assure safety of the structure. The hydro station includes an earth embankment with concrete corewall, a concrete spillway with three tainter gates and a log chute, a penstock structure and a steel and masonry powerhouse. The electric generation is by three vertical shaft units of 3,000 KW each. A plan of the plant with spillway and an elevation of the spillway section is shown. This paper describes the evaluation and repair of the plant spillway and associated structure.

  14. Weigh-in-motion scale with foot alignment features

    DOE Patents [OSTI]

    Abercrombie, Robert Knox; Richardson, Gregory David; Scudiere, Matthew Bligh

    2013-03-05T23:59:59.000Z

    A pad is disclosed for use in a weighing system for weighing a load. The pad includes a weighing platform, load cells, and foot members. Improvements to the pad reduce or substantially eliminate rotation of one or more of the corner foot members. A flexible foot strap disposed between the corner foot members reduces rotation of the respective foot members about vertical axes through the corner foot members and couples the corner foot members such that rotation of one corner foot member results in substantially the same amount of rotation of the other corner foot member. In a strapless variant one or more fasteners prevents substantially all rotation of a foot member. In a diagonal variant, a foot strap extends between a corner foot member and the weighing platform to reduce rotation of the foot member about a vertical axis through the corner foot member.

  15. High btu gas from peat. A feasibility study. Part 1. Executive summary. Final report

    SciTech Connect (OSTI)

    Not Available

    1984-01-01T23:59:59.000Z

    In September, 1980, the US Department of Energy (DOE) awarded a Grant (No. DE-FG01-80RA50348) to the Minnesota Gas Company (Minnegasco) to evaluate the commercial viability - technical, economic and environmental - of producing 80 million standard cubic feet per day (SCFD) of substitute natural gas (SNG) from peat. The proposed product, high Btu SNG would be a suitable substitute for natural gas which is widely used throughout the Upper Midwest by residential, commercial and industrial sectors. The study team consisted of Dravo Engineers and Constructors, Ertec Atlantic, Inc., The Institute of Gas Technology, Deloitte, Haskins and Sells and Minnegasco. Preliminary engineering and operating and financial plans for the harvesting, dewatering and gasification operations were developed. A site in Koochiching County near Margie was chosen for detailed design purposes only; it was not selected as a site for development. Environmental data and socioeconomic data were gathered and reconciled. Potential economic data were gathered and reconciled. Potential impacts - both positive and negative - were identified and assessed. The peat resource itself was evaluated both qualitatively and quantitatively. Markets for plant by-products were also assessed. In summary, the technical, economic, and environmental assessment indicates that a facility producing 80 billion Btu's per day SNG from peat is not commercially viable at this time. Minnegasco will continue its efforts into the development of peat and continue to examine other options.

  16. Markets for low- and medium-Btu coal gasification: an analysis of 13 site specific studies

    SciTech Connect (OSTI)

    Not Available

    1981-09-01T23:59:59.000Z

    In 1978 the US Department of Energy (DOE), through its Office of Resource Applications, developed a commercialization plan for low- and medium-Btu coal gasification. Several initial steps have been taken in that process, including a comprehensive study of industrial markets, issuance of a Notice of Program Interest, and funding of proposals under the Alternate Fuels Legislation (P.L. 96-126). To assist it in the further development and administration of the commercialization plan, the Office of Resource Applications has asked Booz, Allen and Hamilton to assess the market prospects for low- and medium-Btu coal gasification. This report covers the detailed findings of the study. Following the introduction which discusses the purpose of the study, approach used for the assignment and current market attitudes on coal gasification, there are three chapters on: systems configurations and applications; economic and finanical attractiveness; and summary of management decisions based on feasibility study results. The final chapter briefly assesses the management decisions. The general consensus seems to be that coal gasification is a technology that will be attractive in the future but is marginal now. 6 figures, 5 tables.

  17. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L. (Schenectady, NY)

    1985-02-12T23:59:59.000Z

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  18. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOE Patents [OSTI]

    Vogt, Robert L. (Schenectady, NY)

    1981-01-01T23:59:59.000Z

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  19. New Jersey Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousand Cubic Feet) Priceper Thousand Cubic44

  20. Trends in energy use in commercial buildings -- Sixteen years of EIA's commercial buildings energy consumption survey

    SciTech Connect (OSTI)

    Davis, J.; Swenson, A.

    1998-07-01T23:59:59.000Z

    The Commercial Buildings Energy Consumption Survey (CBECS) collects basic statistical information on energy consumption and energy-related characteristics of commercial buildings in the US. The first CBECS was conducted in 1979 and the most recent was completed in 1995. Over that period, the number of commercial bindings and total amount of floorspace increased, total consumption remained flat, and total energy intensity declined. By 1995, there were 4.6 million commercial buildings and 58.8 billion square feet of floorspace. The buildings consumed a total of 5.3 quadrillion Btu (site energy), with a total intensity of 90.5 thousand Btu per square foot per year. Electricity consumption exceeded natural gas consumption (2.6 quadrillion and 1.9 quadrillion Btu, respectively). In 1995, the two major users of energy were space heating (1.7 quadrillion Btu) and lighting (1.2 quadrillion Btu). Over the period 1979 to 1995, natural gas intensity declined from 71.4 thousand to 51.0 thousand Btu per square foot per year. Electricity intensity did not show a similar decline (44.2 thousand Btu per square foot in 1979 and 45.7 thousand Btu per square foot in 1995). Two types of commercial buildings, office buildings and mercantile and service buildings, were the largest consumers of energy in 1995 (2.0 quadrillion Btu, 38% of total consumption). Three building types, health care, food service, and food sales, had significantly higher energy intensities. Buildings constructed since 1970 accounted for half of total consumption and a majority (59%) of total electricity consumption.

  1. DURABLE GLASS FOR THOUSANDS OF YEARS

    SciTech Connect (OSTI)

    Jantzen, C.

    2009-12-04T23:59:59.000Z

    The durability of natural glasses on geological time scales and ancient glasses for thousands of years is well documented. The necessity to predict the durability of high level nuclear waste (HLW) glasses on extended time scales has led to various thermodynamic and kinetic approaches. Advances in the measurement of medium range order (MRO) in glasses has led to the understanding that the molecular structure of a glass, and thus the glass composition, controls the glass durability by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. During the early stages of glass dissolution, a 'gel' layer resembling a membrane forms through which ions exchange between the glass and the leachant. The hydrated gel layer exhibits acid/base properties which are manifested as the pH dependence of the thickness and nature of the gel layer. The gel layer ages into clay or zeolite minerals by Ostwald ripening. Zeolite mineral assemblages (higher pH and Al{sup 3+} rich glasses) may cause the dissolution rate to increase which is undesirable for long-term performance of glass in the environment. Thermodynamic and structural approaches to the prediction of glass durability are compared versus Ostwald ripening.

  2. ,"New Mexico Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"3292015 10:04:18 PM" "Back to Contents","Data 1: New Mexico Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"...

  3. Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes Region Area (Kodosky & Keith,...

  4. ,"New York Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"2262015 9:12:04 AM" "Back to Contents","Data 1: New York Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"...

  5. ,"New York Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2013...

  6. ,"New York Natural Gas Imports Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2013 ,"Release...

  7. Water Sampling At Valley Of Ten Thousand Smokes Region Area ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valley Of Ten Thousand Smokes Region Area (Keith, Et Al., 1992)...

  8. South Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan FebDecade Year-0Feet)Thousand7ThousandYear78

  9. Table 6a. Total Electricity Consumption per Effective Occupied Square Foot,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet)4. U.S. Vehicle FuelFoot,

  10. Powers of Ten Thousand: Navigating in Large Information Spaces

    E-Print Network [OSTI]

    Powers of Ten Thousand: Navigating in Large Information Spaces Henry Lieberman Media Laboratory large display space, for example, a street map of the entire United States? The traditional solution, on a scale of at least 1 to 10,000. Powers of ten thousand The book and film Powers of Ten [Morrison

  11. The effect of CO? on the flammability limits of low-BTU gas of the type obtained from Texas lignite 

    E-Print Network [OSTI]

    Gaines, William Russell

    1983-01-01T23:59:59.000Z

    Chairman of Advisory Committee: Dr. W. N. Heffington An experimental study was conducted to determine if relatively large amounts of CO in a low-BTU gas of the type 2 derived from underground gasification of Texas lignite would cause significant... time when I was in need. Finally, the Center for Energy and Mineral Resources and the Texas Engineering Experiment Station for support related to this research. TABLE OF CONTENTS PAGE ABSTRACT ACKNOWLEDGEMENTS LIST OF TABLES LIST OF FIGURES V1...

  12. Commercial demonstration of atmospheric medium BTU fuel gas production from biomass without oxygen the Burlington, Vermont Project

    SciTech Connect (OSTI)

    Rohrer, J.W. [Zurn/NEPCO, South Portland, MA (United States); Paisley, M. [Battelle Laboratories, Columbus, OH (United States)

    1995-12-31T23:59:59.000Z

    The first U.S. demonstration of a gas turbine operating on fuel gas produced by the thermal gasification of biomass occurred at Battelle Columbus Labs (BCL) during 1994 using their high throughput indirect medium Btu gasification Process Research Unit (PRU). Zurn/NEPCO was retained to build a commercial scale gas plant utilizing this technology. This plant will have a throughput rating of 8 to 12 dry tons per hour. During a subsequent phase of the Burlington project, this fuel gas will be utilized in a commercial scale gas turbine. It is felt that this process holds unique promise for economically converting a wide variety of biomass feedstocks efficiently into both a medium Btu (500 Btu/scf) gas turbine and IC engine quality fuel gas that can be burned in engines without modification, derating or efficiency loss. Others are currently demonstrating sub-commercial scale thermal biomass gasification processes for turbine gas, utilizing both atmospheric and pressurized air and oxygen-blown fluid bed processes. While some of these approaches hold merit for coal, there is significant question as to whether they will prove economically viable in biomass facilities which are typically scale limited by fuel availability and transportation logistics below 60 MW. Atmospheric air-blown technologies suffer from large sensible heat loss, high gas volume and cleaning cost, huge gas compressor power consumption and engine deratings. Pressurized units and/or oxygen-blown gas plants are extremely expensive for plant scales below 250 MW. The FERCO/BCL process shows great promise for overcoming the above limitations by utilizing an extremely high throughout circulation fluid bed (CFB) gasifier, in which biomass is fully devolitalized with hot sand from a CFB char combustor. The fuel gas can be cooled and cleaned by a conventional scrubbing system. Fuel gas compressor power consumption is reduced 3 to 4 fold verses low Btu biomass gas.

  13. Virginia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear JanPropane,ThousandExtensions (BillionSales

  14. New Mexico Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousand Cubic Feet)AdjustmentsSales (Billion

  15. New York Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels) LiquidsCoalbed MethaneFoot)

  16. Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65per9 0 1 2 3+Foot) Year

  17. Colorado Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear JanDecade Year-0c.+Foot) Decade

  18. Colorado Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear JanDecade Year-0c.+Foot)

  19. Florida Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot) Year Jan Feb Mar Apr May Jun Jul

  20. Georgia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot) Year Jan2009SamplingSee See

  1. Georgia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot) Year Jan2009SamplingSee

  2. Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess than 200Decade Year-0 Year-1Foot) Year

  3. Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess than 200DecadeCubic1.IV. NorthernFoot)

  4. Indiana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessApril 2015 IndependentFoot) Decade

  5. Indiana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessApril 2015 IndependentFoot)

  6. Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessApril 2015Year JanFoot) Year Jan Feb

  7. Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessApril 2015YearYearFoot) Year Jan Feb

  8. Kentucky Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProved Reserves (Billion Cubic Feet) Decade Year-0Foot) Decade

  9. Kentucky Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProved Reserves (Billion Cubic Feet) Decade Year-0Foot)

  10. Nebraska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough, 2002 (next8,,9,7,3,Foot) Year

  11. New Hampshire Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough,Cubic Foot) Decade Year-0 Year-1

  12. New York Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(Billion CubicProductionFoot) Decade Year-0 Year-1

  13. Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear Jan Feb(BillionDecadeFoot) Decade

  14. Oklahoma Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office(BillionYear JanYear Jan FebProvedFoot) Decade

  15. Wisconsin Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYearFuel5,266 6,090 7,16354,828 424,763CubicCubic Foot)

  16. Alabama Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 NProved ReservesDecadeFoot)

  17. Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessedDecade Year-0 Year-1Foot) Year

  18. Arkansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1Year JanDecadeExpectedFoot)

  19. Florida Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Light-Duty Vehicles, 1975-2004Foot) Decade Year-0

  20. Michigan Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUndergroundCubic Feet)ExpectedFoot) Year

  1. Montana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) Year Jan Feb Mar Apr May Jun Jul

  2. Vermont Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197 14,197(Billion Cubic(MillionFoot)

  3. Washington Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197Cubic Feet) Gas, WetCubic Foot)

  4. Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul AugFeet)Foot) Decade

  5. Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr MayYear Jan Feb Mar Apr May JunFoot)

  6. Maine Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUnderground Storage Volume16, 2012PeterFoot)

  7. Maryland Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUnderground Storage1 EnergyAssessmentFoot) Year

  8. Maryland Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet)FuelDecadePublication10.99 12.28EA9.Foot) Decade

  9. Missouri Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals6,992 6,895Vehicle FuelFeet)(DollarsFoot)

  10. Montana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals6,992 (Million CubicFoot) Decade Year-0 Year-1

  11. Special Problem for Chapter 4: Compare the Lower Heating Values of different fuel gases per Standard Cubic Foot, recalling that

    E-Print Network [OSTI]

    2 + 3.76N2) - 1H2Ovapor + 1.88N2 0 = 1 lbmolH2 O lbmolfuel � 18.016 lbmH2 O lbmolH2 O µ -5774.6 BTU lbmH2 0 ¶ + Qout 0 = -104040 BTU/lbmolfuel + Qout Qout = 104040 BTU/lbmolfuel = 51607 BTU/lbmfuel = 266 BTU/ft3 fuel [274 BTU/SCF] For 16.043 lbm of Methane CH4 + 2 (O2 + 3.76N2) - 2H2O + CO2 + 7.52N2

  12. High-temperature turbine technology program. Turbine subsystem design report: Low-Btu gas

    SciTech Connect (OSTI)

    Horner, M.W.

    1980-12-01T23:59:59.000Z

    The objective of the US Department of Energy High-Temperature Turbine Technology (DOE-HTTT) program is to bring to technology readiness a high-temperature (2600/sup 0/F to 3000/sup 0/F firing temperature) turbine within a 6- to 10-year duration, Phase II has addressed the performance of component design and technology testing in critical areas to confirm the design concepts identified in the earlier Phase I program. Based on the testing and support studies completed under Phase II, this report describes the updated turbine subsystem design for a coal-derived gas fuel (low-Btu gas) operation at 2600/sup 0/F turbine firing temperature. A commercial IGCC plant configuration would contain four gas turbines. These gas turbines utilize an existing axial flow compressor from the GE product line MS6001 machine. A complete description of the Primary Reference Design-Overall Plant Design Description has been developed and has been documented. Trends in overall plant performance improvement at higher pressure ratio and higher firing temperature are shown. It should be noted that the effect of pressure ratio on efficiency is significally enhanced at higher firing temperatures. It is shown that any improvement in overall plant thermal efficiency reflects about the same level of gain in Cost of Electricity (COE). The IGCC concepts are shown to be competitive in both performance and cost at current and near-term gas turbine firing temperatures of 1985/sup 0/F to 2100/sup 0/F. The savings that can be accumulated over a thirty-year plant life for a water-cooled gas turbine in an IGCC plant as compared to a state-of-the-art coal-fired steam plant are estimated. A total of $500 million over the life of a 1000 MW plant is projected. Also, this IGCC power plant has significant environmental advantages over equivalent coal-fired steam power plants.

  13. Fact #745: September 17, 2012 Vehicles per Thousand People: U...

    Broader source: Energy.gov (indexed) [DOE]

    The graphs below show the number of motor vehicles per thousand people for various countries. The data for the United States are displayed in the line which goes from 1900 to 2010....

  14. Illinois Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess thanThousand Cubic Feet)

  15. Delaware Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, ElectricSales (Million CubicThousandTobago063 1,064

  16. Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet) Decade Year-0 Year-1 Year-2Thousand Cubic6

  17. Missouri Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off) Shale%73Thousand

  18. Wyoming Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousand Cubic%perYear Jan

  19. Rhode Island Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar(DollarsCubicThousand68.76,760.2520099 20109

  20. New York Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousand CubicFeet)perFeet) New2 1,033 1,034

  1. North Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawals (MillionNine8 2.415 -CubicYear8

  2. Oklahoma Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar Apr May Jun Jul9ThousandFeet)41 1,041

  3. South Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProvedFeet)Thousand Cubic7.

  4. Tennessee Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProvedFeet)ThousandNumber andCrudeTemperature Maps andDecadeCubic

  5. U.S. Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet) U.S.Developmental Wells (Thousand Feet)2009

  6. Kentucky Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet) Decade949,7752009Base6Thousand417 1,019 1,023

  7. Massachusetts Heat Content of Natural Gas Deliveries to Consumers (BTU per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals (Million Cubic Feet)ThousandFeet) Year JanCubic

  8. Michigan Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals (Millionper ThousandCubicFeet)6 1,029

  9. West Virginia Heat Content of Natural Gas Deliveries to Consumers (BTU per

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year JanThousandYearDecade Year-0 Year-1 Year-2Cubic

  10. High Btu gas from peat. A feasibility study. Part 2. Management plans for project continuation. Task 10. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    The primary objective of this task, which was the responsibility of the Minnesota Gas Company, was to determine the needs of the project upon completion of the feasibility study and determine how to implement them most effectively. The findings of the study do not justify the construction of an 80 billion Btu/day SNG from peat plant. At the present time Minnegasco will concentrate on other issues of peat development. Other processes, other products, different scales of operation - these are the issues that Minnegasco will continue to study. 3 references.

  11. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect (OSTI)

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01T23:59:59.000Z

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  12. North Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawals (MillionNine8

  13. Florida Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot) Year Jan Feb Mar AprYear Jan

  14. Florida Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot) Year Jan FebWellhead Price

  15. Georgia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot) Year Jan2009SamplingSee%fromYear

  16. Iowa Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessApril 2015Year JanFoot) YearYear

  17. Kansas Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessApril 2015YearYearFoot)Year Jan Feb Mar

  18. Montana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) Year Jan Feb Mar AprYear Jan

  19. Montana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) Year Jan

  20. Natural Gas Citygate Price in Massachusetts (Dollars per Thousand Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPLYear JanFeet) Year Jan

  1. Natural Gas Citygate Price in Pennsylvania (Dollars per Thousand Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPLYearFeet)Year

  2. GreenFoot Technologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to: navigation,IISrl Jump to:GreenFoot Technologies

  3. SmallFoot LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformation SlimSlough Heat andSmallFoot LLC Jump

  4. Brad Foote Gear Works | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORT Americium/CuriumAguaBBBWind- GeradoraBorealBrad Foote Gear

  5. Iowa Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0Decade Year-0 Year-1 Year-20 0 0

  6. Kansas Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0DecadeYear Jan Feb Mar Apr MayDecade

  7. South Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndia (Million2,116Cubic Feet)Feet)

  8. Sweetgrass, MT Liquefied Natural Gas Exports Price (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) Decade Year-0 Year-1Cubic Feet)

  9. Sweetgrass, MT Liquefied Natural Gas Exports Price (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) Decade Year-0 Year-1Cubic Feet)Cubic

  10. Tennessee Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet)4. U.S.Decade Year-0 Year-1 Year-2 Year-3

  11. Texas Natural Gas Imports Price (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubicSeparation 7,559Nov-14Decade Year-0Year

  12. Texas Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubicSeparation 7,559Nov-14Decade

  13. Illinois Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess thanThousand Cubic Feet)%Year JanYear

  14. Illinois Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess thanThousandUnderground Storage

  15. Vermont Natural Gas Imports Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (BillionThousand27,262Feet)

  16. Missouri Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off) Shale%73Thousand%Year Jan Feb

  17. Missouri Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off)Thousand CubicWellhead Price

  18. Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousandUnderground Storage Volume (Million

  19. Isolation and characterization of microsatellite loci from blue-footed boobies (Sula nebouxii)

    E-Print Network [OSTI]

    Faircloth, Brant C.; Ramos, Alejandra; Drummond, Hugh; Gowaty, Patricia Adair

    2009-01-01T23:59:59.000Z

    parasitism and extra-pair paternity in blue- footed boobies.Microsatellites Á SSRs Á Blue-footed booby Á Sula nebouxii Ámicrosatellite loci from blue-footed boobies (Sula nebouxii)

  20. Fact #841: October 6, 2014 Vehicles per Thousand People: U.S...

    Broader source: Energy.gov (indexed) [DOE]

    41: October 6, 2014 Vehicles per Thousand People: U.S. vs. Other World Regions - Dataset Fact 841: October 6, 2014 Vehicles per Thousand People: U.S. vs. Other World Regions -...

  1. Fact #778: May 6, 2013 Vehicles per Thousand Persons Rising Quickly...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: May 6, 2013 Vehicles per Thousand Persons Rising Quickly in China and India Fact 778: May 6, 2013 Vehicles per Thousand Persons Rising Quickly in China and India The number of...

  2. A Universal AnkleFoot Prosthesis Emulator for Human Locomotion

    E-Print Network [OSTI]

    Collins, Steven H.

    A Universal Ankle­Foot Prosthesis Emulator for Human Locomotion Experiments Joshua M. Caputo of functions. Here we describe a robotic ankle­foot prosthesis system that enables rapid exploration of a wide-board motor and con- trol hardware, a flexible Bowden cable tether, and a lightweight instrumented prosthesis

  3. Nanomolding Based Fabrication of Synthetic Gecko Foot-Hairs

    E-Print Network [OSTI]

    Sitti, Metin

    Nanomolding Based Fabrication of Synthetic Gecko Foot-Hairs Metin Sitti and Ronald S. Fearing Dept -- This paper proposes two different nanomolding methods to fabricate synthetic gecko foot-hair nanostructures a nano-pore membrane as a template. These templates are molded with silicone rubber, polyimide

  4. Department of Mechanical Engineering Fall 2012 The Jaipur Foot

    E-Print Network [OSTI]

    Demirel, Melik C.

    for the Jaipur Foot and in compliance with the International Organization for Standardization (ISO) standard Foot in compliance with ISO Standard 10328. Approach Gathered customer needs from sponsor Established target specifications from customer needs into measurable metrics Reviewed ISO Standard 10328

  5. System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low BTU fuel from castings

    DOE Patents [OSTI]

    Scheffer, Karl D. (121 Governor Dr., Scotia, NY 12302)

    1984-07-03T23:59:59.000Z

    Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low BTU gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollution is reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved.

  6. System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low Btu fuel from castings

    DOE Patents [OSTI]

    Scheffer, K.D.

    1984-07-03T23:59:59.000Z

    Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low Btu gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollutis reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved. 5 figs.

  7. Planipes: Mobile Foot Pressure Analysis Samuel Pfaffen, Philipp Sommer, Christian Stocker, Roger Wattenhofer, and Samuel Welten

    E-Print Network [OSTI]

    Planipes: Mobile Foot Pressure Analysis Samuel Pfaffen, Philipp Sommer, Christian Stocker, Roger, sommer, chstocke, wattenhofer, welten}@tik.ee.ethz.ch Abstract Analyzing foot pressure is helpful

  8. Low NO{sub x} turbine power generation utilizing low Btu GOB gas. Final report, June--August 1995

    SciTech Connect (OSTI)

    Ortiz, I.; Anthony, R.V.; Gabrielson, J.; Glickert, R.

    1995-08-01T23:59:59.000Z

    Methane, a potent greenhouse gas, is second only to carbon dioxide as a contributor to potential global warming. Methane liberated by coal mines represents one of the most promising under exploited areas for profitably reducing these methane emissions. Furthermore, there is a need for apparatus and processes that reduce the nitrogen oxide (NO{sub x}) emissions from gas turbines in power generation. Consequently, this project aims to demonstrate a technology which utilizes low grade fuel (CMM) in a combustion air stream to reduce NO{sub x} emissions in the operation of a gas turbine. This technology is superior to other existing technologies because it can directly use the varying methane content gases from various streams of the mining operation. The simplicity of the process makes it useful for both new gas turbines and retrofitting existing gas turbines. This report evaluates the feasibility of using gob gas from the 11,000 acre abandoned Gateway Mine near Waynesburg, Pennsylvania as a fuel source for power generation applying low NO{sub x} gas turbine technology at a site which is currently capable of producing low grade GOB gas ({approx_equal} 600 BTU) from abandoned GOB areas.

  9. Distributed Explosive-Driven Six-foot Diameter by Two-Hundred Foot Long Shock Tubes

    SciTech Connect (OSTI)

    VIGIL, MANUEL G.

    2002-02-01T23:59:59.000Z

    The blast parameters for the 6-foot diameter by 200-foot long, explosively driven shock tube are presented in this report. The purpose, main characteristics, and blast simulation capabilities of this PETN Primacord, explosively driven facility are included. Experimental data are presented for air and Sulfurhexaflouride (SF6) test gases with initial pressures between 0.5 to 12.1 psia (ambient). Experimental data are presented and include shock wave time of amval at various test stations, flow duration, static or side-on overpressure, and stagnation or head-on overpressure. The blast parameters calculated from the above measured parameters and presented in this report include shock wave velocity, shock strength, shock Mach number, flow Mach Number, reflected pressure, dynamic pressure, particle velocity, density, and temperature. Graphical data for the above parameters are included. Algorithms and least squares fit equations are also included.

  10. Chamber transport of "foot" pulses for heavy-ion fusion

    E-Print Network [OSTI]

    Sharp, W.M.; Callahan-Miller, D.A.; Tabak, M.; Yu, S.S.; Peterson, P.F.

    2002-01-01T23:59:59.000Z

    Neutralization on Heavy-Ion-Fusion Chamber Transport," to beChamber transport of "foot" pulses for heavy-ion fusion W.chamber-transport effectiveness is the fraction of enclosed beam ions

  11. Powered Ankle–Foot Prosthesis Improves Walking Metabolic Economy

    E-Print Network [OSTI]

    Au, Samuel K.

    At moderate to fast walking speeds, the human ankle provides net positive work at high-mechanical-power output to propel the body upward and forward during the stance period. On the contrary, conventional ankle-foot ...

  12. The effect of foot conditions on constrained standing

    E-Print Network [OSTI]

    Barlow, Jessica Marie

    1996-01-01T23:59:59.000Z

    This study was conducted to find any differences in physiological effects, subjective rankings, or discomfort with respect to foot conditions in constrained standing. Eight healthy subjects, four female and four male, stood using four different...

  13. Mag-Foot: a steel bridge inspection robot

    E-Print Network [OSTI]

    Asada, Harry

    A legged robot that moves across a steel structure is developed for steel bridge inspection. Powerful permanent magnets imbedded in each foot allow the robot to hang from a steel ceiling powerlessly. Although the magnets ...

  14. ankle foot orthoses: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Websites Summary: Modelling the spread of foot-and-mouth disease virus F Moutou B Durand CNEVA, Laboratoire Central-and-mouth disease is an economically important viral...

  15. ankle foot orthosis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Websites Summary: Modelling the spread of foot-and-mouth disease virus F Moutou B Durand CNEVA, Laboratoire Central-and-mouth disease is an economically important viral...

  16. A study conducted on laterally loaded cylindrical footings

    E-Print Network [OSTI]

    Koch, Kenneth Joseph

    1968-01-01T23:59:59.000Z

    A STUDY CONDUCTED ON LATERALLY LOADED CYLINDRICAL FOOTINGS A Thesis by Kenneth Joseph Koch Submitted to the Graduate College of the Texas A&M University in partial fulfillment of the requirements for the degree oi MASTER OF SCIENCE May 1968... Major Subject Civil Engineering A STUDY CONDUCTED ON LATERALLY LOADED CYLINDRICAL FOOTINGS A Thesis by Kenneth Joseph Koch Approved as to style and content by (Chairman of Committee) (Head of Department) (Member) (M ber) May 1968...

  17. Price of Texas Natural Gas Exports (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet)ThousandThousandDollarsThousandTexas

  18. commencement N university of Illinois COLLEGE OF MEDICINEdoctor of philosophy Degree CANDIDATES N two thousand AND THIRTEEN Jill Bennett

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    CANDIDATES N two thousand AND THIRTEEN Jill Bennett Hometown: Portland, Oregon Education: University

  19. Introduction to Benchmarking: Starting a Benchmarking Plan

    Broader source: Energy.gov (indexed) [DOE]

    plant Btu per pound of product Manufacturer Btu per pound of product processed Refinery Btu per number of beds occupied Hotel or hospital Kilowatt-hours per square foot...

  20. Energy Management A Program of Energy Conservation for the Community College Facility

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    General Glossary I II Btu (British thermal unit). The amountabove a fixed data point (in Btu/lb), including sensible andsquare centimeter, or 3.69 Btu/per square foot. LA TENT HEA

  1. Open Cluster Open Cluster Open Cluster A group of several thousand stars

    E-Print Network [OSTI]

    Bechtold, Jill

    Open Cluster Open Cluster Open Cluster A group of several thousand stars which formed within the same nebula. The Pleides, or Seven Sisters, are the most visible stars in this cluster in the Milky Way. Mass:10-10,000 SM StarPower Points: 11 A group of several thousand stars which formed within the same

  2. Design and evaluation of a cantilever beam-type prosthetic foot for Indian persons with amputations

    E-Print Network [OSTI]

    Olesnavage, Kathryn M

    2014-01-01T23:59:59.000Z

    The goal of this work is to design a low cost, high performance prosthetic foot in collaboration with Bhagwan Mahaveer Viklang Sahayata Samiti (BMVSS), in Jaipur, India. In order to be adopted, the foot must cost less than ...

  3. Effects of different restrained foot positions on hand force exertion capability-implications for microgravity operations

    E-Print Network [OSTI]

    Whalen, Scott Allan

    1997-01-01T23:59:59.000Z

    An experiment was conducted to determine restrained foot positions that increase hand force exertion capability (HFEC) over that available under the existing restrained foot position utilized by NASA astronauts during Extra Vehicular Activity (EVA...

  4. Price of Michigan Natural Gas Exports (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet)Thousand Cubic Feet)ThousandMichigan

  5. Price of Sabine Pass, LA Natural Gas LNG Imports (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet)ThousandThousand Cubic Feet)

  6. Price of Sabine Pass, LA Natural Gas LNG Imports (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet)ThousandThousand Cubic Feet)Cubic

  7. Price of Sumas, WA Liquefied Natural Gas Imports (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet)ThousandThousandDollars per(NominalCubic

  8. Price of Sumas, WA Liquefied Natural Gas Imports (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet)ThousandThousandDollars

  9. Powered Ankle-Foot Prosthesis for the Improvement of Amputee Walking Economy

    E-Print Network [OSTI]

    Herr, Hugh

    Powered Ankle-Foot Prosthesis for the Improvement of Amputee Walking Economy by Samuel Kwok-Wai Au LIBRARIES #12;#12;Powered Ankle-Foot Prosthesis for the Improvement of Amputee Walking Economy by Samuel in walking. This objective of this thesis is to evaluate the hypothesis that a powered ankle- foot prosthesis

  10. Load tests on five large spread footings on sand and evaluation of prediction methods

    E-Print Network [OSTI]

    Gibbens, Robert Melvin

    1995-01-01T23:59:59.000Z

    for the engineering profession's lack of trust in the use of spread footings. For this study, five spread footings with sizes ranging from I to 3 m square were load tested to 150 mm of penetration. The footings were all constructed and tested in a similar manner...

  11. Fact #841: October 6, 2014 Vehicles per Thousand People: U.S...

    Broader source: Energy.gov (indexed) [DOE]

    The graphs below show the number of motor vehicles per thousand people for select countries and regions. The data for the United States are displayed in the line which goes from...

  12. Price of Cove Point, MD Natural Gas LNG Total Imports (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYearperThousand CubicThousand

  13. Price of Liquefied U.S. Natural Gas Exports to Russia (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) OmanThousand Cubic Feet)Cubic

  14. Price of Liquefied U.S. Natural Gas Exports to Russia (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) OmanThousand Cubic Feet)CubicCubic

  15. Price of Liquefied U.S. Natural Gas Re-Exports (Dollars per Thousand Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) OmanThousand

  16. Price of Maine Natural Gas Exports (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet)Thousand Cubic Feet)

  17. Price of Montana Natural Gas Exports (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet)Thousand Cubic

  18. Price of New Hampshire Natural Gas Exports (Dollars per Thousand Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet)Thousand CubicFeet) New Hampshire

  19. Price of Northeast Gateway Natural Gas LNG Imports (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet)Thousand CubicFeet) New

  20. Price of Northeast Gateway Natural Gas LNG Imports (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet)Thousand CubicFeet) NewCubic

  1. Price of Port Huron, MI Liquefied Natural Gas Exports (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet)Thousand CubicFeet)(Dollars perCubic

  2. Price of Port Huron, MI Liquefied Natural Gas Exports (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet)Thousand CubicFeet)(Dollars

  3. Price of U.S. Liquefied Natural Gas Imports From Peru (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubic Feet) Year Jan Febper Thousand

  4. Price of Washington Natural Gas Exports (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubic Feet) Year JanThousand Cubic

  5. Romas, TX Natural Gas Pipeline Exports (Price) Mexico (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubic Feet)Thousand CubicCubic Feet)

  6. Romas, TX Natural Gas Pipeline Exports (Price) Mexico (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubic Feet)Thousand CubicCubic Feet)Cubic

  7. Sabine Pass, LA Liquefied Natural Gas Exports Price (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubic Feet)ThousandKorea LiquefiedCubicCubic

  8. Price of Cove Point, MD Natural Gas LNG Total Imports (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYearperThousand CubicThousandCubic Feet)

  9. 7-55E An office that is being cooled adequately by a 12,000 Btu/h window air-conditioner is converted to a computer room. The number of additional air-conditioners that need to be installed is to be determined.

    E-Print Network [OSTI]

    Bahrami, Majid

    7-20 7-55E An office that is being cooled adequately by a 12,000 Btu/h window air-conditioner is converted to a computer room. The number of additional air-conditioners that need to be installed/h. Then noting that each available air conditioner provides 4,000 Btu/h cooling, the number of air- conditioners

  10. Search thousands of travel therapy destinations at: http://www.advanced-medical.net

    E-Print Network [OSTI]

    Weber, David J.

    Search thousands of travel therapy destinations at: http://www.advanced-medical.net Why do new grads travel with Advanced Medical? Mentorship: With accomplished mentors, new grad friendly facilities, and robust clinical support, trust Advanced Medical to take your professional growth seriously. Advanced

  11. PetaScale Calculations of the Electronic Structures of Nanostructures with Hundreds of Thousands of Processors

    E-Print Network [OSTI]

    PetaScale Calculations of the Electronic Structures of Nanostructures with Hundreds of Thousands in the material science category. The DFT can be used to calculate the electronic structure, the charge density. To understand the electronic structures of such systems and the corresponding carrier dynamics is essential

  12. Dams have played an important role in human development throughout the world for thousands

    E-Print Network [OSTI]

    Dams have played an important role in human development throughout the world for thousands of years dams (>15 m in height) and an estimated 800 000 small dams had been built worldwide (WCD 2000 than 22 000 large dams (but only 22 before 1949), China is the largest dam-building country; by way

  13. Prediction of sinkage depth of footings on soft marine sediments

    E-Print Network [OSTI]

    Yen, Shihchieh

    1990-01-01T23:59:59.000Z

    Tempsonics Transducer? Channels ? Hgdraulic Actuator I rB I :: Mud Tank::. : Guide Rod- Clamp? ? Ram ? Load Transducer ~ Model Footing Detailed Sketch of B Figure 2. Schematic (Side View) of Displacement Controlled Test Set-up. second... generalized bearing capacity factor, versus Z/B. Typical results are presented in Figures 16, 17, 18, 19, and 20. Plots of all analyzed test data are presented in Appendix I. 41 5 G 4 V/S = IKS V/B = OPS 0 0 Figure 16. Analyzed Data for 1-inch...

  14. A study conducted on laterally loaded cylindrical footings 

    E-Print Network [OSTI]

    Koch, Kenneth Joseph

    1968-01-01T23:59:59.000Z

    studies have also been used to analyze the resistance (g) to overturning. R. C. Rutledge developed a nomograph that can be used to find the depth of embedment necessary to withstand applied loads. The chart is based on the results of a series of full... as compared to the diameters of concrete footings of comparable depth. Full-scale test results have also been reported by F. E. Behn( and by Nelson, Nahoney and Fryrear 10) Theory by Reese L. C. Reese studied the ultimate resistance againsr. a rigid (11...

  15. Prediction of sinkage depth of footings on soft marine sediments 

    E-Print Network [OSTI]

    Yen, Shihchieh

    1990-01-01T23:59:59.000Z

    91. 0 91. 0 91. 2 90. 9 90. 9 90. 9 90. 4 90. 6 90. 3 90. 8 91. 5 91. 4 91. 0 91. 3 Su was determined by a miniature vane rotating at 0. 0143 radians per second 30 Table 4. Soil Properties for 4-inch Diameter Footing Tests V/B Dia.... 7 0. 008 105. 7 34. 7 90. 9 103. 9 40. 0 91. 3 * Su was determined by a miniature vane rotating at 0. 0143 radians per second. one of these tests is shown in Figure 12. In comparison to the dead weight test results (Figure 13), the load versus...

  16. Dual Predictive Control of Electrically Stimulated Muscle using Biofeedback for Drop Foot Correction

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    artificially generate action potential in the place of central nervous system (CNS) for inducing muscle) is one of the solutions for drop foot correction. Conventional ES systems deliver prede- fined to adequately dorsiflex or lift the foot. It is associated with a variety of conditions such as stroke, spinal

  17. Tube foot preservation in the Devonian crinoid Codiacrinus from the Lower Devonian Hunsruck Slate, Germany

    E-Print Network [OSTI]

    Kammer, Thomas

    Tube foot preservation in the Devonian crinoid Codiacrinus from the Lower Devonian Hunsruck Slate.W. 2013: Tube foot preservation in the Devonian crinoid Codiacrinus from the Lower Devonian Hunsruck Slate Follmann from the Lower Devonian Hunsruck Slate of Germany. This is the first definitive proof of tube feet

  18. An Ankle-Foot Emulation System for the Study of Human Walking Biomechanics

    E-Print Network [OSTI]

    Herr, Hugh

    and a prosthesis is one of the main obstacles in the development of a biomimetic ankle-foot prosthesis that the emulator may provide a more natural gait than a conventional passive prosthesis. Index Terms ­ Below-knee prosthesis, biomechanics, force control, biomimetic, ankle-foot emulator I. INTRODUCTION Although

  19. An Ankle-Foot Prosthesis Emulator with Control of Plantarflexion and Inversion-Eversion Torques

    E-Print Network [OSTI]

    Collins, Steven H.

    An Ankle-Foot Prosthesis Emulator with Control of Plantarflexion and Inversion-Eversion Torques-foot prosthesis with two independently-actuated toes that are coordinated to provide plantarflexion and inversion prosthesis features. A similar morphology may be effective for autonomous devices. I. INTRODUCTION Robotic

  20. Development of a three-dimensional finite element model of a horse's foot

    E-Print Network [OSTI]

    Hanft, Joseph Thomas

    1995-01-01T23:59:59.000Z

    The horse's foot, defined as the hoof wall and all the structures within it, is subjected to intense load-bearing and energy-absorbing demands. The foot is actually a complex assembly of components that deform as they support loads and absorb energy...

  1. Nanomolding Based Fabrication of Synthetic Gecko Foot-Hairs Metin Sitti and Ronald S. Fearing

    E-Print Network [OSTI]

    Fearing, Ron

    Nanomolding Based Fabrication of Synthetic Gecko Foot-Hairs Metin Sitti and Ronald S. Fearing Dept- This paper proposes two different nanomolding methods to fabricate synthetic gecko foot-hair nanostructures a nano-pore membrane as a template. These templates are molded with silicone rubber, polyamide

  2. ,"Virginia Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and NaturalWellhead Price (Dollars per Thousand

  3. Price of Freeport, TX Natural Gas LNG Imports (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYearperThousandDollarsperFeet) Decade

  4. Price of Freeport, TX Natural Gas LNG Imports (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYearperThousandDollarsperFeet)

  5. Price of Highgate Springs, VT Natural Gas LNG Imports (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar(Dollars per Thousand CubicDollars per

  6. New York Natural Gas Imports Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousand CubicFeet)perFeet)(No intransit

  7. New York Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousand CubicFeet)perFeet)(No

  8. New York Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawals (Million CubicYear Jan Feb

  9. Nogales, AZ Liquefied Natural Gas Exports Price (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawals (MillionNine8 2.415 - -

  10. Nogales, AZ Liquefied Natural Gas Exports to Mexico (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawals (MillionNine8 2.415 - -Cubic

  11. Nogales, AZ Natural Gas Pipeline Exports to Mexico (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawals (MillionNine8 2.415 -

  12. North Carolina Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawalsElements)TotalDecade

  13. ,"Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........RegionTotalPrice (Dollars per Thousand

  14. ,"Arizona Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellhead Price (Dollars per Thousand Cubic

  15. ,"Arkansas Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellhead PricePrice (Dollars per Thousand

  16. ,"Montana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future ProductionNetPrice (Dollars per Thousand

  17. Natural Gas Citygate Price in Alabama (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPL Production,6.48Year Jan

  18. Natural Gas Citygate Price in Alaska (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPL Production,6.48Year

  19. Natural Gas Citygate Price in Arizona (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPL Production,6.48YearYear

  20. Natural Gas Citygate Price in Arkansas (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPL

  1. Natural Gas Citygate Price in California (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPLYear Jan Feb Mar Apr May

  2. Natural Gas Citygate Price in Colorado (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPLYear Jan Feb Mar Apr

  3. Natural Gas Citygate Price in Connecticut (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPLYear Jan Feb Mar AprYear

  4. Natural Gas Citygate Price in Delaware (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPLYear Jan Feb Mar

  5. Natural Gas Citygate Price in Florida (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPLYear Jan Feb MarYear Jan

  6. Natural Gas Citygate Price in Georgia (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPLYear Jan Feb MarYear

  7. Natural Gas Citygate Price in Hawaii (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPLYear Jan Feb MarYearYear

  8. Natural Gas Citygate Price in Idaho (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPLYear Jan Feb

  9. Natural Gas Citygate Price in Illinois (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPLYear Jan FebYear Jan Feb

  10. Natural Gas Citygate Price in Indiana (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPLYear Jan FebYear Jan

  11. Natural Gas Citygate Price in Iowa (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPLYear Jan FebYear JanYear

  12. Natural Gas Citygate Price in Kansas (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPLYear Jan FebYear

  13. Natural Gas Citygate Price in Kentucky (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPLYear Jan FebYearYear Jan

  14. Natural Gas Citygate Price in Louisiana (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPLYear Jan FebYearYear

  15. Natural Gas Citygate Price in Maine (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPLYear Jan FebYearYearYear

  16. Natural Gas Citygate Price in Maryland (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPLYear Jan

  17. Natural Gas Citygate Price in Michigan (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPLYear JanFeet) Year

  18. Natural Gas Citygate Price in Minnesota (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPLYear JanFeet) YearYear

  19. Natural Gas Citygate Price in Mississippi (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPLYear JanFeet)

  20. Natural Gas Citygate Price in Missouri (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPLYear JanFeet)Year Jan

  1. Natural Gas Citygate Price in Montana (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPLYear JanFeet)Year

  2. Natural Gas Citygate Price in Nebraska (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPLYear JanFeet)YearYear

  3. Natural Gas Citygate Price in Nevada (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPLYear

  4. Natural Gas Citygate Price in New Hampshire (Dollars per Thousand Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPLYearFeet) Year Jan Feb

  5. Natural Gas Citygate Price in New Jersey (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPLYearFeet) Year Jan

  6. Natural Gas Citygate Price in New Mexico (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPLYearFeet) Year JanYear

  7. Natural Gas Citygate Price in New York (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPLYearFeet) Year

  8. Natural Gas Citygate Price in North Carolina (Dollars per Thousand Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPLYearFeet) YearFeet)

  9. Natural Gas Citygate Price in North Dakota (Dollars per Thousand Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPLYearFeet)

  10. Natural Gas Citygate Price in Ohio (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPLYearFeet)Year Jan Feb

  11. Natural Gas Citygate Price in Oklahoma (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPLYearFeet)Year Jan

  12. Natural Gas Citygate Price in Oregon (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPLYearFeet)Year JanYear

  13. Natural Gas Citygate Price in Rhode Island (Dollars per Thousand Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) YearNGPLYearFeet)YearFeet)

  14. Natural Gas Citygate Price in South Carolina (Dollars per Thousand Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot)

  15. Natural Gas Citygate Price in South Dakota (Dollars per Thousand Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot)Feet) Year Jan Feb Mar Apr May

  16. Natural Gas Citygate Price in Tennessee (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot)Feet) Year Jan Feb Mar Apr

  17. Natural Gas Citygate Price in Texas (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot)Feet) Year Jan Feb Mar AprYear

  18. Natural Gas Citygate Price in Utah (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot)Feet) Year Jan Feb Mar

  19. Natural Gas Citygate Price in Vermont (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot)Feet) Year Jan Feb MarYear Jan

  20. Natural Gas Citygate Price in Virginia (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot)Feet) Year Jan Feb MarYear

  1. Natural Gas Citygate Price in Washington (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot)Feet) Year Jan Feb MarYearYear

  2. Natural Gas Citygate Price in West Virginia (Dollars per Thousand Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot)Feet) Year Jan Feb

  3. Natural Gas Citygate Price in Wisconsin (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot)Feet) Year Jan FebYear Jan Feb

  4. Natural Gas Citygate Price in Wyoming (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot)Feet) Year Jan FebYear Jan

  5. IEEE Robotics & Automation Magazine52 1070-9932/08/$25.002008 IEEE SEPTEMBER 2008 Ankle-Foot Prosthesis

    E-Print Network [OSTI]

    Herr, Hugh

    -Foot Prosthesis T he loss of a limb is a major disability. Unfortunately, today's prosthetic technol- ogy prosthesis [15], [19], [20]. With current actuator technology, it is challenging to build an ankle-foot prosthesis that matches the size and weight of the human ankle-foot complex but still provides sufficient

  6. Summary report on four foot septifoil cooling experiment

    SciTech Connect (OSTI)

    Randolph, H.W.; Collins, S.L.; Verebelyi, D.T.; Foti, D.J.

    1991-10-01T23:59:59.000Z

    Cooling parameters for some of the SRS reactor internal components are computed using the Transient Reactor Analysis Code, TRAC.'' In order to benchmark the code, the Safety Analysis Group of SRL requested an experiment to provide measurements of cooling parameters in a well defined physical system utilizing SRS reactor component(s). The experiment selected included a short length of septifoil with both top and bottom fittings containing five simulated control rods in an unseated'' configuration. Power level to be supplied to the rods was targeted at 2.5 kilowatts per foot. The septifoil segment was to be operated with no forced flow in order to evaluate thermal-hydraulic cooling. Parameters to be measured for comparison with code predictions were basic cooling phenomena, incidence of film boiling, thermal-hydraulic flow rate, pressure rise, and ratio of heat transfer through the wall of the assembly vs heat transfer to axial water flow through the assembly. Experimental apparatus was designed and assembled incorporating five simulated control rods four feet long, joule heated inside a five foot length of type Q'' septifoil. Water at 70 C was fed independently to the bottom inlet and along the outside of the septifoil. Water flowing along the outside of the septifoil was in confined flow and provided calorimetry to measure power flow through the septifoil housing. A shadowgraph technique was developed and used to monitor unforced flow of water pumped thermal-hydraulically through the septifoil. Electrical power of 10,000 to 70,000 watts was fed to the simulated rods from a dc power supply. Computer data acquisition was accomplished using LabView'' software programmed to match the configuration of the experiment along with scanning digital voltmeters and requisite signal sensors. Video camcorders were used to provide video records of six areas of the experiment.

  7. Summary report on four foot septifoil cooling experiment

    SciTech Connect (OSTI)

    Randolph, H.W.; Collins, S.L.; Verebelyi, D.T.; Foti, D.J.

    1991-10-01T23:59:59.000Z

    Cooling parameters for some of the SRS reactor internal components are computed using the Transient Reactor Analysis Code, ``TRAC.`` In order to benchmark the code, the Safety Analysis Group of SRL requested an experiment to provide measurements of cooling parameters in a well defined physical system utilizing SRS reactor component(s). The experiment selected included a short length of septifoil with both top and bottom fittings containing five simulated control rods in an ``unseated`` configuration. Power level to be supplied to the rods was targeted at 2.5 kilowatts per foot. The septifoil segment was to be operated with no forced flow in order to evaluate thermal-hydraulic cooling. Parameters to be measured for comparison with code predictions were basic cooling phenomena, incidence of film boiling, thermal-hydraulic flow rate, pressure rise, and ratio of heat transfer through the wall of the assembly vs heat transfer to axial water flow through the assembly. Experimental apparatus was designed and assembled incorporating five simulated control rods four feet long, joule heated inside a five foot length of type ``Q`` septifoil. Water at 70 C was fed independently to the bottom inlet and along the outside of the septifoil. Water flowing along the outside of the septifoil was in confined flow and provided calorimetry to measure power flow through the septifoil housing. A shadowgraph technique was developed and used to monitor unforced flow of water pumped thermal-hydraulically through the septifoil. Electrical power of 10,000 to 70,000 watts was fed to the simulated rods from a dc power supply. Computer data acquisition was accomplished using ``LabView`` software programmed to match the configuration of the experiment along with scanning digital voltmeters and requisite signal sensors. Video camcorders were used to provide video records of six areas of the experiment.

  8. First BTU | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmore County, Minnesota:Island, NewFirmGreen

  9. BTU LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtria PowerAxeonBCHP ScreeningBLMBSABTBTR

  10. Iowa Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0Decade Year-0 Year-1 (Million

  11. Iowa Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0Decade Year-0

  12. Kansas Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0DecadeYear JanDecade Year-0

  13. Kenai, AK Liquefied Natural Gas Exports Price (Dollars per Thousand Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0DecadeYearDecade256,268

  14. Kenai, AK Liquefied Natural Gas Exports Price (Dollars per Thousand Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0DecadeYearDecade256,268Feet) Year

  15. Missouri Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic Feet)SameThousandYear Jan

  16. Price of Liquefied U.S. Natural Gas Exports by Truck (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) Oman (Dollars perCubic Feet) Decade

  17. Price of Liquefied U.S. Natural Gas Exports by Vessel (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) Oman (Dollars perCubicCubic Feet)

  18. Price of Liquefied U.S. Natural Gas Exports to Brazil (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) Oman (DollarsCubic Feet) Decade

  19. Price of Liquefied U.S. Natural Gas Exports to Brazil (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) Oman (DollarsCubic Feet)

  20. Price of Liquefied U.S. Natural Gas Exports to Canada (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) Oman (DollarsCubic Feet)Cubic

  1. Price of Liquefied U.S. Natural Gas Exports to Canada (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) Oman (DollarsCubic Feet)CubicCubic

  2. Price of Liquefied U.S. Natural Gas Exports to Chile (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) Oman (DollarsCubic

  3. Price of Liquefied U.S. Natural Gas Exports to Chile (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) Oman (DollarsCubicCubic Feet) Year

  4. Price of Liquefied U.S. Natural Gas Exports to China (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) Oman (DollarsCubicCubic Feet)

  5. Price of Liquefied U.S. Natural Gas Exports to China (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) Oman (DollarsCubicCubic Feet)Cubic

  6. Price of Liquefied U.S. Natural Gas Exports to India (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) Oman (DollarsCubicCubic

  7. Price of Liquefied U.S. Natural Gas Exports to India (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) Oman (DollarsCubicCubicCubic Feet)

  8. Price of Liquefied U.S. Natural Gas Exports to Japan (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) Oman (DollarsCubicCubicCubic

  9. Price of Liquefied U.S. Natural Gas Exports to Japan (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) Oman (DollarsCubicCubicCubicCubic

  10. Price of Liquefied U.S. Natural Gas Exports to Mexico (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) Oman (DollarsCubicCubicCubicCubicCubic

  11. Price of Liquefied U.S. Natural Gas Exports to Mexico (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) Oman

  12. Price of U.S. Liquefied Natural Gas Exports to Spain (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic

  13. Price of U.S. Liquefied Natural Gas Exports to Spain (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubic Feet) Year Jan Feb Mar Apr May Jun Jul

  14. Price of U.S. Liquefied Natural Gas Imports From Oman (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubic Feet) Year Jan Feb

  15. Price of U.S. Natural Gas Pipeline Exports to Canada (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubic Feet) Year Jan Febper(DollarsCubic

  16. Price of U.S. Natural Gas Pipeline Exports to Mexico (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubic Feet) Year Jan Febper(DollarsCubicCubic

  17. Rhode Island Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubic Feet) Yeara3,663 3,430 4,062

  18. Rhode Island Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubic Feet) Yeara3,663(Million

  19. San Diego, CA Liquefied Natural Gas Exports to Mexico (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndia (Million Cubic(Million Cubic3

  20. Sherwood, ND Natural Gas Pipeline Imports From Canada (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndia (Million2,116 3,110 5,336Year Jan

  1. Sherwood, ND Natural Gas Pipeline Imports From Canada (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndia (Million2,116 3,110 5,336Year JanCubic

  2. South Carolina Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndiaFeet) (MillionFeet)Year Jan

  3. South Dakota Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndiaFeet)6 0.6 0.7Feet)Decade

  4. South Dakota Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndiaFeet)6Feet) Vehicle Fuel Price

  5. St. Clair, MI Natural Gas Pipeline Exports to Canada (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndiaFeet)6Feet)3 0.3

  6. St. Clair, MI Natural Gas Pipeline Exports to Canada (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndiaFeet)6Feet)3 0.3Cubic Feet)

  7. Sumas, WA Natural Gas Pipeline Exports to Canada (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndiaFeet)6Feet)3Year12,530Cubic

  8. Sumas, WA Natural Gas Pipeline Exports to Canada (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndiaFeet)6Feet)3Year12,530CubicCubic

  9. Sumas, WA Natural Gas Pipeline Imports From Canada (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) Decade Year-0 Year-1 Year-2 Year-3

  10. Sumas, WA Natural Gas Pipeline Imports From Canada (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) Decade Year-0 Year-1 Year-2 Year-3Cubic

  11. Tennessee Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet)4. U.S.DecadeFuel2009Year Jan Feb

  12. Texas Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubicSeparation (Million Cubic Feet) Texas

  13. North Dakota Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65per Thousand Cubic3.74

  14. Price of Compressed U.S. Natural Gas Imports (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice8.PDF Table5 Preliminary OilThousand

  15. Price of Liquefied U.S. Natural Gas Exports by Vessel (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice8.PDF Table5 PreliminaryThousandCubic

  16. Price of Liquefied U.S. Natural Gas Re-Exports (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice8.PDF Table5Thousand Cubic Feet)

  17. Price of U.S. Liquefied Natural Gas Imports From Oman (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice8.PDFThousand Cubic Feet)Thousand

  18. Price of U.S. Natural Gas Pipeline Exports to Canada (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice8.PDFThousand CubicThousandCubic Feet)

  19. Price of U.S. Natural Gas Pipeline Exports to Mexico (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice8.PDFThousand CubicThousandCubic

  20. ,"West Virginia Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, andPrice (Dollars per Thousand Cubic Feet)"

  1. Freeport, TX LNG Imports (Price) from Norway (Dollars per Thousand Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan Feb MarThousand CubicFeet)

  2. Freeport, TX LNG Imports (Price) from Norway (Dollars per Thousand Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan Feb MarThousand

  3. Freeport, TX LNG Imports (Price) from Yemen (Dollars per Thousand Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan Feb MarThousandFeet) Decade

  4. Freeport, TX LNG Imports (Price) from Yemen (Dollars per Thousand Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan Feb MarThousandFeet)

  5. Gulf LNG, Mississippi LNG Imports (Price) (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper ThousandGulf LNG, Mississippi LNG

  6. Gulf LNG, Mississippi LNG Imports (Price) from Egypt (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper ThousandGulf LNG, Mississippi

  7. Gulf LNG, Mississippi LNG Imports (Price) from Egypt (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper ThousandGulf LNG, MississippiCubic

  8. Portal, ND Natural Gas Pipeline Imports From Canada (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYearper Thousand CubicFeet)Cubic Feet)

  9. Portal, ND Natural Gas Pipeline Imports From Canada (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYearper Thousand CubicFeet)Cubic

  10. Price of Compressed U.S. Natural Gas Exports (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYearperThousand Cubic Feet) Year Jan

  11. Price of Compressed U.S. Natural Gas Imports (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYearperThousand Cubic Feet) YearFeet)

  12. Price of Highgate Springs, VT Natural Gas LNG Imports (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar(Dollars per Thousand CubicDollars perCubic

  13. New York Natural Gas Exports (Price) All Countries (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousand CubicFeet)perFeet) New2No IntransitCubic

  14. Nogales, AZ Liquefied Natural Gas Exports Price (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawals (MillionNine8 2.415 - - -Feet)

  15. Nogales, AZ Liquefied Natural Gas Exports to Mexico (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawals (MillionNine8 2.415 - -Cubic Feet)

  16. Nogales, AZ Natural Gas Pipeline Exports to Mexico (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawals (MillionNine8 2.415 -Cubic Feet)

  17. U.S. Footage Drilled for Dry Developmental Wells (Thousand Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet) U.S.Developmental Wells (Thousand Feet) U.S.

  18. U.S. Footage Drilled for Dry Exploratory Wells (Thousand Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet) U.S.Developmental Wells (Thousand Feet) U.S. Wells

  19. U.S. Footage Drilled for Dry Exploratory and Developmental Wells (Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet) U.S.Developmental Wells (Thousand Feet) U.S.

  20. U.S. Footage Drilled for Natural Gas Developmental Wells (Thousand Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet) U.S.Developmental Wells (Thousand Feet)

  1. U.S. Footage Drilled for Natural Gas Exploratory Wells (Thousand Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet) U.S.Developmental Wells (Thousand Feet) Wells

  2. ,"Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per Thousand Cubic Feet)" ,"Click

  3. ,"New Hampshire Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7, 2008"Price (Dollars per Thousand

  4. +++ CIVIL WAR IN SOUTH SUDAN CLAIMS THOUSANDS OF LIVES +++ NUMBER OF DIVORCES IN IRAN TRIPLES +++ AT LEAST 15 DEAD

    E-Print Network [OSTI]

    +++ CIVIL WAR IN SOUTH SUDAN CLAIMS THOUSANDS OF LIVES +++ NUMBER OF DIVORCES IN IRAN TRIPLES of South Sudan, the newest member of the international community of sovereign states, shows. Researchers

  5. Powered Ankle-Foot Prosthesis for the Improvement of Amputee Samuel K. Au, Hugh Herr, Jeff Weber, and Ernesto C. Martinez-Villalpando

    E-Print Network [OSTI]

    Herr, Hugh

    Powered Ankle-Foot Prosthesis for the Improvement of Amputee Ambulation Samuel K. Au, Hugh Herr, control scheme, and clinical evaluation of a novel, motorized ankle-foot prosthesis, called MIT Powered Ankle-Foot Prosthesis. Unlike a conventional passive-elastic ankle-foot prosthesis, this prosthesis can

  6. Powered ankle-foot prosthesis for the improvement of amputee walking economy

    E-Print Network [OSTI]

    Au, Samuel Kwok-Wai

    2007-01-01T23:59:59.000Z

    The human ankle provides a significant amount of net positive work during the stance period of walking, especially at moderate to fast walking speeds. On the contrary, conventional ankle-foot prostheses are completely ...

  7. Estimation of ground reaction force and zero moment point on a powered ankle-foot prosthesis

    E-Print Network [OSTI]

    Martinez Villalpando, Ernesto Carlos

    2006-01-01T23:59:59.000Z

    Commercially available ankle-foot prostheses are passive when in contact with the ground surface, and thus, their mechanical properties remain fixed across different terrains and walking speeds. The passive nature of these ...

  8. Informing Ankle-Foot Prosthesis Prescription through Haptic Emulation of Candidate Devices

    E-Print Network [OSTI]

    Collins, Steven H.

    Informing Ankle-Foot Prosthesis Prescription through Haptic Emulation of Candidate Devices Joshua M using a haptic prosthesis emulator while their walking performance is quantitatively assessed and results are distilled to inform device prescription. In this emulator system, prosthesis behavior

  9. Control of a Powered Ankle–Foot Prosthesis Based on a Neuromuscular Model

    E-Print Network [OSTI]

    Geyer, Hartmut

    Control schemes for powered ankle-foot prostheses rely upon fixed torque-ankle state relationships obtained from measurements of intact humans walking at target speeds and across known terrains. Although effective at their ...

  10. A neuromuscular-model based control strategy for powered ankle-foot prostheses

    E-Print Network [OSTI]

    Eilenberg, Michael Frederick

    2009-01-01T23:59:59.000Z

    In the development of a powered ankle-foot prosthesis, it is desirable to provide the prosthesis with the ability to exhibit human-like dynamics. A simple method for achieving this goal involves trajectory tracking, where ...

  11. asian foot-and-mouth disease: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Websites Summary: Modelling the spread of foot-and-mouth disease virus F Moutou B Durand CNEVA, Laboratoire Central-and-mouth disease is an economically important viral...

  12. attenuated foot-and-mouth disease: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Websites Summary: Modelling the spread of foot-and-mouth disease virus F Moutou B Durand CNEVA, Laboratoire Central-and-mouth disease is an economically important viral...

  13. assess foot-and-mouth disease: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Websites Summary: Modelling the spread of foot-and-mouth disease virus F Moutou B Durand CNEVA, Laboratoire Central-and-mouth disease is an economically important viral...

  14. Evaluation of the Franz System Foot Control in a simulated adaptive tracking task

    E-Print Network [OSTI]

    Raab, Charles

    1982-01-01T23:59:59.000Z

    EVALUATION OF THE FRANZ SYSTEM FOOT CONTROL IN A SIMULATED ADAPTIVE TRACKING TASK A Thesis by CHARLES RAAB Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE May 1982 Major Subject: Industrial Engineering EVALUATION OF THE FRANZ SYSTEM FOOT CONTROL IN A SIMULATED ADAPTIVE TRACKING TASK A Thesis by CHARLES RAAB Approved as to style and content by: (Chairman of Com ttee) (Member) (Member...

  15. Transcription Factors Bind Thousands of Active and InactiveRegions in the Drosophila Blastoderm

    SciTech Connect (OSTI)

    Li, Xiao-Yong; MacArthur, Stewart; Bourgon, Richard; Nix, David; Pollard, Daniel A.; Iyer, Venky N.; Hechmer, Aaron; Simirenko, Lisa; Stapleton, Mark; Luengo Hendriks, Cris L.; Chu, Hou Cheng; Ogawa, Nobuo; Inwood, William; Sementchenko, Victor; Beaton, Amy; Weiszmann, Richard; Celniker, Susan E.; Knowles, David W.; Gingeras, Tom; Speed, Terence P.; Eisen, Michael B.; Biggin, Mark D.

    2008-01-10T23:59:59.000Z

    Identifying the genomic regions bound by sequence-specific regulatory factors is central both to deciphering the complex DNA cis-regulatory code that controls transcription in metazoans and to determining the range of genes that shape animal morphogenesis. Here, we use whole-genome tiling arrays to map sequences bound in Drosophila melanogaster embryos by the six maternal and gap transcription factors that initiate anterior-posterior patterning. We find that these sequence-specific DNA binding proteins bind with quantitatively different specificities to highly overlapping sets of several thousand genomic regions in blastoderm embryos. Specific high- and moderate-affinity in vitro recognition sequences for each factor are enriched in bound regions. This enrichment, however, is not sufficient to explain the pattern of binding in vivo and varies in a context-dependent manner, demonstrating that higher-order rules must govern targeting of transcription factors. The more highly bound regions include all of the over forty well-characterized enhancers known to respond to these factors as well as several hundred putative new cis-regulatory modules clustered near developmental regulators and other genes with patterned expression at this stage of embryogenesis. The new targets include most of the microRNAs (miRNAs) transcribed in the blastoderm, as well as all major zygotically transcribed dorsal-ventral patterning genes, whose expression we show to be quantitatively modulated by anterior-posterior factors. In addition to these highly bound regions, there are several thousand regions that are reproducibly bound at lower levels. However, these poorly bound regions are, collectively, far more distant from genes transcribed in the blastoderm than highly bound regions; are preferentially found in protein-coding sequences; and are less conserved than highly bound regions. Together these observations suggest that many of these poorly-bound regions are not involved in early-embryonic transcriptional regulation, and a significant proportion may be nonfunctional. Surprisingly, for five of the six factors, their recognition sites are not unambiguously more constrained evolutionarily than the immediate flanking DNA, even in more highly bound and presumably functional regions, indicating that comparative DNA sequence analysis is limited in its ability to identify functional transcription factor targets.

  16. Experimental study on hydrodynamic forces acting on an oscillating column with circular footing

    SciTech Connect (OSTI)

    Hoshino, Kunihiro; Sato, Hiroshi [Ministry of Transport, Mitaka (Japan). Ship Research Inst.

    1994-12-31T23:59:59.000Z

    This paper presents the results of an experimental investigation of the in-line and lift forces acting on an oscillating column with circular footing. Forced surging tests were carried out using a column with circular footing of which ratio of diameter was varied from 1.25 to 2.5. The in-line and lift force have been measured concerning both the whole model and the parts of column and footing. The drag coefficients, inertia coefficients, coefficients of root-mean-square values of the in-line force and lift force coefficients in the range of Keulegan Carpenter number from 5 to 30 have been obtained. Those results have been compared with that of a straight finite length circular cylinder.

  17. Multi-functional foot use during running in the zebra-tailed lizard (Callisaurus draconoides)

    E-Print Network [OSTI]

    Chen Li; S. Tonia Hsieh; Daniel I. Goldman

    2013-03-29T23:59:59.000Z

    A diversity of animals that run on solid, level, flat, non-slip surfaces appear to bounce on their legs; elastic elements in the limbs can store and return energy during each step. The mechanics and energetics of running in natural terrain, particularly on surfaces that can yield and flow under stress, is less understood. The zebra-tailed lizard (Callisaurus draconoides), a small desert generalist with a large, elongate, tendinous hind foot, runs rapidly across a variety of natural substrates. We use high speed video to obtain detailed three-dimensional running kinematics on solid and granular surfaces to reveal how leg, foot, and substrate mechanics contribute to its high locomotor performance. Running at ~10 body length/s (~1 m/s), the center of mass oscillates like a spring-mass system on both substrates, with only 15% reduction in stride length on the granular surface. On the solid surface, a strut-spring model of the hind limb reveals that the hind foot saves about 40% of the mechanical work needed per step, significant for the lizard's small size. On the granular surface, a penetration force model and hypothesized subsurface foot rotation indicates that the hind foot paddles through fluidized granular medium, and that the energy lost per step during irreversible deformation of the substrate does not differ from the reduction in the mechanical energy of the center of mass. The upper hind leg muscles must perform three times as much mechanical work on the granular surface as on the solid surface to compensate for the greater energy lost within the foot and to the substrate.

  18. A study of the design criteria for drilled-and-belled footings

    E-Print Network [OSTI]

    Lehmann, Clark Thomas

    1964-01-01T23:59:59.000Z

    A STUDY OF THE DESIGN CRITERIA FOR DRILLED?AND-BELLED FOOTINGS A Thesis Clark Thomas Lehmann Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May, 1964... Major Subject: Civil Engineering A STUDY OF THE DESIGN CRITERIA FOR DRILLED-AND-BELLED FOOTINGS A Thesis By Clark Thomas Lehmann Approved as to style and content by: airman o ommittee Head ep tment Nay, 1964 4 0 0 N F 5 O ACKNOWLEDGMENTS...

  19. The Romans built with concrete more than two thousand years ago, even using a mixture that hardens

    E-Print Network [OSTI]

    Bieber, Michael

    The Romans built with concrete more than two thousand years ago, even using a mixture that hardens underwater. In the 21st century, concrete is the most widely used construction material in the world. Excep. Today, concrete is a high-tech product precisely formulated for environmental conditions

  20. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise noted)

    E-Print Network [OSTI]

    174 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise-mining operations in Florida and Virginia. The value of titanium mineral concentrates consumed in the United States 94% of titanium mineral concentrates was consumed by domestic titanium dioxide (TiO2) pigment

  1. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise noted)

    E-Print Network [OSTI]

    174 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise-mining operations in Florida and Virginia. The value of titanium mineral concentrates consumed in the United States 95% of titanium mineral concentrates was consumed by domestic titanium dioxide (TiO2) pigment

  2. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2, unless otherwise noted)

    E-Print Network [OSTI]

    176 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2, unless surface mining operations in Florida and Virginia. The value of titanium mineral concentrates consumed deposits was zircon. About 97% of titanium mineral concentrates was consumed by domestic TiO2 pigment

  3. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise noted)

    E-Print Network [OSTI]

    172 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise-mining operations in Florida and Virginia. The value of titanium mineral concentrates consumed in the United States. About 95% of titanium mineral concentrates was consumed by domestic titanium dioxide (TiO2) pigment

  4. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2, unless otherwise noted)

    E-Print Network [OSTI]

    178 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2, unless surface mining operations in Florida and Virginia. The value of titanium mineral concentrates consumed deposits was zircon. About 97% of titanium mineral concentrates was consumed by domestic TiO2 pigment

  5. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2, unless otherwise noted)

    E-Print Network [OSTI]

    178 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2, unless proprietary data. Based on average prices, the value of titanium mineral concentrates consumed in the United is zircon. About 95% of titanium mineral concentrates were consumed by five titanium pigment producers

  6. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise noted)

    E-Print Network [OSTI]

    178 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise-mining operations in Florida and Virginia. The value of titanium mineral concentrates consumed in the United States 94% of titanium mineral concentrates was consumed by domestic titanium dioxide (TiO2) pigment

  7. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise noted)

    E-Print Network [OSTI]

    178 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise mining operations in Florida, Georgia, and Virginia. The value of titanium mineral concentrates consumed deposits was zircon. About 97% of titanium mineral concentrates was consumed by domestic TiO2 pigment

  8. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise noted)

    E-Print Network [OSTI]

    176 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise mining operations in Florida, Georgia, and Virginia. The value of titanium mineral concentrates consumed deposits was zircon. About 97% of titanium mineral concentrates was consumed by domestic TiO2 pigment

  9. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise noted)

    E-Print Network [OSTI]

    172 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2 unless otherwise-mining operations in Florida and Virginia. The value of titanium mineral concentrates consumed in the United States 94% of titanium mineral concentrates was consumed by domestic titanium dioxide (TiO2) pigment

  10. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of TiO2 content, unless otherwise noted)

    E-Print Network [OSTI]

    174 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of TiO2 content, unless otherwise-mineral sands operations in Florida and Virginia. The value of titanium mineral concentrates consumed deposits was zircon. About 95% of titanium mineral concentrates was consumed by TiO2 pigment producers

  11. TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2, unless otherwise noted)

    E-Print Network [OSTI]

    176 TITANIUM MINERAL CONCENTRATES1 (Data in thousand metric tons of contained TiO2, unless-mineral sands operations in Florida and Virginia. The value of titanium mineral concentrates consumed deposits was zircon. About 95% of titanium mineral concentrates was consumed by TiO2 pigment producers

  12. ver the past fifty years, thousands of workers in the United States have handled plutonium. Of those workers, only about

    E-Print Network [OSTI]

    Massey, Thomas N.

    O ver the past fifty years, thousands of workers in the United States have handled plutonium. Of those workers, only about fifty, all from the nuclear-weapons complex, have been exposed to plutonium direct informa- tion about the risk of plutonium in man. This leads to the ironic situa- tion

  13. IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 1, FEBRUARY 2009 51 Powered AnkleFoot Prosthesis Improves

    E-Print Network [OSTI]

    Herr, Hugh

    IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 1, FEBRUARY 2009 51 Powered Ankle­Foot Prosthesis, we evaluate the hypothesis that a powered ankle­foot prosthesis, capa- ble of providing human to a conventional passive-elastic prosthesis. To test the hypothesis, a powered prosthesis is built that comprises

  14. IMPEE PhD Opportunity Project title: LightFoot PhD A PhD Investigation Lightning Protection of HV Overhead Lines with Non-Ideal

    E-Print Network [OSTI]

    Greenaway, Alan

    IMPEE PhD Opportunity Project title: LightFoot PhD ­ A PhD Investigation Lightning Protection of HV.swingler@hw.ac.uk Abstract LightFoot PhD ­ A PhD Investigation Lightning Protection of HV Overhead Lines with Non-Ideal Tower Footing Resistance funded by SSE. The LightFoot PhD project takes a fresh approach at adding

  15. Driving Low-Power Wearable Systems with an Adaptively-Controlled Foot-Strike Scavenging Platform

    E-Print Network [OSTI]

    Potkonjak, Miodrag

    as a means to scavenge energy from foot-strikes and power wearable systems. While they exhibit large energy densities, DEs must be closely controlled to maximize the energy they transduce. Towards this end, we propose a DE micro-generator array configuration that enhances transduc- tion efficiency, and the use

  16. Flat-Foot Dynamic Walking via Human-Inspired Controller Design

    E-Print Network [OSTI]

    Ma, Wenlong

    2014-05-05T23:59:59.000Z

    This thesis describes a torque control scheme unifying feedback PD control and feed-forward impedance control to realize human-inspired walking on a novel planar footed bipedal robot: AMBER2. It starts with high fidelity modeling of the robot...

  17. A study of factors affecting foot movement time in a braking maneuver

    E-Print Network [OSTI]

    Berman, Andrea Helene

    1994-01-01T23:59:59.000Z

    The nature of foot movement time (MT) in an actual braking maneuver and in a stationary vehicle was investigated regarding the effects of age and gender of the driver and nature of the stimulus to which the driver was responding. ANOVAs showed...

  18. The high-foot implosion campaign on the National Ignition Facility

    SciTech Connect (OSTI)

    Hurricane, O. A., E-mail: hurricane1@llnl.gov; Callahan, D. A.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Döppner, T.; Barrios Garcia, M. A.; Hinkel, D. E.; Berzak Hopkins, L. F.; Kervin, P.; Pape, S. Le; Ma, T.; MacPhee, A. G.; Milovich, J. L.; Moody, J.; Pak, A. E.; Patel, P. K.; Park, H.-S.; Remington, B. A.; Robey, H. F. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); and others

    2014-05-15T23:59:59.000Z

    The “High-Foot” platform manipulates the laser pulse-shape coming from the National Ignition Facility laser to create an indirect drive 3-shock implosion that is significantly more robust against instability growth involving the ablator and also modestly reduces implosion convergence ratio. This strategy gives up on theoretical high-gain in an inertial confinement fusion implosion in order to obtain better control of the implosion and bring experimental performance in-line with calculated performance, yet keeps the absolute capsule performance relatively high. In this paper, we will cover the various experimental and theoretical motivations for the high-foot drive as well as cover the experimental results that have come out of the high-foot experimental campaign. At the time of this writing, the high-foot implosion has demonstrated record total deuterium-tritium yields (9.3×10{sup 15}) with low levels of inferred mix, excellent agreement with implosion simulations, fuel energy gains exceeding unity, and evidence for the “bootstrapping” associated with alpha-particle self-heating.

  19. ,"Price of U.S. Natural Gas Pipeline Imports From Canada (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ Lease Condensate ProvedGas,Canada (Dollars per Thousand

  20. Comparative Cost Analysis of Alternative Animal Tracing Strategies Directed Toward Foot and Mouth Disease Outbreaks in the Texas High Plains

    E-Print Network [OSTI]

    Looney, John C.

    2010-07-14T23:59:59.000Z

    The primary objective of this study is to evaluate the industry impact of a hypothetical Foot and Mouth Disease (FMD) outbreak in the Texas High Plains using alternative animal tracing levels. To accomplish this objective, an epidemiological disease...

  1. Development of the Robotic Touch foot Sensor for 2D walking Robot, for Studying Rough Terrain Locomotion

    E-Print Network [OSTI]

    Lee, Hunwoo

    2012-08-31T23:59:59.000Z

    Development of the Robotic Touch foot Sensor for 2D walking Robot, for Studying Rough Terrain Locomotion By HUNWOO LEE Submitted to the graduate degree program in Mechanical Engineering and the Graduate Faculty of the University of Kansas... ________________________________ Professor Robert Umholtz Date Defended: June 5, 2012 ii The Thesis Committee for HUNWOO LEE certifies that this is the approved version of the following thesis: Development of the Robotic Touch Foot Sensor for 2D Walking Robot...

  2. ,"Delaware Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per Thousand Cubic Feet)"Price Sold to

  3. Experimental program for the development of peat gasification. Process designs and cost estimates for the manufacture of 250 billion Btu/day SNG from peat by the PEATGAS Process. Interim report No. 8

    SciTech Connect (OSTI)

    Arora, J.L.; Tsaros, C.L.

    1980-02-01T23:59:59.000Z

    This report presents process designs for the manufacture of 250 billion Btu's per day of SNG by the PEATGAS Process from peats. The purpose is to provide a preliminary assessment of the process requirements and economics of converting peat to SNG by the PEATGAS Process and to provide information needed for the Department of Energy (DOE) to plan the scope of future peat gasification studies. In the process design now being presented, peat is dried to 35% moisture before feeding to the PEATGAS reactor. This is the basic difference between the Minnesota peat case discussed in the current report and that presented in the Interim Report No. 5. The current design has overall economic advantages over the previous design. In the PEATGAS Process, peat is gasified at 500 psig in a two-stage reactor consisting of an entrained-flow hydrogasifier followed by a fluidized-bed char gasifier using steam and oxygen. The gasifier operating conditions and performance are necessarily based on the gasification kinetic model developed for the PEATGAS reactor using the laboratory- and PDU-scale data as of March 1978 and April 1979, respectively. On the basis of the available data, this study concludes that, although peat is a low-bulk density and low heating value material requiring large solids handling costs, the conversion of peat to SNG appears competitive with other alternatives being considered for producing SNG because of its very favorable gasification characteristics (high methane formation tendency and high reactivity). As a direct result of the encouraging technical and economic results, DOE is planning to modify the HYGAS facility in order to begin a peat gasification pilot plant project.

  4. Three-Dimensional Rotational Angiography of the Foot in Critical Limb Ischemia: A New Dimension in Revascularization Strategy

    SciTech Connect (OSTI)

    Jens, Sjoerd, E-mail: s.jens@amc.uva.nl [Academic Medical Center, Department of Radiology (Netherlands); Lucatelli, Pierleone, E-mail: pierleone.lucatelli@gmail.com ['Sapienza' University of Rome, Vascular and Interventional Radiology Unit, Department of Radiological Sciences (Italy); Koelemay, Mark J. W., E-mail: m.j.koelemaij@amc.uva.nl [Academic Medical Center, Department of Surgery (Netherlands); Marquering, Henk A., E-mail: h.a.marquering@amc.uva.nl; Reekers, Jim A., E-mail: j.a.reekers@amc.uva.nl [Academic Medical Center, Department of Radiology (Netherlands)

    2013-06-15T23:59:59.000Z

    Purpose. To evaluate the additional value of three-dimensional rotational angiography (3DRA) of the foot compared with digital subtraction angiography (DSA) in patients with critical limb ischemia (CLI). Technique. For 3DRA, the C-arm was placed in the propeller position with the foot in an isocentric position. The patient's unaffected foot was positioned in a footrest outside the field of view. For correct timing of 3DRA, the delay from contrast injection in the popliteal artery at the level of knee joint to complete pedal arterial enhancement was assessed using DSA. With this delay, 3DRA was started after injection of 15 ml contrast. Imaging of the 3DRA could directly be reconstructed and visualized.Materials and MethodsPatients undergoing 3DRA of the foot were prospectively registered. DSA and 3DRA images were scored separately for arterial patency and presence of collaterals. Treatment strategies were proposed based on DSA with and without the availability of 3DRA. Results. Eleven patients underwent 3DRA of the foot. One 3DRA was not included because the acquisition was focused on the heel instead of the entire foot. Diagnostic quality of 3DRA was good in all ten patients. 3DRA compared with DSA showed additional patent arteries in six patients, patent plantar arch in three patients, and collaterals between the pedal arteries in five patients. Additional information from 3DRA resulted in a change of treatment strategy in six patients. Conclusion, 3DRA of the foot contains valuable additional real-time information to better guide peripheral vascular interventions in patients with CLI and nonhealing tissue lesions.

  5. Impact of a 1,000-foot thermal mixing zone on the steam electric power industry

    SciTech Connect (OSTI)

    Veil, J.A.

    1994-04-01T23:59:59.000Z

    Thermal discharge requirements for power plants using once-through cooling systems are based on state water quality standards for temperatures that must be met outside of designated mixing zones. This study evaluates the impact of limiting the extent of thermal mixing zones. This study evaluates the impact of limiting the extent of thermal mixing zones to no more than 1,000 feet from the discharge point. Data were collected from 79 steam electric plants. Of the plants currently using once-through cooling systems, 74% could not meet current thermal standards at the edge of a 1,000-foot mixing zone. Of this total, 68% would retrofit cooling towers, and 6% would retrofit diffusers. The estimated nationwide capital cost for retrofitting plants that could not meet current thermal standards at the edge of a 1,000-foot mixing zone is $21.4 billion. Conversion of a plant from once-through cooling to cooling towers or addition of diffusers would result in a lower energy output from that plant. For the affected plants, the total estimated replacement cost would be $370 to $590 million per year. Some power companies would have to construct new generating capacity to meet the increased energy demand. The estimated nationwide cost of this additional capacity would be $1.2 to $4.8 billion. In addition to the direct costs associated with compliance with a 1,000-foot mixing zone limit, other secondary environmental impacts would also occur. Generation of the additional power needed would increase carbon dioxide emissions by an estimated 8.3 million tons per year. In addition, conversion from once-through cooling systems to cooling towers at affected plants would result in increased evaporation of about 2.7 million gallons of water per minute nationwide.

  6. Foot Drop after Ethanol Embolization of Calf Vascular Malformation: A Lesson on Nerve Injury

    SciTech Connect (OSTI)

    Tay, Vincent Khwee-Soon, E-mail: vincentkstay@gmail.com [Singapore General Hospital, Department of Plastic, Reconstructive, and Aesthetic Surgery (Singapore); Mohan, P. Chandra, E-mail: chandra.mohan@sgh.com.sg [Singapore General Hospital, Department of Diagnostic Radiology (Singapore); Liew, Wendy Kein Meng, E-mail: wendy.liew.km@kkh.com.sg [KK Women's and Children's Hospital, Department of Paediatrics (Neurology Service) (Singapore); Mahadev, Arjandas, E-mail: arjandas.mahadev@kkh.com.sg [KK Women's and Children's Hospital, Department of Orthopaedic Surgery (Singapore); Tay, Kiang Hiong, E-mail: tay.kiang.hiong@sgh.com.sg [Singapore General Hospital, Department of Diagnostic Radiology (Singapore)

    2013-08-01T23:59:59.000Z

    Ethanol is often used in sclerotherapy to treat vascular malformations. Nerve injury is a known complication of this procedure. However, the management of this complication is not well described in literature. This case describes a 10-year-old boy with a slow flow vascular malformation in the right calf who underwent transarterial ethanol embolization following prior unsuccessful direct percutaneous sclerotherapy. The development of a dense foot drop that subsequently recovered is described, and the management of this uncommon but distressful complication is discussed.

  7. Pyramid Resource Center-Green Energy Center

    SciTech Connect (OSTI)

    Flory, Paul, D.

    2011-09-02T23:59:59.000Z

    There are currently over 3,500 USA/Canadian landfills listed by the EPA/EC and like numbers in Europe that are producing methane-rich landfill gas (LFG). This gas is typically made up of 50-percent methane (CH4), 35-percent carbon dioxide (CO2), and 2 to 25% nitrogen and oxygen (N2 & O2), plus dozens of dilute contaminants. LFG is classified as a renewable fuel, because it is generated via biological decay of municipal solid waste, a constant byproduct of human activity. To date, most LFG has been allowed to escape into the atmosphere. On account of its high CH4 content, LFG may contribute to climate change, as CH4 is one of the most harmful greenhouse gases with 21 times the global warming potential of CO2. Of the landfills that collect LFG, most simply flare it. In the past decade, some landfills have begun to use LFG for electricity generation or for direct combustion as low Btu gas. Very few landfills upgrade LFG to high Btu gas. A patented CO2 WashTM process developed by Acrion Technologies Inc., and licensed to Firm Green Inc. shows promise as an economically and environmentally sustainable process to recover energy and prevent pollution from landfills. The CO2 WashTM has already been proven at lab-scale. It upgrades LFG, which consists of 50% methane (CH4) + 35% carbon dioxide (CO2) + 2 to 25% nitrogen + oxygen (N2+O2), 1 to 2% water vapor, and dozens of contaminants (which total a few hundred to a few thousand parts per million). CH4, which by itself has an energy content of 1,012 British thermal units (Btu) per standard cubic foot (SCF), is the only component in LFG that contributes to its energy content, which is therefore about 400-550 Btu/SCF. Accordingly, raw LFG is usually referred to as medium-Btu gas. To be salable, it is necessary to remove essentially all the components besides CH4, while keeping the vast majority of the revenue producing CH4. This is high-Btu gas, yielding 850 to 1,000 Btu/SCF. The CO2 WashTM process upgrades LFG to about 930 Btu/SCF, and reduces the contaminants to levels that make it salable as a vehicle fuel in the form of compressed natural gas (CNG).

  8. Multiplexed Molecular Assays for Rapid Rule-Out of Foot-and-Mouth Disease

    SciTech Connect (OSTI)

    Lenhoff, R; Naraghi-Arani, P; Thissen, J; Olivas, J; Carillo, C; Chinn, C; Rasmussen, M; Messenger, S; Suer, L; Smith, S M; Tammero, L; Vitalis, E; Slezak, T R; Hullinger, P J; Hindson, B J; Hietala, S; Crossley, B; Mcbride, M

    2007-06-26T23:59:59.000Z

    A nucleic acid-based multiplexed assay was developed that combines detection of foot-and-mouth disease virus (FMDV) with rule-out assays for two other foreign animal diseases and four domestic animal diseases that cause vesicular or ulcerative lesions indistinguishable from FMDV infection in cattle, sheep and swine. The FMDV 'look-alike' diagnostic assay panel contains five PCR and twelve reverse transcriptase PCR (RT-PCR) signatures for a total of seventeen simultaneous PCR amplifications for seven diseases plus incorporating four internal assay controls. It was developed and optimized to amplify both DNA and RNA viruses simultaneously in a single tube and employs Luminex{trademark} liquid array technology. Assay development including selection of appropriate controls, a comparison of signature performance in single and multiplex testing against target nucleic acids, as well of limits of detection for each of the individual signatures is presented. While this assay is a prototype and by no means a comprehensive test for FMDV 'look-alike' viruses, an assay of this type is envisioned to have benefit to a laboratory network in routine surveillance and possibly for post-outbreak proof of freedom from foot-and-mouth disease.

  9. Production of low BTU gas from biomass

    E-Print Network [OSTI]

    Lee, Yung N.

    1981-01-01T23:59:59.000Z

    on gasification as far back as the 1930's. Some of the early work was done using fixed bed gasifiers with wood as the feed mate- In the 1960's, coal was proposed as another possible feed material. Most of the coal gasification was done using moving bed... of downdraft fixed bed, updraft fixed bed or moving bed gasifiers. Most of the work on fluidized bed opera- tion has been concentrated on catalytic cracking units. However, several researchers have used fluidized bed reactors for the gasification process...

  10. Production of low BTU gas from biomass 

    E-Print Network [OSTI]

    Lee, Yung N.

    1981-01-01T23:59:59.000Z

    for combustion is simple relative to the gasification or pyrolysis and construc- tion and operation of the necessary equipment should also be easier. However, the final product of com- bustion, steam energy, cannot be stored for long periods of time.... Lee, B. S. , Washington University, St. Louis, Mo. Chairman of Advisory Committee: Dr. R. G. Anthony An experimental study was conducted to examine the gasification of agricultural residues as an alter- nate energy source. The agricultural residues...

  11. Catalytic reactor for low-Btu fuels

    DOE Patents [OSTI]

    Smith, Lance (North Haven, CT); Etemad, Shahrokh (Trumbull, CT); Karim, Hasan (Simpsonville, SC); Pfefferle, William C. (Madison, CT)

    2009-04-21T23:59:59.000Z

    An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.

  12. BTU International Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to: JumpBPL Global JumpBSST LLCBTMBTU

  13. Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics, June 12-15, Noordwijk, The Netherlands Biomechanical Design of a Powered Ankle-Foot Prosthesis

    E-Print Network [OSTI]

    Herr, Hugh

    -15, Noordwijk, The Netherlands Biomechanical Design of a Powered Ankle-Foot Prosthesis Samuel K. Au, Jeff Weber, and Hugh Herr Abstract-Although the potential benefits of a powered ankle- foot prosthesis have been well documented, no one has suc- cessfully developed and verified that such a prosthesis can improve amputee gait

  14. Foot & Mouth Disease & Ulcerative/Vesicular Rule-outs: Challenges Encountered in Recent Outbreaks

    SciTech Connect (OSTI)

    Hullinger, P

    2008-01-28T23:59:59.000Z

    Foot and mouth disease (FMD) is a highly infectious and contagious viral disease affecting bovidae (cattle, zebus, domestic buffaloes, yaks), sheep, goats, swine, all wild ruminants and suidae. Camelidae (camels, dromedaries, llamas, vicunas) have low susceptibility. Foot and mouth disease is caused by a RNS virus of the family Picornaviridae, genus Aphthovirus. There are seven immunologically distinct serotypes: A, O, C, SAT1, SAT2, SAT3, Asia 1. Foot and mouth disease causes significant economic loss both to countries who manage it as an endemic disease (with or without vaccination), as well as those FMD free countries which may become infected. The mortality rate is low in adult animals, but often higher in young due to myocarditis. Foot and mouth disease is endemic in parts of Asia, Africa, the Middle East and South America (sporadic outbreaks in free areas). The Office of International Epizootics (OIE), also referred to the World Organization for Animal Health maintains an official list of free countries and zones.1 The OIE Terrestrial Code (Chapter 2.2.10) provides detailed information on the categories of freedom that can be allocated to a country as well as guidelines for the surveillance for foot and mouth disease (Appendix 3.8.7). In short, countries may be completely free of FMD, free with vaccination or infected with foot and mouth disease virus (FMDV). Source of FMDV include incubating and clinically affected animals with virus present in breath, saliva, faeces, urine, milk and semen. In experimental settings virus has been detected in milk several days before the onset of clinical signs2. Additional sources of virus are meat and by-products in which pH has remained above 6.0 as well as persistently infected carrier animals. Carrier animals may include cattle and water buffalo; convalescent animals and exposed vaccinates (virus persists in the oropharynx for up to 30 months in cattle or longer in buffalo, 9 months in sheep). Pigs do not become carriers. It has been shown that the African Cape buffalo are the major maintenance host of SAT serotypes. FMDV transmission can occur by either direct or indirect contact. Indirect transmission can occur via contaminated animate vectors (humans, etc.), inanimate vectors (vehicles, implements) or airborne transmission. Indirect disease transmission via animate or inanimate vectors can play a major role in disease transmission. Good biosecurity can significantly reduce this type of transmission. Airborne transmission is often debated and is known to be serotype and species specific as well as require specific environmental conditions to occur. Airborne transmission is favored in temperate zones and has been postulated to occur over distances of up to 60 km overland and 300 km by sea. Foot and mouth disease virus is an unenveloped virus which is preserved by refrigeration and freezing and progressively inactivated by temperatures above 50 C. FMDV is highly sensitive to pH change and is inactivated by pH < 6.0 or > 9.0. There are many disinfectants which are effective against FMDV including sodium hydroxide (2%), sodium carbonate (4%), and citric acid (0.2%). FMDV is resistant to iodophores, quaternary ammonium compounds, hypochlorite and phenol, especially in the presence of organic matter. The virus can survive in lymph nodes and bone marrow at neutral pH, but is destroyed in muscle when is pH < 6.0 i.e. after rigor mortis. FMDV can persist in contaminated feed/commodities and the environment for over to 1 month, depending on the temperature and pH conditions. The incubation period for FMD is 2-14 days. Animals transition through latent (infected but not infectious), subclinically infected (infectious but lacking clinical signs) clinically infected and recovered disease states. In cattle clinical signs include pyrexia, reluctance to eat, bruxism, drooling, lameness, treading or stamping of the feet and decreased milk production. Most clinical signs are related to the development and subsequent rupturing of vesicles at the coronary band and in the oral cavity. V

  15. Table 3a. Total Natural Gas Consumption per Effective Occupied Square Foot,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177391.070.51992

  16. Table 4a. Total Fuel Oil Consumption per Effective Occupied Square Foot,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV493,552.13,846.302.8

  17. Poland: A Thousand Springtimes

    E-Print Network [OSTI]

    Haines, Sally

    2014-12-01T23:59:59.000Z

    to 1576, he reigned over Poland 1576 to 1586. His ten years of rule were filled with internal and external strife. He overcame the Gda?sk uprising of 1577 and in 1579 to 1582 was victorious in a war against Muscovy under Ivan the Terrible for control.... C3235 The history of the rise in importance and the growing power of the office of the Chancellor (Kanclerz) is a complicated one; these posts functioned from the 12th century until...

  18. Smart infrastructure for carbon foot print analysis of Electric Vehicles V Suresh, G Hill, Prof P T Blythe

    E-Print Network [OSTI]

    Newcastle upon Tyne, University of

    Smart infrastructure for carbon foot print analysis of Electric Vehicles V Suresh, G Hill, Prof P T Blythe Abstract-- Electric powered vehicles use energy stored in some form of battery for the vehicle of electric vehicles through on-road testing, user led trials and the analysis of the data collected from

  19. The Thousand Star Magnitudes in the Catalogues of Ptolemy, Al Sufi, and Tycho Are All Corrected For Atmospheric Extinction

    E-Print Network [OSTI]

    Schaefer, Bradley E

    2013-01-01T23:59:59.000Z

    Three pre-telescopic star catalogues contain about a thousand star magnitudes each (with magnitudes 1, 2, 3, 4, 5, and 6), with these reported brightnesses as the original basis for what has become the modern magnitude scale. These catalogues are those of Ptolemy (c. 137, from Alexandria at a latitude of 31.2), Al Sufi (c. 960, from Isfahan at a latitude of 32.6), and Tycho Brahe (c. 1590, from the island of Hven at a latitude of 55.9). Previously, extensive work has been made on the positions of the catalogued stars, but only scant attention has been paid to the magnitudes as reported. These magnitudes will be affected by a variety of processes, including the dimming of the light by our Earth's atmosphere (atmospheric extinction), the quantization of the brightnesses into magnitude bins, and copying or influence from prior catalogues. This paper provides a detailed examination of these effects. Indeed, I find all three catalogues to report magnitudes that have near-zero extinction effects, so the old observe...

  20. Stem cubic-foot volume tables for tree species in the piedmont. Forest Service research paper

    SciTech Connect (OSTI)

    Clark, A.; Souter, R.A.

    1996-03-01T23:59:59.000Z

    Steamwood cubic-foot volume inside bark tables are presented for 16 species and 8 species groups based on equations used to estimate timber sale volumes on national forests in the Piedmont. Tables are based on form class measurement data for 2,753 trees sampled in the Piedmont and taper data collected across the South. A series of tables is presented for each species based on diameter at breast height (d.b.h.) in combination with total height and height to a 4-inch diameter outside bark (d.o.b.) top. Volume tables are also presented based on d.b.h. in combination with height to a 7-inch d.o.b. top for softwoods and height to a 9-inch d.o.b. top for hardwoods.

  1. Fuel economy testing of six 40-foot transit buses. Final report Aug 82-Mar 83

    SciTech Connect (OSTI)

    Francis, G.A.; Nelson, S.R.

    1983-03-01T23:59:59.000Z

    The importance of life-cycle cost analyses in transit bus procurement is recognized by the industry and has been a Congressional requirement for grantees. This report documents a program of fuel economy testing of six standard 40-foot buses. The main purpose of this series of tests is to assist transit authorities and bus suppliers by providing accurate comparable fuel consumption data on transit buses produced by different manufacturers. Six buses were selected by the manufacturers and supplied for testing by six transit properties directly from revenue service. This report makes the data available to the industry for discretionary use in estimating life-cycle costs. A list of bus manufacturers and the supplying transit system is provided.

  2. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1996, clays were produced in most States except Alaska, Delaware, Hawaii, Rhode

    E-Print Network [OSTI]

    46 CLAYS (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1996, clays were produced in most States except Alaska, Delaware, Hawaii, Rhode Island, Vermont. Together, these firms operated about 820 mines. Estimated value of all marketable clay produced was about

  3. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1999, clays were produced in most States except Alaska, Delaware, Hawaii,

    E-Print Network [OSTI]

    50 CLAYS (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1999, clays were produced in most States except Alaska, Delaware, Hawaii, Rhode Island, Vermont, and Wisconsin. A total of 238 companies operated approximately 700 clay pits or quarries. The leading 20 firms

  4. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1997, clays were produced in most States except Alaska, Delaware, Hawaii, Rhode

    E-Print Network [OSTI]

    46 CLAYS (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1997, clays were produced in most States except Alaska, Delaware, Hawaii, Rhode Island, Vermont, these firms operated approximately 739 mines. The estimated value of all marketable clay produced was about $1

  5. (Data in thousand metric tons, unless noted) Domestic Production and Use: In 1995, clays were produced in most States except Alaska, Delaware, Hawaii,

    E-Print Network [OSTI]

    44 CLAYS (Data in thousand metric tons, unless noted) Domestic Production and Use: In 1995, clays, these firms operated about 983 mines. Estimated value of all marketable clay produced was about $1.8 billion. Major domestic uses for specific clays were estimated as follows: kaolin--55% paper, 8% kiln furniture

  6. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 2000, clays were produced in all States except Alaska, Delaware, Hawaii, Idaho,

    E-Print Network [OSTI]

    46 CLAYS (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 2000, clays were produced in all States except Alaska, Delaware, Hawaii, Idaho, New Hampshire, Rhode Island, Vermont, and Wisconsin. A total of 233 companies operated approximately 650 clay pits or quarries

  7. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1998, clays were produced in most States except Alaska, Delaware, Hawaii, Idaho,

    E-Print Network [OSTI]

    50 CLAYS (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1998, clays were produced in most States except Alaska, Delaware, Hawaii, Idaho, New Hampshire, Rhode clay produced was about $2.14 billion. Major domestic uses for specific clays were estimated as follows

  8. (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 1996, 13 companies operated 22 primary aluminum reduction plants. Montana,

    E-Print Network [OSTI]

    . 18.5% ad val. Unwrought (other than aluminum alloys) 7601.10.6000 Free 11.0% ad val. Waste and scrap18 ALUMINUM1 (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 1996, 13 companies operated 22 primary aluminum reduction plants. Montana, Oregon

  9. (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2004, 6 companies operated 14 primary aluminum reduction plants; 6 smelters

    E-Print Network [OSTI]

    . Unwrought (other than aluminum alloys) 7601.10.6000 Free. Waste and scrap 7602.00.0000 Free. Depletion20 ALUMINUM1 (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2004, 6 companies operated 14 primary aluminum reduction plants; 6 smelters continued

  10. (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 1999, 12 companies operated 23 primary aluminum reduction plants. Montana,

    E-Print Network [OSTI]

    .10.3000 2.6% ad val. Unwrought (other than aluminum alloys) 7601.10.6000 Free. Waste and scrap 760222 ALUMINUM1 (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 1999, 12 companies operated 23 primary aluminum reduction plants. Montana, Oregon

  11. (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 2001, 12 companies operated 23 primary aluminum reduction plants. The 11

    E-Print Network [OSTI]

    coils) 7601.10.3000 2.6% ad val. Unwrought (other than aluminum alloys) 7601.10.6000 Free. Waste20 ALUMINUM1 (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 2001, 12 companies operated 23 primary aluminum reduction plants. The 11 smelters east

  12. (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production and Use: In 2003, 7 companies operated 15 primary aluminum reduction plants; 6 smelters

    E-Print Network [OSTI]

    . Unwrought (other than aluminum alloys) 7601.10.6000 Free. Waste and scrap 7602.00.0000 Free. Depletion, prices in the aluminum scrap and secondary aluminum alloy markets fluctuated through September but closed20 ALUMINUM1 (Data in thousand metric tons of metal, unless otherwise noted) Domestic Production

  13. (Data in thousand metric tons of copper content, unless noted) Domestic Production and Use: Domestic mine production in 1995 continued its upward trend, begun in 1984, rising

    E-Print Network [OSTI]

    , Arizona, Utah, New Mexico, Montana, and Michigan, accounted for 97% of domestic production; copper in building construction, 42%; electric and electronic products, 22%; industrial machinery and equipment, 13, refined5 132 205 153 119 135 Employment, mine and mill, thousands 13.7 13.6 13.3 13.2 13.3 Net import

  14. (Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2006, based on contained zinc recoverable from

    E-Print Network [OSTI]

    186 ZINC (Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production accounted for about 80% of total U.S. production. Two primary and 12 large- and medium-sized secondary, and rubber industries. Major coproducts of zinc mining and smelting, in order of decreasing tonnage, were

  15. (Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2003, based on contained zinc recoverable from

    E-Print Network [OSTI]

    188 ZINC (Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production three-fourths of total U.S. production. Two primary and 12 large- and medium-sized secondary smelters uses. Zinc compounds and dust were used principally by the agriculture, chemical, paint, and rubber

  16. (Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2002, based on contained zinc recoverable from

    E-Print Network [OSTI]

    190 ZINC (Data in thousand metric tons of zinc content, unless otherwise noted) Domestic Production% of production. Two primary and 13 large- and medium-sized secondary smelters refined zinc metal of commercial principally by the agriculture, chemical, paint, and rubber industries. Major coproducts of zinc mining

  17. (Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2004, based on contained zinc recoverable from

    E-Print Network [OSTI]

    188 ZINC (Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production% of total U.S. production. Two primary and 12 large- and medium-sized secondary smelters refined zinc metal were used principally by the agriculture, chemical, paint, and rubber industries. Major coproducts

  18. (Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2009, clay and shale production was reported in 41 States. About 190 companies

    E-Print Network [OSTI]

    44 CLAYS (Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2009, clay and shale production was reported in 41 States. About 190 companies operated approximately 830% drilling mud, 17% foundry sand bond, 14% iron ore pelletizing, and 20% other uses; common clay--57% brick

  19. (Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2008, clay and shale production was reported in 41 States. About 190 companies

    E-Print Network [OSTI]

    46 CLAYS (Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2008, clay and shale production was reported in 41 States. About 190 companies operated approximately 830% drilling mud, 17% foundry sand bond, 14% iron ore pelletizing, and 20% other uses; common clay--57% brick

  20. (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2005, 6 companies operated 15 primary aluminum smelters; 4 smelters

    E-Print Network [OSTI]

    and Use: In 2005, 6 companies operated 15 primary aluminum smelters; 4 smelters continued. Most of the production decreases continued to take place in the Pacific Northwest. Domestic smelters from 693 thousand tons at yearend 2004. World Smelter Production and Capacity: Production Yearend

  1. (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production and Use: In 2007, the United States consumed about 11% of world chromite ore production in

    E-Print Network [OSTI]

    48 CHROMIUM (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production. Stainless- and heat-resisting-steel producers were the leading consumers of ferrochromium. Superalloys require chromium. The value of chromium material consumption was about $408 million as measured

  2. (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic Production and Use: In 2000, the United States consumed about 13% of world chromite ore production in

    E-Print Network [OSTI]

    44 CHROMIUM (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic chromium chemicals and chromite-containing refractories, respectively. Consumption of chromium ferroalloys and metal was predominantly for the production of stainless and heat-resisting steel and superalloys

  3. (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic Production and Use: The United States consumes about 13% of world chromite ore production in various

    E-Print Network [OSTI]

    48 CHROMIUM (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic chromium chemicals, chromium ferroalloys, and chromite-containing refractories, respectively. Consumption of chromium ferroalloys and metal by end use was: stainless and heat-resisting steel, 76%; full-alloy steel, 8

  4. (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic Production and Use: In 2001, the United States consumed about 14% of world chromite ore production in

    E-Print Network [OSTI]

    46 CHROMIUM (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic chromium chemicals and chromite-containing refractories, respectively. Consumption of chromium ferroalloys and metal was predominantly for the production of stainless and heat-resisting steel and superalloys

  5. (Data in thousand metric tons, gross weight unless otherwise noted) Domestic Production and Use: In 2005, the United States consumed about 11% of world chromite ore production

    E-Print Network [OSTI]

    48 CHROMIUM (Data in thousand metric tons, gross weight unless otherwise noted) Domestic Production. Imported chromite was consumed by one chemical firm to produce chromium chemicals. Consumption of chromium ferroalloys and metal was predominantly for the production of stainless and heat-resisting steel

  6. (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production and Use: In 2011, the United States was expected to consume about 5% of world chromite

    E-Print Network [OSTI]

    42 CHROMIUM (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production- and heat-resisting-steel producers were the leading consumers of ferrochromium. Superalloys require chromium. The value of chromium material consumption in 2010 was $883 million as measured by the value

  7. (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production and Use: In 2009, the United States was expected to consume about 7% of world chromite

    E-Print Network [OSTI]

    42 CHROMIUM (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production and chromium metal. Stainless- and heat-resisting-steel producers were the leading consumers of ferrochromium. Superalloys require chromium. The value of chromium material consumption in 2008 was $1,283 million

  8. (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic Production and Use: The United States consumes about 14% of world chromite ore production in various

    E-Print Network [OSTI]

    48 CHROMIUM (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic and chromite-containing refractories, respectively. Consumption of chromium ferroalloys and metal was predominantly for the production of stainless and heat-resisting steel and superalloys, respectively. The value

  9. (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production and Use: In 2012, the United States was expected to consume about 6% of world chromite

    E-Print Network [OSTI]

    42 CHROMIUM (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production company produced chromium metal. Stainless- and heat-resisting-steel producers were the leading consumers of ferrochromium. Superalloys require chromium. The value of chromium material consumption in 2011 was $1

  10. (Data in thousand metric tons, gross weight unless otherwise noted) Domestic Production and Use: In 2004, the United States consumed about 10% of world chromite ore production

    E-Print Network [OSTI]

    46 CHROMIUM (Data in thousand metric tons, gross weight unless otherwise noted) Domestic Production. Imported chromite was consumed by one chemical firm to produce chromium chemicals. Consumption of chromium ferroalloys and metal was predominantly for the production of stainless and heat-resisting steel

  11. (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic Production and Use: The United States consumes about 16% of world chromite ore production in various

    E-Print Network [OSTI]

    44 CHROMIUM (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic chromium chemicals, chromium ferroalloys, and chromite-containing refractories, respectively. Consumption of chromium ferroalloys and metal by end use was: stainless and heat-resisting steel, 74%; full-alloy steel

  12. (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production and Use: In 2010, the United States was expected to consume about 2% of world chromite

    E-Print Network [OSTI]

    42 CHROMIUM (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production- and heat-resisting-steel producers were the leading consumers of ferrochromium. Superalloys require chromium. The value of chromium material consumption in 2009 was $358 million as measured by the value

  13. (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production and Use: In 2008, the United States consumed about 10% of world chromite ore production in

    E-Print Network [OSTI]

    44 CHROMIUM (Data in thousand metric tons gross weight unless otherwise noted) Domestic Production. Stainless- and heat-resisting-steel producers were the leading consumers of ferrochromium. Superalloys require chromium. The value of chromium material consumption in 2007 was $548 million as measured

  14. (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic Production and Use: The United States consumes about 12% of world chromite ore production in various

    E-Print Network [OSTI]

    44 CHROMIUM (Data in thousand metric tons, gross weight, unless otherwise noted) Domestic chromium chemicals, chromium ferroalloys, and chromite-containing refractories, respectively. Consumption of chromium ferroalloys and metal by end use was: stainless and heat-resisting steel, 68%; full-alloy steel, 8

  15. UTILITY_ID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV (Thousand $)","RES_S

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content APIMwH)","RES_CONS ","COM_REV (Thousand $)","COM_SALES

  16. UTILITY_ID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV (Thousand $)","RES_S

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content APIMwH)","RES_CONS ","COM_REV (Thousand

  17. Evaluation of Multiplexed Foot-and-Mouth Disease Nonstructural Protein Antibody Assay Against Standardized Bovine Serum Panel

    SciTech Connect (OSTI)

    Perkins, J; Parida, S; Clavijo, A

    2007-05-14T23:59:59.000Z

    Liquid array technology has previously been used to show proof-of-principle of a multiplexed non structural protein serological assay to differentiate foot-and-mouth infected and vaccinated animals. The current multiplexed assay consists of synthetically produced peptide signatures 3A, 3B and 3D and recombinant protein signature 3ABC in combination with four controls. To determine diagnostic specificity of each signature in the multiplex, the assay was evaluated against a naive population (n = 104) and a vaccinated population (n = 94). Subsequently, the multiplexed assay was assessed using a panel of bovine sera generated by the World Reference Laboratory for foot-and-mouth disease in Pirbright, UK. This sera panel has been used to assess the performance of other singleplex ELISA-based non-structural protein antibody assays. The 3ABC signature in the multiplexed assay showed comparative performance to a commercially available non-structural protein 3ABC ELISA (Cedi test{reg_sign}) and additional information pertaining to the relative diagnostic sensitivity of each signature in the multiplex is acquired in one experiment. The encouraging results of the evaluation of the multiplexed assay against a panel of diagnostically relevant samples promotes further assay development and optimization to generate an assay for routine use in foot-and-mouth disease surveillance.

  18. Higher velocity, high-foot implosions on the National Ignition Facility laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Callahan, D. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)] (ORCID:0000000315498916); Hurricane, O. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hinkel, D. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Döppner, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ma, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Park, H. -S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Barrios Garcia, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Berzak Hopkins, L. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)] (ORCID:0000000291875667); Casey, D. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerjan, C. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)] (ORCID:0000000251686845); Dewald, E. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dittrich, T. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Edwards, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Haan, S. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)] (ORCID:0000000184045131); Hamza, A. V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kline, J. L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Knauer, J. P. [Univ. of Rochester, NY (United States); Kritcher, A. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Landen, O. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); LePape, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacPhee, A. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)] (ORCID:0000000341604479); Milovich, J. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nikroo, A. [General Atomics, San Diego, CA (United States)] (ORCID:0000000288550378); Pak, A. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Patel, P. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rygg, J. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ralph, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Salmonson, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spears, B. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Springer, P. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tommasini, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Benedetti, L. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bionta, R. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bond, E. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bradley, D. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Caggiano, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Field, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fittinghoff, D. N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frenje, J. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)] (ORCID:0000000168460378); Gatu Johnson, M. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Grim, G. P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hatarik, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Merrill, F. E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nagel, S. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)] (ORCID:0000000277686819); Izumi, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Khan, S. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-01T23:59:59.000Z

    By increasing the velocity in “high foot” implosions [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014); Hurricane et al., Nature 506, 343 (2014); Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility laser, we have nearly doubled the neutron yield and the hotspot pressure as compared to the implosions reported upon last year. The implosion velocity has been increased using a combination of the laser (higher power and energy), the hohlraum (depleted uranium wall material with higher opacity and lower specific heat than gold hohlraums), and the capsule (thinner capsules with less mass). We find that the neutron yield from these experiments scales systematically with a velocity-like parameter of the square root of the laser energy divided by the ablator mass. By connecting this parameter with the inferred implosion velocity (v), we find that for shots with primary yield >1e15 neutrons, the total yield ~ v???. This increase is considerably faster than the expected dependence for implosions without alpha heating ( ~v???) and is additional evidence that these experiments have significant alpha heating.

  19. Higher velocity, high-foot implosions on the National Ignition Facility laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.; Döppner, T.; Ma, T.; Park, H. -S.; Barrios Garcia, M. A.; Berzak Hopkins, L. F.; Casey, D. T.; Cerjan, C. J.; et al

    2015-05-01T23:59:59.000Z

    By increasing the velocity in “high foot” implosions [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014); Hurricane et al., Nature 506, 343 (2014); Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility laser, we have nearly doubled the neutron yield and the hotspot pressure as compared to the implosions reported upon last year. The implosion velocity has been increased using a combination of the laser (higher power and energy), the hohlraum (depleted uranium wall material with higher opacity and lower specific heat than gold hohlraums), andmore »the capsule (thinner capsules with less mass). We find that the neutron yield from these experiments scales systematically with a velocity-like parameter of the square root of the laser energy divided by the ablator mass. By connecting this parameter with the inferred implosion velocity (v), we find that for shots with primary yield >1e15 neutrons, the total yield ~ v???. This increase is considerably faster than the expected dependence for implosions without alpha heating ( ~v???) and is additional evidence that these experiments have significant alpha heating.« less

  20. Simulation and analysis of the plutonium shipping container subject to 30-foot drops

    SciTech Connect (OSTI)

    Gong, C.; Gupta, N.K.; Gromada, R.J. [Westinghouse Savannah River Co., Aiken, SC (United States). Savannah River Technology Center

    1995-12-31T23:59:59.000Z

    The shipping container 5320 is a shipping package for radioactive materials. In order to maintain the component in this packaging within the sub-critical state when subjected to any kind of Hypothetical Accident conditions (HAC), this Type B packaging is designed with various impact limiters. The present study is to examine the energy absorbing capacity of the impact limiter design of this container subjected to a 30-foot drop onto a flat unyielding horizontal surface in each of the three critical dropping orientations. This paper presents the results of a three dimensional nonlinear dynamic impact analysis. This analysis shows the deformed configuration of the container caused by the impact and also determines the effects of different stress wave paths in three distinct drops on the stress states in the critical component. The solution to the problem was obtained using the ABAQUS (explicit) finite element computer code. The nonlinearity of this analysis involves large structural deformation, elasto-plastic materials with strain hardening as well as multiple contact interfaces. Three drop orientations were studied, namely, top down impact, bottom down impact and side impact. Results will be compared against actual drop test data.

  1. Modeling Estimated Personnel Needs for a Potential Foot and Mouth Disease Outbreak

    SciTech Connect (OSTI)

    Simmons, K; Hullinger, P

    2008-01-29T23:59:59.000Z

    Foot and Mouth disease (FMD) is a highly infectious and contagious viral disease affecting cloven-hoofed livestock that was last detected in the United States (US) in 1929. The prevalence of FMD in other countries, as well as the current potential for this virus to be used as a form of agroterrorism, has made preparations for a potential FMD outbreak a national priority. To assist in the evaluation of national preparedness, all 50 states were surveyed via e-mail, telephone and web search to obtain emergency response plans for FMD or for foreign animal diseases in general. Information from 33 states was obtained and analyzed for estimates of personnel resources needed to respond to an outbreak. These estimates were consolidated and enhanced to create a tool that could be used by individual states to better understand the personnel that would be needed to complete various tasks over time during an outbreak response. The estimates were then coupled, post-processing, to the output from FMD outbreaks simulated in California using the Multiscale Epidemiological/Economic Simulation and Analysis (MESA) model at Lawrence Livermore National Laboratory to estimate the personnel resource demands, by task, over the course of an outbreak response.

  2. c33a.xls

    Gasoline and Diesel Fuel Update (EIA)

    2 per Building (gallons) per Square Foot (gallons) per Building (thousand dollars) per Square Foot (dollars) per Gallon (dollars) All Buildings ......

  3. UTILITY_ID","UTILNAME","STATE_CODE","YEAR","MONTH","RES_REV (Thousand $)","RES_S

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content APIMwH)","RES_CONS ","COM_REV (Thousand $)","COM_SALES (MwH)","COM_CONS","IND_REV

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption of Heat Content of Natural Gas (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest...

  5. The Practical Application of Daylighting Systems as an Effective Energy Conservation Measure with a Reasonable Return on Investment

    E-Print Network [OSTI]

    Othmer, A.

    2002-01-01T23:59:59.000Z

    , allowing them to be on a closer parallel with their larger corporate brothers, who statistically have a lower energy consumption per square foot due to their ability to hire professional energy specialists. As time progressed the ECAP program has.... Light intensity (lumens per square foot) 8. Window Heat Flux in BTU?s per square foot per hour 9. Lighting fixture Heat Flux in BTU?s per square foot per hour 10. Outside ambient temperature 11. Wind speed 12. Wind direction 13. Outside wind...

  6. Observational Accuracy of Variable Stars, Novae and Supernovae from Naked Eye to General Relativistic Standard: a Balance over Thousand SGQ Observations Sent to AAVSO

    E-Print Network [OSTI]

    Sigismondi, Costantino

    2015-01-01T23:59:59.000Z

    The theory of General Relativity deals with very accurate measurements that show significant divergences from Newtonian predictions only with speeds near to the velocity of light. An introduction for educational purposes, based on naked eye photometry, deals with the radiation near collapsing star's shells like novae and supernovae. The theme of accuracy is drafted from entry level observations to the precision of professional data, often of public domain on the web. Thousand observations of variable stars, included the type 1a SN2014J, the Nova Del 2013 and the Nova Cen 2013, sent to the AAVSO by the author, with SGQ code, during the period 1998-2015 are analyzed to increase the photometric accuracy, in the occasion of the International Year of Light 2015.

  7. 164 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 18, NO. 2, APRIL 2010 Control of a Powered AnkleFoot Prosthesis

    E-Print Network [OSTI]

    Geyer, Hartmut

    Control of a Powered Ankle­Foot Prosthesis Based on a Neuromuscular Model Michael F. Eilenberg, Hartmut the difficulties of explicit terrain sensing. Specifically, the energy provided by the prosthesis was directly--Neuromuscular model, powered prosthesis, pros- thesis control, terrain adaptation. I. INTRODUCTION TODAY

  8. The potential role of wildlife in the spread and control of foot and mouth disease in an extensive livestock management system

    E-Print Network [OSTI]

    Highfield, Linda

    2009-05-15T23:59:59.000Z

    Foot and mouth disease (FMD) is a highly contagious viral infection that affects all Artiodactyls (cloven-hoofed) species. The United States has been free of FMD since 1929, and the entire population of cloven-hoofed species is therefore susceptible...

  9. Stem cubic-foot volume tables for tree species in the upper coastal plain. Forest Service research paper

    SciTech Connect (OSTI)

    Clark, A.; Souter, R.A.

    1996-03-01T23:59:59.000Z

    Steamwood cubic-foot volume inside bark tables are presented for 11 species and 8 species groups based on equations used to estimate timber sale volumes on national forests in the Upper Coastal Plain. Tables are based on form class measurement data for 521 trees sampled in the Upper Coastal Plain and taper data collected across the South. A series of tables is presented for each species based on diameter at breast height (d.b.h.) in combination with total height and height to a 4-inch diameter outside bark (d.o.b.) top. Volume tables are also presented based on d.b.h. in combination with height to a 7-inch d.o.b. top for softwoods and height to a 9-inch d.o.b. top for hardwoods.

  10. Stem cubic-foot volume tables for tree species in the Appalachian area. Forest Service research paper

    SciTech Connect (OSTI)

    Clark, A.; Souter, R.A.

    1996-03-01T23:59:59.000Z

    Steamwood cubic-foot volume inside bark tables are presented for 20 species and 8 species groups based on equations used to estimate timber sale volumes on national forests in the Appalachian Area. Tables are based on form class measurement data for 2,670 trees sampled in the Appalachian Area and taper data collected across the South. A series of tables is presented for each species based on diameter at breast height (d.b.h.) in combination with total height and height to a 4-inch diameter outside bark (d.o.b.) top. Volume tables are also presented based on d.b.h. in combination with height to a 7-inch d.o.b. top for softwoods and height to a 9-inch d.o.b. top for hardwoods.

  11. Stem cubic-foot volume tables for tree species in the Gulf and Atlantic coastal plain. Forest Service research paper

    SciTech Connect (OSTI)

    Clark, A.; Souter, R.A.

    1996-03-01T23:59:59.000Z

    Steamwood cubic-foot volume inside bark tables are presented for 14 species and 9 species groups based on equations used to estimate timber sale volumes on national forests in the Gulf and Atlantic Coastal Plain. Tables are based on form class measurement data for 2,728 trees sampled in the Gulf and Atlantic Coastal Plain and taper data collected across the South. A series of tables is presented for each species based on diameter at breast height (d.b.h.) in combination with total height and height to a 4-inch diameter outside bark (d.o.b.) top. Volume tables are also presented based on d.b.h. in combination with height to a 7-inch d.o.b. top for softwoods and height to a 9-inch d.o.b. top for hardwoods.

  12. Stem cubic-foot volume tables for tree species in the Arkansas area. Forest Service research paper

    SciTech Connect (OSTI)

    Clark, A.; Souter, R.A.

    1996-03-01T23:59:59.000Z

    Steamwood cubic-foot volume inside bark tables are presented for 9 species and 9 species groups based on equations used to estimate timber sale volumes on national forests in the Arkansas Area. Tables are based on form class measurement data for 1,417 trees sampled in the Arkansas Area and taper data collected across the South. A series of tables is presented for each species based on diameter at breast height (d.b.h.) in combination woth total height and height to a 4-inch diameter outside bark (d.o.b.) top. Volume tables are also presented based on d.b.h. in combination with height to a 7-inch d.o.b. top for softwoods and height to a 9-inch d.o.b. top for hardwoods.

  13. Stem cubic-foot volume tables for tree species in the Delta area. Forest Service research paper

    SciTech Connect (OSTI)

    Clark, A.; Souter, R.A.

    1996-03-01T23:59:59.000Z

    Steamwood cubic-foot volume inside bark tables are presented for 13 species and 6 species groups based on equations used to estimate timber sale volumes on national forests in the Delta Area. Tables are based on form class measurement data for 990 trees sampled in the Delta Area and taper data collected across the South. A series of tables is presented for each species based on diameter at breast height (d.b.h.) in combination with total height and height to a 4-inch diameter outside bark (d.o.b.) top. Volume tables are also presented based on diameter outside of the bark (d.o.b.) in combination with height with to a 9-inch d.o.b. top.

  14. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    E-Print Network [OSTI]

    Recovery TF Total fuel used TWh Terra-watt hours UNFCCC United Nations Framework Convention on Climate Repair BTS Bureau of Transportation Statistics Btu British thermal unit CalCARS California Conventional IPP Independent Power Producer Kbbl Thousand barrels kLBS Thousand pounds of Steam kst Thousand

  15. Report: An Updated Annual Energy Outlook 2009 Reference Case...

    U.S. Energy Information Administration (EIA) Indexed Site

    94,3565.775391,3754.245117,3952.363281,4149.89502,4369.788574,4597.428223,4843.846191 "Energy Intensity" " (thousand Btu per 2000 dollar of GDP)" " Delivered Energy",6.45164299,6.4...

  16. Report: An Updated Annual Energy Outlook 2009 Reference Case...

    U.S. Energy Information Administration (EIA) Indexed Site

    4,3529.548828,3709.913818,3898.838379,4086.605469,4288.022461,4495.833008,4718.956055 "Energy Intensity" " (thousand Btu per 2000 dollar of GDP)" " Delivered Energy",6.45164299,6.4...

  17. Thousand Cankers of Black Walnut

    E-Print Network [OSTI]

    spread of TCD. Take the wood to a local landfill Take wood to an approved storage site in your city or county Small diameter trees may be chipped, but chips must be disposed of in a landfill or approved

  18. (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2004 rose to 1.16 million tons and was valued at

    E-Print Network [OSTI]

    .4 billion. The principal mining States, in descending order, Arizona, Utah, and New Mexico, accounted for 99 consumers. Copper and copper alloy products were used in building construction, 48%; electric and electronic exchanges 334 952 1,030 657 130 Employment, mine and mill, thousands 9.1 8.2 7.0 6.8 7.0 Net import reliance

  19. (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production of copper in 2010 declined by about 5% to 1.12 million

    E-Print Network [OSTI]

    --Arizona, Utah, Nevada, New Mexico, and Montana--accounted for more than 99% of domestic production; copper also, and miscellaneous consumers. Copper and copper alloy products were used in building construction, 49%; electric and mill, thousands 8.4 9.7 11.9 8.3 8.7 Net import reliance 4 as a percentage of apparent consumption 38

  20. (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: U.S. mine production of copper in 2013 increased by 4% to about 1.22 million tons,

    E-Print Network [OSTI]

    , and was valued at about $9 billion. Arizona, Utah, New Mexico, Nevada, and Montana--in descending order and miscellaneous consumers. Copper and copper alloys products were used in building construction, 44%; electric 236 270 Employment, mine and mill, thousands 8.3 9.5 10.6 11.5 12.0 Net import reliance 4

  1. (Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 2003 declined to 1.12 million tons and was valued at

    E-Print Network [OSTI]

    .0 billion. The principal mining States, in descending order, Arizona, Utah, and New Mexico, accounted for 99 alloy products were used in building construction, 46%; electric and electronic products, 23 Employment, mine and mill, thousands 10.3 9.1 8.2 7.0 6.8 Net import reliance4 as a percentage of apparent

  2. (Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 2001 declined to 1.34 million metric tons and was

    E-Print Network [OSTI]

    at about $2.2 billion. The principal mining States, in descending order, Arizona, Utah, and New Mexico%; electric and electronic products, 28%; transportation equipment, 11%; industrial machinery and equipment, and metal exchanges 314 532 565 334 800 Employment, mine and mill, thousands 13.2 13.0 11.6 10.2 10 Net

  3. (Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 1997 was essentially unchanged at 1.9 million metric

    E-Print Network [OSTI]

    Mexico, Nevada, and Montana, accounted for 98% of domestic production; copper was also recovered at mines in building construction, 43%; electric and electronic products, 24%; industrial1 machinery and equipment, 12 119 163 146 2505 Employment, mine and mill, thousands 13.3 13.1 13.8 13.2 13.3 Net import reliance

  4. (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2005 fell nominally to 1.15 million tons and was

    E-Print Network [OSTI]

    Mexico, Nevada, and Montana, accounted for 99% of domestic production; copper was also recovered at mines, and miscellaneous consumers. Copper and copper alloy products were used in building construction, 49%; electric exchanges 952 1,030 657 134 70 Employment, mine and mill, thousands 8.2 7.0 6.8 7.0 7.0 Net import reliance4

  5. (Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 2000 declined to 1.45 million metric tons and was

    E-Print Network [OSTI]

    at about $2.8 billion. The principal mining States, in descending order, Arizona, Utah, New Mexico construction totaled 41%; electric and electronic products, 27%; transportation equipment, 12%; industrial, yearend, refined6 146 314 532 564 280 Employment, mine and mill, thousands 13.3 13.2 13.0 11.6 10 Net

  6. (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2008 increased by about 12% to 1.3 million tons and

    E-Print Network [OSTI]

    --Arizona, Utah, New Mexico, Nevada, and Montana--accounted for more than 99% of domestic production; copper also, and miscellaneous consumers. Copper and copper alloy products were used in building construction, 49%; electric, mine and mill, thousands 6.4 7.0 8.4 9.7 11.2 Net import reliance4 as a percentage of apparent

  7. (Data in thousand metric tons of copper content unless otherwise noted) Domestic Production and Use: Domestic mine production in 2009 declined by about 9% to 1.2 million tons and its

    E-Print Network [OSTI]

    --Arizona, Utah, New Mexico, Nevada, and Montana--accounted for more than 99% of domestic production; copper also, and miscellaneous consumers. Copper and copper alloy products were used in building construction, 50%; electric and mill, thousands 7.0 8.4 9.7 11.9 9.1 Net import reliance4 as a percentage of apparent consumption 42 38

  8. (Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 2002 declined to 1.13 million metric tons and was

    E-Print Network [OSTI]

    at about $1.9 billion. The principal mining States, in descending order, Arizona, Utah, and New Mexico alloy products consumed1 in building construction totaled 44%; electric and electronic products, 25,020 Employment, mine and mill, thousands 13.0 10.3 9.1 8.2 7 Net import reliance4 as a percentage of apparent

  9. (Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 1998 declined to 1.85 million metric tons and was

    E-Print Network [OSTI]

    at about $3.3 billion. The five principal mining States, in descending order, Arizona, Utah, New Mexico in building construction, 42%; electric and electronic products, 25%; industrial machinery and1 equipment, 11, refined 119 163 146 314 4505 Employment, mine and mill, thousands 13.1 13.8 13.3 13.2 13.0 Net import

  10. (Data in thousand metric tons of copper content, unless otherwise noted) Domestic Production and Use: Domestic mine production in 1999 declined to 1.66 million metric tons and was

    E-Print Network [OSTI]

    at about $2.8 billion. The five principal mining States, in descending order, Arizona, Utah, New Mexico construction, 42%; electric and electronic products, 26%; transportation equipment, 12%; industrial machinery and mill, thousands 13.8 13.3 13.2 13.0 12.0 Net import reliance6 as a percent of apparent consumption 7 14

  11. (Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production and Use: The value of zinc mined in 2007, based on zinc contained in concentrate, was about

    E-Print Network [OSTI]

    190 ZINC (Data in thousand metric tons of zinc content unless otherwise noted) Domestic Production U.S. production. One primary and 12 large- and medium-sized secondary smelters refined zinc metal by the agriculture, chemical, paint, and rubber industries. Major coproducts of zinc mining and smelting, in order

  12. (Data in thousand metric tons of zinc content, unless noted) Domestic Production and Use: The value of zinc mined in 1995 was about $700 million. Essentially all came from

    E-Print Network [OSTI]

    188 ZINC (Data in thousand metric tons of zinc content, unless noted) Domestic Production and Use were used principally by the agricultural, chemical, paint, and rubber industries. Major coproducts--United States: 1991 1992 1993 1994 1995e Production: Mine, recoverable 518 523 488 570 600 Primary slab zinc 253

  13. (Data in thousand metric tons of boric oxide (B2O3) unless otherwise noted) Domestic Production and Use: Two companies in southern California produced boron minerals, mostly sodium

    E-Print Network [OSTI]

    proprietary data, U.S. boron production and consumption in 2010 were withheld. The leading boron producer standards with respect to heat conservation, which directly correlates to higher consumption of borates32 BORON (Data in thousand metric tons of boric oxide (B2O3) unless otherwise noted) Domestic

  14. Indeed is the #1 job search engine worldwide. Since 2004, Indeed has given job seekers free access to millions of jobs from thousands of company websites and job boards. Our core mis-

    E-Print Network [OSTI]

    Ghosh, Joydeep

    Indeed is the #1 job search engine worldwide. Since 2004, Indeed has given job seekers free access to millions of jobs from thousands of company websites and job boards. Our core mis- sion is to help people get jobs. To make this possible, we built an amazing platform that han- dles 5 billion job search

  15. Economic Impacts of Potential Foot and Mouth Disease Agro-terrorism in the United States: A Computable General Equilibrium Analysis

    SciTech Connect (OSTI)

    Oladosu, Gbadebo A [ORNL] [ORNL; Rose, Adam [University of Southern California, Los Angeles] [University of Southern California, Los Angeles; Bumsoo, Lee [University of Illinois] [University of Illinois

    2013-01-01T23:59:59.000Z

    The foot and mouth disease (FMD) virus has high agro-terrorism potential because it is contagious, can be easily transmitted via inanimate objects and can be spread by wind. An outbreak of FMD in developed countries results in massive slaughtering of animals (for disease control) and disruptions in meat supply chains and trade, with potentially large economic losses. Although the United States has been FMD-free since 1929, the potential of FMD as a deliberate terrorist weapon calls for estimates of the physical and economic damage that could result from an outbreak. This paper estimates the economic impacts of three alternative scenarios of potential FMD attacks using a computable general equilibrium (CGE) model of the US economy. The three scenarios range from a small outbreak successfully contained within a state to a large multi-state attack resulting in slaughtering of 30 percent of the national livestock. Overall, the value of total output losses in our simulations range between $37 billion (0.15% of 2006 baseline economic output) and $228 billion (0.92%). Major impacts stem from the supply constraint on livestock due to massive animal slaughtering. As expected, the economic losses are heavily concentrated in agriculture and food manufacturing sectors, with losses ranging from $23 billion to $61 billion in the two industries.

  16. Lowest Pressure Steam Saves More BTU's Than You Think

    E-Print Network [OSTI]

    Vallery, S. J.

    Steam is the most common and economical way of transferring heat from one location to another. But most steam systems use the header pressure steam to do the job. The savings are substantially more than just the latent heat differences between...

  17. POTENTIAL MARKETS FOR HIGH-BTU GAS FROM COAL

    SciTech Connect (OSTI)

    Booz, Allen, and Hamilton, Inc.,

    1980-04-01T23:59:59.000Z

    It has become increasilngly clear that the energy-related ilemna facing this nation is both a long-term and deepening problem. A widespread recognition of the critical nature of our energy balance, or imbalance, evolved from the Arab Oil Embargo of 1973. The seeds of this crisis were sown in the prior decade, however, as our consumption of known energy reserves outpaced our developing of new reserves. The resultant increasing dependence on foreign energy supplies hs triggered serious fuel shortages, dramatic price increases, and a pervsive sense of unertainty and confusion throughout the country.

  18. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota1Resourceloading new table Home

  19. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota1Resourceloading new table HomeYear Jan

  20. Natural Gas Futures Contract 1 (Dollars per Million Btu)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota1Resourceloading new table HomeYear