National Library of Energy BETA

Sample records for food processing energy

  1. Biomass Boiler for Food Processing Applications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Boiler for Food Processing Applications Biomass Boiler for Food Processing Applications Biomass Boiler Uses a Combination of Wood Waste and Tire-Derived Fuel In 2011, the energy consumed by food and beverage manufacturing was ~1.3 quad, of which 42% was used for process heating. Over 67% of that energy was lost in waste streams. The food processing industry alone uses >10,000 boilers for heating and power; more than 70% consume natural gas or 237 trillion Btu annually. Economic and

  2. Energy and process substitution in the frozen-food industry:...

    Office of Scientific and Technical Information (OSTI)

    and process substitution in the frozen-food industry: geothermal energy and the retortable pouch Stern, M.W.; Hanemann, W.M.; Eckhouse, K. 32 ENERGY CONSERVATION, CONSUMPTION, AND...

  3. Energy and process substitution in the frozen-food industry:...

    Office of Scientific and Technical Information (OSTI)

    The analytical methodology by which the energy and process substitution were evaluated is ... Resource Relation: Other Information: Portions of document are illegible Research Org: ...

  4. Direct utilization of geothermal energy resources in food processing. Final report, May 17, 1978-May 31, 1982

    SciTech Connect (OSTI)

    Austin, J.C.

    1982-05-01

    In early 1978 financial assistance was granted for a project to utilize geothermal energy at Ore-Ida Foods, Inc.'s food processing plant in Ontario, Oregon. Specifically, the project included exploring, testing, and developing the potential geothermal resource; retrofitting the existing gas/oil-fired steam system; utilizing the geothermal resource for food processing, space heating, and hot potable water; and injecting the spent geothermal water back into a disposal well. Based on preliminary investigations which indicated the presence of a local geothermal resource, drilling began in August 1979. Although the anticipated resource temperature of 380/sup 0/F was reached at total well depth (10,054 feet), adequate flow to meet processing requirements could not be obtained. Subsequent well testing and stimulation techniques also failed to produce the necessary flow, and the project was eventually abandoned. However, throughout the duration of the project, all activities were carefully monitored and recorded to ensure the program's value for future evaluation. This report presents a culmination of data collected during the Ore-Ida project.

  5. Food Service | Open Energy Information

    Open Energy Info (EERE)

    Building Types 1 References EIA CBECS Building Types U.S. Energy Information Administration (Oct 2008) Retrieved from "http:en.openei.orgwindex.php?titleFoodService&old...

  6. Food Sales | Open Energy Information

    Open Energy Info (EERE)

    Building Types 1 References EIA CBECS Building Types U.S. Energy Information Administration (Oct 2008) Retrieved from "http:en.openei.orgwindex.php?titleFoodSales&oldid...

  7. Combustion Turbine CHP System for Food Processing Industry -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet, 2011 Combustion Turbine CHP System for Food Processing Industry - Fact Sheet, 2011 Frito-LayPepsiCo, in cooperation with the Energy Solutions Center, is demonstrating...

  8. Combustion Turbine CHP System for Food Processing Industry - Fact Sheet,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 | Department of Energy Fact Sheet, 2011 Combustion Turbine CHP System for Food Processing Industry - Fact Sheet, 2011 Frito-Lay/PepsiCo, in cooperation with the Energy Solutions Center, is demonstrating and evaluating a CHP plant at a large food processing facility in Connecticut. CHP generation is reducing the energy costs and environmental impact of the facility while easing congestion on the constrained Northeast power grid. The fact sheet contains performance data from the plant

  9. Research on Anaerobic Digestion: Optimization and Scalability of Mixed High-strength Food Processing Wastes for Renewable Biogas Energy

    SciTech Connect (OSTI)

    Yu, Zhongtang; Hitzhusen, Fredrick

    2012-12-27

    This research project developed and improved anaerobic digestion technologies, created a comprehensive Inventory of Ohio Biomass and a database of microorganisms of anaerobic digesters, and advanced knowledge and understanding of the underpinning microbiology of the anaerobic digestion process. The results and finding of this research project may be useful for future development and implementation of anaerobic digesters, especially at livestock farms. Policy makers and investors may also find the information on the biomass availability in Ohio and valuation of energy projects useful in policy making and making of investment decisions. The public may benefit from the information on biogas as an energy source and the potential impact of anaerobic digester projects on their neighborhoods.

  10. Combustion Turbine CHP System for Food Processing Industry - Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by Frito-Lay North America, June 2011 | Department of Energy Presentation by Frito-Lay North America, June 2011 Combustion Turbine CHP System for Food Processing Industry - Presentation by Frito-Lay North America, June 2011 Presentation on Combustion Turbine CHP System for Food Processing Industry, given by Kevin Chilcoat of Frito-Lay North America, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011. PDF icon chp_food_chilcoat.pdf

  11. Energy Modeling for the Artisan Food Center

    SciTech Connect (OSTI)

    Goel, Supriya

    2013-05-01

    The Artisan Food Center is a 6912 sq.ft food processing plant located in Dayton, Washington. PNNL was contacted by Strecker Engineering to assist with the building’s energy analysis as a part of the project’s U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) submittal requirements. The project is aiming for LEED Silver certification, one of the prerequisites to which is a whole building energy model to demonstrate compliance with American Society of Heating Refrigeration and Air Conditioning Engineers (ASHRAE) 90.1 2007 Appendix G, Performance Rating Method. The building incorporates a number of energy efficiency measures as part of its design and the energy analysis aimed at providing Strecker Engineering with the know-how of developing an energy model for the project as well as an estimate of energy savings of the proposed design over the baseline design, which could be used to document points in the LEED documentation. This report documents the ASHRAE 90.1 2007 baseline model design, the proposed model design, the modeling assumptions and procedures as well as the energy savings results in order to inform the Strecker Engineering team on a possible whole building energy model.

  12. J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy at a Large Food Processing Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BestPractices Case Study BENEFITS * Saves $299,000 in annual energy costs * Saves 52,000 MMBtu of natural gas annually * Improves boiler performance * Saves 526,000 kWh per year * Achieves a simple payback of less than 14 months APPLICATIONS Worn or inefficient burners and burner control systems can lead to boiler malfunctions, production downtime, and excessive energy costs. Upgrading the efficiency of burners and burner control systems can improve a boiler's efficiency and reliability in order

  13. CHP SYSTEM AT FOOD PROCESSING PLANT INCREASES RELIABILITY AND...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP SYSTEM AT FOOD PROCESSING PLANT INCREASES RELIABILITY AND REDUCES EMISSIONS - CASE STUDY, 2015 CHP SYSTEM AT FOOD PROCESSING PLANT INCREASES RELIABILITY AND REDUCES EMISSIONS -...

  14. Combustion Turbine CHP System for Food Processing Industry -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Turbine CHP System for Food Processing Industry - Presentation by Frito-Lay North America, June 2011 Combustion Turbine CHP System for Food Processing Industry - ...

  15. CHP SYSTEM AT FOOD PROCESSING PLANT INCREASES RELIABILITY AND...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AND REDUCES EMISSIONS - CASE STUDY, 2015 CHP SYSTEM AT FOOD PROCESSING PLANT INCREASES ... demonstrated and evaluated a CHP plant at a large food processing facility in Connecticut. ...

  16. Effects of energy related activities on the stress-sensitive microbial processes in mangrove detrital food webs

    SciTech Connect (OSTI)

    Fell, J.W.

    1984-01-01

    Nutrient flows from leaf litter decomposition are evaluated in terms of their contributions to the ecosystem. The roles of the stress sensitive microbial processes are being determined. Emphasis is on the following aspects: (1) nitrogen immobilization; (2) transport of particulate carbon to the estuary; (3) role of flocculent materials produced from leachates; (4) invertebrate utilization of carbon and nitrogen flows; and (5) possible effects on these systems if the Gulf oil spill reaches the south Florida coast. 19 references. (ACR)

  17. Energy Department, Northwest Food Processors Association Set Energy

    Energy Savers [EERE]

    Efficiency Goals for Industry | Department of Energy Department, Northwest Food Processors Association Set Energy Efficiency Goals for Industry Energy Department, Northwest Food Processors Association Set Energy Efficiency Goals for Industry February 17, 2009 - 12:00am Addthis PORTLAND, OR - The U.S. Department of Energy (DOE) and the Northwest Food Processors Association today set ambitious goals to reduce energy use and carbon emissions in the industrial sector. DOE Industrial Technologies

  18. Food Services | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Employee Services » Food Services Food Services The Department offers many food services for employees within the Headquarters' buildings. Forrestal Forrestal Cafeteria (2nd floor, West Building). See the Cafeteria web page for further information. Hours: Monday-Friday 6:45 a.m. to 3:00 p.m. Breakfast hours are from 6:45 a.m. until 10:00 a.m., lunch from 11:00 a.m. until 2:00 p.m., and a "Happy Hour" is featured from 2:00-2:30 p.m. offering 30% off all hot and cold buffet items. Other

  19. Pumpkin Power: Turning Food Waste into Energy | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pumpkin Power: Turning Food Waste into Energy Pumpkin Power: Turning Food Waste into Energy November 1, 2013 - 1:28pm Addthis Pumpkin Power: Turning Food Waste into Energy Matthew...

  20. Flexible Distributed Energy & Water from Waste for the Food ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Energy & Water from Waste for the Food & Beverage Industry - Presentation by GE Global Research, June 2011 Flexible Distributed Energy & Water from Waste for the Food & ...

  1. MECS 2006 - Food and Beverage | Department of Energy

    Office of Environmental Management (EM)

    Food and Beverage MECS 2006 - Food and Beverage Manufacturing Energy and Carbon Footprint for Food and Beverage (NAICS 311, 312) Sector with Total Energy Input, October 2012 (MECS 2006) All available footprints and supporting documents Manufacturing Energy and Carbon Footprint PDF icon Food and Beverage More Documents & Publications Food and Beverage (2010 MECS) MECS 2006 - Alumina and Aluminum MECS 2006 - Cement

  2. Pumpkin Power: Turning Food Waste into Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pumpkin Power: Turning Food Waste into Energy Pumpkin Power: Turning Food Waste into Energy November 1, 2013 - 1:28pm Addthis Pumpkin Power: Turning Food Waste into Energy Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What are the key facts? 1.4 billion pounds of pumpkins are produced in the U.S. each year, many of which end up in landfills or compost piles after Halloween. Oakland's EBMUD collects food waste and uses microbes to convert it into methane

  3. Energy production from food industry wastewaters using bioelectrochemical cells

    SciTech Connect (OSTI)

    Hamilton, Choo Yieng

    2009-01-01

    Conversion of waste and renewable resources to energy using microbial fuel cells (MFCs) is an upcoming technology for enabling a cleaner and sustainable environment. This paper assesses the energy production potential from the US food industry wastewater resource. It also reports on an experimental study investigating conversion of wastewater from a local milk dairy plant to electricity. An MFC anode biocatalyst enriched on model sugar and organic acid substrates was used as the inoculum for the dairy wastewater MFC. The tests were conducted using a two-chamber MFC with a porous three dimensional anode and a Pt/C air-cathode. Power densities up to 690 mW/m2 (54 W/m3) were obtained. Analysis of the food industry wastewater resource indicated that MFCs can potentially recover 2 to 260 kWh/ton of food processed from wastewaters generated during food processing, depending on the biological oxygen demand and volume of water used in the process. A total of 1960 MW of power can potentially be produced from US milk industry wastewaters alone. Hydrogen is an alternate form of energy that can be produced using bioelectrochemical cells. Approximately 2 to 270 m3 of hydrogen can be generated per ton of the food processed. Application of MFCs for treatment of food processing wastewaters requires further investigations into electrode design, materials, liquid flow management, proton transfer, organic loading and scale-up to enable high power densities at the larger scale. Potential for water recycle also exists, but requires careful consideration of the microbiological safety and regulatory aspects and the economic feasibility of the process.

  4. Energy conservation by hyperfiltration: food industry background literature survey

    SciTech Connect (OSTI)

    Not Available

    1980-04-15

    The application of hyperfiltration to selected food product streams and food processing wastewaters for energy conservation was examined. This literature survey had led to the following conclusions: no research has been conducted in the food industry using membranes with hot process streams due to the temperature limitation (< 40/sup 0/C) of the typically studied cellulose acetate membranes; based on the bench-scale research reviewed, concentration of fruit and vegetable juices with membranes appears to be technically feasible; pretreatment and product recovery research was conducted with membranes on citrus peel oil, potato processing and brine wastewaters and wheys. The experiments demonstrated that these applications are feasible; many of the problems that have been identified with membranes are associated with either the suspended solids or the high osmotic pressure and viscosity of many foods; research using dynamic membranes has been conducted with various effluents, at temperatures to approx. 100/sup 0/C, at pressures to 1200 psi and with suspended solids to approx. 2%; and, the dynamic membrane is being prototype tested by NASA for high temperature processing of shower water. The literature review substantiates potential for dynamic membrane on porous stainless tubes to process a number of hot process and effluent streams in the food processing industry. Hot water for recycle and product concentrations are major areas with potential for economic application. The two plants involved in the first phase of the project should be reviewed to identify potential energy conservation applications. As many as possible of the conservation applications should be tested during the screening phase at each site. The most promising applications at each site should be evaluated more intensively to establish engineering estimates of the economics of this technology for the canned fruit and vegetable segment of the food industry.

  5. Cogeneration handbook for the food processing industry. [Contains glossary

    SciTech Connect (OSTI)

    Eakin, D.E.; Fassbender, L.L.; Garrett-Price, B.A.; Moore, N.L.; Fasbender, A.G.; Gorges, H.A.

    1984-03-01

    The decision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the food processing industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

  6. CHP SYSTEM AT FOOD PROCESSING PLANT INCREASES RELIABILITY AND REDUCES EMISSIONS- CASE STUDY, 2015

    Broader source: Energy.gov [DOE]

    Frito-Lay North America, Inc., a division of PepsiCo, in cooperation with the Energy Solutions Center, demonstrated and evaluated a CHP plant at a large food processing facility in Connecticut. CHP...

  7. ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio:

    Office of Environmental Management (EM)

    Addressing Key Energy Challenges Across U.S. Industry | Department of Energy Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry PDF icon eip_report.pdf More Documents & Publications Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Energy Technology

  8. Food and Beverage (2010 MECS) | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Food and Beverage (2010 MECS) Food and Beverage (2010 MECS) Manufacturing Energy and Carbon Footprint for Food and Beverage Sector (NAICS 311, 312) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint PDF icon Food and Beverage More Documents & Publications MECS 2006 - Food and Beverage Cement (2010 MECS) Chemicals

  9. West Pico Food | Open Energy Information

    Open Energy Info (EERE)

    Pico Food Jump to: navigation, search Name: West Pico Food Place: Vernon, California Sector: Solar Product: A distributor of wholesale frozen foods to supermarket chains in...

  10. Covered Product Category: Hot Food Holding Cabinets | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hot Food Holding Cabinets Covered Product Category: Hot Food Holding Cabinets The Federal Energy Management Program (FEMP) provides acquisition guidance for hot food holding cabinets, which are covered by the ENERGY STAR program. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Meeting Efficiency Requirements for Hot Food Holding Cabinets ENERGY STAR sets efficiency

  11. Flexible Distributed Energy and Water from Waste for the Food and Beverage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry - Fact Sheet, 2014 | Department of Energy Flexible Distributed Energy and Water from Waste for the Food and Beverage Industry - Fact Sheet, 2014 Flexible Distributed Energy and Water from Waste for the Food and Beverage Industry - Fact Sheet, 2014 GE Global Research, in collaboration with GE Water & Process Technologies, GE Intelligent Platforms, SRA International, and Anheuser-Busch, developed a systematic plant-wide automation for online monitoring and supervisory control. The

  12. ENERGY EFFICIENCY TECHNOLOGY ROADMAP VOLUME 7: INDUSTRIAL FOOD...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    leak detection Preliminary study how laser perforation of blueberry can improve fruit infusion with more yield and better quality Laser food processing (marker and micro...

  13. Energy Department, Northwest Food Processors Association Set...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    improve American global competitiveness, protect jobs, and strengthen the domestic manufacturing sector. The Northwest Food Processors show tremendous foresight by making...

  14. Preliminary Feasibility Assessment of Integrating CCHP with NW Food Processing Plant #1: Modeling Documentation

    SciTech Connect (OSTI)

    Hoffman, Michael G.; Srivastava, Viraj; Wagner, Anne W.; Makhmalbaf, Atefe; Thornton, John

    2014-01-01

    The Pacific Northwest National Laboratory (PNNL) has launched a project funded by the Bonneville Power Association (BPA) to identify strategies for increasing industrial energy efficiency and reducing energy costs of Northwest Food Processors Association (NWFPA) plants through deployment of novel combinations and designs of variable-output combined heat and power (CHP) distributed generation (DG), combined cooling, heating and electric power (CCHP) DG and energy storage systems. Detailed evaluations and recommendations of CHP and CCHP DG systems will be performed for several Northwest (NW) food processing sites. The objective is to reduce the overall energy use intensity of NW food processors by 25% by 2020 and by 50% by 2030, as well as reducing emissions and understanding potential congestion reduction impacts on the transmission system in the Pacific Northwest.

  15. Trade My Food | Open Energy Information

    Open Energy Info (EERE)

    search for food they would like to trade for. Example: Alicia grows parsley, Bob is a fisherman. Alicia wants some fish. Bob wants some parsley. They find each other on...

  16. California Food Processing Industry Wastewater Demonstration Project: Phase I Final Report

    SciTech Connect (OSTI)

    Lewis, Glen; Atkinson, Barbara; Rhyne, Ivin

    2009-09-09

    Wastewater treatment is an energy-intensive process and electricity demand is especially high during the utilities summer peak electricity demand periods. This makes wastewater treatment facilities prime candidates for demand response programs. However, wastewater treatment is often peripheral to food processing operations and its demand response opportunities have often been overlooked. Phase I of this wastewater demonstration project monitored wastewater energy and environmental data at Bell-Carter Foods, Inc., California's largest olive processing plant. For this monitoring activity the project team used Green Energy Management System (GEMS) automated enterprise energy management (EEM) technologies. This report presents results from data collected by GEMS from September 15, 2008 through November 30, 2008, during the olive harvest season. This project established and tested a methodology for (1) gathering baseline energy and environmental data at an industrial food-processing plant and (2) using the data to analyze energy efficiency, demand response, daily peak load management, and environmental management opportunities at the plant. The Phase I goals were to demonstrate the measurement and interrelationship of electricity demand, electricity usage, and water quality metrics and to estimate the associated CO{sub 2} emissions.

  17. New Mexico Consortium works toward food and energy security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Mexico Consortium works toward food and energy security Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit New Mexico Consortium works toward food and energy security Regional education institutions and the Lab work toward breakthroughs September 1, 2013 This Petri dish holds algae that could one day serve as a new fuel source This Petri dish holds algae that could one day serve as a new fuel

  18. Purchasing Energy-Efficient Hot Food Holding Cabinets

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for hot food holding cabinets, a product category covered by ENERGY STAR efficiency requirements. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified products or FEMP-designated products in all product categories covered by these programs and in any acquisition actions that are not specifically exempted by law.

  19. Energy from biological processes

    SciTech Connect (OSTI)

    Not Available

    1980-07-01

    This assessment responds to a request by the Senate Committee on Commerce, Science, and Transportation for an evaluation of the energy potential of various sources of plant and animal matter (biomass). This report complements an earlier OTA report on the Application of Solar Technology to Today's Energy Needs in evaluating the major solar energy resources available to the United States. The findings also will serve as part of the material to be used in an upcoming OTA assessment of synthetic fuels for transportation. This volume presents analyses of prominent biomass issues, summaries of four biomass fuel cycles, a description of biomass' place in two plausible energy futures, and discussions of policy options for promoting energy from biomass. The four fuel cycles - wood, alcohol fuels, grasses and crop residues, and animal wastes - were chosen because of their near- to mid-term energy potential and because of the public interest in them. A second volume presents technical analyses of the resource base, conversion technologies, and end uses that provide a basis for the discussion in this volume. Also included in Volume II are various unconventional approaches to bioenergy production as well as the use of biomass to produce chemicals.

  20. Process Rule | Department of Energy

    Energy Savers [EERE]

    Process Rule Process Rule The Department of Energy (DOE) conducted a formal effort between 1995 and 1996 to improve the process it used to develop appliance efficiency standards. This effort involved many different stakeholders, including manufacturers, energy-efficiency advocates, trade associations, state agencies, utilities, and other interested parties. The result was the publication of the Process Rule: 61 FR 36974 (July 15, 1996). Found in the Code of Federal Regulations at 10 CFR 430

  1. Energy conservation and rebates in commercial food enterprises

    SciTech Connect (OSTI)

    Train, K.E.; Strebel, J.E.

    1987-02-01

    State programs offer rebates to food enterprises for the installation of energy-saving devices. This paper estimates the impact of rebates on the probability of installing a device and the resultant energy saving. Under reasonable ranges for energy costs and rates of return on devices, the benefits of a rebate program, calculated as the value of the energy savings that are attributable to the program, exceed the costs of the program and devices.

  2. Energy Department, Northwest Food Processors Association Set...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... their energy efficiency through innovative partnerships with national associations, state and local government agencies, non-profit organizations, and their related supply chains. ...

  3. Whole Foods Market Improves Energy Efficiency in New Construction

    SciTech Connect (OSTI)

    2013-03-01

    Whole Foods Market partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to reduce annual energy consumption in new stores by at least 50% versus requirements set by ASHRAE/ANSI/IESNA Standard 90.1-20041 as part of DOEs Commercial Building Partnership (CBP) program.

  4. Regulatory Processes | Department of Energy

    Energy Savers [EERE]

    Appliance & Equipment Standards » Rulemakings & Notices » Regulatory Processes Regulatory Processes Beginning with the Energy Policy and Conservation Act of 1975, Congress has enacted a series of laws establishing federal appliance and equipment standards and the Department of Energy's (DOE) authority to develop, amend, and implement standards. To implement these laws, the Appliance and Equipment Standards program manages the regulatory processes described below. Standards Development

  5. Regulatory Processes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regulatory Processes Regulatory Processes Beginning with the Energy Policy and Conservation Act of 1975, Congress has enacted a series of laws establishing federal appliance and equipment standards and the Department of Energy's (DOE) authority to develop, amend, and implement standards. To implement these laws, the Appliance and Equipment Standards program manages the regulatory processes described below. Standards Development and Revision Standards for a given product may be mandated by

  6. Application Process | Department of Energy

    Energy Savers [EERE]

    Application Process Application Process Application Process LPO APPLICATION PROCESS LPO has more than $40 billion in remaining loan and loan guarantee authority and is accepting applications under its two loan programs - the Innovative Clean Energy Projects (Title XVII) loan program and the Advanced Technology Vehicles Manufacturing (ATVM) loan program. Prospective applicants may use the LPO Online Application Portal to apply to both loan programs. Each loan program, however, has its own

  7. Energy and Cost Optimized Technology Options to Meet Energy Needs of Food Processors

    SciTech Connect (OSTI)

    Makhmalbaf, Atefe; Srivastava, Viraj; Hoffman, Michael G.; Wagner, Anne W.; Thornton, John

    2015-05-01

    Full Paper Submission for: Combined cooling, heating and electric power (CCHP) distributed generation (DG) systems can provide electric power and, heating and cooling capability to commercial and industrial facilities directly onsite, while increasing energy efficiency, security of energy supply, grid independence and enhancing the environmental and economic situation for the site. Food processing industries often have simultaneous requirements for heat, steam, chilling and electricity making them well suited for the use of such systems to supply base-load or as peak reducing generators enabling reduction of overall energy use intensity. This paper documents analysis from a project evaluating opportunities enabled by CCHPDG for emission and cost reductions and energy storage systems installed onsite at food processing facilities. In addition, this distributed generation coupled with energy storage demonstrates a non-wires solution to delay or eliminate the need for upgrades to electric distribution systems. It was found that a dairy processing plant in the Pacific Northwest currently purchasing 15,000 MWh/yr of electricity and 190,000 MMBtu/yr of gas could be provided with a 1.1 MW CCHP system reducing the amount of electric power purchased to 450 MWh/yr while increasing the gas demand to 255,000 MMBtu/yr. The high percentage of hydro-power in this region resulted in CO2 emissions from CCHP to be higher than that attributed to the electric utility/regional energy mix. The value of this work is in documenting a real-world example demonstrating the value of CCHP to facility owners and financial decision makers to encourage them to more seriously consider CCHP systems when building or upgrading facilities.

  8. Illinois biomass resources: annual crops and residues; canning and food-processing wastes. Preliminary assessment

    SciTech Connect (OSTI)

    Antonopoulos, A A

    1980-06-01

    Illinois, a major agricultural and food-processing state, produces vast amounts of renewable plant material having potential for energy production. This biomass, in the form of annual crops, crop residues, and food-processing wastes, can be converted to alternative fuels (such as ethanol) and industrial chemicals (such as furfural, ethylene, and xylene). The present study provides a preliminary assessment of these Illinois biomass resources, including (a) an appraisal of the effects of their use on both agriculture and industry; (b) an analysis of biomass conversion systems; and (c) an environmental and economic evaluation of products that could be generated from biomass. It is estimated that, of the 39 x 10/sup 6/ tons of residues generated in 1978 in Illinois from seven main crops, about 85% was collectible. The thermal energy equivalent of this material is 658 x 10/sup 6/ Btu, or 0.66 quad. And by fermenting 10% of the corn grain grown in Illinois, some 323 million gallons of ethanol could have been produced in 1978. Another 3 million gallons of ethanol could have been produced in the same year from wastes generated by the state's food-processing establishments. Clearly, Illinois can strengthen its economy substantially by the development of industries that produce biomass-derived fuels and chemicals. In addition, a thorough evaluation should be made of the potential for using the state's less-exploitable land for the growing of additional biomass.

  9. Sandia Energy - Tutorial on FMEA Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tutorial on FMEA Process Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Systems Reliability Tutorial on FMEA Process Tutorial on FMEA ProcessTara...

  10. Application and energy saving potential of superheated steam drying in the food industry

    SciTech Connect (OSTI)

    Fitzpatrick, J. [Univ. College Cork (United Kingdom); Robinson, A. [Stork Engineering, Uxbridge (United Kingdom)

    1996-12-31

    The possibilities of using superheated steam in heat and mass transfer processes such as drying have lately been investigated and tested by several industries. The mode of operation, energy saving potential, advantages of and problems with this media in contact with foodstuffs and food waste sludge are discussed in this article.

  11. Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges

    Office of Environmental Management (EM)

    Across U.S. Industry | Department of Energy Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry PDF icon eip_report_pg9.pdf More Documents & Publications ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Energy Technology Solutions Energy Technology Solutions: Public-Private

  12. Manufacturing Energy and Carbon Footprint - Sector: Food and Beverage (NAICS 311, 312), January 2014 (MECS 2010)

    Office of Environmental Management (EM)

    Food and Beverage (NAICS 311, 312) Process Energy Electricity and Steam Generation Losses Process Losses 128 Nonprocess Losses 1,836 455 Steam Distribution Losses 104 72 Nonprocess Energy 919 Electricity Generation Steam Generation 1,836 41 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 178 835 285 Generation and Transmission Losses Generation and Transmission Losses 16 574 1,014 620 625 1,245 860 57 497 3.6 50.0 53.6 13.5 55.8 13.7 109 55.5

  13. Energy and Cost Optimized Technology Options to Meet Energy Needs of Food Processors

    SciTech Connect (OSTI)

    Makhmalbaf, Atefe; Srivastava, Viraj; Hoffman, Michael G.; Wagner, Anne W.; Thornton, John

    2015-04-02

    ABSTRACT Combined cooling, heating and electric power (CCHP) distributed generation (DG) systems can provide electricity, heat, and cooling power to buildings and industrial processes directly onsite, while significantly increasing energy efficiency, security of energy supply, and grid independence. Fruit, vegetable, dairy and meat processing industries with simultaneous requirements for heat, steam, chilling and electricity, are well suited for the use of such systems to supply base-load electrical demand or as peak reducing generators with heat recovery in the forms of hot water, steam and/or chilled water. This paper documents results and analysis from a pilot project to evaluate opportunities for energy, emission, and cost for CCHP-DG and energy storage systems installed onsite at food processing facilities. It was found that a dairy processing plant purchasing 15,000 MWh of electricity will need to purchase 450 MWh with the integration of a 1.1 MW CCHP system. Here, the natural gas to be purchased increased from 190,000 MMBtu to 255,000 MMBtu given the fuel requirements of the CCHP system. CCHP systems lower emissions, however, in the Pacific Northwest the high percentage of hydro-power results in CO2 emissions from CCHP were higher than that attributed to the electric utility/regional energy mix. The value of this paper is in promoting and educating financial decision makers to seriously consider CCHP systems when building or upgrading facilities. The distributed generation aspect can reduce utility costs for industrial facilities and show non-wires solution benefits to delay or eliminate the need for upgrades to local electric transmission and distribution systems.

  14. Comment submitted by Hobart/ITW Food Equipment Group regarding the Energy Star Verification Testing Program

    Broader source: Energy.gov [DOE]

    This document is a comment submitted by Hobart/ITW Food Equipment Group regarding the Energy Star Verification Testing Program

  15. California Department of Food and Agriculture | Open Energy Informatio...

    Open Energy Info (EERE)

    Agriculture Jump to: navigation, search Logo: California Department of Food and Agriculture Name: California Department of Food and Agriculture Abbreviation: CDFA Address: 1220 N...

  16. Dr Writer s Food Products Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Dr Writer s Food Products Pvt Ltd Jump to: navigation, search Name: Dr. Writer(tm)s Food Products Pvt. Ltd. Place: Mumbai, Maharashtra, India Sector: Biomass Product:...

  17. Image Processing Occupancy Sensor - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency Find More Like This Return to Search Image Processing Occupancy Sensor National Renewable Energy Laboratory Contact NREL About This Technology Publications:...

  18. Streamlined Permitting Process for Renewable Energy Resources...

    Open Energy Info (EERE)

    Streamlined Permitting Process for Renewable Energy Resources in Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Streamlined Permitting Process...

  19. American Process Inc | Open Energy Information

    Open Energy Info (EERE)

    Process Inc Jump to: navigation, search Name: American Process Inc Place: Atlanta, Georgia Zip: 30309 Product: Consulting engineering specialist firm dedicated to energy cost...

  20. Mediation Process | Department of Energy

    Energy Savers [EERE]

    Process Mediation Process This document generally discusses the DOE HQ mediation process. PDF icon OCPR-HQ-003 Final - Mediation Process.pdf More Documents & Publications Employee Reminders Management Reminders Agreement to Mediate

  1. Hydrogen Production Processes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processes Hydrogen Production Processes Hydrogen can be produced using a number of different processes. Thermochemical processes use heat and chemical reactions to release hydrogen from organic materials such as fossil fuels and biomass. Water (H2O) can be split into hydrogen (H2) and oxygen (O2) using electrolysis or solar energy. Microorganisms such as bacteria and algae can produce hydrogen through biological processes. Thermochemical Processes Some thermal processes use the energy in various

  2. Aluminum processing energy benchmark report

    SciTech Connect (OSTI)

    None, None

    2007-02-01

    Substantial energy efficiency gains have been made in the aluminum industry over the past forty years, resulting in a 58 percent decrease in energy utilization.

  3. Waste Processing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processing Waste Processing Workers process and repackage waste at the Transuranic Waste Processing Center’s Cask Processing Enclosure. Workers process and repackage waste at the Transuranic Waste Processing Center's Cask Processing Enclosure. Transuranic waste, or TRU, is one of several types of waste handled by Oak Ridge's EM program. This waste contains manmade elements heavier than uranium, hence the name "trans" or "beyond" uranium. Transuranic waste material

  4. Next Generation Manufacturing Processes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development Projects » Next Generation Manufacturing Processes Next Generation Manufacturing Processes New process technologies can rejuvenate U.S. manufacturing. Novel processing concepts can open pathways to double net energy productivity, enabling rapid manufacture of energy-efficient, high-quality products at competitive cost. Four process technology areas are expected to generate large energy, carbon, and economic benefits across the manufacturing sector. Click the areas

  5. Process Heating Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Heating Systems Process Heating Systems Best operating practices and advanced process heating technologies can lead to significant energy savings at your plant. Use the software tools, training, and publications listed below to optimize performance and save energy. Process Heating Tools Tools to assess your energy system: Process Heating Assessment and Survey Tool (PHAST) Qualified Specialists Qualified Specialists have passed a rigorous competency examination on a specific industrial

  6. Energy Facility Licensing Process Developer's Guide | Open Energy...

    Open Energy Info (EERE)

    Licensing Process Developer's Guide Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Energy Facility Licensing Process Developer's...

  7. Combustion Turbine CHP System for Food Processing Industry

    SciTech Connect (OSTI)

    2010-10-01

    This factsheet describes a combined heat and power (CHP) demonstration project that reduces the energy costs and environmental impact of a plant while easing congestion on the constrained Northeast power grid.

  8. Oregon Siting Process | Open Energy Information

    Open Energy Info (EERE)

    Siting Process Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Siting Process Abstract Overview of the siting process for energy facilities in...

  9. Renewable Energy Project Development: Advanced Process Topics

    Energy Savers [EERE]

    Process Topics Understanding Energy Markets, Project Scale Decision Factors, Procurement Options, and the Role of the Project Team Course Outline What we will cover...  About the DOE Office of Indian Energy Education Initiative  Processes for Developing Renewable Energy Projects on Tribal Lands - Understanding the Energy Market and Project Scale - Project Scale and Ownership Options - Procurement Process - Project Team  Additional Information and Resources 2 Introduction The U.S.

  10. Employees give to local food bank | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Employees give to local food bank Employees give to local food bank September 12, 2014 - 11:00am Addthis This is the fifth year OREM employees have participated in the annual Feds Feed Families summer campaign that helps replenish local food banks and raises awareness about the prevalence of hunger. This is the fifth year OREM employees have participated in the annual Feds Feed Families summer campaign that helps replenish local food banks and raises awareness about the prevalence of hunger. OAK

  11. International Food Policy Research Institute | Open Energy Information

    Open Energy Info (EERE)

    mission flows from the CGIAR mission: "To achieve sustainable food security and reduce poverty in developing countries through scientific research and research-related activities...

  12. List of Food Service Equipment Incentives | Open Energy Information

    Open Energy Info (EERE)

    Refrigeration Equipment Food Service Equipment Yes Alabama Gas Corporation - Residential Natural Gas Rebate Program (Alabama) Utility Rebate Program Alabama Residential Furnaces...

  13. DOE, Contractors Gather Food for Less Fortunate | Department of Energy

    Energy Savers [EERE]

    DOE, Contractors Gather Food for Less Fortunate DOE, Contractors Gather Food for Less Fortunate July 1, 2014 - 10:27am Addthis Mark Duff (LATA KY), Christa Dailey (Pro2Serve), Jennifer Woodard (DOE) and Kelly Layne (LATA KY) with an American flag constructed of donated food. Mark Duff (LATA KY), Christa Dailey (Pro2Serve), Jennifer Woodard (DOE) and Kelly Layne (LATA KY) with an American flag constructed of donated food. Media Contact Buz Smith (270) 441-6821 Robert.Smith@lex.doe.gov PADUCAH,

  14. Innovation for Food Retail: The 50% Advanced Energy Design Guide...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    guide includes specialty sections for refrigeration and food service found, not only in ... guide also helps those who build or design retail stores that may include refrigeration. ...

  15. Tribal Energy Development - Process and Guide

    Energy Savers [EERE]

    Development - Process & "Guide" Integrate supply and demand alternatives Tribal Objectives * Energy Reliability & Security * Off-Grid Electrification * Minimize Environmental Impacts * Supply Diversification * Use of Local Resources * Economic Development * Jobs * Build technical expertise * Respect for Mother Earth * Others?? Develop a community energy baseline Develop a common Tribal energy vision Identify and support a Tribal champion Identify and evaluate resource options

  16. KL Energy Corp Formerly KL Process Design Group | Open Energy...

    Open Energy Info (EERE)

    provider of engineering, procurement, and contracting. Operates both greenfield and brownfield projects. References: KL Energy Corp. (Formerly KL Process Design Group)1 This...

  17. Process modeling and industrial energy use

    SciTech Connect (OSTI)

    Howe, S O; Pilati, D A; Sparrow, F T

    1980-11-01

    How the process models developed at BNL are used to analyze industrial energy use is described and illustrated. Following a brief overview of the industry modeling program, the general methodology of process modeling is discussed. The discussion highlights the important concepts, contents, inputs, and outputs of a typical process model. A model of the US pulp and paper industry is then discussed as a specific application of process modeling methodology. Case study results from the pulp and paper model illustrate how process models can be used to analyze a variety of issues. Applications addressed with the case study results include projections of energy demand, conservation technology assessment, energy-related tax policies, and sensitivity analysis. A subsequent discussion of these results supports the conclusion that industry process models are versatile and powerful tools for energy end-use modeling and conservation analysis. Information on the current status of industry models at BNL is tabulated.

  18. Economic analysis of wind-powered refrigeration cooling/water-heating systems in food processing. Final report

    SciTech Connect (OSTI)

    Garling, W.S.; Harper, M.R.; Merchant-Geuder, L.; Welch, M.

    1980-03-01

    Potential applications of wind energy include not only large central turbines that can be utilized by utilities, but also dispersed systems for farms and other applications. The US Departments of Energy (DOE) and Agriculture (USDA) currently are establishing the feasibility of wind energy use in applications where the energy can be used as available, or stored in a simple form. These applications include production of hot water for rural sanitation, heating and cooling of rural structures and products, drying agricultural products, and irrigation. This study, funded by USDA, analyzed the economic feasibility of wind power in refrigeration cooling and water heating systems in food processing plants. Types of plants included were meat and poultry, dairy, fruit and vegetable, and aquaculture.

  19. IMAGE PROCESSING OCCUPANCY SENSOR - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    115910 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search IMAGE PROCESSING OCCUPANCY SENSOR United

  20. Vanadium Carbide Coating Process | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vanadium Carbide Coating Process Vanadium Carbide Coating Process Innovative Process Enhances Wear Resistance of Metals, Saving Energy, Waste, and Costs Traditional methods of coating steel surfaces with a layer of hard metal carbide require large capital investment, produce toxic and hazardous gases, are costly to operate, and require multiple heat-treatment steps during processing. Vanadium carbide (VC) coating technology provides a superior protective coating for steel surfaces and eliminates

  1. Removal of Radiocesium from Food by Processing: Data Collected after the Fukushima Daiichi Nuclear Power Plant Accident - 13167

    SciTech Connect (OSTI)

    Uchida, Shigeo; Tagami, Keiko

    2013-07-01

    Removal of radiocesium from food by processing is of great concern following the accident of TEPCO's Fukushima Daiichi Nuclear Power Plant accident. Foods in markets are monitored and recent monitoring results have shown that almost all food materials were under the standard limit concentration levels for radiocesium (Cs-134+137), that is, 100 Bq kg{sup -1} in raw foods, 50 Bq kg{sup -1} in baby foods, and 10 Bq kg{sup -1} in drinking water; those food materials above the limit cannot be sold. However, one of the most frequently asked questions from the public is how much radiocesium in food would be removed by processing. Hence, information about radioactivity removal by processing of food crops native to Japan is actively sought by consumers. In this study, the food processing retention factor, F{sub r}, which is expressed as total activity in processed food divided by total activity in raw food, is reported for various types of corps. For white rice at a typical polishing yield of 90-92% from brown rice, the F{sub r} value range was 0.42-0.47. For leafy vegetable (indirect contamination), the average F{sub r} values were 0.92 (range: 0.27-1.2) after washing and 0.55 (range: 0.22-0.93) after washing and boiling. The data for some fruits are also reported. (authors)

  2. Development and Demonstration of a Biomass Boiler for Food Processing Applications

    SciTech Connect (OSTI)

    2009-02-01

    Burns & McDonnell Engineering Company, in collaboration with Frito-Lay, Inc., Oak Ridge National Laboratory, CPL Systems, Inc., Alpha Boilers, and Kansas State University will demonstrate use of a biomass boiler in the food processing industry. The 60,000 lb/hr innovative biomass boiler system utilizing a combination of wood waste and tire-derived fuel (TDF) waste will offset all natural gas consumption at Frito-Lay's Topeka, Kansas, processing facility.

  3. Hybrid staging of geothermal energy conversion process

    SciTech Connect (OSTI)

    Steidel, R.F. Jr.

    1984-05-07

    Progress in the demonstration of the feasibility of hybrid staging in geothermal energy conversion is described, particularly processes involving the Lysholm engine. The performance limitations of the Lysholm engine were studied. (MHR)

  4. Energy accounting of apple processing operations

    SciTech Connect (OSTI)

    Romero, R.; Singh, R.P.; Brown, D.

    1981-01-01

    A thermal-energy accounting study was conducted at an apple processing plant. An analysis is given of thermal energy use and thermal efficiencies of an apple-juice single-effect evaporator and an apple-sauce cooker. 3 refs.

  5. Tribal Renewable Energy Advanced Course: Project Financing Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process and Structures Tribal Renewable Energy Advanced Course: Project Financing Process and Structures Watch the DOE Office of Indian Energy renewable energy course entitled ...

  6. Sandia Energy - Sandian Invited to Speak at "Addressing the Food...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Energy Nexus," organized by the Atlantic Council's Africa Center, Energy and Environment Program and the Brent Scowcroft Center on International Security in Washington,...

  7. ATVM APPLICATION PROCESS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROCESS ATVM APPLICATION PROCESS ATVM APPLICATION PROCESS The ATVM loan program is currently accepting applications. In order to apply for an ATVM direct loan, applicants must submit a substantially complete application meeting all applicable eligibility requirements. No payment of fees to the Department of Energy is required to apply for an ATVM direct loan; however, applicants are required to pay a fee to the Department on the closing date of an ATVM direct loan. Interested applicants should

  8. Integrated Biorefinery Process | Department of Energy

    Office of Environmental Management (EM)

    Biorefinery Process Integrated Biorefinery Process At the February 12, 2009 quarterly joint Web conference of DOE's Biomass and Clean Cities programs, Larry Russo (U.S. Department of Energy, Biomass Program) described the progress of DOEs Biorefinery Projects. PDF icon russo_20090212.pdf More Documents & Publications Quarterly Biomass Program/Clean Cities States Web Conference: January 21, 2010 The Current State of Technology for Cellulosic Ethanol Slide 1

  9. Personalized Energy: The local food movement is booming. Can we do the same

    Energy Savers [EERE]

    for electricity? | Department of Energy Personalized Energy: The local food movement is booming. Can we do the same for electricity? Personalized Energy: The local food movement is booming. Can we do the same for electricity? March 17, 2016 - 1:47pm Addthis This article was originally published in the spring 2016 issue of Argonne Now, Argonne National Laboratory's science magazine. Being cut off from electricity doesn't just affect whether we can make a phone call or heat dinner; it affects

  10. Flexible Distributed Energy and Water from Waste for the Food...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Process Technologies, GE Intelligent Platforms, SRA International, and Anheuser-Busch, developed a systematic plant-wide automation for online monitoring and supervisory control. ...

  11. Taos Mountain Energy Foods brings jobs to Questa

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to look for a larger space than our current production line in the Taos County Economic ... our products with solar energy falls right in line with our brand's business ethics." ...

  12. Commercial Building Partnership Retail Food Sales Energy Savings Overview

    SciTech Connect (OSTI)

    2013-03-01

    The Commercial Building Partnership (CBP) paired selected commercial building owners and operators with representatives of DOE, national laboratories and private sector exports to explore energy efficiency measures across general merchandise commercial buildings.

  13. The production of chemicals from food processing wastes using a novel fermenter separator. Annual progress report, January 1993--March 1994

    SciTech Connect (OSTI)

    Dale, M.C.; Venkatesh, K.V.; Choi, H.; Salicetti-Piazza, L.; Borgos-Rubio, N.; Okos, M.R.; Wankat, P.C.

    1994-03-15

    The basic objective of this project is to convert waste streams from the food processing industry to usable fuels and chemicals using novel bioreactors. These bioreactors should allow economical utilization of waste (whey, waste sugars, waste starch, bottling wastes, candy wastes, molasses, and cellulosic wastes) by the production of ethanol, acetone/butanol, organic acids (acetic, lactic, and gluconic), yeast diacetyl flavor, and antifungal compounds. Continuous processes incorporating various processing improvements such as simultaneous product separation and immobilized cells are being developed to allow commercial scale utilization of waste stream. The production of ethanol by a continuous reactor-separator is the process closest to commercialization with a 7,500 liter pilot plant presently sited at an Iowa site to convert whey lactose to ethanol. Accomplishments during 1993 include installation and start-up of a 7,500 liter ICRS for ethanol production at an industry site in Iowa; Donation and installation of a 200 liter yeast pilot Plant to the project from Kenyon Enterprises; Modeling and testing of a low energy system for recovery of ethanol from vapor is using a solvent absorption/extractive distillation system; Simultaneous saccharification/fermentation of raw corn grits and starch in a stirred reactor/separator; Testing of the ability of `koji` process to ferment raw corn grits in a `no-cook` process.

  14. Sandia Energy - Post-Processing and Analysis of Wake Measurements...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Post-Processing and Analysis of Wake Measurements Around a Scaled Turbine Home Renewable Energy Energy Water Power Partnership News News & Events Post-Processing and Analysis of...

  15. Hyperion Energy | Open Energy Information

    Open Energy Info (EERE)

    Idaho Zip: 83616 Sector: Renewable Energy Product: Renewable energy developer converting waste and less valuable recyclables from the agricultural and food processing industry...

  16. Comment submitted by the North American Association of Food Equipment Manufacturers (NAFEM) regarding the Energy Star Verification Testing Program

    Broader source: Energy.gov [DOE]

    This document is a comment submitted by the North American Association of Food Equipment Manufacturers (NAFEM) regarding the Energy Star Verification Testing Program

  17. Tribal Renewable Energy Advanced Course: Project Development Process |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Process Tribal Renewable Energy Advanced Course: Project Development Process Watch the DOE Office of Indian Energy renewable energy course entitled "Tribal Renewable Energy Project Development: Advanced Process Topics" by clicking on the .swf file below. You can also download a PDF of the PowerPoint slides. This course provides in-depth information on project development processes for renewable energy projects on tribal lands, including: Understanding the

  18. Energy Savings Performance Contracting (ESPC)-The ESPC Process |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The ESPC Process Energy Savings Performance Contracting (ESPC)-The ESPC Process Describes the general Energy Savings Performance Contracting process, including a description and considerations for key steps as well as additional resources. Author: U.S. Department of Energy PDF icon Energy Savings Performance Contracting (ESPC)-The ESPC Process More Documents & Publications FEMP Comprehensive ESPC Workshop Presentations Best Practices and Lessons Learned for Federal

  19. The Appraisal Process: Be Your Own Advocate | Department of Energy

    Energy Savers [EERE]

    Appraisal Process: Be Your Own Advocate The Appraisal Process: Be Your Own Advocate The Appraisal Process: Be Your Own Advocate, a presentation of the U.S. Department of Energy's DOE Zero Energy Ready Home program. PDF icon ZERH Appraisal Process More Documents & Publications DOE ZERH Webinar: Technical Resources for Marketing and Selling Zero Energy Ready Homes Zero Energy Ready Home Training Presentation Collective Impact for Zero Net Energy Homes

  20. Enthalpy restoration in geothermal energy processing system

    DOE Patents [OSTI]

    Matthews, Hugh B. (Boylston, MA)

    1983-01-01

    A geothermal deep well energy extraction system is provided of the general type in which solute-bearing hot water is pumped to the earth's surface from a relatively low temperature geothermal source by transferring thermal energy from the hot water to a working fluid for driving a primary turbine-motor and a primary electrical generator at the earth's surface. The superheated expanded exhaust from the primary turbine motor is conducted to a bubble tank where it bubbles through a layer of sub-cooled working fluid that has been condensed. The superheat and latent heat from the expanded exhaust of the turbine transfers thermal energy to the sub-cooled condensate. The desuperheated exhaust is then conducted to the condenser where it is condensed and sub-cooled, whereupon it is conducted back to the bubble tank via a barometric storage tank. The novel condensing process of this invention makes it possible to exploit geothermal sources which might otherwise be non-exploitable.

  1. Process for Procuring a Federal Energy Savings Performance Contract |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Process for Procuring a Federal Energy Savings Performance Contract Process for Procuring a Federal Energy Savings Performance Contract The Federal Energy Management Program (FEMP) helps agencies implement energy savings performance contract (ESPC) projects. FEMP's process for procuring an ESPC comprises five phases: Phase 1: Acquisition Planning Phase 2: Energy Service Company Selection and Preliminary Assessment Phase 3: Project Development Phase 4: Project

  2. U.S. Department of Energy Donates More Than 120,000 Pounds of Food to "Feds

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Feed Families" | Department of Energy Donates More Than 120,000 Pounds of Food to "Feds Feed Families" U.S. Department of Energy Donates More Than 120,000 Pounds of Food to "Feds Feed Families" September 29, 2010 - 12:00am Addthis WASHINGTON, D.C. - Energy Secretary Steven Chu today announced that U.S. Department of Energy employees and contractors collected and donated more than 120,000 pounds of food and supplies during the federal government's second annual

  3. The Big Picture on Process Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Big Picture on Process Heating The Big Picture on Process Heating This brief provides an overview of process heating system components, energy consumption, and potential for savings. PDF icon The Big Picture on Process Heating (January 2001) More Documents & Publications Install Waste Heat Recovery Systems for Fuel-Fired Furnaces Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems Save Energy Now in Your Process Heating Systems

  4. Solar-Thermal Fluid-Wall Reaction Processing - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Marketing Summary Currently most hydrogen is produced through a process of heating natural gas with water vapor called steam reforming. This process requires energy...

  5. DOE Announces Changes to the Energy Conservation Standards Process |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Changes to the Energy Conservation Standards Process DOE Announces Changes to the Energy Conservation Standards Process November 16, 2010 - 7:18pm Addthis The Department of Energy today announced it is making changes to expedite its rulemaking process. Historically, the Department has had difficulty meeting deadlines imposed by Congress for adopting energy efficiency standards. The Department has already taken steps to improve its internal management of the rulemaking

  6. Tribal Renewable Energy Advanced Course: Project Financing Process and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Structures | Department of Energy Process and Structures Tribal Renewable Energy Advanced Course: Project Financing Process and Structures Watch the DOE Office of Indian Energy renewable energy course entitled "Tribal Renewable Energy Project Development: Advanced Financing Process and Structures" by clicking on the .swf file below. You can also download a PDF of the PowerPoint slides. This course provides in-depth information on the following project financing structures for

  7. ITP Petroleum Refining: Energy Bandwidth for Petroleum Refining Processes |

    Office of Environmental Management (EM)

    Department of Energy Energy Bandwidth for Petroleum Refining Processes ITP Petroleum Refining: Energy Bandwidth for Petroleum Refining Processes PDF icon bandwidth.pdf More Documents & Publications ITP Petroleum Refining: Energy Bandwidth for Petroleum Refining Processes Bandwidth Study U.S. Petroleum Refining ITP Petroleum Refining: Energy and Environmental Profile of the U.S. Petroleum Refining Industry (November 2007) ITP Petroleum Refining: Profile of the Petroleum Refining Industry

  8. Site Selection Process | Department of Energy

    Office of Environmental Management (EM)

    Site Selection Process Site Selection Process PDF icon Site_Selection_Process.pdf More Documents & Publications dg_appendices.pdf REAL ESTATE PROCESS Project Management Quality Assurance Guide, GPG 017

  9. REAL ESTATE PROCESS | Department of Energy

    Office of Environmental Management (EM)

    REAL ESTATE PROCESS REAL ESTATE PROCESS PDF icon Table of Contents.pdf PDF icon Real Estate Process.pdf More Documents & Publications dg_appendices.pdf Site Selection Process Project Management Quality Assurance Guide, GPG 017

  10. Pika Energy Develops Innovative Manufacturing Process and Lowers Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Under DOE Competitiveness Improvement Project | Department of Energy Pika Energy Develops Innovative Manufacturing Process and Lowers Production Cost Under DOE Competitiveness Improvement Project Pika Energy Develops Innovative Manufacturing Process and Lowers Production Cost Under DOE Competitiveness Improvement Project September 16, 2015 - 6:24pm Addthis The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) recently awarded Pika Energy of Westbrook,

  11. DOE Requests Information to Improve Energy Efficiency Enforcement Process |

    Office of Environmental Management (EM)

    Department of Energy to Improve Energy Efficiency Enforcement Process DOE Requests Information to Improve Energy Efficiency Enforcement Process May 4, 2010 - 12:33pm Addthis Today, the Department of Energy issued a request for information to help it improve its energy efficiency certification and enforcement regulations. In its new Request for Information Regarding Revising the Energy Efficiency Certification and Enforcement Regulations ("RFI"), the Department seeks comment on how

  12. Tribal Energy Project Development Process | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    site options * Assess tribal role options * Feasibility studies * Energy market analysis * Resource assessments * Transmission pre-feasibility studies * Energy audits * ...

  13. Dry Process Electrode Fabrication | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dry Process Electrode Fabrication Dry Process Electrode Fabrication 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es134_wixom_2012_p.pdf More Documents & Publications Dry Process Electrode Fabrication Vehicle Technologies Office Merit Review 2015: Dry Process Electrode Fabrication Vehicle Technologies Office Merit Review 2014: Dry Process Electrode Fabrication

  14. Gamma Industry Processing Alliance Overview | Department of Energy

    Office of Environmental Management (EM)

    Gamma Industry Processing Alliance Overview Gamma Industry Processing Alliance Overview PDF icon Gamma Industry Processing Alliance Overview More Documents & Publications 2011 NTSF Meeting Summary NTSF Spring 2011 Agenda Department of Energy Office of Science Transportation Overview

  15. Security Review Processing Form | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Security Review Processing Form Security Review Processing Form Security Review Process - Please review carefully. Security Acknowledge Form - Complete and return immediately. Failure to complete in a timely manner may delay your start date.

  16. TITLE XVII APPLICATION PROCESS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROCESS TITLE XVII APPLICATION PROCESS TITLE XVII APPLICATION PROCESS The Title XVII application process is a two-part process. Eligible applicants receive an invitation to submit Part II of their application after meeting basic eligibility requirements referred to in each solicitation in Part I of the application process. Applications should be submitted through the Title XVII online application portal. FEES LPO is required to collect several fees from Title XVII loan program applicants. Please

  17. Superior Process Technology Inc | Open Energy Information

    Open Energy Info (EERE)

    Process Technology Inc Jump to: navigation, search Name: Superior Process Technology Inc Place: Minneapolis, Minnesota Zip: 55424 Sector: Services Product: Biodiesel production...

  18. Processing and Manufacturing Equipment | Open Energy Information

    Open Energy Info (EERE)

    Processing and Manufacturing Equipment Jump to: navigation, search TODO: Add description List of Processing and Manufacturing Equipment Incentives Retrieved from "http:...

  19. Bio Processing Technology Inc | Open Energy Information

    Open Energy Info (EERE)

    Processing Technology Inc Jump to: navigation, search Name: Bio Processing Technology Inc Place: New Indiana, Indiana Product: Focused on technologies that convert corn and other...

  20. Ag Processing Inc AGP | Open Energy Information

    Open Energy Info (EERE)

    Nebraska Zip: 68103-2047 Product: Cooperative engaged in the procurement, processing, marketing, and transportation of grains and grain products. References: Ag Processing Inc....

  1. Save Energy Now in Your Process Heating Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Heating Systems Save Energy Now in Your Process Heating Systems This fact sheet describes how manufacturing plants can save energy and money by making energy efficiency improvements to their industrial process heating systems. PDF icon Save Energy Now in Your Process Heating Systems (January 2006) More Documents & Publications Save Energy Now in Your Steam Systems Save Energy Now in Your Motor-Driven Systems

  2. SEP and ISO 50001 Certification Process | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SEP and ISO 50001 Certification Process SEP and ISO 50001 Certification Process Superior Energy Performance logo Learn about the certification process for ISO 50001 global energy management systems standard. In addition, learn about the added requirements for Superior Energy Performance® (SEP(tm)) certification. The detailed steps and free online resources outlined below can help your facility reduce energy costs, whether your facility is ready for certification or just beginning to explore

  3. Energy Bandwidth for Petroleum Refining Processes

    SciTech Connect (OSTI)

    none,

    2006-10-01

    The petroleum refining energy bandwidth report analyzes the most energy-intensive unit operations used in U.S. refineries: crude oil distillation, fluid catalytic cracking, catalytic hydrotreating, catalytic reforming, and alkylation. The "bandwidth" provides a snapshot of the energy losses that can potentially be recovered through best practices and technology R&D.

  4. Rapid Gas Hydrate Formation Process - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage Find More Like This Return to Search Rapid Gas Hydrate Formation Process National Energy Technology Laboratory Contact NETL About This Technology Technology Marketing Summary The Department of Energy's National Energy Technology Laboratory (NETL) is seeking collaborative research and licensing partners interested in implementing United States Non-provisional Patent Application entitled "Rapid Gas Hydrate Formation Process." Disclosed in this application is

  5. Interfacial Processes … Diagnostics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    … Diagnostics Interfacial Processes … Diagnostics 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon es_33_kostecki.pdf More Documents & Publications Interfacial Processes - Diagnostics Interfacial Processes in EES Systems Advanced Diagnostics Vehicle Technologies Office Merit Review 2014: Interfacial Processes in EES Systems

  6. Risk Management Process Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    » Risk Management Process Overview Risk Management Process Overview figure depicting three tier risk management process The cybersecurity risk management process explained in the Electricity Sector Cybersecurity Risk Management Process (RMP) Guideline has two primary components: the risk management model and the the risk management cycle. The risk management model reflects the organization as a three-tiered structure and provides a comprehensive view for the electricity sector organization and

  7. Improvement of the Lost Foam Casting Process | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improvement of the Lost Foam Casting Process Improvement of the Lost Foam Casting Process Improved Process Reduces Energy Use, Waste and Emissions, While Lowering Product Defects and Costs Casting is an energy-intensive manufacturing process within the metal casting and aluminum industries, requiring natural gas to melt aluminum and electricity to run equipment. The higher-than-acceptable faults and scrap rates in the lost foam casting process for the complex L61 engine previously resulted from

  8. Clean Energy Works Portland Pilot Process Evaluation

    Broader source: Energy.gov [DOE]

    This is a document from Research Into Action Inc., posted to the website of the U.S. Department of Energy's Better Buildings Neighborhood Program.

  9. Training: Process Heating Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Heating Systems Training: Process Heating Systems April 16, 2014 - 6:31pm Addthis Learn about the diverse training sessions offered. The courses are taught by highly qualified instructors who have met rigorous standards. View additional process heating system resources. Process Heating Assessment and Survey Tool Training - 2-hour webcast Availability: Online webcast Now, in addition to full-day training sessions, AMO offers a convenient, introductory, two-hour webcast on the use of the

  10. Methods and Process Stewardship | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Business Operations » Project Management Coordination Office » Methods and Process Stewardship Methods and Process Stewardship PMCO leads the development of policies, processes and reporting for project and risk management, including Funding Opportunity Announcement (FOA) and Active Project Management (APM), and leads development of policies for Annual Operating Plans (AOP). PMCO also manages the governance and Change Control Board processes, tools, support and our online resource center, PM

  11. Refractories for Industrial Processing. Opportunities for Improved Energy Efficiency

    SciTech Connect (OSTI)

    Hemrick, James G.; Hayden, H. Wayne; Angelini, Peter; Moore, Robert E.; Headrick, William L.

    2005-01-01

    Refractories are a class of materials of critical importance to manufacturing industries with high-temperature unit processes. This study describes industrial refractory applications and identifies refractory performance barriers to energy efficiency for processing. The report provides recommendations for R&D pathways leading to improved refractories for energy-efficient manufacturing and processing.

  12. Security Review Process | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Security Review Process Security Review Process PDF icon Security Review Process More Documents & Publications Headquarters Facilities Master Security Plan - Chapter 3, Personnel Security Headquarters Facilities Master Security Plan - Chapter 1, Physical Security PSH-14-0092 - In the Matter of Personnel Security

  13. The production of fuels and chemicals from food processing wastes using a novel fermenter separator

    SciTech Connect (OSTI)

    Dale, M.C.; Venkatesh, K.V.; Choi, Hojoon; Moelhman, M.; Saliceti, L.; Okos, M.R.; Wankat, P.C.

    1991-12-01

    During 1991, considerable progress was made on the waste utilization project. Two small Wisconsin companies have expressed an interest in promoting and developing the ICRS technology. Pilot plant sites at (1) Hopkinton, IA, for a sweet whey plant, and Beaver Dam WI, for an acid whey site have been under development siting ICRS operations. The Hopkinton, IA site is owned and operated by Permeate Refining Inc., who have built a batch ethanol plant across the street from Swiss Valley Farms cheddar cheese operations. Permeate from Swiss Valley is piped across to PRI. PRI has signed a contract to site a 300--500,000 gallon/yr to ICRS pilot plant. They feel that the lower labor, lower energy, continuous process offered by the ICRS will substantially improve their profitability. Catalytics, Inc, is involved with converting whey from a Kraft cream cheese operation to ethanol and yeast. A complete project including whey concentration, sterilization, and yeast growth has been designed for this site. Process design improvements with the ICRS focussed on ethanol recovery techniques during this year's project. A solvent absorption/extractive distillation (SAED) process has been developed which offers the capability of obtaining an anhydrous ethanol product from vapors off 3 to 9% ethanol solutions using very little energy for distillation. Work on products from waste streams was also performed. a. Diacetyl as a high value flavor compound was very successfully produced in a Stirred Tank Reactor w/Separation. b. Yeast production from secondary carbohydrates in the whey, lactic acid, and glycerol was studied. c. Lactic acid production from cellulose and lactose studies continued. d. Production of anti-fungal reagents by immobilized plant cells; Gossypol has antifungal properties and is produced by G. arboretum.

  14. Flexible Distributed Energy and Water from Waste for the Food and Beverage Industry

    Broader source: Energy.gov [DOE]

    Waste-to-value is a promising and comprehensive wastewater processing solution being pursued by GE that recovers valuable energy and purified water from the abundant wastewater generated and...

  15. Department of Energy Wins Award for Excellence in Business Process

    Energy Savers [EERE]

    Management & Workflow | Department of Energy Wins Award for Excellence in Business Process Management & Workflow Department of Energy Wins Award for Excellence in Business Process Management & Workflow December 6, 2010 - 12:00am Addthis Washington D.C. --- U.S. Energy Secretary Steven Chu today announced that the online portal designed by the Loan Programs Office received the 2010 Gold Award from the North America Global Awards for Excellence in Business Process Management &

  16. Instrumentation and control for fossil-energy processes

    SciTech Connect (OSTI)

    Not Available

    1982-09-01

    The 1982 symposium on instrumentation and control for fossil energy processes was held June 7 through 9, 1982, at Adam's Mark Hotel, Houston, Texas. It was sponsored by the US Department of Energy, Office of Fossil Energy; Argonne National Laboratory; and the Society for Control and Instrumentation of Energy Processes. Fifty-two papers have been entered individually into EDB and ERA; eleven papers had been entered previously from other sources. (LTN)

  17. Federal ESPC Process Phase 3: Project Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: Project Development Federal ESPC Process Phase 3: Project Development During phase 3 of the energy savings performance contract (ESPC) process, the agency and energy service company work to develop and award a task order. The task order includes descriptions of the energy conservation measures (ECMs); baselines; and financial schedules that show estimated savings, guaranteed savings, itemized prices, and agency payments. The U.S. Department of Energy's (DOE) indefinite-delivery,

  18. Risk Management Process Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    has two primary components: the risk management model and the the risk management cycle. ... Tier 1: Organization Tier 2: Mission and Business Process Tier 3: Information ...

  19. Process Particle Counter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leads to Efficient Use of Lower-Quality Fuels While both ... Widely available low-cost fuels generally contain more ... DOE's Inventions and Innovation Program, Process Metrix ...

  20. BioProcess Algae | Open Energy Information

    Open Energy Info (EERE)

    search Name: BioProcess Algae Place: Shenandoah, Iowa Sector: Biomass Product: US-based joint venture created to commercialize advanced photobioreactor technologies for...

  1. FERC Licensing Processes Matrix | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: FERC Licensing Processes MatrixPermittingRegulatory GuidanceGuideHandbook...

  2. Methods and Process Stewardship | Department of Energy

    Energy Savers [EERE]

    Plans (AOP). PMCO also manages the governance and Change Control Board processes, tools, support and our online resource center, PM Central. Goals and Priorities Enhance the...

  3. Advanced Process Engineering Co-Simulator (APECS) | Open Energy...

    Open Energy Info (EERE)

    Advanced Process Engineering Co-Simulator (APECS) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: APECS AgencyCompany Organization: National Energy Technology...

  4. Energy Efficiency Post-2011 Review Scoping Document and Process...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    workgroups, please let BPA know in your submitted comments. I. Overview and Timeline The "Energy Efficiency Post-2011 Review" (Review) is a public process to review and consider...

  5. ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers PDF icon biomass-firedboilers.pdf More Documents &...

  6. Energy Efficiency Post-2011 Review Scoping Document and Process...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of fiscal year 2011, BPA adopted a Post-2011 energy efficiency program strategy and policy for the agency through a public process. The process resulted in two documents that...

  7. EERE QC Workshop: Overview of Relevant Processes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Relevant Processes EERE QC Workshop: Overview of Relevant Processes Overview of relevant QC process by Michael Ulsh, National Renewable Energy Laboratory, at the EERE QC Workshop held December 9-10, 2013, at the National Renewable Energy Laboratory in Golden, Colorado. PDF icon EERE QC Workshop: Overview of Relevant Processes More Documents & Publications EERE QC Workshop: Overview of Quality Control Techniques EERE Quality Control Workshop Agenda DOE's Hydrogen and Fuel Cell Technologies

  8. 1703 Process Letter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1703 Process Letter 1703 Process Letter A letter to project sponsors with pending applications that could not be considered for the Recovery Act-funded §1705 program due to eligibility requirements or time constraints around the September 30, 2011 deadline for that program. These projects are still being given the opportunity to be considered for a loan guarantee under the §1703 program. PDF icon 1703_Process_Letter_2012_04_05.pdf More Documents & Publications QER - Comment of Powder River

  9. Identity Proofing Process | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Identity Proofing Process Identity Proofing Process Identity Proofing Process Prior to being issued a Digital Identity, applicants must be identity proofed during an in-person meeting with a DOE Trusted Agent. To locate a Trusted Agent, contact the EITS Service Desk: EITSServiceDesk@hq.doe.gov. You must bring the following to your in-person meeting: a copy of the Subscriber Agreement form (SAF), with the blue box portion completed. your Federal ID Badge. If you do not have a Federal ID Badge you

  10. Interfacial Processes - Diagnostics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es085_kostecki_2010_p.pdf More Documents & Publications Interfacial Processes …

  11. Biodiesel - SSC Process - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biodiesel - SSC Process Idaho National Laboratory Contact INL About This Technology Publications: PDF Document Publication Fact Sheet (1,290 KB) Technology Marketing Summary INL's biodiesel-SSC uses solid catalyst under super-critical fluid conditions to produce biodiesel from a full range of lipid feedstock. This invention provides in a single-phase process for producing alkyl esters from triglycerides or fatty acid material feedstock. The material is mixed with an alcohol and a solvent

  12. Thermochemical Conversion Processes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processes Thermochemical Conversion Processes Gasification In gasification conversion, lignocellulosic feedstocks such as wood and forest products are broken down to synthesis gas, primarily carbon monoxide and hydrogen, using heat. The feedstock is then partially oxidized, or reformed with a gasifying agent (air, oxygen, or steam), which produces synthesis gas (syngas). The makeup of syngas will vary due to the different types of feedstocks, their moisture content, the type of gasifier used,

  13. Processing and Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Processing and Conversion Processing and Conversion The strategic goal of Conversion Research and Development (R&D) is to develop technologies for converting feedstocks into commercially viable liquid transportation fuels, as well as bioproducts and biopower. The diversity of the biomass resource requires the development of multiple conversion technologies that can efficiently deal with the broad range of feedstock materials, as well as their physical and

  14. Flexible Distributed Energy & Water from Waste for the Food & Beverage Industry- Presentation by GE Global Research, June 2011

    Broader source: Energy.gov [DOE]

    Presentation on Flexible Distributed Energy & Water from Waste for the Food & Beverage Industry, given by Aditya Kumar of GE Global Research, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

  15. Mathematical modeling and computer simulation of processes in energy systems

    SciTech Connect (OSTI)

    Hanjalic, K.C. )

    1990-01-01

    This book is divided into the following chapters. Modeling techniques and tools (fundamental concepts of modeling); 2. Fluid flow, heat and mass transfer, chemical reactions, and combustion; 3. Processes in energy equipment and plant components (boilers, steam and gas turbines, IC engines, heat exchangers, pumps and compressors, nuclear reactors, steam generators and separators, energy transport equipment, energy convertors, etc.); 4. New thermal energy conversion technologies (MHD, coal gasification and liquefaction fluidized-bed combustion, pulse-combustors, multistage combustion, etc.); 5. Combined cycles and plants, cogeneration; 6. Dynamics of energy systems and their components; 7. Integrated approach to energy systems modeling, and 8. Application of modeling in energy expert systems.

  16. Energy conservation and cost benefits in the dairy processing industry

    SciTech Connect (OSTI)

    none,

    1982-01-01

    Guidance is given on measuring energy consumption in the plant and pinpointing areas where energy-conservation activities can return the most favorable economics. General energy-conservation techniques applicable to most or all segments of the dairy processing industry, including the fluid milk segment, are emphasized. These general techniques include waste heat recovery, improvements in electric motor efficiency, added insulation, refrigeration improvements, upgrading of evaporators, and increases in boiler efficiency. Specific examples are given in which these techniques are applied to dairy processing plants. The potential for energy savings by cogeneration of process steam and electricity in the dairy industry is also discussed. Process changes primarily applicable to specific milk products which have resulted in significant energy cost savings at some facilities or which promise significant contributions in the future are examined. A summary checklist of plant housekeeping measures for energy conservation and guidelines for economic evaluation of conservation alternatives are provided. (MHR)

  17. Interfacial Processes - Diagnostics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es085_kostecki_2011_o.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Interfacial Processes in EES Systems Advanced

  18. Addressing Plug and Process Loads | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1, 2015 3:00PM to 4:00PM EST Presenters: Rois Langer, National Renewable Energy Laboratory (NREL); Moira Hafer, Stanford University; Jason Sielcken, U.S. General Services Administration (GSA) Plug and process loads become a larger piece of the building energy pie as the low hanging fruits of energy efficiency, such as lighting retrofits, are harvested. This webinar will include a discussion by NREL on simple low-cost and portable plug and process loads interventions. Stanford University will

  19. Flexible Distributed Energy & Water from Waste for Food and Beverage Industry

    SciTech Connect (OSTI)

    Shi, Ruijie

    2013-12-30

    Food and beverage plants inherently consume a large quantity of water and generate a high volume of wastewater rich in organic content. On one hand, water discharge regulations are getting more stringent over the time, necessitating the use of different technologies to reduce the amount of wastewater and improve the effluent water quality. On the other hand, growing energy and water costs are driving the plants to extract and reuse valuable energy and water from the wastewater stream. An integrated waste-tovalue system uses a combination of anaerobic digester (AD), reciprocating gas engine/boiler, membrane bioreactor (MBR), and reverse osmosis (RO) to recover valuable energy as heat and/or electricity as well as purify the water for reuse. While individual anaerobic digestion and membrane bioreactors are being used in increasing numbers, there is a growing need to integrate them together in a waste-to-value system for enhanced energy and water recovery. However, currently operation of these systems relies heavily on the plant operator to perform periodic sampling and off-line lab analysis to monitor the system performance, detect any abnormal condition due to variations in the wastewater and decide on appropriate remedial action needed. This leads to a conservative design and operation of these systems to avoid any potential upsets that can destabilize the system.

  20. Improved Magnesium Molding Process (Thixomolding) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improved Magnesium Molding Process (Thixomolding) Improved Magnesium Molding Process (Thixomolding) Improved Die Casting Process Substantially Reduces Energy, Waste, and Operating Costs Traditionally, die-cast molding results in product yields of 50% and creates waste - scrap, slag, and dross. The Thixomolding process, developed and demonstrated by Thixomat, Inc., with the help of a NICE3 grant, improves product yields to 90% while eliminating waste and loss of product to melting. The process is

  1. EECBG SEP Attachment 1 - Process metric list | Department of Energy

    Energy Savers [EERE]

    SEP Attachment 1 - Process metric list EECBG SEP Attachment 1 - Process metric list Reporting Guidance Process Metric List PDF icon eecbg_10_07b_sep__10_006a_attachment1_process_metric_list.pdf More Documents & Publications EECBG 10-07C/SEP 10-006B Attachment 1: Process Metrics List EECBG Program Notice 10-07A DOE Recovery Act Reporting Requirements for the State Energy Program

  2. Hydrothermal Processing of Wet Wastes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrothermal Processing of Wet Wastes Hydrothermal Processing of Wet Wastes Breakout Session 3A-Conversion Technologies III: Energy from Our Waste (Will we Be Rich in Fuel or Knee Deep in Trash by 2025?) Hydrothermal Processing of Wet Wastes James R. Oyler, President, Genifuel Corporation PDF icon oyler_biomass_2014.pdf More Documents & Publications Challenges and Opportunities for Wet-Waste Feedstocks - Resource Assessment Waste-to-Energy Workshop Summary Report Algae-to-Fuel: Integrating

  3. Zeolite Nanosheet Membrane Process - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Zeolite Nanosheet Membrane Process University of Minnesota DOE Grant Recipients Contact GRANT About This Technology Technology Marketing Summary Zeolite Nanosheet Membranes for use as a Molecular Sieve A method of zeolite membrane fabrication that gives high aspect ratio nanosheets with high purity and precise pore structure has been developed. When combined with other technologies created by the research group, such

  4. Innovative Process and Materials Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development Projects » Innovative Process and Materials Technologies Innovative Process and Materials Technologies AMO's public-private R&D partnership activities support the development of advanced manufacturing process and materials technologies that will transition scientific innovations into clean-energy manufacturing capabilities. AMO's direct investments in innovative manufacturing projects foster advanced manufacturing enterprise creation with benefits accruing across

  5. Spin structure in high energy processes: Proceedings

    SciTech Connect (OSTI)

    DePorcel, L.; Dunwoodie, C.

    1994-12-01

    This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z{sup 0}s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ({sup 3}HE) and the Bjoerken sum rule; a consumer`s guide to lattice QCD results; top ten models constrained by b {yields} sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere.

  6. NEPA Process Transparency and Openness (2009) | Department of Energy

    Office of Environmental Management (EM)

    Process Transparency and Openness (2009) NEPA Process Transparency and Openness (2009) This memorandum describes the U.S. Department of Energy's (DOE's) policy for posting online the categorical exclusion determinations made by DOE NEPA Compliance Officers. Download Document PDF icon NEPA Process Transparency and Openness More Documents & Publications DOE Policy on NEPA Process Transparency and Openness Implementation Guidance for the DOE Policy on Documentation and Online Posting of

  7. Processing Iron Pyrite Nanocrystals for Use in Solar Cells - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Processing Iron Pyrite Nanocrystals for Use in Solar Cells Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryFor solar energy to become an economically viable energy source, alternative semiconductor materials to be used in solar cells must be found. Silicon, the longtime standard for solar cells, is expensive to process and in ever-growing demand.

  8. Process Heating: A Special Supplement to Energy Matters

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Special Supplement to Energy Matters Process Heating Roadmap to Help U.S. Industries Be Competitive P rocess heating is vital to improving industrial productiv- ity, energy efficiency, and global competitiveness. Com- petitive pressures demand use of process heating technologies with improved performance, lower environ- mental impact, and greater flexibility. However, few compa- nies have the resources to do the necessary research and development (R&D) to meet these goals. In response to in-

  9. Microsoft Word - Energy Department Initiates Recertification Process for WIPP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Department Initiates Recertification Process for WIPP CARLSBAD, N.M., March 26, 2014 - The U.S. Department of Energy (DOE) submitted its third Compliance Recertification Application (CRA) for the Waste Isolation Pilot Plant's (WIPP) to the U.S. Environmental Protection Agency (EPA), demonstrating continued compliance with EPA regulations for radioactive waste disposal, as required by Congress. The recertification process is not related to recovery efforts from the recent events at WIPP,

  10. Federal ESPC Process Phase 1: Acquisition Planning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Acquisition Planning Federal ESPC Process Phase 1: Acquisition Planning During phase 1 of the energy savings performance contract (ESPC) process, the agency contacts a Federal Energy Management Program (FEMP) federal project executive who helps educate the agency about procurement steps that are unique to ESPCs. Phase 1 at a Glance Step 1: Agency Contacts a Federal Project Executive Step 2: Agency Considers Procurement Requirements Step 3: Agency Develops a Plan of Action for the Project

  11. Wind Energy Deployment Process and Siting Tools (Presentation)

    SciTech Connect (OSTI)

    Tegen, S.

    2015-02-01

    Regardless of cost and performance, some wind projects cannot proceed to completion as a result of competing multiple uses or siting considerations. Wind energy siting issues must be better understood and quantified. DOE tasked NREL researchers with depicting the wind energy deployment process and researching development considerations. This presentation provides an overview of these findings and wind siting tools.

  12. Single Step Electrode Infiltration Process - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Single Step Electrode Infiltration Process National Energy Technology Laboratory Contact NETL About This Technology Technology Marketing Summary Research is active on the patent pending technology titled, "Method of Forming Catalyst Layer by Single Step Infiltration." This invention is available for licensing and/or further collaborative research from the U.S. Department of Energy's

  13. Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry

    SciTech Connect (OSTI)

    2011-03-07

    AMO is developing advanced technologies that cut energy use and carbon emissions in some of the most energy-intensive processes within U.S. manufacturing. The brochure describes the AMO R&D projects that address these challenges.

  14. Occurrence Reporting and Processing System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Occurrence Reporting and Processing System Occurrence Reporting and Processing System The Department of Energy's Occurrence Reporting Program provides timely notification to the DOE complex of events that could adversely affect: public or DOE worker health and safety, the environment, national security, DOE's safeguards and security interests, functioning of DOE facilities, or the Department's reputation. DOE analyzes aggregate occurrence information for generic implications and operational

  15. Institutional Change Process Step 1: Determine Goals | Department of Energy

    Office of Environmental Management (EM)

    1: Determine Goals Institutional Change Process Step 1: Determine Goals Process for Continuous Change The first step in the institutional change process for continuous change is defining your sustainability goals. That is, decide what outcomes are desired (or required) over what period of time. Behavioral, organizational, and institutional changes typically are means to achieve desired energy, resource, or greenhouse gas emission outcomes. They are not ends in and of themselves. Agencies may

  16. Institutional Change Process for Sustainability | Department of Energy

    Office of Environmental Management (EM)

    Process for Sustainability Institutional Change Process for Sustainability For establishing institutional change in a federal agency to achieve sustainability or other energy efficiency goals, follow the five-step institutional change process for continuous change. In accordance with the Continuous Change Principle, the fifth step leads to new or refined goal setting in a continuing cycle of improvement. Step 1: Determine Goals Step 2: Identify Rules, Roles, and Tools Step 3: Develop an Action

  17. Save Energy Now in Your Process Heating Systems; Industrial Technologies Program (ITP) BestPractices: Process Heating (Fact sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Heating Systems Process heating accounts for about 36% of the total energy used in industrial manufacturing applications. And in some industries, this percentage is much higher. In the glass industry, for example, process heating accounts for about 80% of energy consumption, according to the U.S. Department of Energy's (DOE) Manufacturing Energy Consumption Survey. As energy costs continue to rise, industrial plants need effective ways to reduce the energy used for process heating. To

  18. Web Project Process and Approvals | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Follow this process whenever you are developing a new Office of Energy Efficiency and Renewable Energy (EERE) Web project, a redesign, or a user-experience project. Web project teams come to the Web Governance Team (WGT) at three stages: Concept approval before development begins Project charter approval Final go-live approval. All new websites should be built in the Energy.gov Drupal environment to comply with the U.S. Department of Energy's website policy. If needed, you can also read about

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VFDs, Processing and Manufacturing Equipment, CustomOthers pending approval, Other EE, Food Service Equipment, LED Lighting NV Energy (Southern Nevada)- SureBet Business Energy...

  20. Process Heating: A Special Supplement to Energy Matters

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROCESS HEATING Indirect-Fired Kiln Conserves Scrap Aluminum and Cuts Costs O ne successful example of a waste heat recovery application is at Wabash Alloys (formerly Roth Bros.), an aluminum recycler and provider of aluminum alloy in East Syracuse, New York. A demonstration project conducted at this plant by Energy Research Company (ERCo), of Staten Island, New York, involves a new energy-efficient kiln that heats scrap aluminum for reuse. This kiln has enabled Wabash to reduce metal loss and

  1. Roll to Roll Processing Projects ITN Energy Systems

    Energy Savers [EERE]

    Science and Technology for a Better World ENERGY SYSTEMS Brian Berland Chief Science Officer High Value Roll-to-Roll Workshop (HVR2R) December 2-3, 2015 ...Science and Technology for a Better World ITN Energy Systems Taking Technologies from Lab to the Marketplace Employing R2R Processing 2 ...Science and Technology for a Better World Applications for High Value R2R * Next Generation Batteries - Increased Energy Density, Cycle Life, and Safety with All Solid State Lithium Batteries * Low-Cost

  2. Process for Fabrication of Efficient Solar Cells - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Process for Fabrication of Efficient Solar Cells Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Ames Laboratory researchers have developed a process for fabrication of solar cells with increased efficiency. Description Polymer-based photovoltaic devices have received intense interest in recent years because of their potential to provide low-cost solar energy conversion, flexibility, manufacturability, and are light weight. However, the efficiency of organic solar

  3. Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process Regenerable Mixed Copper-Iron-Inert Support Oxygen Carriers National Energy Technology Laboratory Contact NETL About This Technology Publications: PDF Document Publication 13159553.pdf (405 KB) Technology Marketing Summary This patent-pending technology, "Regenerable Mixed Copper-Iron-Inert Support Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process," provides a metal-oxide oxygen

  4. Building America Research-to-Market Process | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research » Building America Research-to-Market Process Building America Research-to-Market Process Read the Building America Research-to-Market Plan. The Building America Program conducts applied research, development, and deployment in residential buildings. Building America projects are led by U.S. Department of Energy (DOE) national laboratories and expert building science teams in partnership with leading industry players (e.g., builders, contractors, and manufacturers). Building America's

  5. Cybersecurity Risk Management Process (RMP) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (RMP) Cybersecurity Risk Management Process (RMP) The electricity subsector cybersecurity Risk Management Process (RMP) guideline was developed by the Department of Energy (DOE), in collaboration with the National Institute of Standards and Technology (NIST) and the North American Electric Reliability Corporation (NERC). Members of industry and utility-specific trade groups were included in authoring this guidance designed to be meaningful and tailored for the electricity subsector. The NIST

  6. The Effects of Ethanol on Texas Food and Feed | Department of Energy

    Energy Savers [EERE]

    The Effects of Ethanol on Texas Food and Feed The Effects of Ethanol on Texas Food and Feed There are many related and difficult questions raised by the fuel vs. food vs. feed debate. Some of those questions may be irrelevant or of less importance when compared to the real issues to be addressed. Clearly, there are winners and losers in Texas and U.S. agriculture. This report addresses a series of the common questions raised in the debate. PDF icon RR-08-01.pdf More Documents & Publications

  7. Energy efficiency analysis carried out for Petrosix process

    SciTech Connect (OSTI)

    Not Available

    1986-09-01

    In the production of shale oil, the effective use of energy is critically important for the viability of the process. The design of the Petrosix process developed by Petroleo Brasileiro S.A. reflects such a preoccupation with energy efficiency. A semi-industrial plant for the production of shale oil is being operated successfully by Petrobras in Sao Mateus do Sul in south central Brazil. An industrial module with a scale-up factor of 4 is under construction. The plant, due on stream in 1988, will produce 2650 barrels per day of shale oil and 50 metric tons per day sulfur. Future plants will be a multiplication of such modules. A thermodynamic energy analysis of the retorting section of the industrial module was carried out by Petrobras in order to identify critical points where the thermodynamic efficiencies can be improved. A mass and energy balance of the plant was made using mainly the process design data. The energy availability functions of different streams were evaluated and a lost work analysis was done for different units of the retorting section. Results of this analysis are summarized.

  8. Chemical process safety management within the Department of Energy

    SciTech Connect (OSTI)

    Piatt, J.A.

    1995-07-01

    Although the Department of Energy (DOE) is not well known for its chemical processing activities, the DOE does have a variety of chemical processes covered under OSHA`s Rule for Process Safety Management of Highly Hazardous Chemicals (the PSM Standard). DOE, like industry, is obligated to comply with the PSM Standard. The shift in the mission of DOE away from defense programs toward environmental restoration and waste management has affected these newly forming process safety management programs within DOE. This paper describes the progress made in implementing effective process safety management programs required by the PSM Standard and discusses some of the trends that have supported efforts to reduce chemical process risks within the DOE. In June of 1994, a survey of chemicals exceeding OSHA PSM or EPA Risk Management Program threshold quantities (TQs) at DOE sites found that there were 22 processes that utilized toxic or reactive chemicals over TQs; there were 13 processes involving flammable gases and liquids over TQs; and explosives manufacturing occurred at 4 sites. Examination of the survey results showed that 12 of the 22 processes involving toxic chemicals involved the use of chlorine for water treatment systems. The processes involving flammable gases and liquids were located at the Strategic Petroleum Reserve and Naval petroleum Reserve sites.

  9. Bioenergy Impacts … Non-Food

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Researchers at Energy Department national laboratories, including National Renewable Energy Laboratory, are reducing the cost of producing biofuel from non-food sources (such as corn stalks, grasses, and forestry trimmings, and algae) by reducing and streamlining conversion process steps to producing ethanol and "drop-in" biofuels (a direct replacement for gasoline, diesel, and jet fuel). Biofuel from non-food sources is becoming cheaper to produce BIOENERGY IMPACTS To learn more,

  10. Carbon Emissions: Food Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct....

  11. ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boilers | Department of Energy Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers PDF icon biomass-fired_boilers.pdf More Documents & Publications Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry ITP Energy Intensive Processes: Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry Guide to Low-Emission Boiler and Combustion

  12. Coatings and Process Development for Reduced Energy Automotive OEM Manufacturing

    Broader source: Energy.gov (indexed) [DOE]

    Furar, PPG Industries, Inc. U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. May 28-29, 2015 1 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective  Develop coatings, processes and facility design to reduce energy consumption in automotive OEM paint shops  Technical Barriers  Maintaining coating properties at lower temperature cure  Low temperature cross-link chemistries not commercial

  13. Energy Savings Performance Contracts ENABLE Process and Resources

    Broader source: Energy.gov [DOE]

    The Energy Savings Performance Contract (ESPC) ENABLE process uses General Services Administration Award Schedule 84, SIN 246-53 as the procurement vehicle to award federal projects. The Schedule allows federal customers to quickly and easily select a qualified contractor to perform an investment grade audit and ultimately develop and install the project. The Schedule also distinguishes vendors that hold small business designations, allowing customers to execute small business set asides if included in their acquisition planning strategy.

  14. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL Security Review Process

    Office of Environmental Management (EM)

    OFFICE OF INSPECTOR GENERAL Security Review Process S TEP ONE Complete and Return Security Acknowledgment Form You are responsible for returning the signed original Security Acknowledgement Form (DOE F 5631.18) located at http://www.energy.gov/ig/new-employees . The signed form should be returned to the Office of Inspector General's Headquarters Security Officer, via express mail, within 5 business days of receipt of your Tentative Appointment Letter. The form must be mailed to: Attn: Tiffany

  15. Static Sankey Diagram of Process Energy in U.S. Manufacturing Sector |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Process Energy in U.S. Manufacturing Sector Static Sankey Diagram of Process Energy in U.S. Manufacturing Sector The Process Energy Static Sankey diagram shows how energy is used directly for production by U.S. manufacturing plants. Click on the Full Sector, Onsite Generation, and Nonprocess Energy thumbnails below the diagram to see further detail on energy flows in manufacturing. Also, see the Dynamic Manufacturing Energy Sankey Tool to pan, zoom, and customize the

  16. Static Sankey Diagram of Process Energy in U.S. Manufacturing Sector |

    Energy Savers [EERE]

    Department of Energy Static Sankey Diagram of Process Energy in U.S. Manufacturing Sector Static Sankey Diagram of Process Energy in U.S. Manufacturing Sector The Process Energy Static Sankey diagram shows how energy is used directly for production by U.S. manufacturing plants. Click on the Full Sector, Onsite Generation, and Nonprocess Energy thumbnails below the diagram to see further detail on energy flows in manufacturing. Also, see the Dynamic Manufacturing Energy Sankey Tool to pan,

  17. Process evaluation of the Regional Biomass Energy Program

    SciTech Connect (OSTI)

    Wilson, C.R.; Brown, M.A.; Perlack, R.D.

    1994-03-01

    The U.S. Department of Energy (DOE) established the Regional Biomass Energy Program (RBEP) in 1983 to increase the production and use of biomass energy resources. Through the creation of five regional program (the Great Lakes, Northeast, Pacific Northwest, Southeast, and West), the RBEP focuses on regionally specific needs and opportunities. In 1992, Oak Ridge National (ORNL) conducted a process evaluation of the RBEP Program designed to document and explain the development of the goals and strategies of the five regional programs; describe the economic and market context surrounding commercialization of bioenergy systems; assess the criteria used to select projects; describe experiences with cost sharing; identify program accomplishments in the transfer of information and technology; and offer recommendations for program improvement.

  18. Plantwide Energy Assessment of a Sugarcane Farming and Processing Facility

    SciTech Connect (OSTI)

    Jakeway, L.A.; Turn, S.Q.; Keffer, V.I.; Kinoshita, C.M.

    2006-02-27

    A plantwide energy assessment was performed at Hawaiian Commercial & Sugar Co., an integrated sugarcane farming and processing facility on the island of Maui in the State of Hawaii. There were four main tasks performed for the plantwide energy assessment: 1) pump energy assessment in both field and factory operations, 2) steam generation assessment in the power production operations, 3) steam distribution assessment in the sugar manufacturing operation, and 4) electric power distribution assessment of the company system grid. The energy savings identified in each of these tasks were summarized in terms of fuel savings, electricity savings, or opportunity revenue that potentially exists mostly from increased electric power sales to the local electric utility. The results of this investigation revealed eight energy saving projects that can be implemented at HC&S. These eight projects were determined to have potential for $1.5 million in annual fuel savings or 22,337 MWh equivalent annual electricity savings. Most of the savings were derived from pump efficiency improvements and steam efficiency improvements both in generation and distribution. If all the energy saving projects were implemented and the energy savings were realized as less fuel consumed, there would be corresponding reductions in regulated air pollutants and carbon dioxide emissions from supplemental coal fuel. As HC&S is already a significant user of renewable biomass fuel for its operations, the projected reductions in air pollutants and emissions will not be as great compared to using only coal fuel for example. A classification of implementation priority into operations was performed for the identified energy saving projects based on payback period and ease of implementation.

  19. Practical Action | Open Energy Information

    Open Energy Info (EERE)

    works with poor communities to develop appropriate technologies in renewable energy, food production, agro-processing, sustainable transport, water, sanitation, small...

  20. Two-Factor Identify Proofing Process | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Identify Proofing Process Two-Factor Identify Proofing Process

  1. GeoVision Process Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Chart GeoVision Process Chart GeoVision Process Chart

  2. Advanced Reactors Thermal Energy Transport for Process Industries

    SciTech Connect (OSTI)

    P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

    2014-07-01

    The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

  3. Campus Cafeteria Serves As Sustainable Model for Energy-Efficient Food Service (Fact Sheet)

    SciTech Connect (OSTI)

    Septon, K.

    2013-10-01

    This is a general fact sheet about the energy efficiency and sustainability features of the NREL Cafe.

  4. Innovation for Food Retail: The 50% Advanced Energy Design Guide for Grocery Stores

    Broader source: Energy.gov [DOE]

    Find the presentation for the June 3, 2015 webinar on the 50% Advanced Energy Design Guide for Grocery Stores.

  5. Example process hazard analysis of a Department of Energy water chlorination process

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    On February 24, 1992, the Occupational Safety and Health Administration (OSHA) released a revised version of Section 29 Code of Federal Regulations CFR Part 1910 that added Section 1910.119, entitled ``Process Safety Management of Highly Hazardous Chemicals`` (the PSM Rule). Because US Department of Energy (DOE) Orders 5480.4 and 5483.1A prescribe OSHA 29 CFR 1910 as a standard in DOE, the PSM Rule is mandatory in the DOE complex. A major element in the PSM Rule is the process hazard analysis (PrHA), which is required for all chemical processes covered by the PSM Rule. The PrHA element of the PSM Rule requires the selection and application of appropriate hazard analysis methods to systematically identify hazards and potential accident scenarios associated with processes involving highly hazardous chemicals (HHCs). The analysis in this report is an example PrHA performed to meet the requirements of the PSM Rule. The PrHA method used in this example is the hazard and operability (HAZOP) study, and the process studied is the new Hanford 300-Area Water Treatment Facility chlorination process, which is currently in the design stage. The HAZOP study was conducted on May 18--21, 1993, by a team from the Westinghouse Hanford Company (WHC), Battelle-Columbus, the DOE, and Pacific Northwest Laboratory (PNL). The chlorination process was chosen as the example process because it is common to many DOE sites, and because quantities of chlorine at those sites generally exceed the OSHA threshold quantities (TQs).

  6. The Do and Check Processes of an Energy Management System | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy The Do and Check Processes of an Energy Management System The Do and Check Processes of an Energy Management System This presentation covers the Do and Check processes of an Energy Management System. "Do" processes include training, documents, operational control, communication, design, and procurement. "Check" processes include measuring and monitoring, legal requirements, internal auditing, non-conformance (corrective and preventive), and records. PDF icon The Do

  7. Using Waste Heat for External Processes; Industrial Technologies Program (ITP) Energy Tips - Process Heating Tip Sheet #10 (Fact Sheet).

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10 * January 2006 Industrial Technologies Program Using Waste Heat for External Processes The temperature of exhaust gases from fuel-fired industrial processes depends mainly on the process temperature and the waste heat recovery method. Figure 1 shows the heat lost in exhaust gases at various exhaust gas temperatures and percentages of excess air. Energy from gases exhausted from higher temperature processes (primary processes) can be recovered and used for lower temperature processes

  8. Manufacturing Energy and Carbon Footprint - Sector: Food and Beverage (NAICS 311, 312), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    34 Nonprocess Losses 1,934 524 Steam Distribution Losses 111 63 Nonprocess Energy 928 Electricity Generation Steam Generation 1,934 86 Prepared for the Advanced Manufacturing Office (AMO) by Energetics Incorporated 166 884 281 Generation and Transmission Losses Generation and Transmission Losses 32 607 Onsite Generation 1,051 677 618 1,295 888 118 485 7.5 53.7 61.1 39.7 38.5 14.7 63.2 14.3 117 56.1 117.2 2.9 Fuel Total Energy Total Primary Energy Use: Total Combustion Emissions: TBtu MMT CO 2 e

  9. File:07HIBRenewableEnergyFacilitySitingProcessREFSP.pdf | Open...

    Open Energy Info (EERE)

    HIBRenewableEnergyFacilitySitingProcessREFSP.pdf Jump to: navigation, search File File history File usage Metadata File:07HIBRenewableEnergyFacilitySitingProcessREFSP.pdf Size of...

  10. Flexible Distributed Energy and Water from Waste for the Food and Beverage Industry

    SciTech Connect (OSTI)

    2009-02-01

    This factsheet describes a research project whose goal is to develop a systematic model-based predictive monitoring and supervisory control solution for the early detection of abnormal process variations and potential upsets in a waste-to-value wastewater processing system.

  11. U.S. DOE TAP Webinar- The Energy Audit Process and State Applications

    Broader source: Energy.gov [DOE]

    This document contains a transcript for the The Energy Audit Process & State Applications webinar held on May 23, 2013.

  12. Measurement and Verification Activities Required in the Energy Savings Performance Contract Process

    Broader source: Energy.gov [DOE]

    There are four major measurement and verification (M&V) activities in the energy savings performance contract (ESPC) procurement process.

  13. Linking Transformational Materials and Processing for an Energy-Efficient and Low-Carbon Economy, 2010

    SciTech Connect (OSTI)

    Hunt, Warren H.; Brindle, Ross; James, Mallory; Justiniano, Mauricio; Sabouni, Ridah; Seader, Melanie; Ruch, Jennifer; Andres, Howard; Zafar, Muhammad

    2010-06-01

    The Energy Materials Blue Ribbon Panel, representing experts from industry, academia, and government, identifies new materials and processing breakthroughs that could lead to transformational advances in energy efficiency, energy security, and carbon reduction.

  14. CERCLA Process and Stakeholder Education | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CERCLA Process and Stakeholder Education CERCLA Process and Stakeholder Education The CERCLA process involves stakeholder education and input throughout the life of the project. The CERCLA process involves stakeholder education and input throughout the life of the project

  15. Energy Savings Performance Contracts ENABLE Process and Resources...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Companies Energy Savings Performance Contract ENABLE Project Assistance FEMP Contacts Ira Birnbaum U.S. Department of Energy 202-287-1869 Find a federal project executive...

  16. EFSEC Generalized Siting Process Flowchart | Open Energy Information

    Open Energy Info (EERE)

    GraphicMapChart Author Washington State Energy Facility Site Evaluation Council Organization Washington State Energy Facility Site Evaluation Council Published...

  17. Stage 1: Organizing the LEDS Process | Open Energy Information

    Open Energy Info (EERE)

    potential for sector technologies Renewable Energy Technical Potential Toolkit Building Energy Assessment Toolkit Power System Screening and Design Toolkit Land Use Assessment...

  18. Quality Guidelines for Energy System Studies Process Modeling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Company Ron Schoff, Electric Power Research Institute Robert D. Brasington, C12 Energy National Energy Technology Laboratory Office of Program Performance and Benefits 6 May...

  19. Energy Efficiency Post-2011 Review Scoping Document and Process...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Post-2011 Policy Framework": provides the high level policy framework, such as energy efficiency costs collected the in Tier 1 rate and the Energy Efficiency Incentive...

  20. Energy Savings Performance Contracting (ESPC) - The ESPC Process

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interested in learning more about how to finance your energy conservation measures without ... Center: "The ESP Contract" and "How to Finance an ESPC" Model Energy Performance ...

  1. "Paper" Energy Systems Acquisition Advisory Board Process | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy "Paper" Energy Systems Acquisition Advisory Board Process "Paper" Energy Systems Acquisition Advisory Board Process PDF icon ESAAB_-_paper_process_---_2009-01-14.pdf More Documents & Publications ESAAB Standard Operating Procedure - July 2014 Are We There Yet? - Mike Peek, Director, Project Management (MA-63) Requirements to coordinate agreements, milestones and decision documents (AMDD)

  2. Ironmaking Process Alternatives Screening Study | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ironmaking Process Alternatives Screening Study Ironmaking Process Alternatives Screening Study PDF icon Ironmaking Process Alternatives Screening Study (2000) PDF icon Appendix A - Ironmaking Process Description and Background PDF icon Appendix B - Process Component Spreadsheets PDF icon Appendix C - Process Summary Spreadsheets PDF icon Appendix D - Listings of Detailed Process Spreadsheets PDF icon Appendix E - MetSim® Ironmaking Process Simulations PDF icon Appendix F - Summary of

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Mgmt. SystemsBuilding Controls, Building Insulation, Windows, Processing and Manufacturing Equipment, CustomOthers pending approval, Other EE, Food Service Equipment...

  4. Biomass/Biogas | Open Energy Information

    Open Energy Info (EERE)

    may include: * Municipal solid waste located adjacent to urban centers * Dedicated energy crops * Manure * Vegetable crops * Liquid food processing wastes Retrieved from...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Motors, Processing and Manufacturing Equipment, CustomOthers pending approval, Other EE, Food Service Equipment, Pool Pumps, Commercial Refrigeration Equipment On-Farm Energy...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boilers, Steam-system upgrades, Processing and Manufacturing Equipment, Other EE, Food Service Equipment On-Farm Energy Efficiency & Production Grants Note: The application...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Processing and Manufacturing Equipment, CustomOthers pending approval, Other EE, Food Service Equipment, Tankless Water Heater On-Farm Energy Efficiency & Production...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Processing and Manufacturing Equipment, CustomOthers pending approval, Other EE, Food Service Equipment, Tankless Water Heater PG&E- Non-Residential Energy Efficiency...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Mgmt. SystemsBuilding Controls, Building Insulation, Windows, Motors, Motor VFDs, Processing and Manufacturing Equipment, CustomOthers pending approval, Other EE, Food...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air conditioners, Energy Mgmt. SystemsBuilding Controls, Windows, Motors, Motor VFDs, Processing and Manufacturing Equipment, CustomOthers pending approval, Other EE, Food...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    air, Programmable Thermostats, Energy Mgmt. SystemsBuilding Controls, Windows, Roofs, Processing and Manufacturing Equipment, Food Service Equipment, LED Lighting, Commercial...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Programmable Thermostats, Energy Mgmt. SystemsBuilding Controls, Motors, Motor VFDs, Processing and Manufacturing Equipment, CustomOthers pending approval, Other EE, Food...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VFDs, Processing and Manufacturing Equipment, CustomOthers pending approval, Other EE, Food Service Equipment, Commercial Cooking Equipment, Pool Pumps, LED Lighting NV Energy...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processing and Manufacturing Equipment, CustomOthers pending approval, Other EE, Food Service Equipment, Commercial Refrigeration Equipment Energy Efficiency Loans for State...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VFDs, Processing and Manufacturing Equipment, CustomOthers pending approval, Other EE, Food Service Equipment, LED Lighting State Building Energy Standards In May 2013 the...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    VFDs, Processing and Manufacturing Equipment, CustomOthers pending approval, Other EE, Food Service Equipment, Commercial Refrigeration Equipment Alternative and Clean Energy...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    VFDs, Processing and Manufacturing Equipment, CustomOthers pending approval, Other EE, Food Service Equipment, Commercial Refrigeration Equipment PECO Energy (Electric)-...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Processing and Manufacturing Equipment, CustomOthers pending approval, Other EE, Food Service Equipment, Tankless Water Heater Energy Conservation Tax Credits-...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    VFDs, Processing and Manufacturing Equipment, CustomOthers pending approval, Other EE, Food Service Equipment, Commercial Refrigeration Equipment Business Energy Conservation...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boilers, Steam-system upgrades, Processing and Manufacturing Equipment, Other EE, Food Service Equipment Business Energy Conservation Loan Program The Vermont Business...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Thermostats, Energy Mgmt. SystemsBuilding Controls, Windows, Motor VFDs, Processing and Manufacturing Equipment, CustomOthers pending approval, Other EE, Food Service Equipment,...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Mgmt. SystemsBuilding Controls, Windows, Roofs, Motor VFDs, Processing and Manufacturing Equipment, CustomOthers pending approval, Other EE, Food Service Equipment,...

  3. Overall Energy Considerations for Algae Species Comparison and Selection in Algae-to-Fuels Processes

    SciTech Connect (OSTI)

    Link, D.; Kail, B.; Curtis, W.; Tuerk,A.

    2011-01-01

    The controlled growth of microalgae as a feedstock for alternative transportation fuel continues to receive much attention. Microalgae have the characteristics of rapid growth rate, high oil (lipid) content, and ability to be grown in unconventional scenarios. Algae have also been touted as beneficial for CO{sub 2} reuse, as algae can be grown using CO{sub 2} emissions from fossil-based energy generation. Moreover, algae does not compete in the food chain, lessening the 'food versus fuel' debate. Most often, it is assumed that either rapid production rate or high oii content should be the primary factor in algae selection for algae-to-fuels production systems. However, many important characteristics of algae growth and lipid production must be considered for species selection, growth condition, and scale-up. Under light limited, high density, photoautotrophic conditions, the inherent growth rate of an organism does not affect biomass productivity, carbon fixation rate, and energy fixation rate. However, the oil productivity is organism dependent, due to physiological differences in how the organisms allocate captured photons for growth and oil production and due to the differing conditions under which organisms accumulate oils. Therefore, many different factors must be considered when assessing the overall energy efficiency of fuel production for a given algae species. Two species, Chlorella vulgaris and Botryococcus braunii, are popular choices when discussing algae-to-fuels systems. Chlorella is a very robust species, often outcompeting other species in mixed-culture systems, and produces a lipid that is composed primarily of free fatty acids and glycerides. Botryococcus is regarded as a slower growing species, and the lipid that it produces is characterized by high hydrocarbon content, primarily C28-C34 botryococcenes. The difference in growth rates is often considered to be an advantage oiChlorella. However, the total energy captured by each algal species in the same photobioreactor system should be similar at light limited growth conditions based on photon flux. It is how the algae 'allocate' this energy captured that will vary: Data will be presented that shows that Botryococcus invests greater energy in oil production than Chlorella under these growth conditions. In essence, the Chlorella can grow 'fast and lean' or can be slowed to grow 'slow and fat'. The overall energy potential between the Chlorella and Botryococcus, then, becomes much more equivalent on a per-photon basis. This work will indicate an interesting relationship between two very different algae species, in terms of growth rate, lipid content and composition, and energy efficiency of the overall process. The presentation will indicate that in light-limited growth, it cannot be assumed that either rapid growth rate or lipid production rate can be used as stand-alone indicators of which species-lipid relationships will truly be more effective in algae-to-fuels scenarios.

  4. Game-Changing Process Mitigates CO2 Emissions Using Renewable Energy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Game-Changing Process Mitigates CO2 Emissions Using Renewable Energy Game-Changing Process Mitigates CO2 Emissions Using Renewable Energy October 21, 2015 - 7:58am Addthis Game-Changing Process Mitigates CO2 Emissions Using Renewable Energy Gold nanoparticles are at the heart of a new process conceived and developed by researchers at the U.S. Department of Energy's National Energy Technology Laboratory (NETL) that can efficiently convert carbon dioxide (CO2) into usable

  5. Site Transition Process Upon Cleanup Completion | Department of Energy

    Energy Savers [EERE]

    Process Upon Cleanup Completion Site Transition Process Upon Cleanup Completion Site Transition Process Upon Cleanup Completion PDF icon Site Transition Process Upon Cleanup Completion More Documents & Publications Recommendation 198: Establish a site transition process Recommendation 218: Develop a Fact Sheet on Site Transition at On-going Mission Sites EM SSAB Conference Calls - January 27, 2011

  6. K Basins Sludge Treatment Process | Department of Energy

    Energy Savers [EERE]

    Process K Basins Sludge Treatment Process Full Document and Summary Versions are available for download PDF icon K Basins Sludge Treatment Process PDF icon Summary - K Basins Sludge Treatment Process More Documents & Publications Compilation of TRA Summaries K Basins Sludge Treatment Project Phase 1 Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP) Process Guide

  7. The Design-Build Process for the Research Support Facility (RSF), Energy Efficiency & Renewable Energy (EERE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design-Build Process for the Research Support Facility An in-depth look at how the U.S. Department of Energy and the National Renewable Energy Laboratory used a performance-based design-build contract process to build one of the most energy efficient office buildings in the world. Table of Contents The Design-Build Process for the Research Support Facility | 1 Table of Contents Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  8. Flexible Distributed Energy & Water from Waste for the Food & Beverage Industry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aditya Kumar (PI), GE Global Research kumara@ge.com (518) 387-6716 U.S. DOE Industrial Distributed Energy Portfolio Review Meeting Washington, D.C. June 1-2, 2011 1 Executive Summary * Phase 1 - Develop online monitoring and supervisory controls to improve integrated system performance & reliability (completed) * General model-based real-time monitoring using real & virtual online sensors * Supervisory controls to mitigate upsets, improve performance and reduce op ex * Phase 2 -

  9. Using Waste Heat for External Processes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat for External Processes Using Waste Heat for External Processes This tip sheet describes the potential savings resulting from using waste heat from high-temperature process heating for lower temperature processes, like oven-drying. PROCESS HEATING TIP SHEET #10 PDF icon Using Waste Heat for External Processes (January 2006) More Documents & Publications Reduce Air Infiltration in Furnaces Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions

  10. List of Solar Thermal Process Heat Incentives | Open Energy Informatio...

    Open Energy Info (EERE)

    List of Solar Thermal Process Heat Incentives Jump to: navigation, search The following contains the list of 211 Solar Thermal Process Heat Incentives. CSV (rows 1 - 211) Incentive...

  11. File:07ORDExpeditedPlantCommissioningProcess.pdf | Open Energy...

    Open Energy Info (EERE)

    ORDExpeditedPlantCommissioningProcess.pdf Jump to: navigation, search File File history File usage Metadata File:07ORDExpeditedPlantCommissioningProcess.pdf Size of this preview:...

  12. A Novel Flash Ironmaking Process | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Novel Flash Ironmaking Process A Novel Flash Ironmaking Process PDF icon flash_ironmaking_process_factsheet.pdf More Documents & Publications Ironmaking Process Alternatives Screening Study Paired Straight Hearth Furnace Steel Success Story - Ironmaking: Quality and Supply Critical to Steel Industry

  13. Roadmap for Process Heating Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap for Process Heating Technology Roadmap for Process Heating Technology This roadmap identifies priority research & development goals and near-term non-research goals to improve industrial process heating. PDF icon Roadmap for Process Heating Technology (March 2001) More Documents & Publications Process Heating Roadmap to Help U.S. Industries Be Competitive ITP Chemicals: Vision 2020 Technology Roadmap for Combinatroial Methods; September 2001 ITP Aluminum: Alumina Technology

  14. Tank Waste and Waste Processing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tank Waste and Waste Processing Tank Waste and Waste Processing Tank Waste and Waste Processing The Defense Waste Processing Facility set a record by producing 267 canisters filled with glassified waste in a year. New bubbler technology and other enhancements will increase canister production in the future. The Defense Waste Processing Facility set a record by producing 267 canisters filled with glassified waste in a year. New bubbler technology and other enhancements will increase canister

  15. The SulFerox process | Open Energy Information

    Open Energy Info (EERE)

    SulFerox process Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: The SulFerox process Abstract NA Author Le Gaz Intgral Published Publisher Not...

  16. Energy-Efficient and Reduced-Effluent Process for Ultraclean...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a moving-zone apparatus to combine surface processing (e.g., cleaning, developing or etching), rinsing and drying steps into one operation. A typical process and assembly for...

  17. SiC Processing AG | Open Energy Information

    Open Energy Info (EERE)

    SiC Processing AG Jump to: navigation, search Name: SiC Processing AG Place: Hirschau, Germany Zip: 92242 Sector: Solar Product: Offers management and recycling of slurry for solar...

  18. Property:AirQualityPermitProcess | Open Energy Information

    Open Energy Info (EERE)

    property "AirQualityPermitProcess" Showing 1 page using this property. R RAPIDGeothermalAir QualityAlaska + The Air Permit process in Alaska is divided into two divisions: Title...

  19. File:04IDAStateExplorationProcess.pdf | Open Energy Information

    Open Energy Info (EERE)

    IDAStateExplorationProcess.pdf Jump to: navigation, search File File history File usage Metadata File:04IDAStateExplorationProcess.pdf Size of this preview: 463 599 pixels....

  20. File:04UTAStateExplorationProcess.pdf | Open Energy Information

    Open Energy Info (EERE)

    04UTAStateExplorationProcess.pdf Jump to: navigation, search File File history File usage Metadata File:04UTAStateExplorationProcess.pdf Size of this preview: 463 599 pixels....

  1. File:09FDDBLMAppealsProcess.pdf | Open Energy Information

    Open Energy Info (EERE)

    9FDDBLMAppealsProcess.pdf Jump to: navigation, search File File history File usage Metadata File:09FDDBLMAppealsProcess.pdf Size of this preview: 463 599 pixels. Other...

  2. File:04TXAStateExplorationProcess.pdf | Open Energy Information

    Open Energy Info (EERE)

    4TXAStateExplorationProcess.pdf Jump to: navigation, search File File history File usage Metadata File:04TXAStateExplorationProcess.pdf Size of this preview: 463 599 pixels....

  3. File:03UTBStateEasementProcess.pdf | Open Energy Information

    Open Energy Info (EERE)

    03UTBStateEasementProcess.pdf Jump to: navigation, search File File history File usage Metadata File:03UTBStateEasementProcess.pdf Size of this preview: 463 599 pixels. Other...

  4. File:09IDAStateEnvironmentalProcess.pdf | Open Energy Information

    Open Energy Info (EERE)

    IDAStateEnvironmentalProcess.pdf Jump to: navigation, search File File history File usage File:09IDAStateEnvironmentalProcess.pdf Size of this preview: 463 599 pixels. Other...

  5. File:04FDBExplorationPreApplicationProcess.pdf | Open Energy...

    Open Energy Info (EERE)

    FDBExplorationPreApplicationProcess.pdf Jump to: navigation, search File File history File usage Metadata File:04FDBExplorationPreApplicationProcess.pdf Size of this preview: 463...

  6. File:04AKAStateExplorationProcess.pdf | Open Energy Information

    Open Energy Info (EERE)

    4AKAStateExplorationProcess.pdf Jump to: navigation, search File File history File usage Metadata File:04AKAStateExplorationProcess.pdf Size of this preview: 463 599 pixels....

  7. File:04COAStateExplorationProcess.pdf | Open Energy Information

    Open Energy Info (EERE)

    4COAStateExplorationProcess.pdf Jump to: navigation, search File File history File usage Metadata File:04COAStateExplorationProcess.pdf Size of this preview: 463 599 pixels....

  8. Pika Energy Develops Innovative Manufacturing Process and Lowers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    produce distributed wind systems to lower the cost of energy from their turbines and ... Pika's innovation was to develop a tooling design and a cooling strategy that enables ...

  9. Light Water Detritiation using the CECE Process | Department of Energy

    Office of Environmental Management (EM)

    Light Water Detritiation using the CECE Process Light Water Detritiation using the CECE Process Presentation from the 35th Tritium Focus Group Meeting held in Princeton, New Jersey on May 05-07, 2015. PDF icon Light Water Detritiation using the CECE Process More Documents & Publications Tritium R&D at AECL Selected Topics Comparison of Water-Hydrogen Catalytic Exchange Processes Versus Water Distillation for Water Detritiation Fukushima Light Water Detritiation System

  10. Salt Waste Processing Facility Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Management » Tank Waste and Waste Processing » Salt Waste Processing Facility Fact Sheet Salt Waste Processing Facility Fact Sheet Nuclear material production operations at SRS resulted in the generation of liquid radioactive waste that is being stored, on an interim basis, in 49 underground waste storage tanks in the F- and H-Area Tank Farms. PDF icon SWPF Fact Sheet More Documents & Publications Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment

  11. Proposed Process: NNMCAB Input on Campaigns | Department of Energy

    Office of Environmental Management (EM)

    Proposed Process: NNMCAB Input on Campaigns Proposed Process: NNMCAB Input on Campaigns Topic: Jeff Mousseau LANL, Provided Information on the New Proposed Campaign Process for Field Work. Field work at LANL to be Divided into 17 Campaigns in 5 Categories. PDF icon Campaign Process - April 9, 2014 More Documents & Publications Associate Directorate for Environmental Programs Update March 26, 2014 Chromium Groundwater Remediation Campaign Associate Directorate for Environmental Programs

  12. November 8, 1983: Defense Waste Processing Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8, 1983: Defense Waste Processing Facility November 8, 1983: Defense Waste Processing Facility November 8, 1983: Defense Waste Processing Facility November 8, 1983 The Department begins construction of the Defense Waste Processing Facility (DWPF) at the Savannah River Plant in South Carolina. DWPF is designed to make high-level nuclear waste into a glass-like substance, which will then be shipped to a repository. DWPF will mix borosilicate glass with the waste, heat it to 2000 degrees F, and

  13. Paducah WDA CERCLA Process & Public Involvement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CERCLA Process & Public Involvement Paducah WDA CERCLA Process & Public Involvement The CERCLA process involves stakeholder education and input throughout the life of the project. (click graphic to enlarge) The CERCLA process involves stakeholder education and input throughout the life of the project. (click graphic to enlarge) DOE is committed to fostering meaningful community involvement in environmental remediation decision making at the site. Interactive communications enable the

  14. A New Hydrogen Processing Demonstration System | Department of Energy

    Office of Environmental Management (EM)

    A New Hydrogen Processing Demonstration System A New Hydrogen Processing Demonstration System Presentation from the 35th Tritium Focus Group Meeting held in Princeton, New Jersey on May 05-07, 2015. PDF icon A New Hydrogen Processing Demonstration System More Documents & Publications Advances in Hydrogen Isotope Separation Using Thermal Cycling Absorption Process (TCAP) Overview of Tritium Activities at the Laboratory for Laser Energetics Advances in Design of the Next Generation Hydride Bed

  15. Financing Program Implementation Process Flow | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Implementation Process Flow Financing Program Implementation Process Flow The implementation process flow for financing is represented below with two models: a generic option for primary markets and a conceptual option for secondary markets. A Generic Model for the Primary Market An image of a process chart. The first step, 'Customer Contacts Contractor and Arranges for Work to be Performed,' has an arrow pointing to the next step, 'Customer Fills Out Loan Application Provided by Contractor.

  16. Differing Professional Opinions (DPO) Process | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Differing Professional Opinions (DPO) Process Differing Professional Opinions (DPO) Process Differing Professional Opinions (DPO) Process DOE O 442.2, Differing Professional Opinions for Technical Issues Involving Environment, Safety and Health, establishes a DPO process to provide DOE and contractor employees with an alternate path for resolving technical issues related to environment, safety, and health. In a memorandum dated November 7, 2013, the Deputy Secretary appointed the CNS as the DPO

  17. The EIS Comment-Response Process | Department of Energy

    Energy Savers [EERE]

    The EIS Comment-Response Process The EIS Comment-Response Process This DOE guidance presents a series of recommendations to lead those involved in the preparation and review of a final EIS. The guidance addresses both the substance and the mechanics of the comment-response process and provides advice on tracking and categorizing comments, considering comments and preparing responses, and presenting responses and corresponding changes in a final EIS. PDF icon The EIS Comment-Response Process More

  18. TruePeak Process Laser Analyzer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TruePeak Process Laser Analyzer TruePeak Process Laser Analyzer In-Situ Sensors Provide Real-Time Measurements Enabling Better Control and Process Optimization Current chemical process controls use few in-situ sensors, relying instead on analytic techniques that require sample conditioning and transport, and significant turnaround time. With few exceptions, these techniques lack speed of measurement, accuracy of measurement, sensitivity of measurement, and economical measurement. In-situ sensors

  19. Applied Process Engineering Laborotory APEL | Open Energy Information

    Open Energy Info (EERE)

    Engineering Laborotory (APEL) Place: United States Sector: Services Product: General Financial & Legal Services ( Private family-controlled ) References: Applied Process...

  20. Process Development for Nanostructured Photovoltaics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development for Nanostructured Photovoltaics Process Development for Nanostructured Photovoltaics PDF icon process_development_nanostructured_pv.pdf More Documents & Publications ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials, January 2011 2012 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2013 Pathways to Commercial Success: Technologies and

  1. PROCESSING INVITATIONS FOR A PRESIDENTIAL APPOINTEE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROCESSING INVITATIONS FOR A PRESIDENTIAL APPOINTEE PROCESSING INVITATIONS FOR A PRESIDENTIAL APPOINTEE PDF icon PROCESSING INVITATIONS FOR A PRESIDENTIAL APPOINTEE More Documents & Publications Restrictions on Federal Employees Acceptance of Gifts THE WHITE HOUSE Microsoft Word - Political Activity and the Federal Employee.doc

  2. Process for Transition of Responsibilities | Department of Energy

    Energy Savers [EERE]

    Responsibilities Process for Transition of Responsibilities Process for Transition of Responsibilities (Waste Management Conference 2006) PDF icon Process for Transition of Responsibilities More Documents & Publications FUSRAP Overview Managing Legacy Records for Formerly Utilized Sites Remedial Action Program Sites Assessing and Implementing LTS&M Requirements for Remediation Sites Under the FUSRAP Program

  3. Proceedings of the 1981 symposium on instrumentation and control for fossil-energy processes

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    The 1981 symposium on instrumentation and control for fossil-energy processes was held June 8-10, 1981, at the Sheraton-Palace Hotel, San Francisco, California. It was sponsored by the US Department of Energy; Office of Fossil Energy; Argonne National Laboratory; and the Society for Control and Instrumentation of Energy Processes. Sixty-seven articles from the proceedings have been entered individually into EDB and ERA; thirteen articles had been entered previously from other sources. (LTN)

  4. Energy Literacy Videos | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Literacy Videos Energy Literacy Videos Energy plays a major role in the everyday functions of our planet and all its life forms. From weather patterns and food chains, to human society's daily electricity and heating needs, energy is the driver of everything we know. This video series highlights the seven Energy Literacy Principles, which demonstrate energy's role across the natural and social sciences. Energy is a physical quantity that follows precise natural laws. Physical processes on

  5. Security Metricsfor Process Control Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metricsfor Process Control Systems Security Metricsfor Process Control Systems This document describes the foundations of metrics, discusses application of these metrics to control system environments, introduces a metrics taxonomy, and suggests usage of metrics to achieve operational excellence. PDF icon Security Metrics for Process Control Systems More Documents & Publications Report of the Cyber Security Research Needs for Open Science Workshop Visualization & Controls Program Peer

  6. High Temperature BOP and Fuel Processing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BOP and Fuel Processing High Temperature BOP and Fuel Processing Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. PDF icon High Temperature BOP and Fuel Processing More Documents & Publications Biogas Impurities and Cleanup for Fuel Cells Fuel Quality Issues in Stationary Fuel Cell Systems Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells

  7. The National Environmental Policy Act process | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The National Environmental Policy Act process The National Environmental Policy Act process The National Environmental Policy Act (NEPA) established a national environmental policy that protects and maintains the environment, and the legislation helped create a process to implement these goals within federal agencies. NEPA's directs agencies to: * consider the environmental consequences of a proposed action * act as an environmental trustee for future generations * attain the most beneficial

  8. Process Heating: A Special Supplement to Energy Matters

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consider the items we use every day- items such as decorative fixtures in our homes, the flatware we use for eating, and high-performance engine components in our cars. Although we use them in dis- tinctly different ways, they all have a com- mon manufacturing step that helps transform them into functional, finished goods. That step is process heating. Process heating is vital to nearly all manufacturing processes, supplying heat needed to produce basic materials and commodities. Its use is

  9. Recommendations for the Supplement Analysis Process | Department of Energy

    Energy Savers [EERE]

    Supplement Analysis Process Recommendations for the Supplement Analysis Process DOE has prepared this guidance regarding Supplement Analyses.The guidance discusses decisions regarding whether to prepare a Supplement Analysis (SA), the substantive content of the analysis, procedural aspects of preparing an SA, and the outcomes that can result. PDF icon Recommendations for the Supplement Analysis Process More Documents & Publications 2013 Annual Planning Summary for the Carlsbad Field Office

  10. Website Maintenance Process and Template | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Website Maintenance Process and Template Website Maintenance Process and Template Below you can read more about EERE's expectations for website maintenance. In June and December every year, Web coordinators will be asked to attend two special Web Governance Team meetings to report on their website maintenance plans for the rest of the fiscal year. Fill out the Web maintenance template before attending this meeting and email it to the WGT facilitator. File Website maintenance process Microsoft

  11. Budget Documents & The Federal Budget Process | Department of Energy

    Energy Savers [EERE]

    Budget & Performance » Budget Documents & The Federal Budget Process Budget Documents & The Federal Budget Process Budget Documents & The Federal Budget Process The way Congress develops tax and spending legislation is guided by a set of specific procedures laid out in the Congressional Budget Act of 1974. The centerpiece of the Budget Act is the requirement that Congress each year develop a "budget resolution" setting aggregate limits on spending and targets for

  12. Manufacturing Process for OLED Integrated Substrate | Department of Energy

    Energy Savers [EERE]

    Manufacturing Process for OLED Integrated Substrate Manufacturing Process for OLED Integrated Substrate Lead Performer: PPG Industries - Cheswick, PA Partners: - Plextronics - Pittsburgh, PA - Universal Display Corporation - Ewing, NJ DOE Total Funding: $2,345,638 Cost Share: $2,345,638 Project Term: 8/1/2013 - 7/31/2016 Funding Opportunity: SSL Manufacturing R&D Funding Opportunity Announcement (FOA) DE-FOA-000079 Project Objective This project plans to develop manufacturing processes to

  13. Equal Employment Opportunity Intake Process | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equal Employment Opportunity Intake Process Equal Employment Opportunity Intake Process Read this form to learn about the EEO intake process. You can print out this form, fill it in, and email to civilrights@hq.doe.gov and make sure to call us (202) 586-8383 to confirm receipt. PDF icon DOE EEO Intake 2011 FINAL.pdf More Documents & Publications EEO Intake Form DOE F 1600.1 DOE F 1600.2

  14. K-25 Gaseous Diffusion Process Building | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    » Signature Facilities » K-25 Gaseous Diffusion Process Building K-25 Gaseous Diffusion Process Building K-25 Gaseous Diffusion Process Building New! K-25 Virtual Museum The K-25 plant, located on the southwestern end of the Oak Ridge reservation, used the gaseous diffusion method to separate uranium-235 from uranium-238. Based on the well-known principle that molecules of a lighter isotope would pass through a porous barrier more readily than molecules of a heavier one, gaseous diffusion

  15. 33 CFR 331 et seq.: Administrative Appeal Process | Open Energy...

    Open Energy Info (EERE)

    CFR 331 et seq.: Administrative Appeal ProcessLegal Abstract These regulations establish policies and procedures used for administrative appeal of approved jurisdictional...

  16. Advanced Process Engineering Co-Simulator (APECS) | Open Energy...

    Open Energy Info (EERE)

    Advanced Process Engineering Co-Simulator (APECS) (Redirected from APECS) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: APECS AgencyCompany Organization: National...

  17. Employee In-Processing Forms | Department of Energy

    Energy Savers [EERE]

    Employee In-Processing Forms Employee In-Processing Forms Editable PDF in-processing forms which can be filled out by new employees prior to their first day of work PDF icon Employee In-Processing Forms Responsible Contacts Ernita Collins SUPERVISORY HUMAN RESOURCES SPECIALIST E-mail ernita.collins@hq.doe.gov Phone 202-586-7020 More Documents & Publications W4, Federal Withholding Tax Form DOE F 1500.7 PSH-13-0035 - In the Matter of Personnel Security Hearing

  18. Process Heating Assessment and Survey Tool | Department of Energy

    Energy Savers [EERE]

    methods to improve thermal efficiency of heating equipment. This tool helps industrial users survey process heating equipment that consumes fuel, steam, or electricity,...

  19. 18 CFR 5: Integrated License Application Process | Open Energy...

    Open Energy Info (EERE)

    5: Integrated License Application Process Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal Regulation: 18 CFR 5:...

  20. Impact and Process Evaluation of the U.S. Department of Energy's Wind

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powering America Initiative | Department of Energy and Process Evaluation of the U.S. Department of Energy's Wind Powering America Initiative Impact and Process Evaluation of the U.S. Department of Energy's Wind Powering America Initiative This report presents an evaluation of the impacts and processes of the former Wind Powering America (WPA) initiative sponsored by the U.S. Department of Energy (DOE). WPA has an underlying goal of dramatically increasing the use of wind energy in the U.S.

  1. Energy Materials and Processes, An EMSL Science Theme Advisory Panel Workshop

    SciTech Connect (OSTI)

    Burk, Linda H.

    2014-12-16

    The report summarizes discussions at the Energy Materials and Process EMSL Science Theme Advisory Panel Workshop held July 7-8, 2014.

  2. Energy Efficiency Post-2011 Review Scoping Document and Process...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from 2010 to 2014, the region should develop at least 1,200 average megawatts of cost-effective energy efficiency BPA engaged in an extensive, multi-year set of regional...

  3. A Review of Cost Estimation in New Technologies- Implications for Energy Process Plants

    Broader source: Energy.gov [DOE]

    This report reviews literature on cost estimation in several areas involving major capital expenditure programs: energy process plants, major weapons systems acquisition, public works and larger construction projects, and cost estimating techniques and problems for chemical process plants.

  4. Performance, power, and energy of in-situ and post-processing visualization

    SciTech Connect (OSTI)

    Adhinarayanan, Vignesh

    2015-10-05

    The goal of this project was to "study the performance, power, and energy trade-offs among traditional post-processing, modern post-processing, and in-situ visualization pipelines."

  5. Application Content and Evaluation Criteria/Process | Department of Energy

    Energy Savers [EERE]

    Presentation on Application Content and Evaluation Criteria/Process presented at the PEM fuel cell pre-solicitation meeting held May 26, 2005 in Arlington, VA. PDF icon fc_wrkshp_reg.pdf More Documents & Publications Application Content and Evaluation Criteria/Process Microsoft Word - aDE-FOA-0000096.rtf Microsoft Word - FOA cover sheet.doc

  6. TERA Application and Review Process Flowchart | Open Energy Informatio...

    Open Energy Info (EERE)

    and Review Process FlowchartLegal Published NA Year Signed or Took Effect 2014 Legal Citation Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online...

  7. Department of Energy Wins Award for Excellence in Business Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Loan Programs Office received the 2010 Gold Award from the North America Global Awards ... 17-year history to receive a Gold Award in business process management and workflow. ...

  8. File:08COCStateTransmissionProcess.pdf | Open Energy Information

    Open Energy Info (EERE)

    Community Login | Sign Up Search File Edit History File:08COCStateTransmissionProcess.pdf Jump to: navigation, search File File history File usage Metadata File:08COCStateTransm...

  9. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Masanet, Eric; Masanet, Eric; Worrell, Ernst; Graus, Wina; Galitsky, Christina

    2008-01-01

    The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

  10. Water Based Process for Fabricating Thermoelectric Materials - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Solar Thermal Solar Thermal Find More Like This Return to Search Water Based Process for Fabricating Thermoelectric Materials Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication LBNL Commercial Analysis Report (1,391 KB) Technology Marketing Summary Berkeley Lab scientists Rachel Segalman, Jeffrey Urban and Kevin See have invented a water based process to make thermoelectric films. The resulting composite film

  11. Construction Begins on New Waste Processing Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Construction Begins on New Waste Processing Facility Construction Begins on New Waste Processing Facility February 9, 2012 - 12:00pm Addthis Workers construct a new facility that will help Los Alamos National Laboratory accelerate the shipment of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad for permanent disposal. Workers construct a new facility that will help Los Alamos National Laboratory accelerate the shipment of transuranic (TRU) waste to the Waste

  12. FAQS Qualification Card - Chemical Processing | Department of Energy

    Office of Environmental Management (EM)

    Chemical Processing FAQS Qualification Card - Chemical Processing A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS identify the

  13. Department of Energy- Voluntary Protection Program Contract Transition Process

    Broader source: Energy.gov [DOE]

    The purpose of the Department of Energy (DOE) Voluntary Protection Program (VPP) is to recognize and promote excellence in contractor occupational health and safety programs. These programs, composed of management systems for preventing and controlling occupational hazards, not only ensure that DOE Orders are met, but go beyond requirements to provide the best feasible health and safety protection at the site

  14. Using an Energy Performance Based Design-Build Process to Procure a Large Scale Low-Energy Building: Preprint

    SciTech Connect (OSTI)

    Pless, S.; Torcellini, P.; Shelton, D.

    2011-05-01

    This paper will review a procurement, acquisition, and contract process of a large-scale replicable net zero energy (ZEB) office building. The owners developed and implemented an energy performance based design-build process to procure a 220,000 ft2 office building with contractual requirements to meet demand side energy and LEED goals. We will outline the key procurement steps needed to ensure achievement of our energy efficiency and ZEB goals. The development of a clear and comprehensive Request for Proposals (RFP) that includes specific and measurable energy use intensity goals is critical to ensure energy goals are met in a cost effective manner. The RFP includes a contractual requirement to meet an absolute demand side energy use requirement of 25 kBtu/ft2, with specific calculation methods on what loads are included, how to normalize the energy goal based on increased space efficiency and data center allocation, specific plug loads and schedules, and calculation details on how to account for energy used from the campus hot and chilled water supply. Additional advantages of integrating energy requirements into this procurement process include leveraging the voluntary incentive program, which is a financial incentive based on how well the owner feels the design-build team is meeting the RFP goals.

  15. Process for producing carbon foams for energy storage devices

    DOE Patents [OSTI]

    Kaschmitter, J.L.; Mayer, S.T.; Pekala, R.W.

    1998-08-04

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc--1.0 g/cc) electrically conductive and have high surface areas (400 m{sup 2}/g--1,000 m{sup 2}/g). Capacitances on the order of several tens of farad per gram of electrode are achieved. 9 figs.

  16. Process for producing carbon foams for energy storage devices

    DOE Patents [OSTI]

    Kaschmitter, James L.; Mayer, Steven T.; Pekala, Richard W.

    1998-01-01

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc-1.0 g/cc) electrically conductive and have high surface areas (400 m.sup.2 /g-1000 m.sup.2 /g). Capacitances on the order of several tens of farad per gram of electrode are achieved.

  17. Proceedings of the 1980 symposium on instrumentation and control for fossil energy processes

    SciTech Connect (OSTI)

    Doering, R.W. (comp.)

    1980-01-01

    The 1980 symposium on Instrumentation and Control for Fossil Energy Processes was held June 9-11, 1980, New Cavalier, Virginia Beach, Virginia. It was sponsored by the Argonne National Laboratory and the US Department of Energy, Office of Fossil Energy. Forty-five papers have been entered individually into EDB and ERA; nine papers had been entered previously from other sources. (LTN)

  18. Energy-efficient regenerative liquid desiccant drying process

    DOE Patents [OSTI]

    Ko, Suk M. (Huntsville, AL); Grodzka, Philomena G. (Huntsville, AL); McCormick, Paul O. (Athens, AL)

    1980-01-01

    This invention relates to the use of desiccants in conjunction with an open oop drying cycle and a closed loop drying cycle to reclaim the energy expended in vaporizing moisture in harvested crops. In the closed loop cycle, the drying air is brought into contact with a desiccant after it exits the crop drying bin. Water vapor in the moist air is absorbed by the desiccant, thus reducing the relative humidity of the air. The air is then heated by the used desiccant and returned to the crop bin. During the open loop drying cycle the used desiccant is heated (either fossil or solar energy heat sources may be used) and regenerated at high temperature, driving water vapor from the desiccant. This water vapor is condensed and used to preheat the dilute (wet) desiccant before heat is added from the external source (fossil or solar). The latent heat of vaporization of the moisture removed from the desiccant is reclaimed in this manner. The sensible heat of the regenerated desiccant is utilized in the open loop drying cycle. Also, closed cycle operation implies that no net energy is expended in heating drying air.

  19. Application Content and Evaluation Criteria/Process | Department of Energy

    Energy Savers [EERE]

    This presentation by Jill Gruber of the DOE Golden Field Office was given at the Manufacturing Pre-Solicitation Workshop in Arlington, Va., on May 18, 2007. PDF icon manufacturing_foa_gruber.pdf More Documents & Publications Application Content and Evaluation Criteria/Process Manufacturing Pre-Solicitation Transcript Microsoft Word - rDE-FOA-0000080.rtf

  20. Seven Ways to Optimize Your Process Heat System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seven Ways to Optimize Your Process Heat System Seven Ways to Optimize Your Process Heat System This brief outlines the seven Best Bets for Process Heating System Savings and Improvements. PDF icon Seven Ways to Optimize Your Process Heat System (January 2002) More Documents & Publications Process Heating Assessment and Survey Tool (PHAST) Introduction Mid-South Metallurgical Makes Electrical and Natural Gas System Upgrades to Reduce Energy Use and Achieve Cost Savings Reduce Natural Gas Use

  1. Olefins from High Yield Autothermal Reforming Process - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Olefins from High Yield Autothermal Reforming Process DOE Grant Recipients University of Minnesota Contact University of Minnesota About This Technology <span id="Caption"><span id="ctl00_MainContentHolder_zoomimage_defaultCaption">Isobutylene is used to produce fuel additives.</span></span> Isobutylene is used to produce fuel additives. <span id="Caption"><span

  2. Lignin from Transgenic Poplar Is Easier to Process - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Lignin from Transgenic Poplar Is Easier to Process Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary Lignin is an important plant cell wall component that provides structural support and vascular functions. It is one of the most abundant organic polymers on Earth, constituting about 30 percent of non-fossil organic carbon. However, the chemical structure of lignin is difficult to break down by chemical and enzymatic means, posing a

  3. Nanoparticle Technology for Biorefinery of Non-Food Source Feedstocks |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Nanoparticle Technology for Biorefinery of Non-Food Source Feedstocks Nanoparticle Technology for Biorefinery of Non-Food Source Feedstocks PDF icon nanoparticle_tech_biorefinery.pdf More Documents & Publications ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials, January 2011 2015 Peer Review Presentations-Algal Feedstocks National Alliance for Advanced Biofuels and Bioproducts

  4. Role of an Energy Manager | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Role of an Energy Manager Role of an Energy Manager This presentation discusses the role of an energy manager in benchmarking energy consumption, setting goals, monitoring energy flow, and providing training and communications. PDF icon Role of an Energy Manager (July 1, 2010) File webcast_20100701_role_energy_manager.wmv More Documents & Publications J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy at a Large Food Processing Plant Steam System Efficiency Optimized

  5. Role of an Energy Manager | Department of Energy

    Energy Savers [EERE]

    Role of an Energy Manager Role of an Energy Manager This presentation discusses the role of an energy manager in benchmarking energy consumption, setting goals, monitoring energy flow, and providing training and communications. PDF icon Role of an Energy Manager (July 1, 2010) File webcast_20100701_role_energy_manager.wmv More Documents & Publications J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy at a Large Food Processing Plant Steam System Efficiency Optimized

  6. Covered Product Category: Hot Food Holding Cabinets

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for hot food holding cabinets, which are covered by the ENERGY STAR program.

  7. Final Technical Report - Autothermal Styrene Manufacturing Process with Net Export of Energy

    SciTech Connect (OSTI)

    Trubac, Robert , E.; Lin, Feng; Ghosh, Ruma: Greene, Marvin

    2011-11-29

    The overall objectives of the project were to: (a) develop an economically competitive processing technology for styrene monomer (SM) that would reduce process energy requirements by a minimum 25% relative to those of conventional technology while achieving a minimum 10% ROI; and (b) advance the technology towards commercial readiness. This technology is referred to as OMT (Oxymethylation of Toluene). The unique energy savings feature of the OMT technology would be replacement of the conventional benzene and ethylene feedstocks with toluene, methane in natural gas and air or oxygen, the latter of which have much lower specific energy of production values. As an oxidative technology, OMT is a net energy exporter rather than a net energy consumer like the conventional ethylbenzene/styrene (EB/SM) process. OMT plants would ultimately reduce the cost of styrene monomer which in turn will decrease the costs of polystyrene making it perhaps more cost competitive with competing polymers such as polypropylene.

  8. Whole Building Efficiency for Whole Foods: Preprint

    SciTech Connect (OSTI)

    Deru, M.; Doebber, I.; Hirsch, A.

    2013-02-01

    The National Renewable Energy Laboratory partnered with Whole Foods Market under the Commercial Building Partnership (CBP) program to design and implement a new store in Raleigh, North Carolina. The result was a design with a predicted energy savings of 40% over ASHRAE Standard 90.1-2004, and 25% energy savings over their standard design. Measured performance of the as-built building showed that the building did not achieve the predicted performance. A detailed review of the project several months after opening revealed a series of several items in construction and controls items that were not implemented properly and were not fully corrected in the commissioning process.

  9. Microwave and Beam Activation of Nanostructured Catalysts for Environmentally Friendly, Energy Efficient Heavy Crude Oil Processing

    SciTech Connect (OSTI)

    2009-03-01

    This factsheet describes a study whose goal is initial evaluation and development of energy efficient processes which take advantage of the benefits offered by nanostructured catalysts which can be activated by microwave, RF, or radiation beams.

  10. H.R.S. 201N - Renewable Energy Facility Siting Process | Open...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: H.R.S. 201N - Renewable Energy Facility Siting ProcessLegal Published NA Year Signed or...

  11. What to Expect when being Processed for a Department of Energy Security Clearance or Access Authorization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WHAT TO EXPECT WHEN BEING PROCESSED FOR A DEPARTMENT OF ENERGY SECURITY CLEARANCE OR ACCESS AUTHORIZATION INTRODUCTION This overview will help individuals new to the process understand what it means to obtain and maintain a Department of Energy (DOE) security clearance or access authorization. You are a part of a select group of individuals who are being considered for access to classified information maintained by DOE. WHAT IS CLASSIFIED INFORMATION? As you know, the protection of classified

  12. Improved Processing of High Alloy Steels for Wear Components in Energy

    Office of Scientific and Technical Information (OSTI)

    Generation Systems, Transportation and Manufacturing Systems (Technical Report) | SciTech Connect Improved Processing of High Alloy Steels for Wear Components in Energy Generation Systems, Transportation and Manufacturing Systems Citation Details In-Document Search Title: Improved Processing of High Alloy Steels for Wear Components in Energy Generation Systems, Transportation and Manufacturing Systems Authors: Peter, William H [1] ; Liby, Alan L [1] ; Chen, Wei [1] ; Yamamoto, Yukinori [1] ;

  13. Innovative Energy-Saving Process Earns Jefferson Lab Team a 2007 White

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    House Award | Jefferson Lab Innovative Energy-Saving Process Earns Jefferson Lab Team a 2007 White House Award June 12, 2007 Group The Jefferson Lab engineers who received a White House Closing the Circle Award were (left to right): Cryogenic Group Leader Dana Arenius, and team members Mathew Wright, Jonathan Creel, Kelly Dixon, Peter Knudsen and Venkatarao "Rao" Ganni. NEWPORT NEWS, VA, June 12, 2007 - A series of innovative energy-saving processes invented by engineers at the

  14. Industrial Technologies Program Research Plan for Energy-Intensive Process Industries

    SciTech Connect (OSTI)

    Chapas, Richard B.; Colwell, Jeffery A.

    2007-10-01

    In this plan, the Industrial Technologies Program (ITP) identifies the objectives of its cross-cutting strategy for conducting research in collaboration with industry and U.S. Department of Energy national laboratories to develop technologies that improve the efficiencies of energy-intensive process industries.

  15. Impact and Process Evaluation of the U.S. Department of Energy's Wind Powering America Initiative

    SciTech Connect (OSTI)

    2013-05-01

    This report presents an evaluation of the impacts and processes of the former Wind Powering America(WPA) initiative sponsored by the U.S. Department of Energy (DOE). WPA has an underlying goal of dramatically increasing the use of wind energy in the U.S.

  16. Utilization of geothermal energy in the mining and processing of tungsten ore. Final report

    SciTech Connect (OSTI)

    Erickson, M.V.; Lacy, S.B.; Lowe, G.D.; Nussbaum, A.M.; Walter, K.M.; Willens, C.A.

    1981-01-01

    The engineering, economic, and environmental feasibility of the use of low and moderate temperature geothermal heat in the mining and processing of tungsten ore is explored. The following are covered: general engineering evaluation, design of a geothermal energy system, economics, the geothermal resource, the institutional barriers assessment, environmental factors, an alternate geothermal energy source, and alternates to geothermal development. (MHR)

  17. Utilization of Process Off-Gas as a Fuel for Improved Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination ADVANCED MANUFACTURING OFFICE Utilization of Process Off-Gas as a Fuel for Improved Energy Efficiency Introduction Coke calcination is a process that involves the heating of green petroleum coke in order to remove volatile material and purify the coke for further processing. Calcined coke is vital to the aluminum industry, where it is used to produce carbon anodes for aluminum production. Calcined coke is also

  18. Food and Drug Administration White Oak Campus Environmental Stewardshi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Food and Drug Administration White Oak Campus Environmental Stewardship and Cost Savings FEMP ESPC Success Story on water conservation and green energy at the Food and Drug ...

  19. Eleventh symposium on energy engineering sciences: Proceedings. Solid mechanics and processing: Analysis, measurement and characterization

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The Eleventh Symposium on Energy Engineering Sciences was held on May 3--5, 1993, at the Argonne National Laboratory, Argonne, Illinois. These proceedings include the program, list of participants, and the papers that were presented during the eight technical sessions held at this meeting. This symposium was organized into eight technical sessions: Surfaces and interfaces; thermophysical properties and processes; inelastic behavior; nondestructive characterization; multiphase flow and thermal processes; optical and other measurement systems; stochastic processes; and large systems and control. Individual projects were processed separately for the databases.

  20. Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems

    Broader source: Energy.gov [DOE]

    Process heating plays a key role in producing steel, aluminum, and glass and in manufacturing products made from these materials. Faced with regulatory and competitive pressures to control emissions and reduce operating costs, metal and glass manufacturers are considering a variety of options for reducing overall energy consumption. As 38% of the energy used in U.S. industrial plants is consumed for process heating applications, metal and glass manufacturers are discovering that process heating technologies provide significant opportunities for improving industrial productivity, energy efficiency, and global competitiveness. This fact sheet is the first in a series to describe such opportunities that can be realized in industrial systems by conducting plant-wide assessments (PWA).

  1. Audit of the Department of Energy's Scientific and Technical Information Process, IG-0407

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June 17, 1997 MEMORANDUM FOR THE SECRETARY FROM: John C. Layton Inspector General SUBJECT: INFORMATION: Report on "Audit of the Department of Energy's Scientific and Technical Information Process" BACKGROUND: The Department of Energy has historically devoted significant resources to fund research and development activities. During FY 1995, approximately $5.7 billion was obligated for research and development to management and operating contractors, and another $1.8 billion was

  2. End User Functional and Performance Requirements for HTGR Energy Supply to Industrial Processes

    SciTech Connect (OSTI)

    L.E. Demick

    2010-09-01

    This document specifies end user functional and performance requirements to be used in the development of the design of a high temperature gas-cooled reactor (HTGR) based plant supplying energy to industrial processes. These requirements were developed from collaboration with industry and HTGR suppliers and from detailed evaluation of integration of the HTGR technology in industrial processes. The functional and performance requirements specified herein are an effective representation of the industrial sector energy needs and an effective basis for developing a plant design that will serve the broadest range of industrial applications.

  3. Energy Department Requests Information on Biofuels & Bioproducts Process Pilot Verification Capabilities

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy is seeking input from industry, academia, national laboratories, and other biofuels and bioproducts stakeholders to identify existing pilot- or process development-scale facilities with the capability to perform process verifications for biomass conversion pathways to biofuels, bioproducts, or intermediates that integrate multiple unit operations on a scale of approximately 0.5 or greater tons of dry biomass input per day.

  4. Pilot test of Pickliq{reg_sign} process to determine energy and environmental benefits & economic feasibility

    SciTech Connect (OSTI)

    Olsen, D.R.

    1997-07-13

    Green Technology Group (GTG) was awarded Grant No. DE-FG01-96EE 15657 in the amount of $99,904 for a project to advance GTG`s Pickliq{reg_sign} Process in the Copper and Steel Industries. The use of the Pickliq{reg_sign} Process can significantly reduce the production of waste acids containing metal salts. The Pickliq{reg_sign} Process can save energy and eliminate hazardous waste in a typical copper rod or wire mill or a typical steel wire mill. The objective of this pilot project was to determine the magnitude of the economic, energy and environmental benefits of the Pickliq{reg_sign} Process in two applications within the metal processing industry. The effectiveness of the process has already been demonstrated at facilities cleaning iron and steel with sulfuric acid. 9207 companies are reported to use sulfuric and hydrochloric acid in the USA. The USEPA TRI statistics of acid not recycled in the US is 2.4 x 10{sup 9} lbs (net) for Hydrochloric Acid and 2.0 x 10{sup 9} lbs (net) for Sulfuric Acid. The energy cost of not reclaiming acid is 10.7 x 10{sup 6} BTU/ton for Hydrochloric Acid and 21.6 x 10{sup 6} BTU/Ton for Sulfuric Acid. This means that there is a very large market for the application of the Pickliq{reg_sign} Process and the widespread use of the process will bring significant world wide savings of energy to the environment.

  5. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Process Intensification Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Intensification Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Process Intensification is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR technology chapters, and other Chapter 6 technology

  6. The production of fuels and chemicals from food processing wastes using a novel fermenter separator. Annual progress report, January 1991--December 1991

    SciTech Connect (OSTI)

    Dale, M.C.; Venkatesh, K.V.; Choi, Hojoon; Moelhman, M.; Saliceti, L.; Okos, M.R.; Wankat, P.C.

    1991-12-01

    During 1991, considerable progress was made on the waste utilization project. Two small Wisconsin companies have expressed an interest in promoting and developing the ICRS technology. Pilot plant sites at (1) Hopkinton, IA, for a sweet whey plant, and Beaver Dam WI, for an acid whey site have been under development siting ICRS operations. The Hopkinton, IA site is owned and operated by Permeate Refining Inc., who have built a batch ethanol plant across the street from Swiss Valley Farms cheddar cheese operations. Permeate from Swiss Valley is piped across to PRI. PRI has signed a contract to site a 300--500,000 gallon/yr to ICRS pilot plant. They feel that the lower labor, lower energy, continuous process offered by the ICRS will substantially improve their profitability. Catalytics, Inc, is involved with converting whey from a Kraft cream cheese operation to ethanol and yeast. A complete project including whey concentration, sterilization, and yeast growth has been designed for this site. Process design improvements with the ICRS focussed on ethanol recovery techniques during this year`s project. A solvent absorption/extractive distillation (SAED) process has been developed which offers the capability of obtaining an anhydrous ethanol product from vapors off 3 to 9% ethanol solutions using very little energy for distillation. Work on products from waste streams was also performed. a. Diacetyl as a high value flavor compound was very successfully produced in a Stirred Tank Reactor w/Separation. b. Yeast production from secondary carbohydrates in the whey, lactic acid, and glycerol was studied. c. Lactic acid production from cellulose and lactose studies continued. d. Production of anti-fungal reagents by immobilized plant cells; Gossypol has antifungal properties and is produced by G. arboretum.

  7. Low Cost Chemical Feedstocks Using an Improved and Energy Efficient Natural Gas Liquid Removal Process

    SciTech Connect (OSTI)

    2004-07-01

    This factsheet describes a research project whose goal is to develop a new low-cost and energy efficient NGL recovery process - through a combination of theoretical, bench-scale, and pilot-scale testing - so that it can be offered to the natural gas industry for commercialization.

  8. Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contents Introduction��������������������������������������������������������1 Industrial Reactions and Separations�����������������������������������������������3 High-Temperature Processing ��������������������6 Waste Heat Minimization and

  9. Full report: Assessment and opportunity identification of energy efficient pollution prevention technologies and processes

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    US industry produces about 12 billion tons of waste a year, or two-thirds of the waste generated in the US. The costs of handling and disposing of these wastes are significant, estimated to be between $25 and $43 billion in 1991, and represent an increase of 66% since 1986. US industry also uses about one-third of all energy consumed in the nation, which adds to the environmental burden. Industrial wastes affect the environmental well-being of the nation and, because of their growing costs, the competitive abilities of US industry. As part of a national effort to reduce industrial wastes, the US Congress passed the Energy Policy Act (EPAct, P.L. 102-486). Section 2108, subsections (b) and (c), of EPAct requires the Department of Energy (DOE) to identify opportunities to demonstrate energy efficient pollution prevention technologies and processes; to assess their availability and the energy, environmental, and cost effects of such technologies; and to report the results. Work for this report clearly pointed to two things, that there is insufficient data on wastes and that there is great breadth and diversity in the US industrial sector. This report identifies: information currently available on industrial sector waste streams, opportunities for demonstration of energy efficient pollution prevention technologies in two industries that produce significant amounts of waste--chemicals and petroleum, characteristics of waste reducing and energy saving technologies identifiable in the public literature, and potential barriers to adoption of waste reducing technologies by industry.

  10. Save Energy Now in Your Steam Systems; Industrial Technologies Program (ITP) BestPractices: Process Heating (Fact sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam Systems Steam systems account for about 30% of the total energy used in industrial applications for product output. These systems can be indispensable in delivering the energy needed for process heating, pressure control, mechanical drives, separation of components, and production of hot water for process reactions. As energy costs continue to rise, industrial plants need effective ways to reduce the amount of energy consumed by their steam systems. To help meet this need, the U.S.

  11. New Design Methods And Algorithms For High Energy-Efficient And Low-cost Distillation Processes

    SciTech Connect (OSTI)

    Agrawal, Rakesh

    2013-11-21

    This project sought and successfully answered two big challenges facing the creation of low-energy, cost-effective, zeotropic multi-component distillation processes: first, identification of an efficient search space that includes all the useful distillation configurations and no undesired configurations; second, development of an algorithm to search the space efficiently and generate an array of low-energy options for industrial multi-component mixtures. Such mixtures are found in large-scale chemical and petroleum plants. Commercialization of our results was addressed by building a user interface allowing practical application of our methods for industrial problems by anyone with basic knowledge of distillation for a given problem. We also provided our algorithm to a major U.S. Chemical Company for use by the practitioners. The successful execution of this program has provided methods and algorithms at the disposal of process engineers to readily generate low-energy solutions for a large class of multicomponent distillation problems in a typical chemical and petrochemical plant. In a petrochemical complex, the distillation trains within crude oil processing, hydrotreating units containing alkylation, isomerization, reformer, LPG (liquefied petroleum gas) and NGL (natural gas liquids) processing units can benefit from our results. Effluents from naphtha crackers and ethane-propane crackers typically contain mixtures of methane, ethylene, ethane, propylene, propane, butane and heavier hydrocarbons. We have shown that our systematic search method with a more complete search space, along with the optimization algorithm, has a potential to yield low-energy distillation configurations for all such applications with energy savings up to 50%.

  12. Energy and Water Conservation Assessment of the Radiochemical Processing Laboratory (RPL) at Pacific Northwest National Laboratory

    SciTech Connect (OSTI)

    Johnson, Stephanie R.; Koehler, Theresa M.; Boyd, Brian K.

    2014-05-31

    This report summarizes the results of an energy and water conservation assessment of the Radiochemical Processing Laboratory (RPL) at Pacific Northwest National Laboratory (PNNL). The assessment was performed in October 2013 by engineers from the PNNL Building Performance Team with the support of the dedicated RPL staff and several Facilities and Operations (F&O) department engineers. The assessment was completed for the Facilities and Operations (F&O) department at PNNL in support of the requirements within Section 432 of the Energy Independence and Security Act (EISA) of 2007.

  13. UNITED STATES DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL MANAGEMENT WASTE PROCESSING ANNUAL TECHNOLOGY DEVELOPMENT REPORT 2008

    SciTech Connect (OSTI)

    Bush, S.

    2009-11-05

    The Office of Waste Processing identifies and reduces engineering and technical risks and uncertainties of the waste processing programs and projects of the Department of Energy's Environmental Management (EM) mission through the timely development of solutions to technical issues. The risks, and actions taken to mitigate those risks, are determined through technology readiness assessments, program reviews, technology information exchanges, external technical reviews, technical assistance, and targeted technology development and deployment. The Office of Waste Processing works with other DOE Headquarters offices and project and field organizations to proactively evaluate technical needs, identify multi-site solutions, and improve the technology and engineering associated with project and contract management. Participants in this program are empowered with the authority, resources, and training to implement their defined priorities, roles, and responsibilities. The Office of Waste Processing Multi-Year Program Plan (MYPP) supports the goals and objectives of the U.S. Department of Energy (DOE) - Office of Environmental Management Engineering and Technology Roadmap by providing direction for technology enhancement, development, and demonstration that will lead to a reduction of technical risks and uncertainties in EM waste processing activities. The MYPP summarizes the program areas and the scope of activities within each program area proposed for the next five years to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. Waste Processing Program activities within the Roadmap and the MYPP are described in these seven program areas: (1) Improved Waste Storage Technology; (2) Reliable and Efficient Waste Retrieval Technologies; (3) Enhanced Tank Closure Processes; (4) Next-Generation Pretreatment Solutions; (5) Enhanced Stabilization Technologies; (6) Spent Nuclear Fuel; and (7) Challenging Materials. This report provides updates on 35 technology development tasks conducted during calendar year 2008 in the Roadmap and MYPP program areas.

  14. Food Sales Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales Characteristics by Activity... Food Sales Food sales buildings are buildings that are used for retail or wholesale sale of food. Basic Characteristics See also: Equipment |...

  15. Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems; Industrial Technologies Program (ITP) BestPractices: Process Heating (Fact sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process heating plays a key role in the production of basic materials such as steel, aluminum, and glass and in the manufacture of value-added products made from these materials. Faced with regulatory and competitive pressures to control emissions and reduce operating costs, metal and glass manufacturers are considering a variety of options for reducing overall energy consumption. As 38% of the energy used in U.S. industrial plants is consumed for process heating appli- cations, metal and glass

  16. Award-Winning Etching Process Cuts Solar Cell Costs - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Award-Winning Etching Process Cuts Solar Cell Costs National Renewable Energy Laboratory Success Story Details Partner Location Agreement Type Publication Date Natcore Technology Inc. New Jersey Other August 1, 2013 Summary Optimizing solar-cell technology can be a complex job, requiring expertise in material science, physics, and optics to convert as much sunlight as possible into electricity. But despite this complexity, a simple fact is key to making a high-performance solar cell:

  17. Decision process for the retrofit of municipal buildings with solar energy systems: a technical guide

    SciTech Connect (OSTI)

    Licciardello, Michael R.; Wood, Brian; Dozier, Warner; Braly, Mark; Yates, Alan

    1980-11-01

    As a background for solar applications, the following topics are covered: solar systems and components for retrofit installations; cost, performance, and quality considerations; and financing alternatives for local government. The retrofit decision process is discussed as follows: pre-screening of buildings, building data requirements, the energy conservation audit, solar system sizing and economics, comparison of alternatives, and implementation. Sample studies are presented for the West Valley Animal Shelter and the Hollywood Police Station. (MHR)

  18. ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INDUSTRIAL TECHNOLOGIES PROGRAM Improved Heat Recovery in Biomass-Fired Boilers Reducing Superheater Corrosion to Enable Maximum Energy Effi ciency This project will develop materials and coatings to reduce corrosion and improve the life span of boiler superheater tubes exposed to high-temperature biomass exhaust. This improvement in boiler ef ciency will reduce fuel consumption, fuel cost, and CO 2 emissions. Introduction Industrial boilers are commonly used to make process steam, provide

  19. J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at a Large Food Processing Plant | Department of Energy J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy at a Large Food Processing Plant J.R. Simplot: Burner Upgrade Project Improves Performance and Saves Energy at a Large Food Processing Plant This case study describes how the J.R. Simplot Company saved energy and money by increasing the efficiency of the steam system in its potato processing plant in Caldwell, Idaho. PDF icon J.R. Simplot: Burner Upgrade Project

  20. Summary report: Assessment and opportunity identification of energy efficient pollution prevention technologies and processes

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    On October 24, 1992, the President signed the Energy Policy Act of 1992 (EPAct, Public Law 102-486). Section 2108, subsections (b) and (c), of EPAct requires the Department of Energy to identify opportunities to demonstrate energy efficient pollution prevention technologies and processes; to assess the availability and the energy, environmental, and cost effects of such technologies; and to report the results within one year. This report is in response to that requirement. National waste reduction efforts in both the private and public sectors encompass a variety of activities to decrease the amount of wastes that ultimately enter their air, water, and land. DOE`s Office of Industrial Technologies (DOE/OIT) recognized the importance of these efforts and confirmed the federal government`s commitment to waste reduction by establishing the Industrial Waste Program (IWP) in 1990. The program is driven by industry and national needs, and is working on new technologies and information dissemination that industry identifies as vital. The national benefits of new technologies do not accrue to the economy until transferred to industry and incorporated into commercially available processes or products.

  1. Economic evaluation and conceptual design of optimal agricultural systems for production of food and energy. Final report

    SciTech Connect (OSTI)

    1982-03-01

    The major technical and economic considerations which determined the scope of the study and the structure of the linear programming (LP) models are discussed. Four models, each representing a typical crop, beef, dairy, or swine farm in conjunction with ethanol facilities are characterized by the same general behavioral and mathematical model structure. Specific activities, constraints, and data for each of the four models are presented. An overview of the model structure is provided in the context of the general scope and background assumptions, and of its LP implementation. Simulated initial conditions and outcomes are reported for typical Illinois farms. Policy implications are discussed as related to agriculture, energy, and inter-industry coordination. (MHR)

  2. New process modeling [sic], design, and control strategies for energy efficiency, high product quality, and improved productivity in the process industries. Final project report

    SciTech Connect (OSTI)

    Ray, W. Harmon

    2002-06-05

    This project was concerned with the development of process design and control strategies for improving energy efficiency, product quality, and productivity in the process industries. In particular, (i) the resilient design and control of chemical reactors, and (ii) the operation of complex processing systems, was investigated. Specific topics studied included new process modeling procedures, nonlinear controller designs, and control strategies for multiunit integrated processes. Both fundamental and immediately applicable results were obtained. The new design and operation results from this project were incorporated into computer-aided design software and disseminated to industry. The principles and design procedures have found their way into industrial practice.

  3. Holiday Food Drive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Food Drive Holiday Food Drive Laboratory employees helped donate 300 boxes of nonperishable food items and 360 frozen turkeys during the 2015 annual food drive. September 16, 2013 LANL employees organize food for the Holiday Food Drive. Contacts Annual Food & Holiday Gift Drives Mike Martinez (505) 699-3388 Community Relations & Partnerships (505) 665-4400 Email Helping feed Northern New Mexico families During the Laboratory's 2015 Annual Food Drive, employees and subcontract workers

  4. Workshop on innovation in materials processing and manufacture: Exploratory concepts for energy applications

    SciTech Connect (OSTI)

    Horton, L.L.

    1993-06-01

    The goal of the workshop was to bring together industrial, academic, and DOE Laboratory personnel to discuss and identify potential areas for which creative, innovative, and/or multidisciplinary solutions could result in major payoffs for the nation`s energy economy, DOE, and industry. The topics emphasized in these discussions were: surfaces and interfacial processing technologies, biomolecular materials, powder/precursor technologies, magnetic materials, nanoscale materials, novel ceramics and composites, novel intermetallics and alloys, environmentally benign materials, and energy efficiency. The workshop had a 2-day format. One the first day, there was an introductory session that summarized future directions within DOE`s basic and materials technology programs, and the national studies on manufacturing and materials science and engineering. The balance of the workshop was devoted to brainstorming sessions by seven working groups. During the first working group session, the entire group was divided to discuss topics on: challenges for hostile environments, novel materials in transportation technologies, novel nanoscale materials, and opportunities in biomolecular materials. For the second session, the entire group (except for the working group on biomolecular materials) was reconfigured into new working groups on: alternative pathways to energy efficiency, environmentally benign materials and processes, and waste treatment and reduction: a basic sciences approach. This report contains separate reports from each of the seven working groups.

  5. An overview of spent-fuel processing in the global nuclear-energy partnership

    SciTech Connect (OSTI)

    Laidler, James J.

    2008-07-01

    Spent nuclear fuel is being generated at a prodigious rate in the U.S. and in other countries with robust nuclear-power-generation infrastructures, and the annual rate of production is likely to triple by 2050. The U.S. is engaged in the development of commercial light-water-reactor spent- fuel-treatment processes that are intended to meet certain rigorous criteria for separations efficiency, waste management benefits, and economy of industrial-scale operations. Aqueous solvent-extraction processes are the technology of choice, and a variety of process options have been designed and tested for technical feasibility. In general, the processes involve substantial partitioning of the constituents of spent nuclear fuel, so that effective use can be made of the recovered unburned uranium and other fissile isotopes that can be recycled as fuel for contemporary or advanced reactors. Those constituents that are destined for disposal as waste are also separated in order that they can be placed into durable waste forms that are expressly tailored for a particular disposition pathway. The U.S. is also working with international partners as part of the Global Nuclear Energy Partnership (GNEP) to develop a consistent worldwide approach to the treatment of spent fuel and the disposition of wastes arising from such processing. (authors)

  6. Inspection report: the Department of Energy's export licensing process for dual-use and munitions commodities

    SciTech Connect (OSTI)

    Friedman, Gregory H.

    1999-05-01

    Export of commodities, encouraged by both the private sector and the Federal Government, helps to improve our position in the global economy and is in the national interest of the US. However, exports of commodities or technologies, without regard to whether they may significantly contribute to the military potential of individual countries or combination of countries or enhance the proliferation of weapons of mass destruction, may adversely affect the national security of the US. The Federal Government, therefore, implements several laws, Executive Orders, and regulations to control the export of certain commodities and technologies. These commodities and technologies require a license for export. Some of the controlled items are designated as ''dual-use,'' that is, commodities and technologies that have both civilian and military application. Some dual-use commodities are designated as ''nuclear dual-use''--items controlled for nuclear nonproliferation purposes. Another group of controlled commodities is designated as munitions, which are goods and technologies that have solely military uses. The Department of Energy (Energy) conducts reviews of export license applications for nuclear dual-use items and certain munitions. On August 26, 1998, the Chairman of the Senate Committee on Governmental Affairs requested that the Inspectors General from the Departments of Commerce, Defense, Energy, State, and Treasury, and the Central Intelligence Agency (CIA), update and expand on a 1993 interagency review conducted by the Inspectors General of the Departments of Commerce, Defense, Energy, and State of the export licensing processes for dual-use and munitions commodities.

  7. Method for evaluating the potential of geothermal energy in industrial process heat applications

    SciTech Connect (OSTI)

    Packer, M.B.; Mikic, B.B.; Meal, H.C., Guillamon-Duch, H.

    1980-05-01

    A method is presented for evaluating the technical and economic potential of geothermal energy for industrial process heat applications. The core of the method is a computer program which can be operated either as a design analysis tool to match energy supplies and demands, or as an economic analysis tool if a particular design for the facility has already been selected. Two examples are given to illustrate the functioning of the model and to demonstrate that results reached by use of the model closely parallel those that have been determined by more traditional techniques. Other features of interest in the model include: (1) use of decision analysis techniques as well as classical methods to deal with questions relating optimization; (2) a tax analysis of current regulations governing percentage depletion for geothermal deposits; and (3) development of simplified correlations for the thermodynamic properties of salt solutions in water.

  8. NASEO Announces Request for Proposals for the Energy Markets and Planning Program (E-MAP)- Electric System Modernization Roadmapping Process

    Broader source: Energy.gov [DOE]

    The National Association of State Energy Officials (NASEO) today announced a request for proposals from State Energy Offices to commit to a 12-18 month state-led process to develop an electric system modernization roadmap that seeks to address a growing range of interdependent, emerging electricity system and energy market issues. The request is a part of NASEO’s Energy Markets and Planning (E-MAP) Program, which is supported by the Office of Electricity Delivery and Energy Reliability. The E-MAP Program is designed to help states develop holistic approaches to advancing the electricity system and related energy infrastructure modernization, resilience, and affordability.

  9. High temperature materials technology for industrial energy systems and processes. Final report, April 1984-May 1986

    SciTech Connect (OSTI)

    Bortz, S.A.

    1986-06-01

    GRI is pursuing new technologies that will improve the performance of natural gas in industrial processes and enable natural gas to be competitive in the industrial sector with other energy alternatives. The program focused on three areas of interest that require establishing a ceramic materials data base for technical input to GRI's RandD planning efforts. These areas are: Ceramics for Heat-Exchanger Applications in High-Temperature Corrosive Flue Streams; Advanced Material and Component Technology for Gas-Fueled Prime Movers; and Gas-Fired Indirect Heating and Melting Systems.

  10. Method and apparatus for energy efficient self-aeration in chemical, biochemical, and wastewater treatment processes

    DOE Patents [OSTI]

    Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR

    2002-05-28

    The present invention is a pulse spilling self-aerator (PSSA) that has the potential to greatly lower the installation, operation, and maintenance cost associated with aerating and mixing aqueous solutions. Currently, large quantities of low-pressure air are required in aeration systems to support many biochemical production processes and wastewater treatment plants. Oxygen is traditionally supplied and mixed by a compressor or blower and a mechanical agitator. These systems have high-energy requirements and high installation and maintenance costs. The PSSA provides a mixing and aeration capability that can increase operational efficiency and reduce overall cost.

  11. U.S. Department of Energy integrated manufacturing & processing predoctoral fellowships. Final Report

    SciTech Connect (OSTI)

    Petrochenkov, Margaret

    2003-03-31

    The objective of this program was threefold: to create a pool of PhDs trained in the integrated approach to manufacturing and processing, to promote academic interest in the field, and to attract talented professionals to this challenging area of engineering. It was anticipated that the program would result in the creation of new manufacturing methods that would contribute to improved energy efficiency, to better utilization of scarce resources, and to less degradation of the environment. Emphasis in the competition was on integrated systems of manufacturing and the integration of product design with manufacturing processes. Research addressed such related areas as aspects of unit operations, tooling and equipment, intelligent sensors, and manufacturing systems as they related to product design. This is the final report to close out the contract.

  12. Neutrino properties deduced from the study of lepton number violating processes at low and high energies

    SciTech Connect (OSTI)

    Stoica, Sabin [Horia Hulubei Foundation, P.O. Box MG-12, 077125 Magurele-Bucharest (Romania) and Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, Magurele-Bucharest 077125 (Romania)

    2012-11-20

    There is nowadays a significant progress in understanding the neutrino properties. The results of the neutrino oscillation experiments have convincingly showed that neutrinos have mass and oscillate, in contradiction with the Standard Model (SM) assumptions, and these are the first evidences of beyond SM physics. However, fundamental properties of the neutrinos like their absolute mass, their character (are they Dirac or Majorana particles?), their mass hierarchy, the number of neutrino flavors, etc., still remain unknown. In this context there is an increased interest in the study of the lepton number violating (LNV) processes, since they could complete our understanding on the neutrino properties. Since recently, the neutrinoless double beta decay was considered the only process able to distinguish between Dirac or Majorana neutrinos and to give a hint on the absolute mass of the electron neutrino. At present, the increased luminosity of the LHC experiments makes feasible the search of LNV processes at high energy as well. In this lecture I will make a brief review on our present knowledge of the neutrino properties, on the present status of the double-beta decay studies and on the first attempts to search LNV processes at LHC.

  13. Preheated Combustion Air (International Fact Sheet), Energy Tips-Process Heating, Process Heating Tip Sheet #1c

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    This English/Chinese international tip sheet provides information for optimizing industrial process heating systems and includes measurements in metric units.

  14. Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 2, Appendices

    SciTech Connect (OSTI)

    Butner, R.S.; Elliott, D.C.; Sealock, L.J., Jr.; Pyne, J.W.

    1988-12-01

    This report presents an exploration of the relationships between biomass feedstocks and the conversion processes that utilize them. Specifically, it discusses the effect of the physical and chemical structure of biomass on conversion yields, rates, and efficiencies in a wide variety of available or experimental conversion processes. A greater understanding of the complex relationships between these conversion systems and the production of biomass for energy uses is required to help optimize the complex network of biomass production, collection, transportation, and conversion to useful energy products. The review of the literature confirmed the scarcity of research aimed specifically at identifying the effect of feedstock properties on conversion. In most cases, any mention of feedstock-related effects was limited to a few brief remarks (usually in qualitative terms) in the conclusions, or as a topic for further research. Attempts to determine the importance of feedstock parameters from published data were further hampered by the lack of consistent feedstock characterization and the difficulty of comparing results between different experimental systems. Further research will be required to establish quantitative relationships between feedstocks and performance criteria in conversion. 127 refs., 4 figs., 7 tabs.

  15. Energy minimization of separation processes using conventional/membrane hybrid systems

    SciTech Connect (OSTI)

    Gottschlich, D.E.; Roberts, D.L. )

    1990-09-28

    The purpose of this study was to identify the general principles governing the choice of hybrid separation systems over straight membrane or straight nonmembrane systems and to do so by examining practical applications (process design and economics). Our focus was to examine the energy consumption characteristics and overall cost factors of the membrane and nonmembrane technologies that cause hybrid systems to be preferred over nonhybrid systems. We evaluated four cases studies, chosen on the basis of likelihood of commercial viability of a hybrid system and magnitude of energy savings: (1) propane/propylene separation; (2) removal of nitrogen from natural gas; (3) concentration of Kraft black liquor; and (4)solvent deasphalting. For propane/propylene splitting, the membrane proved to be superior to distillation in both thermodynamic efficiency and processing cost (PC) when the product was 95% pure propylene. However, to produce higher purity products, the membrane alone could not perform the separation, and a membrane/distillation hybrid was required. In these cases, there is an optimum amount of separation to be accomplished by the membrane (expressed as the fraction of the total availability change of the membrane/distillation hybrid that takes place in the membrane and defined as {phi}{sub m}, the thermodynamic extent of separation). Qualitative and quantitative guidelines are discussed with regard to choosing a hybrid system. 54 refs., 66 figs., 36 tabs.

  16. Four-State Residential Retrofit and Energy Labeling Project: Process Evaluation and Results Webinar

    Broader source: Energy.gov [DOE]

    The State Energy Offices in Alabama, Massachusetts, Virginia, and Washington recently completed a multi-year residential energy efficiency pilot program funded by a competitive State Energy Program...

  17. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics

    SciTech Connect (OSTI)

    Gug, JeongIn Cacciola, David Sobkowicz, Margaret J.

    2015-01-15

    Highlights: • Briquetting was used to produce solid fuels from municipal solid waste and recycled plastics. • Optimal drying, processing temperature and pressure were found to produce stable briquettes. • Addition of waste plastics yielded heating values comparable with typical coal feedstocks. • This processing method improves utilization of paper and plastic diverted from landfills. - Abstract: Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in higher heating value. Analysis of the post-processing water uptake and compressive strength showed a correlation between density and stability to both mechanical stress and humid environment. Proximate analysis indicated heating values comparable to coal. The results showed that mechanical and moisture uptake stability were improved when the moisture and air contents were optimized. Moreover, the briquette sample composition was similar to biomass fuels but had significant advantages due to addition of waste plastics that have high energy content compared to other waste types. Addition of PP and HDPE presented better benefits than addition of PET due to lower softening temperature and lower oxygen content. It should be noted that while harmful emissions such as dioxins, furans and mercury can result from burning plastics, WTE facilities have been able to control these emissions to meet US EPA standards. This research provides a drop-in coal replacement that reduces demand on landfill space and replaces a significant fraction of fossil-derived fuel with a renewable alternative.

  18. MCRUNJOB: A High energy physics workflow planner for grid production processing

    SciTech Connect (OSTI)

    Graham, Gregory E.

    2004-08-26

    McRunjob is a powerful grid workflow manager used to manage the generation of large numbers of production processing jobs in High Energy Physics. In use at both the DZero and CMS experiments, McRunjob has been used to manage large Monte Carlo production processing since 1999 and is being extended to uses in regular production processing for analysis and reconstruction. Described at CHEP 2001, McRunjob converts core metadata into jobs submittable in a variety of environments. The powerful core metadata description language includes methods for converting the metadata into persistent forms, job descriptions, multi-step workflows, and data provenance information. The language features allow for structure in the metadata by including full expressions, namespaces, functional dependencies, site specific parameters in a grid environment, and ontological definitions. It also has simple control structures for parallelization of large jobs. McRunjob features a modular design which allows for easy expansion to new job description languages or new application level tasks.

  19. Demonstration of the potential for energy conservation in two Midwestern pork processing plants. Final report, December 15, 1977-December 31, 1980

    SciTech Connect (OSTI)

    Wilson, P.; Okos, M.

    1981-01-19

    Two Midwestern pork processing plants were studied to quantify present energy consumption and to determine potential energy savings with modification of existing processing equipment or adoption of alternative equipment. Process energy consumption was measured in each plant at each processing step or at each unit operation and pertinent costs obtained. Energy utilized was categorized by type such as gas, electricity, steam, etc. Process conditions such as temperature, pressure, flow rates, etc., were also measured so that they could be related to energy consumption. Through measurement of operating parameters and the calculation of material and energy balances, patterns of energy loss in the major unit operations were determined. The total yearly steam and gas energy consumed by the processes studied in Plant A amounted to 133.6 billion Btu's and 207.8 billion Btu's in Plant B. Of that total, Plant A uses approximately 15.5% and Plant B uses 7.5% for sanitation and cleaning. The remaining energy is used to operate the various unit operations. The energy used in the major unit operations can be broken down into lost energy and recoverable energy. Lost energy is that energy that will not effect production if eliminated. For the processes studied in Plant A, non-productive energy amounts to 48% of the energy supplied. The nonproductive energy in Plant B amounted to 60.6% of the total process energy. On the other hand, recoverable energy is that energy that was used for some productive purpose but still has value upon completion of the process. For the processes studied in Plant A, a recoverable energy amounts to 40% of the energy supplied. The potentially recoverable energy for Plant B is 35.8% of the process energy supplied.

  20. Energy Assessment Helps Kaiser Aluminum Save Energy and Improve Productivity; DOE Software Adopted as Standard for Analyzing Plant Process Heating Systems Company-Wide; Industrial Technologies Program (ITP) Save Energy Now (SEN) Case Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kaiser Aluminum plant in Sherman, Texas, improved its annual furnace energy intensity by 11.1% after imple- menting recommendations from the Save Energy Now assessment. Energy Assessment Helps Kaiser Aluminum Save Energy and Improve Productivity DOE Software Adopted as Standard for Analyzing Plant Process Heating Systems Company-Wide Industrial Technologies Program Case Study Key Findings * Opportunities for energy efficiency do not require large capital expenditures to achieve significant

  1. Food Service Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    was a food service building were only asked whether the building was a restaurant, bar, fast food chain, or cafeteria (all the same category) or some other type of food service...

  2. Energy Efficient Microwave Hybrid Processing of Lime for Cement, Steel, and Glass Industries

    SciTech Connect (OSTI)

    Fall, Morgana L; Yakovlev, Vadim; Sahi, Catherine; Baranova, Inessa; Bowers, Johnney G; Esquenazi , Gibran L

    2012-02-10

    In this study, the microwave materials interactions were studied through dielectric property measurements, process modeling, and lab scale microwave hybrid calcination tests. Characterization and analysis were performed to evaluate material reactions and energy usage. Processing parameters for laboratory scale and larger scale calcining experiments were developed for MAT limestone calcination. Early stage equipment design concepts were developed, with a focus on microwave post heating treatment. The retrofitting of existing rotary calcine equipment in the lime industry was assessed and found to be feasible. Ceralink sought to address some of the major barriers to the uptake of MAT identified as the need for (1) team approach with end users, technology partners, and equipment manufacturers, (2) modeling that incorporates kiln materials and variations to the design of industrial microwave equipment. This project has furthered the commercialization effort of MAT by working closely with an industrial lime manufacturer to educate them regarding MAT, identifying equipment manufacturer to supply microwave equipment, and developing a sophisticated MAT modeling with WPI, the university partner. MAT was shown to enhance calcining through lower energy consumption and faster reaction rates compared to conventional processing. Laboratory testing concluded that a 23% reduction in energy was possible for calcining small batches (5kg). Scale-up testing indicated that the energy savings increased as a function of load size and 36% energy savings was demonstrated (22 kg). A sophisticated model was developed which combines simultaneous microwave and conventional heating. Continued development of this modeling software could be used for larger scale calcining simulations, which would be a beneficial low-cost tool for exploring equipment design prior to actual building. Based on these findings, estimates for production scale MAT calcining benefits were calculated, assuming uptake of MAT in the US lime industry. This estimate showed that 7.3 TBTU/year could be saved, with reduction of 270 MMlbs of CO2 emissions, and $29 MM/year in economic savings. Taking into account estimates for MAT implementation in the US cement industry, an additional 39 TBTU/year, 3 Blbs of CO2 and $155 MM/year could be saved. One of the main remaining barriers to commercialization of MAT for the lime and cement industries is the sheer size of production. Through this project, it was realized that a production size MAT rotary calciner was not feasible, and a different approach was adapted. The concept of a microwave post heat section located in the upper portion of the cooler was devised and appears to be a more realistic approach for MAT implementation. Commercialization of this technology will require (1) continued pilot scale calcining demonstrations, (2) involvement of lime kiln companies, and (3) involvement of an industrial microwave equipment provider. An initial design concept for a MAT post-heat treatment section was conceived as a retrofit into the cooler sections of existing lime rotary calciners with a 1.4 year payback. Retrofitting will help spur implementation of this technology, as the capital investment will be minimal for enhancing the efficiency of current rotary lime kilns. Retrofits would likely be attractive to lime manufacturers, as the purchase of a new lime kiln is on the order of a $30 million dollar investment, where as a MAT retrofit is estimated on the order of $1 million. The path for commercialization lies in partnering with existing lime kiln companies, who will be able to implement the microwave post heat sections in existing and new build kilns. A microwave equipment provider has been identified, who would make up part of the continued development and commercialization team.

  3. UNITED STATES DEPARTMENT OF ENERGY WASTE PROCESSING ANNUAL TECHNOLOGY DEVELOPMENT REPORT 2007

    SciTech Connect (OSTI)

    Bush, S

    2008-08-12

    The Office of Environmental Management's (EM) Roadmap, U.S. Department of Energy--Office of Environmental Management Engineering & Technology Roadmap (Roadmap), defines the Department's intent to reduce the technical risk and uncertainty in its cleanup programs. The unique nature of many of the remaining facilities will require a strong and responsive engineering and technology program to improve worker and public safety, and reduce costs and environmental impacts while completing the cleanup program. The technical risks and uncertainties associated with cleanup program were identified through: (1) project risk assessments, (2) programmatic external technical reviews and technology readiness assessments, and (3) direct site input. In order to address these needs, the technical risks and uncertainties were compiled and divided into the program areas of: Waste Processing, Groundwater and Soil Remediation, and Deactivation and Decommissioning (D&D). Strategic initiatives were then developed within each program area to address the technical risks and uncertainties in that program area. These strategic initiatives were subsequently incorporated into the Roadmap, where they form the strategic framework of the EM Engineering & Technology Program. The EM-21 Multi-Year Program Plan (MYPP) supports the goals and objectives of the Roadmap by providing direction for technology enhancement, development, and demonstrations that will lead to a reduction of technical uncertainties in EM waste processing activities. The current MYPP summarizes the strategic initiatives and the scope of the activities within each initiative that are proposed for the next five years (FY2008-2012) to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. As a result of the importance of reducing technical risk and uncertainty in the EM Waste Processing programs, EM-21 has focused considerable effort on identifying the key areas of risk in the Waste Processing programs. The resulting summary of technical risks and needs was captured in the Roadmap. The Roadmap identifies key Waste Processing initiative areas where technology development work should be focused. These areas are listed below, along with the Work Breakdown Structure (WBS) designation given to each initiative area. The WBS designations will be used throughout this document.

  4. Reducing Plug and Process Loads for a Large Scale, Low Energy Office Building: NREL's Research Support Facility; Preprint

    SciTech Connect (OSTI)

    Lobato, C.; Pless, S.; Sheppy, M.; Torcellini, P.

    2011-02-01

    This paper documents the design and operational plug and process load energy efficiency measures needed to allow a large scale office building to reach ultra high efficiency building goals. The appendices of this document contain a wealth of documentation pertaining to plug and process load design in the RSF, including a list of equipment was selected for use.

  5. DOE Announces $26 Million to Develop Energy Efficient Processes for U.S. Industry

    Broader source: Energy.gov [DOE]

    WASHINGTON - U.S. Department of Energy (DOE) Principal Deputy Assistant Secretary of Energy Efficiency and Renewable Energy John Mizroch today announced over $26 million in federal funding over...

  6. April 2 Webinar to Introduce Five-Step Tribal Energy Project Development Process

    Broader source: Energy.gov [DOE]

    Attend this webinar to learn about the five key steps to successful tribal energy project development.

  7. Wisconsin Save Energy Now Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Map of Midwest U.S. with Wisconsin highlighted Among Wisconsin's economic sectors, the industrial sector represents the highest level of energy consumption. In 2007, this sector consumed approximately 623.5 trillion British thermal units (Btu). Wisconsin's industrial sector includes energy-intensive industries, such as food processing, chemical manufacturing, plastics, and forest products. The Wisconsin Office of Energy Independence, along with its project partners, expanded the Wisconsin Save

  8. CBECS Building Types | Open Energy Information

    Open Energy Info (EERE)

    Energy Consumption Survey (CBECS) performed by the U.S. Energy Information Administration (EIA)1. Education Food Sales Food Service Health Care (Inpatient) Health Care...

  9. A Low-cost, High-yield Process for the Direct Productin of High Energy Density Liquid Fuel from Biomass

    SciTech Connect (OSTI)

    Agrawal, Rakesh

    2014-02-21

    The primary objective and outcome of this project was the development and validation of a novel, low-cost, high-pressure fast-hydropyrolysis/hydrodeoxygenation (HDO) process (H{sub 2}Bioil) using supplementary hydrogen (H{sub 2}) to produce liquid hydrocarbons from biomass. The research efforts under the various tasks of the project have culminated in the first experimental demonstration of the H2Bioil process, producing 100% deoxygenated >C4+ hydrocarbons containing 36-40% of the carbon in the feed of pyrolysis products from biomass. The demonstrated H{sub 2}Bioil process technology (i.e. reactor, catalyst, and downstream product recovery) is scalable to a commercial level and is estimated to be economically competitive for the cases when supplementary H{sub 2} is sourced from coal, natural gas, or nuclear. Additionally, energy systems modeling has revealed several process integration options based on the H{sub 2}Bioil process for energy and carbon efficient liquid fuel production. All project tasks and milestones were completed or exceeded. Novel, commercially-scalable, high-pressure reactors for both fast-hydropyrolysis and hydrodeoxygenation were constructed, completing Task A. These reactors were capable of operation under a wide-range of conditions; enabling process studies that lead to identification of optimum process conditions. Model compounds representing biomass pyrolysis products were studied, completing Task B. These studies were critical in identifying and developing HDO catalysts to target specific oxygen functional groups. These process and model compound catalyst studies enabled identification of catalysts that achieved 100% deoxygenation of the real biomass feedstock, sorghum, to form hydrocarbons in high yields as part of Task C. The work completed during this grant has identified and validated the novel and commercially scalable H2Bioil process for production of hydrocarbon fuels from biomass. Studies on model compounds as well as real biomass feedstocks were utilized to identify optimized process conditions and selective HDO catalyst for high yield production of hydrocarbons from biomass. In addition to these experimental efforts, in Tasks D and E, we have developed a mathematical optimization framework to identify carbon and energy efficient biomass-to-liquid fuel process designs that integrate the use of different primary energy sources along with biomass (e.g. solar, coal or natural gas) for liquid fuel production. Using this tool, we have identified augmented biomass-to-liquid fuel configurations based on the fast-hydropyrolysis/HDO pathway, which was experimentally studied in this project. The computational approach used for screening alternative process configurations represents a unique contribution to the field of biomass processing for liquid fuel production.

  10. Food and Drug Administration White Oak Campus Environmental Stewardship and

    Office of Environmental Management (EM)

    Cost Savings | Department of Energy Food and Drug Administration White Oak Campus Environmental Stewardship and Cost Savings Food and Drug Administration White Oak Campus Environmental Stewardship and Cost Savings FEMP ESPC Success Story on water conservation and green energy at the Food and Drug Administration (FDA) White Oak Campus. PDF icon espc_ss_whiteoak.pdf More Documents & Publications Energy Savings Performance Contract Success Stories Harold Washington Social Security

  11. Digestion of frozen/thawed food waste in the hybrid anaerobic solid-liquid system

    SciTech Connect (OSTI)

    Stabnikova, O. Liu, X.Y.; Wang, J.Y.

    2008-07-01

    The hybrid anaerobic solid-liquid (HASL) system, which is a modified two-phase anaerobic digester, is to be used in an industrial scale operation to minimize disposal of food waste at incineration plants in Singapore. The aim of the present research was to evaluate freezing/thawing of food waste as a pre-treatment for its anaerobic digestion in the HASL system. The hydrolytic and fermentation processes in the acidogenic reactor were enhanced when food waste was frozen for 24 h at -20 deg. C and then thawed for 12 h at 25 deg. C (experiment) in comparison with fresh food waste (control). The highest dissolved COD concentrations in the leachate from the acidogenic reactors were 16.9 g/l on day 3 in the control and 18.9 g/l on day 1 in the experiment. The highest VFA concentrations in the leachate from the acidogenic reactors were 11.7 g/l on day 3 in the control and 17.0 g/l on day 1 in the experiment. The same volume of methane was produced during 12 days in the control and 7 days in the experiment. It gave the opportunity to diminish operational time of batch process by 42%. The effect of freezing/thawing of food waste as pre-treatment for its anaerobic digestion in the HASL system was comparable with that of thermal pre-treatment of food waste at 150 deg. C for 1 h. However, estimation of energy required either to heat the suspended food waste to 150 deg. C or to freeze the same quantity of food waste to -20 deg. C showed that freezing pre-treatment consumes about 3 times less energy than thermal pre-treatment.

  12. Feasibility Study of Anaerobic Digestion of Food Waste in St. Bernard, Louisiana. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Moriarty, K.

    2013-01-01

    The U.S. Environmental Protection Agency (EPA) developed the RE-Powering America's Land initiative to re-use contaminated sites for renewable energy generation when aligned with the community's vision for the site. The former Kaiser Aluminum Landfill in St. Bernard Parish, Louisiana, was selected for a feasibility study under the program. Preliminary work focused on selecting a biomass feedstock. Discussions with area experts, universities, and the project team identified food wastes as the feedstock and anaerobic digestion (AD) as the technology.

  13. Food Security and Nutrition NONE 09 BIOMASS FUELS; BIOFUELS;...

    Office of Scientific and Technical Information (OSTI)

    Level Panel of Experts on Food Security and Nutrition NONE 09 BIOMASS FUELS; BIOFUELS; PRODUCTION; AGRICULTURE; ENERGY POLICY; SOCIO-ECONOMIC FACTORS; SUSTAINABLE DEVELOPMENT;...

  14. Food and Drug Administration White Oak Campus Environmental Stewardshi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Campus Environmental Stewardship and Cost Savings FEMP ESPC Success Story on water conservation and green energy at the Food and Drug Administration (FDA) White Oak Campus....

  15. Energy-Performance-Based Design-Build Process: Strategies for Procuring High-Performance Buildings on Typical Construction Budgets: Preprint

    SciTech Connect (OSTI)

    Scheib, J.; Pless, S.; Torcellini, P.

    2014-08-01

    NREL experienced a significant increase in employees and facilities on our 327-acre main campus in Golden, Colorado over the past five years. To support this growth, researchers developed and demonstrated a new building acquisition method that successfully integrates energy efficiency requirements into the design-build requests for proposals and contracts. We piloted this energy performance based design-build process with our first new construction project in 2008. We have since replicated and evolved the process for large office buildings, a smart grid research laboratory, a supercomputer, a parking structure, and a cafeteria. Each project incorporated aggressive efficiency strategies using contractual energy use requirements in the design-build contracts, all on typical construction budgets. We have found that when energy efficiency is a core project requirement as defined at the beginning of a project, innovative design-build teams can integrate the most cost effective and high performance efficiency strategies on typical construction budgets. When the design-build contract includes measurable energy requirements and is set up to incentivize design-build teams to focus on achieving high performance in actual operations, owners can now expect their facilities to perform. As NREL completed the new construction in 2013, we have documented our best practices in training materials and a how-to guide so that other owners and owner's representatives can replicate our successes and learn from our experiences in attaining market viable, world-class energy performance in the built environment.

  16. File:01-FD-b - LandUsePlanAmendmentProcess.pdf | Open Energy...

    Open Energy Info (EERE)

    FD-b - LandUsePlanAmendmentProcess.pdf Jump to: navigation, search File File history File usage File:01-FD-b - LandUsePlanAmendmentProcess.pdf Size of this preview: 463 599...

  17. File:05-FD-b - DrillingApplicationProcess.pdf | Open Energy Informatio...

    Open Energy Info (EERE)

    5-FD-b - DrillingApplicationProcess.pdf Jump to: navigation, search File File history File usage Metadata File:05-FD-b - DrillingApplicationProcess.pdf Size of this preview: 463 ...

  18. File:09-FD-e - DOE NEPA Process.pdf | Open Energy Information

    Open Energy Info (EERE)

    9-FD-e - DOE NEPA Process.pdf Jump to: navigation, search File File history File usage Metadata File:09-FD-e - DOE NEPA Process.pdf Size of this preview: 463 599 pixels. Other...

  19. File:05-FD-a - DrillingPreApplicationProcess.pdf | Open Energy...

    Open Energy Info (EERE)

    -FD-a - DrillingPreApplicationProcess.pdf Jump to: navigation, search File File history File usage Metadata File:05-FD-a - DrillingPreApplicationProcess.pdf Size of this preview:...

  20. File:07ORBStatePlantCommissioningProcess (1).pdf | Open Energy...

    Open Energy Info (EERE)

    7ORBStatePlantCommissioningProcess (1).pdf Jump to: navigation, search File File history File usage Metadata File:07ORBStatePlantCommissioningProcess (1).pdf Size of this preview:...

  1. File:09-FD-g - USFS NEPA Process.pdf | Open Energy Information

    Open Energy Info (EERE)

    g - USFS NEPA Process.pdf Jump to: navigation, search File File history File usage Metadata File:09-FD-g - USFS NEPA Process.pdf Size of this preview: 463 599 pixels. Other...

  2. File:07-CA-e - BLM-CEC Joint Siting Process.pdf | Open Energy...

    Open Energy Info (EERE)

    07-CA-e - BLM-CEC Joint Siting Process.pdf Jump to: navigation, search File File history File usage Metadata File:07-CA-e - BLM-CEC Joint Siting Process.pdf Size of this preview:...

  3. File:03HIAReservedLandMineralLeasingProcess.pdf | Open Energy...

    Open Energy Info (EERE)

    HIAReservedLandMineralLeasingProcess.pdf Jump to: navigation, search File File history File usage Metadata File:03HIAReservedLandMineralLeasingProcess.pdf Size of this preview: 463...

  4. File:08UTAStateTransmissionSitingProcess.pdf | Open Energy Information

    Open Energy Info (EERE)

    UTAStateTransmissionSitingProcess.pdf Jump to: navigation, search File File history File usage Metadata File:08UTAStateTransmissionSitingProcess.pdf Size of this preview: 463 ...

  5. File:03HIBStateMineralLeasingProcess.pdf | Open Energy Information

    Open Energy Info (EERE)

    3HIBStateMineralLeasingProcess.pdf Jump to: navigation, search File File history File usage Metadata File:03HIBStateMineralLeasingProcess.pdf Size of this preview: 463 599...

  6. File:07UTCUtahPublicServiceCommissionProcess.pdf | Open Energy...

    Open Energy Info (EERE)

    UTCUtahPublicServiceCommissionProcess.pdf Jump to: navigation, search File File history File usage Metadata File:07UTCUtahPublicServiceCommissionProcess.pdf Size of this preview:...

  7. File:08COaBulkTransmissionSitingProcess.pdf | Open Energy Information

    Open Energy Info (EERE)

    8COaBulkTransmissionSitingProcess.pdf Jump to: navigation, search File File history File usage Metadata File:08COaBulkTransmissionSitingProcess.pdf Size of this preview: 463 599...

  8. File:03MTFRightOfWayEasementForUtilitiesProcess.pdf | Open Energy...

    Open Energy Info (EERE)

    03MTFRightOfWayEasementForUtilitiesProcess.pdf Jump to: navigation, search File File history File usage Metadata File:03MTFRightOfWayEasementForUtilitiesProcess.pdf Size of this...

  9. File:03AKAStateCompetitiveMineralLeasingProcess.pdf | Open Energy...

    Open Energy Info (EERE)

    3AKAStateCompetitiveMineralLeasingProcess.pdf Jump to: navigation, search File File history File usage Metadata File:03AKAStateCompetitiveMineralLeasingProcess.pdf Size of this...

  10. File:06TXAExtraLegalVehiclePermittingProcess.pdf | Open Energy...

    Open Energy Info (EERE)

    06TXAExtraLegalVehiclePermittingProcess.pdf Jump to: navigation, search File File history File usage Metadata File:06TXAExtraLegalVehiclePermittingProcess.pdf Size of this preview:...

  11. File:08FDBFERCOrderNo2006Process.pdf | Open Energy Information

    Open Energy Info (EERE)

    8FDBFERCOrderNo2006Process.pdf Jump to: navigation, search File File history File usage Metadata File:08FDBFERCOrderNo2006Process.pdf Size of this preview: 463 599 pixels. Other...

  12. File:07UTAPowerPlantSitingProcess.pdf | Open Energy Information

    Open Energy Info (EERE)

    7UTAPowerPlantSitingProcess.pdf Jump to: navigation, search File File history File usage Metadata File:07UTAPowerPlantSitingProcess.pdf Size of this preview: 463 599 pixels....

  13. File:08FDAFERCOrderNo2003Process.pdf | Open Energy Information

    Open Energy Info (EERE)

    FDAFERCOrderNo2003Process.pdf Jump to: navigation, search File File history File usage Metadata File:08FDAFERCOrderNo2003Process.pdf Size of this preview: 463 599 pixels. Other...

  14. File:09CAAStateEnvironmentalProcessUse.pdf | Open Energy Information

    Open Energy Info (EERE)

    09CAAStateEnvironmentalProcessUse.pdf Jump to: navigation, search File File history File usage Metadata File:09CAAStateEnvironmentalProcessUse.pdf Size of this preview: 463 599...

  15. File:03NVAStateLandLeasingProcess.pdf | Open Energy Information

    Open Energy Info (EERE)

    NVAStateLandLeasingProcess.pdf Jump to: navigation, search File File history File usage Metadata File:03NVAStateLandLeasingProcess.pdf Size of this preview: 463 599 pixels....

  16. File:07FDDExemptWholesaleGeneratorStatusProcess.pdf | Open Energy...

    Open Energy Info (EERE)

    FDDExemptWholesaleGeneratorStatusProcess.pdf Jump to: navigation, search File File history File usage Metadata File:07FDDExemptWholesaleGeneratorStatusProcess.pdf Size of this...

  17. File:04MTAStateExplorationProcess (1).pdf | Open Energy Information

    Open Energy Info (EERE)

    4MTAStateExplorationProcess (1).pdf Jump to: navigation, search File File history File usage Metadata File:04MTAStateExplorationProcess (1).pdf Size of this preview: 463 599...

  18. File:04ORAStateExplorationProcess (1).pdf | Open Energy Information

    Open Energy Info (EERE)

    04ORAStateExplorationProcess (1).pdf Jump to: navigation, search File File history File usage Metadata File:04ORAStateExplorationProcess (1).pdf Size of this preview: 463 599...

  19. File:08ORAStateTransmissionSitingProcess (1).pdf | Open Energy...

    Open Energy Info (EERE)

    08ORAStateTransmissionSitingProcess (1).pdf Jump to: navigation, search File File history File usage Metadata File:08ORAStateTransmissionSitingProcess (1).pdf Size of this preview:...

  20. File:04NVAStateExplorationProcess (1).pdf | Open Energy Information

    Open Energy Info (EERE)

    NVAStateExplorationProcess (1).pdf Jump to: navigation, search File File history File usage Metadata File:04NVAStateExplorationProcess (1).pdf Size of this preview: 463 599...

  1. File:05CAADrillingApplicationProcess (1).pdf | Open Energy Information

    Open Energy Info (EERE)

    CAADrillingApplicationProcess (1).pdf Jump to: navigation, search File File history File usage Metadata File:05CAADrillingApplicationProcess (1).pdf Size of this preview: 463 ...

  2. Using an Energy Performance Based Design-Build Process to Procure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The RFP includes a contractual requirement to meet an absolute demand side energy use ... design, construction, operation and management, maintenance, and deconstruction ...

  3. NEUP FY2011 R&D Review Processes | Department of Energy

    Office of Environmental Management (EM)

    FY2011 R&D Review Processes NEUP FY2011 R&D Review Processes NEUP FY2011 R&D Review Processes PDF icon NEUP FY2011 R&D Review Processes For Web.pdf More Documents & Publications Meeting Materials: December 9, 2010 Merit Review Guide for Financial Assistance FY 2013 Consolidated Innovative Nuclear Research FOA (DE-FOA-0000799)

  4. In the OSTI Collections: Ultrafast Processes | OSTI, US Dept of Energy,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Scientific and Technical Information Ultrafast Processes Article Acknowledgement: Dr. William N. Watson, Physicist DOE Office of Scientific and Technical Information Examples of ultrafast chemical and electronic processes Further examples of electronic processes Chemical reactions from shock waves Ultrafast instruments References Research Organizations Reports available through OSTI's SciTech Connect Patent available through OSTI's DOepatents Additional References Because the atoms

  5. New Electrode Manufacturing Process Equipment: Novel High Energy Density Lithium-Ion Cell Designs via Innovative Manufacturing Process Modules for Cathode and Integrated Separator

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: Applied Materials is developing new tools for manufacturing Li-Ion batteries that could dramatically increase their performance. Traditionally, the positive and negative terminals of Li-Ion batteries are mixed with glue-like materials called binders, pressed onto electrodes, and then physically kept apart by winding a polymer mesh material between them called a separator. With the Applied Materials system, many of these manually intensive processes will be replaced by next generation coating technology to apply each component. This process will improve product reliability and performance of the cells at a fraction of the current cost. These novel manufacturing techniques will also increase the energy density of the battery and reduce the size of several of the batterys components to free up more space within the cell for storage.

  6. Ultrafast dynamics of liquid water: Energy relaxation and transfer processes of the OH stretch and the HOH bend

    SciTech Connect (OSTI)

    Imoto, Sho; Xantheas, Sotiris S.; Saito, Shinji

    2015-08-27

    The vibrational energy relaxation and transfer processes of the OH stretching and the HOH bending vibrations in liquid water are investigated via the theoretical calculation of the pump-probe spectra obtained from non-equilibrium molecular dynamics simulations with the TTM3-F interaction potential. The excitation of the OH stretch induces an instantaneous response of the high frequency librational motions in the 600-1000 cm-1 range. In addition, the excess energy of the OH stretch of a water molecule quickly transfers to the OH stretches of molecules in its first hydration shell with a time constant of ~50 fs, followed by relaxation to the HOH bends of the surrounding molecules with a time constant of 230 fs. The excitation of the HOH bend also results in the ultrafast excitation of the high frequency librational motions. The energy of the excited HOH bend of a water molecule decays, with a time constant of 200 fs, mainly to the relaxation of the HOH bends of its surrounding molecules. The energies of the HOH bends were found to transfer quickly to the intermolecular motions via the coupling with the high frequency librational motions. The excess energy of the OH stretch or the HOH bend relaxes to the high frequency intermolecular librational motions and eventually to the hot ground state with a time scale of ~1 ps via the coupling with the librational and translational motions. The energy relaxation and transfer processes were found to depend on the local hydrogen bonding network; the relaxations of the excess energy of the OH stretch and the HOH bend of four- and five-coordinated molecules are faster than those of a three-coordinated molecule due to the delocalization of the vibrational motions of the former (four- and five-coordinated molecules) compared to those of the later (three-coordinated molecules). The present results highlight the importance of the high frequency intermolecular librational modes in facilitating the ultrafast energy relaxation process in liquid water via their strong nonlinear couplings with the intramolecular OH stretching and HOH bending vibrations. S.S.X. acknowledges the support of the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The calculation was carried out using the computing resources at the Research Center for Computational Science in Okazaki, Japan.

  7. DOE Policy on NEPA Process Transparency and Openness | Department of Energy

    Energy Savers [EERE]

    Policy on NEPA Process Transparency and Openness DOE Policy on NEPA Process Transparency and Openness Under the new policy, each Program and Field Office (including the National Nuclear Security Administration and the Power Marketing Administrations) will document and post online all categorical exclusion determinations involving classes of actions listed in Appendix B of the Department's NEPA implementing procedures, 10 C.F.R. Part 1021. PDF icon DOE Policy on NEPA Process Transparency and

  8. Low Cost Chemical Feedstocks Using an Improved and Energy Efficient Natural Gas Liquid (NGL) Removal Process, Final Technical Report

    SciTech Connect (OSTI)

    Meyer, Howard, S.; Lu, Yingzhong

    2012-08-10

    The overall objective of this project is to develop a new low-cost and energy efficient Natural Gas Liquid (NGL) recovery process - through a combination of theoretical, bench-scale and pilot-scale testing - so that it could be offered to the natural gas industry for commercialization. The new process, known as the IROA process, is based on U.S. patent No. 6,553,784, which if commercialized, has the potential of achieving substantial energy savings compared to currently used cryogenic technology. When successfully developed, this technology will benefit the petrochemical industry, which uses NGL as feedstocks, and will also benefit other chemical industries that utilize gas-liquid separation and distillation under similar operating conditions. Specific goals and objectives of the overall program include: (i) collecting relevant physical property and Vapor Liquid Equilibrium (VLE) data for the design and evaluation of the new technology, (ii) solving critical R&D issues including the identification of suitable dehydration and NGL absorbing solvents, inhibiting corrosion, and specifying proper packing structure and materials, (iii) designing, construction and operation of bench and pilot-scale units to verify design performance, (iv) computer simulation of the process using commercial software simulation platforms such as Aspen-Plus and HYSYS, and (v) preparation of a commercialization plan and identification of industrial partners that are interested in utilizing the new technology. NGL is a collective term for C2+ hydrocarbons present in the natural gas. Historically, the commercial value of the separated NGL components has been greater than the thermal value of these liquids in the gas. The revenue derived from extracting NGLs is crucial to ensuring the overall profitability of the domestic natural gas production industry and therefore of ensuring a secure and reliable supply in the 48 contiguous states. However, rising natural gas prices have dramatically reduced the economic incentive to extract NGLs from domestically produced natural gas. Successful gas processors will be those who adopt technologies that are less energy intensive, have lower capital and operating costs and offer the flexibility to tailor the plant performance to maximize product revenue as market conditions change, while maintaining overall system efficiency. Presently, cryogenic turbo-expander technology is the dominant NGL recovery process and it is used throughout the world. This process is known to be highly energy intensive, as substantial energy is required to recompress the processed gas back to pipeline pressure. The purpose of this project is to develop a new NGL separation process that is flexible in terms of ethane rejection and can reduce energy consumption by 20-30% from current levels, particularly for ethane recoveries of less than 70%. The new process integrates the dehydration of the raw natural gas stream and the removal of NGLs in such a way that heat recovery is maximized and pressure losses are minimized so that high-value equipment such as the compressor, turbo-expander, and a separate dehydration unit are not required. GTI completed a techno-economic evaluation of the new process based on an Aspen-HYSYS simulation model. The evaluation incorporated purchased equipment cost estimates obtained from equipment suppliers and two different commercial software packages; namely, Aspen-Icarus and Preliminary Design and Quoting Service (PDQ$). For a 100 MMscfd gas processing plant, the annualized capital cost for the new technology was found to be about 10% lower than that of conventional technology for C2 recovery above 70% and about 40% lower than that of conventional technology for C2 recovery below 50%. It was also found that at around 40-50% C2 recovery (which is economically justifiable at the current natural gas prices), the energy cost to recover NGL using the new technology is about 50% of that of conventional cryogenic technology.

  9. Reducing Plug and Process Loads for a Large Scale, Low Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Proposals (RFP) set a whole-building demand-side energy use requirement of a nominal 25 ... IT and management put in place policies that have eliminated shared and personal ...

  10. DOE Verification Testing in Support of ENERGY STAR, April 22, 2011 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Verification Testing in Support of ENERGY STAR, April 22, 2011 DOE Verification Testing in Support of ENERGY STAR, April 22, 2011 This document describes ENERGY STAR verificaion testing process, dated April 22, 2011 PDF icon estar_verification_process.pdf More Documents & Publications Comment submitted by Hoshizaki America, Inc. regarding the Energy Star Verification Testing Program Comment submitted by the North American Association of Food Equipment Manufacturers

  11. Quarterly Notification of the Department of Energy's Differing Professional Opinion Process

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-01-30

    DOE O 442.2 requires that all DOE employees (including contractors and subcontractors) be notified quarterly of the Differing Professional Opinion (DPO) process to ensure that they are made aware of the process, including the DPO Web page address and the contact information for submitting DPOs.

  12. EM Employees at West Valley Help Beat Goal for Food Banks | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy at West Valley Help Beat Goal for Food Banks EM Employees at West Valley Help Beat Goal for Food Banks December 5, 2012 - 12:00pm Addthis West Valley Demonstration Project has a reputation for strong community involvement. Pictured here are the volunteers who distributed food to seven food banks. West Valley Demonstration Project has a reputation for strong community involvement. Pictured here are the volunteers who distributed food to seven food banks. WEST VALLEY, N.Y. - EM

  13. Food and Beverage Sector (NAICS 311 and 312) Combustion Emissions Profile, November 2012

    Office of Environmental Management (EM)

    U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis 2.5 FOOD AND BEVERAGE SECTOR (NAICS 311 AND 312) 2.5.1. Overview of the Food and Beverage Manufacturing Sector The food and beverage sector is an integral component of the U.S. economy, transforming livestock and agricultural products into intermediate and final food and beverage products. Food and beverage is one of the largest manufacturing sectors, resulting in considerable consumer expenditures for food and beverage

  14. Low-energy RI beam technology and nuclear clusters in the explosive pp-chain breakout process

    SciTech Connect (OSTI)

    Kubono, S. [Institute of Modern Physics, Chinese Academy of Sciences, Nanchang Road 509, Lanzhou 73000 (China); RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Center for Nuclear Study, University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0 (Japan); Yamaguchi, H.; Kahl, D. M.; Ohshiro, Y.; Watanabe, S.; Yamazaki, N. [Center for Nuclear Study, University of Tokyo, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Teranishi, T. [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-858 (Japan); Yanagisawa, Y.; Wakabayashi, Y.; Kase, M. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Hayakawa, S. [Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Via S. Sofia 62, 95125 Catania (Italy); Kwon, Y. K. [Institute for Basic Science, 70, Yuseong-daero 1689-gil, Yuseong-gu, Daejeon 305-81 (Korea, Republic of); Hashimoto, T.; Fukuda, Y. [Research Center for Nuclear Physics, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); He, J. J. [Institute of Modern Physics, Chinese Academy of Sciences, Nanchang Road 509, Lanzhou 73000 (China); Goto, A. [Faculty of Medcine, Yamagata University, Yamagata 990-2331 (Japan); Muto, H. [Center of General Education, Tokyo University of Science at Suwa, Chino, Nagano 391-0292 (Japan)

    2014-05-09

    The lecture includes two parts: One is a discussion on the technology for developing RIB beam facility based on the in-flight method and relevant experimental technology. The second part is a discussion on experimental efforts for studying the breakout process from the pp-chain region based on recent works with low energy RI beams. The discussion of the second part specifically covers the problem of the vp-process in type II supernovae in terms of alpha cluster nature for the reactions.

  15. Effects on the Physical Environment (Hydrodynamics, and Water Quality Food

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Web) | Department of Energy and Water Quality Food Web) Effects on the Physical Environment (Hydrodynamics, and Water Quality Food Web) Effects on the Physical Environment (Hydrodynamics, and Water Quality Food Web) Office presentation icon 57_mhk_modeling.ppt More Documents & Publications Effects on the Physical Environment (Hydrodynamics, Sediment Transport, and Water Quality) Free Flow Energy (TRL 1 2 3 Component) - Design and Development of a Cross-Platform Submersible Generator

  16. Evaluating Membrane Processes for Air Conditioning, Highlights in Research and Development (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL compiles state-of-the-art review on membrane processes for air conditioning to identify future research opportunities. Researchers are pursuing alternatives to conventional heating, ventilating, and air-conditioning (HVAC) practices, especially cool- ing and dehumidification, because of high energy use, environmentally harmful refrigerants, and a need for better humidity control. Advancements in membrane technology enable new possibilities in this area. Membranes are traditionally used for

  17. Collisional particle-in-cell modeling for energy transport accompanied by atomic processes in dense plasmas

    SciTech Connect (OSTI)

    Mishra, R.; Beg, F. N.; Leblanc, P.; Sentoku, Y.; Wei, M. S.

    2013-07-15

    Fully relativistic collisional Particle-in-Cell (PIC) code, PICLS, has been developed to study extreme energy density conditions produced in intense laser-solid interaction. Recent extensions to PICLS, such as the implementation of dynamic ionization, binary collisions in a partially ionized plasma, and radiative losses, enhance the efficacy of simulating intense laser plasma interaction and subsequent energy transport in resistive media. Different ionization models are introduced and benchmarked against each other to check the suitability of the model. The atomic physics models are critical to determine the energy deposition and transport in dense plasmas, especially when they consist of high Z (atomic number) materials. Finally we demonstrate the electron transport simulations to show the importance of target material on fast electron dynamics.

  18. Evaluating Membrane Processes for Air Conditioning; Highlights in Research and Development, NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This NREL Highlight discusses a recent state-of-the-art review of membrane processes for air conditioning that identifies future research opportunities. This highlight is being developed for the June 2015 S&T Alliance Board meeting.

  19. File:09-FD-f - DOD NEPA Process (2).pdf | Open Energy Information

    Open Energy Info (EERE)

    (2).pdf Jump to: navigation, search File File history File usage Metadata File:09-FD-f - DOD NEPA Process (2).pdf Size of this preview: 463 599 pixels. Other resolution:...

  20. ARM 17-4-607 - MEPA Environmental Review Process | Open Energy...

    Open Energy Info (EERE)

    4-607 - MEPA Environmental Review Process Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: ARM 17-4-607 - MEPA Environmental...

  1. A Process for the Conversion of Cyclic Amines Into Lactams - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Industrial Technologies Industrial Technologies Find More Like This Return to Search A Process for the Conversion of Cyclic Amines Into Lactams Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Ames Laboratory researchers have developed a process for the conversion of cyclic amines into lactams, which may have utility for the production of nylons and other industrial polymers. Description Lactams are used for a wide variety of commercial

  2. Memorandum of Understanding with Northwest Food Processors Association

    SciTech Connect (OSTI)

    2009-02-01

    The Northwest Food Processors Association (NWFPA) and the U.S. Department of Energy entered into this memorandum of understanding to work collaboratively to reduce energy intensity by 25% within ten years.

  3. Temporary Food Service

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Food Service The SLAC Caf, auditorium and visitor center have been closed and will be replaced with a new Science and User Support Building (SUSB). During this construction...

  4. Holiday Food Drive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community Programs Office (505) 665-4400 Email Get Expertise Helping feed Northern New Mexico families During the Laboratory's 2015 Annual Food Drive, employees and subcontract...

  5. Energy Saving Melting and Revert Reduction Technology: Innovative Semi-Solid Metal (SSM) Processing

    SciTech Connect (OSTI)

    Diran Apelian

    2012-08-15

    Semi-solid metal (SSM) processing has emerged as an attractive method for near-net-shape manufacturing due to the distinct advantages it holds over conventional near-net-shape forming technologies. These advantages include lower cycle time, increased die life, reduced porosity, reduced solidification shrinkage, improved mechanical properties, etc. SSM processing techniques can not only produce the complex dimensional details (e.g. thin-walled sections) associated with conventional high-pressure die castings, but also can produce high integrity castings currently attainable only with squeeze and low-pressure permanent mold casting processes. There are two primary semi-solid processing routes, (a) thixocasting and (b) rheocasting. In the thixocasting route, one starts from a non-dendritic solid precursor material that is specially prepared by a primary aluminum manufacturer, using continuous casting methods. Upon reheating this material into the mushy (a.k.a. "two-phase") zone, a thixotropic slurry is formed, which becomes the feed for the casting operation. In the rheocasting route (a.k.a. "slurry-on-demand" or "SoD"), one starts from the liquid state, and the thixotropic slurry is formed directly from the melt via careful thermal management of the system; the slurry is subsequently fed into the die cavity. Of these two routes, rheocasting is favored in that there is no premium added to the billet cost, and the scrap recycling issues are alleviated. The CRP (Trade Marked) is a process where the molten metal flows through a reactor prior to casting. The role of the reactor is to ensure that copious nucleation takes place and that the nuclei are well distributed throughout the system prior to entering the casting cavity. The CRP (Trade Marked) has been successfully applied in hyper-eutectic Al-Si alloys (i.e., 390 alloy) where two liquids of equal or different compositions and temperatures are mixed in the reactor and creating a SSM slurry. The process has been mostly used for hypo-eutectic Al-Si alloys (i.e., 356, 357, etc.) where a single melt passes through the reactor. In addition, the CRP (Trade Marked) was designed to be flexible for thixocasting or rheocasting applications as well as batch or continuous casting. Variable heat extraction rates can be obtained by controlling either the superheat of the melt, the temperature of the channel system, or the temperature of the reactor. This program had four main objectives all of which were focused on a mechanistic understanding of the process in order to be able to scale it up, to develop it into a robust process,and for SSM processing to be commercially used.

  6. OTHER INDUSTRIES | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OTHER INDUSTRIES OTHER INDUSTRIES AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy savings to a wide array of industries from information and communications technologies to food and beverage and others. Many more of the technologies developed with AMO support have applications across multiple industries because they target common industrial processes.

  7. FOIA Responses processed by DOE HQ in 2009 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Responses processed by DOE HQ in 2009 FOIA Responses processed by DOE HQ in 2009 Files processed by month in PDF format PDF icon FOIA_Jan09_Resp.pdf PDF icon FOIA_Feb09_Resp.pdf PDF icon FOIA_Mar09_Resp.pdf PDF icon FOIA_April09_Resp.pdf PDF icon FOIA_May09_Resp_309-330.pdf PDF icon FOIA_May09_Resp_331-358.pdf PDF icon FOIA_May09_Resp_360_Part-1.pdf PDF icon FOIA_May09_Resp_360_Part-2.pdf PDF icon FOIA_May09_Resp_360_Part-3.pdf PDF icon FOIA_May09_Resp_360_Part-4.pdf PDF icon

  8. Anaerobic treatment of food wastes

    SciTech Connect (OSTI)

    Criner, G. )

    1991-04-01

    This article describes a research project at the University of Maine in which food wastes from the University cafeteria salad bar are processed in the anaerobic facility which normally treats only animal wastes. The project has benefited the University in several ways: avoidance of waste disposal fees; increased electricity co-generated from the biogas process; and use of the residual as fertilizer. An economic analysis indicated that the estimated cost of anaerobic treatment of the salad bar wastes was $4520/yr and benefits were $4793/yr. Since the digester was already in use, this cost was not factored into the analysis. Further studies are being planned.

  9. Improved energy efficiency by use of the new ultraviolet light radiation paint curing process

    SciTech Connect (OSTI)

    Grosset, A.M.; Su, W.-F.A.

    1984-08-01

    In product finishing lines, ultraviolet radiation curing of paints on prefabricated structures is more energy efficient than curing by natural gas fired ovens, and could eliminate solvent emission. The replacement of a conventional natural gas fired oven by an ultraviolet radiation curing line for paint curing could save quadrillions of joules per year for each finishing line. In this program sponsored by the U.S. Department of Energy, Office of Industrial Programs, two photoinduced polymerizations, via free radical or cationic mechanisms, were considered in the formulation of UV curable paints. The spectral output of radiation sources was chosen so as to complement the absorption spectra of pigments and photoactive agents; thus highly pigmented thick films could be cured fully by UV radiation. One coat enamels, topcoats, and primers have been developed which can be applied on three dimensional objects by spraying and can be cured by passing through a tunnel containing UV lamps.

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    VFDs, Other EE, Food Service Equipment, Vending Machine Controls, LED Lighting Energy Optimization (Electric)- Commercial Efficiency Program Energy Optimization Eligibility:...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Other EE, Food Service Equipment, Vending Machine Controls, LED Lighting Energy Optimization (Electric)- Commercial Efficiency Program Energy Optimization Eligibility:...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    EE, Food Service Equipment, LED Lighting, Commercial Refrigeration Equipment Energy Optimization (Electric)- Commercial Efficiency Program Energy Optimization Eligibility:...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    EE, Food Service Equipment, Vending Machine Controls, Commercial Refrigeration Equipment Energy Optimization (Electric)- Commercial Efficiency Program Energy Optimization...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Other EE, Food Service Equipment, LED Lighting, Commercial Refrigeration Equipment Energy Optimization (Electric)- Commercial Efficiency Program Energy Optimization...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    VFDs, Other EE, Food Service Equipment, LED Lighting, Commercial Refrigeration Equipment Energy Optimization (Electric)- Commercial Efficiency Program Energy Optimization...

  16. User's Guide to Pre-Processing Data in Universal Translator 2 for the Energy Charting and Metrics Tool (ECAM)

    SciTech Connect (OSTI)

    Taasevigen, Danny J.

    2011-11-30

    This document is a user's guide for the Energy Charting and Metrics Tool to facilitate the examination of energy information from buildings, reducing the time spent analyzing trend and utility meter data. This user guide was generated to help pre-process data with the intention of utilizing the Energy Charting and Metrics (ECAM) tool to improve building operational efficiency. There are numerous occasions when the metered data that is received from the building automation system (BAS) isn't in the right format acceptable for ECAM. This includes, but isn't limited to, cases such as inconsistent time-stamps for the trends (e.g., each trend has its own time-stamp), data with holes (e.g., some time-stamps have data and others are missing data), each point in the BAS is trended and exported into an individual .csv or .txt file, the time-stamp is unrecognizable by ECAM, etc. After reading through this user guide, the user should be able to pre-process all data files and be ready to use this data in ECAM to improve their building operational efficiency.

  17. Probing nuclei by deeply penetrating and peripherally interacting Hadron: Bridging low and high-energy processes

    SciTech Connect (OSTI)

    Eliseev, S. M.

    2013-08-15

    The search for signals of new phenomenon is an important trend in the contemporary strong interaction physics. The nuclear J/{psi} suppressions are considered as like candidates for the signals of unusual events, e.g. quark-gluon plasma. They were explained in the framework of Glauber approximation. On the contrary, we show that new experimental data on the total cross section of K{sup +}-nucleus interaction at intermediate energies cannot be described by the novel well-elaborated Glauber model. This may indicate a unique event in ground state nuclei (in-medium effect)

  18. Joint environmental assessment 1997--2001 of the California Department of Food and Agriculture Curly Top Virus Control Program for Bureau of Land Management and Department of Energy

    SciTech Connect (OSTI)

    1997-03-01

    The DOE, Naval Petroleum reserves in California (NPRC), proposes to sign an Amendment to the Cooperative Agreement and Supplement with the California Department of Food and Agriculture (CDFA) to extend the term of the Curly Top Virus Control Program (CTVCP) in California. This program involves Malathion spraying on NPRC lands to control the beet leafhopper, over a five year period from 1997 through 2001. It is expected that approximately 330 acres on Naval Petroleum Reserve Number 1 (NPR-1) and approximately 9,603 acres on Naval Petroleum Reserve Number 2 (NPR-2) will be treated with Malathion annually by CDFA during the course of this program. The actual acreage subject to treatment can vary from year to year. Pursuant to the requirements of the National Environmental Policy Act of 1969 (NEPA), as amended, the potential impacts of the proposed action were analyzed in a Joint Environmental Assessment (DOE/EA-1011) with the US Department of Interior, Bureau of Land Management (BLM) acting as lead agency, in consultation with the CDFA, and the DOE acting as a cooperating agency. Based on the analysis in the EA, DOE has determined that the conduct of the Curly Top Virus Control Program in California is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the NEPA. Therefore, the preparation of an Environmental Impact Statement is not required and DOE is consequently issuing a FONSI.

  19. Fluid bed gasification Plasma converter process generating energy from solid waste: Experimental assessment of sulphur species

    SciTech Connect (OSTI)

    Morrin, Shane, E-mail: shane.morrin@ucl.ac.uk [Department of Chemical Engineering, University College London, London WC1E 7JE (United Kingdom); Advanced Plasma Power, Swindon, Wiltshire SN3 4DE (United Kingdom); Lettieri, Paola, E-mail: p.lettieri@ucl.ac.uk [Department of Chemical Engineering, University College London, London WC1E 7JE (United Kingdom); Chapman, Chris, E-mail: chris.chapman@app-uk.com [Advanced Plasma Power, Swindon, Wiltshire SN3 4DE (United Kingdom); Taylor, Richard, E-mail: richard.taylor@app-uk.com [Advanced Plasma Power, Swindon, Wiltshire SN3 4DE (United Kingdom)

    2014-01-15

    Highlights: We investigate gaseous sulphur species whilst gasifying sulphur-enriched wood pellets. Experiments performed using a two stage fluid bed gasifier plasma converter process. Notable SO{sub 2} and relatively low COS levels were identified. Oxygen-rich regions of the bed are believed to facilitate SO{sub 2}, with a delayed release. Gas phase reducing regions above the bed would facilitate more prompt COS generation. - Abstract: Often perceived as a Cinderella material, there is growing appreciation for solid waste as a renewable content thermal process feed. Nonetheless, research on solid waste gasification and sulphur mechanisms in particular is lacking. This paper presents results from two related experiments on a novel two stage gasification process, at demonstration scale, using a sulphur-enriched wood pellet feed. Notable SO{sub 2} and relatively low COS levels (before gas cleaning) were interesting features of the trials, and not normally expected under reducing gasification conditions. Analysis suggests that localised oxygen rich regions within the fluid bed played a role in SO{sub 2}s generation. The response of COS to sulphur in the feed was quite prompt, whereas SO{sub 2} was more delayed. It is proposed that the bed material sequestered sulphur from the feed, later aiding SO{sub 2} generation. The more reducing gas phase regions above the bed would have facilitated COS hence its faster response. These results provide a useful insight, with further analysis on a suite of performed experiments underway, along with thermodynamic modelling.

  20. Entropy vs. energy waveform processing: A comparison based on the heat equation

    SciTech Connect (OSTI)

    Hughes, Michael S.; McCarthy, John E.; Bruillard, Paul J.; Marsh, Jon N.; Wickline, Samuel A.

    2015-05-25

    Virtually all modern imaging devices collect electromagnetic or acoustic waves and use the energy carried by these waves to determine pixel values to create what is basically an “energy” picture. However, waves also carry “information”, as quantified by some form of entropy, and this may also be used to produce an “information” image. Numerous published studies have demonstrated the advantages of entropy, or “information imaging”, over conventional methods. The most sensitive information measure appears to be the joint entropy of the collected wave and a reference signal. The sensitivity of repeated experimental observations of a slowly-changing quantity may be defined as the mean variation (i.e., observed change) divided by mean variance (i.e., noise). Wiener integration permits computation of the required mean values and variances as solutions to the heat equation, permitting estimation of their relative magnitudes. There always exists a reference, such that joint entropy has larger variation and smaller variance than the corresponding quantities for signal energy, matching observations of several studies. Moreover, a general prescription for finding an “optimal” reference for the joint entropy emerges, which also has been validated in several studies.

  1. Entropy vs. energy waveform processing: A comparison based on the heat equation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hughes, Michael S.; McCarthy, John E.; Bruillard, Paul J.; Marsh, Jon N.; Wickline, Samuel A.

    2015-05-25

    Virtually all modern imaging devices collect electromagnetic or acoustic waves and use the energy carried by these waves to determine pixel values to create what is basically an “energy” picture. However, waves also carry “information”, as quantified by some form of entropy, and this may also be used to produce an “information” image. Numerous published studies have demonstrated the advantages of entropy, or “information imaging”, over conventional methods. The most sensitive information measure appears to be the joint entropy of the collected wave and a reference signal. The sensitivity of repeated experimental observations of a slowly-changing quantity may be definedmore » as the mean variation (i.e., observed change) divided by mean variance (i.e., noise). Wiener integration permits computation of the required mean values and variances as solutions to the heat equation, permitting estimation of their relative magnitudes. There always exists a reference, such that joint entropy has larger variation and smaller variance than the corresponding quantities for signal energy, matching observations of several studies. Moreover, a general prescription for finding an “optimal” reference for the joint entropy emerges, which also has been validated in several studies.« less

  2. Optimization of adsorption processes for climate control and thermal energy storage

    SciTech Connect (OSTI)

    Narayanan, S; Yang, S; Kim, H; Wang, EN

    2014-10-01

    Adsorption based heat-pumps have received significant interest owing to their promise of higher efficiencies and energy savings when coupled with waste heat and solar energy compared to conventional heating and cooling systems. While adsorption systems have been widely studied through computational analysis and experiments, general design guidelines to enhance their overall performance have not been proposed. In this work, we identified conditions suitable for the maximum utilization of the adsorbent to enhance the performance of both intermittent as well as continuously operating adsorption systems. A detailed computational model was developed based on a general framework governing adsorption dynamics in a single adsorption layer and pellet. We then validated the computational analysis using experiments with a model system of zeolite 13X-water for different operating conditions. A dimensional analysis was subsequently carried out to optimize adsorption performance for any desired operating condition, which is determined by the choice of adsorbent-vapor pair, adsorption duration, operational pressure, intercrystalline porosity, adsorbent crystal size, and intracrystalline vapor diffusivity. The scaling analysis identifies the critical dimensionless parameters and provides a simple guideline to determine the most suitable geometry for the adsorbent particles. Based on this selection criterion, the computational model was used to demonstrate maximum utilization of the adsorbent for any given operational condition. By considering a wide range of parametric variations for performance optimization, these results offer important insights for designing adsorption beds for heating and cooling systems. (C) 2014 Elsevier Ltd. All rights reserved.

  3. Active Flash: Performance-Energy Tradeoffs for Out-of-Core Processing on Non-Volatile Memory Devices

    SciTech Connect (OSTI)

    Boboila, Simona; Kim, Youngjae; Vazhkudai, Sudharshan S; Desnoyers, Peter; Shipman, Galen M

    2012-01-01

    In this abstract, we study the performance and energy tradeoffs involved in migrating data analysis into the flash device, a process we refer to as Active Flash. The Active Flash paradigm is similar to 'active disks', which has received considerable attention. Active Flash allows us to move processing closer to data, thereby minimizing data movement costs and reducing power consumption. It enables true out-of-core computation. The conventional definition of out-of-core solvers refers to an approach to process data that is too large to fit in the main memory and, consequently, requires access to disk. However, in Active Flash, processing outside the host CPU literally frees the core and achieves real 'out-of-core' analysis. Moving analysis to data has long been desirable, not just at this level, but at all levels of the system hierarchy. However, this requires a detailed study on the tradeoffs involved in achieving analysis turnaround under an acceptable energy envelope. To this end, we first need to evaluate if there is enough computing power on the flash device to warrant such an exploration. Flash processors require decent computing power to run the internal logic pertaining to the Flash Translation Layer (FTL), which is responsible for operations such as address translation, garbage collection (GC) and wear-leveling. Modern SSDs are composed of multiple packages and several flash chips within a package. The packages are connected using multiple I/O channels to offer high I/O bandwidth. SSD computing power is also expected to be high enough to exploit such inherent internal parallelism within the drive to increase the bandwidth and to handle fast I/O requests. More recently, SSD devices are being equipped with powerful processing units and are even embedded with multicore CPUs (e.g. ARM Cortex-A9 embedded processor is advertised to reach 2GHz frequency and deliver 5000 DMIPS; OCZ RevoDrive X2 SSD has 4 SandForce controllers, each with 780MHz max frequency Tensilica core). Efforts that take advantage of the available computing cycles on the processors on SSDs to run auxiliary tasks other than actual I/O requests are beginning to emerge. Kim et al. investigate database scan operations in the context of processing on the SSDs, and propose dedicated hardware logic to speed up scans. Also, cluster architectures have been explored, which consist of low-power embedded CPUs coupled with small local flash to achieve fast, parallel access to data. Processor utilization on SSD is highly dependent on workloads and, therefore, they can be idle during periods with no I/O accesses. We propose to use the available processing capability on the SSD to run tasks that can be offloaded from the host. This paper makes the following contributions: (1) We have investigated Active Flash and its potential to optimize the total energy cost, including power consumption on the host and the flash device; (2) We have developed analytical models to analyze the performance-energy tradeoffs for Active Flash, by treating the SSD as a blackbox, this is particularly valuable due to the proprietary nature of the SSD internal hardware; and (3) We have enhanced a well-known SSD simulator (from MSR) to implement 'on-the-fly' data compression using Active Flash. Our results provide a window into striking a balance between energy consumption and application performance.

  4. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  5. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  6. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  7. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping

    2015-06-04

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increasedmore » hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.« less

  8. US Department of Energy wind turbine candidate site program: the regulatory process

    SciTech Connect (OSTI)

    Greene, M.R.; York, K.R.

    1982-06-01

    Sites selected in 1979 as tentative sites for installation of a demonstration MOD-2 turbine are emphasized. Selection as a candidate site in this program meant that the US Department of Energy (DOE) designated the site as eligible for a DOE-purchased and installed meteorological tower. The regulatory procedures involved in the siting and installation of these meteorological towers at the majority of the candidate sites are examined. An attempt is also made, in a preliminary fashion, to identify the legal and regulatory procedures that would be required to put up a turbine at each of these candidate sites. The information provided on each of these sites comes primarily from utility representatives, supplemented by conversations with state and local officials. The major findings are summarized on the following: federal requirements, state requirements, local requirements, land ownership, wind rights, and public attitudes.

  9. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes

    SciTech Connect (OSTI)

    Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping

    2015-06-04

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increased hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.

  10. Magnetic Processing A Pervasive Energy Efficient Technology for Next Generation Materials for Aerospace and Specialty Steel Markets

    SciTech Connect (OSTI)

    Mackiewicz-Ludtka, G.; Ludtka, G.M.; Ray, P.; Magee, J.

    2010-09-10

    Thermomagnetic Magnetic Processing is an exceptionally fertile, pervasive and cross-cutting technology that is just now being recognized by several major industry leaders for its significant potential to increase energy efficiency and materials performance for a myriad of energy intensive industries in a variety of areas and applications. ORNL has pioneered the use and development of large magnetic fields in thermomagnetically processing (T-MP) materials for altering materials phase equilibria and transformation kinetics. ORNL has discovered that using magnetic fields, we can produce unique materials responses. T-MP can produce unique phase stabilities & microstructures with improved materials performance for structural and functional applications not achieved with traditional processing techniques. These results suggest that there are unprecedented opportunities to produce significantly enhanced materials properties via atomistic level (nano-) microstructural control and manipulation. ORNL (in addition to others) have shown that grain boundary chemistry and precipitation kinetics are also affected by large magnetic fields. This CRADA has taken advantage of ORNLs unique, custom-designed thermo-magnetic, 9 Tesla superconducting magnet facility that enables rapid heating and cooling of metallic components within the magnet bore; as well as ORNLs expertise in high magnetic field (HMF) research. Carpenter Technologies, Corp., is a a US-based industrial company, that provides enhanced performance alloys for the Aerospace and Specialty Steel products. In this CRADA, Carpenter Technologies, Corp., is focusing on applying ORNLs Thermomagnetic Magnetic Processing (TMP) technology to improve their current and future proprietary materials product performance and open up new markets for their Aerospace and Specialty Steel products. Unprecedented mechanical property performance improvements have been demonstrated for a high strength bainitic alloy industrial/commercial alloy that is envisioned to provide the potential for new markets for this alloy. These thermomechanical processing results provide these alloys with a major breakthrough demonstrating that simultaneous improvements in yield strength and ductility are achieved: 12 %, 10%, 13%, and 22% increases in yield strength, elongation, reduction-in-area, and impact energy respectively. In addition, TMP appears to overcome detrimental chemical homogeneity impacts on uniform microstructure evolution.

  11. Sustainable Harvest for Food and Fuel Preliminary Food & Fuel Gap Analysis Report

    SciTech Connect (OSTI)

    Ray Grosshans; Kevin M. Kostelnik; Jake Jacobson

    2007-04-01

    To promote economic growth and energy security, and to protect the environment, the U.S. is pursuing a national strategy of energy independence and climatic protection in which domestic renewable carbon-neutral biofuels displace 30 percent of U.S. oil consumption by the mid-21st century. Such fuels, including ethanol and biodiesel, will be produced from biological feed stocks (biomass). The availability of this billion-ton biomass will hinge on the application of modern scientific and engineering tools to create a highly-integrated biofuel production system. Efforts are underway to identify and develop energy crops, ranging from agricultural residues to genetically engineered perennials; to develop biology-based processing methods; and, to develop large-scale biorefineries to economically convert biomass into fuels. In addition to advancing the biomass-to-biofuel research and development agenda, policy makers are concurrently defining the correct mix of governmental supports and regulations. Given the volumes of biomass and fuels that must flow to successfully enact a national biomass strategy, policies must encourage large-scale markets to form and expand around a tightly integrated system of farmers, fuel producers and transporters, and markets over the course of decades. In formulating such policies, policy makers must address the complex interactions of social, technical, economic, and environmental factors that bound energy production and use. The Idaho National Laboratory (INL) is a science-based, applied engineering national laboratory dedicated to supporting the U.S. Department of Energy (DOE). The INL Bioenergy Program supports the DOE and the U.S. Department of Agriculture. Key multidisciplinary INL capabilities are being leveraged to address major science and technology needs associated with the cost-effective utilization of biomass. INLs whole crop utilization (WCU) vision is focused on the use of the entire crop, including both the grain and traditionally discarded plant biomass to produce food, feed, fiber, energy, and value-added products.

  12. Compare All CBECS Activities: Total Energy Use

    U.S. Energy Information Administration (EIA) Indexed Site

    are more likely to contain specialized, high energy-consuming equipment-food service (cooking and ventilation equipment), inpatient health care (medical equipment), and food sales...

  13. High Plains Bioenergy | Open Energy Information

    Open Energy Info (EERE)

    owned subsidiary of Seaboard Foods, is a renewable energy company focused on producing alternative fuels from the Seaboard Foods integrated system. References: High Plains...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Apply Energy Mgmt. SystemsBuilding Controls filter Food Service Equipment (4) Apply Food Service Equipment filter Heat recovery (4) Apply Heat recovery filter Lighting (4) Apply...

  15. The origin of thermal component in the transverse momentum spectra in high energy hadronic processes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bylinkin, Alexander A.; Kharzeev, Dmitri E.; Rostovtsev, Andrei A.

    2014-12-15

    The transverse momentum spectra of hadrons produced in high energy collisions can be decomposed into two components: the exponential ("thermal") and the power ("hard") ones. Recently, the H1 Collaboration has discovered that the relative strength of these two components in Deep Inelastic Scattering (DIS) depends drastically upon the global structure of the event - namely, the exponential component is absent in the diffractive events characterized by a rapidity gap. We discuss the possible origin of this effect and speculate that it is linked to confinement. Specifically, we argue that the thermal component is due to the effective event horizon introducedmore » by the confining string, in analogy to the Hawking-Unruh effect. In diffractive events, the t-channel exchange is color-singlet and there is no fragmenting string - so the thermal component is absent. The slope of the soft component of the hadron spectrum in this picture is determined by the saturation momentum that drives the deceleration in the color field, and thus the Hawking-Unruh temperature. We analyze the data on non-diffractive pp collisions and find that the slope of the thermal component of the hadron spectrum is indeed proportional to the saturation momentum.« less

  16. The origin of thermal component in the transverse momentum spectra in high energy hadronic processes

    SciTech Connect (OSTI)

    Bylinkin, Alexander A.; Kharzeev, Dmitri E.; Rostovtsev, Andrei A.

    2014-12-15

    The transverse momentum spectra of hadrons produced in high energy collisions can be decomposed into two components: the exponential ("thermal") and the power ("hard") ones. Recently, the H1 Collaboration has discovered that the relative strength of these two components in Deep Inelastic Scattering (DIS) depends drastically upon the global structure of the event - namely, the exponential component is absent in the diffractive events characterized by a rapidity gap. We discuss the possible origin of this effect and speculate that it is linked to confinement. Specifically, we argue that the thermal component is due to the effective event horizon introduced by the confining string, in analogy to the Hawking-Unruh effect. In diffractive events, the t-channel exchange is color-singlet and there is no fragmenting string - so the thermal component is absent. The slope of the soft component of the hadron spectrum in this picture is determined by the saturation momentum that drives the deceleration in the color field, and thus the Hawking-Unruh temperature. We analyze the data on non-diffractive pp collisions and find that the slope of the thermal component of the hadron spectrum is indeed proportional to the saturation momentum.

  17. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    national energy security by developing energy sources with limited impacts on environment improving efficiency and reliability of nation's energy infrastructure Research...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    food processing, cold storage, agricultural, greenhouses, irrigation districts, and waterwastewater treatment. Standard prescriptive... Eligibility: Industrial, Agricultural...

  19. ENERGY

    Office of Environmental Management (EM)

    U.S. Department of ENERGY Department of Energy Quadrennial Technology Review-2015 Framing Document http://energy.gov/qtr 2015-01-13 Page 2 The United States faces serious energy-linked challenges as well as substantial energy opportunities. Disruptions, both natural and man-made, threaten our aging energy infrastructure; global patterns of energy use are changing our climate; and our nation's dependence on foreign sources of energy comes at a significant cost to our economy. We need clean,

  20. Next Generation Manufacturing Processes

    Broader source: Energy.gov [DOE]

    New process technologies can rejuvenate U.S. manufacturing. Novel processing concepts can open pathways to double net energy productivity, enabling rapid manufacture of energy-efficient, high...

  1. Advanced Membrane Separation Technologies for Energy Recovery from Industrial Process Streams

    SciTech Connect (OSTI)

    Keiser, J.R.; Wang, D.; Bischoff, B.; Ciora; Radhakrishnan, B.; Gorti, S.B.

    2013-01-14

    Recovery of energy from relatively low-temperature waste streams is a goal that has not been achieved on any large scale. Heat exchangers do not operate efficiently with low-temperature streams and thus require such large heat exchanger surface areas that they are not practical. Condensing economizers offer one option for heat recovery from such streams, but they have not been widely implemented by industry. A promising alternative to these heat exchangers and economizers is a prototype ceramic membrane system using transport membrane technology for separation of water vapor and recovery of heat. This system was successfully tested by the Gas Technology Institute (GTI) on a natural gas fired boiler where the flue gas is relatively clean and free of contaminants. However, since the tubes of the prototype system were constructed of aluminum oxide, the brittle nature of the tubes limited the robustness of the system and even limited the length of tubes that could be used. In order to improve the robustness of the membrane tubes and make the system more suitable for industrial applications, this project was initiated with the objective of developing a system with materials that would permit the system to function successfully on a larger scale and in contaminated and potentially corrosive industrial environments. This required identifying likely industrial environments and the hazards associated with those environments. Based on the hazardous components in these environments, candidate metallic materials were identified that are expected to have sufficient strength, thermal conductivity and corrosion resistance to permit production of longer tubes that could function in the industrial environments identified. Tests were conducted to determine the corrosion resistance of these candidate alloys, and the feasibility of forming these materials into porous substrates was assessed. Once the most promising metallic materials were identified, the ability to form an alumina membrane layer on the surface of the metallic tubes was evaluated. Evaluation of this new style of membrane tube involved exposure to SO{sub 2} containing gases as well as to materials with a potential for fouling. Once the choice of substrate and membrane materials and design were confirmed, about 150 tubes were fabricated and assembled into three modules. These modules were mounted on an industrial size boiler and their performance carefully monitored during a limited testing period. The positive results of this performance test confirm the feasibility of utilizing such a system for recovery of heat and water from industrial waste streams. The improved module design along with use of long metallic substrate tubes with a ceramic membrane on the outer surface resulted in the successful, limited scale demonstration of the Transport Membrane Condenser (TMC) technology in the GTI test facility. This test showed this technology can successfully recover a significant amount of heat and water from gaseous waste streams. However, before industry will make the investment to install a full scale TMC, a full scale system will need to be constructed, installed and successfully operated at a few industrial sites. Companies were identified that had an interest in serving as a host site for a demonstration system.

  2. Vernon, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    congressional district.12 Registered Energy Companies in Vernon, California West Pico Food References US Census Bureau Incorporated place and minor civil division...

  3. DOE Hosts Festival to Collect Items for Area Food Banks

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – Deputy Secretary of Energy Daniel Poneman and a representative of the Capital Area Food Bank are among the guest speakers at an event this Tuesday, July 31, to collect food items for the DOE Feeds Families drive.

  4. DOE Supports Renewable Energy Deployment Projects for Forest...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the facility utilize a diverse source of organic feedstocks, including liquid food processing byproducts from dairy, beverage, food, and meat processing operations in the region. ...

  5. Renewable Energy Deployment Projects for Forest County Potawatomi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the facility utilize a diverse source of organic feedstocks, including liquid food processing byproducts from dairy, beverage, food, and meat processing operations in the region. ...

  6. Energy Saving Melting and Revert Reduction Technology: Improved Die Casting Process to Preserve the Life of the Inserts

    SciTech Connect (OSTI)

    David Schwam, PI; Xuejun Zhu, Sr. Research Associate

    2012-09-30

    The goal of this project was to study the combined effects of die design, proper internal cooling and efficient die lubricants on die life. The project targeted improvements in die casting insert life by: Optomized Die Design for Reduced Surface Temperature: The life of die casting dies is significantly shorter when the die is exposed to elevated temperature for significant periods of time. Any die operated under conditions leading to surface temperature in excess of 1050oF undergoes structural changes that reduce its strength. Optimized die design can improve die life significantly. This improvement can be accomplished by means of cooling lines, baffles and bubblers in the die. A key objective of the project was to establish criteria for the minimal distance of the cooling lines from the surface. This effort was supported with alloys and machining by BohlerUddeholm, Dunn Steel, HH Stark and Rex Buckeye. In plant testing and evaluation was conducted as in-kind cost share at St. Clair Die Casting. The Uddeholm Dievar steel evaluated in this program showed superior resistance to thermal fatigue resistance. Based on the experimental evidence, cooling lines could be placed as close as 0.5" from the surface. Die Life Extension by Optimized Die Lubrication: The life of die casting dies is affected by additions made to its surface with the proper lubricants. These lubricants will protect the surface from the considerable temperature peaks that occur when the molten melt enters the die. Dies will reach a significantly higher temperature without this lubricant being applied. The amount and type of the lubricant are critical variables in the die casting process. However, these lubricants must not corrode the die surface. This effort was supported with alloys and machining by BohlerUddeholm, Dunn Steel, HH Stark and Rex Buckeye. In plant testing and evaluation was conducted as in-kind cost share at St. Clair Die Casting. Chem- Trend participated in the program with die lubricants and technical support. Experiments conducted with these lubricants demonstrated good protection of the substrate steel. Graphite and boron nitride used as benchmarks are capable of completely eliminating soldering and washout. However, because of cost and environmental considerations these materials are not widely used in industry. The best water-based die lubricants evaluated in this program were capable of providing similar protection from soldering and washout. In addition to improved part quality and higher production rates, improving die casting processes to preserve the life of the inserts will result in energy savings and a reduction in environmental wastes. Improving die life by means of optimized cooling line placement, baffles and bubblers in the die will allow for reduced die temperatures during processing, saving energy associated with production. The utilization of optimized die lubricants will also reduce heat requirements in addition to reducing waste associated with soldering and washout. This new technology was predicted to result in an average energy savings of 1.1 trillion BTU's/year over a 10 year period. Current (2012) annual energy saving estimates, based on commercial introduction in 2010, a market penetration of 70% by 2020 is 1.26 trillion BTU's/year. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.025 Million Metric Tons of Carbon Equivalent (MM TCE).

  7. Venezuela-MEM/USA-DOE Fossil Energy Report IV-11: Supporting technology for enhanced oil recovery - EOR thermal processes

    SciTech Connect (OSTI)

    Venezuela

    2000-04-06

    This report contains the results of efforts under the six tasks of the Tenth Amendment anti Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Energy Agreement. This report is presented in sections (for each of the six Tasks) and each section contains one or more reports that were prepared to describe the results of the effort under each of the Tasks. A statement of each Task, taken from the Agreement Between Project Managers, is presented on the first page of each section. The Tasks are numbered 68 through 73. The first through tenth report on research performed under Annex IV Venezuela MEM/USA-DOE Fossil Energy Report Number IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, IV-8, IV-9, IV-10 contain the results of the first 67 Tasks. These reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, December 1989, October 1991, February 1993, March 1995, and December 1997, respectively.

  8. Food waste management using an electrostatic separator with corona discharge

    SciTech Connect (OSTI)

    Lai, Koonchun; Teh, Pehchiong; Lim, Sooking

    2015-05-15

    In Malaysia, municipal solid waste contains a high portion of organic matters, typically contributed by food waste. It is estimated that about 45% of the municipal waste are food waste, followed by the non-food waste such as plastics, metals, glass and others. Food waste, while being properly sorted and contamination free from non-food waste, can be reused (e.g. fertiliser) instead of being landfilled. Therefore, recycling of food waste is crucial not only from the view point of waste management, but also with respect to the reduction of resource losses and greenhouse gases emission. A new waste separation process involved food particles, non-food particles and electrostatic discharge was investigated in this study. The empirical results reveal that the corona electrostatic separation is an environmental-friendly way in recovering foods from municipal waste. The efficiency of the separator, under same operating conditions, varies with the particle size of the food and non-food particles. The highest efficiency of 82% is recorded for the particle sizes between 1.5 and 3.0?mm.

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to establish minimum energy efficiency standards on nine... Savings Category: Other EE, Food Service Equipment Alliant Energy Interstate Power and Light (Electric)- Business Energy...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    EE, Food Service Equipment, Vending Machine Controls, Reflective Roofs, LED Lighting CPS Energy (Electric)- Residential Energy Efficiency Rebate Program CPS Energy offers a...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Building Insulation, Motors, Motor VFDs, Other EE, Food Service Equipment, Vending Machine Controls, LED Lighting NV Energy-Energy Smart Schools Program The Energy Smart...

  12. Cross sections for proton-induced reactions on Pd isotopes at energies relevant for the {gamma} process

    SciTech Connect (OSTI)

    Dillmann, I.; Coquard, L.; Domingo-Pardo, C.; Kaeppeler, F.; Marganiec, J.; Uberseder, E.; Giesen, U.; Heiske, A.; Feinberg, G.; Hentschel, D.; Hilpp, S.; Leiste, H.; Rauscher, T.; Thielemann, F.-K.

    2011-07-15

    Proton-activation reactions on natural and enriched palladium samples were investigated via the activation technique in the energy range of E{sub p}=2.75-9 MeV, close to the upper end of the respective Gamow window of the {gamma} process. We have determined cross sections for {sup 102}Pd(p, {gamma}){sup 103}Ag, {sup 104}Pd(p, {gamma}){sup 105}Ag, and {sup 105}Pd(p, n){sup 105}Ag, as well as partial cross sections of {sup 104}Pd(p, n){sup 104}Ag{sup g}, {sup 105}Pd(p, {gamma}){sup 106}Ag{sup m}, {sup 106}Pd(p, n){sup 106}Ag{sup m}, and {sup 110}Pd(p, n){sup 110}Ag{sup m} with uncertainties between 3% and 15% for constraining theoretical Hauser-Feshbach rates and for direct use in {gamma}-process calculations.

  13. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy /newsroom/_assets/images/energy-icon.png Energy Research into alternative forms of energy, and improving and securing the power grid, is a major national security imperative. Health Space Computing Energy Earth Materials Science Technology The Lab All The Grid Modernization Initiative represents a comprehensive DOE effort to help shape the future of our nation's grid and solve the challenges of integrating conventional and renewable sources with energy storage and smart buildings. Los

  14. TECHNICAL ASSESSMENT OF BULK VITRIFICATION PROCESS & PRODUCT FOR TANK WASTE TREATMENT AT THE DEPARTMENT OF ENERGY HANFORD SITE

    SciTech Connect (OSTI)

    SCHAUS, P.S.

    2006-07-21

    At the U.S. Department of Energy (DOE) Hanford Site, the Waste Treatment Plant (WTP) is being constructed to immobilize both high-level waste (IUW) for disposal in a national repository and low-activity waste (LAW) for onsite, near-surface disposal. The schedule-controlling step for the WTP Project is vitrification of the large volume of LAW, current capacity of the WTP (as planned) would require 50 years to treat the Hanford tank waste, if the entire LAW volume were to be processed through the WTP. To reduce the time and cost for treatment of Hanford Tank Waste, and as required by the Tank Waste Remediation System Environmental Impact Statement Record of Decision and the Hanford Federal Facility Consent Agreement (Tn-Party Agreement), DOE plans to supplement the LAW treatment capacity of the WTP. Since 2002, DOE, in cooperation with the Environmental Protection Agency and State of Washington Department of Ecology has been evaluating technologies that could provide safe and effective supplemental treatment of LAW. Current efforts at Hanford are intended to provide additional information to aid a joint agency decision on which technology will be used to supplement the WTP. A Research, Development and Demonstration permit has been issued by the State of Washington to build and (for a limited time) operate a Demonstration Bulk Vitrification System (DBVS) facility to provide information for the decision on a supplemental treatment technology for up to 50% of the LAW. In the Bulk Vitrification (BV) process, LAW, soil, and glass-forming chemicals are mixed, dried, and placed in a refractory-lined box, Electric current, supplied through two graphite electrodes in the box, melts the waste feed, producing a durable glass waste-form. Although recent modifications to the process have resulted in significant improvements, there are continuing technical concerns.

  15. States Biomass/Clean Cities Information Exchange: Food and Fuel

    Broader source: Energy.gov [DOE]

    At the August 7, 2008 joint quarterly Web conference of DOE's Biomass and Clean Cities programs, Roya Stanley (Iowa Office of Energy Independence) discussed the food versus fuel issue

  16. Rose Energy | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Sector: Biomass Product: Backed by a consortium of three players in our agri-food industry, Rose Energy has proposed a 30MW biomass plant in Northern Ireland....

  17. Radioactivity in food crops

    SciTech Connect (OSTI)

    Drury, J.S.; Baldauf, M.F.; Daniel, E.W.; Fore, C.S.; Uziel, M.S.

    1983-05-01

    Published levels of radioactivity in food crops from 21 countries and 4 island chains of Oceania are listed. The tabulation includes more than 3000 examples of 100 different crops. Data are arranged alphabetically by food crop and geographical origin. The sampling date, nuclide measured, mean radioactivity, range of radioactivities, sample basis, number of samples analyzed, and bibliographic citation are given for each entry, when available. Analyses were reported most frequently for /sup 137/Cs, /sup 40/K, /sup 90/Sr, /sup 226/Ra, /sup 228/Ra, plutonium, uranium, total alpha, and total beta, but a few authors also reported data for /sup 241/Am, /sup 7/Be, /sup 60/Co, /sup 55/Fe, /sup 3/H, /sup 131/I, /sup 54/Mn, /sup 95/Nb, /sup 210/Pb, /sup 210/Po, /sup 106/Ru, /sup 125/Sb, /sup 228/Th, /sup 232/Th, and /sup 95/Zr. Based on the reported data it appears that radioactivity from alpha emitters in food crops is usually low, on the order of 0.1 Bq.g/sup -1/ (wet weight) or less. Reported values of beta radiation in a given crop generally appear to be several orders of magnitude greater than those of alpha emitters. The most striking aspect of the data is the great range of radioactivity reported for a given nuclide in similar food crops with different geographical origins.

  18. Whole Foods Market Retrofits Multiple Building Systems for Big Savings

    SciTech Connect (OSTI)

    2013-03-01

    Whole Foods Market partnered with U.S. the Department of Energy (DOE) to develop and implement solutions to reduce annual energy consumption in existing stores by at least 30% versus pre-retrofit energy use at its store in Edgewater, New Jersey, as part of DOEs Commercial Building Partnership (CBP) program.

  19. West Valley Demonstration Project Food Drive Delivers Food for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    grocery stores to purchase food at or below wholesale price. Volunteers help load the food into trucks, bring it to the pantries, and stock the shelves. "The support we receive...

  20. Traces of natural radionuclides in animal food

    SciTech Connect (OSTI)

    Merli, Isabella Desan; Guazzelli da Silveira, Marcilei A.; Medina, Nilberto H.

    2014-11-11

    Naturally occurring radioactive materials are present everywhere, e.g., in soil, air, housing materials, food, etc. Therefore, human beings and animals receive internal exposure from radioactive elements inside their bodies through breathing and alimentation. Gamma radiation has enough energy to remove an electron from the atom and compromise the rearrangement of electrons in the search for a more stable configuration which can disturb molecule chemical bonding. Food ingestion is one of the most common forms of radioisotopes absorption. The goal of this work is the measurement of natural gamma radiation rates from natural radioisotopes present in animal food. To determine the concentration of natural radionuclides present in animal food gamma-ray spectrometry was applied. We have prepared animal food samples for poultry, fish, dogs, cats and cattle. The two highest total ingestion effective doses observed refers to a sample of mineral salt cattle, 95.3(15) ?Sv/year, rabbit chow, with a value of 48(5) ?Sv/year, and cattle mineral salt, with a value of 69(7) ?Sv/year, while the annual total dose value from terrestrial intake radionuclide is of the order of 290 ?Sv/year.