National Library of Energy BETA

Sample records for focused ion beam

  1. Focused ion beam system

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Gough, Richard A. (Kensington, CA); Ji, Qing (Berkeley, CA); Lee, Yung-Hee Yvette (Berkeley, CA)

    1999-01-01

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 .mu.m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 .mu.m or less.

  2. Focused ion beam system

    DOE Patents [OSTI]

    Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.

    1999-08-31

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.

  3. Focused electron and ion beam systems

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Reijonen, Jani; Persaud, Arun; Ji, Qing; Jiang, Ximan

    2004-07-27

    An electron beam system is based on a plasma generator in a plasma ion source with an accelerator column. The electrons are extracted from a plasma cathode in a plasma ion source, e.g. a multicusp plasma ion source. The beam can be scanned in both the x and y directions, and the system can be operated with multiple beamlets. A compact focused ion or electron beam system has a plasma ion source and an all-electrostatic beam acceleration and focusing column. The ion source is a small chamber with the plasma produced by radio-frequency (RF) induction discharge. The RF antenna is wound outside the chamber and connected to an RF supply. Ions or electrons can be extracted from the source. A multi-beam system has several sources of different species and an electron beam source.

  4. Focused ion beam source method and apparatus

    DOE Patents [OSTI]

    Pellin, Michael J. (Naperville, IL); Lykke, Keith R. (Gaithersburg, MD); Lill, Thorsten B. (Sunnyvale, CA)

    2000-01-01

    A focused ion beam having a cross section of submicron diameter, a high ion current, and a narrow energy range is generated from a target comprised of particle source material by laser ablation. The method involves directing a laser beam having a cross section of critical diameter onto the target, producing a cloud of laser ablated particles having unique characteristics, and extracting and focusing a charged particle beam from the laser ablated cloud. The method is especially suited for producing focused ion beams for semiconductor device analysis and modification.

  5. Focused ion beam micromilling and articles therefrom

    DOE Patents [OSTI]

    Lamartine, Bruce C. (Los Alamos, NM); Stutz, Roger A. (Los Alamos, NM)

    1998-01-01

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are isclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters.

  6. Focused ion beam micromilling and articles therefrom

    DOE Patents [OSTI]

    Lamartine, B.C.; Stutz, R.A.

    1998-06-30

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are disclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters. 6 figs.

  7. focused ion beam cross-sectioning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    focused ion beam cross-sectioning - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  8. Development of a focused ion beam micromachining system

    SciTech Connect (OSTI)

    Pellerin, J.G.; Griffis, D.; Russell, P.E.

    1988-12-01

    Focused ion beams are currently being investigated for many submicron fabrication and analytical purposes. An FIB micromachining system consisting of a UHV vacuum system, a liquid metal ion gun, and a control and data acquisition computer has been constructed. This system is being used to develop nanofabrication and nanomachining techniques involving focused ion beams and scanning tunneling microscopes.

  9. Ultrahigh vacuum focused ion beam micromill and articles therefrom

    DOE Patents [OSTI]

    Lamartine, B.C.; Stutz, R.A.

    1998-02-24

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are disclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters. 6 figs.

  10. Ultrahigh vacuum focused ion beam micromill and articles therefrom

    DOE Patents [OSTI]

    Lamartine, Bruce C. (Los Alamos, NM); Stutz, Roger A. (Los Alamos, NM)

    1998-01-01

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are isclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters.

  11. Customized atomic force microscopy probe by focused-ion-beam-assisted tip

    Office of Scientific and Technical Information (OSTI)

    transfer (Journal Article) | SciTech Connect Customized atomic force microscopy probe by focused-ion-beam-assisted tip transfer Citation Details In-Document Search Title: Customized atomic force microscopy probe by focused-ion-beam-assisted tip transfer We present a technique for transferring separately fabricated tips onto tipless atomic force microscopy (AFM) cantilevers, performed using focused ion beam-assisted nanomanipulation. This method addresses the need in scanning probe microscopy

  12. Diagnostics of ion beam generated from a Mather type plasma focus device

    SciTech Connect (OSTI)

    Lim, L. K. Ngoi, S. K. Wong, C. S. Yap, S. L.

    2014-03-05

    Diagnostics of ion beam emission from a 3 kJ Mather-type plasma focus device have been performed for deuterium discharge at low pressure regime. Deuterium plasma focus was found to be optimum at pressure of 0.2 mbar. The energy spectrum and total number of ions per shot from the pulsed ion beam are determined by using biased ion collectors, Faraday cup, and solid state nuclear track detector CR-39. Average energy of the ion beam obtained is about 60 keV. Total number of the ions has been determined to be in the order of 10{sup 11} per shot. Solid state nuclear track detectors (SSNTD) CR39 are employed to measure the particles at all angular direction from end on (0°) to side on (90°). Particle tracks are registered by SSNTD at 30° to 90°, except the one at the end-on 0°.

  13. Large Area Microcorrals and Cavity Formation on Cantilevers using a Focused Ion Beam

    SciTech Connect (OSTI)

    Saraf, Laxmikant V.; Britt, David W.

    2011-09-14

    We utilize focused ion beam (FIB) to explore various sputtering parameters to form large area microcorrals and cavities on cantilevers. Microcorrals were rapidly created by modifying ion beam blur and overlaps. Modification in FIB sputtering parameters affects the periodicity and shape of corral microstructure. Cantilever deflections show ion beam amorphization effects as a function of sputtered area and cantilever base cavities with or without side walls. The FIB sputtering parameters address a method for rapid creation of a cantilever tensiometer with integrated fluid storage and delivery.

  14. Plasma focus ion beam fluence and flux—For various gases

    SciTech Connect (OSTI)

    Lee, S. [Centre for Plasma Research, INTI International University, 71800 Nilai (Malaysia) [Centre for Plasma Research, INTI International University, 71800 Nilai (Malaysia); Institute for Plasma Focus Studies, 32 Oakpark Drive, Chadstone 3148 (Australia); Physics Department, University of Malaya (Malaysia); Saw, S. H. [Centre for Plasma Research, INTI International University, 71800 Nilai (Malaysia) [Centre for Plasma Research, INTI International University, 71800 Nilai (Malaysia); Institute for Plasma Focus Studies, 32 Oakpark Drive, Chadstone 3148 (Australia)

    2013-06-15

    A recent paper derived benchmarks for deuteron beam fluence and flux in a plasma focus (PF) [S. Lee and S. H. Saw, Phys. Plasmas 19, 112703 (2012)]. In the present work we start from first principles, derive the flux equation of the ion beam of any gas; link to the Lee Model code and hence compute the ion beam properties of the PF. The results show that, for a given PF, the fluence, flux, ion number and ion current decrease from the lightest to the heaviest gas except for trend-breaking higher values for Ar fluence and flux. The energy fluence, energy flux, power flow, and damage factors are relatively constant from H{sub 2} to N{sub 2} but increase for Ne, Ar, Kr and Xe due to radiative cooling and collapse effects. This paper provides much needed benchmark reference values and scaling trends for ion beams of a PF operated in any gas.

  15. Ion focusing

    DOE Patents [OSTI]

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2015-11-10

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  16. Self-focusing of a Gaussian electromagnetic beam in a multi-ions plasma

    SciTech Connect (OSTI)

    Misra, Shikha; Sodha, M. S.; Mishra, S. K.

    2013-10-15

    In this paper, the authors have developed a formulation for the dependence of electron and ion densities on the irradiance of an electromagnetic beam in a plasma with multiply charged ions, corresponding to collisional, ponderomotive, and relativistic-ponderomotive nonlinearities and different electron/ion temperatures; consequently, the corresponding expressions for the electron density modification in the presence of an electromagnetic (em) field have been derived. Paraxial approach in the vicinity of intensity maximum has been adopted to analyze the propagation characteristics of an em beam in such plasmas; on the basis of this analysis, critical curves and self-focusing curves have been computed numerically and graphically illustrated. For a numerical appreciation of the analysis, we have specifically carried out the computations for the simultaneous presence of singly and doubly charged ions in the plasma. As an important outcome, it is seen that the nonlinear effects (and hence self-focusing) get suppressed in the presence of multiply ionized ions; the conditions for the three modes of em-beam propagation viz. oscillatory focusing/defocusing and steady divergence have been discussed.

  17. Implementation of focused ion beam (FIB) system in characterization of nuclear fuels and materials

    SciTech Connect (OSTI)

    A. Aitkaliyeva; J. W. Madden; B. D. Miller; J I Cole; T A Hyde

    2014-10-01

    Beginning in 2007, a program was established at the Idaho National Laboratory to update key capabilities enabling microstructural and micro-chemical characterization of highly irradiated and/or radiologically contaminated nuclear fuels and materials at scales that previously had not been achieved for these types of materials. Such materials typically cannot be contact handled and pose unique hazards to instrument operators, facilities, and associated personnel. One of the first instruments to be acquired was a Dual Beam focused ion beam (FIB)-scanning electron microscope (SEM) to support preparation of transmission electron microscopy and atom probe tomography samples. Over the ensuing years, techniques have been developed and operational experience gained that has enabled significant advancement in the ability to characterize a variety of fuel types including metallic, ceramic, and coated particle fuels, obtaining insights into in-reactor degradation phenomena not obtainable by any other means. The following article describes insights gained, challenges encountered, and provides examples of unique results obtained in adapting Dual Beam FIB technology to nuclear fuels characterization.

  18. Enhanced collective focusing of intense neutralized ion beam pulses in the presence of weak solenoidal magnetic fields

    SciTech Connect (OSTI)

    Dorf, Mikhail A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Davidson, Ronald C.; Kaganovich, Igor D.; Startsev, Edward A. [Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2012-05-15

    The design of ion drivers for warm dense matter and high energy density physics applications and heavy ion fusion involves transverse focusing and longitudinal compression of intense ion beams to a small spot size on the target. To facilitate the process, the compression occurs in a long drift section filled with a dense background plasma, which neutralizes the intense beam self-fields. Typically, the ion bunch charge is better neutralized than its current, and as a result a net self-pinching (magnetic) force is produced. The self-pinching effect is of particular practical importance, and is used in various ion driver designs in order to control the transverse beam envelope. In the present work we demonstrate that this radial self-focusing force can be significantly enhanced if a weak (B {approx} 100 G) solenoidal magnetic field is applied inside the neutralized drift section, thus allowing for substantially improved transport. It is shown that in contrast to magnetic self-pinching, the enhanced collective self-focusing has a radial electric field component and occurs as a result of the overcompensation of the beam charge by plasma electrons, whereas the beam current becomes well-neutralized. As the beam leaves the neutralizing drift section, additional transverse focusing can be applied. For instance, in the neutralized drift compression experiments (NDCX) a strong (several Tesla) final focus solenoid is used for this purpose. In the present analysis we propose that the tight final focus in the NDCX experiments may possibly be achieved by using a much weaker (few hundred Gauss) magnetic lens, provided the ion beam carries an equal amount of co-moving neutralizing electrons from the preceding drift section into the lens. In this case the enhanced focusing is provided by the collective electron dynamics strongly affected by a weak applied magnetic field.

  19. FINAL FOCUS ION BEAM INTENSITY FROM TUNGSTEN FOIL CALORIMETER AND SCINTILLATOR IN NDCX-I

    SciTech Connect (OSTI)

    Lidia, S.M.; Bieniosek, F.; Henestroza, E.; Ni, P.; Seidl, P.

    2010-04-30

    Laboratory high energy density experiments using ion beam drivers rely upon the delivery of high-current, high-brightness ion beams with high peak intensity onto targets. Solid-state scintillators are typically used to measure the ion beam spatial profile but they display dose-dependent degradation and aging effects. These effects produce uncertainties and limit the accuracy of measuring peak beam intensities delivered to the target. For beam tuning and characterizing the incident beam intensity, we have developed a cross-calibrating diagnostic suite that extends the upper limit of measurable peak intensity dynamic range. Absolute intensity calibration is obtained with a 3 {micro}m thick tungsten foil calorimeter and streak spectrometer. We present experimental evidence for peak intensity measures in excess of 400 kW/cm{sup 2} using a 0.3 MV, 25 mA, 5-20 {micro}sec K{sup +1} beam. Radiative models and thermal diffusion effects are discussed because they affect temporal and spatial resolution of beam intensity profiles.

  20. The influence of electron irradiation on electron holography of focused ion beam milled GaAs p-n junctions

    SciTech Connect (OSTI)

    Cooper, David; Twitchett-Harrison, Alison C.; Midgley, Paul A.; Dunin-Borkowski, Rafal E.

    2007-05-01

    Electron beam irradiation is shown to significantly influence phase images recorded from focused ion beam milled GaAs p-n junction specimens examined using off-axis electron holography in the transmission electron microscope. Our results show that the use of improved electrical connections to the specimen overcomes this problem, and may allow the correct built in potential across the junction to be recovered.

  1. Focused-ion-beam induced damage in thin films of complex oxide BiFeO{sub 3}

    SciTech Connect (OSTI)

    Siemons, W.; Beekman, C.; Budai, J. D.; Christen, H. M.; Fowlkes, J. D.; Balke, N.; Tischler, J. Z.; Xu, R.; Liu, W.; Gonzales, C. M.

    2014-02-01

    An unexpected, strong deterioration of crystal quality is observed in epitaxial perovskite BiFeO{sub 3} films in which microscale features have been patterned by focused-ion-beam (FIB) milling. Specifically, synchrotron x-ray microdiffraction shows that the damaged region extends to tens of ?m, but does not result in measureable changes to morphology or stoichiometry. Therefore, this change would go undetected with standard laboratory equipment, but can significantly influence local material properties and must be taken into account when using a FIB to manufacture nanostructures. The damage is significantly reduced when a thin metallic layer is present on top of the film during the milling process, clearly indicating that the reduced crystallinity is caused by ion beam induced charging.

  2. High-pressure generation using double stage micro-paired diamond anvils shaped by focused ion beam

    SciTech Connect (OSTI)

    Sakai, Takeshi Ohfuji, Hiroaki; Yagi, Takehiko; Irifune, Tetsuo; Ohishi, Yasuo; Hirao, Naohisa; Suzuki, Yuya; Kuroda, Yasushi; Asakawa, Takayuki; Kanemura, Takashi

    2015-03-15

    Micron-sized diamond anvils with a 3 ?m culet were successfully processed using a focused ion beam (FIB) system and the generation of high pressures was confirmed using the double stage diamond anvil cell technique. The difficulty of aligning two second-stage micro-anvils was solved via the paired micro-anvil method. Micro-manufacturing using a FIB system enables us to control anvil shape, process any materials, including nano-polycrystalline diamond and single crystal diamond, and assemble the sample exactly in a very small space between the second-stage anvils. This method is highly reproducible. High pressures over 300 GPa were achieved, and the pressure distribution around the micro-anvil culet was evaluated by using a well-focused synchrotron micro-X-ray beam.

  3. Electron density profile measurements at a self-focusing ion beam with high current density and low energy extracted through concave electrodes

    SciTech Connect (OSTI)

    Fujiwara, Y. Nakamiya, A.; Sakakita, H.; Innovative Plasma Technologies Group, National Institute of Advanced Industrial Science and Technology , Ibaraki ; Hirano, Y.; Laboratory of Physics, College of Science and Technologies, Nihon University, Tokyo ; Kiyama, S.; Koguchi, H.

    2014-02-15

    The self-focusing phenomenon has been observed in a high current density and low energy ion beam. In order to study the mechanism of this phenomenon, a special designed double probe to measure the electron density and temperature is installed into the chamber where the high current density ion beam is injected. Electron density profile is successfully measured without the influence of the ion beam components. Estimated electron temperature and density are ?0.9 eV and ?8 × 10{sup 8} cm{sup ?3} at the center of ion beam cross section, respectively. It was found that a large amount of electrons are spontaneously accumulated in the ion beam line in the case of self-forcing state.

  4. Comparison of SOFC Cathode Microstructure Quantified using X-ray Nanotomography and Focused Ion Beam - Scanning Electron Microscopy

    SciTech Connect (OSTI)

    Nelson, George J.; Harris, William H.; Lombardo, Jeffrey J.; Izzo, Jr., John R.; Chiu, W. K. S.; Tanasini, Pietro; Cantoni, Marco; Van herle, Jan; Comninellis, Christos; Andrews, Joy C.; Liu, Yijin; Pianetta, Piero; Chu, Yong

    2011-03-24

    X-ray nanotomography and focused ion beam scanning electron microscopy (FIB-SEM) have been applied to investigate the complex 3D microstructure of solid oxide fuel cell (SOFC) electrodes at spatial resolutions of 45 nm and below. The application of near edge differential absorption for x-ray nanotomography and energy selected backscatter detection for FIB–SEM enable elemental mapping within the microstructure. Using these methods, non-destructive 3D x-ray imaging and FIB–SEM serial sectioning have been applied to compare three-dimensional elemental mapping of the LSM, YSZ, and pore phases in the SOFC cathode microstructure. The microstructural characterization of an SOFC cathode is reported based on these measurements. The results presented demonstrate the viability of x-ray nanotomography as a quantitative characterization technique and provide key insights into the SOFC cathode microstructure.

  5. Broad beam ion implanter

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    1996-01-01

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

  6. Ion beam generating apparatus

    DOE Patents [OSTI]

    Brown, I.G.; Galvin, J.

    1987-12-22

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. 10 figs.

  7. Ion beam generating apparatus

    DOE Patents [OSTI]

    Brown, Ian G. (1088 Woodside Rd., Berkeley, CA 94708); Galvin, James (2 Commodore #276, Emeryville, CA 94608)

    1987-01-01

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam.

  8. Ion beam lithography system

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2005-08-02

    A maskless plasma-formed ion beam lithography tool provides for patterning of sub-50 nm features on large area flat or curved substrate surfaces. The system is very compact and does not require an accelerator column and electrostatic beam scanning components. The patterns are formed by switching beamlets on or off from a two electrode blanking system with the substrate being scanned mechanically in one dimension. This arrangement can provide a maskless nano-beam lithography tool for economic and high throughput processing.

  9. Maskless, resistless ion beam lithography

    SciTech Connect (OSTI)

    Ji, Qing

    2003-03-10

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O{sub 2}{sup +}, BF{sub 2}{sup +}, P{sup +} etc., for surface modification and doping applications. With optimized source condition, around 85% of BF{sub 2}{sup +}, over 90% of O{sub 2}{sup +} and P{sup +} have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He{sup +} beam is as high as 440 A/cm{sup 2} {center_dot} Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O{sub 2}{sup +} ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O{sub 2}{sup +} ions with the dose of 10{sup 15} cm{sup -2}. The oxide can then serve as a hard mask for patterning of the Si film. The process flow and the experimental results for directly patterned poly-Si features are presented. The formation of shallow pn-junctions in bulk silicon wafers by scanning focused P{sup +} beam implantation at 5 keV is also presented. With implantation dose of around 10{sup 16} cm{sup -2}, the electron concentration is about 2.5 x 10{sup 18} cm{sup -3} and electron mobility is around 200 cm{sup 2}/V{center_dot}s. To demonstrate the suitability of scanning FIB lithography for the manufacture of integrated circuit devices, SOI MOSFET fabrication using the maskless, resistless ion beam lithography is demonstrated. An array of microcolumns can be built by stacking multi-aperture electrode and insulator layers. Because the multicusp plasma source can achieve uniform ion density over a large area, it can be used in conjunction with the array of microcolumns, for massively parallel FIB processing to achieve reasonable exposure throughput.

  10. Pulsed ion beam source

    DOE Patents [OSTI]

    Greenly, J.B.

    1997-08-12

    An improved pulsed ion beam source is disclosed having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center. 12 figs.

  11. Anomalous resistivity effect on multiple ion beam emission and hard x-ray generation in a Mather type plasma focus device

    SciTech Connect (OSTI)

    Behbahani, R. A.; Aghamir, F. M.

    2011-10-15

    Multi ion beam and hard x-ray emissions were detected in a high inductance (more than 100 nH) Mather type plasma focus (PF) device at different filling gas pressures and charging voltages. The signal analysis was performed through the current trace, as it is the fundamental signal from which all of the phenomena in a PF device can be extracted. Two different fitting processes were carried out according to Lee's computational (snow-plow) model. In the first process, only plasma dynamics and classical (Spitzer) resistances were considered as energy consumer parameters for plasma. This led to an unsuccessful fitting and did not answer the energy transfer mechanism into plasma. A second fitting process was considered through the addition of anomalous resistance, which provided the best fit. Anomalous resistance was the source of long decrease in current trace, and multi dips and multi peaks of high voltage probe. Multi-peak features were interpreted considering the second fitting process along with the mechanisms for ion beam production and hard x-ray emission. To show the important role of the anomalous resistance, the duration of the current drop was discussed.

  12. Chemical Imaging Analysis of Environmental Particles Using the Focused Ion Beam/Scanning Electron Microscopy Technique: Microanalysis Insights into Atmospheric Chemistry of Fly Ash

    SciTech Connect (OSTI)

    Chen, Haihan; Grassian, Vicki H.; Saraf, Laxmikant V.; Laskin, Alexander

    2013-01-21

    Airborne fly ash from coal combustion may represent a source of bioavailable iron (Fe) in the open ocean. However, few studies have been made focusing on Fe speciation and distribution in coal fly ash. In this study, chemical imaging of fly ash has been performed using a dual-beam FIB/SEM (focused ion beam/scanning electron microscope) system for a better understanding of how simulated atmospheric processing modify the morphology, chemical compositions and element distributions of individual particles. A novel approach has been applied for cross-sectioning of fly ash specimen with a FIB in order to explore element distribution within the interior of individual particles. Our results indicate that simulated atmospheric processing causes disintegration of aluminosilicate glass, a dominant material in fly ash particles. Aluminosilicate-phase Fe in the inner core of fly ash particles is more easily mobilized compared with oxide-phase Fe present as surface aggregates on fly ash spheres. Fe release behavior depends strongly on Fe speciation in aerosol particles. The approach for preparation of cross-sectioned specimen described here opens new opportunities for particle microanalysis, particular with respect to inorganic refractive materials like fly ash and mineral dust.

  13. Towards sub-200 nm nano-structuring of linear giant magneto-resistive spin valves by a direct focused ion beam milling process

    SciTech Connect (OSTI)

    Riedmüller, Benjamin; Huber, Felix; Herr, Ulrich

    2014-02-14

    In this work, we present a detailed investigation of a focused ion beam (FIB) assisted nano-structuring process for giant magneto-resistive (GMR) spin valve sensors. We have performed a quantitative study of the dependence of the GMR ratio as well as the sensor resistance on the ion dose, which is implanted in the active region of our sensors. These findings are correlated with the decrease of magneto-resistive properties after micro- and nano-structuring by the FIB and reveal the importance of ion damage which limits the applicability of FIB milling to GMR devices in the low μm range. Deposition of a protective layer (50 nm SiO{sub 2}) on top of the sensor structure before milling leads to a preservation of the magneto-resistive properties after the milling procedure down to sensor dimensions of ∼300 nm. The reduction of the sensor dimensions to the nanometer regime is accompanied by a shift of the GMR curves, and a modification of the saturation behavior. Both effects can be explained by a micromagnetic model including the magnetic interaction of free and pinned layer as well as the effect of the demagnetizing field of the free layer on the sensor behavior. The results demonstrate that the FIB technology can be successfully used to prepare spintronic nanostructures.

  14. Electrostatic plasma lens for focusing negatively charged particle beams

    SciTech Connect (OSTI)

    Goncharov, A. A.; Dobrovolskiy, A. M.; Dunets, S. M.; Litovko, I. V.; Gushenets, V. I.; Oks, E. M.

    2012-02-15

    We describe the current status of ongoing research and development of the electrostatic plasma lens for focusing and manipulating intense negatively charged particle beams, electrons, and negative ions. The physical principle of this kind of plasma lens is based on magnetic isolation electrons providing creation of a dynamical positive space charge cloud in shortly restricted volume propagating beam. Here, the new results of experimental investigations and computer simulations of wide-aperture, intense electron beam focusing by plasma lens with positive space charge cloud produced due to the cylindrical anode layer accelerator creating a positive ion stream towards an axis system is presented.

  15. Ion beam processing of advanced electronic materials

    SciTech Connect (OSTI)

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B. (eds.) (California Univ., Berkeley, CA (USA); International Business Machines Corp., Yorktown Heights, NY (USA). Thomas J. Watson Research Center; Oak Ridge National Lab., TN (USA))

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

  16. Electron beam ion source and electron beam ion trap (invited)

    SciTech Connect (OSTI)

    Becker, Reinard [Scientific Software Service, Kapellenweg 2a, D-63571 Gelnhausen (Germany); Kester, Oliver [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824 (United States)

    2010-02-15

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not ''sorcery'' but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  17. Ion Beam Materials Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the individual researchers' needs. The core of the laboratory consists of a 3 MV NEC tandem accelerator, a 200 kV Varian ion implanter, and a 200 kV Danfysik ion implanter...

  18. Gated beam imager for heavy ion beams

    SciTech Connect (OSTI)

    Ahle, Larry; Hopkins, Harvey S.

    1998-12-10

    As part of the work building a small heavy-ion induction accelerator ring, or recirculator, at Lawrence Livermore National Laboratory, a diagnostic device measuring the four-dimensional transverse phase space of the beam in just a single pulse has been developed. This device, the Gated Beam Imager (GBI), consists of a thin plate filled with an array of 100-micron diameter holes and uses a Micro Channel Plate (MCP), a phosphor screen, and a CCD camera to image the beam particles that pass through the holes after they have drifted for a short distance. By time gating the MCP, the time evolution of the beam can also be measured, with each time step requiring a new pulse.

  19. Gated beam imager for heavy ion beams

    SciTech Connect (OSTI)

    Ahle, L.; Hopkins, H.S.

    1998-12-01

    As part of the work building a small heavy-ion induction accelerator ring, or recirculator, at Lawrence Livermore National Laboratory, a diagnostic device measuring the four-dimensional transverse phase space of the beam in just a single pulse has been developed. This device, the Gated Beam Imager (GBI), consists of a thin plate filled with an array of 100-micron diameter holes and uses a Micro Channel Plate (MCP), a phosphor screen, and a CCD camera to image the beam particles that pass through the holes after they have drifted for a short distance. By time gating the MCP, the time evolution of the beam can also be measured, with each time step requiring a new pulse. {copyright} {ital 1998 American Institute of Physics.}

  20. High Power Hydrogen Injector with Beam Focusing for Plasma Heating

    SciTech Connect (OSTI)

    Deichuli, P.P.; Ivanov, A.A.; Korepanov, S.A.; Mishagin, V.V.; Sorokin, A.V.; Stupishin, N.V

    2005-01-15

    High power neutral beam injector has been developed with the atom energy of 25 keV, a current of 60 A, and several milliseconds pulse duration. Six of these injectors will be used for upgrade of the atomic injection system at central cell of a Gas Dynamic Trap (GDT) device and 2 injectors are planned for SHIP experiment.The injector ion source is based on an arc discharge plasma box. The plasma emitter is produced by a 1 kA arc discharge in hydrogen. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase its efficiency and improve homogeneity of the plasma emitter. The ion beam is extracted by a 4-electrodes ion optical system (IOS). Initial beam diameter is 200 mm. The grids of the IOS have a spherical curvature for geometrical focusing of the beam. The optimal IOS geometry and grid potentials were found with the numerical simulation to provide precise beam formation. The measured angular divergence of the beam is 0.02 rad, which corresponds to the 2.5 cm Gaussian radius of the beam profile measured at focal point.

  1. Ion Beam Neutralization by a Tenuous Background Plasma ---- Inventors Igor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kaganovich and William Berdanier | Princeton Plasma Physics Lab Ion Beam Neutralization by a Tenuous Background Plasma ---- Inventors Igor Kaganovich and William Berdanier The neutralization and focusing of intense charged particle beam pulses by electrons form the basis for a wide range of applications for accelerators, heavy ion fusion, and astrophysics. This invention shows that for intense ion beam pulses, a background plasma with a low relative density can be used to effectively

  2. Ion Beams - Radiation Effects Facility / Cyclotron Institute...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Useful Graphs Various ion beams have been developed specifically for the Radiation Effects Facility. These beams provide for a wide scope of LET with high energies for...

  3. Oxygen ion-beam microlithography

    DOE Patents [OSTI]

    Tsuo, Y.S.

    1991-08-20

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used. 5 figures.

  4. Superconducting focusing quadrupoles for heavy ion fusion experiments

    SciTech Connect (OSTI)

    Sabbi, G.L.; Faltens, A.; Leitner, M.; Lietzke, A.; Seidl, P.; Barnard, J.; Lund, S.; Martovetsky, N.; Gung, C.; Minervini, J.; Radovinsky, A.; Schultz, J.; Meinke, R.

    2003-05-01

    The Heavy Ion Fusion (HIF) Program is developing superconducting focusing magnets for both near-term experiments and future driver accelerators. In particular, single bore quadrupoles have been fabricated and tested for use in the High Current Experiment (HCX) at Lawrence Berkeley National Laboratory (LBNL). The next steps involve the development of magnets for the planned Integrated Beam Experiment (IBX) and the fabrication of the first prototype multi-beam focusing arrays for fusion driver accelerators. The status of the magnet R&D program is reported, including experimental requirements, design issues and test results.

  5. Ion beam inertial confinement target

    DOE Patents [OSTI]

    Bangerter, Roger O. (Danville, CA); Meeker, Donald J. (Livermore, CA)

    1985-01-01

    A target for implosion by ion beams composed of a spherical shell of frozen DT surrounded by a low-density, low-Z pusher shell seeded with high-Z material, and a high-density tamper shell. The target has various applications in the inertial confinement technology. For certain applications, if desired, a low-density absorber shell may be positioned intermediate the pusher and tamper shells.

  6. Pseudo ribbon metal ion beam source

    SciTech Connect (OSTI)

    Stepanov, Igor B. Ryabchikov, Alexander I.; Sivin, Denis O.; Verigin, Dan A.

    2014-02-15

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.

  7. Note: High density pulsed molecular beam for cold ion chemistry

    SciTech Connect (OSTI)

    Kokish, M. G.; Rajagopal, V.; Marler, J. P.; Odom, B. C.

    2014-08-15

    A recent expansion of cold and ultracold molecule applications has led to renewed focus on molecular species preparation under ultrahigh vacuum conditions. Meanwhile, molecular beams have been used to study gas phase chemical reactions for decades. In this paper, we describe an apparatus that uses pulsed molecular beam technology to achieve high local gas densities, leading to faster reaction rates with cold trapped ions. We characterize the beam's spatial profile using the trapped ions themselves. This apparatus could be used for preparation of molecular species by reactions requiring excitation of trapped ion precursors to states with short lifetimes or for obtaining a high reaction rate with minimal increase of background chamber pressure.

  8. Plasma formed ion beam projection lithography system

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Lee, Yung-Hee Yvette (Berkeley, CA); Ngo, Vinh (San Jose, CA); Zahir, Nastaran (Greenbrae, CA)

    2002-01-01

    A plasma-formed ion-beam projection lithography (IPL) system eliminates the acceleration stage between the ion source and stencil mask of a conventional IPL system. Instead a much thicker mask is used as a beam forming or extraction electrode, positioned next to the plasma in the ion source. Thus the entire beam forming electrode or mask is illuminated uniformly with the source plasma. The extracted beam passes through an acceleration and reduction stage onto the resist coated wafer. Low energy ions, about 30 eV, pass through the mask, minimizing heating, scattering, and sputtering.

  9. The Electron Beam Ion Source (EBIS)

    ScienceCinema (OSTI)

    Brookhaven Lab

    2010-01-08

    Brookhaven National Lab has successfully developed a new pre-injector system, called the Electron Beam Ion Source, for the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. The first of several planned improvemen

  10. Ion optics of RHIC electron beam ion source

    SciTech Connect (OSTI)

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Okamura, M.; Raparia, D.; Ritter, J.; Tan, Y.; Kuznetsov, G.

    2012-02-15

    RHIC electron beam ion source has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

  11. Sub-micron resolution of localized ion beam induced charge reduction in silicon detectors damaged by heavy ions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Auden, Elizabeth C.; Pacheco, Jose L.; Bielejec, Edward; Vizkelethy, Gyorgy; Abraham, John B. S.; Doyle, Barney L.

    2015-12-01

    In this study, displacement damage reduces ion beam induced charge (IBIC) through Shockley-Read-Hall recombination. Closely spaced pulses of 200 keV Si++ ions focused in a 40 nm beam spot are used to create damage cascades within 0.25 μm2 areas. Damaged areas are detected through contrast in IBIC signals generated with focused ion beams of 200 keV Si++ ions and 60 keV Li+ ions. IBIC signal reduction can be resolved over sub-micron regions of a silicon detector damaged by as few as 1000 heavy ions.

  12. Sub-micron resolution of localized ion beam induced charge reduction in silicon detectors damaged by heavy ions

    SciTech Connect (OSTI)

    Auden, Elizabeth C.; Pacheco, Jose L.; Bielejec, Edward; Vizkelethy, Gyorgy; Abraham, John B. S.; Doyle, Barney L.

    2015-12-01

    In this study, displacement damage reduces ion beam induced charge (IBIC) through Shockley-Read-Hall recombination. Closely spaced pulses of 200 keV Si++ ions focused in a 40 nm beam spot are used to create damage cascades within 0.25 ?m2 areas. Damaged areas are detected through contrast in IBIC signals generated with focused ion beams of 200 keV Si++ ions and 60 keV Li+ ions. IBIC signal reduction can be resolved over sub-micron regions of a silicon detector damaged by as few as 1000 heavy ions.

  13. Intense Ion Beam for Warm Dense Matter Physics

    SciTech Connect (OSTI)

    Coleman, Joshua Eugene

    2008-05-23

    The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory is exploring the physical limits of compression and focusing of ion beams for heating material to warm dense matter (WDM) and fusion ignition conditions. The NDCX is a beam transport experiment with several components at a scale comparable to an inertial fusion energy driver. The NDCX is an accelerator which consists of a low-emittance ion source, high-current injector, solenoid matching section, induction bunching module, beam neutralization section, and final focusing system. The principal objectives of the experiment are to control the beam envelope, demonstrate effective neutralization of the beam space-charge, control the velocity tilt on the beam, and understand defocusing effects, field imperfections, and limitations on peak intensity such as emittance and aberrations. Target heating experiments with space-charge dominated ion beams require simultaneous longitudinal bunching and transverse focusing. A four-solenoid lattice is used to tune the beam envelope to the necessary focusing conditions before entering the induction bunching module. The induction bunching module provides a head-to-tail velocity ramp necessary to achieve peak axial compression at the desired focal plane. Downstream of the induction gap a plasma column neutralizes the beam space charge so only emittance limits the focused beam intensity. We present results of beam transport through a solenoid matching section and simultaneous focusing of a singly charged K{sup +} ion bunch at an ion energy of 0.3 MeV. The results include a qualitative comparison of experimental and calculated results after the solenoid matching section, which include time resolved current density, transverse distributions, and phase-space of the beam at different diagnostic planes. Electron cloud and gas measurements in the solenoid lattice and in the vicinity of intercepting diagnostics are also presented. Finally, comparisons of improved experimental and calculated axial focus (> 100 x axial compression, < 2 ns pulses) and higher peak energy deposition on target are also presented. These achievements demonstrate the capabilities for near term target heating experiments to T{sub e} {approx} 0.1 eV and for future ion accelerators to heat targets to T{sub e} > 1 eV.

  14. Beam-beam observations in the Relativistic Heavy Ion Collider

    SciTech Connect (OSTI)

    Luo, Y.; Fischer, W.; White, S.

    2015-06-24

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been operating since 2000. Over the past decade, thanks to the continuously increased bunch intensity and reduced β*s at the interaction points, the maximum peak luminosity in the polarized proton operation has been increased by more than two orders of magnitude. In this article, we first present the beam-beam observations in the previous RHIC polarized proton runs. Then we analyze the mechanisms for the beam loss and emittance growth in the presence of beam-beam interaction. The operational challenges and limitations imposed by beam-beam interaction and their remedies are also presented. In the end, we briefly introduce head-on beam-beam compensation with electron lenses in RHIC.

  15. Measurements and simulations of focused beam for orthovoltage therapy

    SciTech Connect (OSTI)

    Abbas, Hassan; Mahato, Dip N.; Satti, Jahangir; MacDonald, C. A.

    2014-04-15

    Purpose: Megavoltage photon beams are typically used for therapy because of their skin-sparing effect. However, a focused low-energy x-ray beam would also be skin sparing, and would have a higher dose concentration at the focal spot. Such a beam can be produced with polycapillary optics. MCNP5 was used to model dose profiles for a scanned focused beam, using measured beam parameters. The potential of low energy focused x-ray beams for radiation therapy was assessed. Methods: A polycapillary optic was used to focus the x-ray beam from a tungsten source. The optic was characterized and measurements were performed at 50 kV. PMMA blocks of varying thicknesses were placed between optic and the focal spot to observe any variation in the focusing of the beam after passing through the tissue-equivalent material. The measured energy spectrum was used to model the focused beam in MCNP5. A source card (SDEF) in MCNP5 was used to simulate the converging x-ray beam. Dose calculations were performed inside a breast tissue phantom. Results: The measured focal spot size for the polycapillary optic was 0.2 mm with a depth of field of 5 mm. The measured focal spot remained unchanged through 40 mm of phantom thickness. The calculated depth dose curve inside the breast tissue showed a dose peak several centimeters below the skin with a sharp dose fall off around the focus. The percent dose falls below 10% within 5 mm of the focus. It was shown that rotating the optic during scanning would preserve the skin-sparing effect of the focused beam. Conclusions: Low energy focused x-ray beams could be used to irradiate tumors inside soft tissue within 5 cm of the surface.

  16. Beam imaging diagnostics for heavy ion beam fusion experiments

    SciTech Connect (OSTI)

    Bieniosek, F.M.; Prost, L.; Ghiorso, W.

    2003-05-01

    We are developing techniques for imaging beams in heavy-ion beam fusion experiments in the HIF-VNL in 2 to 4 transverse dimensions. The beams in current experiments range in energy from 50 keV to 2 MeV, with beam current densities from <10 to 200 mA/cm{sup 2}, and pulse lengths of 4 to 20 {micro}s. The beam energy will range up to 10 MeV in near-future beam experiments. The imaging techniques, based on kapton films and optical scintillators, complement and, in some cases, may replace mechanical slit scanners. The kapton film images represent a time-integrated image on the film exposed to the beam. The optical scintillator utilizes glass and ceramic scintillator material imaged by a fast, image-intensified CCD-based camera. We will discuss the techniques, results, and plans for implementation of the diagnostics on the beam experiments.

  17. Inhomogeneity smoothing using density valley formed by ion beam...

    Office of Scientific and Technical Information (OSTI)

    deposition in an ion-beam inertial confinement fusion pellets by numerical simulation. ... dominated beam physics for heavy ion fusion, Saitama (Japan), 10-12 Dec 1998; Other ...

  18. Confined ion beam sputtering device and method

    DOE Patents [OSTI]

    Sharp, Donald J. (Albuquerque, NM)

    1988-01-01

    A hollow cylindrical target, lined internally with a sputter deposit material and open at both ends, surrounds a substrate on which sputtered deposition is to be obtained. An ion beam received through either one or both ends of the open cylindrical target is forced by a negative bias applied to the target to diverge so that ions impinge at acute angles at different points of the cylindrical target surface. The ion impingement results in a radially inward and downstream directed flux of sputter deposit particles that are received by the substrate. A positive bias applied to the substrate enhances divergence of the approaching ion beams to generate a higher sputtered deposition flux rate. Alternatively, a negative bias applied to the substrate induces the core portion of the ion beams to reach the substrate and provide ion polishing of the sputtered deposit thereon.

  19. Confined ion beam sputtering device and method

    DOE Patents [OSTI]

    Sharp, D.J.

    1986-03-25

    A hollow cylindrical target, lined internally with a sputter deposit material and open at both ends, surrounds a substrate on which sputtered deposition is to be obtained. An ion beam received through either one or both ends of the open cylindrical target is forced by a negative bias applied to the target to diverge so that ions impinge at acute angles at different points of the cylindrical target surface. The ion impingement results in a radially inward and downstream directed flux of sputter deposit particles that are received by the substrate. A positive bias applied to the substrate enhances divergence of the approaching ion beams to generate a higher sputtered deposition flux rate. Alternatively, a negative bias applied to the substrate induces the core portion of the ion beams to reach the substrate and provide ion polishing of the sputtered deposit thereon.

  20. Flow-through ion beam source

    DOE Patents [OSTI]

    Springer, Robert W.

    1997-01-01

    A method and an apparatus for forming a charge neutral ion beam which is useful in producing thin films of material on electrically conductive or non-conductive substrates are provided.

  1. Flow-through ion beam source

    DOE Patents [OSTI]

    Springer, R.W.

    1997-02-11

    A method and an apparatus for forming a charge neutral ion beam which is useful in producing thin films of material on electrically conductive or non-conductive substrates are provided. 4 figs.

  2. Thermoacoustic imaging using heavy ion beams

    SciTech Connect (OSTI)

    Claytor, T.N.; Tesmer, J.R.; Deemer, B.C.; Murphy, J.C.

    1995-10-01

    Ion beams have been used for surface modification, semiconductor device fabrication and for material analysis, which makes ion-material interactions of significant importance. Ion implantation will produce new compositions near the surface by ion mixing or directly by implanting desired ions. Ions exchange their energy to the host material as they travel into the material by several different processes. High energy ions ionize the host atoms before atomic collisions transfer the remaining momentum and stop the incident ion. As they penetrate the surface, the low energy ions ionize the host atoms, but also have a significantly large momentum transfer mechanism near the surface of the material. This leads to atoms, groups of atoms and electrons being ejected from the surface, which is the momentum transfer process of sputtering. This talk addresses the acoustic waves generated during ion implantation using modulated heavy ion beams. The mechanisms for elastic wave generation during ion implantation, in the regimes where sputtering is significant and where implantation is dominant and sputtering is negligible, has been studied. The role of momentum transfer and thermal energy production during ion implantation was compared to laser generated elastic waves in an opaque solid as a reference, since laser generated ultrasound has been extensively studied and is fairly well understood. The thermoelastic response dominated in both high and low ion energy regimes since, apparently, more energy is lost to thermal heat producing mechanisms than momentum transfer processes. The signal magnitude was found to vary almost linearly with incident energy as in the laser thermoelastic regime. The time delays for longitudinal and shear waves-were characteristic of those expected for a purely thermal heating source. The ion beams are intrinsically less sensitive to the albedo of the surface.

  3. Study on electron beam in a low energy plasma focus

    SciTech Connect (OSTI)

    Khan, Muhammad Zubair; Ling, Yap Seong; San, Wong Chiow

    2014-03-05

    Electron beam emission was investigated in a low energy plasma focus device (2.2 kJ) using copper hollow anode. Faraday cup was used to estimate the energy of the electron beam. XR100CR X-ray spectrometer was used to explore the impact of the electron beam on the target observed from top-on and side-on position. Experiments were carried out at optimized pressure of argon gas. The impact of electron beam is exceptionally notable with two different approaches using lead target inside hollow anode in our plasma focus device.

  4. Beam current controller for laser ion source

    DOE Patents [OSTI]

    Okamura, Masahiro

    2014-10-28

    The present invention relates to the design and use of an ion source with a rapid beam current controller for experimental and medicinal purposes. More particularly, the present invention relates to the design and use of a laser ion source with a magnetic field applied to confine a plasma flux caused by laser ablation.

  5. Mass spectrometer and methods of increasing dispersion between ion beams

    DOE Patents [OSTI]

    Appelhans, Anthony D.; Olson, John E.; Delmore, James E.

    2006-01-10

    A mass spectrometer includes a magnetic sector configured to separate a plurality of ion beams, and an electrostatic sector configured to receive the plurality of ion beams from the magnetic sector and increase separation between the ion beams, the electrostatic sector being used as a dispersive element following magnetic separation of the plurality of ion beams. Other apparatus and methods are provided.

  6. Parametric reflection upon cascade interaction of focused optical beams

    SciTech Connect (OSTI)

    Lobanov, V E; Sukhorukov, A P; Sukhorukova, A K

    2008-10-31

    The parametric reflection of a signal beam in the waist of the reference pump beam upon mismatched three-frequency interaction in a quadratically nonlinear medium is discussed. The critical angle of total internal reflection from the induced defocusing channel is found as a function of the beam waist parameters. It is shown that when the reference beam is focused, this angle increases and some distortions are introduced into the reflected wave due to a finite length of the waist. The modification of the cross section of a wave reflected from a convex parametric mirror is analysed. The optimal beam focusing geometry is found at which the distortions of the shape and divergence of the reflected wave are minimal. Under certain conditions, the signal wave also flows around a cylindrical inhomogeneity produced by the axially symmetric pump beam. The results of theoretical analysis and numerical simulation are in good agreement. (nonlinear optical phenomena)

  7. Observations of underdense plasma lens focusing of relativistic electron beams

    SciTech Connect (OSTI)

    Thompson, M.C.; Badakov, H.; Rosenzweig, J.B.; Travish, G.; Fliller, R.; Kazakevich, G.M.; Piot, P.; Santucci, J.; Li, J.; Tikhoplav, R.; /Rochester U.

    2007-06-01

    Focusing of a 15 MeV, 19 nC electron bunch by an underdense plasma lens operated just beyond the threshold of the underdense condition has been demonstrated in experiments at the Fermilab NICADD Photoinjector Laboratory (FNPL). The strong 1.9 cm focal-length plasma-lens focused both transverse directions simultaneously and reduced the minimum area of the beam spot by a factor of 23. Analysis of the beam-envelope evolution observed near the beam waist shows that the spherical aberrations of this underdense lens are lower than those of an overdense plasma lens, as predicted by theory. Correlations between the beam charge and the properties of the beam focus corroborate this conclusion.

  8. First Beam Waist Measurements in the Final Focus Beam Line at...

    Office of Scientific and Technical Information (OSTI)

    KEK Accelerator Test Facility Citation Details In-Document Search Title: First Beam Waist Measurements in the Final Focus Beam Line at the KEK Accelerator Test Facility The ATF2 ...

  9. Ion beam requirements for fast ignition of inertial fusion targets (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Ion beam requirements for fast ignition of inertial fusion targets Citation Details In-Document Search Title: Ion beam requirements for fast ignition of inertial fusion targets Ion beam requirements for fast ignition are investigated by numerical simulation taking into account new effects, such as ion beam divergence, not included before. We assume that ions are generated by the TNSA scheme in a curved foil placed inside a re-entrant cone and focused on the cone

  10. First Beam Waist Measurements in the Final Focus Beam Line at the KEK

    Office of Scientific and Technical Information (OSTI)

    Accelerator Test Facility (Journal Article) | SciTech Connect First Beam Waist Measurements in the Final Focus Beam Line at the KEK Accelerator Test Facility Citation Details In-Document Search Title: First Beam Waist Measurements in the Final Focus Beam Line at the KEK Accelerator Test Facility The ATF2 project is the final focus system prototype for the ILC and CLIC linear collider projects, with a purpose to reach a 37 nm vertical beam size at the interaction point using compact optics

  11. INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS

    SciTech Connect (OSTI)

    Sharp, W. M.; Friedman, A.; Grote, D. P.; Barnard, J. J.; Cohen, R. H.; Dorf, M. A.; Lund, S. M.; Perkins, L. J.; Terry, M. R.; Logan, B. G.; Bieniosek, F. M.; Faltens, A.; Henestroza, E.; Jung, J. Y.; Kwan, J. W.; Lee, E. P.; Lidia, S. M.; Ni, P. A.; Reginato, L. L.; Roy, P. K.; Seidl, P. A.; Takakuwa, J. H.; Vay, J.-L.; Waldron, W. L.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I. D.; Qin, H.; Startsev, E.; Haber, I.; Kishek, R. A.; Koniges, A. E.

    2011-03-31

    Intense heavy-ion beams have long been considered a promising driver option for inertial-fusion energy production. This paper briefly compares inertial confinement fusion (ICF) to the more-familiar magnetic-confinement approach and presents some advantages of using beams of heavy ions to drive ICF instead of lasers. Key design choices in heavy-ion fusion (HIF) facilities are discussed, particularly the type of accelerator. We then review experiments carried out at Lawrence Berkeley National Laboratory (LBNL) over the past thirty years to understand various aspects of HIF driver physics. A brief review follows of present HIF research in the US and abroad, focusing on a new facility, NDCX-II, being built at LBNL to study the physics of warm dense matter heated by ions, as well as aspects of HIF target physics. Future research directions are briefly summarized.

  12. Computational study of ion beam extraction phenomena through multiple apertures

    SciTech Connect (OSTI)

    Hu, Wanpeng; Sang, Chaofeng; Tang, Tengfei; Wang, Dezhen, E-mail: wangdez@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Li, Ming; Jin, Dazhi; Tan, Xiaohua [Institute of Electronic Engineering, Mianyang, 621900 (China)] [Institute of Electronic Engineering, Mianyang, 621900 (China)

    2014-03-15

    The process of ion extraction through multiple apertures is investigated using a two-dimensional particle-in-cell code. We consider apertures with a fixed diameter with a hydrogen plasma background, and the trajectories of electrons, H{sup +} and H{sub 2}{sup +} ions in the self-consistently calculated electric field are traced. The focus of this work is the fundamental physics of the ion extraction, and not particular to a specific device. The computed convergence and divergence of the extracted ion beam are analyzed. We find that the extracted ion flux reaching the extraction electrode is non-uniform, and the peak flux positions change according to operational parameters, and do not necessarily match the positions of the apertures in the y-direction. The profile of the ion flux reaching the electrode is mainly affected by the bias voltage and the distance between grid wall and extraction electrode.

  13. Dense Metal Plasma in a Solenoid for Ion Beam Neutralization

    SciTech Connect (OSTI)

    Anders, Andre; Kauffeldt, Marina; Oks, Efim M.; Roy, Prabir K.

    2010-10-30

    Space-charge neutralization is required to compress and focus a pulsed, high-current ion beam on a target for warm dense matter physics or heavy ion fusion experiments. We described approaches to produce dense plasma in and near the final focusing solenoid through which the ion beam travels, thereby providing an opportunity for the beam to acquire the necessary space-charge compensating electrons. Among the options are plasma injection from pulsed vacuum arc sources located outside the solenoid, and using a high current (> 4 kA) pulsed vacuum arc plasma from a ring cathode near the edge of the solenoid. The plasma distribution is characterized by photographic means, by an array of movable Langmuir probes, by a small single probe, and by evaluating Stark broadening of the Balmer H beta spectral line. In the main approach described here, the plasma is produced at several cathode spots distributed azimuthally on the ring cathode. It is shown that the plasma is essentially hollow, as determined by the structure of the magnetic field, though the plasma density exceeds 1014 cm-3 in practically all zones of the solenoid volume if the ring electrode is placed a few centimeters off the center of the solenoid. The plasma is non-uniform and fluctuating, however, since its density exceeds the ion beam density it is believed that this approach could provide a practical solution to the space charge neutralization challenge.

  14. Inhomogeneity smoothing using density valley formed by ion beam deposition

    Office of Scientific and Technical Information (OSTI)

    in ICF fuel pellet (Journal Article) | SciTech Connect Inhomogeneity smoothing using density valley formed by ion beam deposition in ICF fuel pellet Citation Details In-Document Search Title: Inhomogeneity smoothing using density valley formed by ion beam deposition in ICF fuel pellet We study the beam non-uniformity smoothing effect of the radiation transport in the density valley formed by an ion-beam deposition in an ion-beam inertial confinement fusion pellets by numerical simulation.

  15. Microchip and wedge ion funnels and planar ion beam analyzers using same

    DOE Patents [OSTI]

    Shvartsburg, Alexandre A; Anderson, Gordon A; Smith, Richard D

    2012-10-30

    Electrodynamic ion funnels confine, guide, or focus ions in gases using the Dehmelt potential of oscillatory electric field. New funnel designs operating at or close to atmospheric gas pressure are described. Effective ion focusing at such pressures is enabled by fields of extreme amplitude and frequency, allowed in microscopic gaps that have much higher electrical breakdown thresholds in any gas than the macroscopic gaps of present funnels. The new microscopic-gap funnels are useful for interfacing atmospheric-pressure ionization sources to mass spectrometry (MS) and ion mobility separation (IMS) stages including differential IMS or FAIMS, as well as IMS and MS stages in various configurations. In particular, "wedge" funnels comprising two planar surfaces positioned at an angle and wedge funnel traps derived therefrom can compress ion beams in one dimension, producing narrow belt-shaped beams and laterally elongated cuboid packets. This beam profile reduces the ion density and thus space-charge effects, mitigating the adverse impact thereof on the resolving power, measurement accuracy, and dynamic range of MS and IMS analyzers, while a greater overlap with coplanar light or particle beams can benefit spectroscopic methods.

  16. Ion beam assisted deposition of thermal barrier coatings

    DOE Patents [OSTI]

    Youchison, Dennis L. (Albuquerque, NM); McDonald, Jimmie M. (Albuquerque, NM); Lutz, Thomas J. (Albuquerque, NM); Gallis, Michail A. (Albuquerque, NM)

    2010-11-23

    Methods and apparatus for depositing thermal barrier coatings on gas turbine blades and vanes using Electron Beam Physical Vapor Deposition (EBPVD) combined with Ion Beam Assisted Deposition (IBAD).

  17. Optimum focusing of Gaussian laser beams: Beam waist shift in spot size minimization

    SciTech Connect (OSTI)

    Li, Y.; Katz, J. )

    1994-04-01

    Optimum focusing of Gaussian laser beams is first discussed by Dickson, who described the change in beam radius under the effect of focusing system parameters. The purpose of this study is to present a formulation for calculating the waist shift under various optimum conditions. Because the variations of beam waist can be measured directly, the waist shift in a focused Gaussian beam is a more practical parameter than the movement of the intensity maximum that is the subject for investigators of the well-known focal shift problem.

  18. Physics with fast molecular-ion beams

    SciTech Connect (OSTI)

    Kanter, E.P.

    1980-01-01

    Fast (MeV) molecular-ion beams provide a unique source of energetic projectile nuclei which are correlated in space and time. The recognition of this property has prompted several recent investigations of various aspects of the interactions of these ions with matter. High-resolution measurements on the fragments resulting from these interactions have already yielded a wealth of new information on such diverse topics as plasma oscillations in solids and stereochemical structures of molecular ions as well as a variety of atomic collision phenomena. The general features of several such experiments will be discussed and recent results will be presented.

  19. Ion beam analysis techniques in interdisciplinary applications

    SciTech Connect (OSTI)

    Respaldiza, Miguel A.; Ager, Francisco J.

    1999-11-16

    The ion beam analysis techniques emerge in the last years as one of the main applications of electrostatic accelerators. A short summary of the most used IBA techniques will be given as well as some examples of applications in interdisciplinary sciences.

  20. Fine-structure characteristics in the emittance images of a strongly focusing He{sup +} beam

    SciTech Connect (OSTI)

    Sasao, M.; Kobuchi, T.; Kisaki, M.; Takahashi, H.; Okamoto, A.; Kitajima, S.; Kaneko, O.; Tsumori, K.; Shinto, K.; Wada, M.

    2010-02-15

    The phase space distribution of a strongly focused He{sup +} ion beam source equipped with concave multiaperture electrodes was measured using a pepper-pot plate and a Kapton foil. The substructure of 301 merging He beamlets was clearly observed on a footprint of pepper-pot hole at the beam waist, where the beam density was 500 mA/cm{sup 2}. The position and the width of each beamlet substructure show the effect of interference of beamlets with surrounding one.

  1. Aerosol beam-focus laser-induced plasma spectrometer device

    DOE Patents [OSTI]

    Cheng, Meng-Dawn (Oak Ridge, TN)

    2002-01-01

    An apparatus for detecting elements in an aerosol includes an aerosol beam focuser for concentrating aerosol into an aerosol beam; a laser for directing a laser beam into the aerosol beam to form a plasma; a detection device that detects a wavelength of a light emission caused by the formation of the plasma. The detection device can be a spectrometer having at least one grating and a gated intensified charge-coupled device. The apparatus may also include a processor that correlates the wavelength of the light emission caused by the formation of the plasma with an identity of an element that corresponds to the wavelength. Furthermore, the apparatus can also include an aerosol generator for forming an aerosol beam from bulk materials. A method for detecting elements in an aerosol is also disclosed.

  2. High sensitivity charge amplifier for ion beam uniformity monitor

    DOE Patents [OSTI]

    Johnson, Gary W. (Livermore, CA)

    2001-01-01

    An ion beam uniformity monitor for very low beam currents using a high-sensitivity charge amplifier with bias compensation. The ion beam monitor is used to assess the uniformity of a raster-scanned ion beam, such as used in an ion implanter, and utilizes four Faraday cups placed in the geometric corners of the target area. Current from each cup is integrated with respect to time, thus measuring accumulated dose, or charge, in Coulombs. By comparing the dose at each corner, a qualitative assessment of ion beam uniformity is made possible. With knowledge of the relative area of the Faraday cups, the ion flux and areal dose can also be obtained.

  3. Simulation Studies of Beam-Beam Effects of a Ring-Ring Electron-Ion Collider Based on CEBAF

    SciTech Connect (OSTI)

    Yuhong Zhang,Ji Qiang

    2009-05-01

    The collective beam-beam effect can potentially cause a rapid growth of beam sizes and reduce the luminosity of a collider to an unacceptably low level. The ELIC, a proposed ultra high luminosity electron-ion collider based on CEBAF, employs high repetition rate crab crossing colliding beams with very small bunch transverse sizes and very short bunch lengths, and collides them at up to 4 interaction points with strong final focusing. All of these features can make the beam-beam effect challenging. In this paper, we present simulation studies of the beam-beam effect in ELIC using a self-consistent strong-strong beam-beam simulation code developed at Lawrence Berkeley National Laboratory. This simulation study is used for validating the ELIC design and for searching for an optimal parameter set.

  4. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOE Patents [OSTI]

    Maschke, A.W.

    1984-04-16

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow through the assembly.

  5. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOE Patents [OSTI]

    Maschke, Alfred W. (East Moriches, NY)

    1985-01-01

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly.

  6. Non-traditional ion beam analyses

    SciTech Connect (OSTI)

    Doyle, B.L.; Knapp, J.A.; Banks, J.C.; Barbour, J.C.; Walsh, D.S.

    1993-02-01

    Rutherford backscattering spectrometry (RBS), elastic recoil detection (ERD), proton induced x-ray emission (PIXE) and nuclear reaction analysis (NRA) are among the most commonly used, or traditional, ion beam analysis (IBA) techniques. In this review, several adaptations of these IBA techniques are described where either the approach used in the analysis or the application area is clearly non-traditional or unusual. These analyses and/or applications are summarized in this paper.

  7. Production of intense beams of singly charged radioactive ions

    SciTech Connect (OSTI)

    Kuznetsov, G.; Batazova, M.; Gubin, K.; Logachev, P.; Martyshkin, P.

    2006-03-15

    An apparatus for the production of intense beams of singly charged radioactive ions operating in on-line regime is proposed. The radioactive atoms are produced in a uranium-graphite (UC) target bombarded with neutrons. The neutron flux is generated by a graphite neutron converter, which is bombarded with protons. The atoms of the produced isotopes are ionized in the electron beam generated with the electron gun and the ions of interest are extracted in a separator. The apparatus consists of the following parts. (1) Rotating converter dissipating a substantial power of proton beam. (2) UC target placed in a graphite container at high temperature. The atoms of radioactive isotopes can be extracted with a flow of noble gas. (3) Triode electron gun with ionization channel is placed inside the solenoid forming a focusing magnetic field. The cathode of the electron gun is a spout of the graphite container. The atoms of radioactive isotopes are carried with gas flow through the spout into the electron beam. (4) Correction coil located near the gun matches the electron beam with the ionization channel. (5) The first anode has a potential of 1-4 kV with respect to the cathode, and the second anode has some lower potential than the first anode and it is the tube of ionization channel. (6) Electron collector dissipates the electron-beam power. (7) Uranium-graphite target, the gun, the ionization channel as well as solenoid are located on an isolated platform with potential of 30-60 kV with respect to ground. The beam of singly charged ions from the ionization channel passes the collector, goes through the extractor, acquires energy of 30-60 keV, and gets transported to the separator where the required species are selected.

  8. High-energy accelerator for beams of heavy ions

    DOE Patents [OSTI]

    Martin, Ronald L. (La Grange, IL); Arnold, Richard C. (Chicago, IL)

    1978-01-01

    An apparatus for accelerating heavy ions to high energies and directing the accelerated ions at a target comprises a source of singly ionized heavy ions of an element or compound of greater than 100 atomic mass units, means for accelerating the heavy ions, a storage ring for accumulating the accelerated heavy ions and switching means for switching the heavy ions from the storage ring to strike a target substantially simultaneously from a plurality of directions. In a particular embodiment the heavy ion that is accelerated is singly ionized hydrogen iodide. After acceleration, if the beam is of molecular ions, the ions are dissociated to leave an accelerated singly ionized atomic ion in a beam. Extraction of the beam may be accomplished by stripping all the electrons from the atomic ion to switch the beam from the storage ring by bending it in magnetic field of the storage ring.

  9. Temporal and spatial study of neon ion emission from a plasma focus device

    SciTech Connect (OSTI)

    Bhuyan, M.; Neog, N. K.; Mohanty, S. R. [Centre of Plasma Physics, Institute for Plasma Research, Sonapur, Kamrup 782402 (India); Rao, C. V. S. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Raole, P. M. [FCIPT, Institute for Plasma Research, Gandhinagar 342044 (India)

    2011-03-15

    The temporal and spatial characteristics of the neon ion beam emissions from a low energy plasma focus device have been studied by employing a multiple Faraday cup assembly and the CR-39 track detectors at different angular and axial positions. In addition, the operating gas pressures were also varied to study the temporal and spatial characteristics of the neon ion beam emissions. The Faraday cup analyses show that the ion flux strongly depends on the operating gas pressure as well as the angular positions. The estimated ion energy measurements at the aperture of the Faraday cup indicate that the plasma focus device is a source of polyenergetic ions ranging from approximately a few keV to a few hundreds of keV, irrespective of the angular positions. The exposed CR-39 detectors have shown the formation of multiple ion tracks with diameter ranging from 2 to 13 {mu}m. The populations of lower diameter tracks (2-6 {mu}m) are observed to be more at 0 deg. and 10 deg. angles. It is also noticed that the most populated track counts have shifted toward the higher diameter as the angular positions change from 0 deg. to 70 deg. The present study enables us to predict a clear picture of ion flux and energy distribution inside the plasma focus chamber that will help to use the device for material irradiation application in a more controlled manner.

  10. Method of automatic measurement and focus of an electron beam and apparatus therefor

    DOE Patents [OSTI]

    Giedt, Warren H. (San Jose, CA); Campiotti, Richard (Livermore, CA)

    1996-01-01

    An electron beam focusing system, including a plural slit-type Faraday beam trap, for measuring the diameter of an electron beam and automatically focusing the beam for welding. Beam size is determined from profiles of the current measured as the beam is swept over at least two narrow slits of the beam trap. An automated procedure changes the focus coil current until the focal point location is just below a workpiece surface. A parabolic equation is fitted to the calculated beam sizes from which optimal focus coil current and optimal beam diameter are determined.

  11. Method of automatic measurement and focus of an electron beam and apparatus therefore

    DOE Patents [OSTI]

    Giedt, W.H.; Campiotti, R.

    1996-01-09

    An electron beam focusing system, including a plural slit-type Faraday beam trap, for measuring the diameter of an electron beam and automatically focusing the beam for welding is disclosed. Beam size is determined from profiles of the current measured as the beam is swept over at least two narrow slits of the beam trap. An automated procedure changes the focus coil current until the focal point location is just below a workpiece surface. A parabolic equation is fitted to the calculated beam sizes from which optimal focus coil current and optimal beam diameter are determined. 12 figs.

  12. University of Wisconsin Ion Beam Laboratory: A facility for irradiated materials and ion beam analysis

    SciTech Connect (OSTI)

    Field, K. G.; Wetteland, C. J.; Cao, G.; Maier, B. R.; Gerczak, T. J.; Kriewaldt, K.; Sridharan, K.; Allen, T. R.; Dickerson, C.; Field, C. R.

    2013-04-19

    The University of Wisconsin Ion Beam Laboratory (UW-IBL) has recently undergone significant infrastructure upgrades to facilitate graduate level research in irradiated materials phenomena and ion beam analysis. A National Electrostatics Corp. (NEC) Torodial Volume Ion Source (TORVIS), the keystone upgrade for the facility, can produce currents of hydrogen ions and helium ions up to {approx}200 {mu}A and {approx}5 {mu}A, respectively. Recent upgrades also include RBS analysis packages, end station developments for irradiation of relevant material systems, and the development of an in-house touch screen based graphical user interface for ion beam monitoring. Key research facilitated by these upgrades includes irradiation of nuclear fuels, studies of interfacial phenomena under irradiation, and clustering dynamics of irradiated oxide dispersion strengthened steels. The UW-IBL has also partnered with the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) to provide access to the irradiation facilities housed at the UW-IBL as well as access to post irradiation facilities housed at the UW Characterization Laboratory for Irradiated Materials (CLIM) and other ATR-NSUF partner facilities. Partnering allows for rapid turnaround from proposed research to finalized results through the ATR-NSUF rapid turnaround proposal system. An overview of the UW-IBL including CLIM and relevant research is summarized.

  13. Positive and negative ion beam merging system for neutral beam production

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Reijonen, Jani

    2005-12-13

    The positive and negative ion beam merging system extracts positive and negative ions of the same species and of the same energy from two separate ion sources. The positive and negative ions from both sources pass through a bending magnetic field region between the pole faces of an electromagnet. Since the positive and negative ions come from mirror image positions on opposite sides of a beam axis, and the positive and negative ions are identical, the trajectories will be symmetrical and the positive and negative ion beams will merge into a single neutral beam as they leave the pole face of the electromagnet. The ion sources are preferably multicusp plasma ion sources. The ion sources may include a multi-aperture extraction system for increasing ion current from the sources.

  14. Ion-beam apparatus and method for analyzing and controlling integrated circuits

    DOE Patents [OSTI]

    Campbell, A.N.; Soden, J.M.

    1998-12-01

    An ion-beam apparatus and method for analyzing and controlling integrated circuits are disclosed. The ion-beam apparatus comprises a stage for holding one or more integrated circuits (ICs); a source means for producing a focused ion beam; and a beam-directing means for directing the focused ion beam to irradiate a predetermined portion of the IC for sufficient time to provide an ion-beam-generated electrical input signal to a predetermined element of the IC. The apparatus and method have applications to failure analysis and developmental analysis of ICs and permit an alteration, control, or programming of logic states or device parameters within the IC either separate from or in combination with applied electrical stimulus to the IC for analysis thereof. Preferred embodiments of the present invention including a secondary particle detector and an electron floodgun further permit imaging of the IC by secondary ions or electrons, and allow at least a partial removal or erasure of the ion-beam-generated electrical input signal. 4 figs.

  15. Ion-beam apparatus and method for analyzing and controlling integrated circuits

    DOE Patents [OSTI]

    Campbell, Ann N. (Albuquerque, NM); Soden, Jerry M. (Placitas, NM)

    1998-01-01

    An ion-beam apparatus and method for analyzing and controlling integrated circuits. The ion-beam apparatus comprises a stage for holding one or more integrated circuits (ICs); a source means for producing a focused ion beam; and a beam-directing means for directing the focused ion beam to irradiate a predetermined portion of the IC for sufficient time to provide an ion-beam-generated electrical input signal to a predetermined element of the IC. The apparatus and method have applications to failure analysis and developmental analysis of ICs and permit an alteration, control, or programming of logic states or device parameters within the IC either separate from or in combination with applied electrical stimulus to the IC for analysis thereof. Preferred embodiments of the present invention including a secondary particle detector and an electron floodgun further permit imaging of the IC by secondary ions or electrons, and allow at least a partial removal or erasure of the ion-beam-generated electrical input signal.

  16. Effect of the electrostatic plasma lens on the emittance of ahigh-current heavy ion beam

    SciTech Connect (OSTI)

    Chekh, Yu.; Goncharov, A.; Protsenko, I.; Brown, I.G.

    2004-01-10

    We describe measurements we have made of the emittance of a high-current, moderate-energy ion beam after transport through a permanent-magnet electrostatic plasma lens. The results indicate the absence of emittance growth due to the lens, when the lens is adjusted for optimal beam focusing. The measured emittance for a 16 keV Cu{sup 2+} ion beam formed by a vacuum arc ion source was about 0.4 {pi} {center_dot} mm {center_dot} mrad at a beam current of 50 mA rising more-or-less linearly to 1.5 {pi} {center_dot} mm {center_dot} mrad at 250 mA, and was conserved in beam transport through the lens. These results have significance for the application of high-current ion sources and the electrostatic plasma lens to particle accelerator injection.

  17. A new luminescence beam profile monitor for intense proton and heavy ion beams

    SciTech Connect (OSTI)

    Tsang,T.; Bellavia, S.; Connolly, R.; Gassner, D.; Makdisi, Y.; Russo, T.; Thieberger, P.; Trbojevic, D.; Zelenski, A.

    2008-10-01

    A new luminescence beam profile monitor is realized in the polarized hydrogen gas jet target at the Relativistic Heavy Ion Collider (RHIC) facility. In addition to the spin polarization of the proton beam being routinely measured by the hydrogen gas jet, the luminescence produced by beam-hydrogen excitation leads to a strong Balmer series lines emission. A selected hydrogen Balmer line is spectrally filtered and imaged to produce the transverse RHIC proton beam shape with unprecedented details on the RHIC beam profile. Alternatively, when the passage of the high energy RHIC gold ion beam excited only the residual gas molecules in the beam path, sufficient ion beam induced luminescence is produced and the transverse gold ion beam profile is obtained. The measured transverse beam sizes and the calculated emittances provide an independent confirmation of the RHIC beam characteristics and to verify the emittance conservation along the RHIC accelerator. This optical beam diagnostic technique by making use of the beam induced fluorescence from injected or residual gas offers a truly noninvasive particle beam characterization, and provides a visual observation of proton and heavy ion beams. Combined with a longitudinal bunch measurement system, a 3-dimensional spatial particle beam profile can be reconstructed tomographically.

  18. Fluctuation of an ion beam extracted from an AC filament driven Bernas-type ion source

    SciTech Connect (OSTI)

    Miyamoto, N. Okajima, Y.; Wada, M.

    2014-02-15

    Argon ion beam fluctuation from an AC filament driven Bernas-type ion source is observed. The ion beam was measured by an 8 measurement elements beam profile monitor. The amplitude of the beam current fluctuation stayed in the same level from 100 Hz to 1 kHz of the filament heating frequency. The beam current fluctuation frequency measured by the beam profile monitor was equal to the frequency of the AC filament operation. The fluctuation amplitudes of the beam current by AC operation were less than 7% and were in the same level of the DC operation.

  19. Optics of ion beams for the neutral beam injection system on HL-2A Tokamak

    SciTech Connect (OSTI)

    Zou, G. Q.; Lei, G. J.; Cao, J. Y.; Duan, X. R.

    2012-07-15

    The ion beam optics for the neutral beam injection system on HL-2A Tokomak is studied by two- dimensional numerical simulation program firstly, where the emitting surface is taken at 100 Debye lengths from the plasma electrode. The mathematical formulation, computation techniques are described. Typical ion orbits, equipotential contours, and emittance diagram are shown. For a fixed geometry electrode, the effect of plasma density, plasma potential and plasma electron temperature on ion beam optics is examined, and the calculation reliability is confirmed by experimental results. In order to improve ion beam optics, the application of a small pre-acceleration voltage ({approx}100 V) between the plasma electrode and the arc discharge anode is reasonable, and a lower plasma electron temperature is desired. The results allow optimization of the ion beam optics in the neutral beam injection system on HL-2A Tokomak and provide guidelines for designing future neutral beam injection system on HL-2M Tokomak.

  20. Experimental measurement of the 4-d transverse phase space map of a heavy ion beam

    SciTech Connect (OSTI)

    Hopkins, H S

    1997-12-01

    The development and employment of a new diagnostic instrument for characterizing intense, heavy ion beams is reported on. This instrument, the ''Gated Beam Imager'' or ''GBI'' was designed for use on Lawrence Livermore National Laboratory Heavy Ion Fusion Project's ''Small Recirculator'', an integrated, scaled physics experiment and engineering development project for studying the transport and control of intense heavy ion beams as inertial fusion drivers in the production of electric power. The GBI allows rapid measurement and calculation of a heavy ion beam's characteristics to include all the first and second moments of the transverse phase space distribution, transverse emittance, envelope parameters and beam centroid. The GBI, with appropriate gating produces a time history of the beam resulting in a 4-D phase-space and time ''map'' of the beam. A unique capability of the GBI over existing diagnostic instruments is its ability to measure the ''cross'' moments between the two transverse orthogonal directions. Non-zero ''cross'' moments in the alternating gradient lattice of the Small Recirculator are indicative of focusing element rotational misalignments contributing to beam emittance growth. This emittance growth, while having the same effect on the ability to focus a beam as emittance growth caused by non-linear effects, is in principle removable by an appropriate number of focusing elements. The instrument uses the pepperpot method of introducing a plate with many pinholes into the beam and observing the images of the resulting beamlets as they interact with a detector after an appropriate drift distance. In order to produce adequate optical signal and repeatability, the detector was chosen to be a microchannel plate (MCP) with a phosphor readout screen. The heavy ions in the pepperpot beamlets are stopped in the MCP's thin front metal anode and the resulting secondary electron signal is amplified and proximity-focused onto the phosphor while maintaining the spatial and intensity characteristics of the heavy ion beamlets. The MCP used in this manner is a sensitive, accurate, and long-lasting detector, resistant against signal degradation experienced by previous methods of intense heavy ion beam detection and imaging. The performance of the GBI was benchmarked against existing mechanical emittance diagnostics and the results of sophisticated beam transport numerical simulation codes to demonstrate its usefulness as a diagnostic tool. A method of beam correction to remove the effects of quadrupole focusing element rotational misalignments is proposed using data obtainable from a GBI. An optimizing code was written to determine the parameters of the correction system elements based on input from the GBI. The results of this code for the Small Recirculator beam are reported on.

  1. Transverse Centroid Oscillations in Solenoidially Focused Beam Transport Lattices

    SciTech Connect (OSTI)

    Lund, S M; Wootton, C J; Lee, E P

    2008-08-01

    Linear equations of motion are derived that describe small-amplitude centroid oscillations induced by displacement and rotational misalignments of the focusing solenoids in the transport lattice, dipole steering elements, and initial centroid offset errors. These equations are analyzed in a local rotating Larmor frame to derive complex-variable 'alignment functions' and 'bending functions' that efficiently describe the characteristics of the centroid oscillations induced by mechanical misalignments of the solenoids and dipole steering elements. The alignment and bending functions depend only on properties of the ideal lattice in the absence of errors and steering and have associated expansion amplitudes set by the misalignments and steering fields. Applications of this formulation are presented for statistical analysis of centroid deviations, calculation of actual lattice misalignments from centroid measurements, and optimal beam steering.

  2. Transverse centroid oscillations in solenoidially focused beam transport lattices

    SciTech Connect (OSTI)

    Lund, Steven M.; Wootton, Christopher J.; Lee, Edward P.

    2008-08-01

    Linear equations of motion are derived that describe small-amplitude centroid oscillations induced by displacement and rotational misalignments of the focusing solenoids in the transport lattice, dipole steering elements, and initial centroid offset errors. These equations are analyzed in a local rotating Larmor frame to derive complex-variable"alignment functions" and"bending functions" that efficiently describe the characteristics of the centroid oscillations induced by mechanical misalignments of the solenoids and dipole steering elements. The alignment and bending functions depend only on properties of the ideal lattice in the absence of errors and steering and have associated expansion amplitudes set by the misalignments and steering fields. Applications of this formulation are presented for statistical analysis of centroid deviations, calculation of actual lattice misalignments from centroid measurements, and optimal beam steering.

  3. Direct plasma injection scheme with various ion beams

    SciTech Connect (OSTI)

    Okamura, M.

    2010-09-15

    The laser ion source is one of the most powerful heavy ion sources. However, it is difficult to obtain good stability and to control its intense current. To overcome these difficulties, we proposed a new beam injection scheme called 'direct plasma injection scheme'. Following this it was established to provide various species with desired charge state as an intense accelerated beam. Carbon, aluminum and iron beams have been tested.

  4. First Beam Waist Measurements in the Final Focus Beam Line at the KEK Accelerator Test Facility

    SciTech Connect (OSTI)

    Bai, Sha; Aryshev, Alexander; Bambade, Philip; McCormick, Doug; Bolzon, Benoit; Gao, Jie; Tauchi, Toshiaki; Zhou, Feng; /SLAC

    2012-06-22

    The ATF2 project is the final focus system prototype for the ILC and CLIC linear collider projects, with a purpose to reach a 37 nm vertical beam size at the interaction point using compact optics based on a novel scheme of local chromaticity correction. Construction of all components and installation were completed at the end of 2008. An initial commissioning phase followed in 2009, using larger than nominal {beta} functions at the interaction point, corresponding to reduced demagnification factors in comparison to the design, to limit effects from higher-order optical aberrations and hence simplify beam tuning procedures while key instrumentation was being tested and calibrated. In this paper, first measurements of dispersion and Twiss parameters are presented based on scanning the beam during this period with a set of tungsten wires located just behind the interaction point, using two complementary analysis methods.

  5. Method and apparatus for efficient photodetachment and purification of negative ion beams

    DOE Patents [OSTI]

    Beene, James R. [Oak Ridge, TN; Liu, Yuan [Knoxville, TN; Havener, Charles C. [Knoxville, TN

    2008-02-26

    Methods and apparatus are described for efficient photodetachment and purification of negative ion beams. A method of purifying an ion beam includes: inputting the ion beam into a gas-filled multipole ion guide, the ion beam including a plurality of ions; increasing a laser-ion interaction time by collisional cooling the plurality of ions using the gas-filled multipole ion guide, the plurality of ions including at least one contaminant; and suppressing the at least one contaminant by selectively removing the at least one contaminant from the ion beam by electron photodetaching at least a portion of the at least one contaminant using a laser beam.

  6. Measurements - Ion Beams - Radiation Effects Facility / Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    / Texas A&M University Ion Beams Available Beams / Beam Change Times / Measurements / Useful Graphs Measurements The beam uniformity and flux are determined using an array of five detectors. Each detector is made up with a plastic scintillator coupled to photo-multiplier tubes. Four of the detectors are fixed in position and set up to measure beam particle counting rates continuously at four characteristic points 1.64 inches (4.71 mm) away from the beam axis. The fifth scintillator can

  7. DIAGNOSTICS FOR ION BEAM DRIVEN HIGH ENERGY DENSITY PHYSICS EXPERIMENTS

    SciTech Connect (OSTI)

    Bieniosek, F.M.; Henestroza, E.; Lidia, S.; Ni, P.A.

    2010-01-04

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30-mA K{sup +} beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multi-channel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (VISAR), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  8. Ion beam collimating grid to reduce added defects

    DOE Patents [OSTI]

    Lindquist, Walter B. (Oakland, CA); Kearney, Patrick A. (Livermore, CA)

    2003-01-01

    A collimating grid for an ion source located after the exit grid. The collimating grid collimates the ion beamlets and disallows beam spread and limits the beam divergence during transients and steady state operation. The additional exit or collimating grid prevents beam divergence during turn-on and turn-off and prevents ions from hitting the periphery of the target where there is re-deposited material or from missing the target and hitting the wall of the vessel where there is deposited material, thereby preventing defects from being deposited on a substrate to be coated. Thus, the addition of a collimating grid to an ion source ensures that the ion beam will hit and be confined to a specific target area.

  9. Sandia National Laboratories: Ion Beam Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high energy ion microscopes to determine the radiation hardness and softness of microelectronics; identifying potential weaknesses. In situ Ion Irradiation Microscopy (I3M) Real...

  10. Preliminary result of rapid solenoid for controlling heavy-ion beam parameters of laser ion source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Okamura, M.; Sekine, M.; Ikeda, S.; Kanesue, T.; Kumaki, M.; Fuwa, Y.

    2015-03-13

    To realize a heavy ion inertial fusion driver, we have studied a possibility of laser ion source (LIS). A LIS can provide high current high brightness heavy ion beams, however it was difficult to manipulate the beam parameters. To overcome the issue, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The rapid ramping magnetic field could enhance limited time slice of the current and simultaneously the beam emittance changed accordingly. This approach may also useful to realize an ion source for HIF power plant.

  11. Properties of dark solitons under SBS in focused beams

    SciTech Connect (OSTI)

    Bel'dyugin, Igor' M; Erokhin, A I; Efimkov, V F; Zubarev, I G; Mikhailov, S I

    2012-12-31

    Using the method of four-wave probing of the waist of the laser beam focused into the bulk of a short active medium (L || {tau}c, where L is the length of the active medium, {tau} is the pulse duration, and c is the speed of light), we have studied the dynamics of the behaviour of a dark soliton, appearing upon a jump of the input Stokes signal phase by about {pi} under SBS. The computer simulation has shown that when spontaneous noises with the gain increment {Gamma}, exceeding the self-reflection threshold by 2 - 3 times, are generated, the dark soliton propagates along the interaction region for the time t Almost-Equal-To T{sub 2}{Gamma}{sub th}/2, where T{sub 2} is the the lifetime of acoustic phonons, and {Gamma}{sub th} = 25 - 30 is the stationary threshold gain increment. (special issue devoted to the 90th anniversary of n.g. basov)

  12. Ion source and beam guiding studies for an API neutron generator

    SciTech Connect (OSTI)

    Sy, A.; Ji, Q.; Persaud, A.; Ludewigt, B. A.; Schenkel, T.

    2013-04-19

    Recently developed neutron imaging methods require high neutron yields for fast imaging times and small beam widths for good imaging resolution. For ion sources with low current density to be viable for these types of imaging methods, large extraction apertures and beam focusing must be used. We present recent work on the optimization of a Penning-type ion source for neutron generator applications. Two multi-cusp magnet configurations have been tested and are shown to increase the extracted ion current density over operation without multi-cusp magnetic fields. The use of multi-cusp magnetic confinement and gold electrode surfaces have resulted in increased ion current density, up to 2.2 mA/cm{sup 2}. Passive beam focusing using tapered dielectric capillaries has been explored due to its potential for beam compression without the cost and complexity issues associated with active focusing elements. Initial results from first experiments indicate the possibility of beam compression. Further work is required to evaluate the viability of such focusing methods for associated particle imaging (API) systems.

  13. Method for reduction of selected ion intensities in confined ion beams

    DOE Patents [OSTI]

    Eiden, G.C.; Barinaga, C.J.; Koppenaal, D.W.

    1998-06-16

    A method for producing an ion beam having an increased proportion of analyte ions compared to carrier gas ions is disclosed. Specifically, the method has the step of addition of a charge transfer gas to the carrier analyte combination that accepts charge from the carrier gas ions yet minimally accepts charge from the analyte ions thereby selectively neutralizing the carrier gas ions. Also disclosed is the method as employed in various analytical instruments including an inductively coupled plasma mass spectrometer. 7 figs.

  14. Apparatus for reduction of selected ion intensities in confined ion beams

    DOE Patents [OSTI]

    Eiden, Gregory C. (Richland, WA); Barinaga, Charles J. (Richland, WA); Koppenaal, David W. (Richland, WA)

    2001-01-01

    An apparatus for producing an ion beam having an increased proportion of analyte ions compared to carrier gas ions is disclosed. Specifically, the apparatus has an ion trap or a collision cell containing a reagent gas wherein the reagent gas accepts charge from the analyte ions thereby selectively neutralizing the carrier gas ions. Also disclosed is the collision cell as employed in various locations within analytical instruments including an inductively coupled plasma mass spectrometer.

  15. Method for reduction of selected ion intensities in confined ion beams

    DOE Patents [OSTI]

    Eiden, Gregory C. (Richland, WA); Barinaga, Charles J. (Richland, WA); Koppenaal, David W. (Richland, WA)

    1998-01-01

    A method for producing an ion beam having an increased proportion of analyte ions compared to carrier gas ions is disclosed. Specifically, the method has the step of addition of a charge transfer gas to the carrier analyte combination that accepts charge from the carrier gas ions yet minimally accepts charge from the analyte ions thereby selectively neutralizing the carrier gas ions. Also disclosed is the method as employed in various analytical instruments including an inductively coupled plasma mass spectrometer.

  16. Electron Gun For Multiple Beam Klystron Using Magnetic Focusing

    DOE Patents [OSTI]

    Ives, R. Lawrence (Saratoga, CA); Miram, George (Atherton, CA); Krasnykh, Anatoly (Santa Clara, CA)

    2004-07-27

    An RF device comprising a plurality of drift tubes, each drift tube having a plurality of gaps defining resonant cavities, is immersed in an axial magnetic field. RF energy is introduced at an input RF port at one of these resonant cavities and collected at an output RF port at a different RF cavity. A plurality of electron beams passes through these drift tubes, and each electron beam has an individual magnetic shaping applied which enables confined beam transport through the drift tubes.

  17. Transverse coupling property of beam from ECR ion sources

    SciTech Connect (OSTI)

    Yang, Y.; Yuan, Y. J.; Sun, L. T.; Feng, Y. C.; Fang, X.; Cao, Y.; Lu, W.; Zhang, X. Z.; Zhao, H. W.

    2014-11-15

    Experimental evidence of the property of transverse coupling of beam from Electron Cyclotron Resonance (ECR) ion source is presented. It is especially of interest for an ECR ion source, where the cross section of extracted beam is not round along transport path due to the magnetic confinement configuration. When the ions are extracted and accelerated through the descending axial magnetic field at the extraction region, the horizontal and vertical phase space strongly coupled. In this study, the coupling configuration between the transverse phase spaces of the beam from ECR ion source is achieved by beam back-tracking simulation based on the measurements. The reasonability of this coupling configuration has been proven by a series of subsequent simulations.

  18. Dual ion beam assisted deposition of biaxially textured template layers

    DOE Patents [OSTI]

    Groves, James R.; Arendt, Paul N.; Hammond, Robert H.

    2005-05-31

    The present invention is directed towards a process and apparatus for epitaxial deposition of a material, e.g., a layer of MgO, onto a substrate such as a flexible metal substrate, using dual ion beams for the ion beam assisted deposition whereby thick layers can be deposited without degradation of the desired properties by the material. The ability to deposit thicker layers without loss of properties provides a significantly broader deposition window for the process.

  19. Rapid Coarsening of Ion Beam Ripple Patterns by Defect Annihilation

    SciTech Connect (OSTI)

    Hansen, Henri; Messlinger, Sebastian; Stoian, Georgiana [I. Physikalisches Institut, RWTH Aachen, 52056 Aachen (Germany); Redinger, Alex [I. Physikalisches Institut, RWTH Aachen, 52056 Aachen (Germany); II. Physikalisches Institut, Universitaet zu Koeln, 50937 Koeln, Zuelpicher Strasse 77 (Germany); Krug, Joachim [Institut fuer Theoretische Physik, Universitaet zu Koeln, 50937 Koeln, Zuelpicher Strasse 77 (Germany); Michely, Thomas [II. Physikalisches Institut, Universitaet zu Koeln, 50937 Koeln, Zuelpicher Strasse 77 (Germany)

    2009-04-10

    Ripple patterns formed on Pt(111) through grazing incidence ion beam erosion coarsen rapidly. At and below 450 K coarsening of the patterns is athermal and kinetic, unrelated to diffusion and surface free energy. Similar to the situation for sand dunes, coarsening takes place through annihilation reactions of mobile defects in the pattern. The defect velocity derived on the basis of a simple model agrees quantitatively with the velocity of monatomic steps illuminated by the ion beam.

  20. Maskless micro-ion-beam reduction lithography system

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Barletta, William A.; Patterson, David O.; Gough, Richard A.

    2005-05-03

    A maskless micro-ion-beam reduction lithography system is a system for projecting patterns onto a resist layer on a wafer with feature size down to below 100 nm. The MMRL system operates without a stencil mask. The patterns are generated by switching beamlets on and off from a two electrode blanking system or pattern generator. The pattern generator controllably extracts the beamlet pattern from an ion source and is followed by a beam reduction and acceleration column.

  1. Effects of Ion Beam on Nanoindentation Characteristics of Glassy Polymeric

    Office of Scientific and Technical Information (OSTI)

    Carbon Surface (Journal Article) | SciTech Connect Effects of Ion Beam on Nanoindentation Characteristics of Glassy Polymeric Carbon Surface Citation Details In-Document Search Title: Effects of Ion Beam on Nanoindentation Characteristics of Glassy Polymeric Carbon Surface Glassy polymeric carbon (GPC) is a useful material for medical applications due to its chemical inertness and biocompatible characteristics. Mitral and aortic and hydrocephalic valves are examples of GPC prosthetic devices

  2. An ion guide laser ion source for isobar-suppressed rare isotope beams

    SciTech Connect (OSTI)

    Raeder, Sebastian Ames, Friedhelm; Bishop, Daryl; Bricault, Pierre; Kunz, Peter; Mjøs, Anders; Heggen, Henning; Institute of Applied Physics, TU Darmstadt, Schlossgartenstr. 7, 64289 Darmstadt ; Lassen, Jens Teigelhöfer, Andrea; Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2

    2014-03-15

    Modern experiments at isotope separator on-line (ISOL) facilities like ISAC at TRIUMF often depend critically on the purity of the delivered rare isotope beams. Therefore, highly selective ion sources are essential. This article presents the development and successful on-line operation of an ion guide laser ion source (IG-LIS) for the production of ion beams free of isobaric contamination. Thermionic ions from the hot ISOL target are suppressed by an electrostatic potential barrier, while neutral radio nuclides effusing out are resonantly ionized by laser radiation within a quadrupole ion guide behind this barrier. The IG-LIS was developed through detailed thermal and ion optics simulation studies and off-line tests with stable isotopes. In a first on-line run with a SiC target a suppression of surface-ionized Na contaminants in the ion beam of up to six orders of magnitude was demonstrated.

  3. Ion emittance growth due to focusing modulation from slipping electron bunch

    SciTech Connect (OSTI)

    Wang, G.

    2015-02-17

    Low energy RHIC operation has to be operated at an energy ranging from γ = 4.1 to γ = 10. The energy variation causes the change of revolution frequency. While the rf system for the circulating ion will operate at an exact harmonic of the revolution frequency (h=60 for 4.5 MHz rf and h=360 for 28 MHz rf.), the superconducting rf system for the cooling electron beam does not have a frequency tuning range that is wide enough to cover the required changes of revolution frequency. As a result, electron bunches will sit at different locations along the ion bunch from turn to turn, i.e. the slipping of the electron bunch with respect to the circulating ion bunch. At cooling section, ions see a coherent focusing force due to the electrons’ space charge, which differs from turn to turn due to the slipping. We will try to estimate how this irregular focusing affects the transverse emittance of the ion bunch.

  4. A double-plasma source of continuous bipolar ion-ion beam

    SciTech Connect (OSTI)

    Dudin, S. V.; Scientific Center of Physical Technologies, Svobody sq. 6, 61022 Kharkiv ; Rafalskyi, D. V.

    2013-01-21

    A double-plasma source capable of the generation of a continuous bipolar ion-ion beam is described. The quasi-neutral ion-ion flow to an extraction electrode is formed in the system containing primary inductively coupled plasma separated from a secondary plasma by an electrostatic grid-type filter. The total current of each ion species to the 250 mm diameter extraction electrode is about 80 mA; the electron current does not exceed 30% of the ion current. Method of positive/negative ion current ratio control is proposed, allowing the ion currents ratio variation in wide range.

  5. The direct injection of intense ion beams from a high field electron cyclotron resonance ion source into a radio frequency quadrupole

    SciTech Connect (OSTI)

    Rodrigues, G. Kanjilal, D.; Roy, A.; Becker, R.; Baskaran, R.

    2014-02-15

    The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged {sup 238}U{sup 40+} (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.

  6. Intense beams from gases generated by a permanent magnet ECR ion source at PKU

    SciTech Connect (OSTI)

    Ren, H. T.; Chen, J. E.; Peng, S. X.; Lu, P. N.; Yan, S.; Zhou, Q. F.; Zhao, J.; Yuan, Z. X.; Guo, Z. Y.

    2012-02-15

    An electron cyclotron resonance (ECR) ion source is designed for the production of high-current ion beams of various gaseous elements. At the Peking University (PKU), the primary study is focused on developing suitable permanent magnet ECR ion sources (PMECRs) for separated function radio frequency quadrupole (SFRFQ) accelerator and for Peking University Neutron Imaging Facility. Recently, other kinds of high-intensity ion beams are required for new acceleration structure demonstration, simulation of fusion reactor material irradiation, aviation bearing modification, and other applications. So we expanded the ion beam category from O{sup +}, H{sup +}, and D{sup +} to N{sup +}, Ar{sup +}, and He{sup +}. Up to now, about 120 mA of H{sup +}, 83 mA of D{sup +}, 50 mA of O{sup +}, 63 mA of N{sup +}, 70 mA of Ar{sup +}, and 65 mA of He{sup +} extracted at 50 kV through a {phi} 6 mm aperture were produced by the PMECRs at PKU. Their rms emittances are less than 0.2 {pi} mm mrad. Tungsten samples were irradiated by H{sup +} or He{sup +} beam extracted from this ion source and H/He holes and bubbles have been observed on the samples. A method to produce a high intensity H/He mixed beam to study synergistic effect is developed for nuclear material irradiation. To design a He{sup +} beam injector for coupled radio frequency quadruple and SFRFQ cavity, He{sup +} beam transmission experiments were carried out on PKU low energy beam transport test bench and the transmission was less than 50%. It indicated that some electrode modifications must be done to decrease the divergence of He{sup +} beam.

  7. Beam Dynamics Design and Simulation in Ion Linear Accelerators (

    Energy Science and Technology Software Center (OSTI)

    2006-08-01

    Orginally, the ray tracing code TRACK has been developed to fulfill the many special requirements for the Rare Isotope Accelerator Facility known as RIA. Since no available beam-dynamics code met all the necessary requirements, modifications to the code TRACK were introduced to allow end-to-end (from the ion souce to the production target) simulations of the RIA machine, TRACK is a general beam-dynamics code and can be applied for the design, commissioning and operation of modernmore » ion linear accelerators and beam transport systems.« less

  8. Arc-based smoothing of ion beam intensity on targets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Friedman, Alex

    2012-06-20

    Manipulating a set of ion beams upstream of a target, makes it possible to arrange a smoother deposition pattern, so as to achieve more uniform illumination of the target. A uniform energy deposition pattern is important for applications including ion-beam-driven high energy density physics and heavy-ion beam-driven inertial fusion energy (“heavy-ion fusion”). Here, we consider an approach to such smoothing that is based on rapidly “wobbling” each of the beams back and forth along a short arc-shaped path, via oscillating fields applied upstream of the final pulse compression. In this technique, uniformity is achieved in the time-averaged sense; this ismore » sufficient provided the beam oscillation timescale is short relative to the hydrodynamic timescale of the target implosion. This work builds on two earlier concepts: elliptical beams applied to a distributed-radiator target [D. A. Callahan and M. Tabak, Phys. Plasmas 7, 2083 (2000)] and beams that are wobbled so as to trace a number of full rotations around a circular or elliptical path [R. C. Arnold et al., Nucl. Instrum. Methods 199, 557 (1982)]. Here, we describe the arc-based smoothing approach and compare it to results obtainable using an elliptical-beam prescription. In particular, we assess the potential of these approaches for minimization of azimuthal asymmetry, for the case of a ring of beams arranged on a cone. We also found that, for small numbers of beams on the ring, the arc-based smoothing approach offers superior uniformity. In contrast with the full-rotation approach, arc-based smoothing remains usable when the geometry precludes wobbling the beams around a full circle, e.g., for the X-target [E. Henestroza, B. G. Logan, and L. J. Perkins, Phys. Plasmas 18, 032702 (2011)] and some classes of distributed-radiator targets.« less

  9. Shunting arc plasma source for pure carbon ion beam

    SciTech Connect (OSTI)

    Koguchi, H.; Sakakita, H.; Kiyama, S.; Shimada, T.; Sato, Y.; Hirano, Y.

    2012-02-15

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm{sup 2} at the peak of the pulse.

  10. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect (OSTI)

    Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2010-03-16

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  11. HIGH ENERGY DENSITY PHYSICS EXPERIMENTS WITH INTENSE HEAVY ION BEAMS

    SciTech Connect (OSTI)

    Bieniosek, F.M.; Henestroza, E.; Leitner, M.; Logan, B.G.; More, R.M.; Roy, P.K.; Ni, P.; Seidl, P.A.; Waldron, W.L.; Barnard, J.J.

    2008-08-01

    The US heavy ion fusion science program has developed techniques for heating ion-beam-driven warm dense matter (WDM) targets. The WDM conditions are to be achieved by combined longitudinal and transverse space-charge neutralized drift compression of the ion beam to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. As a technique for heating volumetric samples of matter to high energy density, intense beams of heavy ions are capable of delivering precise and uniform beam energy deposition dE/dx, in a relatively large sample size, and the ability to heat any solid-phase target material. Initial experiments use a 0.3 MeV K+ beam (below the Bragg peak) from the NDCX-I accelerator. Future plans include target experiments using the NDCX-II accelerator, which is designed to heat targets at the Bragg peak using a 3-6 MeV lithium ion beam. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. We have completed the fabrication of a new experimental target chamber facility for WDM experiments, and implemented initial target diagnostics to be used for the first target experiments in NDCX-1. The target chamber has been installed on the NDCX-I beamline. The target diagnostics include a fast multi-channel optical pyrometer, optical streak camera, VISAR, and high-speed gated cameras. Initial WDM experiments will heat targets by compressed NDCX-I beams and will explore measurement of temperature and other target parameters. Experiments are planned in areas such as dense electronegative targets, porous target homogenization and two-phase equation of state.

  12. Cathode spot energy transfer simulated by a focused laser beam

    SciTech Connect (OSTI)

    Vogel, N.; Hoft, H. )

    1989-10-01

    Minimum conditions for the formation of surface craters by laser irradiation have been studied experimentally and theoretically for various metals. The critical power density for crater formation within 20 ns was about 10{sup 11}W/m{sup 2}. It is therefore concluded that crater formation by ion bombardment will require an ion current density of the order of 10{sup 10}A/m{sup 2}.

  13. Experimental evidences for emittance degradation by space charge effect when using a focusing solenoid below an electron cyclotron resonance ion source

    SciTech Connect (OSTI)

    Machicoane, G.; Doleans, M.; Stetson, J.; Wu, X.; Zavodszky, P. A.

    2008-02-15

    Solenoids are widely used to provide initial focusing of beams extracted from an ion source. However, in the case of an electron cyclotron resonance (ECR) ion source, the extracted beam will usually include different ion species and for each of them a wide distribution of charge states. When such a multicomponent beam is focused by a solenoid, the ions with a Q/A larger than the beam of interest are overfocused and usually go through a waist before reaching the analyzing magnet. If the beam currents obtained for these ions are sufficient, the resulting space charge forces can significantly degrade the emittance of the beam components with a lower Q/A and result for those in a hollow beam. Using a beam viewer and an emittance-measuring device, this paper reports on experimental findings that confirm the existence of such an effect for low charge states of argon. Moreover, by changing the experimental conditions of the ECR plasma in order to modify the charge state distribution of the extracted ion beam, it is shown that the threshold where this space charge effect starts to be significant can be changed.

  14. Impact of beam transport method on chamber and driver design for heavy ion inertial fusion energy

    SciTech Connect (OSTI)

    Rose, D.V.; Welch, D.R.; Olson, C.L.; Yu, S.S.; Neff, S.; Sharp, W.M.

    2002-12-01

    In heavy ion inertial fusion energy systems, intense beams of ions must be transported from the exit of the final focus magnet system through the target chamber to hit millimeter spot sizes on the target. In this paper, we examine three different modes of beam propagation: neutralized ballistic transport, assisted pinched transport, and self-pinched transport. The status of our understanding of these three modes is summarized, and the constraints imposed by beam propagation upon the chamber environment, as well as their compatibility with various chamber and target concepts, are considered. We conclude that, on the basis of our present understanding, there is a reasonable range of parameter space where beams can propagate in thick-liquid wall, wetted-wall, and dry-wall chambers.

  15. Ion beam modification of topological insulator bismuth selenide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sharma, Peter Anand; Sharma, A. L. Lima; Hekmaty, Michelle A.; Hattar, Khalid Mikhiel; Stavila, Vitalie; Goeke, Ronald S.; Erickson, K.; Medlin, Douglas L.; Brahlek, M.; Oh, S.; et al

    2014-12-17

    In this study, we demonstrate chemical doping of a topological insulator Bi2Se3 using ion implantation. Ion beam-induced structural damage was characterized using grazing incidence X-ray diffraction and transmission electron microscopy. Ion damage was reversed using a simple thermal annealing step. Carrier-type conversion was achieved using ion implantation followed by an activation anneal in Bi2Se3 thin films. These two sets of experiments establish the feasibility of ion implantation for chemical modification of Bi2Se3, a prototypical topological insulator. Ion implantation can, in principle, be used for any topological insulator. The direct implantation of dopants should allow better control over carrier concentrations formore » the purposes of achieving low bulk conductivity. Ion implantation also enables the fabrication of inhomogeneously doped structures, which in turn should make possible new types of device designs.« less

  16. Production of N.sup.+ ions from a multicusp ion beam apparatus

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Kunkel, Wulf B. (Berkeley, CA); Walther, Steven R. (Salem, MA)

    1993-01-01

    A method of generating a high purity (at least 98%) N.sup.+ ion beam using a multicusp ion source (10) having a chamber (11) formed by a cylindrical chamber wall (12) surrounded by a plurality of magnets (13), a filament (57) centrally disposed in said chamber, a plasma electrode (36) having an extraction orifice (41) at one end of the chamber, a magnetic filter having two parallel magnets (21, 22) spaced from said plasma electrode (36) and dividing the chamber (11) into arc discharge and extraction regions. The method includes ionizing nitrogen gas in the arc discharge region of the chamber (11), maintaining the chamber wall (12) at a positive voltage relative to the filament (57) and at a magnitude for an optimum percentage of N.sup.+ ions in the extracted ion beams, disposing a hot liner (45) within the chamber and near the chamber wall (12) to limit recombination of N.sup.+ ions into the N.sub.2.sup.+ ions, spacing the magnets (21, 22) of the magnetic filter from each other for optimum percentage of N.sup.3 ions in the extracted ion beams, and maintaining a relatively low pressure downstream of the extraction orifice and of a magnitude (preferably within the range of 3-8.times.10.sup.-4 torr) for an optimum percentage of N.sup.+ ions in the extracted ion beam.

  17. Production of N[sup +] ions from a multicusp ion beam apparatus

    DOE Patents [OSTI]

    Kango Leung; Kunkel, W.B.; Walther, S.R.

    1993-03-30

    A method of generating a high purity (at least 98%) N[sup +] ion beam using a multicusp ion source having a chamber formed by a cylindrical chamber wall surrounded by a plurality of magnets, a filament centrally disposed in said chamber, a plasma electrode having an extraction orifice at one end of the chamber, a magnetic filter having two parallel magnets spaced from said plasma electrode and dividing the chamber into arc discharge and extraction regions. The method includes ionizing nitrogen gas in the arc discharge region of the chamber, maintaining the chamber wall at a positive voltage relative to the filament and at a magnitude for an optimum percentage of N[sup +] ions in the extracted ion beams, disposing a hot liner within the chamber and near the chamber wall to limit recombination of N[sup +] ions into the N[sub 2][sup +] ions, spacing the magnets of the magnetic filter from each other for optimum percentage of N[sup 3] ions in the extracted ion beams, and maintaining a relatively low pressure downstream of the extraction orifice and of a magnitude (preferably within the range of 3-8[times]10[sup [minus]4] torr) for an optimum percentage of N[sup +] ions in the extracted ion beam.

  18. Polarized Ion Beams in Figure-8 Rings of JLab's MEIC

    SciTech Connect (OSTI)

    Derbenev, Yaroslav; Lin, Fanglei; Morozov, Vasiliy; Zhang, Yuhong; Kondratenko, Anatoliy; Kondratenko, M.A.; Filatov, Yury

    2014-07-01

    The Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab is designed to provide high polarization of both colliding beams. One of the unique features of JLab's MEIC is figure-8 shape of its rings. It allows preservation and control of polarization of all ion species including small-anomalous-magnetic-moment deuterons during their acceleration and storage. The figure-8 design conceptually expands the capability of obtaining polarized high-energy beams in comparison to conventional designs because of its property of having no preferred periodic spin direction. This allows one to control effectively the beam polarization by means of magnetic insertions with small field integrals. We present a complete scheme for preserving the ion polarization during all stages of acceleration and its control in the collider's experimental straights.

  19. Plasma and Ion Beam Injection into an FRC

    SciTech Connect (OSTI)

    Anderson, M.; Bystritskii, V.; Garate, E.; Rostoker, N.; Song, Y.; Drie, A. van; Binderbauer, M.; Isakov, I.

    2005-10-15

    Experiments on the transverse injection of intense (5-20 A/cm{sup 2}), wide cross-section (10-cm), neutralized, {approx}100-eV H{sup +} plasma and 100-keV H{sup +} ion beams into a preformed B-field reversed configuration (FRC) are described. The FRC background plasma temperature was {approx}5 eV with densities of {approx}10{sup 13} cm{sup -3}. In contrast to earlier experiments, the background plasma was generated by separate plasma gun arrays. For the startup of the FRC, a betatron-type 'slow' coaxial source was used. Injection of the plasma beam into the preformed FRC resulted in a 30-40% increase of the FRC lifetime and the amplitude of the reversed magnetic field. As for the ion beam injection experiment into the preformed FRC, there was evidence of beam capture within the configuration.

  20. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    SciTech Connect (OSTI)

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; ET AL.

    2005-02-28

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linac. The highly successful development of an EBIS at BNL now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based pre-injectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The new RFQ and Linac that are used to accelerate beams from the EBIS to an energy sufficient for injection into the Booster are both very similar to existing devices already in operation at other facilities. Injection into the Booster will occur at the same location as the existing injection from the Tandem.

  1. Stationary self-focusing of intense laser beam in cold quantum plasma using ramp density profile

    SciTech Connect (OSTI)

    Habibi, M.; Ghamari, F.

    2012-10-15

    By using a transient density profile, we have demonstrated stationary self-focusing of an electromagnetic Gaussian beam in cold quantum plasma. The paper is devoted to the prospects of using upward increasing ramp density profile of an inhomogeneous nonlinear medium with quantum effects in self-focusing mechanism of high intense laser beam. We have found that the upward ramp density profile in addition to quantum effects causes much higher oscillation and better focusing of laser beam in cold quantum plasma in comparison to that in the classical relativistic case. Our computational results reveal the importance and influence of formation of electron density profiles in enhancing laser self-focusing.

  2. The heavy ion beam diagnostic for the tokamak ISTTOK

    SciTech Connect (OSTI)

    Cabral, J.A.C.; Malaquias, A.; Praxedes, A.; Toledo, W. van; Varandas, C.A.F. )

    1994-08-01

    In this paper the authors describe the heavy ion beam diagnostic for the tokamak ISTTOK, which has been designed to determine the temporal evolution of the plasma density, poloidal magnetic field and plasma potential profiles. This diagnostic makes use of a new type of high density caesium plasma source, a multiple cell detector and a fast data acquisition system. The authors describe the numerical code for trajectory and beam attenuation simulations, a method for the experimental determination of the poloidal field profile, the ion gun and the detection, control and data acquisition systems. Calibration tests and the first experimental results are presented.

  3. Customized atomic force microscopy probe by focused-ion-beam...

    Office of Scientific and Technical Information (OSTI)

    We show experimentally that tall (18 m) cantilever tips fabricated by this approach reduce squeeze-film damping, which fits predictions from hydrodynamic theory, and results in ...

  4. ELECTRON BEAM ION SOURCE PREINJECTOR PROJECT (EBIS) CONCEPTUAL DESIGN REPORT.

    SciTech Connect (OSTI)

    ALESSI, J.; BARTON, D.; BEEBE, E.; GASSNER, D.; GRANDINETTI, R.; HSEUH, H.; JAVIDFAR, A.; KPONOU, A.; LAMBIASE, R.; LESSARD, E.; LOCKEY, R.; LODESTRO, V.; MAPES, M.; MIRABELLA, D.; NEHRING, T.; OERTER, B.; PENDZICK, A.; PIKIN, A.; RAPARIA, D.; RITTER, J.; ROSER, T.; RUSSO, T.; SNYDSTRUP, L.; WILINSKI, M.; ZALTSMAN, A.; ZHANG, S.

    2005-09-01

    This report describes a new heavy ion pre-injector for the Relativistic Heavy Ion Collider (RHIC) based on a high charge state Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (RFQ) accelerator, and a short Linear accelerator (Linac). The highly successful development of an EBIS at Brookhaven National Laboratory (BNL) now makes it possible to replace the present pre-injector that is based on an electrostatic Tandem with a reliable, low maintenance Linac-based pre-injector. Linac-based preinjectors are presently used at most accelerator and collider facilities with the exception of RHIC, where the required gold beam intensities could only be met with a Tandem until the recent EBIS development. EBIS produces high charge state ions directly, eliminating the need for the two stripping foils presently used with the Tandem. Unstable stripping efficiencies of these foils are a significant source of luminosity degradation in RHIC. The high reliability and flexibility of the new Linac-based pre-injector will lead to increased integrated luminosity at RHIC and is an essential component for the long-term success of the RHIC facility. This new pre-injector, based on an EBIS, also has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium beams and, as part of a future upgrade, might also be used to produce polarized {sup 3}He beams. These capabilities will be critical to the future luminosity upgrades and electron-ion collisions in RHIC. The proposed pre-injector system would also provide for a major enhancement in capability for the NASA Space Radiation Laboratory (NSRL), which utilizes heavy-ion beams from the RHIC complex. EBIS would allow for the acceleration of all important ion species for the NASA radiobiology program, such as, helium, argon, and neon which are unavailable with the present Tandem injector. In addition, the new system would allow for very rapid switching of ion species for NSRL experiments, reducing delays due to the interference with RHIC injection operations, and allowing enhanced mixed field radiation studies. The new RFQ and Linac that are used to accelerate beams from the EBIS to an energy sufficient for injection into the Booster are both very similar to existing devices already in operation at other facilities. Injection into the Booster will occur at the same location as the existing injection from the Tandem.

  5. Slit disk for modified faraday cup diagnostic for determining power density of electron and ion beams

    DOE Patents [OSTI]

    Teruya, Alan T. (Livermore, CA); Elmer; John W. (Danville, CA); Palmer, Todd A. (State College, PA)

    2011-03-08

    A diagnostic system for characterization of an electron beam or an ion beam includes an electrical conducting disk of refractory material having a circumference, a center, and a Faraday cup assembly positioned to receive the electron beam or ion beam. At least one slit in the disk provides diagnostic characterization of the electron beam or ion beam. The at least one slit is located between the circumference and the center of the disk and includes a radial portion that is in radial alignment with the center and a portion that deviates from radial alignment with the center. The electron beam or ion beam is directed onto the disk and translated to the at least one slit wherein the electron beam or ion beam enters the at least one slit for providing diagnostic characterization of the electron beam or ion beam.

  6. Emittance growth of an nonequilibrium intense electron beam in a transport channel with discrete focusing

    SciTech Connect (OSTI)

    Carlsten, B.E.

    1997-02-01

    The author analyzes the emittance growth mechanisms for a continuous, intense electron beam in a focusing transport channel, over distances short enough that the beam does not reach equilibrium. The emittance grows from the effect of nonlinear forces arising from (1) current density nonuniformities, (2) energy variations leading to nonlinearities in the space-charge force even if the current density is uniform, (3) axial variations in the radial vector potential, (4) an axial velocity shear along the beam, and (5) an energy redistribution of the beam as the beam compresses or expands. The emittance growth is studied analytically and numerically for the cases of balanced flow, tight focusing, and slight beam scalloping, and is additionally studied numerically for an existing 6-MeV induction linear accelerator. Rules for minimizing the emittance along a beamline are established. Some emittance growth will always occur, both from current density nonuniformities that arise along the transport and from beam radius changes along the transport.

  7. A high-performance electron beam ion source

    SciTech Connect (OSTI)

    Alessi,J.; Beebe, E.; Bellavia, S.; Gould, O.; Kponou, A.; Lambiase, R.; Lockey, R.; McCafferty, D.; Okamura, M.; Pikin, A. I.; Raparia, D.; Ritter, J.; Syndstrup, L.

    2009-06-08

    At Brookhaven National Laboratory, a high current Electron Beam Ion Source (EBIS) has been developed as part of a new preinjector that is under construction to replace the Tandem Van de Graaffs as the heavy ion preinjector for the RHIC and NASA experimental programs. This preinjector will produce milliampere-level currents of essentially any ion species, with q/A {ge} 1/6, in short pulses, for injection into the Booster synchrotron. In order to produce the required intensities, this EBIS uses a 10A electron gun, and an electron collector designed to handle 300 kW of pulsed electron beam power. The EBIS trap region is 1.5 m long, inside a 5T, 2m long, 8-inch bore superconducting solenoid. The source is designed to switch ion species on a pulse-to-pulse basis, at a 5 Hz repetition rate. Singly-charged ions of the appropriate species, produced external to the EBIS, are injected into the trap and confined until the desired charge state is reached via stepwise ionization by the electron beam. Ions are then extracted and matched into an RFQ, followed by a short IH Linac, for acceleration to 2 MeV/A, prior to injection into the Booster synchrotron. An overview of the preinjector is presented, along with experimental results from the prototype EBIS, where all essential requirements have already been demonstrated. Design features and status of construction of the final high intensity EBIS is also be presented.

  8. Microwave Ion Source and Beam Injection for an Accelerator-drivenNeutron Source

    SciTech Connect (OSTI)

    Vainionpaa, J.H.; Gough, R.; Hoff, M.; Kwan, J.W.; Ludewigt,B.A.; Regis, M.J.; Wallig, J.G.; Wells, R.

    2007-02-15

    An over-dense microwave driven ion source capable ofproducing deuterium (or hydrogen) beams at 100-200 mA/cm2 and with atomicfraction>90 percent was designed and tested with an electrostaticlow energy beam transport section (LEBT). This ion source wasincorporatedinto the design of an Accelerator Driven Neutron Source(ADNS). The other key components in the ADNS include a 6 MeV RFQaccelerator, a beam bending and scanning system, and a deuterium gastarget. In this design a 40 mA D+ beam is produced from a 6 mm diameteraperture using a 60 kV extraction voltage. The LEBT section consists of 5electrodes arranged to form 2 Einzel lenses that focus the beam into theRFQ entrance. To create the ECR condition, 2 induction coils are used tocreate ~; 875 Gauss on axis inside the source chamber. To prevent HVbreakdown in the LEBT a magnetic field clamp is necessary to minimize thefield in this region. Matching of the microwave power from the waveguideto the plasma is done by an autotuner. We observed significantimprovement of the beam quality after installing a boron nitride linerinside the ion source. The measured emittance data are compared withPBGUNS simulations.

  9. The uses of electron beam ion traps in the study of highly charged ions

    SciTech Connect (OSTI)

    Knapp, D.

    1994-11-02

    The Electron Beam Ion Trap (EBIT) is a relatively new tool for the study of highly charged ions. Its development has led to a variety of new experimental opportunities; measurements have been performed with EBITs using techniques impossible with conventional ion sources or storage rings. In this paper, I will highlight the various experimental techniques we have developed and the results we have obtained using the EBIT and higher-energy Super-EBIT built at the Lawrence Livermore National Laboratory. The EBIT employs a high-current-density electron beam to trap, ionize, and excite a population of ions. The ions can be studied in situ or extracted from the trap for external experiments. The trapped ions form an ionization-state equilibrium determined by the relative ionization and recombination rates. Ions of several different elements may simultaneously be present in the trap. The ions are nearly at rest, and, for most systems, all in their ground-state configurations. The electron-ion interaction energy has a narrow distribution and can be varied over a wide range. We have used the EBIT devices for the measurement of electron-ion interactions, ion structure, ion-surface interactions, and the behavior of low-density plasmas.

  10. Three-dimensional light distribution near the focus of a tightly focused beam of few-cycle optical pulses

    SciTech Connect (OSTI)

    Romallosa, Kristine Marie; Bantang, Johnrob; Saloma, Caesar

    2003-09-01

    Via the Richards-Wolf vector diffraction theory, we analyze the three-dimensional intensity distribution of the focal volume that is produced by a strongly focused 750-nm beam of ultrafast, Gaussian-shaped optical pulses (10{sup -9} s{>=} pulse width {tau}{>=}1 fs=10{sup -15} s). Knowledge of the three-dimensional distribution near focus is essential in determining the diffraction-limited resolution of an optical microscope. The optical spectrum of a short pulse is characterized by side frequencies about the carrier frequency. The effect of spectral broadening on the focused intensity distribution is evaluated via the Linfoot's criteria of fidelity, structural content, and correlation quality and with reference to a 750-nm cw focused beam. Different values are considered for {tau} and numerical aperture of the focusing lens (0.1{<=}X{sub NA}{<=}1.2). At X{sub NA}=0.8, rapid deterioration of the focused intensity distribution is observed at {tau}=1.2 fs. This happens because a 750-nm optical pulse with {tau}=1.2 fs has an associated coherence length of 359.7 nm which is less than the Nyquist sampling interval of 375 nm that is required to sample 750 nm sinusoid without loss of information. The ill-effects of spectral broadening is weaker in two-photon excitation microscope than in its single-photon counterpart for the same focusing lens and light source.

  11. Use of radial self-field geometry for intense pulsed ion beam generation above 6 MeV on Hermes III.

    SciTech Connect (OSTI)

    Renk, Timothy Jerome; Harper-Slaboszewicz, Victor Jozef; Ginn, William Craig; Mikkelson, Kenneth A.; Schall, Michael; Cooper, Gary Wayne

    2012-12-01

    We investigate the generation and propagation of intense pulsed ion beams at the 6 MeV level and above using the Hermes III facility at Sandia National Laboratories. While high-power ion beams have previously been produced using Hermes III, we have conducted systematic studies of several ion diode geometries for the purpose of maximizing focused ion energy for a number of applications. A self-field axial-gap diode of the pinch reflex type and operated in positive polarity yielded beam power below predicted levels. This is ascribed both to power flow losses of unknown origin upstream of the diode load in Hermes positive polarity operation, and to anomalies in beam focusing in this configuration. A change to a radial self-field geometry and negative polarity operation resulted in greatly increased beam voltage (> 6 MeV) and estimated ion current. A comprehensive diagnostic set was developed to characterize beam performance, including both time-dependent and time-integrated measurements of local and total beam power. A substantial high-energy ion population was identified propagating in reverse direction, i.e. from the back side of the anode in the electron beam dump. While significant progress was made in increasing beam power, further improvements in assessing the beam focusing envelope will be required before ultimate ion generation efficiency with this geometry can be completely determined.

  12. 21st International Conference on Ion Beam Analysis

    SciTech Connect (OSTI)

    Thevuthasan, Suntharampillai; Shutthanandan, V.; Wang, Yongqiang; Vizkelethy, Gyorgy; Rout, Bibhudutta

    2014-08-01

    This special issue of Nuclear Instruments and Methods in Physics Research B contains the proceedings of the 21st International Conference on Ion Beam Analysis (IBA – 2013). This conference was held in Marriott Waterfront in Seattle, Washington, USA during June 23–28, 2013.

  13. Ion Beam Analysis of Targets Used in Controlatron Neutron Generators

    SciTech Connect (OSTI)

    Banks, James C.; Doyle, Barney L.; Walla, Lisa A.; Walsh, David S.

    2009-03-10

    Controlatron neutron generators are used for testing neutron detection systems at Sandia National Laboratories. To provide for increased tube lifetimes for the moderate neutron flux output of these generators, metal hydride (ZrT{sub 2}) target fabrication processes have been developed. To provide for manufacturing quality control of these targets, ion beam analysis techniques are used to determine film composition. The load ratios (i.e. T/Zr concentration ratios) of ZrT{sub 2} Controlatron neutron generator targets have been successfully measured by simultaneously acquiring RBS and ERD data using a He{sup ++} beam energy of 10 MeV. Several targets were measured and the film thicknesses obtained from RBS measurements agreed within {+-}2% with Dektak profilometer measurements. The target fabrication process and ion beam analysis techniques will be presented.

  14. Optimizing the emission, propagation, and focusing of an intense electron beam

    SciTech Connect (OSTI)

    Pepitone, K. Gardelle, J. Modin, P.

    2015-05-14

    Intense electron beams can be used to study the dynamical response of materials under shocks in order to adjust the models developed for hydrodynamics simulations. We present in this paper a characterization of beams produced in a field emission diode coupled to the generator RKA at CEA/CESTA. Cherenkov emission, produced by the beam interacting in a fused silica disk, was observed by fast optical cameras to estimate beam homogeneity. GEANT4 simulations were performed to estimate the transfer function of the silica target and to optimize the anode foil. First, we chose the best cathode material available among the most common materials used in field emission systems. In addition, we found that by optimization of the anode thickness, we could improve the spatial homogeneity of the beam which is of prime importance for computing the interaction of the beam with materials. Next, we changed the beam fluence by increasing the beam current and by reducing the beam radius. Finally, we studied the propagation and focusing of the electron beam in low pressure gases and observed that we could use self-magnetic field focusing in order to increase beam fluence at the target location. The experimental results are in good agreement with PIC simulations.

  15. Means for the focusing and acceleration of parallel beams of charged particles. [Patent application

    DOE Patents [OSTI]

    Maschke, A.W.

    1980-09-23

    Apparatus for focusing beams of charged particles comprising planar arrays of electrostatic quadrupoles. The array may be assembled from a single component which comprises a support plate containing uniform rows of poles. Each pole is separated by a hole through the plate designed to pass a beam. Two such plates may be positioned with their poles intermeshed to form a plurality of quadrupoles.

  16. Means for the focusing and acceleration of parallel beams of charged particles

    DOE Patents [OSTI]

    Maschke, Alfred W. (East Moriches, NY)

    1982-09-21

    Apparatus for focusing beams of charged particles comprising planar arrays of electrostatic quadrupoles. The array may be assembled from a single component which comprises a support plate containing uniform rows of poles. Each pole is separated by a hole through the plate designed to pass a beam. Two such plates may be positioned with their poles intermeshed to form a plurality of quadrupoles.

  17. Electrostatic dispersion lenses and ion beam dispersion methods

    DOE Patents [OSTI]

    Dahl, David A. (Idaho Falls, ID) [Idaho Falls, ID; Appelhans, Anthony D. (Idaho Falls, ID) [Idaho Falls, ID

    2010-12-28

    An EDL includes a case surface and at least one electrode surface. The EDL is configured to receive through the EDL a plurality of ion beams, to generate an electrostatic field between the one electrode surface and either the case surface or another electrode surface, and to increase the separation between the beams using the field. Other than an optional mid-plane intended to contain trajectories of the beams, the electrode surface or surfaces do not exhibit a plane of symmetry through which any beam received through the EDL must pass. In addition or in the alternative, the one electrode surface and either the case surface or the other electrode surface have geometries configured to shape the field to exhibit a less abrupt entrance and/or exit field transition in comparison to another electrostatic field shaped by two nested, one-quarter section, right cylindrical electrode surfaces with a constant gap width.

  18. Angular distribution of energetic argon ions emitted by a 90?kJ Filippov-type plasma focus

    SciTech Connect (OSTI)

    Pestehe, S. J.; Mohammadnejad, M.

    2015-02-15

    Characteristics of the energetic argon ions emitted by a 90?kJ Filippov-type plasma focus are studied by employing an array of Faraday cups. The Faraday cups are designed to minimize the secondary electron emission effects on their response. Angular distribution of the ions is measured, and the results indicate a highly anisotropic emission with a dip at the device axis and a local maximum at the angle of 7° with respect to the axis. It has been argued that this kind of anisotropic emission may be related to the surfatron acceleration mechanism and shown that this behavior is independent of the working gas pressure. It has been also demonstrated that this mechanism is responsible for the generation of MeV ions. Measuring the total ion number at different working gas pressures gives an optimum pressure of 0.3?Torr. In addition, the energy spectrum of ions is measured by taking into account of the ambient gas effects on the energy and charge of the ions. The current neutralization effect of electrons trapped in the ion beam as well as the effect of conducting boundaries surrounding the beam, on the detected signals are investigated.

  19. Electrostatic energy analyzer measurements of low energy zirconium beam parameters in a plasma sputter-type negative ion source

    SciTech Connect (OSTI)

    Malapit, Giovanni M.; Mahinay, Christian Lorenz S.; Poral, Matthew D.; Ramos, Henry J.

    2012-02-15

    A plasma sputter-type negative ion source is utilized to produce and detect negative Zr ions with energies between 150 and 450 eV via a retarding potential-type electrostatic energy analyzer. Traditional and modified semi-cylindrical Faraday cups (FC) inside the analyzer are employed to sample negative Zr ions and measure corresponding ion currents. The traditional FC registered indistinct ion current readings which are attributed to backscattering of ions and secondary electron emissions. The modified Faraday cup with biased repeller guard ring, cut out these signal distortions leaving only ringings as issues which are theoretically compensated by fitting a sigmoidal function into the data. The mean energy and energy spread are calculated using the ion current versus retarding potential data while the beam width values are determined from the data of the transverse measurement of ion current. The most energetic negative Zr ions yield tighter energy spread at 4.11 eV compared to the least energetic negative Zr ions at 4.79 eV. The smallest calculated beam width is 1.04 cm for the negative Zr ions with the highest mean energy indicating a more focused beam in contrast to the less energetic negative Zr ions due to space charge forces.

  20. Separation of beam and electrons in the spallation neutron source H{sup -} ion source

    SciTech Connect (OSTI)

    Whealton, J.H.; Raridon, R.J.; Leung, K.N.

    1997-12-01

    The Spallation Neutron Source (SNS) requires an ion source producing an H{sup {minus}} beam with a peak current of 35mA at a 6.2 percent duty factor. For the design of this ion source, extracted electrons must be transported and dumped without adversely affecting the H{sup {minus}} beam optics. Two issues are considered: (1) electron containment transport and controlled removal; and (2) first-order H{sup {minus}} beam steering. For electron containment, various magnetic, geometric and electrode biasing configurations are analyzed. A kinetic description for the negative ions and electrons is employed with self-consistent fields obtained from a steady-state solution to Poisson`s equation. Guiding center electron trajectories are used when the gyroradius is sufficiently small. The magnetic fields used to control the transport of the electrons and the asymmetric sheath produced by the gyrating electrons steer the ion beam. Scenarios for correcting this steering by split acceleration and focusing electrodes will be considered in some detail.

  1. Production of low axial energy spread ion beams with multicusp sources

    SciTech Connect (OSTI)

    Lee, Y.H.Y.

    1998-05-01

    Multicusp ion sources are capable of producing ions with low axial energy spread which are necessary in applications such as: ion projection lithography (IPL) and focused ion beams for the next generation lithographic tools and nuclear science experiments such as radioactive ion beam production. The axial ion energy spread for multicusp source is approximately 6 eV which is too large for IPL and radioactive ion beam applications. The addition of a magnetic filter which consists of a pair of permanent magnets to the multicusp source reduces the energy spread considerably. The reduction is due to the improvement in the uniformity of the axial plasma potential distribution in the discharge region. Axial ion energy spread of the filament driven ion source has been measured using three different techniques. In all cases, it was found to be less than 2 eV. Energy spread of the radio frequency (RF) driven source has also been explored, and it was found to be less than 3 eV with the proper RF-shielding. A new multicusp source configuration has been designed and constructed to further reduce the energy spread. To achieve a more uniform axial plasma potential distribution, a cylindrical magnetic filter has been designed and constructed for a 2-cm-diameter source. This new source configuration, the co-axial source, is new in its kind. The energy spread in this source has been measured to be a record low of 0.6 eV. Because of the novelty of this device, some plasma parameters inside the source have been studied. Langmuir probe has been used to measure the plasma potential, the electron temperature and the density distribution.

  2. Method for measuring and controlling beam current in ion beam processing

    DOE Patents [OSTI]

    Kearney, Patrick A. (Livermore, CA); Burkhart, Scott C. (Livermore, CA)

    2003-04-29

    A method for producing film thickness control of ion beam sputter deposition films. Great improvements in film thickness control is accomplished by keeping the total current supplied to both the beam and suppressor grids of a radio frequency (RF) in beam source constant, rather than just the current supplied to the beam grid. By controlling both currents, using this method, deposition rates are more stable, and this allows the deposition of layers with extremely well controlled thicknesses to about 0.1%. The method is carried out by calculating deposition rates based on the total of the suppressor and beam currents and maintaining the total current constant by adjusting RF power which gives more consistent values.

  3. Optimized electrode placement along the channel of a Hall thruster for ion focusing

    SciTech Connect (OSTI)

    Qing, Shaowei, E-mail: qshaowei@gmail.com [Power Engineering Institute, Chongqing University, Chongqing 400044 (China); E, Peng [Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xia, Guangqing [State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024 (China); Tang, Ming-Chun [College of Communication Engineering, Chongqing University, Chongqing 400044 (China); Duan, Ping [School of Physics, Dalian Maritime University, Dalian 116026 (China)

    2014-01-21

    An optimal placement of the segmented electrode for increasing the lifetime of the Aton-type Hall thruster, i.e., reducing the plume divergence, is demonstrated using a 2D3V fully kinetic Particle-in-Cell method. Segmented electrodes, embedded near the ionization region of non-segmented case and biased above anode potential, lead to an increased separation between the ionization and acceleration regions and the formation of an efficient acceleration electric field configuration as potential lens. Due to this electrode placement, the sheath near the ceramic walls of the acceleration region is collapsed and an excellent ion beam focusing is demonstrated. The potential contour pockets around the electrodes and the sheath collapse phenomenon are also discussed.

  4. First test of BNL electron beam ion source with high current density electron beam

    SciTech Connect (OSTI)

    Pikin, Alexander Alessi, James G. Beebe, Edward N.; Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard

    2015-01-09

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm{sup 2} and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  5. Temporal Development of Ion Beam Mean Charge State in PulsedVacuum Arc Ion Sources

    SciTech Connect (OSTI)

    Oks, Efim M.; Yushkov, Georgy Yu.; Anders, Andre

    2007-06-21

    Vacuum arc ion sources, commonly also known as "Mevva" ionsources, are used to generate intense pulsed metal ion beams. It is knownthat the mean charge state of the ion beam lies between 1 and 4,depending on cathode material, arc current, arc pulse duration, presenceor absence of magnetic field at the cathode, as well background gaspressure. A characteristic of the vacuum arc ion beam is a significantdecrease in ion charge state throughout the pulse. This decrease can beobserved up to a few milliseconds, until a "noisy" steady-state value isestablished. Since the extraction voltage is constant, a decrease in theion charge state has a proportional impact on the average ion beamenergy. This paper presents results of detailed investigations of theinfluence of arc parameters on the temporal development of the ion beammean charge state for a wide range of cathode materials. It is shown thatfor fixed pulse duration, the charge state decrease can be reduced bylower arc current, higher pulse repetition rate, and reduction of thedistance between cathode and extraction region. The latter effect may beassociated with charge exchange processes in the dischargeplasma.

  6. Scattering of a tightly focused beam by an optically trapped particle

    SciTech Connect (OSTI)

    Lock, James A.; Wrbanek, Susan Y.; Weiland, Kenneth E

    2006-05-20

    Near-forward scattering of an optically trapped 5-{mu}m-radius polystyrene latex sphere by the trapping beam was examined both theoretically and experimentally. Since the trapping beam is tightly focused, the beam fields superpose and interfere with the scattered fields in the forward hemisphere. The observed light intensity consists of a series of concentric bright and dark fringes centered about the forward-scattering direction. Both the number of fringes and their contrast depend on the position of the trapping beam focal waist with respect to the sphere. The fringes are caused by diffraction that is due to the truncation of the tail of the trapping beam as the beam is transmitted through the sphere.

  7. Measurement of ion beam from laser ion source for RHIC EBIS.

    SciTech Connect (OSTI)

    Kanesue,T.; Tamura, J.; Okamura, M.

    2008-06-23

    Laser ion source (LIS) is a candidate of the primary ion source for the RHIC EBIS. LIS will provide intense charge state 1+ ions to the EBIS for further ionization. We measured plasma properties of a variety of atomic species from C to Au using the second harmonics of Nd:YAG laser (532 nm wave length, up to 0.5 J/6 ns). Since properties of laser produced plasma is different from different species, laser power density for singly charged ion production should be verified experimentally for each atomic species. After plasma analysis experiments, Au ions was extracted from plasma and emittance of the ion beam was measured using a pepper pot type emittance monitor.

  8. Collision Processes of Highly Charged Ions with Electrons Studied with an Electron Beam Ion Trap

    SciTech Connect (OSTI)

    Nakamura, Nobuyuki; Watanabe, Tsutomu; Ohtani, Shunsuke; Kavanagh, Anthony P.; Currell, Fred J.; Watanabe, Hirofumi; Sakaue, Hiroyuki A.; Kato, Daiji; Li Yueming; Tong Xiaoming

    2009-09-10

    The electron beam ion trap in Tokyo (Tokyo-EBIT)is suitable for studying relativistic effects in the collisions of highly charged heavy ions with electrons because it can produce and trap very highly charged heavy ions which interact with a mono-energetic and unidirectional relativistic electron beam with an energy of up to 200 keV. Recently, we have been studying resonant processes in ionization and recombination by measuring the charge abundance inside the EBIT at the equilibrium. The abundance ratio between adjacent charge states varies slowly with the electron energy when there is no resonant process. However, when the electron energy coincides with the resonant energy at which ionization or recombination is enhanced, the abundance ratio can drastically change. Thus, the resonant processes can be studied by measuring the abundance ratio between adjacent ions as a function of electron beam energy. In this talk, recent progress for heavy ions with very high charge states up to He-like Bi{sup 81+}, is presented. For such ions, relativistic effects significantly affect the resonant processes. For example, the generalized Breit interaction (GBI) effect, which treats the retardation in the exchange of single virtual photon between the free and orbital electrons, has been clearly observed in the DR resonant strength in Li-like Bi{sup 80+}. Recently we have also found that the GBI effect plays an important role in the interference between non-resonant and resonant recombinations. Experimental results are presented in comparison with theoretical calculations.

  9. Optics measurement and correction during beam acceleration in the Relativistic Heavy Ion Collider

    SciTech Connect (OSTI)

    Liu, C.; Marusic, A.; Minty, M.

    2014-09-09

    To minimize operational complexities, setup of collisions in high energy circular colliders typically involves acceleration with near constant β-functions followed by application of strong focusing quadrupoles at the interaction points (IPs) for the final beta-squeeze. At the Relativistic Heavy Ion Collider (RHIC) beam acceleration and optics squeeze are performed simultaneously. In the past, beam optics correction at RHIC has taken place at injection and at final energy with some interpolation of corrections into the acceleration cycle. Recent measurements of the beam optics during acceleration and squeeze have evidenced significant beta-beats which if corrected could minimize undesirable emittance dilutions and maximize the spin polarization of polarized proton beams by avoidance of higher-order multipole fields sampled by particles within the bunch. In this report the methodology now operational at RHIC for beam optics corrections during acceleration with simultaneous beta-squeeze will be presented together with measurements which conclusively demonstrate the superior beam control. As a valuable by-product, the corrections have minimized the beta-beat at the profile monitors so reducing the dominant error in and providing more precise measurements of the evolution of the beam emittances during acceleration.

  10. Reduction of Glass Surface Reflectance by Ion Beam Surface Modification

    SciTech Connect (OSTI)

    Mark Spitzer

    2011-03-11

    This is the final report for DOE contract DE-EE0000590. The purpose of this work was to determine the feasibility of the reduction of the reflection from the front of solar photovoltaic modules. Reflection accounts for a power loss of approximately 4%. A solar module having an area of one square meter with an energy conversion efficiency of 18% generates approximately 180 watts. If reflection loss can be eliminated, the power output can be increased to 187 watts. Since conventional thin-film anti-reflection coatings do not have sufficient environmental stability, we investigated the feasibility of ion beam modification of the glass surface to obtain reduction of reflectance. Our findings are generally applicable to all solar modules that use glass encapsulation, as well as commercial float glass used in windows and other applications. Ion implantation of argon, fluorine, and xenon into commercial low-iron soda lime float glass, standard float glass, and borosilicate glass was studied by implantation, annealing, and measurement of reflectance. The three ions all affected reflectance. The most significant change was obtained by argon implantation into both low-iron and standard soda-lime glass. In this way samples were formed with reflectance lower than can be obtained with a single-layer coatings of magnesium fluoride. Integrated reflectance was reduced from 4% to 1% in low-iron soda lime glass typical of the glass used in solar modules. The reduction of reflectance of borosilicate glass was not as large; however borosilicate glass is not typically used in flat plate solar modules. Unlike conventional semiconductor ion implantation doping, glass reflectance reduction was found to be tolerant to large variations in implant dose, meaning that the process does not require high dopant uniformity. Additionally, glass implantation does not require mass analysis. Simple, high current ion implantation equipment can be developed for this process; however, before the process can be employed on full scale solar modules, equipment must be developed for ion implanting large sheets of glass. A cost analysis shows that the process can be economical. Our finding is that the reduction of reflectance by ion beam surface modification is technically and economically feasible. The public will benefit directly from this work by the improvement of photovoltaic module efficiency, and indirectly by the greater understanding of the modification of glass surfaces by ion beams.

  11. The Brookhaven National Laboratory electron beam ion source for RHIC

    SciTech Connect (OSTI)

    Alessi, J.G.; Barton, D.; Beebe, E.; Bellavia, S.; Gould, O.; Kponou, A.; Lambiase, R.; Lockey, R.; McNerney, A.; Mapes, M.; Marneris, I.; Okamura, M.; Phillips, D.; Pikin, A.I.; Raparia, D.; Ritter, J.; Snydstrup, L.; Theisen, C.; Wilinski, M.

    2010-02-22

    As part of a new heavy ion preinjector that will supply beams for the Relativistic Heavy Ion Collider and the National Aeronautics and Space Administration Space Radiation Laboratory, construction of a new electron beam ion source (EBIS) is now being completed. This source, based on the successful prototype Brookhaven National Laboratory Test EBIS, is designed to produce milliampere level currents of all ion species, with q/m = (1/6)-(1/2). Among the major components of this source are a 5 T, 2-m-long, 204 mm diameter warm bore superconducting solenoid, an electron gun designed to operate at a nominal current of 10 A, and an electron collector designed to dissipate {approx} 300 kW of peak power. Careful attention has been paid to the design of the vacuum system, since a pressure of 10{sup -10} Torr is required in the trap region. The source includes several differential pumping stages, the trap can be baked to 400 C, and there are non-evaporable getter strips in the trap region. Power supplies include a 15 A, 15 kV electron collector power supply, and fast switchable power supplies for most of the 16 electrodes used for varying the trap potential distribution for ion injection, confinement, and extraction. The EBIS source and all EBIS power supplies sit on an isolated platform, which is pulsed up to a maximum of 100 kV during ion extraction. The EBIS is now fully assembled, and operation will be beginning following final vacuum and power supply tests. Details of the EBIS components are presented.

  12. Numerical simulation to study the transient self focusing of laser beam in plasma

    SciTech Connect (OSTI)

    Sharma, R. P.; Hussain, Saba Gaur, Nidhi

    2015-02-15

    In this paper, we present the numerical simulation for the coupled system of equations governing the dynamics of laser and Ion Acoustic Wave (IAW) in a collisionless plasma, when the coupling between the waves is through ponderomotive non-linearity. The nonlinear evolution of the laser beam is studied when the pump laser is perturbed by a periodic perturbation. By changing the perturbation wave number, we have studied its effect on the nonlinear evolution pattern of laser beam. In order to have a physical insight into the nonlinear dynamics of laser beam evolution in time and space, we have studied the laser and IAW spectra containing spatial harmonics. The magnitude of these harmonics changes with time and leads to time dependent localization of laser beam in spatial domain. The nonlinear dynamics of this localization is investigated in detail by using simulation and a semi-analytical model.

  13. Ponderomotive self-focusing of Gaussian laser beam in warm collisional plasma

    SciTech Connect (OSTI)

    Jafari Milani, M. R.; Niknam, A. R.; Farahbod, A. H.

    2014-06-15

    The propagation characteristics of a Gaussian laser beam through warm collisional plasma are investigated by considering the ponderomotive force nonlinearity and the complex eikonal function. By introducing the dielectric permittivity of warm unmagnetized plasma and using the WKB and paraxial ray approximations, the coupled differential equations defining the variations of laser beam parameters are obtained and solved numerically. Effects of laser and plasma parameters such as the collision frequency, the initial laser intensity and its spot size on the beam width parameter and the axis laser intensity distribution are analyzed. It is shown that, self-focusing of the laser beam takes place faster by increasing the collision frequency and initial laser spot size and then after some distance propagation the laser beam abruptly loses its initial diameter and vastly diverges. Furthermore, the modified electron density distribution is obtained and the collision frequency effect on this distribution is studied.

  14. Self-focusing of profiled ultrashort-wavelength laser beams in air

    SciTech Connect (OSTI)

    Geints, Yu. E.; Zemlyanov, A. A.; Izyumov, N. A.; Ionin, A. A.; Kudryashov, S. I.; Seleznev, L. V. Sinitsyn, D. V.; Sunchugasheva, E. S.

    2013-02-15

    We report on the results of laboratory experiments of filamentation of sharply focused gigawatt femtosecond laser radiation passed through various aperture diaphragms in air. For the multiple filamentation regime, the dependences of the length and spatial structure of the filamentation region on the initial beam profile are established. It is found that light beam profiling by a diaphragm leads in some cases to a displacement of the filamentation region and to repeated self-focusing of radiation behind the linear focal waist. In the beam of the same power in the absence of a diaphragm and in the regime of the formation of a single filament, this effect terminates in front of the geometrical focus. The experimental results are illustrated by numerical simulation data.

  15. The energy transfer in the TEMP-4M pulsed ion beam accelerator

    SciTech Connect (OSTI)

    Isakova, Y. I.; Pushkarev, A. I.; Khaylov, I. P.

    2013-07-15

    The results of a study of the energy transfer in the TEMP-4M pulsed ion beam accelerator are presented. The energy transfer efficiency in the Blumlein and a self-magnetically insulated ion diode was analyzed. Optimization of the design of the accelerator allows for 85% of energy transferred from Blumlein to the diode (including after-pulses), which indicates that the energy loss in Blumlein and spark gaps is insignificant and not exceeds 10%–12%. Most losses occur in the diode. The efficiency of energy supplied to the diode to the energy of accelerated ions is 8%–9% for a planar strip self-magnetic MID, 12%–15% for focusing diode and 20% for a spiral self-magnetic MID.

  16. Interface and process for enhanced transmission of non-circular ion beams between stages at unequal pressure

    DOE Patents [OSTI]

    Tang, Keqi (Richland, WA); Shvartsburg, Alexandre A. (Richland, WA); Smith, Richard D. (Richland, WA)

    2008-03-04

    The invention discloses a new interface with non-circular conductance limit aperture(s) useful for effective transmission of non-circular ion beams between stages with different gas pressure. In particular, the invention provides an improved coupling of field asymmetric waveform ion mobility spectrometry (FAIMS) analyzers of planar or side-to-side geometry to downstream stages such as mass spectrometry or ion mobility spectrometry. In this case, the non-circular aperture is rectangular; other geometries may be optimum in other applications. In the preferred embodiment, the non-circular aperture interface is followed by an electrodynamic ion funnel that may focus wide ion beams of any shape into tight circular beams with virtually no losses. The jet disrupter element of the funnel may also have a non-circular geometry, matching the shape of arriving ion beam. The improved sensitivity of planar FAIMS/MS has been demonstrated in experiments using a non-contiguous elongated aperture but other embodiments (e.g., with a contiguous slit aperture) may be preferable, especially in conjunction with an ion funnel operated at high pressures.

  17. Ion beam analysis in cultural heritage studies: Milestones and perspectives

    SciTech Connect (OSTI)

    Dran, Jean-Claude; Calligaro, Thomas

    2013-07-18

    For three decades, ion beam analysis (IBA) in external mode was considered as the best choice for the characterisation of cultural heritage materials, as it combines excellent analytical performance and non-invasive character. However, in recent years, other analytical techniques arose as serious competitors, such as those based on synchrotron radiation (X-ray absorption, fluorescence or diffraction) or those using portable instruments (XRF, micro-Raman). It is shown that nevertheless IBA remains unmatched thanks to two unique features, namely the analysis of light elements and the high-resolution 3D chemical imaging.

  18. Accessing defect dynamics using intense, nanosecond pulsed ion beams

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Persaud, A.; Barnard, J. J.; Guo, H.; Hosemann, P.; Lidia, S.; Minor, A. M.; Seidl, P. A.; Schenkel, T.

    2015-06-18

    Gaining in-situ access to relaxation dynamics of radiation induced defects will lead to a better understanding of materials and is important for the verification of theoretical models and simulations. We show preliminary results from experiments at the new Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory that will enable in-situ access to defect dynamics through pump-probe experiments. Here, the unique capabilities of the NDCX-II accelerator to generate intense, nanosecond pulsed ion beams are utilized. Preliminary data of channeling experiments using lithium and potassium ions and silicon membranes are shown. We compare these data to simulation results using Crystalmore » Trim. Furthermore, we discuss the improvements to the accelerator to higher performance levels and the new diagnostics tools that are being incorporated.« less

  19. Production of intense negative hydrogen beams with polarized nuclei by selective neutralization of cold negative ions

    DOE Patents [OSTI]

    Hershcovitch, A.

    1984-02-13

    A process for selectively neutralizing H/sup -/ ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H/sup -/ ions that are

  20. Method and means of directing an ion beam onto an insulating surface for ion implantation or sputtering

    DOE Patents [OSTI]

    Gruen, Dieter M.; Krauss, Alan R.; Siskind, Barry

    1981-01-01

    A beam of ions is directed under control onto an insulating surface by supplying simultaneously a stream of electrons directed at the same surface in a quantity sufficient to neutralize the overall electric charge of the ion beam and result in a net zero current flow to the insulating surface. The ion beam is adapted particularly both to the implantation of ions in a uniform areal disposition over the insulating surface and to the sputtering of atoms or molecules of the insulator onto a substrate.

  1. Production of intense negative hydrogen beams with polarized nuclei by selective neutralization of negative ions

    DOE Patents [OSTI]

    Hershcovitch, Ady (Mount Sinai, NY)

    1987-01-01

    A process for selectively neutralizing H.sup.- ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H.sup.- ions that are intersected by a beam of laser light. Photodetachment is effected in a uniform magnetic field that is provided around the beam of H.sup.- ions to spin polarize the H.sup.- ions and produce first and second populations or groups of ions, having their respective proton spin aligned either with the magnetic field or opposite to it. The intersecting beam of laser light is directed to selectively neutralize a majority of the ions in only one population, or given spin polarized group of H.sup.- ions, without neutralizing the ions in the other group thereby forming a population of H.sup.- ions each of which has its proton spin down, and a second group or population of H.sup.o atoms having proton spin up. Finally, the two groups of ions are separated from each other by magnetically bending the group of H.sup.- ions away from the group of neutralized ions, thereby to form an intense H.sup.- ion beam that is directed toward a predetermined objective.

  2. THE DISPERSION RELATIONS AND INSTABILITY THRESHOLDS OF OBLIQUE PLASMA MODES IN THE PRESENCE OF AN ION BEAM

    SciTech Connect (OSTI)

    Verscharen, Daniel; Chandran, Benjamin D. G. E-mail: benjamin.chandran@unh.edu

    2013-02-10

    An ion beam can destabilize Alfven/ion-cyclotron waves and magnetosonic/whistler waves if the beam speed is sufficiently large. Numerical solutions of the hot-plasma dispersion relation have previously shown that the minimum beam speed required to excite such instabilities is significantly smaller for oblique modes with k Multiplication-Sign B {sub 0} {ne} 0 than for parallel-propagating modes with k Multiplication-Sign B {sub 0} = 0, where k is the wavevector and B {sub 0} is the background magnetic field. In this paper, we explain this difference within the framework of quasilinear theory, focusing on low-{beta} plasmas. We begin by deriving, in the cold-plasma approximation, the dispersion relation and polarization properties of both oblique and parallel-propagating waves in the presence of an ion beam. We then show how the instability thresholds of the different wave branches can be deduced from the wave-particle resonance condition, the conservation of particle energy in the wave frame, the sign (positive or negative) of the wave energy, and the wave polarization. We also provide a graphical description of the different conditions under which Landau resonance and cyclotron resonance destabilize Alfven/ion-cyclotron waves in the presence of an ion beam. We draw upon our results to discuss the types of instabilities that may limit the differential flow of alpha particles in the solar wind.

  3. Defocusing of an ion beam propagating in background plasma due to

    Office of Scientific and Technical Information (OSTI)

    two-stream instability (Journal Article) | SciTech Connect Defocusing of an ion beam propagating in background plasma due to two-stream instability Citation Details In-Document Search Title: Defocusing of an ion beam propagating in background plasma due to two-stream instability The current and charge neutralization of charged particle beams by background plasma enable ballistic beam propagation and have a wide range of applications in inertial fusion and high energy density physics.

  4. Generation and focusing of electron beams with initial transverse-longitudinal correlation

    SciTech Connect (OSTI)

    Harris, J. R.; Lewellen, J. W.; Poole, B. R.

    2014-10-07

    In charged particle beams, one of the roles played by space charge is to couple the transverse and longitudinal dynamics of the beam. This can lead to very complex phenomena which are generally studied using computer simulations. However, in some cases models based on phenomenological or analytic approximations can provide valuable insight into the system behavior. In this paper, we employ such approximations to investigate the conditions under which all the slices of a space charge dominated electron beam with slowly varying current could be focused to a waist with the same radius and at the same location, independent of slice current, and show that this can be accomplished approximately if the initial transverse-longitudinal correlation introduced onto the beam by the electron gun is chosen to compensate for the transverse-longitudinal correlation introduced onto the beam in the drift section. The validity of our approximations is assessed by use of progressively more realistic calculations. We also consider several design elements of electron guns that affect the initial correlations in the beams they generate.

  5. Acceleration and stability of a high-current ion beam in induction fields

    SciTech Connect (OSTI)

    Karas', V. I.; Manuilenko, O. V.; Tarakanov, V. P.; Federovskaya, O. V.

    2013-03-15

    A one-dimensional nonlinear analytic theory of the filamentation instability of a high-current ion beam is formulated. The results of 2.5-dimensional numerical particle-in-cell simulations of acceleration and stability of an annular compensated ion beam (CIB) in a linear induction particle accelerator are presented. It is shown that additional transverse injection of electron beams in magnetically insulated gaps (cusps) improves the quality of the ion-beam distribution function and provides uniform beam acceleration along the accelerator. The CIB filamentation instability in both the presence and the absence of an external magnetic field is considered.

  6. Determination of ion track radii in amorphous matrices via formation of nano-clusters by ion-beam irradiation

    SciTech Connect (OSTI)

    Buljan, M.; Karlusic, M.; Bogdanovic-Radovic, I.; Jaksic, M.; Radic, N.; Salamon, K.; Bernstorff, S.

    2012-09-03

    We report on a method for the determination of ion track radii, formed in amorphous materials by ion-beam irradiation. The method is based on the addition to an amorphous matrix of a small amount of foreign atoms, which easily diffuse and form clusters when the temperature is sufficiently increased. The irradiation causes clustering of these atoms, and the final separations of the formed clusters are dependent on the parameters of the ion-beam. Comparison of the separations between the clusters that are formed by ions with different properties in the same type of material enables the determination of ion-track radii.

  7. Production, formation, and transport of high-brightness atomic hydrogen beam studies for the relativistic heavy ion collider polarized source upgrade

    SciTech Connect (OSTI)

    Kolmogorov, A. Stupishin, N.; Atoian, G.; Ritter, J.; Zelenski, A.; Davydenko, V.; Ivanov, A.; Novosibirsk State University, Novosibirsk

    2014-02-15

    The RHIC polarized H{sup ?} ion source had been successfully upgraded to higher intensity and polarization by using a very high brightness fast atomic beam source developed at BINP, Novosibirsk. In this source the proton beam is extracted by a four-grid multi-aperture ion optical system and neutralized in the H{sub 2} gas cell downstream from the grids. The proton beam is extracted from plasma emitter with a low transverse ion temperature of ?0.2 eV which is formed by plasma jet expansion from the arc plasma generator. The multi-hole grids are spherically shaped to produce “geometrical” beam focusing. Proton beam formation and transport of atomic beam were experimentally studied at test bench.

  8. Energy spectrum of argon ions emitted from Filippov type Sahand plasma focus

    SciTech Connect (OSTI)

    Mohammadnejad, M.; Pestehe, S. J.; Mohammadi, M. A.; Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz

    2013-07-15

    The energy and flux of the argon ions produced in Sahand plasma focus have been measured by employing a well-designed Faraday cup. The secondary electron emission effects on the ion signals are simulated and the dimensions of Faraday cup are optimized to minimize these effects. The measured ion energy spectrum is corrected for the ion energy loss and charge exchange in the background gas. The effects of the capacitor bank voltage and working gas pressure on the ion energy spectrum are also investigated. It has been shown that the emitted ion number per energy increases as the capacitor bank voltage increases. Decreasing the working gas pressure leads to the increase in the number of emitted ion per energy.

  9. Electron acceleration by a tightly focused Hermite-Gaussian beam: higher-order corrections

    SciTech Connect (OSTI)

    Zhao Zhiguo; Yang Dangxiao; Lue Baida

    2008-03-15

    Taking the TEM{sub 1,0}-mode Hermite-Gaussian (H-G) beam as a numerical calculation example, and based on the method of the perturbation series expansion, the higher-order field corrections of H-G beams are derived and used to study the electron acceleration by a tightly focused H-G beam in vacuum. For the case of the off-axis injection the field corrections to the terms of order f{sup 3} (f=1/kw{sub 0}, k and w{sub 0} being the wavenumber and waist width, respectively) are considered, and for the case of the on-axis injection the contributions of the terms of higher orders are negligible. By a suitable optimization of injection parameters the energy gain in the giga-electron-volt regime can be achieved.

  10. Test bench to commission a third ion source beam line and a newly designed extraction system

    SciTech Connect (OSTI)

    Winkelmann, T.; Cee, R.; Haberer, T.; Naas, B.; Peters, A.

    2012-02-15

    The HIT (Heidelberg Ion Beam Therapy Center) is the first hospital-based treatment facility in Europe where patients can be irradiated with protons and carbon ions. Since the commissioning starting in 2006 two 14.5 GHz electron cyclotron resonance ion sources are routinely used to produce a variety of ion beams from protons up to oxygen. In the future a helium beam for regular patient treatment is requested, therefore a third ion source (Supernanogan source from PANTECHNIK S.A.) will be integrated. This third ECR source with a newly designed extraction system and a spectrometer line is installed at a test bench at HIT to commission and validate this section. Measurements with different extraction system setups will be presented to show the improvement of beam quality for helium, proton, and carbon beams. An outlook to the possible integration scheme of the new ion source into the production facility will be discussed.

  11. Laser generated proton beam focusing and high temperature isochoric heating of solid matter

    SciTech Connect (OSTI)

    Snavely, R. A.; Hatchett, S. P.; Key, M. H.; Langdon, A. B.; Lasinski, B. F.; MacKinnon, A. J.; Patel, P.; Town, R.; Wilks, S. C.; Zhang, B.; Akli, K.; Hey, D.; King, J.; Chen, Z.; Izawa, Y.; Kitagawa, Y.; Kodama, R.; Lei, A.; Tampo, M.; Tanaka, K. A.

    2007-09-15

    The results of laser-driven proton beam focusing and heating with a high energy (170 J) short pulse are reported. Thin hemispherical aluminum shells are illuminated with the Gekko petawatt laser using 1 {mu}m light at intensities of {approx}3x10{sup 18} W/cm{sup 2} and measured heating of thin Al slabs. The heating pattern is inferred by imaging visible and extreme-ultraviolet light Planckian emission from the rear surface. When Al slabs 100 {mu}m thick were placed at distances spanning the proton focus beam waist, the highest temperatures were produced at 0.94x the hemisphere radius beyond the equatorial plane. Isochoric heating temperatures reached 81 eV in 15 {mu}m thick foils. The heating with a three-dimensional Monte Carlo model of proton transport with self-consistent heating and proton stopping in hot plasma was modeled.

  12. Control of domain wall pinning by localised focused Ga {sup +} ion irradiation on Au capped NiFe nanowires

    SciTech Connect (OSTI)

    Burn, D. M. Atkinson, D.

    2014-10-28

    Understanding domain wall pinning and propagation in nanowires are important for future spintronics and nanoparticle manipulation technologies. Here, the effects of microscopic local modification of the magnetic properties, induced by focused-ion-beam intermixing, in NiFe/Au bilayer nanowires on the pinning behavior of domain walls was investigated. The effects of irradiation dose and the length of the irradiated features were investigated experimentally. The results are considered in the context of detailed quasi-static micromagnetic simulations, where the ion-induced modification was represented as a local reduction of the saturation magnetization. Simulations show that domain wall pinning behavior depends on the magnitude of the magnetization change, the length of the modified region, and the domain wall structure. Comparative analysis indicates that reduced saturation magnetisation is not solely responsible for the experimentally observed pinning behavior.

  13. Beam-Based Alignment, Tuning and Beam Dynamics Studies for the ATF2 Extraction Line and Final Focus System

    SciTech Connect (OSTI)

    White, Glen R.; Molloy, S.; Woodley, M.; /SLAC

    2008-07-25

    Using a new extraction line currently under construction, the ATF2 experiment plans to test the novel compact final focus optics design with local chromaticity correction intended for use in future linear colliders. With a 1.3 GeV design beam of 30nm normalized vertical emittance extracted from the ATF damping ring, the primary goal is to achieve a vertical spot-size at the IP waist of 37nm. We discuss our planned strategy for tuning the ATF2 beam to meet the primary goal. Simulation studies have been performed to asses the effectiveness of the strategy, including 'static' (installation) errors and dynamical effects (ground-motion, mechanical vibration, ring extraction jitter etc.). We have simulated all steps in the tuning procedure, from initial orbit establishment to final IP spot-size tuning. Through a Monte Carlo study of 100's of simulation seeds we find we can achieve a spot-size within {approx}10% of the design optics value in at least 75% of cases. We also ran a simulation to study the long-term performance with the use of beam-based feedbacks.

  14. Comparison of SOFC Cathode Microstructure Quantified using X-ray Nanotomography and Focused Ioni Beam-scanning Electron Microscopy

    SciTech Connect (OSTI)

    G Nelson; W Harris; J Lombardo; J Izzo Jr.; W Chiu; P Tanasini; M Cantoni; J Van herle; C Comninellis; et al.

    2011-12-31

    X-ray nanotomography and focused ion beam scanning electron microscopy (FIB-SEM) have been applied to investigate the complex 3D microstructure of solid oxide fuel cell (SOFC) electrodes at spatial resolutions of 45 nm and below. The application of near edge differential absorption for x-ray nanotomography and energy selected backscatter detection for FIB-SEM enable elemental mapping within the microstructure. Using these methods, non-destructive 3D x-ray imaging and FIB-SEM serial sectioning have been applied to compare three-dimensional elemental mapping of the LSM, YSZ, and pore phases in the SOFC cathode microstructure. The microstructural characterization of an SOFC cathode is reported based on these measurements. The results presented demonstrate the viability of x-ray nanotomography as a quantitative characterization technique and provide key insights into the SOFC cathode microstructure.

  15. Creating a Well-focused Laser-accelerated Proton Beam as a Driver for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Fast Ignition | U.S. DOE Office of Science (SC) Creating a Well-focused Laser-accelerated Proton Beam as a Driver for Proton Fast Ignition Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301)

  16. Nanostructuring superconductors by ion beams: A path towards materials engineering

    SciTech Connect (OSTI)

    Gerbaldo, Roberto; Ghigo, Gianluca; Gozzelino, Laura; Laviano, Francesco; Amato, Antonino; Rovelli, Alberto; Cherubini, Roberto

    2013-07-18

    The paper deals with nanostructuring of superconducting materials by means of swift heavy ion beams. The aim is to modify their structural, optical and electromagnetic properties in a controlled way, to provide possibility of making them functional for specific applications. Results are presented concerning flux pinning effects (implantation of columnar defects with nanosize cross section to enhance critical currents and irreversibility fields), confined flux-flow and vortex guidance, design of devices by locally tailoring the superconducting material properties, analysis of disorder-induced effects in multi-band superconductors. These studies were carried out on different kinds of superconducting samples, from single crystals to thin films, from superconducting oxides to magnesium diboride, to recently discovered iron-based superconductors.

  17. Ion beam sputter target and method of manufacture

    DOE Patents [OSTI]

    Higdon, Clifton; Elmoursi, Alaa A.; Goldsmith, Jason; Cook, Bruce; Blau, Peter; Jun, Qu; Milner, Robert

    2014-09-02

    A target for use in an ion beam sputtering apparatus made of at least two target tiles where at least two of the target tiles are made of different chemical compositions and are mounted on a main tile and geometrically arranged on the main tile to yield a desired chemical composition on a sputtered substrate. In an alternate embodiment, the tiles are of varied thickness according to the desired chemical properties of the sputtered film. In yet another alternate embodiment, the target is comprised of plugs pressed in a green state which are disposed in cavities formed in a main tile also formed in a green state and the assembly can then be compacted and then sintered.

  18. Electrostatic particle trap for ion beam sputter deposition

    DOE Patents [OSTI]

    Vernon, Stephen P. (Pleasanton, CA); Burkhart, Scott C. (Livermore, CA)

    2002-01-01

    A method and apparatus for the interception and trapping of or reflection of charged particulate matter generated in ion beam sputter deposition. The apparatus involves an electrostatic particle trap which generates electrostatic fields in the vicinity of the substrate on which target material is being deposited. The electrostatic particle trap consists of an array of electrode surfaces, each maintained at an electrostatic potential, and with their surfaces parallel or perpendicular to the surface of the substrate. The method involves interception and trapping of or reflection of charged particles achieved by generating electrostatic fields in the vicinity of the substrate, and configuring the fields to force the charged particulate material away from the substrate. The electrostatic charged particle trap enables prevention of charged particles from being deposited on the substrate thereby enabling the deposition of extremely low defect density films, such as required for reflective masks of an extreme ultraviolet lithography (EUVL) system.

  19. Using an energized oxygen micro-jet for improved graphene etching by focused electron beam

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, Songkil; Henry, Mathias; Fedorov, Andrei G.

    2015-12-07

    We report on an improved Focused Electron Beam Induced Etching (FEBIE) process, which exploits heated oxygen delivery via a continuous supersonic micro-jet resulting in faster graphene patterning and better etch feature definition. Positioning a micro-jet in close proximity to a graphene surface with minimal jet spreading due to a continuous regime of gas flow at the exit of the 10 micrometer inner diameter capillary allows for focused exposure of the surface to reactive oxygen at high mass flux and impingement energy of a supersonic gas stream localized to a small etching area exposed to electron beam. These unique benefits ofmore » focused supersonic oxygen delivery to the surface enable a dramatic increase in the etch rate of graphene with no parasitic carbon ‘halo’ deposition due to secondary electrons (SE) from backscattered electrons (BSE) in the area surrounding the etched regions. Increase of jet temperature via local nozzle heating provides means for enhancing kinetic energy of impinging oxygen molecules, which further speed up the etch, thus minimizing the beam exposure time and required electron dose, before parasitic carbon film deposition due to BSE mediated decomposition of adsorbed hydrocarbon contaminants has a measurable impact on quality of graphene etched features. Interplay of different physical mechanisms underlying an oxygen micro-jet assisted FEBIE process is discussed with support from experimental observations.« less

  20. The WARP Code: Modeling High Intensity Ion Beams

    SciTech Connect (OSTI)

    Grote, David P.; Friedman, Alex; Vay, Jean-Luc; Haber, Irving

    2005-03-15

    The Warp code, developed for heavy-ion driven inertial fusion energy studies, is used to model high intensity ion (and electron) beams. Significant capability has been incorporated in Warp, allowing nearly all sections of an accelerator to be modeled, beginning with the source. Warp has as its core an explicit, three-dimensional, particle-in-cell model. Alongside this is a rich set of tools for describing the applied fields of the accelerator lattice, and embedded conducting surfaces (which are captured at sub-grid resolution). Also incorporated are models with reduced dimensionality: an axisymmetric model and a transverse 'slice' model. The code takes advantage of modern programming techniques, including object orientation, parallelism, and scripting (via Python). It is at the forefront in the use of the computational technique of adaptive mesh refinement, which has been particularly successful in the area of diode and injector modeling, both steady-state and time-dependent. In the presentation, some of the major aspects of Warp will be overviewed, especially those that could be useful in modeling ECR sources. Warp has been benchmarked against both theory and experiment. Recent results will be presented showing good agreement of Warp with experimental results from the STS500 injector test stand. Additional information can be found on the web page http://hif.lbl.gov/theory/WARP{sub s}ummary.html.

  1. The WARP Code: Modeling High Intensity Ion Beams

    SciTech Connect (OSTI)

    Grote, D P; Friedman, A; Vay, J L; Haber, I

    2004-12-09

    The Warp code, developed for heavy-ion driven inertial fusion energy studies, is used to model high intensity ion (and electron) beams. Significant capability has been incorporated in Warp, allowing nearly all sections of an accelerator to be modeled, beginning with the source. Warp has as its core an explicit, three-dimensional, particle-in-cell model. Alongside this is a rich set of tools for describing the applied fields of the accelerator lattice, and embedded conducting surfaces (which are captured at sub-grid resolution). Also incorporated are models with reduced dimensionality: an axisymmetric model and a transverse ''slice'' model. The code takes advantage of modern programming techniques, including object orientation, parallelism, and scripting (via Python). It is at the forefront in the use of the computational technique of adaptive mesh refinement, which has been particularly successful in the area of diode and injector modeling, both steady-state and time-dependent. In the presentation, some of the major aspects of Warp will be overviewed, especially those that could be useful in modeling ECR sources. Warp has been benchmarked against both theory and experiment. Recent results will be presented showing good agreement of Warp with experimental results from the STS500 injector test stand. Additional information can be found on the web page http://hif.lbl.gov/theory/WARP{_}summary.html.

  2. Draft Project Execution Plan for the Ion Beam Laboratory at Sandia National

    Office of Environmental Management (EM)

    Laboratories | Department of Energy Draft Project Execution Plan for the Ion Beam Laboratory at Sandia National Laboratories Draft Project Execution Plan for the Ion Beam Laboratory at Sandia National Laboratories Draft of September 27, 2006 PDF icon IBL.pdf More Documents & Publications DOE Work Breakdown Structure Handbook Sample Project Execution Plan CONCEPTUAL DESIGN REPORT

  3. A hollow cathode ion source for production of primary ions for the BNL electron beam ion source

    SciTech Connect (OSTI)

    Alessi, James Beebe, Edward; Carlson, Charles; McCafferty, Daniel; Pikin, Alexander; Ritter, John

    2014-02-15

    A hollow cathode ion source, based on one developed at Saclay, has been modified significantly and used for several years to produce all primary 1+ ions injected into the Relativistic Heavy Ion Collider Electron Beam Ion Source (EBIS) at Brookhaven. Currents of tens to hundreds of microamperes have been produced for 1+ ions of He, C, O, Ne, Si, Ar, Ti, Fe, Cu, Kr, Xe, Ta, Au, and U. The source is very simple, relying on a glow discharge using a noble gas, between anode and a solid cathode containing the desired species. Ions of both the working gas and ionized sputtered cathode material are extracted, and then the desired species is selected using an ExB filter before being transported into the EBIS trap for charge breeding. The source operates pulsed with long life and excellent stability for most species. Reliable ignition of the discharge at low gas pressure is facilitated by the use of capacitive coupling from a simple toy plasma globe. The source design, and operating experience for the various species, is presented.

  4. Negative ion beam injection apparatus with magnetic shield and electron removal means

    DOE Patents [OSTI]

    Anderson, Oscar A. (Berkeley, CA); Chan, Chun F. (Hayward, CA); Leung, Ka-Ngo (Hercules, CA)

    1994-01-01

    A negative ion source is constructed to produce H.sup.- ions without using Cesium. A high percentage of secondary electrons that typically accompany the extracted H.sup.- are trapped and eliminated from the beam by permanent magnets in the initial stage of acceleration. Penetration of the magnetic field from the permanent magnets into the ion source is minimized. This reduces the destructive effect the magnetic field could have on negative ion production and extraction from the source. A beam expansion section in the extractor results in a strongly converged final beam.

  5. High speed measurements of neutral beam turn-on and impact of beam modulation on measurements of ion density

    SciTech Connect (OSTI)

    Grierson, B. A. Grisham, L.; Burrell, K. H.; Crowley, B.; Scoville, J. T.

    2014-10-15

    Modulation of neutral beams on tokamaks is performed routinely, enabling background rejection for active spectroscopic diagnostics, and control of injected power and torque. We find that there exists an anomalous initial transient in the beam neutrals delivered to the tokamak that is not accounted for by the accelerator voltage and power supply current. Measurements of the charge-exchange and beam photoemission on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] at high speed (200 ?s) reveal that the energy of the beam neutrals is constant, but the density of beam neutrals displays dramatic variation in the first 2–3 ms following beam turn-on. The impact of this beam density variation on inferred ion densities and impurity transport is presented, with suggested means to correct for the anomalous transient.

  6. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    SciTech Connect (OSTI)

    Valerio-Lizarraga, Cristhian A.; Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard; Leon-Monzon, Ildefonso; Midttun, Øystein; University of Oslo, Oslo

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup ?} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  7. Formation of long-range ordered quantum dots arrays in amorphous matrix by ion beam irradiation

    SciTech Connect (OSTI)

    Buljan, M.; Bogdanovic-Radovic, I.; Karlusic, M.; Desnica, U. V.; Radic, N.; Dubcek, P.; Drazic, G.; Salamon, K.; Bernstorff, S.; Holy, V.

    2009-08-10

    We demonstrate the production of a well ordered three-dimensional array of Ge quantum dots in amorphous silica matrix. The ordering is achieved by ion beam irradiation and annealing of a multilayer film. Structural analysis shows that quantum dots nucleate along the direction of the ion beam used for irradiation, while the mutual distance of the quantum dots is determined by the diffusion properties of the multilayer material rather than the distances between traces of ions that are used for irradiation.

  8. Fast optimization and dose calculation in scanned ion beam therapy

    SciTech Connect (OSTI)

    Hild, S.; Graeff, C.; Trautmann, J.; Kraemer, M.; Zink, K.; Durante, M.; Bert, C.

    2014-07-15

    Purpose: Particle therapy (PT) has advantages over photon irradiation on static tumors. An increased biological effectiveness and active target conformal dose shaping are strong arguments for PT. However, the sensitivity to changes of internal geometry complicates the use of PT for moving organs. In case of interfractionally moving objects adaptive radiotherapy (ART) concepts known from intensity modulated radiotherapy (IMRT) can be adopted for PT treatments. One ART strategy is to optimize a new treatment plan based on daily image data directly before a radiation fraction is delivered [treatment replanning (TRP)]. Optimizing treatment plans for PT using a scanned beam is a time consuming problem especially for particles other than protons where the biological effective dose has to be calculated. For the purpose of TRP, fast optimization and fast dose calculation have been implemented into the GSI in-house treatment planning system (TPS) TRiP98. Methods: This work reports about the outcome of a code analysis that resulted in optimization of the calculation processes as well as implementation of routines supporting parallel execution of the code. To benchmark the new features, the calculation time for therapy treatment planning has been studied. Results: Compared to the original version of the TPS, calculation times for treatment planning (optimization and dose calculation) have been improved by a factor of 10 with code optimization. The parallelization of the TPS resulted in a speedup factor of 12 and 5.5 for the original version and the code optimized version, respectively. Hence the total speedup of the new implementation of the authors' TPS yielded speedup factors up to 55. Conclusions: The improved TPS is capable of completing treatment planning for ion beam therapy of a prostate irradiation considering organs at risk in this has been overseen in the review process. Also see below 6 min.

  9. Optical trapping and rotation of airborne absorbing particles with a single focused laser beam

    SciTech Connect (OSTI)

    Lin, Jinda; Li, Yong-qing, E-mail: liy@ecu.edu [Department of Physics, East Carolina University, Greenville, North Carolina 27858-4353 (United States)] [Department of Physics, East Carolina University, Greenville, North Carolina 27858-4353 (United States)

    2014-03-10

    We measure the periodic circular motion of single absorbing aerosol particles that are optically trapped with a single focused Gaussian beam and rotate around the laser propagation direction. The scattered light from the trapped particle is observed to be directional and change periodically at 0.4–20?kHz. The instantaneous positions of the moving particle within a rotation period are measured by a high-speed imaging technique using a charge coupled device camera and a repetitively pulsed light-emitting diode illumination. The centripetal acceleration of the trapped particle as high as ?20 times the gravitational acceleration is observed and is attributed to the photophoretic forces.

  10. Strong self-focusing of a cosh-Gaussian laser beam in collisionless magneto-plasma under plasma density ramp

    SciTech Connect (OSTI)

    Nanda, Vikas; Kant, Niti

    2014-07-15

    The effect of plasma density ramp on self-focusing of cosh-Gaussian laser beam considering ponderomotive nonlinearity is analyzed using WKB and paraxial approximation. It is noticed that cosh-Gaussian laser beam focused earlier than Gaussian beam. The focusing and de-focusing nature of the cosh-Gaussian laser beam with decentered parameter, intensity parameter, magnetic field, and relative density parameter has been studied and strong self-focusing is reported. It is investigated that decentered parameter “b” plays a significant role for the self-focusing of the laser beam as for b=2.12, strong self-focusing is seen. Further, it is observed that extraordinary mode is more prominent toward self-focusing rather than ordinary mode of propagation. For b=2.12, with the increase in the value of magnetic field self-focusing effect, in case of extraordinary mode, becomes very strong under plasma density ramp. Present study may be very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, and x-ray lasers. Moreover, plasma density ramp plays a vital role to enhance the self-focusing effect.

  11. Design and characterization of electron beam focusing for X-ray generation in novel medical imaging architecture

    SciTech Connect (OSTI)

    Bogdan Neculaes, V. Zou, Yun; Zavodszky, Peter; Inzinna, Louis; Zhang, Xi; Conway, Kenneth; Caiafa, Antonio; Frutschy, Kristopher; Waters, William; De Man, Bruno

    2014-05-15

    A novel electron beam focusing scheme for medical X-ray sources is described in this paper. Most vacuum based medical X-ray sources today employ a tungsten filament operated in temperature limited regime, with electrostatic focusing tabs for limited range beam optics. This paper presents the electron beam optics designed for the first distributed X-ray source in the world for Computed Tomography (CT) applications. This distributed source includes 32 electron beamlets in a common vacuum chamber, with 32 circular dispenser cathodes operated in space charge limited regime, where the initial circular beam is transformed into an elliptical beam before being collected at the anode. The electron beam optics designed and validated here are at the heart of the first Inverse Geometry CT system, with potential benefits in terms of improved image quality and dramatic X-ray dose reduction for the patient.

  12. Stripline fast faraday cup for measuring GHz structure of ion beams

    DOE Patents [OSTI]

    Bogaty, John M. (Lombard, IL)

    1992-01-01

    The Stripline Fast Faraday Cup is a device which is used to quantitatively and qualitatively measure gigahertz time structure characteristics of ion beams with energies up to at least 30 Mev per nucleon. A stripline geometry is employed in conjunction with an electrostatic screen and a Faraday cup to provide for analysis of the structural characteristics of an ion beam. The stripline geometry allows for a large reduction in the size of the instrument while the electrostatic screen permits measurements of the properties associated with low speed ion beams.

  13. Operational head-on beam-beam compensation with electron lenses in the Relativistic Heavy Ion Collider

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fischer, W.; Gu, X.; Altinbas, Z.; Costanzo, M.; Hock, J.; Liu, C.; Luo, Y.; Marusic, A.; Michnoff, R.; Miller, T. A.; et al

    2015-12-23

    Head-on beam-beam compensation has been implemented in the Relativistic Heavy Ion Collider (RHIC) in order to increase the luminosity delivered to the experiments. We discuss the principle of combining a lattice for resonance driving term compensation and an electron lens for tune spread compensation. We describe the electron lens technology and its operational use. As of this date the implemented compensation scheme approximately doubled the peak and average luminosities.

  14. Ion beam synthesis of SiGe alloy layers

    SciTech Connect (OSTI)

    Im, Seongil

    1994-05-01

    Procedures required for minimizing structural defects generated during ion beam synthesis of SiGe alloy layers were studied. Synthesis of 200 mm SiGe alloy layers by implantation of 120-keV Ge ions into <100> oriented Si wafers yielded various Ge peak concentrations after the following doses, 2{times}10{sup 16}cm{sup {minus}2}, 3{times}10{sup 16}cm{sup {minus}2} (mid), and 5{times}10{sup 16}cm{sup {minus}2} (high). Following implantation, solid phase epitaxial (SPE) annealing in ambient N2 at 800C for 1 hr. resulted in only slight redistribution of the Ge. Two kinds of extended defects were observed in alloy layers over 3{times}l0{sup 16}cm{sup {minus}2}cm dose at room temperature (RT): end-of-range (EOR) dislocation loops and strain-induced stacking faults. Density of EOR dislocation loops was much lower in alloys produced by 77K implantation than by RT implantation. Decreasing the dose to obtain 5 at% peak Ge concentration prevents strain relaxation, while those SPE layers with more than 7 at% Ge peak show high densities of misfit- induced stacking faults. Sequential implantation of C following high dose Ge implantation (12 at% Ge peak concentration in layer) brought about a remarkable decrease in density of misfit-induced stacking faults. For peak implanted C > 0.55 at%, stacking fault generation in the epitaxial layer was suppressed, owing to strain compensation by C atoms in the SiGe lattice. A SiGe alloy layer with 0.9 at% C peak concentration under a 12 at% Ge peak exhibited the best microstructure. Results indicate that optimum Ge/C ratio for strain compensation is between 11 and 22. The interface between amorphous and regrown phases (a/c interface) had a dramatic morphology change during its migration to the surface. Initial <100> planar interface decomposes into a <111> faceted interface, changing the growth kinetics; this is associated with strain relaxation by stacking fault formation on (111) planes in the a/c interface.

  15. Study of nonlinear ohmic heating and ponderomotive force effects on the self-focusing and defocusing of Gaussian laser beams in collisional underdense plasmas

    SciTech Connect (OSTI)

    Etehadi Abari, M.; Shokri, B. [Physics Department and Laser-Plasma Research Institute of Shahid Beheshti University, G.C., Evin, Tehran (Iran, Islamic Republic of)

    2012-11-15

    In the present paper, the propagation characteristics of a linearly polarized gaussian laser beam in a non-isothermal underdense collisional plasma is studied. By considering the effects of the ponderomotive force and ohmic heating of plasma electrons as the nonlinear mechanisms, the second order differential equation of the dimensionless beam width parameter has been obtained and solved at several initial ion temperatures. Furthermore, by using the nonlinear dielectric permittivity of the mentioned plasma medium in the paraxial approximation and its dependence on the propagation characteristics of the gaussian laser pulse, the perturbed electron density n{sub e}/n{sub 0e} is obtained and its variation in terms of the dimensionless plasma length is analyzed at different initial ion temperatures. Our results show that the dimensionless beam width parameter is strongly influenced by the initial plasma ion temperature. It is found that, for the self-focusing regime, the plasma electron density perturbation continuously oscillates between the initial density distribution and a minimum, and for the defocusing regime, the plasma electron density perturbation continuously oscillates between the initial density distribution and a maximum.

  16. Rare-earth neutral metal injection into an electron beam ion...

    Office of Scientific and Technical Information (OSTI)

    injection into an electron beam ion trap plasma Authors: Magee, E W ; Beiersdorfer, P ; Brown, G V ; Hell, N Publication Date: 2014-05-28 OSTI Identifier: 1169881 Report Number(s):...

  17. Measurement of the density profile of pure and seeded molecular beams by femtosecond ion imaging

    SciTech Connect (OSTI)

    Meng, Congsen; Janssen, Maurice H. M.

    2015-02-15

    Here, we report on femtosecond ion imaging experiments to measure the density profile of a pulsed supersonic molecular beam. Ion images are measured for both a molecular beam and bulk gas under identical experimental conditions via femtosecond multiphoton ionization of Xe atoms. We report the density profile of the molecular beam, and the measured absolute density is compared with theoretical calculations of the centre line beam density. Subsequently, we discuss reasons accounting for the differences between measurements and calculations and propose that strong skimmer interference is the most probable cause for the differences. Furthermore, we report on experiments measuring the centre line density of seeded supersonic beams. The femtosecond ion images show that seeding the heavy Xe atom at low relative seed fractions (1%-10%) in a light carrier gas like Ne results in strong relative enhancements of up to two orders of magnitude.

  18. Dynamic Faraday cup signal analysis and the measurement of energetic ions emitted by plasma focus

    SciTech Connect (OSTI)

    Pestehe, S. J. Mohammadnejad, M.; Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz ; Irani Mobaraki, S.

    2014-03-15

    A theoretical model is developed to study the signals from a typical dynamic Faraday cup, and using this model the output signals from this structure are obtained. A detailed discussion on the signal structure, using different experimental conditions, is also given. It is argued that there is a possibility of determining the total charge of the generated ion pulse, the maximum velocity of the ions, ion velocity distribution, and the number of ion species for mixed working gases, under certain conditions. In addition, the number of different ionization stages, the number of different pinches in one shot, and the number of different existing acceleration mechanisms can also be determined provided that the mentioned conditions being satisfied. An experiment is carried out on the Filippov type 90?kJ Sahand plasma focus using Ar as the working gas at the pressure of 0.25?Torr. The data from a typical shot are fitted to a signal from the model and the total charge of the related energetic ion pulse is deduced using the values of the obtained fit parameters. Good agreement between the obtained amount of the total charge and the values obtained during other experiments on the same plasma focus device is observed.

  19. Defocusing of an ion beam propagating in background plasma due to

    Office of Scientific and Technical Information (OSTI)

    two-stream instability (Journal Article) | SciTech Connect Defocusing of an ion beam propagating in background plasma due to two-stream instability Citation Details In-Document Search This content will become publicly available on April 14, 2016 Title: Defocusing of an ion beam propagating in background plasma due to two-stream instability Authors: Tokluoglu, Erinc [1] ; Kaganovich, Igor D. [1] + Show Author Affiliations Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA

  20. Experimental observation of ion beams in the Madison Helicon eXperiment

    SciTech Connect (OSTI)

    Wiebold, Matt; Sung, Yung-Ta; Scharer, John E.

    2011-06-15

    Argon ion beams up to E{sub b} = 165 eV at P{sub rf} = 500 W are observed in the Madison Helicon eXperiment (MadHeX) helicon source with a magnetic nozzle. A two-grid retarding potential analyzer (RPA) is used to measure the ion energy distribution, and emissive and rf-filtered Langmuir probes measure the plasma potential, electron density, and temperature. The supersonic ion beam (M = v{sub i}/c{sub s} up to 5) forms over tens of Debye lengths and extends spatially for a few ion-neutral charge-exchange mean free paths. The parametric variation of the ion beam energy is explored, including flow rate, rf power, and magnetic field dependence. The beam energy is equal to the difference in plasma potentials in the Pyrex chamber and the grounded expansion chamber. The plasma potential in the expansion chamber remains near the predicted eV{sub p} {approx} 5kT{sub e} for argon, but the upstream potential is much higher, likely due to wall charging, resulting in accelerated ion beam energies E{sub b} = e[V{sub beam} - V{sub plasma}] > 10kT{sub e}.

  1. Development of hollow electron beams for proton and ion collimation

    SciTech Connect (OSTI)

    Stancari, G.; Drozhdin, A.I.; Kuznetsov, G.; Shiltsev, V.; Still, D.A.; Valishev, A.; Vorobiev, L.G.; Assmann, R.; Kabantsev, A.

    2010-06-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams.

  2. Operating characteristics of a new ion source for KSTAR neutral beam injection system

    SciTech Connect (OSTI)

    Kim, Tae-Seong Jeong, Seung Ho; Chang, Doo-Hee; Lee, Kwang Won; In, Sang-Ryul

    2014-02-15

    A new positive ion source for the Korea Superconducting Tokamak Advanced Research neutral beam injection (KSTAR NBI-1) system was designed, fabricated, and assembled in 2011. The characteristics of the arc discharge and beam extraction were investigated using hydrogen and helium gas to find the optimum operating parameters of the arc power, filament voltage, gas pressure, extracting voltage, accelerating voltage, and decelerating voltage at the neutral beam test stand at the Korea Atomic Energy Research Institute in 2012. Based on the optimum operating condition, the new ion source was then conditioned, and performance tests were primarily finished. The accelerator system with enlarged apertures can extract a maximum 65 A ion beam with a beam energy of 100 keV. The arc efficiency and optimum beam perveance, at which the beam divergence is at a minimum, are estimated to be 1.0 A/kW and 2.5 uP, respectively. The beam extraction tests show that the design goal of delivering a 2 MW deuterium neutral beam into the KSTAR Tokamak plasma is achievable.

  3. Use of a radial self-field diode geometry for intense pulsed ion beam generation at 6 MeV on Hermes III

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Renk, Timothy Jerome; Harper-Slaboszewicz, Victor Jozef; Mikkelson, Kenneth A.; Ginn, W. C.; Ottinger, P. F.; Schumer, J. W.

    2014-12-15

    We investigate the generation of intense pulsed focused ion beams at the 6 MeV level using an inductive voltage adder (IVA) pulsed-power generator, which employs a magnetically insulated transmission line (MITL). Such IVA machines typical run at an impedance of few tens of Ohms. Previous successful intense ion beam generation experiments have often featured an “axial” pinch-reflex ion diode (i.e., with an axial anode-cathode gap) and operated on a conventional Marx generator/water line driver with an impedance of a few Ohms and no need for an MITL. The goals of these experiments are to develop a pinch-reflex ion diode geometrymore » that has an impedance to efficiently match to an IVA, produces a reasonably high ion current fraction, captures the vacuum electron current flowing forward in the MITL, and focuses the resulting ion beam to small spot size. Furthermore, a new “radial” pinch-reflex ion diode (i.e., with a radial anode-cathode gap) is found to best demonstrate these properties. Operation in both positive and negative polarities was undertaken, although the negative polarity experiments are emphasized. Particle-in-cell (PIC) simulations are consistent with experimental results indicating that, for diode impedances less than the self-limited impedance of the MITL, almost all of the forward-going IVA vacuum electron flow current is incorporated into the diode current. PIC results also provide understanding of the diode-impedance and ion-focusing properties of the diode. Additionally, a substantial high-energy ion population is also identified propagating in the “reverse” direction, i.e., from the back side of the anode foil in the electron beam dump.« less

  4. Transverse field focused system

    DOE Patents [OSTI]

    Anderson, Oscar A. (Berkeley, CA)

    1986-01-01

    A transverse field focused (TFF) system for transport or acceleration of an intense sheet beam of negative ions in which a serial arrangement of a plurality of pairs of concentric cylindrical-arc electrodes is provided. Acceleration of the sheet beam can be achieved by progressively increasing the mean electrode voltage of successive electrode pairs. Because the beam is curved by the electrodes, the system can be designed to transport the beam through a maze passage which is baffled to prevent line of sight therethrough. Edge containment of the beam can be achieved by shaping the side edges of the electrodes to produce an electric force vector directed inwardly from the electrode edges.

  5. Turning point temperature and competition between relativistic and ponderomotive effects in self-focusing of laser beam in plasma

    SciTech Connect (OSTI)

    Bokaei, B.; Niknam, A. R.; Jafari Milani, M. R.

    2013-10-15

    The propagation characters of Gaussian laser beam in collisionless plasma are investigated by considering the ponderomotive and relativistic nonlinearities. The second-order differential equation of dimensionless beam width parameter is solved numerically, taking into account the effect of electron temperature. The results show that the ponderomotive force does not facilitate the relativistic self-focusing in all intensity ranges. In fact, there exists a certain intensity value that, if below this value, the ponderomotive nonlinearity can contribute to the relativistic self-focusing, or obstruct it, if above. It is also indicated that there is a temperature interval in which self-focusing can occur, while the beam diverges outside of this region. In addition, the results represent the existence of a “turning point temperature” in the mentioned interval that the self-focusing has the strongest power. The value of the turning point is dependent on laser intensity in which higher intensities result in higher turning point.

  6. Measurement of beam characteristics from C{sup 6+} laser ion source

    SciTech Connect (OSTI)

    Yamaguchi, A. Sako, K.; Sato, K.; Hayashizaki, N.; Hattori, T.

    2014-02-15

    We developed a C{sup 6+} laser ion source for a heavy-ion accelerator. A carbon target was irradiated with a Q-switched Nd:YAG laser (1064 nm wavelength, 1.4 J maximum laser energy, 10 ns pulse duration) to generate a high-density plasma. The laser ion source employed a rotating carbon target for continuous operation. Ion beams were extracted from the plasma through a drift space using a direct plasma injection scheme [B. Yu. Sharkov, A. V. Shumshurov, V. P. Dubenkow, O. B. Shamaev, and A. A. Golubev, Rev. Sci. Instrum. 63, 2841 (1992)] up to a maximum voltage of 40 kV. We measured the characteristics of the ion beams from the laser ion source and present the results of experiments here.

  7. Negative ion source with low temperature transverse divergence optical system

    DOE Patents [OSTI]

    Whealton, J.H.; Stirling, W.L.

    1985-03-04

    A negative ion source is provided which has extremely low transverse divergence as a result of a unique ion focusing system in which the focal line of an ion beam emanating from an elongated, concave converter surface is outside of the ion exit slit of the source and the path of the exiting ions. The beam source operates with a minimum ion temperature which makes possible a sharply focused (extremely low transverse divergence) ribbon like negative ion beam.

  8. SNOW: a digital computer program for the simulation of ion beam devices

    SciTech Connect (OSTI)

    Boers, J.E.

    1980-08-01

    A digital computer program, SNOW, has been developed for the simulation of dense ion beams. The program simulates the plasma expansion cup (but not the plasma source itself), the acceleration region, and a drift space with neutralization if desired. The ion beam is simulated by computing representative trajectories through the device. The potentials are simulated on a large rectangular matrix array which is solved by iterative techniques. Poisson's equation is solved at each point within the configuration using space-charge densities computed from the ion trajectories combined with background electron and/or ion distributions. The simulation methods are described in some detail along with examples of both axially-symmetric and rectangular beams. A detailed description of the input data is presented.

  9. Study of negative hydrogen ion beam optics using the 3D3V PIC model

    SciTech Connect (OSTI)

    Miyamoto, K.; Nishioka, S.; Goto, I.; Hatayama, A.; Hanada, M.; Kojima, A.

    2015-04-08

    The mechanism of negative ion extraction under real conditions with the complex magnetic field is studied by using the 3D PIC simulation code. The extraction region of the negative ion source for the negative ion based neutral beam injection system in fusion reactors is modelled. It is shown that the E x B drift of electrons is caused by the magnetic filter and the electron suppression magnetic field, and the resultant asymmetry of the plasma meniscus. Furthermore, it is indicated that that the asymmetry of the plasma meniscus results in the asymmetry of negative ion beam profile including the beam halo. It could be demonstrated theoretically that the E x B drift is not significantly weakened by the elastic collisions of the electrons with neutral particles.

  10. Second harmonic generation by relativistic self-focusing of q-Gaussian laser beam in preformed parabolic plasma channel

    SciTech Connect (OSTI)

    Singh, Arvinder E-mail: naveens222@rediffmail.com; Gupta, Naveen E-mail: naveens222@rediffmail.com

    2015-01-15

    This paper presents an investigation of relativistic self-focusing effect of a q-Gaussian laser beam on second harmonic generation in a preformed parabolic plasma channel. An expression has been derived for density perturbation associated with the plasma wave excited by the laser beam. This in turn acts as a source of second harmonic generation. The moment theory approach has been used to derive a differential equation that governs the evolution of spot size of the laser beam with the distance of propagation. The detailed effects of intensity distribution deviation from Gaussian distribution, intensity of laser beam, density, and depth of the channel have been studied on self-focusing as well as on second harmonic generation.

  11. Inertial Fusion Driven by Intense Heavy-Ion Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... A velocity tilt of about 10% is imposed in the final several acceleration cells, and the beam compresses as it drifts through a neutralizing plasma, reaching a longitudinal waist ...

  12. Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald C.; Hamilton, Christopher E.; Santiago, Miguel A.; Kreuzer, Christian; Sefkow, Adam B.; Shah, Rahul C.; Fernández, Juan C.

    2015-12-11

    Table-top laser–plasma ion accelerators have many exciting applications, many of which require ion beams with simultaneous narrow energy spread and high conversion efficiency. However, achieving these requirements has been elusive. We report the experimental demonstration of laser-driven ion beams with narrow energy spread and energies up to 18 MeV per nucleon and ~5% conversion efficiency (that is 4 J out of 80-J laser). Using computer simulations we identify a self-organizing scheme that reduces the ion energy spread after the laser exits the plasma through persisting self-generated plasma electric (~1012 V m-1) and magnetic (~104 T) fields. Furthermore, these results contributemore » to the development of next generation compact accelerators suitable for many applications such as isochoric heating for ion-fast ignition and producing warm dense matter for basic science.« less

  13. Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas

    SciTech Connect (OSTI)

    Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald C.; Hamilton, Christopher E.; Santiago, Miguel A.; Kreuzer, Christian; Sefkow, Adam B.; Shah, Rahul C.; Fernández, Juan C.

    2015-12-11

    Table-top laser–plasma ion accelerators have many exciting applications, many of which require ion beams with simultaneous narrow energy spread and high conversion efficiency. However, achieving these requirements has been elusive. We report the experimental demonstration of laser-driven ion beams with narrow energy spread and energies up to 18 MeV per nucleon and ~5% conversion efficiency (that is 4 J out of 80-J laser). Using computer simulations we identify a self-organizing scheme that reduces the ion energy spread after the laser exits the plasma through persisting self-generated plasma electric (~1012 V m-1) and magnetic (~104 T) fields. Furthermore, these results contribute to the development of next generation compact accelerators suitable for many applications such as isochoric heating for ion-fast ignition and producing warm dense matter for basic science.

  14. Heavy ion beam induced charge transfer in Ar-Cs mixtures

    SciTech Connect (OSTI)

    Murnick, D.E.; Gernhauser, R.; Ulrich, A.; Krotz, W.; Wieser, J.

    1993-12-01

    In situ production of target ions in cold, dense matter by heavy ion collisions and subsequent selective charge transfer may provide an effective pumping scheme for heavy ion beam pumped lasers. Charge transfer from cesium atoms to doubly charged argon ions was used for selective population of 4d-levels in Ar II. The argon ions were produced in an argon-cesium gas target by a pulsed beam of 100 MeV {sup 32}S{sup 8+} ions from the Munich Tandem van de Graaff accelerator. The ion beam of 12 {times} 10{sup 6} ions/pulse had a pulse width of 2 ns and a repetition rate of 32 kHz. The argon pressure was typically 250 mbar. The cesium partial pressure was adjusted by heating the gas target, including a cesium reservoir, to temperatures between 250 and 500{degrees}C. Time resolved wavelength spectra showed large intensity increases corresponding to 4d {sup 4}D and 4d {sup 4}F to 4p transitions in Ar II in the ultraviolet wavelength region between 300 and 400 nm. This is interpreted as a resonant charge transfer of outer electrons of cesium to 4d levels in Ar II in Cs{sup 0} + Ar{sup 2+} collisions.

  15. Defocusing of an ion beam propagating in background plasma due...

    Office of Scientific and Technical Information (OSTI)

    This content will become publicly available on April 14, 2016 Title: Defocusing of an ion ... become publicly available on April 14, 2016 Publisher's Version of Record 10.1063...

  16. Effects of Ion Beam on Nanoindentation Characteristics of Glassy...

    Office of Scientific and Technical Information (OSTI)

    ions of silicon, carbon, oxygen, and gold at energies of 5, 6, 8, and 10 MeV, ... Subject: 74 ATOMIC AND MOLECULAR PHYSICS; BRAZIL; CARBON; CARBONIZATION; CHAINS; GOLD; ...

  17. Emulation of reactor irradiation damage using ion beams

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Was, G. S.; Jiao, Z.; Getto, E.; Sun, K.; Monterrosa, A. M.; Maloy, S. A.; Anderoglu, O.; Sencer, B. H.; Hackett, M.

    2014-06-14

    The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443°C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide,more » irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460°C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiation and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiation establishes the capability of tailoring ion irradiation to emulate the reactor-irradiated microstructure.« less

  18. Emulation of reactor irradiation damage using ion beams

    SciTech Connect (OSTI)

    Was, G. S.; Jiao, Z.; Getto, E.; Sun, K.; Monterrosa, A. M.; Maloy, S. A.; Anderoglu, O.; Sencer, B. H.; Hackett, M.

    2014-06-14

    The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443°C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide, irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460°C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiation and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiation establishes the capability of tailoring ion irradiation to emulate the reactor-irradiated microstructure.

  19. Emulation of reactor irradiation damage using ion beams

    SciTech Connect (OSTI)

    G. S. Was; Z. Jiao; E. Beckett; A. M. Monterrosa; O. Anderoglu; B. H. Sencer; M. Hackett

    2014-10-01

    The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443°C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide, irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460°C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiations and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiations establishes the capability of tailoring ion irradiations to emulate the reactor-irradiated microstructure.

  20. Ion-beam treatment to prepare surfaces of p-CdTe films

    DOE Patents [OSTI]

    Gessert, Timothy A. (Conifer, CO)

    2001-01-01

    A method of making a low-resistance electrical contact between a p-CdTe layer and outer contact layers by ion beam processing comprising: a) placing a CdS/CdTe device into a chamber and evacuating the chamber; b) orienting the p-CdTe side of the CdS/CdTe layer so that it faces apparatus capable of generating Ar atoms and ions of preferred energy and directionality; c) introducing Ar and igniting the area of apparatus capable of generating Ar atoms and ions of preferred energy and directionality in a manner so that during ion exposure, the source-to-substrate distance is maintained such that it is less than the mean-free path or diffusion length of the Ar atoms and ions at the vacuum pressure; d) allowing exposure of the p-CdTe side of the device to said ion beam for a period less than about 5 minutes; and e) imparting movement to the substrate to control the real uniformity of the ion-beam exposure on the p-CdTe side of the device.

  1. Progress and future developments of high current ion source for neutral beam injector in the ASIPP

    SciTech Connect (OSTI)

    Hu, Chundong; Xie, Yahong Xie, Yuanlai; Liu, Sheng; Liu, Zhimin; Xu, Yongjian; Liang, Lizhen; Sheng, Peng; Jiang, Caichao

    2015-04-08

    A high current hot cathode bucket ion source, which based on the US long pulse ion source is developed in Institute of Plasma Physics, Chinese Academy of Sciences. The ion source consists of a bucket plasma generator with multi-pole cusp fields and a set of tetrode accelerator with slit apertures. So far, four ion sources are developed and conditioned on the ion source test bed. 4 MW hydrogen beam with beam energy of 80 keV is extracted. In Aug. 2013, EAST NBI 1 with two ion source installed on the EAST, and achieved H-mode plasma with NBI injection for the first time. In order to achieve stable long pulse operation of high current ion source and negative ion source research, the RF ion source with 200 mm diameter and 120 mm depth driver is designed and developed. The first RF plasma generated with 2 kW power of 1 MHz frequency. More of the RF plasma tests and negative source relative research need to do in the future.

  2. Parametic Study of the current limit within a single driver-scaletransport beam line of an induction Linac for Heavy Ion Fusion

    SciTech Connect (OSTI)

    Prost, Lionel Robert

    2007-02-14

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program that explores heavy-ion beam as the driver option for fusion energy production in an Inertial Fusion Energy (IFE) plant. The HCX is a beam transport experiment at a scale representative of the low-energy end of an induction linear accelerator driver. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density {approx}0.2 {micro}C/m) over long pulse durations (4 {micro}s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo and, electron and gas cloud effects. We present the results for a coasting 1 MeV K{sup +} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius) for which the transverse phase-space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor ({approx}80%) is achieved with acceptable emittance growth and beam loss. We achieved good envelope control, and re-matching may only be needed every ten lattice periods (at 80% fill factor) in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  3. High-intensity ion sources for accelerators with emphasis on H-beam formation and transport

    SciTech Connect (OSTI)

    Keller, Roderich [Los Alamos National Laboratory

    2009-01-01

    This paper lays out the fundamental working principles of a variety of high-current ion sources for accelerators in a tutorial manner, and gives examples of specific source types such as d. c. discharge- and rf-driven multicusp sources. Penning-type and ECR-based sources while discussing those principles, pointing out general performance limits as well as the performance parameters of specific sources. Laser-based, two-chamber-. and surface-ionization sources are briefly mentioned. Main aspects of this review are particle feed. ionization mechanism, beam formation and beam transport. Issues seen with beam formation and low-energy transport of negative hydrogen-ion beams are treated in detail.

  4. Time-fractional Gardner equation for ion-acoustic waves in negative-ion-beam plasma with negative ions and nonthermal nonextensive electrons

    SciTech Connect (OSTI)

    Guo, Shimin Mei, Liquan; Zhang, Zhengqiang

    2015-05-15

    Nonlinear propagation of ion-acoustic waves is investigated in a one-dimensional, unmagnetized plasma consisting of positive ions, negative ions, and nonthermal electrons featuring Tsallis distribution that is penetrated by a negative-ion-beam. The classical Gardner equation is derived to describe nonlinear behavior of ion-acoustic waves in the considered plasma system via reductive perturbation technique. We convert the classical Gardner equation into the time-fractional Gardner equation by Agrawal's method, where the time-fractional term is under the sense of Riesz fractional derivative. Employing variational iteration method, we construct solitary wave solutions of the time-fractional Gardner equation with initial condition which depends on the nonlinear and dispersion coefficients. The effect of the plasma parameters on the compressive and rarefactive ion-acoustic solitary waves is also discussed in detail.

  5. Development of a plasma generator for a long pulse ion source for neutral beam injectors

    SciTech Connect (OSTI)

    Watanabe, K.; Dairaku, M.; Tobari, H.; Kashiwagi, M.; Inoue, T.; Hanada, M.; Jeong, S. H.; Chang, D. H.; Kim, T. S.; Kim, B. R.; Seo, C. S.; Jin, J. T.; Lee, K. W.; In, S. R.; Oh, B. H.; Kim, J.; Bae, Y. S.

    2011-06-15

    A plasma generator for a long pulse H{sup +}/D{sup +} ion source has been developed. The plasma generator was designed to produce 65 A H{sup +}/D{sup +} beams at an energy of 120 keV from an ion extraction area of 12 cm in width and 45 cm in length. Configuration of the plasma generator is a multi-cusp bucket type with SmCo permanent magnets. Dimension of a plasma chamber is 25 cm in width, 59 cm in length, and 32.5 cm in depth. The plasma generator was designed and fabricated at Japan Atomic Energy Agency. Source plasma generation and beam extraction tests for hydrogen coupling with an accelerator of the KSTAR ion source have been performed at the KSTAR neutral beam test stand under the agreement of Japan-Korea collaborative experiment. Spatial uniformity of the source plasma at the extraction region was measured using Langmuir probes and {+-}7% of the deviation from an averaged ion saturation current density was obtained. A long pulse test of the plasma generation up to 200 s with an arc discharge power of 70 kW has been successfully demonstrated. The arc discharge power satisfies the requirement of the beam production for the KSTAR NBI. A 70 keV, 41 A, 5 s hydrogen ion beam has been extracted with a high arc efficiency of 0.9 -1.1 A/kW at a beam extraction experiment. A deuteron yield of 77% was measured even at a low beam current density of 73 mA/cm{sup 2}.

  6. Studies on low energy beam transport for high intensity high charged ions at IMP

    SciTech Connect (OSTI)

    Yang, Y. Lu, W.; Fang, X.; University of Chinese Academy of Sciences, Beijing 100039 ; Sun, L. T.; Hu, Q.; Cao, Y.; Feng, Y. C.; Zhang, X. Z.; Zhao, H. W.; Xie, D. Z.

    2014-02-15

    Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou (SECRAL) is an advanced fully superconducting ECR ion source at IMP designed to be operational at the microwave frequency of 18–24 GHz. The existing SECRAL beam transmission line is composed of a solenoid lens and a 110° analyzing magnet. Simulations of particle tracking with 3D space charge effect and realistic 3D magnetic fields through the line were performed using particle-in-cell code. The results of the beam dynamics show that such a low energy beam is very sensitive to the space charge effect and significantly suffers from the second-order aberration of the analyzing magnet resulting in large emittance. However, the second-order aberration could be reduced by adding compensating sextupole components in the beam line. On this basis, a new 110° analyzing magnet with relatively larger acceptance and smaller aberration is designed and will be used in the design of low energy beam transport line for a new superconducting ECR ion source SECRAL-II. The features of the analyzer and the corresponding beam trajectory calculation will be detailed and discussed in this paper.

  7. Electron-beam-ion-source (EBIS) modeling progress at FAR-TECH, Inc

    SciTech Connect (OSTI)

    Kim, J. S. Zhao, L. Spencer, J. A. Evstatiev, E. G.

    2015-01-09

    FAR-TECH, Inc. has been developing a numerical modeling tool for Electron-Beam-Ion-Sources (EBISs). The tool consists of two codes. One is the Particle-Beam-Gun-Simulation (PBGUNS) code to simulate a steady state electron beam and the other is the EBIS-Particle-In-Cell (EBIS-PIC) code to simulate ion charge breeding with the electron beam. PBGUNS, a 2D (r,z) electron gun and ion source simulation code, has been extended for efficient modeling of EBISs and the work was presented previously. EBIS-PIC is a space charge self-consistent PIC code and is written to simulate charge breeding in an axisymmetric 2D (r,z) device allowing for full three-dimensional ion dynamics. This 2D code has been successfully benchmarked with Test-EBIS measurements at Brookhaven National Laboratory. For long timescale (< tens of ms) ion charge breeding, the 2D EBIS-PIC simulations take a long computational time making the simulation less practical. Most of the EBIS charge breeding, however, may be modeled in 1D (r) as the axial dependence of the ion dynamics may be ignored in the trap. Where 1D approximations are valid, simulations of charge breeding in an EBIS over long time scales become possible, using EBIS-PIC together with PBGUNS. Initial 1D results are presented. The significance of the magnetic field to ion dynamics, ion cooling effects due to collisions with neutral gas, and the role of Coulomb collisions are presented.

  8. Major Gains in Ion Production for Radioactive Beams | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) Major Gains in Ion Production for Radioactive Beams Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email Us More Information » 11.01.15 Major Gains in Ion Production for Radioactive

  9. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source

    SciTech Connect (OSTI)

    Roychowdhury, P. Mishra, L.; Kewlani, H.; Mittal, K. C.; Patil, D. S.

    2014-03-15

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20–40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, ?2 to ?4 kV, and 0 kV, respectively. The total ion beam current of 30–40 mA is recorded on Faraday cup at 40 keV of beam energy at 600–1000 W of microwave power, 800–1000 G axial magnetic field and (1.2–3.9) × 10{sup ?3} mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.

  10. Method for forming metallic silicide films on silicon substrates by ion beam deposition

    DOE Patents [OSTI]

    Zuhr, Raymond A. (Oak Ridge, TN); Holland, Orin W. (Oak Ridge, TN)

    1990-01-01

    Metallic silicide films are formed on silicon substrates by contacting the substrates with a low-energy ion beam of metal ions while moderately heating the substrate. The heating of the substrate provides for the diffusion of silicon atoms through the film as it is being formed to the surface of the film for interaction with the metal ions as they contact the diffused silicon. The metallic silicide films provided by the present invention are contaminant free, of uniform stoichiometry, large grain size, and exhibit low resistivity values which are of particular usefulness for integrated circuit production.

  11. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe

    SciTech Connect (OSTI)

    Chen, Y. H.; Yang, X. Y.; Lin, C. E-mail: cjxiao@pku.edu.cn; Wang, X. G.; Xiao, C. J. E-mail: cjxiao@pku.edu.cn; Wang, L.; Xu, M.

    2014-11-15

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  12. Ion detection device and method with compressing ion-beam shutter

    DOE Patents [OSTI]

    Sperline, Roger P [Tucson, AZ; Roger P. (Tucson, AZ)

    2009-05-26

    An ion detection device, method and computer readable medium storing instructions for applying voltages to shutter elements of the detection device to compress ions in a volume defined by the shutter elements and to output the compressed ions to a collector. The ion detection device has a chamber having an inlet and receives ions through the inlet, a shutter provided in the chamber opposite the inlet and configured to allow or prevent the ions to pass the shutter, the shutter having first and second shutter elements, a collector provided in the chamber opposite the shutter and configured to collect ions passed through the shutter, and a processing unit electrically connected to the first and second shutter elements. The processing unit applies, during a first predetermined time interval, a first voltage to the first shutter element and a second voltage to the second shutter element, the second voltage being lower than the first voltage such that ions from the inlet enter a volume defined by the first and second shutter elements, and during a second predetermined time interval, a third voltage to the first shutter element, higher than the first voltage, and a fourth voltage to the second shutter element, the third voltage being higher than the fourth voltage such that ions that entered the volume are compressed as the ions exit the volume and new ions coming from the inlet are prevented from entering the volume. The processing unit is electrically connected to the collector and configured to detect the compressed ions based at least on a current received from the collector and produced by the ions collected by the collector.

  13. Development of ion beam techniques for the study of special nuclear materials related problems

    SciTech Connect (OSTI)

    Maggiore, C.J.; Tesmer, J.R.; Martz, J.C.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The scientific objective of this project was to develop the ion beam techniques for the characterization of actinides and their effects on other materials. It was designed to enhance their ability to quantitatively understand the oxidation, corrosion, diffusion, stability, and radiation damage of actinides and the materials with which they are in contact. The authors developed and applied several low-energy nuclear techniques (resonant and nonresonant backscattering, nuclear reaction analysis, and particle-induced x-ray emission) to the quantitative study of the near surfaces of actinide and tritide materials, and determined the absolute accuracy and precision of ion beam measurements on these materials. They also demonstrated the use of variable-energy alpha beams for the study of accelerated aging of polymeric materials in contact with actinide materials.

  14. Monte Carlo calculations of electron beam quality conversion factors for several ion chamber types

    SciTech Connect (OSTI)

    Muir, B. R.; Rogers, D. W. O.

    2014-11-01

    Purpose: To provide a comprehensive investigation of electron beam reference dosimetry using Monte Carlo simulations of the response of 10 plane-parallel and 18 cylindrical ion chamber types. Specific emphasis is placed on the determination of the optimal shift of the chambers’ effective point of measurement (EPOM) and beam quality conversion factors. Methods: The EGSnrc system is used for calculations of the absorbed dose to gas in ion chamber models and the absorbed dose to water as a function of depth in a water phantom on which cobalt-60 and several electron beam source models are incident. The optimal EPOM shifts of the ion chambers are determined by comparing calculations of R{sub 50} converted from I{sub 50} (calculated using ion chamber simulations in phantom) to R{sub 50} calculated using simulations of the absorbed dose to water vs depth in water. Beam quality conversion factors are determined as the calculated ratio of the absorbed dose to water to the absorbed dose to air in the ion chamber at the reference depth in a cobalt-60 beam to that in electron beams. Results: For most plane-parallel chambers, the optimal EPOM shift is inside of the active cavity but different from the shift determined with water-equivalent scaling of the front window of the chamber. These optimal shifts for plane-parallel chambers also reduce the scatter of beam quality conversion factors, k{sub Q}, as a function of R{sub 50}. The optimal shift of cylindrical chambers is found to be less than the 0.5 r{sub cav} recommended by current dosimetry protocols. In most cases, the values of the optimal shift are close to 0.3 r{sub cav}. Values of k{sub ecal} are calculated and compared to those from the TG-51 protocol and differences are explained using accurate individual correction factors for a subset of ion chambers investigated. High-precision fits to beam quality conversion factors normalized to unity in a beam with R{sub 50} = 7.5 cm (k{sub Q}{sup ?}) are provided. These factors avoid the use of gradient correction factors as used in the TG-51 protocol although a chamber dependent optimal shift in the EPOM is required when using plane-parallel chambers while no shift is needed with cylindrical chambers. The sensitivity of these results to parameters used to model the ion chambers is discussed and the uncertainty related to the practical use of these results is evaluated. Conclusions: These results will prove useful as electron beam reference dosimetry protocols are being updated. The analysis of this work indicates that cylindrical ion chambers may be appropriate for use in low-energy electron beams but measurements are required to characterize their use in these beams.

  15. Development of a fast cyclotron gas stopper for intense rare isotope beams from projectile fragmentation: Study of ion extraction with a radiofrequency carpet

    SciTech Connect (OSTI)

    Bollen, Georg; Morrissey, David

    2011-01-16

    Research and development has been performed in support of the design of a future rare isotope beam facility in the US. An important aspect of plans for earlier RIA (Rare Isotope Accelerator) and a requirement of FRIB (Facility of Rare Isotope Beams) to be built at Michigan State University are the availability of so-called “stopped beams” for research that contributes to answering questions like how elements in the universe are created and to provide better insight into the nature of Fundamental Interactions. In order to create “stopped beams” techniques are required that transform fast rare isotopes beams as they are available directly after addresses questions like the origin of that will allow and High priority is given to the evaluation of intensity limitations and the efficiency of stopping of fast fragment beams in gas cells and to the exploration of options to increase the efficiency and the reduction of space charge effects. Systematic studies performed at MSU as part of the RIA R&D with a linear gas cell under conditions close to those expected at RIA and related simulations confirm that the efficiency of stopping and extracting ions decreases with increasing beam intensity. Similar results have also been observed at RIKEN in Japan. These results indicate the concepts presently under study will not be able to cover the full range of intensities of fast beams expected at RIA without major losses. The development of a more robust concept is therefore critical to the RIA concept. Recent new beam simulation studies performed at the NSCL show that the stopping of heavy ions in a weakly focusing gas-filled magnetic field can overcome the intensity limitation of present systems while simultaneously providing a much faster ion extraction. We propose to design and build such a cyclotron gas stopper and to test it at the NSCL under conditions as close as possible to those found at RIA.

  16. Comparative Results on Collimation of the SPS Beam of Protons and Pb Ions with Bent Crystals

    SciTech Connect (OSTI)

    Scandale, W.; Arduini, G.; Assmann, R.; Bracco, C.; Cerutti, F.; Christiansen, J.; Gilardoni, S.; Laface, E.; Losito, R.; Masi, A.; Metral, E.; Mirarchi, D.; Montesano, S.; Previtali, V.; Redaelli, S.; Valentino, G.; Schoofs, P.; Smirnov, G.; Tlustos, L.; Bagli, E.; Baricordi, S.; /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Ferrara U. /Frascati /Frascati /INFN, Legnaro /INFN, Legnaro /INFN, Legnaro /INFN, Legnaro /INFN, Legnaro /INFN, Legnaro /INFN, Rome /INFN, Rome /INFN, Rome /INFN, Rome /INFN, Naples /Serpukhov, IHEP /Serpukhov, IHEP /Serpukhov, IHEP /Serpukhov, IHEP /Serpukhov, IHEP /Dubna, JINR /Dubna, JINR /Dubna, JINR /St. Petersburg, INP /St. Petersburg, INP /St. Petersburg, INP /St. Petersburg, INP /Imperial Coll., London /Imperial Coll., London /Imperial Coll., London /Imperial Coll., London /Imperial Coll., London /Imperial Coll., London /Imperial Coll., London /Imperial Coll., London /Brookhaven /SLAC /SLAC /SLAC

    2012-04-30

    New experiments on crystal assisted collimation have been carried out at the CERN SPS with stored beams of 120 GeV/c protons and Pb ions. Bent silicon crystals of 2 mm long with about 170 {mu}rad bend angle and a small residual torsion were used as primary collimators. In channeling conditions, the beam loss rate induced by inelastic interactions of particles with the crystal nuclei is minimal. The loss reduction was about 6 for protons and about 3 for Pb ions. Lower reduction value for Pb ions can be explained by their considerably larger ionization losses in the crystal. In one of the crystals, the measured fraction of the Pb ion beam halo deflected in channeling conditions was 74%, a value very close to that for protons. The intensity of the off-momentum halo leaking out from the collimation station was measured in the first high dispersion area downstream. The particle population in the shadow of the secondary collimator-absorber was considerably smaller in channeling conditions than for amorphous orientations of the crystal. The corresponding reduction was in the range of 2-5 for both protons and Pb ions.

  17. Particle simulation of collision dynamics for ion beam injection into a rarefied gas

    SciTech Connect (OSTI)

    Giuliano, Paul N.; Boyd, Iain D.

    2013-03-15

    This study details a comparison of ion beam simulations with experimental data from a simplified plasma test cell in order to study and validate numerical models and environments representative of electric propulsion devices and their plumes. The simulations employ a combination of the direct simulation Monte Carlo and particle-in-cell methods representing xenon ions and atoms as macroparticles. An anisotropic collision model is implemented for momentum exchange and charge exchange interactions between atoms and ions in order to validate the post-collision scattering behaviors of dominant collision mechanisms. Cases are simulated in which the environment is either collisionless or non-electrostatic in order to prove that the collision models are the dominant source of low- and high-angle particle scattering and current collection within this environment. Additionally, isotropic cases are run in order to show the importance of anisotropy in these collision models. An analysis of beam divergence leads to better characterization of the ion beam, a parameter that requires careful analysis. Finally, suggestions based on numerical results are made to help guide the experimental design in order to better characterize the ion environment.

  18. The CNAO dose delivery system for modulated scanning ion beam radiotherapy

    SciTech Connect (OSTI)

    Giordanengo, S.; Marchetto, F.; Garella, M. A.; Donetti, M.; Bourhaleb, F.; Monaco, V.; Hosseini, M. A.; Peroni, C.; Sacchi, R.; Cirio, R.; Ciocca, M.; Mirandola, A.

    2015-01-15

    Purpose: This paper describes the system for the dose delivery currently used at the Centro Nazionale di Adroterapia Oncologica (CNAO) for ion beam modulated scanning radiotherapy. Methods: CNAO Foundation, Istituto Nazionale di Fisica Nucleare and University of Torino have designed, built, and commissioned a dose delivery system (DDS) to monitor and guide ion beams accelerated by a dedicated synchrotron and to distribute the dose with a full 3D scanning technique. Protons and carbon ions are provided for a wide range of energies in order to cover a sizable span of treatment depths. The target volume, segmented in several layers orthogonally to the beam direction, is irradiated by thousands of pencil beams which must be steered and held to the prescribed positions until the prescribed number of particles has been delivered. For the CNAO beam lines, these operations are performed by the DDS. The main components of this system are two independent beam monitoring detectors, called BOX1 and BOX2, interfaced with two control systems performing the tasks of real-time fast and slow control, and connected to the scanning magnets and the beam chopper. As a reaction to any condition leading to a potential hazard, a DDS interlock signal is sent to the patient interlock system which immediately stops the irradiation. The essential tasks and operations performed by the DDS are described following the data flow from the treatment planning system through the end of the treatment delivery. Results: The ability of the DDS to guarantee a safe and accurate treatment was validated during the commissioning phase by means of checks of the charge collection efficiency, gain uniformity of the chambers, and 2D dose distribution homogeneity and stability. A high level of reliability and robustness has been proven by three years of system activity needing rarely more than regular maintenance and working with 100% uptime. Four identical and independent DDS devices have been tested showing comparable performances and are presently in use on the CNAO beam lines for clinical activity. Conclusions: The dose delivery system described in this paper is one among the few worldwide existing systems to operate ion beam for modulated scanning radiotherapy. At the time of writing, it has been used to treat more than 350 patients and it has proven to guide and control the therapeutic pencil beams reaching performances well above clinical requirements. In particular, in terms of dose accuracy and stability, daily quality assurance measurements have shown dose deviations always lower than the acceptance threshold of 5% and 2.5%, respectively.

  19. Simulation of direct plasma injection for laser ion beam acceleration with a radio frequency quadrupole

    SciTech Connect (OSTI)

    Jin, Q. Y.; Li, Zh. M.; Liu, W.; Zhao, H. Y. Zhang, J. J.; Sha, Sh.; Zhang, Zh. L.; Zhang, X. Zh.; Sun, L. T.; Zhao, H. W.

    2014-07-15

    The direct plasma injection scheme (DPIS) has been being studied at Institute of Modern Physics since several years ago. A C{sup 6+} beam with peak current of 13 mA, energy of 593 keV/u has been successfully achieved after acceleration with DPIS method. To understand the process of DPIS, some simulations have been done as follows. First, with the total current intensity and the relative yields of different charge states for carbon ions measured at the different distance from the target, the absolute current intensities and time-dependences for different charge states are scaled to the exit of the laser ion source in the DPIS. Then with these derived values as the input parameters, the extraction of carbon beam from the laser ion source to the radio frequency quadrupole with DPIS is simulated, which is well agreed with the experiment results.

  20. Beam energy tracking system on Optima XEx high energy ion implanter

    SciTech Connect (OSTI)

    David, Jonathan; Satoh, Shu; Wu Xiangyang; Geary, Cindy; Deluca, James

    2012-11-06

    The Axcelis Optima XEx high energy implanter is an RF linac-based implanter with 12 RF resonators for beam acceleration. Even though each acceleration field is an alternating, sinusoidal RF field, the well known phase-focusing principle produces a beam with a sharp quasi-monoenergetic energy spectrum. A magnetic energy filter after the linac further attenuates the low energy continuum in the energy spectrum often associated with RF acceleration. The final beam energy is a function of the phase and amplitude of the 12 resonators in the linac. When tuning a beam, the magnetic energy filter is set to the desired energy, and each linac parameter is tuned to maximize the transmission through the filter. Once a beam is set up, all the parameters are stored in a recipe, which can be easily tuned and has proven to be quite repeatable. The magnetic field setting of the energy filter selects the beam energy from the RF Linac accelerator, and in-situ verification of beam energy in addition to the magnetic energy filter setting has long been desired. An independent energy tracking system was developed for this purpose, using the existing electrostatic beam scanner as a deflector to construct an in-situ electrostatic energy analyzer. This paper will describe the system and performance of the beam energy tracking system.

  1. Simulation and optimization of a 10 A electron gun with electrostatic compression for the electron beam ion source

    SciTech Connect (OSTI)

    Pikin, A.; Beebe, E. N.; Raparia, D.

    2013-03-15

    Increasing the current density of the electron beam in the ion trap of the Electron Beam Ion Source (EBIS) in BNL's Relativistic Heavy Ion Collider facility would confer several essential benefits. They include increasing the ions' charge states, and therefore, the ions' energy out of the Booster for NASA applications, reducing the influx of residual ions in the ion trap, lowering the average power load on the electron collector, and possibly also reducing the emittance of the extracted ion beam. Here, we discuss our findings from a computer simulation of an electron gun with electrostatic compression for electron current up to 10 A that can deliver a high-current-density electron beam for EBIS. The magnetic field in the cathode-anode gap is formed with a magnetic shield surrounding the gun electrodes and the residual magnetic field on the cathode is (5 Division-Sign 6) Gs. It was demonstrated that for optimized gun geometry within the electron beam current range of (0.5 Division-Sign 10) A the amplitude of radial beam oscillations can be maintained close to 4% of the beam radius by adjusting the injection magnetic field generated by a separate magnetic coil. Simulating the performance of the gun by varying geometrical parameters indicated that the original gun model is close to optimum and the requirements to the precision of positioning the gun elements can be easily met with conventional technology.

  2. Determination of the ReA Electron Beam Ion Trap electron beam radius and current density with an X-ray pinhole camera

    SciTech Connect (OSTI)

    Baumann, Thomas M. Lapierre, Alain Kittimanapun, Kritsada; Schwarz, Stefan; Leitner, Daniela; Bollen, Georg

    2014-07-15

    The Electron Beam Ion Trap (EBIT) of the National Superconducting Cyclotron Laboratory at Michigan State University is used as a charge booster and injector for the currently commissioned rare isotope re-accelerator facility ReA. This EBIT charge breeder is equipped with a unique superconducting magnet configuration, a combination of a solenoid and a pair of Helmholtz coils, allowing for a direct observation of the ion cloud while maintaining the advantages of a long ion trapping region. The current density of its electron beam is a key factor for efficient capture and fast charge breeding of continuously injected, short-lived isotope beams. It depends on the radius of the magnetically compressed electron beam. This radius is measured by imaging the highly charged ion cloud trapped within the electron beam with a pinhole camera, which is sensitive to X-rays emitted by the ions with photon energies between 2 keV and 10 keV. The 80%-radius of a cylindrical 800 mA electron beam with an energy of 15 keV is determined to be r{sub 80%}=(212±19)?m in a 4 T magnetic field. From this, a current density of j = (454 ± 83)A/cm{sup 2} is derived. These results are in good agreement with electron beam trajectory simulations performed with TriComp and serve as a test for future electron gun design developments.

  3. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Islam, A. E.; Zakharov, D.; Stach, E. A.; Nikoleav, P.; Amama, P. B.; Sargent, G.; Saber, S.; Huffman, D.; Erford, M.; Semiatin, S. L.; et al

    2015-09-16

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only inmore » the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. As a result, with the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.« less

  4. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    SciTech Connect (OSTI)

    Islam, A. E.; Zakharov, D.; Stach, E. A.; Nikoleav, P.; Amama, P. B.; Sargent, G.; Saber, S.; Huffman, D.; Erford, M.; Semiatin, S. L.; Maruyama, B.

    2015-09-16

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only in the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. As a result, with the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.

  5. Z-petawatt driven ion beam radiography development.

    SciTech Connect (OSTI)

    Schollmeier, Marius; Geissel, Matthias; Rambo, Patrick K.; Schwarz, Jens; Sefkow, Adam B.

    2013-09-01

    Laser-driven proton radiography provides electromagnetic field mapping with high spatiotemporal resolution, and has been applied to many laser-driven High Energy Density Physics (HEDP) experiments. Our report addresses key questions about the feasibility of ion radiography at the Z-Accelerator (%E2%80%9CZ%E2%80%9D), concerning laser configuration, hardware, and radiation background. Charged particle tracking revealed that radiography at Z requires GeV scale protons, which is out of reach for existing and near-future laser systems. However, it might be possible to perform proton deflectometry to detect magnetic flux compression in the fringe field region of a magnetized liner inertial fusion experiment. Experiments with the Z-Petawatt laser to enhance proton yield and energy showed an unexpected scaling with target thickness. Full-scale, 3D radiation-hydrodynamics simulations, coupled to fully explicit and kinetic 2D particle-in-cell simulations running for over 10 ps, explain the scaling by a complex interplay of laser prepulse, preplasma, and ps-scale temporal rising edge of the laser.

  6. A dynamic focusing x-ray monochromator for a wiggler beam line at the SRS of the SERC Daresbury Laboratory

    SciTech Connect (OSTI)

    De Bruijn, D.; Van Zuylen, P. ); Kruizinga, G. , P.O. Box 93138, 2509 AC Den Haag State University of Utrecht, Sorbonnelaan 16, 3508 TB Utrecht )

    1992-01-01

    A Si(220) double-crystal monochromator for the energy range 10--30 keV is presented. It will be used for EXAFS as well as powder diffraction measurements. To determine the requirements for this monochromator we looked, apart from mean considerations, at the requirements dictated by EXAFS in transmission mode. For good data analyses the proper shape, amplitude, and location at the energy axis of each wiggle is required. Moreover it is essential to separate the wiggles from background and noise. For the latter a high flux through the sample is desirable, which can be achieved by horizontal focusing of the beam. For that we have chosen to bend the second crystal sagitally. The sagittal bending radius is adjustable between 50 and 0.8 m, because for different energies different sagittal radii are necessary to focus the beam on the sample. The mean meridional radius of the second crystal is fixed at 130 m, which is an optimization for 20 keV. The meridional radius of the first crystal can be tuned between 100 and 500 m. When this radius is set to 130 m the energy resolution is calculated to be 6, 3, and 35 eV for 10, 20, and 30 keV (for perfectly bent crystals). By changing the meridional radius of the first crystal, future users of this monochromator can make the trade off between resolution and intensity. Movement of the monochromator exit beam, during a scan, will occur due to the monochromator geometry, but is reduced as much as possible by using an asymmetrically cut second crystal, with an asymmetry angle of 2.5{degree}. The average exit beam movement of the monochromator for a 1-keV scan is 20 {mu}m. For 40% of the energy range (10--30 keV) the exit beam position remains within 10 {mu}m. For the second crystal no translation stage is used.

  7. Uniform heating of materials into the warm dense matter regime with laser-driven quasimonoenergetic ion beams

    SciTech Connect (OSTI)

    Bang, W.; Albright, B. J.; Bradley, P. A.; Vold, E. L.; Boettger, J. C.; Fernández, J. C.

    2015-12-01

    In a recent experiment at the Trident laser facility, a laser-driven beam of quasimonoenergetic aluminum ions was used to heat solid gold and diamond foils isochorically to 5.5 and 1.7 eV, respectively. Here theoretical calculations are presented that suggest the gold and diamond were heated uniformly by these laser-driven ion beams. According to calculations and SESAME equation-of-state tables, laser-driven aluminum ion beams achievable at Trident, with a finite energy spread of ?E/E~20%, are expected to heat the targets more uniformly than a beam of 140-MeV aluminum ions with zero energy spread. As a result, the robustness of the expected heating uniformity relative to the changes in the incident ion energy spectra is evaluated, and expected plasma temperatures of various target materials achievable with the current experimental platform are presented.

  8. Uniform heating of materials into the warm dense matter regime with laser-driven quasimonoenergetic ion beams

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bang, W.; Albright, B. J.; Bradley, P. A.; Vold, E. L.; Boettger, J. C.; Fernández, J. C.

    2015-12-01

    In a recent experiment at the Trident laser facility, a laser-driven beam of quasimonoenergetic aluminum ions was used to heat solid gold and diamond foils isochorically to 5.5 and 1.7 eV, respectively. Here theoretical calculations are presented that suggest the gold and diamond were heated uniformly by these laser-driven ion beams. According to calculations and SESAME equation-of-state tables, laser-driven aluminum ion beams achievable at Trident, with a finite energy spread of ΔE/E~20%, are expected to heat the targets more uniformly than a beam of 140-MeV aluminum ions with zero energy spread. As a result, the robustness of the expected heatingmore » uniformity relative to the changes in the incident ion energy spectra is evaluated, and expected plasma temperatures of various target materials achievable with the current experimental platform are presented.« less

  9. An optical technique for measuring divergence, beam profile, and aiming direction, of relativistic negative hydrogen ions

    SciTech Connect (OSTI)

    Hershcovitch, A.

    1988-02-01

    A novel, nonobstructive diagnostic technique for high energy H/sup minus/D/sup minus/ ion beams is described. This scheme employs spectroscopic techniques designed to measure beam profile, perpendicular velocity spread (i.e., divergence), and orientation of multiMeV H/sup minus/ beams. The basic principle of this method is to photoneutralize a small portion of the H/sup minus/ beam in a way such that the photodetachment process results in the formation of excited hydrogen atoms in the n = 2 levels. Observation of fluorescence from spontaneous decay of H(sp) andor induced deacy of H(2s) can be readily used to determine beam profile. Doppler broadening measurements can be used to determine velocity spread from which beam emittance is calculated. With off-the-shelf instruments resolutions of 1 mm for beam profile and 2 x 10/sup minus/2) ..pi.. cm-mrad are possible. For photodetachment, the best commercially available laser is found to be ArF eximer laser. The analysis is performed for the 200 MEV BNL Linac. The laser, which has a pulse duration which has a pulse duration which is of 10/sup minus/5) of the linac can produce sufficient signal at a negligible beam loss. In addition, measurements of minute Doppler shifts of this Lyman-Alpha radiation by a spectrograph could in principle resolve beam direction to within 1.57 ..mu..rad. The process under consideration has a resonance known as the shape resonance. As the following literature review indicates, the total cross section is known and there is a reasonable agreement between theory and experiment. There are no experimental measurements of partical cross sections. nevertheless, there are theoretical estimates which agree within 15%. 10 refs., 1 fig.

  10. Monte Carlo calculations for reference dosimetry of electron beams with the PTW Roos and NE2571 ion chambers

    SciTech Connect (OSTI)

    Muir, B. R. Rogers, D. W. O.

    2013-12-15

    Purpose: To investigate recommendations for reference dosimetry of electron beams and gradient effects for the NE2571 chamber and to provide beam quality conversion factors using Monte Carlo simulations of the PTW Roos and NE2571 ion chambers. Methods: The EGSnrc code system is used to calculate the absorbed dose-to-water and the dose to the gas in fully modeled ion chambers as a function of depth in water. Electron beams are modeled using realistic accelerator simulations as well as beams modeled as collimated point sources from realistic electron beam spectra or monoenergetic electrons. Beam quality conversion factors are calculated with ratios of the doses to water and to the air in the ion chamber in electron beams and a cobalt-60 reference field. The overall ion chamber correction factor is studied using calculations of water-to-air stopping power ratios. Results: The use of an effective point of measurement shift of 1.55 mm from the front face of the PTW Roos chamber, which places the point of measurement inside the chamber cavity, minimizes the difference betweenR{sub 50}, the beam quality specifier, calculated from chamber simulations compared to that obtained using depth-dose calculations in water. A similar shift minimizes the variation of the overall ion chamber correction factor with depth to the practical range and reduces the root-mean-square deviation of a fit to calculated beam quality conversion factors at the reference depth as a function of R{sub 50}. Similarly, an upstream shift of 0.34 r{sub cav} allows a more accurate determination of R{sub 50} from NE2571 chamber calculations and reduces the variation of the overall ion chamber correction factor with depth. The determination of the gradient correction using a shift of 0.22 r{sub cav} optimizes the root-mean-square deviation of a fit to calculated beam quality conversion factors if all beams investigated are considered. However, if only clinical beams are considered, a good fit to results for beam quality conversion factors is obtained without explicitly correcting for gradient effects. The inadequacy of R{sub 50} to uniquely specify beam quality for the accurate selection of k{sub Q} factors is discussed. Systematic uncertainties in beam quality conversion factors are analyzed for the NE2571 chamber and amount to between 0.4% and 1.2% depending on assumptions used. Conclusions: The calculated beam quality conversion factors for the PTW Roos chamber obtained here are in good agreement with literature data. These results characterize the use of an NE2571 ion chamber for reference dosimetry of electron beams even in low-energy beams.

  11. Operational Experiences Tuning the ATF2 Final Focus Optics Towards Obtaining a 37nm Electron Beam IP Spot Size

    SciTech Connect (OSTI)

    White, Glen; Seryi, Andrei; Woodley, Mark; Bai, Sha; Bambade, Philip; Renier, Yves; Bolzon, Benoit; Kamiya, Yoshio; Komamiya, Sachio; Oroku, Masahiro; Yamaguchi, Yohei; Yamanaka, Takashi; Kubo, Kiyoshi; Kuroda, Shigeru; Okugi, Toshiyuki; Tauchi, Toshiaki; Marin, Eduardo; /CERN

    2012-07-06

    The primary aim of the ATF2 research accelerator is to test a scaled version of the final focus optics planned for use in next-generation linear lepton colliders. ATF2 consists of a 1.3 GeV linac, damping ring providing low-emittance electron beams (< 12pm in the vertical plane), extraction line and final focus optics. The design details of the final focus optics and implementation at ATF2 are presented elsewhere. The ATF2 accelerator is currently being commissioned, with a staged approach to achieving the design IP spot size. It is expected that as we implement more demanding optics and reduce the vertical beta function at the IP, the tuning becomes more difficult and takes longer. We present here a description of the implementation of the tuning procedures and describe operational experiences and performances.

  12. Recent Progress in the Negative-Ion-Based Neutral Beam Injectors in Large Helical Device

    SciTech Connect (OSTI)

    Takeiri, Y.; Tsumori, K.; Ikeda, K.; Osakabe, M.; Nagaoka, K.; Oka, Y.; Asano, E.; Kondo, T.; Sato, M.; Shibuya, M.; Komada, S.; Kaneko, O.

    2009-03-12

    Negative-ion-based neutral beam injection (negative-NBI) system has been operated for 10 years in Large Helical Device (LHD). The injection power has been increased year by year, according to the improvement of the negative ion sources. Up to now, every injector achieves the designed injection energy and power of 180 keV-5 MW with hydrogen beams, and the total injection power exceeds 16 MW with three injectors. In the multi-round aperture grounded grid (GG), the diameter of a round aperture has been enlarged for higher GG transparency. Then, the GG heat load is reduced, as well as in the multi-slotted GG, and the voltage holding ability in the beam acceleration was improved. As a result, the beam energy is raised and the injection power is increased. To improve the anisotropic property of the beamlet convergence condition between the perpendicular and the parallel directions to the slots in the multi-slotted GG, a round-shape aperture of the steering grid (SG) has been changed to a racetrack shape. As a result, the difference of the beamlet conversion condition is much mitigated, and the injection efficiency (port-transmission efficiency) is improved, leading to 188 keV-6.4 MW injection. The Cs consumption is observed to be proportional to the tungsten evaporation from filaments. The Cs behavior is investigated with optical emission spectroscopy. During the beam extraction, the Cs recycling is dominated by Cs on the backplate, which is evaporated into the plasma by the backstreaming positive ions, and the wall surfaces should be loss regions for the supplied Cs.

  13. Arc discharge regulation of a megawatt hot cathode bucket ion source for the experimental advanced superconducting tokamak neutral beam injector

    SciTech Connect (OSTI)

    Xie Yahong; Hu Chundong; Liu Sheng; Jiang Caichao; Li Jun; Liang Lizhen; Collaboration: NBI Team

    2012-01-15

    Arc discharge of a hot cathode bucket ion source tends to be unstable what attributes to the filament self-heating and energetic electrons backstreaming from the accelerator. A regulation method, which based on the ion density measurement by a Langmuir probe, is employed for stable arc discharge operation and long pulse ion beam generation. Long pulse arc discharge of 100 s is obtained based on this regulation method of arc power. It establishes a foundation for the long pulse arc discharge of a megawatt ion source, which will be utilized a high power neutral beam injection device.

  14. Deposition of metallic gallium on re-crystallized ceramic material during focused ion beam milling

    SciTech Connect (OSTI)

    Muñoz-Tabares, J.A.; Reyes-Gasga, J.

    2013-12-15

    We report a new kind of artifact observed in the preparation of a TEM sample of zirconia by FIB, which consists in the deposition of metallic gallium nano-dots on the TEM sample surface. High resolution TEM images showed a microstructure of fine equiaxed grains of ? 5 nm, with some of them possessing two particular characteristics: high contrast and well-defined fast Fourier transform. These grains could not be identified as any phase of zirconia but it was possible to identify them as gallium crystals in the zone axis [110]. Based on HRTEM simulations, the possible orientations between zirconia substrate and deposited gallium are discussed in terms of lattice mismatch and oxygen affinity. - Highlights: • We show a new type of artifact induced during preparation of TEM samples by FIB. • Deposition of Ga occurs due to its high affinity for oxygen. • Materials with small grain size (? 5 nm) could promote Ga deposition. • Small grain size permits the elastic accommodation of deposited Ga.

  15. Comment on “Stationary self-focusing of Gaussian laser beam in relativistic thermal quantum plasma” [Phys. Plasmas 20, 072703 (2013)

    SciTech Connect (OSTI)

    Habibi, M.; Ghamari, F.

    2014-06-15

    Patil and Takale in their recent article [Phys. Plasmas 20, 072703 (2013)], by evaluating the quantum dielectric response in thermal quantum plasma, have modeled the relativistic self-focusing of Gaussian laser beam in a plasma. We have found that there are some important shortcomings and fundamental mistakes in Patil and Takale [Phys. Plasmas 20, 072703 (2013)] that we give a brief description about them and refer readers to important misconception about the use of the Fermi temperature in quantum plasmas, appearing in Patil and Takale [Phys. Plasmas 20, 072703 (2013)].

  16. Fast and efficient charge breeding of the Californium rare isotope breeder upgrade electron beam ion source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ostroumov, P. N.; Barcikowski, A.; Dickerson, C. A.; Perry, A.; Pikin, A. I.; Sharamentov, S. I.; Vondrasek, R. C.; Zinkann, G. P.

    2015-08-28

    The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstratemore » stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this study, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.« less

  17. Fast and efficient charge breeding of the Californium rare isotope breeder upgrade electron beam ion source

    SciTech Connect (OSTI)

    Ostroumov, P. N.; Barcikowski, A.; Dickerson, C. A.; Perry, A.; Pikin, A. I.; Sharamentov, S. I.; Vondrasek, R. C.; Zinkann, G. P.

    2015-08-28

    The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstrate stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this study, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.

  18. Neutral particle beam intensity controller

    DOE Patents [OSTI]

    Dagenhart, W.K.

    1984-05-29

    The neutral beam intensity controller is based on selected magnetic defocusing of the ion beam prior to neutralization. The defocused portion of the beam is dumped onto a beam dump disposed perpendicular to the beam axis. Selective defocusing is accomplished by means of a magnetic field generator disposed about the neutralizer so that the field is transverse to the beam axis. The magnetic field intensity is varied to provide the selected partial beam defocusing of the ions prior to neutralization. The desired focused neutral beam portion passes along the beam path through a defining aperture in the beam dump, thereby controlling the desired fraction of neutral particles transmitted to a utilization device without altering the kinetic energy level of the desired neutral particle fraction. By proper selection of the magnetic field intensity, virtually zero through 100% intensity control of the neutral beam is achieved.

  19. Subcellular Spatial Correlation of Particle Traversal and Biological Response in Clinical Ion Beams

    SciTech Connect (OSTI)

    Niklas, Martin; Abdollahi, Amir; Akselrod, Mark S.; Debus, Jürgen; Jäkel, Oliver; and others

    2013-12-01

    Purpose: To report on the spatial correlation of physical track information (fluorescent nuclear track detectors, FNTDs) and cellular DNA damage response by using a novel hybrid detector (Cell-Fit-HD). Methods and Materials: The FNTDs were coated with a monolayer of human non-small cell lung carcinoma (A549) cells and irradiated with carbon ions (270.55 MeV u{sup ?1}, rising flank of the Bragg peak). Phosphorylated histone variant H2AX accumulating at the irradiation-induced double-strand break site was labeled (RIF). The position and direction of ion tracks in the FNTD were registered with the location of the RIF sequence as an ion track surrogate in the cell layer. Results: All RIF sequences could be related to their corresponding ion tracks, with mean deviations of 1.09 ?m and ?1.72 ?m in position and of 2.38° in slope. The mean perpendicular between ion track and RIF sequence was 1.58 ?m. The mean spacing of neighboring RIFs exhibited a regular rather than random spacing. Conclusions: Cell-Fit-HD allows for unambiguous spatial correlation studies of cell damage with respect to the intracellular ion traversal under therapeutic beam conditions.

  20. Energy spread and time structure of ion beams extracted from the ReA-EBIT rare isotope charge breeder

    SciTech Connect (OSTI)

    Baumann, Thomas M.; Lapierre, Alain; Schwarz, Stefan; Kittimanapun, Kritsada; Bollen, Georg

    2015-01-09

    The ReA re-accelerator of the National Superconducting Cyclotron Laboratory at Michigan State University utilizes an Electron Beam Ion Trap (EBIT) for charge breeding thermalized rare isotope beams. Recent commissioning measurements have been performed to characterize the performance of this EBIT. The energy spread of extracted highly charged ion beams was measured to be about 0.3% of the total beam energy. From this, the temperature of the ion ensemble in the trap is calculated to be kT{sub q}/q?=?31eV for O{sup 7+}, while it is kT{sub q}/q?=?25eV for K{sup 15+}. In addition initial results are presented for two extraction schemes developed to spread highly charged ion pulses in time.

  1. Transfer of polarized 3He ions in the AtR beam transfer line

    SciTech Connect (OSTI)

    Tsoupas N.; MacKay, W.W.; Meot, F.; Roser, T.; Trbojevic, D.

    2012-05-20

    In addition to collisions of electrons with various unpolarized ion species as well as polarized protons, the proposed electron-hadron collider (eRHIC) will facilitate the collisions of electrons with polarized {sup 3}He ions. The AGS is the last acceleration stage, before injection into one of the RHIC's collider ring for final acceleration. The AtR (AGS to RHIC) transfer line will be utilized to transport the polarized {sup 3}He ions from AGS into one of the RHIC's collider rings. Some of the peculiarities of the AtR line's layout (simultaneous horizontal and vertical bends) may degrade the matching of the stable spin direction of the AtR line with that of RHIC's. In this paper we discuss possible simple modifications of the AtR line to accomplish a perfect matching of the stable spin direction of the injected {sup 3}He beam with the stable spin direction at the injection point of RHIC.

  2. Transport of radioactive ion beams and related safety issues: The {sup 132}Sn{sup +} case study

    SciTech Connect (OSTI)

    Osswald, F. Bouquerel, E.; Boutin, D.; Dinkov, A.; Sellam, A.

    2014-12-15

    The transport of intense radioactive ion beam currents requires a careful design in order to limit the beam losses, the contamination and thus the dose rates. Some investigations based on numerical models and calculations have been performed in the framework of the SPIRAL 2 project to evaluate the performance of a low energy beam transport line located between the isotope separation on line (ISOL) production cell and the experiment areas. The paper presents the results of the transverse phase-space analysis, the beam losses assessment, the resulting contamination, and radioactivity levels. They show that reasonable beam transmission, emittance growth, and dose rates can be achieved considering the current standards.

  3. Ion species control in high flux deuterium plasma beams produced by a linear plasma generator

    SciTech Connect (OSTI)

    Luo, G.-N.; Shu, W.M.; Nakamura, H.; O'Hira, S.; Nishi, M.

    2004-11-01

    The ion species ratios in low energy high flux deuterium plasma beams formed in a linear plasma generator were measured by a quadrupole mass spectrometer. And the species control in the plasma generator was evaluated by changing the operational parameters like neutral pressure, arc current, and axial magnetic confinement to the plasma column. The measurements reveal that the lower pressures prefer to form more D{sup +} ions, and the medium magnetic confinement at the higher pressures results in production of more D{sub 2}{sup +}, while the stronger confinement and/or larger arc current are helpful to D{sub 2}{sup +} conversion into D{sub 3}{sup +}. Therefore, the ion species can be controlled by adjusting the operational parameters of the plasma generator. With suitable adjustment, we can achieve plasma beams highly enriched with a single species of D{sup +}, D{sub 2}{sup +}, or D{sub 3}{sup +}, to a ratio over 80%. It has been found that the axial magnetic configuration played a significant role in the formation of D{sub 3}{sup +} within the experimental pressure range.

  4. Electrostatically focused addressable field emission array chips (AFEA's) for high-speed massively parallel maskless digital E-beam direct write lithography and scanning electron microscopy

    DOE Patents [OSTI]

    Thomas, Clarence E.; Baylor, Larry R.; Voelkl, Edgar; Simpson, Michael L.; Paulus, Michael J.; Lowndes, Douglas H.; Whealton, John H.; Whitson, John C.; Wilgen, John B.

    2002-12-24

    Systems and methods are described for addressable field emission array (AFEA) chips. A method of operating an addressable field-emission array, includes: generating a plurality of electron beams from a pluralitly of emitters that compose the addressable field-emission array; and focusing at least one of the plurality of electron beams with an on-chip electrostatic focusing stack. The systems and methods provide advantages including the avoidance of space-charge blow-up.

  5. Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Coquelle, Nicolas; Brewster, Aaron S.; Kapp, Ulrike; Shilova, Anastasya; Weinhausen, Britta; Burghammer, Manfred; Colletier, Jacques -Philippe

    2015-04-25

    High-resolution structural information was obtained from lysozyme microcrystals (20 µm in the largest dimension) using raster-scanning serial protein crystallography on micro- and nano-focused beamlines at the ESRF. Data were collected at room temperature (RT) from crystals sandwiched between two silicon nitride wafers, thereby preventing their drying, while limiting background scattering and sample consumption. In order to identify crystal hits, new multi-processing and GUI-driven Python-based pre-analysis software was developed, named NanoPeakCell, that was able to read data from a variety of crystallographic image formats. Further data processing was carried out using CrystFEL, and the resultant structures were refined to 1.7 Åmore » resolution. The data demonstrate the feasibility of RT raster-scanning serial micro- and nano-protein crystallography at synchrotrons and validate it as an alternative approach for the collection of high-resolution structural data from micro-sized crystals. Advantages of the proposed approach are its thriftiness, its handling-free nature, the reduced amount of sample required, the adjustable hit rate, the high indexing rate and the minimization of background scattering.« less

  6. Kinetic description of intense nonneutral beam propagation through a periodic solenoidal focusing field based on the nonlinear Vlasov-Maxwell equations

    SciTech Connect (OSTI)

    Davidson, R.C.; Chen, C.

    1997-08-01

    A kinetic description of intense nonneutral beam propagation through a periodic solenoidal focusing field B{sup sol}({rvec x}) is developed. The analysis is carried out for a thin beam with characteristic beam radius r{sub b} {much_lt} S, and directed axial momentum {gamma}{sub b}m{beta}{sub b}c (in the z-direction) large compared with the transverse momentum and axial momentum spread of the beam particles. Making use of the nonlinear Vlasov-Maxwell equations for general distribution function f{sub b}({rvec x},{rvec p},t) and self-consistent electrostatic field consistent with the thin-beam approximation, the kinetic model is used to investigate detailed beam equilibrium properties for a variety of distribution functions. Examples are presented both for the case of a uniform solenoidal focusing field B{sub z}(z) = B{sub 0} = const. and for the case of a periodic solenoidal focusing field B{sub z}(z + S) = B{sub z}(z). The nonlinear Vlasov-Maxwell equations are simplified in the thin-beam approximation, and an alternative Hamiltonian formulation is developed that is particularly well-suited to intense beam propagation in periodic focusing systems. Based on the present analysis, the Vlasov-Maxwell description of intense nonneutral beam propagation through a periodic solenoidal focusing field {rvec B}{sup sol}({rvec x}) is found to be remarkably tractable and rich in physics content. The Vlasov-Maxwell formalism developed here can be extended in a straightforward manner to investigate detailed stability behavior for perturbations about specific choices of beam equilibria.

  7. System for measuring temporal profiles of scintillation at high and different linear energy transfers by using pulsed ion beams

    SciTech Connect (OSTI)

    Koshimizu, Masanori Asai, Keisuke; Kurashima, Satoshi; Taguchi, Mitsumasa; Kimura, Atsushi; Iwamatsu, Kazuhiro

    2015-01-15

    We have developed a system for measuring the temporal profiles of scintillation at high linear energy transfer (LET) by using pulsed ion beams from a cyclotron. The half width at half maximum time resolution was estimated to be 1.5–2.2 ns, which we attributed mainly to the duration of the pulsed ion beam and timing jitter between the trigger signal and the arrival of the ion pulse. The temporal profiles of scintillation of BaF{sub 2} at different LETs were successfully observed. These results indicate that the proposed system is a powerful tool for analyzing the LET effects in temporal profiles of scintillation.

  8. Visualizing expanding warm dense matter heated by laser-generated ion beams

    SciTech Connect (OSTI)

    Bang, Woosuk

    2015-08-24

    This PowerPoint presentation concluded with the following. We calculated the expected heating per atom and temperatures of various target materials using a Monte Carlo simulation code and SESAME EOS tables. We used aluminum ion beams to heat gold and diamond uniformly and isochorically. A streak camera imaged the expansion of warm dense gold (5.5 eV) and diamond (1.7 eV). GXI-X recorded all 16 x-ray images of the unheated gold bar targets proving that it could image the motion of the gold/diamond interface of the proposed target.

  9. Rare-earth neutral metal injection into an electron beam ion trap plasma

    SciTech Connect (OSTI)

    Magee, E. W., E-mail: magee1@llnl.gov; Beiersdorfer, P.; Brown, G. V. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hell, N. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Dr. Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, 96049 Bamberg (Germany)

    2014-11-15

    We have designed and implemented a neutral metal vapor injector on the SuperEBIT high-energy electron beam ion trap at the Lawrence Livermore National Laboratory. A horizontally directed vapor of a europium metal is created using a thermal evaporation technique. The metal vapor is then spatially collimated prior to injection into the trap. The source's form and quantity constraints are significantly reduced making plasmas out of metal with vapor pressures ?10{sup ?7} Torr at ?1000?°C more obtainable. A long pulsed or constant feed metal vapor injection method adds new flexibility by varying the timing of injection and rate of material being introduced into the trap.

  10. Ion beam measurement of deuterium in palladium and calculation of hydrogen isotope separation factors

    SciTech Connect (OSTI)

    Gullinger, T.R.; Kelly, M.J.; Knapp, J.A.; Walsh, D.S.; Doyle, B.L. )

    1991-08-01

    In this paper, the authors demonstrate a new technique for measuring hydrogen isotope separation factors in hydrogen-absorbing metals. Using external ion beam nuclear reaction analysis of metal electrodes in an operating electrochemical cell, the authors monitor in situ the deuterium content of the electrode. changing the deuterium/hydrogen ratio in the electrolyte changes the observed deuterium content of the metal electrode, and, assuming identical ultimate total metal loading for deuterium, hydrogen, and any mixture of deuterium and hydrogen, a simple calculation yields the separation factor.

  11. Method based on atomic photoionization for spot-size measurement on focused soft x-ray free-electron laser beams

    SciTech Connect (OSTI)

    Sorokin, A. A.; Gottwald, A.; Hoehl, A.; Kroth, U.; Schoeppe, H.; Ulm, G.; Richter, M.; Bobashev, S. V.; Domracheva, I. V.; Smirnov, D. N.; Tiedtke, K.; Duesterer, S.; Feldhaus, J.; Hahn, U.; Jastrow, U.; Kuhlmann, M.; Nunez, T.; Ploenjes, E.; Treusch, R.

    2006-11-27

    A method has been developed and applied to measure the beam waist and spot size of a focused soft x-ray beam at the free-electron laser FLASH of the Deutsches Elektronen-Synchrotron in Hamburg. The method is based on a saturation effect upon atomic photoionization and represents an indestructible tool for the characterization of powerful beams of ionizing electromagnetic radiation. At the microfocus beamline BL2 at FLASH, a full width at half maximum focus diameter of (15{+-}2) {mu}m was determined.

  12. Exchange bias in polycrystalline magnetite films made by ion-beam assisted deposition

    SciTech Connect (OSTI)

    Kaur, Maninder; Qiang, You [Department of Physics, University of Idaho, Moscow, Idaho 83844 (United States); Jiang, Weilin [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Burks, Edward C.; Liu, Kai [Department of Physics, University of California, Davis, California 95616 (United States); Namavar, Fereydoon [University of Nebraska Medical Center, Omaha, Nebraska 68198 (United States); McCloy, John S. [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 98163 (United States)

    2014-11-07

    Iron oxide films were produced using ion-beam-assisted deposition, and Raman spectroscopy and x-ray diffraction indicate single-phase magnetite. However, incorporation of significant fractions of argon in the films from ion bombardment is evident from chemical analysis, and Fe/O ratios are lower than expected from pure magnetite, suggesting greater than normal disorder. Low temperature magnetometry and first-order reversal curve measurements show strong exchange bias, which likely arises from defects at grain boundaries, possibly amorphous, creating frustrated spins. Since these samples contain grains ?6?nm, a large fraction of the material consists of grain boundaries, where spins are highly disordered and reverse independently with external field.

  13. Nanofabrication of sharp diamond tips by e-beam lithography and inductively coupled plasma reactive ion etching.

    SciTech Connect (OSTI)

    Moldovan, N.; Divan, R.; Zeng, H.; Carlisle, J. A.; Advanced Diamond Tech.

    2009-12-07

    Ultrasharp diamond tips make excellent atomic force microscopy probes, field emitters, and abrasive articles due to diamond's outstanding physical properties, i.e., hardness, low friction coefficient, low work function, and toughness. Sharp diamond tips are currently fabricated as individual tips or arrays by three principal methods: (1) focused ion beam milling and gluing onto a cantilever of individual diamond tips, (2) coating silicon tips with diamond films, or (3) molding diamond into grooves etched in a sacrificial substrate, bonding the sacrificial substrate to another substrate or electrodepositing of a handling chip, followed by dissolution of the sacrificial substrate. The first method is tedious and serial in nature but does produce very sharp tips, the second method results in tips whose radius is limited by the thickness of the diamond coating, while the third method involves a costly bonding and release process and difficulties in thoroughly filling the high aspect ratio apex of molding grooves with diamond at the nanoscale. To overcome the difficulties with these existing methods, this article reports on the feasibility of the fabrication of sharp diamond tips by direct etching of ultrananocrystalline diamond (UNCD{reg_sign}) as a starting and structural material. The UNCD is reactive ion etched using a cap-precursor-mask scheme. An optimized etching recipe demonstrates the formation of ultrasharp diamond tips ({approx} 10 nm tip radius) with etch rates of 650 nm/min.

  14. In-situ Study of Nanostructure and Electrical Resistance of Nanocluster Films Irradiated with Ion Beams

    SciTech Connect (OSTI)

    Jiang, Weilin; Sundararajan, Jennifer A.; Varga, Tamas; Bowden, Mark E.; Qiang, You; McCloy, John S.; Henager, Charles H.; Montgomery, Robert O.

    2014-08-11

    An in-situ study is reported on the structural evolution in nanocluster films under He+ ion irradiation using an advanced helium ion microscope. The films consist of loosely interconnected nanoclusters of magnetite or iron-magnetite (Fe-Fe3O4) core-shells. The nanostructure is observed to undergo dramatic changes under ion-beam irradiation, featuring grain growth, phase transition, particle aggregation, and formation of nanowire-like network and nano-pores. Studies based on ion irradiation, thermal annealing and election irradiation have indicated that the major structural evolution is activated by elastic nuclear collisions, while both electronic and thermal processes can play a significant role once the evolution starts. The electrical resistance of the Fe-Fe3O4 films measured in situ exhibits a super-exponential decay with dose. The behavior suggests that the nanocluster films possess an intrinsic merit for development of an advanced online monitor for neutron radiation with both high detection sensitivity and long-term applicability, which can enhance safety measures in many nuclear operations.

  15. Neutral particle beam intensity controller

    DOE Patents [OSTI]

    Dagenhart, William K. (Oak Ridge, TN)

    1986-01-01

    A neutral beam intensity controller is provided for a neutral beam generator in which a neutral beam is established by accelerating ions from an ion source into a gas neutralizer. An amplitude modulated, rotating magnetic field is applied to the accelerated ion beam in the gas neutralizer to defocus the resultant neutral beam in a controlled manner to achieve intensity control of the neutral beam along the beam axis at constant beam energy. The rotating magnetic field alters the orbits of ions in the gas neutralizer before they are neutralized, thereby controlling the fraction of neutral particles transmitted out of the neutralizer along the central beam axis to a fusion device or the like. The altered path or defocused neutral particles are sprayed onto an actively cooled beam dump disposed perpendicular to the neutral beam axis and having a central open for passage of the focused beam at the central axis of the beamline. Virtually zero therough 100% intensity control is achieved by varying the magnetic field strength without altering the ion source beam intensity or its species yield.

  16. Ion beam-induced amorphous-to-tetragonal phase transformation and grain growth of nanocrystalline zirconia

    SciTech Connect (OSTI)

    Lian, Jie; Zhang, Jiaming; Namavar, Fereydoon; Zhang, Yanwen; Lu, Fengyuan; Haider, Hani; Garvin, Kevin; Weber, William J.; Ewing, Rodney C.

    2009-05-26

    Nanocrystalline zirconia has recently attracted extensive research interest due to its unique mechanical, thermal and electrical properties as compared to bulk zirconia counterparts, and it is of particular importance to control the phase stability of different polymorphs (amorphous, cubic, tetragonal and monoclinic phases) at different size regimes. In this paper, we performed ion beam bombardments on bilayers (amorphous and cubic) of pure nano-zirconia using 1 MeV Kr2+ irradiation. Transmission electron microscopy (TEM) analysis reveals that amorphous zirconia transforms to a tetragonal structure under irradiation at room temperature, suggesting that the tetragonal phase is more energetically favorable under these conditions. The final grain size of the tetragonal zirconia can be controlled by irradiation conditions. The irradiation-induced nanograins of tetragonal ZrO2 are stable at ambient conditions and maintain their physical integrity over a long period of time after irradiation. These results demonstrated that ion-beam modification methods provide the means to control the phase stability and structure of zirconia polymorphs.

  17. Proceedings of the workshop on the science of intense radioactive ion beams

    SciTech Connect (OSTI)

    McClelland, J.B.; Vieira, D.J.

    1990-10-01

    This report contains the proceedings of a 2-1/2 day workshop on the Science of Intense Radioactive Ion Beams which was held at the Los Alamos National Laboratory on April 10--12, 1990. The workshop was attended by 105 people, representing 30 institutions from 10 countries. The thrust of the workshop was to develop the scientific opportunities which become possible with a new generation intense Radioactive Ion Beam (RIB) facility, currently being discussed within North America. The workshop was organized around five primary topics: (1) reaction physics; (2) nuclei far from stability/nuclear structure; (3) nuclear astrophysics; (4) atomic physics, material science, and applied research; and (5) facilities. Overview talks were presented on each of these topics, followed by 1-1/2 days of intense parallel working group sessions. The final half day of the workshop was devoted to the presentation and discussion of the working group summary reports, closing remarks and a discussion of future plans for this effort.

  18. An estimate of the error caused by the elongation of the wavelength in a focused beam in free-space electromagnetic parameters measurement

    SciTech Connect (OSTI)

    Zhang, Yunpeng; Li, En Guo, Gaofeng; Xu, Jiadi; Wang, Chao

    2014-09-15

    A pair of spot-focusing horn lens antenna is the key component in a free-space measurement system. The electromagnetic constitutive parameters of a planar sample are determined using transmitted and reflected electromagnetic beams. These parameters are obtained from the measured scattering parameters by the microwave network analyzer, thickness of the sample, and wavelength of a focused beam on the sample. Free-space techniques introduced by most papers consider the focused wavelength as the free-space wavelength. But in fact, the incident wave projected by a lens into the sample approximates a Gaussian beam, thus, there has an elongation of the wavelength in the focused beam and this elongation should be taken into consideration in dielectric and magnetic measurement. In this paper, elongation of the wavelength has been analyzed and measured. Measurement results show that the focused wavelength in the vicinity of the focus has an elongation of 1%–5% relative to the free-space wavelength. Elongation's influence on the measurement result of the permittivity and permeability has been investigated. Numerical analyses show that the elongation of the focused wavelength can cause the increase of the measured value of the permeability relative to traditionally measured value, but for the permittivity, it is affected by several parameters and may increase or decrease relative to traditionally measured value.

  19. Recent progress in the development of a circular ion induction accelerator for space charge dominated beams at LLNL

    SciTech Connect (OSTI)

    Ahle, L; Autrey, D; Barnard, J; Berners, D; Craig, G; Debeling, A; Eylon, S; Friedman, A; Fritz, W; Grote, D P; Halaxa, E; Hanks, R L; Hernandez, M; Judd, D L; Kirbie, H C; Logan, B G; Lund, S M; Mant, G; Molvik, A W; Reginato, L; Sangster, T C; Sharp, W M

    1998-08-19

    The Heavy Ion Fusion Group at Lawrence Livermore National Laboratory has for several years been developing the world's first circular ion induction accelerator. This machine has recently been extended to 90 degrees, or 10 half-lattice periods (HLP) with full beam transport. In addition, induction cores have been installed on five of the HLP's, each with an independent arbitrary waveform pulser. An arbitrary waveform pulser for the bending electrostatic dipoles has also been enabled. Together, they have allowed the first attempts at coordinated bending and acceleration of the beam. The results of these first attempts will be reported on in the paper by examining the output of various diagnostic devices, such as the capacitive Beam Probes (C-probes), slit scanners, and the Gated Beam Imager(GBI).

  20. Characterization of electrospray ion-beam-deposited CdSe/ZnS quantum dot thin films from a colloidal solution

    SciTech Connect (OSTI)

    Tani, Yuki; Kobayashi, Satoshi; Kawazoe, Hiroshi

    2008-07-15

    Colloidal semiconductor quantum dot (QD) nanocrystals can be deposited in the form of inorganic thin films using the ion beam direct deposition method. To simultaneously preserve the nanocrystal configuration and remove the organics derived from the ligand and solvent, the authors used an electrospray technique and an ion beam technique. These techniques provided a soft-ionization process to obtain nanocrystalline ions and a collision process to attain a nonequilibrium state of the deposits, respectively. Because of the nature of the soft-ionization process, the electrospray phenomenon resulted in various forms of QD ions that depended on the preparation of the colloidal solution source and spraying conditions. The authors concentrated on finding operational conditions of the system that deposited thin films with reduced organics concentrations by examining the correlation between fast Fourier transform infrared absorption spectroscopy and photoluminescence intensity. The morphology of the deposited films was observed using an atomic force microscope.

  1. Structural Modification of Single Wall and Multiwalled Carbon Nanotubes under Carbon, Nickel and Gold Ion Beam Irradiation

    SciTech Connect (OSTI)

    Jeet, Kiran; Jindal, V. K.; Dharamvir, Keya; Bharadwaj, L. M.

    2011-12-12

    Thin film samples of carbon nanotubes were irradiated with ion beam of carbon, nickel and gold. The irradiation results were characterized using Raman Spectroscopy. Modifications of the disorder mode (D mode) and the tangential mode (G mode) under different irradiation fluences were studied in detail. Raman results of carbon ion beam indicate the interesting phenomenon of ordering of the system under irradiation. Under the effect of nickel and gold ion irradiation, the structural evolution of CNTs occurs in three different stages. At lower fluences the process of healing occurs; at intermediate fluences damages on the surface of CNTs occurs and finally at very high fluences of the order of 1x10{sup 14} ions/cm{sup 2} the system gets amorphised.

  2. A high-current electron gun for the electron beam ion trap at the National Superconducting Cyclotron Laboratory

    SciTech Connect (OSTI)

    Schwarz, S. Baumann, T. M.; Kittimanapun, K.; Lapierre, A.; Snyder, A.

    2014-02-15

    The Electron Beam Ion Trap (EBIT) in NSCL’s reaccelerator ReA uses continuous ion injection and accumulation. In order to maximize capture efficiency and minimize breeding time into high charge states, the EBIT requires a high-current/high current-density electron beam. A new electron gun insert based on a concave Ba-dispenser cathode has been designed and built to increase the current transmitted through the EBIT’s superconducting magnet. With the new insert, stable EBIT operating conditions with 0.8 A of electron beam have been established. The design of the electron gun is presented together with calculated and measured perveance data. In order to assess the experimental compression of the electron beam, a pinhole CCD camera has been set up to measure the electron beam radius. The camera observes X-rays emitted from highly charged ions, excited by the electron beam. Initial tests with this camera setup will be presented. They indicate that a current density of 640 A/cm{sup 2} has been reached when the EBIT magnet was operated at 4 T.

  3. Increasing the upper-limit intensity and temperature range for thermal self-focusing of a laser beam by using plasma density ramp-up

    SciTech Connect (OSTI)

    Bokaei, B.; Niknam, A. R.

    2014-03-15

    This work is devoted to improving relativistic and ponderomotive thermal self-focusing of the intense laser beam in an underdense plasma. It is shown that the ponderomotive nonlinearity induces a saturation mechanism for thermal self-focusing. Therefore, in addition to the well-known lower-limit critical intensity, there is an upper-limit intensity for thermal self-focusing above which the laser beam starts to experience ponderomotive defocusing. It is indicated that the upper-limit intensity value is dependent on plasma and laser parameters such as the plasma electron temperature, plasma density, and laser spot size. Furthermore, the effect of the upward plasma density ramp profile on the thermal self-focusing is studied. Results show that by using the plasma density ramp-up, the upper-limit intensity increases and the self-focusing temperature range expands.

  4. Secondary ion collection and transport system for ion microprobe

    DOE Patents [OSTI]

    Ward, James W. (Canoga Park, CA); Schlanger, Herbert (Simi Valley, CA); McNulty, Jr., Hugh (Santa Monica, CA); Parker, Norman W. (Camarillo, CA)

    1985-01-01

    A secondary ion collection and transport system, for use with an ion microprobe, which is very compact and occupies only a small working distance, thereby enabling the primary ion beam to have a short focal length and high resolution. Ions sputtered from the target surface by the primary beam's impact are collected between two arcuate members having radii of curvature and applied voltages that cause only ions within a specified energy band to be collected. The collected ions are accelerated and focused in a transport section consisting of a plurality of spaced conductive members which are coaxial with and distributed along the desired ion path. Relatively high voltages are applied to alternate transport sections to produce accelerating electric fields sufficient to transport the ions through the section to an ion mass analyzer, while lower voltages are applied to the other transport sections to focus the ions and bring their velocity to a level compatible with the analyzing apparatus.

  5. GPU accelerated fully space and time resolved numerical simulations of self-focusing laser beams in SBS-active media

    SciTech Connect (OSTI)

    Mauger, Sarah; Colin de Verdière, Guillaume; Bergé, Luc; Skupin, Stefan; Friedrich Schiller University, Institute of Condensed Matter Theory and Optics, 07743 Jena

    2013-02-15

    A computer cluster equipped with Graphics Processing Units (GPUs) is used for simulating nonlinear optical wave packets undergoing Kerr self-focusing and stimulated Brillouin scattering in fused silica. We first recall the model equations in full (3+1) dimensions. These consist of two coupled nonlinear Schrödinger equations for counterpropagating optical beams closed with a source equation for light-induced acoustic waves seeded by thermal noise. Compared with simulations on a conventional cluster of Central Processing Units (CPUs), GPU-based computations allow us to use a significant (16 times) larger number of mesh points within similar computation times. Reciprocally, simulations employing the same number of mesh points are between 3 and 20 times faster on GPUs than on the same number of classical CPUs. Performance speedups close to 45 are reported for isolated functions evaluating, e.g., the optical nonlinearities. Since the field intensities may reach the ionization threshold of silica, the action of a defocusing electron plasma is also addressed.

  6. Characterization of zirconia- and niobia-silica mixture coatings produced by ion-beam sputtering

    SciTech Connect (OSTI)

    Melninkaitis, Andrius; Tolenis, Tomas; Mazule, Lina; Mirauskas, Julius; Sirutkaitis, Valdas; Mangote, Benoit; Fu Xinghai; Zerrad, Myriam; Gallais, Laurent; Commandre, Mireille; Kicas, Simonas; Drazdys, Ramutis

    2011-03-20

    ZrO{sub 2}-SiO{sub 2} and Nb{sub 2}O{sub 5}-SiO{sub 2} mixture coatings as well as those of pure zirconia (ZrO{sub 2}), niobia (Nb{sub 2}O{sub 5}), and silica (SiO{sub 2}) deposited by ion-beam sputtering were investigated. Refractive-index dispersions, bandgaps, and volumetric fractions of materials in mixed coatings were analyzed from spectrophotometric data. Optical scattering, surface roughness, nanostructure, and optical resistance were also studied. Zirconia-silica mixtures experience the transition from crystalline to amorphous phase by increasing the content of SiO{sub 2}. This also results in reduced surface roughness. All niobia and silica coatings and their mixtures were amorphous. The obtained laser-induced damage thresholds in the subpicosecond range also correlates with respect to the silica content in both zirconia- and niobia-silica mixtures.

  7. Design of quantum dot lattices in amorphous matrices by ion beam irradiation

    SciTech Connect (OSTI)

    Buljan, M.; Bogdanovic-Radovic, I.; Karlusic, M.; Desnica, U. V.; Radic, N.; Jaksic, M.; Salamon, K.; Drazic, G.; Bernstorff, S.; Holy, V.

    2011-10-15

    We report on the highly controllable self-assembly of semiconductor quantum dots and metallic nanoparticles in a solid amorphous matrix, induced by ion beam irradiation of an amorphous multilayer. We demonstrate experimentally and theoretically a possibility to tune the basic structural properties of the quantum dots in a wide range. Furthermore, the sizes, distances, and arrangement type of the quantum dots follow simple equations dependent on the irradiation and the multilayer properties. We present a Monte Carlo model for the simulation and prediction of the structural properties of the materials formed by this method. The presented results enable engineering and simple production of functional materials or simple devices interesting for applications in nanotechnology.

  8. Operation of a multiple cell array detector in plasma experiments with a heavy ion beam diagnostic

    SciTech Connect (OSTI)

    Goncalves, B.; Malaquias, A.; Nedzelskiy, I. S.; Pereira, L.; Silva, C.; Varandas, C.A.F.; Cabral, J.A.C.; Khrebtov, S.M.; Dreval, N.B.; Krupnik, L.I.; Hidalgo, C.; Depablos, J.

    2004-10-01

    A multiple cell array detector (MCAD) has been developed to investigate the spatial structure of plasma turbulence in fusion plasmas. This system is expected to provide simultaneous measurements of edge and core density fluctuations with both temporal and spatial resolution, extending the range and number of the sample volumes simultaneously recorded by a heavy ion beam diagnostic (HIBD). Since the detector (usually located close to the vessel wall of a plasma device) operates in a strong plasma radiation environment, the effective shielding of the detector presents a special problem. This article describes and compares the MCAD operation conditions on ISTTOK tokamak and TJ-II stellarator. Experimental results of the detector performance are presented together with the first measurements of n{sub e}{sigma}{sub eff} in the TJ-II plasmas.

  9. Source fabrication and lifetime for Li+ ion beams extracted from alumino-silicate sources

    SciTech Connect (OSTI)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W

    2012-03-05

    A space-charge-limited beam with current densities (J) exceeding 1 mA/cm{sup 2} have been measured from lithium alumino-silicate ion sources at a temperature of #24;~1275#14;{degrees} C. At higher extraction voltages, the source appears to become emission limited with J #21;{>=} 1.5 mA/cm{sup 2}, and J increases weakly with the applied voltage. A 6.35 mm diameter source with an alumino-silicate coating, {<=}#20;0.25 mm thick, has a measured lifetime of ~#24;40 hours at ~#24;1275#14;{degrees} C, when pulsed at 0.05 Hz and with pulse length of #24;~6 μs each. At this rate, the source lifetime was independent of the actual beam charge extracted due to the loss of neutral atoms at high temperature. The source lifetime increases with the amount of alumino-silicate coated on the emitting surface, and may also be further extended if the temperature is reduced between pulses.

  10. ACCELERATION OF LOW-ENERGY IONS AT PARALLEL SHOCKS WITH A FOCUSED TRANSPORT MODEL

    SciTech Connect (OSTI)

    Zuo, Pingbing; Zhang, Ming; Rassoul, Hamid K.

    2013-04-10

    We present a test particle simulation on the injection and acceleration of low-energy suprathermal particles by parallel shocks with a focused transport model. The focused transport equation contains all necessary physics of shock acceleration, but avoids the limitation of diffusive shock acceleration (DSA) that requires a small pitch angle anisotropy. This simulation verifies that the particles with speeds of a fraction of to a few times the shock speed can indeed be directly injected and accelerated into the DSA regime by parallel shocks. At higher energies starting from a few times the shock speed, the energy spectrum of accelerated particles is a power law with the same spectral index as the solution of standard DSA theory, although the particles are highly anisotropic in the upstream region. The intensity, however, is different from that predicted by DSA theory, indicating a different level of injection efficiency. It is found that the shock strength, the injection speed, and the intensity of an electric cross-shock potential (CSP) jump can affect the injection efficiency of the low-energy particles. A stronger shock has a higher injection efficiency. In addition, if the speed of injected particles is above a few times the shock speed, the produced power-law spectrum is consistent with the prediction of standard DSA theory in both its intensity and spectrum index with an injection efficiency of 1. CSP can increase the injection efficiency through direct particle reflection back upstream, but it has little effect on the energetic particle acceleration once the speed of injected particles is beyond a few times the shock speed. This test particle simulation proves that the focused transport theory is an extension of DSA theory with the capability of predicting the efficiency of particle injection.

  11. Laboratory-based micro-X-ray fluorescence setup using a von Hamos crystal spectrometer and a focused beam X-ray tube

    SciTech Connect (OSTI)

    Kayser, Y.; B?achucki, W.; Dousse, J.-Cl.; Hoszowska, J.; Neff, M.; Romano, V.

    2014-04-15

    The high-resolution von Hamos bent crystal spectrometer of the University of Fribourg was upgraded with a focused X-ray beam source with the aim of performing micro-sized X-ray fluorescence (XRF) measurements in the laboratory. The focused X-ray beam source integrates a collimating optics mounted on a low-power micro-spot X-ray tube and a focusing polycapillary half-lens placed in front of the sample. The performances of the setup were probed in terms of spatial and energy resolution. In particular, the fluorescence intensity and energy resolution of the von Hamos spectrometer equipped with the novel micro-focused X-ray source and a standard high-power water-cooled X-ray tube were compared. The XRF analysis capability of the new setup was assessed by measuring the dopant distribution within the core of Er-doped SiO{sub 2} optical fibers.

  12. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap

    SciTech Connect (OSTI)

    Nikolaev, A. G.; Savkin, K. P.; Oks, E. M.; Vizir, A. V.; Yushkov, G. Yu.; Vodopyanov, A. V.; Izotov, I. V.; Mansfeld, D. A.

    2012-02-15

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent ''minimum-B'' structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap - axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 {mu}s) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  13. Relativistic self-focusing of ultra-high intensity X-ray laser beams in warm quantum plasma with upward density profile

    SciTech Connect (OSTI)

    Habibi, M.; Ghamari, F.

    2014-05-15

    The results of a numerical study of high-intensity X-ray laser beam interaction with warm quantum plasma (WQP) are presented. By means of an upward ramp density profile combined with quantum factors specially the Fermi velocity, we have demonstrated significant relativistic self-focusing (RSF) of a Gaussian electromagnetic beam in the WQP where the Fermi temperature term in the dielectric function is important. For this purpose, we have considered the quantum hydrodynamics model that modifies refractive index of inhomogeneous WQPs with the inclusion of quantum correction through the quantum statistical and diffraction effects in the relativistic regime. Also, to better illustration of the physical difference between warm and cold quantum plasmas and their effect on the RSF, we have derived the envelope equation governing the spot size of X-ray laser beam in Q-plasmas. In addition to the upward ramp density profile, we have found that the quantum effects would be caused much higher oscillation and better focusing of X-ray laser beam in the WQP compared to that of cold quantum case. Our computational results reveal the importance of the use of electrons density profile and Fermi speed in enhancing self-focusing of laser beam.

  14. Response to “Comment on ‘Stationary self-focusing of Gaussian laser beam in relativistic thermal quantum plasma’” [Phys. Plasmas 21, 064701 (2014)

    SciTech Connect (OSTI)

    Patil, S. D.; Takale, M. V.

    2014-06-15

    Habibi and Ghamari have presented a Comment on our paper [Phys. Plasmas 20, 072703 (2013)] by examining quantum dielectric response in thermal quantum plasma. They have modeled the relativistic self-focusing of Gaussian laser beam in cold and warm quantum plasmas and reported that self-focusing length does not change in both situations. In this response, we have reached the following important conclusions about the comment itself.

  15. CW/Pulsed H{sup ?} ion beam generation with PKU Cs-free 2.45 GHz microwave driven ion source

    SciTech Connect (OSTI)

    Peng, S. X. Ren, H. T.; Xu, Y.; Zhang, T.; Zhang, J. F.; Zhao, J.; Guo, Z. Y.; Zhang, A. L.; Chen, J. E.

    2015-04-08

    Circular accelerators used for positron emission tomography (PET, i.e. accelerator used for make radio isotopes) need several mA of CW H- ion beam for their routine operation. Other facilities, like Space Radio-Environment Simulate Assembly (SPRESA), require less than 10?mA pulsed mode H{sup ?} beam. Caesium free negative hydrogen ion source is a good choice for those facilities because of its compact structure, easy operation and low cost. Up to now, there is no H{sup ?} source able to produce very intense H{sup ?} beams with important variation of the duty factor{sup [1]}. Recently, a new version of 2.45?GHz microwave H{sup ?} ion source was designed at PKU, based on lessons learnt from the previous one. This non cesiated source is very compact thanks to its permanent magnet configuration. Special attention was paid on the design of the discharge chamber structure, electron dumping and extraction system. Source test to produce H{sup ?} ion beams in pulsed and CW mode was carried out on PKU ion source test bench. In CW mode, a 10.8?mA/30keV H{sup ?} beam with rms emittance about 0.16 ?·mm·mrad has been obtained with only 500?W rf power. The power efficiency reaches 21?mA/kW. In pulsed mode with duty factor of 10% (100Hz/1ms), this compact source can easily deliver 20?mA H{sup ?} ion beam at 35 keV with rms emittance about 0.2 ?·mm·mrad when RF power is set at 2.2 kW (peak power). Several hour successive running operation in both modes and totaling more than 200 hours proves its high quality. The outside dimension of this new H{sup ?} source body is ?116?mm × 124?mm, and the entire H{sup ?} source infrastructure, including rf matching section, plasma chamber and extraction system, is ?310 × 180?mm. The high voltage region is limited with in a ?310?mm × 230?mm diagram. Details are given in this paper.

  16. Demonstration of electronic pattern switching and 10x pattern demagnification in a maskless micro-ion beam reduction lithography system

    SciTech Connect (OSTI)

    Ngo, V.V.; Akker, B.; Leung, K.N.; Noh, I.; Scott, K.L.; Wilde, S.

    2002-05-31

    A proof-of-principle ion projection lithography (IPL) system called Maskless Micro-ion beam Reduction Lithography (MMRL) has been developed and tested at the Lawrence Berkeley National Laboratory (LBNL) for future integrated circuits (ICs) manufacturing and thin film media patterning [1]. This MMRL system is aimed at completely eliminating the first stage of the conventional IPL system [2] that contains the complicated beam optics design in front of the stencil mask and the mask itself. It consists of a multicusp RF plasma generator, a multi-beamlet pattern generator, and an all-electrostatic ion optical column. Results from ion beam exposures on PMMA and Shipley UVII-HS resists using 75 keV H+ are presented in this paper. Proof-of-principle electronic pattern switching together with 10x reduction ion optics (using a pattern generator made of nine 50-{micro}m switchable apertures) has been performed and is reported in this paper. In addition, the fabrication of a micro-fabricated pattern generator [3] on an SOI membrane is also presented.

  17. Investigation of the mechanism of impurity assisted nanoripple formation on Si induced by low energy ion beam erosion

    SciTech Connect (OSTI)

    Koyiloth Vayalil, Sarathlal; Gupta, Ajay; Roth, Stephan V.; Ganesan, V.

    2015-01-14

    A detailed mechanism of the nanoripple pattern formation on Si substrates generated by the simultaneous incorporation of pure Fe impurities at low energy (1 keV) ion beam erosion has been studied. To understand and clarify the mechanism of the pattern formation, a comparative analysis of the samples prepared for various ion fluence values using two complimentary methods for nanostructure analysis, atomic force microscopy, and grazing incidence small angle x-ray scattering has been done. We observed that phase separation of the metal silicide formed during the erosion does not precede the ripple formation. It rather concurrently develops along with the ripple structure. Our work is able to differentiate among various models existing in the literature and provides an insight into the mechanism of pattern formation under ion beam erosion with impurity incorporation.

  18. Note: {sup 6}Li III light intensity observation for {sup 6}Li{sup 3+} ion beam operation at Hyper-Electron Cyclotron Resonance ion source

    SciTech Connect (OSTI)

    Muto, Hideshi; Ohshiro, Yukimitsu; Yamaka, Shoichi; Yamaguchi, Hidetoshi; Shimoura, Susumu; Watanabe, Shin-ichi; Oyaizu, Michihiro; Kobayashi, Kiyoshi; Kotaka, Yasuteru; Nishimura, Makoto; Kase, Masayuki; Kubono, Shigeru; Hattori, Toshiyuki

    2014-12-15

    The light intensity of {sup 6}Li III line spectrum at ? = 516.7 nm was observed during {sup 6}Li{sup 3+} beam tuning at the Hyper-Electron Cyclotron Resonance (ECR) ion source. Separation of ion species of the same charge to mass ratio with an electromagnetic mass analyzer is known to be an exceptionally complex process. However, {sup 6}Li III line intensity observation conducted in this study gives new insights into its simplification of this process. The light intensity of {sup 6}Li III line spectrum from the ECR plasma was found to have a strong correlation with the extracted {sup 6}Li{sup 3+} beam intensity from the RIKEN Azimuthal Varying Field cyclotron.

  19. Propagation of ion-acoustic solitons in an electron beam-superthermal plasma system with finite ion-temperature: Linear and fully nonlinear investigation

    SciTech Connect (OSTI)

    Saberian, E. [Department of Physics, Faculty of Sciences, Azarbaijan Shahid Madani University, 53714-161 Tabriz (Iran, Islamic Republic of); Department of Physics, Faculty of Basic Sciences, University of Neyshabur, Neyshabur (Iran, Islamic Republic of); Esfandyari-Kalejahi, A.; Rastkar-Ebrahimzadeh, A.; Afsari-Ghazi, M. [Department of Physics, Faculty of Sciences, Azarbaijan Shahid Madani University, 53714-161 Tabriz (Iran, Islamic Republic of)

    2013-03-15

    The propagation of ion-acoustic (IA) solitons is studied in a plasma system, comprised of warm ions and superthermal (Kappa distributed) electrons in the presence of an electron-beam by using a hydrodynamic model. In the linear analysis, it is seen that increasing the superthermality lowers the phase speed of the IA waves. On the other hand, in a fully nonlinear investigation, the Mach number range and characteristics of IA solitons are analyzed, parametrically and numerically. It is found that the accessible region for the existence of IA solitons reduces with increasing the superthermality. However, IA solitons with both negative and positive polarities can coexist in the system. Additionally, solitary waves with both subsonic and supersonic speeds are predicted in the plasma, depending on the value of ion-temperature and the superthermality of electrons in the system. It is examined that there are upper critical values for beam parameters (i.e., density and velocity) after which, IA solitary waves could not propagate in the plasma. Furthermore, a typical interaction between IA waves and the electron-beam in the plasma is confirmed.

  20. High-resolution diffraction microscopy using the plane-wave field of a nearly diffraction limited focused x-ray beam

    SciTech Connect (OSTI)

    Takahashi, Yukio; Nishino, Yoshinori; Ishikawa, Tetsuya; Tsutsumi, Ryosuke; Kubo, Hideto; Furukawa, Hayato; Mimura, Hidekazu; Matsuyama, Satoshi; Zettsu, Nobuyuki; Matsubara, Eiichiro; Yamauchi, Kazuto

    2009-08-01

    X-ray waves in the center of the beam waist of nearly diffraction limited focused x-ray beams can be considered to have amplitude and phase that are both almost uniform, i.e., they are x-ray plane waves. Here we report the results of an experimental demonstration of high-resolution diffraction microscopy using the x-ray plane wave of the synchrotron x-ray beam focused using Kirkpatrik-Baez mirrors. A silver nanocube with an edge length of {approx}100 nm is illuminated with the x-ray beam focused to a {approx}1 {mu}m spot at 12 keV. A high-contrast symmetric diffraction pattern of the nanocube is observed in the forward far field. An image of the nanocube is successfully reconstructed by an iterative phasing method and its half-period resolution is 3.0 nm. This method does not only dramatically improve the spatial resolution of x-ray microscopy but also is a key technology for realizing single-pulse diffractive imaging using x-ray free-electron lasers.

  1. Biaxial texturing of inorganic photovoltaic thin films using low energy ion beam irradiation during growth

    SciTech Connect (OSTI)

    Groves, James R; De Paula, Raymond F; Hayes, Garrett H; Li, Joel B; Hammond, Robert H; Salleo, Alberto; Clemens, Bruce M

    2010-05-07

    We describe our efforts to control the grain boundary alignment in polycrystalline thin films of silicon by using a biaxially textured template layer of CaF{sub 2} for photovoltaic device applications. We have chosen CaF{sub 2} as a candidate material due to its close lattice match with silicon and its suitability as an ion beam assisted deposition (mAD) material. We show that the CaF{sub 2} aligns biaxially at a thickness of {approx}10 nm and, with the addition of an epitaxial CaF{sub 2} layer, has an in-plane texture of {approx}15{sup o}. Deposition of a subsequent layer of Si aligns on the template layer with an in-plane texture of 10.8{sup o}. The additional improvement of in-plane texture is similar to the behavior observed in more fully characterized IBAD materials systems. A germanium buffer layer is used to assist in the epitaxial deposition of Si on CaF{sub 2} template layers and single crystal substrates. These experiments confirm that an mAD template can be used to biaxially orient polycrystalline Si.

  2. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bang, W.; Albright, B. J.; Bradley, P. A.; Gautier, D. C.; Palaniyappan, S.; Vold, E. L.; Cordoba, M. A. Santiago; Hamilton, C. E.; Fernández, J. C.

    2015-09-22

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has beenmore » unavailable to date. We have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.« less

  3. Transverse field focused system

    DOE Patents [OSTI]

    Anderson, O.A.

    1983-06-01

    It is an object of the invention to provide a transport apparatus for a high current negative-ion beam which will bend the beam around corners through a baffled path in a differential pump or a neutron trap. It is another object of the invention to provide a transport apparatus for a high current negative-ion beam which will allow gas molecules in the beam to exit outwardly from the transport apparatus. A further object of the invention is to provide a multi-stage accelerator for a high current negative-ion beam which will enable acceleration of the beam to very high energy levels with a minimum loss of current carrying capacity. A still further object of the invention is to provide an apparatus for transport or accelertion of a sheet beam of negative ions which is shaped to confine the beam against divergence or expansion.

  4. Strong focus space charge

    DOE Patents [OSTI]

    Booth, Rex (Livermore, CA)

    1981-01-01

    Strong focus space charge lens wherein a combination of current-carrying coils and charged electrodes form crossed magnetic and electric fields to focus charged particle beams.

  5. A novel approach to prepare optically active ion doped luminescent materials via electron beam evaporation into ionic liquids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Richter, K.; Lorbeer, C.; Mudring, A. -V.

    2014-11-10

    A novel approach to prepare luminescent materials via electron-beam evaporation into ionic liquids is presented which even allows doping of host lattices with ions that have a strong size mismatch. Thus, to prove this, MgF2 nanoparticles doped with Eu3+ were fabricated. The obtained nanoparticles featured an unusually high luminescence lifetime and the obtained material showed a high potential for application.

  6. Virtually distortion-free imaging system for large field, high resolution lithography using electrons, ions or other particle beams

    DOE Patents [OSTI]

    Hawryluk, A.M.; Ceglio, N.M.

    1993-01-12

    Virtually distortion free large field high resolution imaging is performed using an imaging system which contains large field distortion or field curvature. A reticle is imaged in one direction through the optical system to form an encoded mask. The encoded mask is then imaged back through the imaging system onto a wafer positioned at the reticle position. Particle beams, including electrons, ions and neutral particles, may be used as well as electromagnetic radiation.

  7. Time-of-flight energy analyzer for the plasma potential measurements by a heavy ion beam diagnostic

    SciTech Connect (OSTI)

    Nedzelskiy, I.S.; Malaquias, A.; Goncalves, B.; Silva, C.; Varandas, C.A.F.; Cabral, J.A.C.

    2004-10-01

    A time-of-flight (TOF) technique for the plasma potential measurements by a heavy ion beam diagnostic (HIBD) with a multiple cell array detector has been elaborated on tokamak ISTTOK as an alternative to the traditional electrostatic energy analyzer. This article describes the design and operation of a four-channel TOF energy analyzer (TOFEA). First results of plasma potential measurements by TOFEA are presented proving the feasibility of this technique in experiments with HIBD.

  8. CW argon-ion laser beams with a central dark region

    SciTech Connect (OSTI)

    Lu Ke Cheng; Sheng Qiu Qin; Liu Zhi Guo; Lu Fu Yun

    1986-08-01

    This paper studies the central dark-region of CW Ar/sup +/ laser beams. The relationship between the dark-region of beam cross section and discharge current has been measured and the spectrum of laser beam has been studied. The cause for the central dark region is discussed.

  9. First plasma of megawatt high current ion source for neutral beam injector of the experimental advanced superconducting tokamak on the test bed

    SciTech Connect (OSTI)

    Hu Chundong; Xie Yahong; Liu Sheng; Xie Yuanlai; Jiang Caichao; Song Shihua; Li Jun; Liu Zhimin

    2011-02-15

    High current ion source is the key part of the neutral beam injector. In order to develop the project of 4 MW neutral beam injection for the experimental advanced superconducting tokamak (EAST) on schedule, the megawatt high current ion source is prestudied in the Institute of Plasma Physics in China. In this paper, the megawatt high current ion source test bed and the first plasma are presented. The high current discharge of 900 A at 2 s and long pulse discharge of 5 s at 680 A are achieved. The arc discharge characteristic of high current ion source is analyzed primarily.

  10. Understanding extraction and beam transport in the ISIS H{sup -} Penning surface plasma ion source

    SciTech Connect (OSTI)

    Faircloth, D. C.; Letchford, A. P.; Gabor, C.; Whitehead, M. O.; Wood, T.; Jolly, S.; Pozimski, J.; Savage, P.; Woods, M.

    2008-02-15

    The ISIS H{sup -} Penning surface plasma source has been developed to produce beam currents up to 70 mA and pulse lengths up to 1.5 ms at 50 Hz. This paper details the investigation into beam extraction and beam transport in an attempt to understand the beam emittance and to try to improve the emittance. A scintillator profile measurement technique has been developed to assess the performance of different plasma electrode apertures, extraction electrode geometries, and postextraction acceleration configurations. This work shows that the present extraction, beam transport, and postacceleration system are suboptimal and further work is required to improve it.

  11. A PARALLEL-PROPAGATING ALFVENIC ION-BEAM INSTABILITY IN THE HIGH-BETA SOLAR WIND

    SciTech Connect (OSTI)

    Verscharen, Daniel; Bourouaine, Sofiane; Chandran, Benjamin D. G.; Maruca, Bennett A. E-mail: s.bourouaine@unh.edu E-mail: bmaruca@ssl.berkeley.edu

    2013-08-10

    We investigate the conditions under which parallel-propagating Alfven/ion-cyclotron waves are driven unstable by an isotropic (T{sub {alpha}} = T{sub Parallel-To {alpha}}) population of alpha particles drifting parallel to the magnetic field at an average speed U{sub {alpha}} with respect to the protons. We derive an approximate analytic condition for the minimum value of U{sub {alpha}} needed to excite this instability and refine this result using numerical solutions to the hot-plasma dispersion relation. When the alpha-particle number density is {approx_equal} 5% of the proton number density and the two species have similar thermal speeds, the instability requires that {beta}{sub p} {approx}> 1, where {beta}{sub p} is the ratio of the proton pressure to the magnetic pressure. For 1 {approx}< {beta}{sub p} {approx}< 12, the minimum U{sub {alpha}} needed to excite this instability ranges from 0.7v{sub A} to 0.9v{sub A}, where v{sub A} is the Alfven speed. This threshold is smaller than the threshold of {approx_equal} 1.2v{sub A} for the parallel magnetosonic instability, which was previously thought to have the lowest threshold of the alpha-particle beam instabilities at {beta}{sub p} {approx}> 0.5. We discuss the role of the parallel Alfvenic drift instability for the evolution of the alpha-particle drift speed in the solar wind. We also analyze measurements from the Wind spacecraft's Faraday cups and show that the U{sub {alpha}} values measured in solar-wind streams with T{sub {alpha}} Almost-Equal-To T{sub Parallel-To {alpha}} are approximately bounded from above by the threshold of the parallel Alfvenic instability.

  12. Note: Effect of hot liner in producing {sup 40,48}Ca beam from RIKEN 18-GHz electron cyclotron resonance ion source

    SciTech Connect (OSTI)

    Ozeki, K. Higurashi, Y.; Kidera, M.; Nakagawa, T.

    2015-01-15

    In order to produce a high-intensity and stable {sup 48}Ca beam from the RIKEN 18-GHz electron cyclotron resonance ion source, we have begun testing the production of a calcium beam using a micro-oven. To minimize the consumption rate of the material ({sup 48}Ca), we introduced the “hot liner” method and investigated the effect of the liner on the material consumption rate. The micro-oven was first used to produce the {sup 48}Ca beam for experiments in the RIKEN radioisotope beam factory, and a stable beam could be supplied for a long time with low consumption rate.

  13. Solenoid transport of a heavy ion beam for warm dense matterstudies and inertial confinement fusion

    SciTech Connect (OSTI)

    Armijo, Julien

    2006-10-01

    From February to July 2006, I have been doing research as a guest at Lawrence Berkeley National Laboratory (LBNL), in the Heavy Ion Fusion group. This internship, which counts as one semester in my master's program in France, I was very pleased to do it in a field that I consider has the beauty of fundamental physics, and at the same time the special appeal of a quest for a long-term and environmentally-respectful energy source. During my stay at LBNL, I have been involved in three projects, all of them related to Neutralized Drift Compression Experiment (NDCX). The first one, experimental and analytical, has consisted in measuring the effects of the eddy currents induced by the pulsed magnets in the conducting plates of the source and diagnostic chambers of the Solenoid Transport Experiment (STX, which is a subset of NDCX). We have modeled the effect and run finite-element simulations that have reproduced the perturbation to the field. Then, we have modified WARP, the Particle-In-Cell code used to model the whole experiment, in order to import realistic fields including the eddy current effects and some details of each magnet. The second project has been to take part in a campaign of WARP simulations of the same experiment to understand the leakage of electrons that was observed in the experiment as a consequence to some diagnostics and the failure of the electrostatic electron trap. The simulations have shown qualitative agreement with the measured phenomena, but are still in progress. The third project, rather theoretical, has been related to the upcoming target experiment of a thin aluminum foil heated by a beam to the 1-eV range. At the beginning I helped by analyzing simulations of the hydrodynamic expansion and cooling of the heated material. But, progressively, my work turned into making estimates for the nature of the liquid/vapor two-phase flow. In particular, I have been working on criteria and models to predict the formation of droplets, their size, and their partial or total evaporation in the expanding flow.

  14. Time evolution of the luminosity of colliding heavy-ion beams in BNL Relativistic Heavy Ion Collider and CERN Large Hadron Collider

    SciTech Connect (OSTI)

    Bruce, R.; Blaskiewicz, M.; Jowett, J.M.; Fischer, W.

    2010-09-07

    We have studied the time evolution of the heavy ion luminosity and bunch intensities in the Relativistic Heavy Ion Collider (RHIC), at BNL, and in the Large Hadron Collider (LHC), at CERN. First, we present measurements from a large number of RHIC stores (from Run 7), colliding 100 GeV/nucleon {sup 197}Au{sup 79}+ beams without stochastic cooling. These are compared with two different calculation methods. The first is a simulation based on multi-particle tracking taking into account collisions, intrabeam scattering, radiation damping, and synchrotron and betatron motion. In the second, faster, method, a system of ordinary differential equations with terms describing the corresponding effects on emittances and bunch populations is solved numerically. Results of the tracking method agree very well with the RHIC data. With the faster method, significant discrepancies are found since the losses of particles diffusing out of the RF bucket due to intrabeam scattering are not modeled accurately enough. Finally, we use both methods to make predictions of the time evolution of the future {sup 208}Pb+{sup 82+} beams in the LHC at injection and collision energy. For this machine, the two methods agree well.

  15. Resolution Improvement and Pattern Generator Development for theMaskless Micro-Ion-Beam Reduction Lithography System

    SciTech Connect (OSTI)

    Jiang, Ximan

    2006-05-18

    The shrinking of IC devices has followed the Moore's Law for over three decades, which states that the density of transistors on integrated circuits will double about every two years. This great achievement is obtained via continuous advance in lithography technology. With the adoption of complicated resolution enhancement technologies, such as the phase shifting mask (PSM), the optical proximity correction (OPC), optical lithography with wavelength of 193 nm has enabled 45 nm printing by immersion method. However, this achievement comes together with the skyrocketing cost of masks, which makes the production of low volume application-specific IC (ASIC) impractical. In order to provide an economical lithography approach for low to medium volume advanced IC fabrication, a maskless ion beam lithography method, called Maskless Micro-ion-beam Reduction Lithography (MMRL), has been developed in the Lawrence Berkeley National Laboratory. The development of the prototype MMRL system has been described by Dr. Vinh Van Ngo in his Ph.D. thesis. But the resolution realized on the prototype MMRL system was far from the design expectation. In order to improve the resolution of the MMRL system, the ion optical system has been investigated. By integrating a field-free limiting aperture into the optical column, reducing the electromagnetic interference and cleaning the RF plasma, the resolution has been improved to around 50 nm. Computational analysis indicates that the MMRL system can be operated with an exposure field size of 0.25 mm and a beam half angle of 1.0 mrad on the wafer plane. Ion-ion interactions have been studied with a two-particle physics model. The results are in excellent agreement with those published by the other research groups. The charge-interaction analysis of MMRL shows that the ion-ion interactions must be reduced in order to obtain a throughput higher than 10 wafers per hour on 300-mm wafers. In addition, two different maskless lithography strategies have been studied. The dependence of the throughput with the exposure field size and the speed of the mechanical stage has been investigated. In order to perform maskless lithography, different micro-fabricated pattern generators have been developed for the MMRL system. Ion beamlet switching has been successfully demonstrated on the MMRL system. A positive bias voltage around 10 volts is sufficient to switch off the ion current on the micro-fabricated pattern generators. Some unexpected problems, such as the high-energy secondary electron radiations, have been discovered during the experimental investigation. Thermal and structural analysis indicates that the aperture displacement error induced by thermal expansion can satisfy the 3{delta} CD requirement for lithography nodes down to 25 nm. The cross-talking effect near the surface and inside the apertures of the pattern generator has been simulated in a 3-D ray-tracing code. New pattern generator design has been proposed to reduce the cross-talking effect. In order to eliminate the surface charging effect caused by the secondary electrons, a new beam-switching scheme in which the switching electrodes are immersed in the plasma has been demonstrated on a mechanically fabricated pattern generator.

  16. 3D characterization of intermetallics in a high pressure die cast Mg alloy using focused ion beam tomography

    SciTech Connect (OSTI)

    Nagasekhar, A.V. [ARC Centre of Excellence for Design in Light Metals, Materials Engineering, University of Queensland, Brisbane, QLD 4072 (Australia); Caceres, C.H., E-mail: c.caceres@uq.edu.au [ARC Centre of Excellence for Design in Light Metals, Materials Engineering, University of Queensland, Brisbane, QLD 4072 (Australia); Kong, C. [Electron Microscope Unit, UNSW Analytical Centre, University of New South Wales, Sydney, NSW 2052 (Australia)

    2010-11-15

    The degree of spatial interconnection of the Mg{sub 17}Al{sub 12} ({beta}-phase) intermetallic in a Mg-9Al-1Zn alloy was assessed through serial sectioning at the centre and near a corner in a casting cross-section. The three dimensional reconstructions showed that the intermetallics were profusely interconnected forming a scaffold-like network over the entire cross-section, but especially near the casting surface. The scale and degree of the interconnection appeared determined by the local concentration of large dendritic grains injected from the shot sleeve. The volume fractions of intermetallics obtained through the 3D reconstruction indicated a higher content of {beta}-phase at the corner regions in comparison with the core. The volume fractions obtained by FIB were consistent with theoretical and experimental values obtained using other techniques.

  17. Ion beam nanopatterning of III-V semiconductors: Consistency of experimental and simulation trends within a chemistry-driven theory

    SciTech Connect (OSTI)

    El-Atwani, O.; Norris, S. A.; Ludwig, K.; Gonderman, S.; Allain, J. P.

    2015-12-16

    In this study, several proposed mechanisms and theoretical models exist concerning nanostructure evolution on III-V semiconductors (particularly GaSb) via ion beam irradiation. However, making quantitative contact between experiment on the one hand and model-parameter dependent predictions from different theories on the other is usually difficult. In this study, we take a different approach and provide an experimental investigation with a range of targets (GaSb, GaAs, GaP) and ion species (Ne, Ar, Kr, Xe) to determine new parametric trends regarding nanostructure evolution. Concurrently, atomistic simulations using binary collision approximation over the same ion/target combinations were performed to determine parametric trends on several quantities related to existing model. A comparison of experimental and numerical trends reveals that the two are broadly consistent under the assumption that instabilities are driven by chemical instability based on phase separation. Furthermore, the atomistic simulations and a survey of material thermodynamic properties suggest that a plausible microscopic mechanism for this process is an ion-enhanced mobility associated with energy deposition by collision cascades.

  18. Ion beam nanopatterning of III-V semiconductors: Consistency of experimental and simulation trends within a chemistry-driven theory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    El-Atwani, O.; Norris, S. A.; Ludwig, K.; Gonderman, S.; Allain, J. P.

    2015-12-16

    In this study, several proposed mechanisms and theoretical models exist concerning nanostructure evolution on III-V semiconductors (particularly GaSb) via ion beam irradiation. However, making quantitative contact between experiment on the one hand and model-parameter dependent predictions from different theories on the other is usually difficult. In this study, we take a different approach and provide an experimental investigation with a range of targets (GaSb, GaAs, GaP) and ion species (Ne, Ar, Kr, Xe) to determine new parametric trends regarding nanostructure evolution. Concurrently, atomistic simulations using binary collision approximation over the same ion/target combinations were performed to determine parametric trends onmore » several quantities related to existing model. A comparison of experimental and numerical trends reveals that the two are broadly consistent under the assumption that instabilities are driven by chemical instability based on phase separation. Furthermore, the atomistic simulations and a survey of material thermodynamic properties suggest that a plausible microscopic mechanism for this process is an ion-enhanced mobility associated with energy deposition by collision cascades.« less

  19. Trace element content and magnetic properties of commercial HOPG samples studied by ion beam microscopy and SQUID magnetometry

    SciTech Connect (OSTI)

    Spemann, D. Esquinazi, P. Setzer, A.; Böhlmann, W.

    2014-10-15

    In this study, the impurity concentration and magnetic response of nine highly oriented pyrolytic graphite (HOPG) samples with different grades and from different providers were determined using ion beam microscopy and SQUID magnetometry. Apart from sideface contaminations in the as-received state, bulk contamination of the samples in most cases consists of disk-shaped micron-sized particles made of Ti and V with an additional Fe contamination around the grain perimeter. The saturation magnetization typically increases with Fe concentration, however, there is no simple correlation between Fe content and magnetic moment. The saturation magnetization of one, respectively six, out of nine samples clearly exceeds the maximum contribution from pure Fe or Fe{sub 3}C. For most samples the temperature dependence of the remanence decreases linearly with T – a dependence found previously for defect-induced magnetism (DIM) in HOPG. We conclude that apart from magnetic impurities, additional contribution to the ferromagnetic magnetization exists in pristine HOPG in agreement with previous studies. A comparative study between the results of ion beam microscopy and the commonly used EDX analysis shows clearly that EDX is not a reliable method for quantitative trace elemental analysis in graphite, clarifying weaknesses and discrepancies in the element concentrations given in the recent literature.

  20. Ion Beam Analysis of the Thermal Stability of Hydrogenated Diamond-Like Carbon Thin Films on Si Substrate

    SciTech Connect (OSTI)

    Nandasiri, M. I.; Moore, A.; Garratt, E.; Wickey, K. J.; AlFaify, S.; Gao, X.; Kayani, A.; Ingram, D.

    2009-03-10

    Unbalanced magnetron sputtering deposition of C-H films has been performed with various levels of negative substrate bias and with a fixed flow rate of hydrogen. Argon was used as a sputtering gas and formed the majority of the gas in the plasma. The effect of hydrogenation on the final concentration of trapped elements and their thermal stability with respect to hydrogen content is studied using ion beam analysis (IBA) techniques. The elemental concentrations of the films were measured in the films deposited on silicon substrates with a 2.5 MeV of H{sup +} beam, which is used to perform Rutherford Backscattering Spectrometry (RBS) and Non-Rutherford Backscattering spectrometry (NRBS) and with 16 MeV of O{sup 5+} beam, used to perform Elastic Recoil Detection Analysis (ERDA). Effect of bias on the thermal stability of trapped hydrogen in the films has been studied. As the films were heated in-situ in vacuum using a non-gassy button heater, hydrogen was found to be decreasing around 400 deg. C.

  1. Spectral properties of laser-accelerated mid-Z MeV/u ion beams

    SciTech Connect (OSTI)

    Hegelich, B.M.; Albright, B.; Cobble, J.; Gautier, C.; Johnson, R.; Letzring, S.; Fernandez, J.C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Audebert, P.; Fuchs, J. [Laboratoire pour l'Utilisation des Lasers Intenses, Ecole Polytechnique, 91128 Palaiseau (France); Blazevic, A.; Brambrink, E.; Geissel, M.; Roth, M. [Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Cowan, T.; Kemp, A. [Physics Department, MS-220, University of Nevada, Reno, Nevada 89557 (United States); Gauthier, J.C. [Centre Lasers Intenses et Applications (CELIA), UMR 5107 CNRS, Universite Bordeaux 1, CEA, Universite Bordeaux 1, 33405 Talence (France); Habs, D.; Schramm, U.; Schreiber, J. [Ludwig-Maximilian Universitaet Muenchen, 85748 Garching (Germany); Karsch, S. [Max-Planck-Institut fuer Quantenoptik, 85748 Garching (Germany)] (and others)

    2005-05-15

    Collimated jets of beryllium, carbon, oxygen, fluorine, and palladium ions with >1 MeV/nucleon energies are observed from the rear surface of thin foils irradiated with laser intensities of up to 5x10{sup 19} W/cm{sup 2}. The normally dominant proton acceleration is suppressed when the target is subjected to Joule heating to remove hydrogen-bearing contaminant. This inhibits screening effects and permits effective energy transfer to and acceleration of heavier ion species. The influence of remnant protons on the spectral shape of the next highest charge-to-mass ratio species is shown. Particle-in-cell simulations confirming the experimental findings are presented.

  2. Performance of a Small High-Pressure Xenon Detector at Sub-MeV Photon Energies with an Example Application to Ion Beam Analysis

    SciTech Connect (OSTI)

    Pallone, Arthur K.; Beyerle, Al; Demaree, John D.

    2009-03-10

    Ion beam analysis (IBA) is a nondestructive method that provides nondestructive compositional information of a sample. Many IBA techniques derive the information from high-energy photons produced by the interaction of the ion beam with the sample. The performance of a 1.53.8-inch cm diameter by 37.6-inch cm long high-pressure xenon (HPXe) detector is investigated at photon energies useful to IBA. The results for the HPXe detector are then used to predict the performance of larger HPXe detectors at those energies and recommendations are made for an HPXe system for IBA.

  3. Change in magnetic and structural properties of FeRh thin films by gold cluster ion beam irradiation with the energy of 1.67?MeV/atom

    SciTech Connect (OSTI)

    Koide, T.; Iwase, A. [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Saitoh, Y. [Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan); Sakamaki, M.; Amemiya, K. [High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Matsui, T., E-mail: t-matsui@21c.osakafu-u.ac.jp [Research Organization for the 21st Century, Osaka Prefecture University Sakai, Osaka 599-8531 (Japan)

    2014-05-07

    The effect of energetic cluster ion beam irradiation on magnetic and structural properties of FeRh thin films have been investigated. The cluster ions used in the present studies consist of a few gold atoms with the energy of 1.67?MeV/gold atom. Saturation magnetization of the sample irradiated with Au3 cluster ion beam (280?emu/cc) is larger than that for the irradiated sample with Au1 ion beam (240?emu/cc) for the same irradiation ion fluence. These results can also be confirmed by the X-ray magnetic circular dichroism (XMCD) measurement; the XMCD signal for Au3 cluster ion irradiation is larger than that for Au1 ion irradiation. Since the ion beam irradiation induced magnetization of FeRh is significantly correlated with the amount of the lattice defects in the samples, cluster ion beam irradiation can be considered to effectively introduce the lattice defects in B2-type FeRh rather than the single ion beam. Consequently, cluster ion irradiation is better than single ion irradiation for the viewpoint of saturation magnetization, even if the same irradiation energy is deposited in the samples.

  4. Optimizing C{sup 4+} and C{sup 5+} beams of the Kei2 electron cyclotron resonance ion source using a special gas-mixing technique

    SciTech Connect (OSTI)

    Drentje, A.G.; Muramatsu, M.; Kitagawa, A.

    2006-03-15

    With the prototype electron cyclotron resonance ion source for the next carbon therapy facility in Japan a series of measurements has been performed in order (a) to find the best condition for producing high beam currents of C{sup 4+} ions, and (b) to study the effect of 'special' gas mixing by using a chemical compound as a feed gas. The effect would then appear as an increase in high charge state production in this case of C{sup 5+} ions. In 'regular' gas-mixing experiments it is well known that an isotopic phenomenon occurs: a heavier isotope of the mixing gas is increasing the production of high charge states of the beam gas ions. A similar isotopic effect has been found in the present experiment: with deuterated methane (CD{sub 4} gas) the C{sup 5+} beam currents are about 10% higher than with regular methane (CH{sub 4} gas). The 'mixing-gas' ratio D (or H) to C can be decreased by choosing, e.g., butane gas; in this case the isotopic effect for C{sup 5+} production is even stronger (>15%). For production of C{sup 4+} ions the isotopic effect appears to be absent. Clearly this is related to the much easier production. It turns out that the relative amount of carbon is much more important: butane gives about 10% higher C{sup 4+}-ion currents than methane.

  5. Super-resolution nanofabrication with metal-ion doped hybrid material through an optical dual-beam approach

    SciTech Connect (OSTI)

    Cao, Yaoyu; Li, Xiangping; Gu, Min

    2014-12-29

    We apply an optical dual-beam approach to a metal-ion doped hybrid material to achieve nanofeatures beyond the optical diffraction limit. By spatially inhibiting the photoreduction and the photopolymerization, we realize a nano-line, consisting of polymer matrix and in-situ generated gold nanoparticles, with a lateral size of sub 100?nm, corresponding to a factor of 7 improvement compared to the diffraction limit. With the existence of gold nanoparticles, a plasmon enhanced super-resolution fabrication mechanism in the hybrid material is observed, which benefits in a further reduction in size of the fabricated feature. The demonstrated nanofeature in hybrid materials paves the way for realizing functional nanostructures.

  6. Study of plasma meniscus formation and beam halo in negative ion source using the 3D3VPIC model

    SciTech Connect (OSTI)

    Nishioka, S.; Goto, I.; Hatayama, A.; Miyamoto, K.; Fukano, A.

    2015-04-08

    In this paper, the effect of the electron confinement time on the plasma meniscus and the fraction of the beam halo is investigated by 3D3V-PIC (three dimension in real space and three dimension in velocity space) (Particle in Cell) simulation in the extraction region of negative ion source. The electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of diffusion across the magnetic field. Our 3D3V-PIC results support the previous result by 2D3V-PIC results i.e., it is confirmed that the penetration of the plasma meniscus becomes deep into the source plasma region when the effective confinement time is short.

  7. Current-driven ion-acoustic and potential-relaxation instabilities excited in plasma plume during electron beam welding

    SciTech Connect (OSTI)

    Trushnikov, D. N.; Mladenov, G. M. Koleva, E. G.; Belenkiy, V. Ya. Varushkin, S. V.

    2014-04-15

    Many papers have sought correlations between the parameters of secondary particles generated above the beam/work piece interaction zone, dynamics of processes in the keyhole, and technological processes. Low- and high-frequency oscillations of the current, collected by plasma have been observed above the welding zone during electron beam welding. Low-frequency oscillations of secondary signals are related to capillary instabilities of the keyhole, however; the physical mechanisms responsible for the high-frequency oscillations (>10 kHz) of the collected current are not fully understood. This paper shows that peak frequencies in the spectra of the collected high-frequency signal are dependent on the reciprocal distance between the welding zone and collector electrode. From the relationship between current harmonics frequency and distance of the collector/welding zone, it can be estimated that the draft velocity of electrons or phase velocity of excited waves is about 1600 m/s. The dispersion relation with the properties of ion-acoustic waves is related to electron temperature 10 000 K, ion temperature 2 400 K and plasma density 10{sup 16} m{sup ?3}, which is analogues to the parameters of potential-relaxation instabilities, observed in similar conditions. The estimated critical density of the transported current for creating the anomalous resistance state of plasma is of the order of 3 A·m{sup ?2}, i.e. 8 mA for a 3–10 cm{sup 2} collector electrode. Thus, it is assumed that the observed high-frequency oscillations of the current collected by the positive collector electrode are caused by relaxation processes in the plasma plume above the welding zone, and not a direct demonstration of oscillations in the keyhole.

  8. Electrochemical Behavior of Disposable Electrodes Prepared by Ion Beam Based Surface Modification for Biomolecular Recognition

    SciTech Connect (OSTI)

    Erdem, A.; Karadeniz, H.; Caliskan, A.; Urkac, E. Sokullu; Oztarhan, A.; Oks, E.; Nikolayev, A.

    2009-03-10

    Many important technological advances have been made in the development of technologies to monitor interactions and recognition events of biomolecules in solution and on solid substrates. The development of advanced biosensors could impact significantly the areas of genomics, proteomics, biomedical diagnostics and drug discovery. In the literature, there have recently appeared an impressive number of intensive designs for electrochemical monitoring of biomolecular recognition. Herein, the influence of ion implanted disposable graphite electrodes on biomolecular recognition and their electrochemical behaviour was investigated.

  9. Unusual Application Of Ion Beam Analysis For The Study Of Surface Layers On Materials Relevant To Cultural Heritage

    SciTech Connect (OSTI)

    Mathis, F.; Salomon, J.; Aucouturier, M.; Trocellier, P.

    2006-12-01

    Recently a new thematic of research -- intentional patinas on antic copper-base objects -- lead the AGLAE (Accelerateur Grand Louvre pour l'Analyse Elementaire) team of the C2RMF (Centre de Recherche et de Restauration des Musees de France) to improve its methods of analyzing thin surface layers both in their elemental composition and in-depth elemental distribution. A new beam extraction set-up containing a particle detector has been developed in order to use a 6 MeV alpha beam both in PIXE and RBS mode and to monitor precisely the ion dose received by the sample. Both RBS and ionization cross sections were assessed in order to make sure that the analysis can be quantitative. This set up allows great progresses in the understanding of both nature and structure of this very particular oxide layer obtained in the antiquity by chemical treatment on copper alloys, containing gold and/or silver and presenting very interesting properties of color and stability.Besides the non destructive properties of the IBA in external beam mode, this method of analyzing allows the study of samples in interaction with its environment. This was used to study the high temperature oxidation of Cu-Sn alloys using a furnace developed in order to heat a sample and analyze it in RBS mode at the same time. This new way of studying the growth of oxide layers permits to understand the oxidation mechanism of this system and to propose an experimental model for the identification of oxide layers due to an exposition to a high temperature, model needed for a long time by curators in charge of the study and the conservation of archaeological bronzes.

  10. High-brightness picosecond ion beam source based on BNL Terawatt CO2 laser: Proof-of-principle experiments

    SciTech Connect (OSTI)

    Shkolnikov, Peter

    2012-10-04

    Under the continuing DOE support, we have: o assembled the basic experiment setup and then continued expanding it to include diverse diagnostics and to accommodate gas jet targets in addition to metal foils; o conducted an extensive study of our novel laser, significantly enhanced laser beam diagnostics, and improved relevant laser parameters; o turned our experiments into a truly international endeavor with active collaboration of close to 20 researchers in US, UK, and Germany; o conducted the first ever experiments with proton and ion acceleration by lasers interacting with overcritical plasma of gas jets; o for the first time directly observed radiation pressure acceleration of protons, including quasi-monoenergetic spectra promising for future applications; o for the first time directly observed quasi-stable, bubble-like plasma structures that likely evolved from relativistic laser-plasma solitons (post-solitons). Thus, we have confirmed a strong potential of a picosecond TW CO2 laser as a research tool in laser-plasma science and as a promising vehicle for future applications of laser ion acceleration. This has led to apparent increase of the interest in mid-IR laser ion acceleration. In particular, another major research group began extensive proton acceleration experiments with their own CO2 laser at UCLA. As a result, the mechanisms responsible for laser proton acceleration in gas jets have become somewhat clearer. It is also important to note that modest DOE funding played the role of a seed support ensuring the formation of a multinational research team, whose members contributed its time and equipment with value well in excess of that seed amount.

  11. Ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Ehlers, Kenneth W. (Alamo, CA)

    1984-01-01

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

  12. Spectroscopy at the high-energy electron beam ion trap (Super EBIT)

    SciTech Connect (OSTI)

    Widmann, K.; Beiersdorfer, P.; Crespo Lopez-Urrutia, J.R.

    1996-07-10

    The following progress report presents some of the x-ray measurements performed during the last year on the Livermore SuperEBIT facility. The measurements include: direct observation of the spontaneous emission of the hyperfine transition in ground state hydrogenlike holmium, {sup 165}Ho{sup 66{plus}}; measurements of the n {equals} 2 {r_arrow} 2 transition energies in neonlike thorium, Th{sup 80{plus}}, through lithiumlike thorium, Th{sup 87{plus}}, testing the predictions of quantum electrodynamical contributions in high-Z ions up to the 0.4{percent} level; measurements of the isotope shift of the n= 2 {r_arrow} 2 transition energies between lithiumlike through carbonize uranium, {sup 233}U{sup 89{plus}...86{plus}} and {sup 238}U{sup 89{plus}...86{plus}}, inferring the variation of the mean- square nuclear charge radius; and high-resolution measurements of the K{alpha} radiation of heliumlike xenon, Xe{sup 52 {plus}}, using a transmission-type crystal spectrometer, resolving for the first time the ls2p{sup 3}P{sub 1} {r_arrow} 1S{sup 2} {sup 1}S{sub 0} and ls2s{sup 3}S{sub 1} {r_arrow} 1S{sup 2} {sup 1}S{sub 0} transitions individually. 41 refs., 9 figs., 1 tab.

  13. Low energy beam transport system developments

    SciTech Connect (OSTI)

    Dudnikov, V.; Han, B.; Stockli, M.; Welton, R.; Dudnikova, G.

    2015-04-08

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H{sup ?} beams up to 60?mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100?mA) proton beam transport. Preservation of low emittances (~0.15 ? mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1?m long LEBT. Similar Xe densities would be required to preserve low emittances of H{sup ?} beams, but such gas densities cause unacceptably high H{sup ?} beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H{sup ?} beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed.

  14. Development of a radio frequency ion source with multi-helicon plasma injectors for neutral beam injection system of Versatile Experiment Spherical Torus

    SciTech Connect (OSTI)

    Choe, Kyumin; Jung, Bongki; Chung, Kyoung-Jae; Hwang, Y. S.; Center for Advance Research in Fusion Reactor Engineering, Seoul National University, Seoul 151-744

    2014-02-15

    Despite of high plasma density, helicon plasma has not yet been applied to a large area ion source such as a driver for neutral beam injection (NBI) system due to intrinsically poor plasma uniformity in the discharge region. In this study, a radio-frequency (RF) ion source with multi-helicon plasma injectors for high plasma density with good uniformity has been designed and constructed for the NBI system of Versatile Experiment Spherical Torus at Seoul National University. The ion source consists of a rectangular plasma expansion chamber (120 × 120 × 120 mm{sup 3}), four helicon plasma injectors with annular permanent magnets and RF power system. Main feature of the source is downstream plasma confinement in the cusp magnetic field configuration which is generated by arranging polarities of permanent magnets in the helicon plasma injectors. In this paper, detailed design of the multi-helicon plasma injector and plasma characteristics of the ion source are presented.

  15. Surface composition, microstructure and corrosion resistance of AZ31 magnesium alloy irradiated by high-intensity pulsed ion beam

    SciTech Connect (OSTI)

    Li, P., E-mail: pli@sqnc.edu.cn [Department of Physics and Information Engineering, Shangqiu Normal University, Shangqiu 476000 (China); Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Lei, M.K., E-mail: surfeng@dlut.edu.cn [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Zhu, X.P. [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China)

    2011-06-15

    High-intensity pulsed ion beam (HIPIB) irradiation of AZ31 magnesium alloy is performed and electrochemical corrosion experiment of irradiated samples is carried out by using potentiodynamic polarization technology in order to explore the effect of HIPIB irradiation on corrosion resistance of magnesium alloy. The surface composition, cross-sectional morphology and microstructure are characterized by using electron probe microanalyzer, optical microscope and transmission electron microscope, respectively. The results indicated that HIPIB irradiation leads to a significant improvement in corrosion resistance of magnesium alloy, in terms of the considerable increase in both corrosion potential and pitting breakdown potential. The microstructural refinement and surface purification induced by HIPIB irradiation are responsible for the improved corrosion resistance. - Research Highlights: {yields} A modified layer about 30 {mu}m thick is obtained by HIPIB irradiation. {yields} Selective ablation of element/impurity phase having lower melting point is observed. {yields} More importantly, microstructural refinement occurred on the irradiated surface. {yields} The modified layer exhibited a significantly improved corrosion resistance. {yields} Improved corrosion resistance is ascribed to the combined effect induced by HIPIB.

  16. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    SciTech Connect (OSTI)

    Grillo, Vincenzo; Mafakheri, Erfan; Frabboni, Stefano

    2014-01-27

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science.

  17. Compact microwave ion source for industrial applications

    SciTech Connect (OSTI)

    Cho, Yong-Sub; Kim, Dae-Il; Kim, Han-Sung; Seol, Kyung-Tae; Kwon, Hyeok-Jung; Hong, In-Seok

    2012-02-15

    A 2.45 GHz microwave ion source for ion implanters has many good properties for industrial application, such as easy maintenance and long lifetime, and it should be compact for budget and space. But, it has a dc current supply for the solenoid and a rf generator for plasma generation. Usually, they are located on high voltage platform because they are electrically connected with beam extraction power supply. Using permanent magnet solenoid and multi-layer dc break, high voltage deck and high voltage isolation transformer can be eliminated, and the dose rate on targets can be controlled by pulse duty control with semiconductor high voltage switch. Because the beam optics does not change, beam transfer components, such as focusing elements and beam shutter, can be eliminated. It has shown the good performances in budget and space for industrial applications of ion beams.

  18. Alternating phase focused linacs

    DOE Patents [OSTI]

    Swenson, Donald A. (Los Alamos, NM)

    1980-01-01

    A heavy particle linear accelerator employing rf fields for transverse and ongitudinal focusing as well as acceleration. Drift tube length and gap positions in a standing wave drift tube loaded structure are arranged so that particles are subject to acceleration and succession of focusing and defocusing forces which contain the beam without additional magnetic or electric focusing fields.

  19. Multi-step ion beam etching of sub-30 nm magnetic tunnel junctions for reducing leakage and MgO barrier damage

    SciTech Connect (OSTI)

    Chun, Sung-woo; Kim, Daehong; Kwon, Jihun; Kim, Bongho; Choi, Seonjun; Lee, Seung-Beck

    2012-04-01

    We have demonstrated the fabrication of sub 30 nm magnetic tunnel junctions (MTJs) with perpendicular magnetic anisotropy. The multi-step ion beam etching (IBE) process performed for 18 min between 45 deg. and 30 deg. , at 500 V combined ion supply voltage, resulted in a 55 nm tall MTJ with 28 nm diameter. We used a negative tone electron beam resist as the hard mask, which maintained its lateral dimension during the IBE, allowing almost vertical pillar side profiles. The measurement results showed a tunnel magneto-resistance ratio of 13% at 1 k{Omega} junction resistance. With further optimization in IBE energy and multi-step etching process, it will be possible to fabricate perpendicularly oriented MTJs for future sub 30 nm non-volatile magnetic memory applications.

  20. Axial magnetic field and toroidally streaming fast ions in the dense plasma focus are natural consequences of conservation laws in the curved axisymmetric geometry of the current sheath

    SciTech Connect (OSTI)

    Auluck, S. K. H.

    2014-10-15

    Direct measurement of axial magnetic field in the PF-1000 dense plasma focus (DPF), and its reported correlation with neutron emission, call for a fresh look at previous reports of existence of axial magnetic field component in the DPF from other laboratories, and associated data suggesting toroidal directionality of fast ions participating in fusion reactions, with a view to understand the underlying physics. In this context, recent work dealing with application of the hyperbolic conservation law formalism to the DPF is extended in this paper to a curvilinear coordinate system, which reflects the shape of the DPF current sheath. Locally unidirectional shock propagation in this coordinate system enables construction of a system of 7 one-dimensional hyperbolic conservation law equations with geometric source terms, taking into account all the components of magnetic field and flow velocity. Rankine-Hugoniot jump conditions for this system lead to expressions for the axial magnetic field and three components of fluid velocity having high ion kinetic energy.

  1. Beam imaging sensor

    DOE Patents [OSTI]

    McAninch, Michael D; Root, Jeffrey J

    2015-03-31

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  2. Neutral beam monitoring

    DOE Patents [OSTI]

    Fink, Joel H. (Livermore, CA)

    1981-08-18

    Method and apparatus for monitoring characteristics of a high energy neutral beam. A neutral beam is generated by passing accelerated ions through a walled cell containing a low energy neutral gas, such that charge exchange neutralizes the high energy ion beam. The neutral beam is monitored by detecting the current flowing through the cell wall produced by low energy ions which drift to the wall after the charge exchange. By segmenting the wall into radial and longitudinal segments various beam conditions are further identified.

  3. Properties of Inconel 625 Mesh Structures Grown by Electron Beam...

    Office of Scientific and Technical Information (OSTI)

    Relationships between electron beam parameters (beam current, beam speed, and beam focus) ... Simple models have been used to understand better these relationships. Structural ...

  4. Fully kinetic simulations of megajoule-scale dense plasma focus

    SciTech Connect (OSTI)

    Schmidt, A.; Link, A.; Tang, V.; Halvorson, C.; May, M.; Welch, D.; Meehan, B. T.; Hagen, E. C.

    2014-10-15

    Dense plasma focus (DPF) Z-pinch devices are sources of copious high energy electrons and ions, x-rays, and neutrons. Megajoule-scale DPFs can generate 10{sup 12} neutrons per pulse in deuterium gas through a combination of thermonuclear and beam-target fusion. However, the details of the neutron production are not fully understood and past optimization efforts of these devices have been largely empirical. Previously, we reported on the first fully kinetic simulations of a kilojoule-scale DPF and demonstrated that both kinetic ions and kinetic electrons are needed to reproduce experimentally observed features, such as charged-particle beam formation and anomalous resistivity. Here, we present the first fully kinetic simulation of a MegaJoule DPF, with predicted ion and neutron spectra, neutron anisotropy, neutron spot size, and time history of neutron production. The total yield predicted by the simulation is in agreement with measured values, validating the kinetic model in a second energy regime.

  5. Highly charged ion secondary ion mass spectroscopy

    DOE Patents [OSTI]

    Hamza, Alex V.; Schenkel, Thomas; Barnes, Alan V.; Schneider, Dieter H.

    2001-01-01

    A secondary ion mass spectrometer using slow, highly charged ions produced in an electron beam ion trap permits ultra-sensitive surface analysis and high spatial resolution simultaneously. The spectrometer comprises an ion source producing a primary ion beam of highly charged ions that are directed at a target surface, a mass analyzer, and a microchannel plate detector of secondary ions that are sputtered from the target surface after interaction with the primary beam. The unusually high secondary ion yield permits the use of coincidence counting, in which the secondary ion stops are detected in coincidence with a particular secondary ion. The association of specific molecular species can be correlated. The unique multiple secondary nature of the highly charged ion interaction enables this new analytical technique.

  6. Composition and Bonding in Amorphous Carbon Films Grown by Ion Beam Assisted Deposition: Influence of the Assistance Voltage

    SciTech Connect (OSTI)

    Albella, J.M.; Banks, J.C.; Climent-Font, A.; Doyle, B.L.; Gago, R.; Jimenez, I.; Terminello, L.J.

    1998-11-12

    Amorphous carbon films have been grown by evaporation of graphite with concurrent Ar+ ions bombardment assistance. The ion energy has been varied between 0-800 V while keeping a constant ion to carbon atom arrival ratio. Film composition and density were determined by ion scattering techniques (RBS and ERDA), indicating a negligible hydrogen content and a density dependence with the assistance voltage. The bonding structure of the films has been studied by Raman and X-ray Absorption Near-Edge (XANES) spectroscopy. Different qualitative effects have been found depending on the ion energy range. For ion energies below 300 eV, there is a densification of the carbon layer due to the increase in the sp3 content. For ion energies above 300 eV sputtering phenomena dominate over densification, and thinner films are found with increasing assistance voltage until no film is grown over 600 V. The films with the highest SP3 content are grown with intermediate energies between 200-300 V.

  7. Design, installation, commissioning and operation of a beamlet monitor in the negative ion beam test stand at NIFS

    SciTech Connect (OSTI)

    Antoni, V.; Agostinetti, P.; Brombin, M.; Cervaro, V.; Delogu, R.; Fasolo, D.; Franchin, L.; Ghiraldelli, R.; Molon, F.; Pasqualotto, R.; Serianni, G. Tollin, M.; Veltri, P.; De Muri, M.; Ikeda, K.; Kisaki, M.; Nakano, H.; Takeiri, Y.; Tsumori, K.; Muraro, A.

    2015-04-08

    In the framework of the accompanying activity for the development of the two neutral beam injectors for the ITER fusion experiment, an instrumented beam calorimeter is being designed at Consorzio RFX, to be used in the SPIDER test facility (particle energy 100keV; beam current 50A), with the aim of testing beam characteristics and to verify the source proper operation. The main components of the instrumented calorimeter are one-directional carbon-fibre-carbon composite tiles. Some prototype tiles have been used as a small-scale version of the entire calorimeter in the test stand of the neutral beam injectors of the LHD experiment, with the aim of characterising the beam features in various operating conditions. The extraction system of the NIFS test stand source was modified, by applying a mask to the first gridded electrode, in order to isolate only a subset of the beamlets, arranged in two 3×5 matrices, resembling the beamlet groups of the ITER beam sources. The present contribution gives a description of the design of the diagnostic system, including the numerical simulations of the expected thermal pattern. Moreover the dedicated thermocouple measurement system is presented. The beamlet monitor was successfully used for a full experimental campaign, during which the main parameters of the source, mainly the arc power and the grid voltages, were varied. This contribution describes the methods of fitting and data analysis applied to the infrared images of the camera to recover the beamlet optics characteristics, in order to quantify the response of the system to different operational conditions. Some results concerning the beamlet features are presented as a function of the source parameters.

  8. Fundamental Electroweak Studies using Trapped Ions & Atoms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    collaboration performs fundamental electroweak studies on trapped ions & atoms. We use neutral atom and ion trapping techniques at radioactive ion beam facilities here and...

  9. Dual and Triple Ion-Beam Irradiations of Fe, Fe(Cr) and Fe(Cr)-ODS Final Report: IAEA SMoRE CRP

    SciTech Connect (OSTI)

    Fluss, M J; Hsiung, L L; Marian, J

    2011-11-20

    Structures of nanoparticles in Fe-16Cr-4.5Al-0.3Ti-2W-0.37Y2O3 (K3) and Fe-20Cr-4.5Al-0.34Ti-0.5Y2O3 (MA956) oxide dispersion strengthened (ODS) ferritic steels produced by mechanical alloying (MA) and followed by hot extrusion have been studied using high-resolution transmission electron microscopy (HRTEM) techniques to gain insight about the formation mechanism of nanoparticles in MA/ODS steels. The observations of Y-Al-O complex-oxide nanoparticles in both ODS steels imply that decomposition of Y2O3 in association with internal oxidation of Al occurred during mechanical alloying. While the majority of oxide nanoparticles formed in both steels is Y4Al2O9, a few oxide particles of YAlO3 are also occasionally observed. These results reveal that Ti (0.3 wt %) plays an insignificant role in forming oxide nanoparticles in the presence of Al (4.5 wt %). HRTEM observations of crystalline nanoparticles larger than {approx}2 nm and amorphous or disordered cluster domains smaller than {approx}2 nm provide an insight into the formation mechanism of oxide nanoparticle in MA/ODS steels, which we believe from our observations involves a solid-state amorphous precursor followed by recrystallization. Dual ion-beam irradiations using He{sup +} + Fe{sup +8} ions were employed to gain more detailed insight about the role of nanoparticles in suppressing radiation-induced swelling. This is elaborated through TEM examinations of cavity distributions in ion-irradiated Fe-14Cr and K3-ODS ferritic steels. HRTEM observations of helium-filled cavities (helium bubbles) preferably trapped at nanoscale oxide particles and clusters in ion-irradiated K3-ODS are presented. Finally, we describe the results from triple ion-beam irradiations using H{sup +} + He{sup +} + Fe{sup +8} ions to emulate fusion first wall radiation effects. Preliminary work is reported that confirms the existence of significant hydrogen synergistic effects described earlier by Tanaka et al., for Fe(Cr) and by Wakai et al., for F82H reduced activation ferritic martensitic (RAF/M) steel. These previous results combined with our data suggest a complex new 'catalytic' mechanism whereby H interacts with the steady state population of defects and the embryonic cavities so as to accelerated cavity (void) growth in both Fe(Cr) and under special conditions in ODS steels.

  10. High-resolution study of photoinduced modification in fused silica produced by a tightly focused femtosecond laser beam in the presence of aberrations

    SciTech Connect (OSTI)

    Hnatovsky, C.; Taylor, R.S.; Simova, E.; Bhardwaj, V.R.; Rayner, D.M.; Corkum, P.B.

    2005-07-01

    An ultrahigh-resolution (20 nm) technique of selective chemical etching and atomic force microscopy has been used to study the photoinduced modification in fused silica produced at various depths by tightly focused femtosecond laser radiation affected by spherical aberration. We demonstrate that shapes of the irradiated zones near the threshold for modification can be predicted by taking proper account of spherical aberration caused by the refractive index mismatched air-silica interface. We establish a depth dependence of the pulse energy required to initiate modification and characterize the relationship between numerical aperture of the writing lens and practically achievable writing depth. We also show that spatial characteristics of the laser-modified zones can be controlled by a specially designed focusing system which allows correction for a variable amount of spherical aberration.

  11. Beam Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Status Beam Status Print Loading... You can also view the Operations Group's Beam History archives.

  12. Contribution of ion beam analysis to study the mechanisms of YBaCuO thin films growth and of their oxidation kinetics

    SciTech Connect (OSTI)

    Siejka, J.; Garcia-Lopez, J.

    1996-12-31

    At first a short review of ion beam analysis (IBA) techniques such as Rutherford Backscattering Analysis, Nuclear Reaction Analysis and of their contribution to the determination of composition and structure of YBaCuO thin films is presented. In the second part, IBA contribution to the measurements of oxygen content and mobility in YBaCuO and to elucidate the mechanisms of high temperature in situ growth of thin films are discussed. The emphasis is on the complementarity of IBA, Raman spectroscopy, TEM and XRD techniques to characterize the YBaCuO thin films in correlation with their physical properties. The results show that fully oxygenated YBaCuO thin films are formed in situ during high temperature T {le} 750 C, reactive sputtering. Their room temperature oxygen content and order is determined by oxygen loss and or uptake during the sample cooling conditions. The physical implications of these findings are analyzed.

  13. Influence of in-situ annealing ambient on p-type conduction in dual ion beam sputtered Sb-doped ZnO thin films

    SciTech Connect (OSTI)

    Pandey, Sushil Kumar; Kumar Pandey, Saurabh; Awasthi, Vishnu; Mukherjee, Shaibal; Gupta, M.; Deshpande, U. P.

    2013-08-12

    Sb-doped ZnO (SZO) films were deposited on c-plane sapphire substrates by dual ion beam sputtering deposition system and subsequently annealed in-situ in vacuum and in various proportions of O{sub 2}/(O{sub 2} + N{sub 2})% from 0% (N{sub 2}) to 100% (O{sub 2}). Hall measurements established all SZO films were p-type, as was also confirmed by typical diode-like rectifying current-voltage characteristics from p-ZnO/n-ZnO homojunction. SZO films annealed in O{sub 2} ambient exhibited higher hole concentration as compared with films annealed in vacuum or N{sub 2} ambient. X-ray photoelectron spectroscopic analysis confirmed that Sb{sup 5+} states were more preferable in comparison to Sb{sup 3+} states for acceptor-like Sb{sub Zn}-2V{sub Zn} complex formation in SZO films.

  14. A novel planar ion funnel design for miniature ion optics

    SciTech Connect (OSTI)

    Chaudhary, A.; Amerom, Friso H. W. van; Short, R. T.

    2014-10-01

    The novel planar ion funnel (PIF) design presented in this article emphasizes simple fabrication, assembly, and operation, making it amenable to extreme miniaturization. Simulations performed in SIMION 8.0 indicate that ion focusing can be achieved by using a gradient of electrostatic potentials on concentric metal rings in a plane. A prototype was fabricated on a 35 × 35 mm custom-designed printed circuit board (PCB) with a center hole for ions to pass through and a series of concentric circular metal rings of increasing diameter on the front side of the PCB. Metal vias on the PCB electrically connected each metal ring to a resistive potential divider that was soldered on the back of the PCB. The PIF was tested at 5.5 × 10?? Torr in a vacuum test setup that was equipped with a broad-beam ion source on the front and a micro channel plate (MCP) ion detector on the back of the PIF. The ion current recorded on the MCP anode during testing indicated a 23× increase in the ion transmission through the PIF when electric potentials were applied to the rings. These preliminary results demonstrate the functionality of a 2D ion funnel design with a much smaller footprint and simpler driving electronics than conventional 3D ion funnels. Future directions to improve the design and a possible micromachining approach to fabrication are discussed in the conclusions.

  15. Single ion implantation for solid state quantum computer development

    SciTech Connect (OSTI)

    Schenkel, Thomas; Meijers, Jan; Persaud, Arun; McDonald, Joseph W.; Holder, Joseph P.; Schneider, Dieter H.

    2001-12-18

    Several solid state quantum computer schemes are based on the manipulation of electron and nuclear spins of single donor atoms in a solid matrix. The fabrication of qubit arrays requires the placement of individual atoms with nanometer precision and high efficiency. In this article we describe first results from low dose, low energy implantations and our development of a low energy (<10 keV), single ion implantation scheme for {sup 31}P{sup q+} ions. When {sup 31}P{sup q+} ions impinge on a wafer surface, their potential energy (9.3 keV for P{sup 15+}) is released, and about 20 secondary electrons are emitted. The emission of multiple secondary electrons allows detection of each ion impact with 100% efficiency. The beam spot on target is controlled by beam focusing and collimation. Exactly one ion is implanted into a selected area avoiding a Poissonian distribution of implanted ions.

  16. Photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL); Young, Charles E. (Westmont, IL); Pellin, Michael J. (Naperville, IL)

    1989-01-01

    A method and apparatus for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected autoionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy.

  17. Photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1989-08-08

    A method and apparatus are described for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected auto-ionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy. 8 figs.

  18. Origins of ion irradiation-induced Ga nanoparticle motion on GaAs surfaces

    SciTech Connect (OSTI)

    Kang, M.; Wu, J. H.; Chen, H. Y.; Thornton, K.; Goldman, R. S. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States)] [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Sofferman, D. L. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States) [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Department of Physics, Adelphi University, Garden City, New York 11530-0701 (United States); Beskin, I. [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040 (United States)] [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040 (United States)

    2013-08-12

    We have examined the origins of ion irradiation-induced nanoparticle (NP) motion. Focused-ion-beam irradiation of GaAs surfaces induces random walks of Ga NPs, which are biased in the direction opposite to that of ion beam scanning. Although the instantaneous NP velocities are constant, the NP drift velocities are dependent on the off-normal irradiation angle, likely due to a difference in surface non-stoichiometry induced by the irradiation angle dependence of the sputtering yield. It is hypothesized that the random walks are initiated by ion irradiation-induced thermal fluctuations, with biasing driven by anisotropic mass transport.

  19. Design and characterization of a neutralized-transport experiment for heavy-ion fusion

    SciTech Connect (OSTI)

    Henestroza, E.; Eylon, S.; Roy, P.K.; Yu, S.S.; Anders, A.; Bieniosek, F.M.; Greenway, W.G.; Logan, B.G.; MacGill, R.A.; Shuman, D.B.; Vanecek, D.L.; Waldron, W.L.; Sharp, W.M.; Houck, T.L.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Sefkow, A.B.; Welch, D.R.; Rose, D.V.; Olson, C.L.

    2004-03-14

    In heavy-ion inertial-confinement fusion systems, intense beams of ions must be transported from the exit of the final focus magnet system through the fusion chamber to hit millimeter-sized spots on the target. Effective plasma neutralization of intense ion beams in this final transport is essential for a heavy-ion fusion power plant to be economically competitive. The physics of neutralized drift has been studied extensively with particle-in-cell simulations. To provide quantitative comparisons of theoretical predictions with experiment, the Virtual National Laboratory for Heavy Ion Fusion has completed the construction and has begun experimentation with the Neutralized Transport Experiment (NTX). The experiment consists of three main sections, each with its own physics issues. The injector is designed to generate a very high-brightness, space-charge-dominated potassium beam while still allowing variable perveance by a beam aperturing technique. The magnetic-focusing section, consisting of four pulsed magnetic quadrupoles, permits the study of beam tuning, as well as the effects of phase space dilution due to higher-order nonlinear fields. In the final section, the converging ion beam exiting the magnetic section is transported through a drift region with plasma sources for beam neutralization, and the final spot size is measured under various conditions of neutralization. In this paper, we discuss the design and characterization of the three sections in detail and present initial results from the experiment.

  20. Improved ion source

    DOE Patents [OSTI]

    Leung, K.N.; Ehlers, K.W.

    1982-05-04

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species,

  1. A Space-Charge-Neutralizing Plasma for Beam Drift Compression

    SciTech Connect (OSTI)

    Roy, P.K.; Seidl, P.A.; Anders, A.; Bieniosek, F.M.; Coleman, J.E.; Gilson, E.P.; Greenway, W.; Grote, D.P.; Jung, J.Y.; Leitner, M.; Lidia, S.M.; Logan, B.G.; Sefkow, A.B.; Waldron, W.L.; Welch, D.R.

    2008-08-01

    Simultaneous radial focusing and longitudinal compression of intense ion beams are being studied to heat matter to the warm dense matter, or strongly coupled plasma regime. Higher compression ratios can be achieved if the beam compression takes place in a plasma-filled drift region in which the space-charge forces of the ion beam are neutralized. Recently, a system of four cathodic arc plasma sources has been fabricated and the axial plasma density has been measured. A movable plasma probe array has been developed to measure the radial and axial plasma distribution inside and outside of a {approx} 10 cm long final focus solenoid (FFS). Measured data show that the plasma forms a thin column of diameter {approx} 5 mm along the solenoid axis when the FFS is powered with an 8T field. Measured plasma density of {ge} 1 x 10{sup 13} cm{sup -3} meets the challenge of n{sub p}/Zn{sub b} > 1, where n{sub p} and n{sub b} are the plasma and ion beam density, respectively, and Z is the mean ion charge state of the plasma ions.

  2. Highly Stripped Ion Sources for MeV Ion Implantation

    SciTech Connect (OSTI)

    Hershcovitch, Ady

    2009-06-30

    Original technical objectives of CRADA number PVI C-03-09 between BNL and Poole Ventura, Inc. (PVI) were to develop an intense, high charge state, ion source for MeV ion implanters. Present day high-energy ion implanters utilize low charge state (usually single charge) ion sources in combination with rf accelerators. Usually, a MV LINAC is used for acceleration of a few rnA. It is desirable to have instead an intense, high charge state ion source on a relatively low energy platform (de acceleration) to generate high-energy ion beams for implantation. This de acceleration of ions will be far more efficient (in energy utilization). The resultant implanter will be smaller in size. It will generate higher quality ion beams (with lower emittance) for fabrication of superior semiconductor products. In addition to energy and cost savings, the implanter will operate at a lower level of health risks associated with ion implantation. An additional aim of the project was to producing a product that can lead to long­ term job creation in Russia and/or in the US. R&D was conducted in two Russian Centers (one in Tomsk and Seversk, the other in Moscow) under the guidance ofPVI personnel and the BNL PI. Multiple approaches were pursued, developed, and tested at various locations with the best candidate for commercialization delivered and tested at on an implanter at the PVI client Axcelis. Technical developments were exciting: record output currents of high charge state phosphorus and antimony were achieved; a Calutron-Bemas ion source with a 70% output of boron ion current (compared to 25% in present state-of-the-art). Record steady state output currents of higher charge state phosphorous and antimony and P ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb {sup 4 +}, Sb{sup 5+}, and Sb{sup 6+} respectively. Ultimate commercialization goals did not succeed (even though a number of the products like high charge state phosphorus and antimony could have resulted in a lower power consumption of 30 kW/implanter) for the following reasons (which were discovered after R&D completion): record output of high charge state phosphorous would have thermally damage wafers; record high charge state of antimony requires tool (ion implanting machine in ion implantation jargon) modification, which did not make economic sense due to the small number of users. Nevertheless, BNL has benefited from advances in high-charge state ion generation, due to high charge state ions need for RHIC preinjection. High fraction boron ion was delivered to PVI client Axcelis for retrofit and implantation testing; the source could have reduced beam preinjector power consumption by a factor of 3.5. But, since the source generated some lithium (though in miniscule amounts); last minute decision was made not to employ the source in implanters. R&D of novel transport and gasless plasmaless deceleration, as well as decaborane molecular ion source to mitigate space charge problems in low energy shallow ion implantation was also conducted though results were not yet ready for commercialization. Future work should be focused on gasless plasmaless transport and deceleration as well as on molecular ions due to their significance to low energy, shallow implantation; which is the last frontier of ion implantation. To summarize the significant accomplishments: 1. Record steady state output currents of high charge state phosphorous, P, ions in particle milli-Ampere: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA). 2. Record steady state output currents of high charge state antimony, Sb, ions in particle milli-Ampere: Sb{sup 3+} (16.2 pmA), Sb{sup 4+} (7.6 pmA), Sb{sup 5+} (3.3 pmA), and Sb{sup 6+} (2.2 pmA). 3. 70% output of boron ion current (compared to 25% in present state-of-the-art) from a Calutron-Bemas ion source. These accomplishments have the potential of benefiting the semiconductor manufacturing industry by lowering power consumption by as much as 30 kW per ion implanter. Major problem was meeting commercialization goals did not succeed for the following reasons (which were discovered after R&D completion): record output of high charge state phosphorous would have thermally damage wafers; record high charge state of antimony requires tool (ion implanting machine in ion implantation jargon) modification, which did not make economic sense due to the small number of users. High fraction boron ion was delivered to PVI client Axcelis for retrofit and implantation testing; the source could have reduced beam preinjector power consumption by a factor of 3.5. But, since the source generated some lithium (though in miniscule amounts); last minute decision was made not to employ the source in implanters. An additional noteworthy reason for failure to commercialize is the fact that the ion implantation manufacturing industry had been in a very deep bust cycle. BNL, however, has benefited from advances in high-charge state ion generation, due to the need high charge state ions in some RHIC preinjectors. Since the invention of the transistor, the trend has been to miniaturize semiconductor devices. As semiconductors become smaller (and get miniaturized), ion energy needed for implantation decreases, since shallow implantation is desired. But, due to space charge (intra-ion repulsion) effects, forming and transporting ion beams becomes a rather difficult task. A few small manufacturers of low quality semiconductors use plasma immersion to circumvent the problem. However, in plasma immersion undesired plasma impurity ions are also implanted; hence, the quality of those semiconductors is poor. For high quality miniature semiconductor manufacturing, pure, low energy ion beams are utilized. But, low energy ion implanters are characterized by low current (much lower than desirable) and, therefore, low production rates. Consequently, increasing the current of pure low energy ion beams is of paramount importance to the semiconductor industry. Basically, the semiconductor industry needs higher currents and purer ion low energy beams. Therefore R&D of novel transport and gasless plasmaless deceleration, as well as decaborane molecular ion source to mitigate space charge problems in low energy shallow ion implantation was also conducted though results were not yet ready for commercialization. Future work should be focused on gasless plasmaless transport and deceleration as well as cin molecular ions due to their significance to low energy, shallow implantation, which is the last frontier of ion implantation.

  3. Magnetically operated beam dump for dumping high power beams in a neutral beamline

    DOE Patents [OSTI]

    Dagenhart, W.K.

    1984-01-27

    It is an object of this invention to provide a beam dump system for a neutral beam generator which lowers the time-averaged power density of the beam dump impingement surface. Another object of this invention is to provide a beam dump system for a neutral particle beam based on reionization and subsequent magnetic beam position modulation of the beam onto a beam dump surface to lower the time-averaged power density of the beam dump ion impingement surface.

  4. LANSCE Focus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear science observations and opportunities at the Los Alamos Neutron Science Center Colleagues, This special Focus issue highlights a set of nuclear physics capabilities at the ...

  5. Applications of decelerated ions

    SciTech Connect (OSTI)

    Johnson, B.M.

    1985-03-01

    Many facilities whose sole purpose had been to accelerate ion beams are now becoming decelerators as well. The development and current status of accel-decel operations is reviewed here. Applications of decelerated ions in atomic physics experiments are discussed.

  6. Iron beam acceleration using direct plasma injection scheme

    SciTech Connect (OSTI)

    Okamura, M.; Kanesue, T.; Yamamoto, T.; Fuwa, Y.; RIKEN, Wako, Saitama 351-0198

    2014-02-15

    A new set of vanes of radio frequency quadrupole (RFQ) accelerator was commissioned using highly charged iron beam. To supply high intensity heavy ion beams to the RFQ, direct plasma injection scheme (DPIS) with a confinement solenoid was adopted. One of the difficulties to utilize the combination of DPIS and a solenoid field is a complexity of electro magnetic field at the beam extraction region, since biasing high static electric field for ion extraction, RFQ focusing field, and the solenoid magnetic field fill the same space simultaneously. To mitigate the complexity, a newly designed magnetic field clamps were used. The intense iron beam was observed with bunched structure and the total accelerated current reached 2.5 nC.

  7. Dependence of beam emittance on plasma electrode temperature and rf-power, and filter-field tuning with center-gapped rod-filter magnets in J-PARC rf-driven H{sup ?} ion source

    SciTech Connect (OSTI)

    Ueno, A. Koizumi, I.; Ohkoshi, K.; Ikegami, K.; Takagi, A.; Yamazaki, S.; Oguri, H.

    2014-02-15

    The prototype rf-driven H{sup ?} ion-source with a nickel plated oxygen-free-copper (OFC) plasma chamber, which satisfies the Japan Proton Accelerator Research Complex (J-PARC) 2nd stage requirements of a H{sup ?} ion beam current of 60 mA within normalized emittances of 1.5 ? mm mrad both horizontally and vertically, a flat top beam duty factor of 1.25% (500 ?s × 25 Hz) and a life-time of more than 50 days, was reported at the 3rd international symposium on negative ions, beams, and sources (NIBS2012). The experimental results of the J-PARC ion source with a plasma chamber made of stainless-steel, instead of nickel plated OFC used in the prototype source, are presented in this paper. By comparing these two sources, the following two important results were acquired. One was that the about 20% lower emittance was produced by the rather low plasma electrode (PE) temperature (T{sub PE}) of about 120?°C compared with the typically used T{sub PE} of about 200?°C to maximize the beam current for the plasma with the abundant cesium (Cs). The other was that by using the rod-filter magnets with a gap at each center and tuning the gap-lengths, the filter-field was optimized and the rf-power necessary to produce the J-PARC required H{sup ?} ion beam current was reduced typically 18%. The lower rf-power also decreases the emittances.

  8. Sensitive glow discharge ion source for aerosol and gas analysis

    DOE Patents [OSTI]

    Reilly, Peter T. A. (Knoxville, TN)

    2007-08-14

    A high sensitivity glow discharge ion source system for analyzing particles includes an aerodynamic lens having a plurality of constrictions for receiving an aerosol including at least one analyte particle in a carrier gas and focusing the analyte particles into a collimated particle beam. A separator separates the carrier gas from the analyte particle beam, wherein the analyte particle beam or vapors derived from the analyte particle beam are selectively transmitted out of from the separator. A glow discharge ionization source includes a discharge chamber having an entrance orifice for receiving the analyte particle beam or analyte vapors, and a target electrode and discharge electrode therein. An electric field applied between the target electrode and discharge electrode generates an analyte ion stream from the analyte vapors, which is directed out of the discharge chamber through an exit orifice, such as to a mass spectrometer. High analyte sensitivity is obtained by pumping the discharge chamber exclusively through the exit orifice and the entrance orifice.

  9. Diagnostic Neutral Beam Injector for Active Plasma Spectroscopy at Gas-Dynamic Trap

    SciTech Connect (OSTI)

    Korepanov, S.A.; Deichuli, P.O.; Ivanov, A.A.; Mishagin, V.V.

    2005-01-15

    A diagnostic beam system has been developed for the GDT. This injector is the modification of the diagnostic injector RFX-DNBI. The system is primarily used for magnetic field measurements via motional Stark effect (MSE). The ion source provides 50keV, 5A hydrogen beam. Ions are extracted from a plasma created by an arc-discharge source and, after accelerating and focusing, are neutralized in a gas target. A plasma emitter, which is formed by collisionless expansion of a plasma jet on to the grids, has low perpendicular ion temperature. These results in rather low (0.01 rad) angular divergence of the extracted ion beam. In the accelerator, there is a set of four nested grids with 421 circular apertures of 4 mm diameter configured in a hexagonal pattern. The geometry of the elementary cell was optimized by using 2D computer code PBGUNS to obtain small angular divergence of the beam. The grids of ion optical system are spherically curved providing geometric focusing of the beam at a distance 1.5 m. Arc-discharge plasma box provides highly ionized plasma, so that the extracted beam has about 90% of full energy specie. The injector provides up to 4 ms duration pulse.

  10. Surface Treatment of Polymers by Ion Beam Irradiation to Control the Human Osteoblast Adhesion: Fluence and Current Density Study

    SciTech Connect (OSTI)

    Guibert, G.; Mikhailov, S.; Rossel, T.; Weder, G.; Betschart, B.; Meunier, C.

    2009-03-10

    In the biomaterial field, the modification of surfaces are used to create polymers with high performances, preserving their bulk properties and creating specific interactions between the designed surfaces and the cells or tissues. The polymers were irradiated with a 900 keV Helium beam to modify their surface properties. Cell cultivation on the samples was done using human osteoblasts cells (hFOB 1.19). For PTFE, PS and PEEK polymers, the cell adhesion occurs after reached some threshold values of fluences. For PET or PMMA polymers, the cells adhere on the non irradiated samples, however the fluence value modifies the cell density. For PMMA and PTFE both, the fluence and the current density influence the cell adhesion. By modifying the appropriate parameters on each material, the control of the cell adhesion is possible. Indeed the surface treatment must be selected and adapted according to the further application: for biosensors, tissue engineering, tissue regeneration, neural probes, drug delivery, bio-actuators etc.

  11. LANSCE Focus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Focus Nuclear science observations and opportunities at the Los Alamos Neutron Science Center Colleagues, This special Focus issue highlights a set of nuclear physics capabilities at the Los Alamos Neutron Science Center (LANSCE) serving Los Alamos National Laboratory's national security mis- sion and the global scientific user community. With a total of 10 flight paths, LANSCE pro- vides the opportunity to perform experiments with low- to high-energy neutron sources and high-energy proton

  12. The dependence of extracted current on discharge gas pressure in neutral beam ion sources on HL-2A tokamak

    SciTech Connect (OSTI)

    Wei, H. L.; Cao, J. Y.; Rao, J.; Lei, G. J.; Jiang, S. F.; Liu, H.; Yu, L. M.; Xie, W. M.; Li, M.; Yang, X. F.; Zou, G. Q.; Lu, D. L.; Duan, X. R.

    2012-02-15

    The discharge gas pressure is a key factor to influence the extracted current of ion source. In this paper, the dependence of extracted current on discharge gas pressure was investigated in detail at different arc discharge currents. The discharge gas pressure with a very broad range (0.1 Pa-2.7 Pa) was scanned for the first time. It is turned out that, with the increasing of discharge gas pressure, the extracted current increases and the arc voltage decreases at different arc currents; however, when the discharge gas pressure exceeds a certain value, the extracted current decreases. For the same discharge gas pressure, the higher the arc current, the higher the arc voltage and the extracted current are. The arc efficiency was also calculated, and its dependence on gas pressure was almost the same with the dependence of extracted current on gas pressure, but at the same discharge gas pressure, the lower the arc current, the higher the arc efficiency is and the lower the extracted current is.

  13. Planar-focusing cathodes.

    SciTech Connect (OSTI)

    Lewellen, J. W.; Noonan, J.; Accelerator Systems Division

    2005-01-01

    Conventional {pi}-mode rf photoinjectors typically use magnetic solenoids for emittance compensation. This provides independent focusing strength but can complicate rf power feed placement, introduce asymmetries (due to coil crossovers), and greatly increase the cost of the photoinjector. Cathode-region focusing can also provide for a form of emittance compensation. Typically this method strongly couples focusing strength to the field gradient on the cathode, however, and usually requires altering the longitudinal position of the cathode to change the focusing. We propose a new method for achieving cathode-region variable-strength focusing for emittance compensation. The new method reduces the coupling to the gradient on the cathode and does not require a change in the longitudinal position of the cathode. Expected performance for an S-band system is similar to conventional solenoid-based designs. This paper presents the results of rf cavity and beam dynamics simulations of the new design. We have proposed a method for performing emittance compensation using a cathode-region focusing scheme. This technique allows the focusing strength to be adjusted somewhat independently of the on-axis field strength. Beam dynamics calculations indicate performance should be comparable to presently in-use emittance compensation schemes, with a simpler configuration and fewer possibilities for emittance degradation due to the focusing optics. There are several potential difficulties with this approach, including cathode material selection, cathode heating, and peak fields in the gun. We hope to begin experimenting with a cathode of this type in the near future, and several possibilities exist for reducing the peak gradients to more acceptable levels.

  14. Interplay between water uptake, ion interactions, and conductivity in an e-beam grafted poly(ethylene-co-tetrafluoroethylene) anion exchange membrane

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pandey, Tara P.; Maes, Ashley M.; Sarode, Himanshu N.; Peters, Bethanne D.; Lavina, Sandra; Vezzu, Keti; Yang, Yuan; Poynton, Simon D.; Varcoe, John R.; Seifert, Soenke; et al

    2014-12-23

    We demonstrate that the true hydroxide conductivity in an e-beam grafted poly(ethylene-co-tetrafluoroethylene) [ETFE] anion exchange membrane (AEM) is as high as 132 mS cm-1 at 80 °C and 95% RH, comparable to a proton exchange membrane, but with very much less water present in the film. To understand this behaviour we studied ion transport of hydroxide, carbonate, bicarbonate and chloride, as well as water uptake and distribution. Water uptake of the AEM in water vapor is an order of magnitude lower than when submerged in liquid water. In addition 19F pulse field gradient spin echo NMR indicates that there ismore » little tortuosity in the ionic pathways through the film. A complete analysis of the IR spectrum of the AEM and the analyses of water absorption using FT-IR led to conclusion that the fluorinated backbone chains do not interact with water and that two types of water domains exist within the membrane. Furthermore, the reduction in conductivity was measured during exposure of the OH- form of the AEM to air at 95% RH and was seen to be much slower than the reaction of CO2 with OH- as the amount of water in the film determines its ionic conductivity and at relative wet RHs its re-organization is slow.« less

  15. Interplay between water uptake, ion interactions, and conductivity in an e-beam grafted poly(ethylene-co-tetrafluoroethylene) anion exchange membrane

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pandey, Tara P.; Maes, Ashley M.; Sarode, Himanshu N.; Peters, Bethanne D.; Lavina, Sandra; Vezzù, Keti; Yang, Yuan; Poynton, Simon D.; Varcoe, John R.; Seifert, Soenke; et al

    2014-12-23

    We demonstrate that the true hydroxide conductivity in an e-beam grafted poly(ethylene-co-tetrafluoroethylene) [ETFE] anion exchange membrane (AEM) is as high as 132 mS cm-1 at 80 °C and 95% RH, comparable to a proton exchange membrane, but with very much less water present in the film. To understand this behaviour we studied ion transport of hydroxide, carbonate, bicarbonate and chloride, as well as water uptake and distribution. Water uptake of the AEM in water vapor is an order of magnitude lower than when submerged in liquid water. In addition 19F pulse field gradient spin echo NMR indicates that there ismore » little tortuosity in the ionic pathways through the film. A complete analysis of the IR spectrum of the AEM and the analyses of water absorption using FT-IR led to conclusion that the fluorinated backbone chains do not interact with water and that two types of water domains exist within the membrane. The reduction in conductivity was measured during exposure of the OH- form of the AEM to air at 95% RH and was seen to be much slower than the reaction of CO2 with OH- as the amount of water in the film determines its ionic conductivity and at relative wet RHs its re-organization is slow.« less

  16. Time-dependent, x-ray spectral unfolds and brightness temperatures for intense Li{sup +} ion beam-driven hohlraums

    SciTech Connect (OSTI)

    Fehl, D.L.; Chandler, G.A.; Biggs, F.; Dukart, R.J.; Moats, A.R.; Leeper, R.J.

    1997-01-01

    X-ray-producing hohlraums are being studied as indirect drives for inertial confinement fusion targets. In a 1994 target series on the PBFAII accelerator, cylindrical hohlraum targets were heated by an intense Li{sup +} ion beam and viewed by an array of 13 time-resolved, filtered x-ray detectors (XRDs). The unfold operator (UFO) code and its suite of auxiliary functions were used extensively in obtaining time-resolved x-ray spectra and radiation temperatures from this diagnostic. The UFO was also used to obtain fitted response functions from calibration data, to simulate data from blackbody x-ray spectra of interest, to determine the suitability of various unfolding parameters (e.g., energy domain, energy partition, smoothing conditions, and basis functions), to interpolate the XRD signal traces, and to unfold experimental data. The simulation capabilities of the code were useful in understanding an anomalous feature in the unfolded spectra at low photon energies ({le}100 eV). Uncertainties in the differential and energy-integrated unfolded spectra were estimated from uncertainties in the data. The time{endash}history of the radiation temperature agreed well with independent calculations of the wall temperature in the hohlraum. {copyright} {ital 1997 American Institute of Physics.}

  17. p-type conduction from Sb-doped ZnO thin films grown by dual ion beam sputtering in the absence of oxygen ambient

    SciTech Connect (OSTI)

    Kumar Pandey, Sushil; Kumar Pandey, Saurabh; Awasthi, Vishnu; Kumar, Ashish; Mukherjee, Shaibal; Deshpande, Uday P.; Gupta, Mukul

    2013-10-28

    Sb-doped ZnO (SZO) thin films were deposited on c-plane sapphire substrates by dual ion beam sputtering deposition system in the absence of oxygen ambient. The electrical, structural, morphological, and elemental properties of SZO thin films were studied for films grown at different substrate temperatures ranging from 200 °C to 600 °C and then annealed in situ at 800 °C under vacuum (pressure ?5 × 10{sup ?8} mbar). Films grown for temperature range of 200–500 °C showed p-type conduction with hole concentration of 1.374 × 10{sup 16} to 5.538 × 10{sup 16} cm{sup ?3}, resistivity of 66.733–12.758 ? cm, and carrier mobility of 4.964–8.846 cm{sup 2} V{sup ?1} s{sup ?1} at room temperature. However, the film grown at 600 °C showed n-type behavior. Additionally, current-voltage (I–V) characteristic of p-ZnO/n-Si heterojunction showed a diode-like behavior, and that further confirmed the p-type conduction in ZnO by Sb doping. X-ray diffraction measurements showed that all SZO films had (002) preferred crystal orientation. X-ray photoelectron spectroscopy analysis confirmed the formation of Sb{sub Zn}–2V{sub Zn} complex caused acceptor-like behavior in SZO films.

  18. Time-dependent, x-ray spectral unfolds and brightness temperatures for intense Li{sup +} ion beam-driven hohlraums

    SciTech Connect (OSTI)

    Fehl, D.L.; Chandler, G.A.; Biggs, F.; Dukart, R.J.; Moats, A.R.; Leeper, R.J.

    1996-07-01

    X-ray-producing hohlraums are being studied as indirect drives for Inertial Confinement Fusion targets. In a 1994 target series on the PBFAII accelerator, cylindrical hohlraum targets were heated by an intense Li{sup +} ion beam and viewed by an array of 13 time-resolved, filtered x-ray detectors (XRDs). The UFO unfold code and its suite of auxiliary functions were used extensively in obtaining time- resolved x-ray spectra and radiation temperatures from this diagnostic. UFO was also used to obtain fitted response functions from calibration data, to simulate data from blackbody x-ray spectra of interest, to determine the suitability of various unfolding parameters (e.g., energy domain, energy partition, smoothing conditions, and basis functions), to interpolate the XRD signal traces, and to unfold experimental data. The simulation capabilities of the code were useful in understanding an anomalous feature in the unfolded spectra at low photon energies ({le} 100 eV). Uncertainties in the differential and energy-integrated unfolded spectra were estimated from uncertainties in the data. The time-history of the radiation temperature agreed well with independent calculations of the wall temperature in the hohlraum.

  19. Multi-jump magnetic switching in ion-beam sputtered amorphous Co{sub 20}Fe{sub 60}B{sub 20} thin films

    SciTech Connect (OSTI)

    Raju, M.; Chaudhary, Sujeet; Pandya, D. K.

    2013-08-07

    Unconventional multi-jump magnetization reversal and significant in-plane uniaxial magnetic anisotropy (UMA) in the ion-beam sputtered amorphous Co{sub 20}Fe{sub 60}B{sub 20}(5–75 nm) thin films grown on Si/amorphous SiO{sub 2} are reported. While such multi-jump behavior is observed in CoFeB(10 nm) film when the magnetic field is applied at 10°–20° away from the easy-axis, the same is observed in CoFeB(12.5 nm) film when the magnetic field is 45°–55° away from easy-axis. Unlike the previous reports of multi-jump switching in epitaxial films, their observance in the present case of amorphous CoFeB is remarkable. This multi-jump switching is found to disappear when the films are crystallized by annealing at 420 °C. The deposition geometry and the energy of the sputtered species appear to intrinsically induce a kind of bond orientation anisotropy in the films, which leads to the UMA in the as-grown amorphous CoFeB films. Exploitation of such multi-jump switching in amorphous CoFeB thin films could be of technological significance because of their applications in spintronic devices.

  20. Interplay between water uptake, ion interactions, and conductivity in an e-beam grafted poly(ethylene-co-tetrafluoroethylene) anion exchange membrane

    SciTech Connect (OSTI)

    Pandey, Tara P.; Maes, Ashley M.; Sarode, Himanshu N.; Peters, Bethanne D.; Lavina, Sandra; Vezzù, Keti; Yang, Yuan; Poynton, Simon D.; Varcoe, John R.; Seifert, Soenke; Liberatore, Matthew W.; Di Noto, Vito; Herring, Andrew M.

    2014-12-23

    We demonstrate that the true hydroxide conductivity in an e-beam grafted poly(ethylene-co-tetrafluoroethylene) [ETFE] anion exchange membrane (AEM) is as high as 132 mS cm-1 at 80 °C and 95% RH, comparable to a proton exchange membrane, but with very much less water present in the film. To understand this behaviour we studied ion transport of hydroxide, carbonate, bicarbonate and chloride, as well as water uptake and distribution. Water uptake of the AEM in water vapor is an order of magnitude lower than when submerged in liquid water. In addition 19F pulse field gradient spin echo NMR indicates that there is little tortuosity in the ionic pathways through the film. A complete analysis of the IR spectrum of the AEM and the analyses of water absorption using FT-IR led to conclusion that the fluorinated backbone chains do not interact with water and that two types of water domains exist within the membrane. The reduction in conductivity was measured during exposure of the OH- form of the AEM to air at 95% RH and was seen to be much slower than the reaction of CO2 with OH- as the amount of water in the film determines its ionic conductivity and at relative wet RHs its re-organization is slow.

  1. In-beam Mössbauer spectroscopy of {sup 57}Fe/{sup 57}Mn in MgO and NaF at Heavy-Ion Medical Accelerator in Chiba

    SciTech Connect (OSTI)

    Kubo, M. K.; Kobayashi, Y.; Yamada, Y.; Mihara, M.; Nagatomo, T.; Sato, W.; Miyazaki, J.; Sato, S.; Kitagawa, A.

    2014-02-15

    Development of efficient ion supply of {sup 58}Fe from {sup 58}Fe(C{sub 5}H{sub 5}){sub 2}, and quick switching between therapy and material science at the Heavy-Ion Medical Accelerator in Chiba realized a new {sup 57}Mn in-beam emission Mössbauer spectroscopy measurement system. Application to simple binary chemical compounds, MgO and NaF, proved the usefulness of the system to probe chemical and physical behaviors of trace impurities in solids. Annealing of lattice defects produced by the implantation and ?-decay of {sup 57}Mn and/or ?-ray emission recoil was observed by a local probe.

  2. Beam Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Status Print Loading... You can also view the Operations Group's Beam History archives

  3. 43 PARTICLE ACCELERATORS; ELECTRON GUNS; BEAM EMITTANCE; CHARGE

    Office of Scientific and Technical Information (OSTI)

    SPACE 430200* -- Particle Accelerators-- Beam Dynamics, Field Calculations, & Ion Optics The evolution of the electron-beam phase space distribution in laser-driven rf guns is...

  4. Laser driven compact ion accelerator

    DOE Patents [OSTI]

    Tajima, Toshiki

    2005-03-15

    A laser driven compact ion source including a light source that produces an energy pulse, a light source guide that guides the energy pulse to a target and produces an ion beam. The ion beam is transported to a desired destination.

  5. High-intensity, high-brightness polarized and unpolarized beam production in charge-exchange collisions

    SciTech Connect (OSTI)

    Zelenski, A.; Ritter, J.; Zubets, V.; Steski, D.; Atoian, G.; Davydenko, V.; Ivanov, A.; Kolmogorov, A.

    2011-03-28

    Basic limitations on the high-intensity H{sup -} ion beam production were experimentally studied in charge-exchange collisions of the neutral atomic hydrogen beam in the Na-vapour jet ionizer cell. These studies are the part of the polarized source upgrade (to 10 mA peak current and 85% polarization) project for RHIC. In the source the atomic hydrogen beam of a 5-10 keV energy and total (equivalent) current up to 5 A is produced by neutralization of proton beam in pulsed hydrogen gas target. Formation of the proton beam (from the surface of the plasma emitter with a low transverse ion temperature {approx}0.2 eV) is produced by four-electrode spherical multi-aperture ion-optical system with geometrical focusing. The hydrogen atomic beam intensity up to 1.0 A/cm{sup 2} (equivalent) was obtained in the Na-jet ionizer aperture of a 2.0 cm diameter. At the first stage of the experiment H-beam with 36 mA current, 5 keV energy and {approx}1.0 cm {center_dot} mrad normalized emittance was obtained using the flat grids and magnetic focusing.

  6. BERNAS ION SOURCE DISCHARGE SIMULATION

    SciTech Connect (OSTI)

    RUDSKOY,I.; KULEVOY, T.V.; PETRENKO, S.V.; KUIBEDA, R.P.; SELEZNEV, D.N.; PERSHIN, V.I.; HERSHCOVITCH, A.; JOHNSON, B.M.; GUSHENETS, V.I.; OKS, E.M.; POOLE, H.J.

    2007-08-26

    The joint research and development program is continued to develop steady-state ion source of decaborane beam for ion implantation industry. Bemas ion source is the wide used ion source for ion implantation industry. The new simulation code was developed for the Bemas ion source discharge simulation. We present first results of the simulation for several materials interested in semiconductors. As well the comparison of results obtained with experimental data obtained at the ITEP ion source test-bench is presented.

  7. Inductively generated streaming plasma ion source

    DOE Patents [OSTI]

    Glidden, Steven C.; Sanders, Howard D.; Greenly, John B.

    2006-07-25

    A novel pulsed, neutralized ion beam source is provided. The source uses pulsed inductive breakdown of neutral gas, and magnetic acceleration and control of the resulting plasma, to form a beam. The beam supplies ions for applications requiring excellent control of ion species, low remittance, high current density, and spatial uniformity.

  8. Low velocity ion stopping in binary ionic mixtures

    SciTech Connect (OSTI)

    Tashev, Bekbolat; Baimbetov, Fazylkhan; Deutsch, Claude; Fromy, Patrice

    2008-10-15

    Attention is focused on the low ion velocity stopping mechanisms in multicomponent and dense target plasmas built of quasiclassical electron fluids neutralizing binary ionic mixtures, such as, deuterium-tritium of current fusion interest, proton-heliumlike iron in the solar interior or proton-helium ions considered in planetology, as well as other mixtures of fiducial concern in the heavy ion beam production of warm dense matter at Bragg peak conditions. The target plasma is taken in a multicomponent dielectric formulation a la Fried-Conte. The occurrence of projectile ion velocities (so-called critical) for which target electron slowing down equals that of given target ion components is also considered. The corresponding multiquadrature computations, albeit rather heavy, can be monitored analytical through a very compact code operating a PC cluster. Slowing down results are systematically scanned with respect to target temperature and electron density, as well as ion composition.

  9. Development of ion sources for ion projection lithography

    SciTech Connect (OSTI)

    Lee, Y.; Gough, R.A.; Kunkel, W.B.; Leung, K.N.; Perkins, L.T.

    1996-05-01

    Multicusp ion sources are capable of generating ion beams with low axial energy spread as required by the Ion Projection Lithography (IPL). Longitudinal ion energy spread has been studied in two different types of plasma discharge: the filament discharge ion source characterized by its low axial energy spread, and the RF-driven ion source characterized by its long source lifetime. For He{sup +} ions, longitudinal ion energy spreads of 1-2 eV were measured for a filament discharge multicusp ion source which is within the IPL device requirements. Ion beams with larger axial energy spread were observed in the RF-driven source. A double-chamber ion source has been designed which combines the advantages of low axial energy spread of the filament discharge ion source with the long lifetime of the RF-driven source. The energy spread of the double chamber source is lower than that of the RF-driven source.

  10. Lens system for a photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1990-11-27

    A lens system in a photo ion spectrometer for manipulating a primary ion beam and ionized atomic component is disclosed. The atomic components are removed from a sample by a primary ion beam using the lens system, and the ions are extracted for analysis. The lens system further includes ionization resistant coatings for protecting the lens system. 8 figs.

  11. Lens system for a photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL); Young, Charles E. (Westmont, IL); Pellin, Michael J. (Napersville, IL)

    1990-01-01

    A lens system in a photo ion spectrometer for manipulating a primary ion beam and ionized atomic component. The atomic components are removed from a sample by a primary ion beam using the lens system, and the ions are extracted for analysis. The lens system further includes ionization resistant coatings for protecting the lens system.

  12. Beam-beam simulations for separated beams

    SciTech Connect (OSTI)

    Furman, Miguel A.

    2000-04-10

    We present beam-beam simulation results from a strong-strong gaussian code for separated beams for the LHC and RHIC. The frequency spectrum produced by the beam-beam collisions is readily obtained and offers a good opportunity for experimental comparisons. Although our results for the emittance blowup are preliminary, we conclude that, for nominal parameter values, there is no significant difference between separated beams and center-on-center collisions.

  13. Ion temperature gradient driven turbulence with strong trapped ion

    Office of Scientific and Technical Information (OSTI)

    resonance (Journal Article) | SciTech Connect Ion temperature gradient driven turbulence with strong trapped ion resonance Citation Details In-Document Search Title: Ion temperature gradient driven turbulence with strong trapped ion resonance A theory to describe basic characterization of ion temperature gradient driven turbulence with strong trapped ion resonance is presented. The role of trapped ion granulations, clusters of trapped ions correlated by precession resonance, is the focus.

  14. Ion sources for ion implantation technology (invited)

    SciTech Connect (OSTI)

    Sakai, Shigeki Hamamoto, Nariaki; Inouchi, Yutaka; Umisedo, Sei; Miyamoto, Naoki

    2014-02-15

    Ion sources for ion implantation are introduced. The technique is applied not only to large scale integration (LSI) devices but also to flat panel display. For LSI fabrication, ion source scheduled maintenance cycle is most important. For CMOS image sensor devices, metal contamination at implanted wafer is most important. On the other hand, to fabricate miniaturized devices, cluster ion implantation has been proposed to make shallow PN junction. While for power devices such as silicon carbide, aluminum ion is required. For doping processes of LCD fabrication, a large ion source is required. The extraction area is about 150 cm × 10 cm, and the beam uniformity is important as well as the total target beam current.

  15. Electrtostatic Beam-Plasma Thruster | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrtostatic Beam-Plasma Thruster Electrostatic beam-plasma thruster utilizes beam of energetic electrons to generate the plasma from which ions are extracted and accelerated to generate the thrust. The accelerated ions are neutralized by the electrons from the beam. No.: M-894 Inventor(s): Yevgeny Raitses

  16. Co: clqrt. Beam

    Office of Legacy Management (LM)

    Co: clqrt. Beam*/:

  17. Beam-energy and laser beam-profile monitor at the BNL LINAC

    SciTech Connect (OSTI)

    Connolly, R.; Briscoe, B.; Degen, C.; DeSanto, L.; Meng, W.; Minty, M.; Nayak, S.; Raparia, D.; Russo, T.

    2010-05-02

    We are developing a non-interceptive beam profile and energy monitor for H{sup -} beams in the high energy beam transport (HEBT) line at the Brookhaven National Lab linac. Electrons that are removed from the beam ions either by laser photodetachment or stripping by background gas are deflected into a Faraday cup. The beam profile is measured by stepping a narrow laser beam across the ion beam and measuring the electron charge vs. transverse laser position. There is a grid in front of the collector that can be biased up to 125kV. The beam energy spectrum is determined by measuring the electron charge vs. grid voltage. Beam electrons have the same velocity as the beam and so have an energy of 1/1836 of the beam protons. A 200MeV H{sup -} beam yields 109keV electrons. Energy measurements can be made with either laser-stripped or gas-stripped electrons.

  18. Relativistic self-focusing in underdense plasma

    SciTech Connect (OSTI)

    Feit, M. D.; Garrison, J. C.; Rubenchik, A. M.; Komashko, A.; Musher, S. L.; Turitsyn, S. K.

    1997-04-15

    An improved cavitation model shows that stable beam channeling and electron cavitation occur for relativistic laser intensities even at powers hundreds of times larger than the critical power for self-focusing. Numerical calculations for long pulses (100 ps) demonstrate strong self-focusing at weakly relativistic intensities. The destructive effects of self-focusing are increasingly suppressed at high intensity.

  19. Diffraction limited focusing and routing of gap plasmons by a metal-dielectric-metal lens

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dennis, Brian S.; Czaplewski, David A.; Haftel, Michael I.; Lopez, Daniel; Blumberg, Girsh; Aksyuk, Vladimir

    2015-08-12

    Passive optical elements can play key roles in photonic applications such as plasmonic integrated circuits. Here we experimentally demonstrate passive gap-plasmon focusing and routing in two-dimensions. This is accomplished using a high numerical-aperture metal-dielectric-metal lens incorporated into a planar-waveguide device. Fabrication via metal sputtering, oxide deposition, electron- and focused-ion- beam lithography, and argon ion-milling is reported on in detail. Diffraction-limited focusing is optically characterized by sampling out-coupled light with a microscope. The measured focal distance and full-width-half-maximum spot size agree well with the calculated lens performance. The surface plasmon polariton propagation length is measured by sampling light from multiple out-couplermore »slits.« less

  20. Direct High-Power Laser Acceleration of Ions for Medical Applications

    SciTech Connect (OSTI)

    Salamin, Yousef I.; Harman, Zoltan; Keitel, Christoph H.

    2008-04-18

    Theoretical investigations show that linearly and radially polarized multiterawatt and petawatt laser beams, focused to subwavelength waist radii, can directly accelerate protons and carbon nuclei, over micron-size distances, to the energies required for hadron cancer therapy. Ions accelerated by radially polarized lasers have generally a more favorable energy spread than those accelerated by linearly polarized lasers of the same intensity.

  1. Interaction of the high energy deuterons with the graphite target in the plasma focus devices based on Lee model

    SciTech Connect (OSTI)

    Akel, M. Alsheikh Salo, S.; Ismael, Sh.; Saw, S. H.; Lee, S.

    2014-07-15

    Numerical experiments are systematically carried out using the Lee model code extended to compute the ion beams on various plasma focus devices operated with Deuterium gas. The deuteron beam properties of the plasma focus are studied for low and high energy plasma focus device. The energy spectral distribution for deuteron ions ejected from the pinch plasma is calculated and the ion numbers with energy around 1?MeV is then determined. The deuteron–graphite target interaction is studied for different conditions. The yield of the reaction {sup 12}C(d,n){sup 13}N and the induced radioactivity for one and multi shots plasma focus devices in the graphite solid target is investigated. Our results present the optimized high energy repetitive plasma focus devices as an alternative to accelerators for the production of {sup 13}N short lived radioisotopes. However, technical challenges await solutions on two fronts: (a) operation of plasma focus machines at high rep rates for a sufficient period of time (b) design of durable targets that can take the thermal load.

  2. eRHIC ring-ring design with head-on beam-beam compensation

    SciTech Connect (OSTI)

    Montag,C.; Blaskiewicz, M.; Pozdeyev, E.; Fischer, W.; MacKay, W. W.

    2009-05-04

    The luminosity of the eRHIC ring-ring design is limited by the beam-beam effect exerted on the electron beam. Recent simulation studies have shown that the beam-beam limit can be increased by means of an electron lens that compensates the beam-beam effect experienced by the electron beam. This scheme requires proper design of the electron ring, providing the correct betatron phase advance between interaction point and electron lens. We review the performance of the eRHIC ring-ring version and discuss various parameter sets, based on different cooling schemes for the proton/ion beam.

  3. Multi-particle weak-strong simulation of RHIC head-on beam-beam compensation.

    SciTech Connect (OSTI)

    Luo,Y.; Abreu, N.; Beebe-Wang, J.; FischW; Robert-Demolaize, G.

    2008-06-23

    To compensate the large tune spread generated by the beam-beam interactions in the polarized proton (pp) run in the Relativistic Heavy Ion Collider (RHIC), a low energy round Gaussian electron beam or electron lens is proposed to collide head-on with the proton beam. Using a weakstrong beam-beam interaction model, we carry out multiparticle simulations to investigate the effects of head-on beam-beam compensation on the proton beam's lifetime and emittance growth. The simplectic 6-D element-by-element tracking code SixTrack is adopted and modified for this study. The code benchmarking and preliminary simulation results are presented.

  4. COMMISSIONING OF THE RELATIVISTIC HEAVY ION COLLIDER.

    SciTech Connect (OSTI)

    TRBOJEVIC,D.; AHRENS,L.; BLASKIEWICZ,M.; BRENNAN,M.; BAI,M.; CAMERON,P.; CARDONA,J.; CONNOLLY,R.; ET AL; TSOUPAS,N.; VAN ZEIJTS,J.

    2001-06-18

    This report describes in detail steps performed in bringing the Relativistic Heavy Ion Collider (RHIC) from the commissioning into the operational stage when collisions between 60 bunches of fully striped gold ions, were routinely provided. Corrections of the few power supplies connections by the beam measurements are described. Beam lifetime improvements at injection, along the acceleration are shown. The beam diagnostic results; like Schottky detector, beam profile monitor, beam position monitors, tune meter and others, are shown [1].

  5. Laser focus compensating sensing and imaging device

    DOE Patents [OSTI]

    Vann, Charles S. (Fremont, CA)

    1993-01-01

    A laser focus compensating sensing and imaging device permits the focus of a single focal point of different frequency laser beams emanating from the same source point. In particular it allows the focusing of laser beam originating from the same laser device but having differing intensities so that a low intensity beam will not convert to a higher frequency when passing through a conversion crystal associated with the laser generating device. The laser focus compensating sensing and imaging device uses a cassegrain system to fold the lower frequency, low intensity beam back upon itself so that it will focus at the same focal point as a high intensity beam. An angular tilt compensating lens is mounted about the secondary mirror of the cassegrain system to assist in alignment. In addition cameras or CCD's are mounted with the primary mirror to sense the focused image. A convex lens is positioned co-axial with the cassegrain system on the side of the primary mirror distal of the secondary for use in aligning a target with the laser beam. A first alternate embodiment includes a cassegrain system using a series of shutters and an internally mounted dichroic mirror. A second alternate embodiment uses two laser focus compensating sensing and imaging devices for aligning a moving tool with a work piece.

  6. Laser focus compensating sensing and imaging device

    DOE Patents [OSTI]

    Vann, C.S.

    1993-08-31

    A laser focus compensating sensing and imaging device permits the focus of a single focal point of different frequency laser beams emanating from the same source point. In particular it allows the focusing of laser beam originating from the same laser device but having differing intensities so that a low intensity beam will not convert to a higher frequency when passing through a conversion crystal associated with the laser generating device. The laser focus compensating sensing and imaging device uses a Cassegrain system to fold the lower frequency, low intensity beam back upon itself so that it will focus at the same focal point as a high intensity beam. An angular tilt compensating lens is mounted about the secondary mirror of the Cassegrain system to assist in alignment. In addition cameras or CCD's are mounted with the primary mirror to sense the focused image. A convex lens is positioned co-axial with the Cassegrain system on the side of the primary mirror distal of the secondary for use in aligning a target with the laser beam. A first alternate embodiment includes a Cassegrain system using a series of shutters and an internally mounted dichroic mirror. A second alternate embodiment uses two laser focus compensating sensing and imaging devices for aligning a moving tool with a work piece.

  7. The effect of the dc bias voltage on the x-ray bremsstrahlung and beam intensities of medium and highly charged ions of argon

    SciTech Connect (OSTI)

    Rodrigues, G.; Lakshmy, P. S.; Kanjilal, D.; Roy, A.; Baskaran, R.

    2010-02-15

    X-ray bremsstrahlung measurements from the 18 GHz High Temperature Superconducting Electron Cyclotron Resonance Ion Source, Pantechnik-Delhi Ion Source were measured as a function of negative dc bias voltage, keeping all other source operating parameters fixed and the extraction voltage in the off condition. The optimization of medium and highly charged ions of argon with similar source operating parameters is described. It is observed that the high temperature component of the electron is altered significantly with the help of bias voltage, and the electron population has to be maximized for obtaining higher current.

  8. X-ray radiography with highly charged ions

    DOE Patents [OSTI]

    Marrs, Roscoe E. (Livermore, CA)

    2000-01-01

    An extremely small (1-250 micron FWHM) beam of slow highly charged ions deexciting on an x-ray production target generates x-ray monochromatic radiation that is passed through a specimen and detected for imaging. The resolution of the x-ray radiograms is improved and such detection is achieved with relatively low dosages of radiation passing through the specimen. An apparatus containing an electron beam ion trap (and modifications thereof) equipped with a focusing column serves as a source of ions that generate radiation projected onto an image detector. Electronic and other detectors are able to detect an increased amount of radiation per pixel than achieved by previous methods and apparati.

  9. Design studies for the next generation electron ion colliders

    SciTech Connect (OSTI)

    Sayed, Hisham Kamal; Bogacz, Slawomir A.; Krafft, Geoffrey A.

    2014-04-01

    The next generation Electron Ion Collider (EIC) at Thomas Jefferson National Accelerator Facility (JLAB) utilizes a figure-8 shaped ion and electron rings. EIC has the ability to preserve the ion polarization during acceleration, where the electron ring matches in footprint with a figure-8 ion ring. The electron ring is designed to deliver a highly polarized high luminous electron beam at interaction point (IP). The main challenges of the electron ring design are the chromaticity compensation and maintaining high beam polarization of 70% at all energies 3–11 GeV without introducing transverse orbital coupling before the IP. The very demanding detector design limits the minimum distance between the final focus quadrupole and the interaction point to 3.5 m which results in a large ? function inside the final focus quadrupoles leading to increased beam chromaticity. In this paper, we present a novel chromaticity compensation scheme that mitigates IP chromaticity by a compact chromaticity compensation section with multipole magnet components. In addition, a set of spin rotators are utilized to manipulate the polarization vector of the electron beam in order to preserve the beam polarization. The spin rotator solenoids introduce undesired coupling between the horizontal and vertical betatron motion of the beam. We introduce a compact and modular orbit decoupling insert that can fit in the limited space of the straight section in the figure-8 ring. We show a numerical study of the figure-8 ring design with the compact straight section, which includes the interaction region, chromaticity compensation section, and the spin rotators, the figure-8 design performance is evaluated with particle tracking.

  10. Bunch length effects in the beam-beam compensation with an electron lens

    SciTech Connect (OSTI)

    Fischer, W.; Luo, Y.; Montag, C.

    2010-02-25

    Electron lenses for the head-on beam-beam compensation are under construction at the Relativistic Heavy Ion Collider. The bunch length is of the same order as the {beta}-function at the interaction point, and a proton passing through another proton bunch experiences a substantial phase shift which modifies the beam-beam interaction. We review the effect of the bunch length in the single pass beam-beam interaction, apply the same analysis to a proton passing through a long electron lens, and study the single pass beam-beam compensation with long bunches. We also discuss the beam-beam compensation of the electron beam in an electron-ion collider ring.

  11. Negative Ion Source - Facilities - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Negative Ion Source Negative Ion Source. The Multi-Cusp Negative Ion Source was installed on the K150 Cyclotron in 2010. H- and D- ions are produced in the plasma chamber with a hot tantalum filament. The source is capable of producing milliamperes of ions and is used for experiments needing high intensity proton and deuteron beams.

  12. Optimizing the electron beam parameters for head-on beam-beam compensation in RHIC

    SciTech Connect (OSTI)

    Luo, Y.; Fischer, W.; Pikin, A.; Gu, X.

    2011-03-28

    Head-on beam-beam compensation is adopted to compensate the large beam-beam tune spread from the protonproton interactions at IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC). Two e-lenses are being built and to be in stalled near IP10 in the end of 2011. In this article we perform numeric simulation to investigate the effect of the electron beam parameters on the proton dynamics. The electron beam parameters include its transverse profile, size, current, offset and random errors in them. In this article we studied the effect of the electron beam parameters on the proton dynamics. The electron beam parameters include its transverse shape, size, current, offset and their random errors. From the study, we require that the electron beam size can not be smaller than the proton beam's. And the random noise in the electron current should be better than 0.1%. The offset of electron beam w.r.t. the proton beam center is crucial to head-on beam-beam compensation. Its random errors should be below {+-}8{micro}m.

  13. Progress on optimization of the nonlinear beam dynamics in the...

    Office of Scientific and Technical Information (OSTI)

    strong beam focusing unavoidably causes large chromatic effects such as chromatic tune spread and beam smear at the IP, which need to be compensated. This paper reports recent...

  14. Transverse beam dynamics in plasma-based linacs (Conference)...

    Office of Scientific and Technical Information (OSTI)

    accelerator by a uniform focusing channel. The transverse beam sizes and a basic offset tolerance are calculated, finding that sub-micron beams must be transported with even...

  15. Space charge effects with periodic focusing (Journal Article) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Space charge effects with periodic focusing Citation Details In-Document Search Title: Space charge effects with periodic focusing The dielectric response of a charged particle beam to a periodic focusing field enhances the effective focusing strength of the channel, reducing the matched beam radius and affecting the motion of halo particles. The dielectric response depends on the shape of the beam, the type of focusing and the ratio of the plasma frequency of the beam to the

  16. Characterization of an RF plasma ion source for ion implantation

    SciTech Connect (OSTI)

    Kopalidis, Peter M.; Wan Zhimin

    2012-11-06

    A novel inductively coupled RF plasma ion source has been developed for use in a beamline ion implanter. Ion density data have been taken with an array of four Langmuir probes spaced equally at the source extraction arc slit. These provide ion density uniformity information as a function of source pressure, RF power and gas mixture composition. In addition, total extracted ion beam current data are presented for the same conditions. The comparative advantages of the RF source in terms of higher beam current, reduced maintenance and overall productivity improvement compared to a hot cathode source are discussed.

  17. Redesign of the Analysing Magnet in the ISIS H{sup -} Penning Ion Source

    SciTech Connect (OSTI)

    Lawrie, S. R.; Faircloth, D. C.; Letchford, A. P.; Westall, M.; Whitehead, M. O.; Wood, T.; Pozimski, J.

    2009-03-12

    A full 3D electromagnetic finite element analysis and particle tracking study is undertaken of the ISIS Penning surface plasma H{sup -} ion source. The extraction electrode, 90 deg. analysing magnet, post-extraction acceleration gap and 700 mm of drift space have been modelled in CST Particle Studio 2008 to study the beam acceleration and transport at all points in the system. The analyzing magnet is found to have a sub-optimal field index, causing beam divergence and contributing the beam loss. Different magnet pole piece geometries are modelled and the effects of space charge investigated. The best design for the analysing magnet involves a shallower intersection angle and larger separation of the pole faces. This provides radial focusing to the beam, leading to less collimation. Three new sets of magnet poles are manufactured and tested on the Ion Source Development Rig to compare with predictions.

  18. The Heavy Ion Fusion Program in the U.S.A.

    SciTech Connect (OSTI)

    Bangerter, R.O.; Davidson, R.C.; Herrmannsfeldt, W.B.; Lindl, J.D.; Logan, B.G.; Meier, W.R.

    2000-10-03

    Inertial fusion energy research has enjoyed increased interest and funding. This has allowed expanded programs in target design, target fabrication, fusion chamber research, target injection and tracking, and accelerator research. The target design effort examines ways to minimize the beam power and energy and increase the allowable focal spot size while preserving target gain. Chamber research for heavy ion fusion emphasizes the use of thick liquid walls to serve as the coolant, breed tritium, and protect the structural wall from neutrons, photons, and other target products. Several small facilities are now operating to model fluid chamber dynamics. A facility to study target injection and tracking has been built and a second facility is being designed. Improved economics is an important goal of the accelerator research. The accelerator research is also directed toward the design of an Integrated Research Experiment (IRE). The IRE is being designed to accelerate ions to >100 MeV, enabling experiments in beam dynamics, focusing, and target physics. Activities leading to the IRE include ion source development and a High Current Experiment (HCX) designed to transport and accelerate a single beam of ions with a beam current of approximately 1 A, the initial current required for each beam of a fusion driver. In terms of theory, the program is developing a source-to-target numerical simulation capability. The goal of the entire program is to enable an informed decision about the promise of heavy ion fusion in about a decade.

  19. Beam Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Transport Beam Transport A simplified drawing of the beam transport system from the linac to Target-1 (Lujan Center), Target-2 (Blue Room) and Target-4 is shown below. In usual operation beam is transported from the linac through the pulsed Ring Injection Kicker (RIKI) magnet. When RIKI is switched on, the beam is injected into the storage ring with the time structure shown here. The beam is accumulated in the PSR and then transported to Target-1. beam_transport1 Simplified drawing of the

  20. IonCCD™ for direct position-sensitive charged-particle detection: from electrons and keV ions to hyperthermal biomolecular ions

    SciTech Connect (OSTI)

    Hadjar, Omar; Johnson, Grant E.; Laskin, Julia; Kibelka, Gottfried; Shill, Scott M.; Kuhn, Ken; Cameron, Chad; Kassan, Scott

    2011-04-01

    A novel charged-particle sensitive, pixel based detector array is described and its usage is demonstrated for a variety of applications, from detection of elemental particles (electrons) to hyper-thermal large biomolecular positive and negative ions including keV light atomic and molecular ions. The array detector is a modified light-sensitive charged coupled device (CCD). The IonCCDTM was engineered for direct charged particle detection by replacing the semi-conductor part of the CCD pixel by a conductor1. In contrast with the CCD, where the semi-conductive pixel is responsible for electron-hole pair formation upon photon bombardment, the IonCCD uses a capacitor coupled to the conductive electrode for direct charge integration. The detector can be operated from atmospheric pressure to high vacuum since no high voltages are needed. The IonCCD, presented in this work is an array of 2126 active pixels with 21 um pixel width and 3 um pixel gap. The detection area is 1.5x51mm2 where 1.5 mm and 51 mm are pixel and detector array length, respectively. The result is a one-dimensional position-sensitive detector with 24 um spatial resolution and 88 % pixel area ratio (PAR). In this work we demonstrate the capabilities and the performance of the detector. For the first time we show the direct detection of 250 eV electrons providing linearity response and detection efficiency of the IonCCD as function of electron beam current. Using positive ions from and electron impact source (E-I), we demonstrate that the detection efficiency of the IonCCD is virtually independent of particle energy [250 eV, 1250 eV], particle impact angle [45o, 90o] and particle flux. By combining the IonCCD with a double focusing sector field of Mattauch-Herzog geometry (M-H), we demonstrate fast acquisition of mass spectra in direct air sniffing mode. A first step towards fast in vivo breath analysis is presented. Detection of hyper-thermal biomolecular ions produced using an electrospray ionization source (ESI) is presented. The IonCCD was used as beam profiler to characterize the beam shape and intensity of 15 eV protonated and deprotonated biomolecular ions at the exit of an RF only collisional quadrupole. We present simultaneous detection of 140 eV doubly protonated biomolecular ions when the IonCCD is combined with the M-H analyzer. The latter, demonstrates the possibility of simultaneous separation and micro-array deposition of biological material using a miniature sector field.

  1. Particle beam fusion progress report for 1989

    SciTech Connect (OSTI)

    Sweeney, M.A.

    1994-08-01

    This report summarizes the progress on the pulsed power approach to inertial confinement fusion. In 1989, the authors achieved a proton focal intensity of 5 TW/cm{sup 2} on PBFA-II in a 15-cm-radius applied magnetic-field (applied-B) ion diode. This is an improvement by a factor of 4 compared to previous PBFA-II experiments. They completed development of the three-dimensional (3-D), electromagnetic, particle-in-cell code QUICKSILVER and obtained the first 3-D simulations of an applied-B ion diode. The simulations, together with analytic theory, suggest that control of electromagnetic instabilities could reduce ion divergence. In experiments using a lithium fluoride source, they delivered 26 kJ of lithium energy to the diode axis. Rutherford-scattered ion diagnostics have been developed and tested using a conical foil located inside the diode. They can now obtain energy density profiles by using range filters and recording ion images on nuclear track recording film. Timing uncertainties in power flow experiments on PBFA-II have been reduced by a factor of 5. They are investigating three plasma opening switches that use magnetic fields to control and confine the injected plasma. These new switches provide better power flow than the standard plasma erosion switch. Advanced pulsed-power fusion drivers will require extraction-geometry applied-B ion diodes. During this reporting period, progress was made in evaluating the generation, transport, and focus of multiple ion beams in an extraction geometry and in assessing the probable damage to a target chamber first wall.

  2. Beam-energy-dependent two-pion interferometry and the freeze-out eccentricity of pions measured in heavy ion collisions at the STAR detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamczyk, L.

    2015-07-10

    In this study, we present results of analyses of two-pion interferometry in Au+Au collisions at √sNN = 7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV measured in the STAR detector as part of the RHIC Beam Energy Scan program. The extracted correlation lengths (HBT radii) are studied as a function of beam energy, azimuthal angle relative to the reaction plane, centrality, and transverse mass (mT) of the particles. The azimuthal analysis allows extraction of the eccentricity of the entire fireball at kinetic freeze-out. The energy dependence of this observable is expected to be sensitive to changes in the equationmore » of state. A new global fit method is studied as an alternate method to directly measure the parameters in the azimuthal analysis. The eccentricity shows a monotonic decrease with beam energy that is qualitatively consistent with the trend from all model predictions and quantitatively consistent with a hadronic transport model.« less

  3. Beam-energy-dependent two-pion interferometry and the freeze-out eccentricity of pions measured in heavy ion collisions at the STAR detector

    SciTech Connect (OSTI)

    Adamczyk, L.

    2015-07-10

    In this study, we present results of analyses of two-pion interferometry in Au+Au collisions at √sNN = 7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV measured in the STAR detector as part of the RHIC Beam Energy Scan program. The extracted correlation lengths (HBT radii) are studied as a function of beam energy, azimuthal angle relative to the reaction plane, centrality, and transverse mass (mT) of the particles. The azimuthal analysis allows extraction of the eccentricity of the entire fireball at kinetic freeze-out. The energy dependence of this observable is expected to be sensitive to changes in the equation of state. A new global fit method is studied as an alternate method to directly measure the parameters in the azimuthal analysis. The eccentricity shows a monotonic decrease with beam energy that is qualitatively consistent with the trend from all model predictions and quantitatively consistent with a hadronic transport model.

  4. Optimizing the beam-beam alignment in an electron lens using bremsstrahlung

    SciTech Connect (OSTI)

    Montag, C.; Fischer, W.; Gassner, D.; Thieberger, P.; Haug, E.

    2010-05-23

    Installation of electron lenses for the purpose of head-on beam-beam compensation is foreseen at RHIC. To optimize the relative alignment of the electron lens beam with the circulating proton (or ion) beam, photon detectors will be installed to measure the bremsstrahlung generated by momentum transfer from protons to electrons. We present the detector layout and simulations of the bremsstrahlung signal as function of beam offset and crossing angle.

  5. Nonlinear study of an ion-channel guiding free-electron laser

    SciTech Connect (OSTI)

    Ouyang, Zhengbiao; Zhang, Shi-Chang

    2015-04-15

    A nonlinear model and simulations of the output power of an ion-channel guiding free-electron laser (FEL) are presented in this paper. Results show that the nonlinear output power of an ion-channel guiding FEL is comparable to that of an axial guide magnetic field FEL. Compared to an axial guide magnetic field FEL, an ion-channel guiding FEL substantially weakens the negative effect of the electron-beam energy spread on the output power due to its advantageous focusing mechanism on the electron motion.

  6. Performance of an inverted ion source

    SciTech Connect (OSTI)

    Salvadori, M. C.; Teixeira, F. S.; Sgubin, L. G.; Araujo, W. W. R.; Spirin, R. E.; Oks, E. M.; Brown, I. G.

    2013-02-15

    Whereas energetic ion beams are conventionally produced by extracting ions (say, positive ions) from a plasma that is held at high (positive) potential, with ion energy determined by the potential drop through which the ions fall in the beam formation electrode system, in the device described here the plasma and its electronics are held at ground potential and the ion beam is formed and injected energetically into a space maintained at high (negative) potential. We refer to this configuration as an 'inverted ion source.' This approach allows considerable savings both technologically and economically, rendering feasible some ion beam applications, in particular small-scale ion implantation, that might otherwise not be possible for many researchers and laboratories. We have developed a device of this kind utilizing a metal vapor vacuum arc plasma source, and explored its operation and beam characteristics over a range of parameter variation. The downstream beam current has been measured as a function of extraction voltage (5-35 kV), arc current (50-230 A), metal ion species (Ti, Nb, Au), and extractor grid spacing and beamlet aperture size (3, 4, and 5 mm). The downstream ion beam current as measured by a magnetically-suppressed Faraday cup was up to as high as 600 mA, and with parametric variation quite similar to that found for the more conventional metal vapor vacuum arc ion source.

  7. Experimental results of an electron cyclotron resonance oxygen source and a low energy beam transport system for 1 MeV integral split ring radio frequency quadruple accelerator upgrade project

    SciTech Connect (OSTI)

    Peng, S. X.; Zhang, M.; Song, Z. Z.; Xu, R.; Zhao, J.; Yuan, Z. X.; Yu, J. X.; Chen, J.; Guo, Z. Y.

    2008-02-15

    To meet the requirements of developing separated function radio frequency quadruple (rfq) and upgrading the 1 MeV integral split ring rfq accelerator, an electron cyclotron resonance O{sup +} ion source and low energy beam transport (LEBT) system have been developed. Using two Einzel lenses to focus the beam, more than 6 mA O{sup +} peak beam current with energy of 22 keV can be easily obtained at the end of LEBT when the duty faction is at 1/6. The normalized root-mean-square emittance of 90% of the beam is about 0.12{pi} mm mrad. By changing the focusing power of lenses, the beam waist can be shifted from 80 mm before the beam diaphragm 2 to 80 mm after it. The experimental results will be presented in this article.

  8. Observation of Electron-Beam-Induced Phase Evolution Mimicking the Effect of the Charge–Discharge Cycle in Li-Rich Layered Cathode Materials Used for Li Ion Batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lu, Ping; Yan, Pengfei; Romero, Eric; Spoerke, Erik David; Zhang, Ji-Guang; Wang, Chong-Min

    2015-01-27

    Capacity loss, and voltage decrease upon electrochemical charge-discharge cycling observed in lithium-rich layered cathode oxides (Li[LixMnyTM1-x-y]O2, TM = Ni, Co or Fe) have recently been attributed to the formation of a surface reconstructed layer (SRL) that evolves from a thin (<2 nm), defect spinel layer upon the first charge, to a relatively thick (~5nm), spinel or rock-salt layer upon continuous charge-discharge cycling. Here we report observations of a SRL and structural evolution of the SRL on the Li[Li0.2Ni0.2Mn0.6]O2 (LNMO) particles, which are identical to those reported due to the charge-discharge cycle but are a result of electron-beam irradiation during scanningmore » transmission electron microscopy (STEM) imaging. Sensitivity of the lithium-rich layered oxides to high-energy electrons leads to the formation of thin, defect spinel layer on surfaces of the particles when exposed to a 200kV electron beam for as little as 30 seconds under normal high-resolution STEM imaging conditions. Further electron irradiation produces a thicker layer of the spinel phase, ultimately producing a rock-salt layer at a higher electron exposure. Atomic-scale chemical mapping by electron dispersive X-ray spectroscopy in STEM indicates the electron-beam-induced SRL formation on LNMO is accomplished by migration of the transition metal ions to the Li sites without breaking down the lattice. The observation through this study provides an insight for understanding the mechanism of forming the SRL and also possibly a mean to study structural evolution in the Li-rich layered oxides without involving the electrochemistry.« less

  9. Observation of Electron-Beam-Induced Phase Evolution Mimicking the Effect of the Charge–Discharge Cycle in Li-Rich Layered Cathode Materials Used for Li Ion Batteries

    SciTech Connect (OSTI)

    Lu, Ping; Yan, Pengfei; Romero, Eric; Spoerke, Erik David; Zhang, Ji-Guang; Wang, Chong-Min

    2015-01-27

    Capacity loss, and voltage decrease upon electrochemical charge-discharge cycling observed in lithium-rich layered cathode oxides (Li[LixMnyTM1-x-y]O2, TM = Ni, Co or Fe) have recently been attributed to the formation of a surface reconstructed layer (SRL) that evolves from a thin (<2 nm), defect spinel layer upon the first charge, to a relatively thick (~5nm), spinel or rock-salt layer upon continuous charge-discharge cycling. Here we report observations of a SRL and structural evolution of the SRL on the Li[Li0.2Ni0.2Mn0.6]O2 (LNMO) particles, which are identical to those reported due to the charge-discharge cycle but are a result of electron-beam irradiation during scanning transmission electron microscopy (STEM) imaging. Sensitivity of the lithium-rich layered oxides to high-energy electrons leads to the formation of thin, defect spinel layer on surfaces of the particles when exposed to a 200kV electron beam for as little as 30 seconds under normal high-resolution STEM imaging conditions. Further electron irradiation produces a thicker layer of the spinel phase, ultimately producing a rock-salt layer at a higher electron exposure. Atomic-scale chemical mapping by electron dispersive X-ray spectroscopy in STEM indicates the electron-beam-induced SRL formation on LNMO is accomplished by migration of the transition metal ions to the Li sites without breaking down the lattice. The observation through this study provides an insight for understanding the mechanism of forming the SRL and also possibly a mean to study structural evolution in the Li-rich layered oxides without involving the electrochemistry.

  10. Relativistic self-focusing in underdense plasma

    SciTech Connect (OSTI)

    Feit, M.D.; Garrison, J.C.; Rubenchik, A.M.; Musher, S.L.; Turitsyn, S.K.

    1997-04-01

    An improved cavitation model shows that stable beam channeling and electron cavitation occur for relativistic laser intensities even at powers hundreds of times larger than the critical power for self-focusing. Numerical calculations for long pulses (100 ps) demonstrate strong self-focusing at weakly relativistic intensities. The destructive effects of self-focusing are increasingly suppressed at high intensity. {copyright} {ital 1997 American Institute of Physics.}

  11. Noise reduction in negative-ion quadrupole mass spectrometry

    DOE Patents [OSTI]

    Chastagner, P.

    1993-04-20

    A quadrupole mass spectrometer (QMS) system is described having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.

  12. Mass spectrometer with electron source for reducing space charge effects in sample beam

    DOE Patents [OSTI]

    Houk, Robert S.; Praphairaksit, Narong

    2003-10-14

    A mass spectrometer includes an ion source which generates a beam including positive ions, a sampling interface which extracts a portion of the beam from the ion source to form a sample beam that travels along a path and has an excess of positive ions over at least part of the path, thereby causing space charge effects to occur in the sample beam due to the excess of positive ions in the sample beam, an electron source which adds electrons to the sample beam to reduce space charge repulsion between the positive ions in the sample beam, thereby reducing the space charge effects in the sample beam and producing a sample beam having reduced space charge effects, and a mass analyzer which analyzes the sample beam having reduced space charge effects.

  13. Direct comparative study on the energy level alignments in unoccupied/occupied states of organic semiconductor/electrode interface by constructing in-situ photoemission spectroscopy and Ar gas cluster ion beam sputtering integrated analysis system

    SciTech Connect (OSTI)

    Yun, Dong-Jin Chung, JaeGwan; Kim, Yongsu; Park, Sung-Hoon; Kim, Seong-Heon; Heo, Sung

    2014-10-21

    Through the installation of electron gun and photon detector, an in-situ photoemission and damage-free sputtering integrated analysis system is completely constructed. Therefore, this system enables to accurately characterize the energy level alignments including unoccupied/occupied molecular orbital (LUMO/HOMO) levels at interface region of organic semiconductor/electrode according to depth position. Based on Ultraviolet Photoemission Spectroscopy (UPS), Inverse Photoemission Spectroscopy (IPES), and reflective electron energy loss spectroscopy, the occupied/unoccupied state of in-situ deposited Tris[4-(carbazol-9-yl)phenyl]amine (TCTA) organic semiconductors on Au (E{sub LUMO}: 2.51?eV and E{sub HOMO}: 1.35?eV) and Ti (E{sub LUMO}: 2.19?eV and E{sub HOMO}: 1.69?eV) electrodes are investigated, and the variation of energy level alignments according to work function of electrode (Au: 4.81?eV and Ti: 4.19?eV) is clearly verified. Subsequently, under the same analysis condition, the unoccupied/occupied states at bulk region of TCTA/Au structures are characterized using different Ar gas cluster ion beam (Ar GCIB) and Ar ion sputtering processes, respectively. While the Ar ion sputtering process critically distorts both occupied and unoccupied states in UPS/IPES spectra, the Ar GCIB sputtering process does not give rise to damage on them. Therefore, we clearly confirm that the in-situ photoemission spectroscopy in combination with Ar GCIB sputtering allows of investigating accurate energy level alignments at bulk/interface region as well as surface region of organic semiconductor/electrode structure.

  14. 6-D weak-strong beam-beam simulation study of proton lifetime in presence of head-on beam-beam compensation in the RHIC

    SciTech Connect (OSTI)

    Luo, Y.; Fischer, W.

    2010-08-01

    In this note we summarize the calculated particle loss of a proton bunch in the presence of head-on beam-beam compensation in the Relativistic Heavy Ion Collider (RHIC). To compensate the head-on beam-beam effect in the RHIC 250 GeV polarized proton run, we are introducing a DC electron beam with the same transverse profile as the proton beam to collide with the proton beam. Such a device is called an electron lens (e-lens). In this note we first present the optics and beam parameters and the tracking setup. Then we calculate and compare the particle loss of a proton bunch with head-on beam-beam compensation, phase advance of k{pi} between IP8 and the center of the e-lens and second order chromaticity correction. We scanned the proton beam's linear chromaticity, working point and bunch intensity. We also scanned the electron beam's intensity, transverse beam size. The effect of the electron-proton transverse offset in the e-lens was studied. In the study 6-D weak-strong beam-beam interaction model a la Hirata is used for proton collisions at IP6 and IP8. The e-lens is modeled as 8 slices. Each slice is modeled with as drift - (4D beam-beam kick) - drift.

  15. Permanent magnet focused X-band photoinjector

    DOE Patents [OSTI]

    Yu, David U. L. (Rancho Palos Verdes, CA); Rosenzweig, James (Los Angeles, CA)

    2002-09-10

    A compact high energy photoelectron injector integrates the photocathode directly into a multicell linear accelerator with no drift space between the injection and the linac. High electron beam brightness is achieved by accelerating a tightly focused electron beam in an integrated, multi-cell, X-band rf linear accelerator (linac). The photoelectron linac employs a Plane-Wave-Transformer (PWT) design which provides strong cell-to-cell coupling, easing manufacturing tolerances and costs.

  16. Remote adjustable focus Raman spectroscopy probe

    DOE Patents [OSTI]

    Schmucker, John E.; Blasi, Raymond J.; Archer, William B.

    1999-01-01

    A remote adjustable focus Raman spectroscopy probe allows for analyzing Raman scattered light from a point of interest external probe. An environmental barrier including at least one window separates the probe from the point of interest. An optical tube is disposed adjacent to the environmental barrier and includes a long working length compound lens objective next to the window. A beam splitter and a mirror are at the other end. A mechanical means is used to translated the prove body in the X, Y, and Z directions resulting in a variable focus optical apparatus. Laser light is reflected by the beam splitter and directed toward the compound lens objective, then through the window and focused on the point of interest. Raman scattered light is then collected by the compound lens objective and directed through the beam splitter to a mirror. A device for analyzing the light, such as a monochrometer, is coupled to the mirror.

  17. Heavy Ion Fusion Accelerator Research (HIFAR) half-year report, October 1, 1988--March 31, 1989

    SciTech Connect (OSTI)

    Not Available

    1989-06-01

    The basic objective of the Heavy Ion Fusion Accelerator Research (HIFAR) program is to assess the suitability of heavy ion accelerators as igniters for Inertial Confinement Fusion (ICF). A specific accelerator technology, the induction linac, has been studied at the Lawrence Berkeley Laboratory and has reached the point at which its viability for ICF applications can be assessed over the next few years. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions, the understanding of the scaling laws in this novel physics regime, and the validation of new accelerator strategies, to cut costs. Key elements to be addressed include: beam quality limits set by transverse and longitudinal beam physics; development of induction accelerating modules, and multiple-beam hardware, at affordable costs; acceleration of multiple beams with current amplification --both new features in a linac -- without significant dilution of the optical quality of the beams; and final bunching, transport, and accurate focusing on a small target.

  18. Ion optics of RHIC EBIS

    SciTech Connect (OSTI)

    Pikin, A.; Alessi, J.; Beebe, E.; Kponou, A.; Okamura, M.; Raparia, D.; Ritter, J.; Tan, Y.; Kuznetsov, G.

    2011-09-10

    RHIC EBIS has been commissioned to operate as a versatile ion source on RHIC injection facility supplying ion species from He to Au for Booster. Except for light gaseous elements RHIC EBIS employs ion injection from several external primary ion sources. With electrostatic optics fast switching from one ion species to another can be done on a pulse to pulse mode. The design of an ion optical structure and the results of simulations for different ion species are presented. In the choice of optical elements special attention was paid to spherical aberrations for high-current space charge dominated ion beams. The combination of a gridded lens and a magnet lens in LEBT provides flexibility of optical control for a wide range of ion species to satisfy acceptance parameters of RFQ. The results of ion transmission measurements are presented.

  19. Study of Ion Cooling and Ejection from Two Stage Linear Quadrupole Ion Trap consisted of RFQ ion guides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ion Cooling and Ejection from Two Stage Linear Quadrupole Ion Trap consisted of RFQ ion guides Kozlovskiy V.I., Filatov V. V., Shchepunov (UNIRIB, O.R.A.U. Oak Ridge, TN, USA) V. A., Brusov V. S., Pikhtelev A. R., Zelenov V. V. Introduction The primary objective of this work concerns linear quadrupole ion traps, which are commonly used to interface a continuous ion beam from an external source with a mass analyzer, requiring bunched or pulsed beams. We assume that the ions prepared for mass

  20. Transverse Focussing of Intense Charged Particle Beams with Chromatic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transverse Focussing of Intense Charged Particle Beams with Chromatic Effects for Heavy Ion Fusion Inventors..--.. James M. Mitrani, Igor D, Kaganovich, Ronald C, Davidson. A two...

  1. Ion photon emission microscope

    DOE Patents [OSTI]

    Doyle, Barney L. (Albuquerque, NM)

    2003-04-22

    An ion beam analysis system that creates microscopic multidimensional image maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the ion-induced photons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted photons are collected in the lens system of a conventional optical microscope, and projected on the image plane of a high resolution single photon position sensitive detector. Position signals from this photon detector are then correlated in time with electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these photons initially.

  2. Preliminary Results Of A 600 Joules Small Plasma Focus Device

    SciTech Connect (OSTI)

    Lee, S. H.; Yap, S. L.; Wong, C. S.

    2009-07-07

    Preliminary results of a 600 J (3.7 muF, 18 kV) Mather type plasma focus device operated at low pressure will be presented. The discharge is formed between a solid anode with length of 6 cm and six symmetrically and coaxially arranged cathode rods of same lengths. The cathode base is profiled in a knife-edge design and a set of coaxial plasma gun are attached to it in order to initiate the breakdown and enhance the current sheath formation. The experiments have been performed in argon gas under a low pressure condition of several microbars. The discharge current and the voltage across the electrodes during the discharge are measured with high voltage probe and current coil. The current and voltage characteristics are used to determine the possible range of operating pressure that gives good focusing action. At a narrow pressure regime of 9.0+-0.5 mubar, focusing action is observed with good reproducibility. Preliminary result of ion beam energy is presented. More work will be carried out to investigate the radiation output.

  3. High current ion source

    DOE Patents [OSTI]

    Brown, Ian G. (1088 Woodside Rd., Berkeley, CA 94708); MacGill, Robert A. (645 Kern St., Richmond, CA 94805); Galvin, James E. (2 Commodore Dr. #276, Emeryville, CA 94608)

    1990-01-01

    An ion source utilizing a cathode and anode for producing an electric arc therebetween. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma leaves the generation region and expands through another regon. The density profile of the plasma may be flattened using a magnetic field formed within a vacuum chamber. Ions are extracted from the plasma to produce a high current broad on beam.

  4. Ion cyclotron resonance cell

    DOE Patents [OSTI]

    Weller, Robert R. (Aiken, SC)

    1995-01-01

    An ion cyclotron resonance cell having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions.

  5. Ion cyclotron resonance cell

    DOE Patents [OSTI]

    Weller, R.R.

    1995-02-14

    An ion cyclotron resonance cell is disclosed having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions. 5 figs.

  6. Compact steady-state and high-flux Falcon ion source for tests of plasma-facing materials

    SciTech Connect (OSTI)

    Girka, O.; Bizyukov, I.; Sereda, K.; Bizyukov, A.; Gutkin, M.; Sleptsov, V.

    2012-08-15

    This paper describes the design and operation of the Falcon ion source. It is based on conventional design of anode layer thrusters. This ion source is a versatile, compact, affordable, and highly functional in the research field of the fusion materials. The reversed magnetic field configuration of the source allows precise focusing of the ion beam into small spot of Almost-Equal-To 3 mm and also provides the limited capabilities for impurity mass-separation. As the result, the source generates steady-state ion beam, which irradiates surface with high heat (0.3 - 21 MW m{sup -2}) and particle fluxes (4 Multiplication-Sign 10{sup 21}- 3 Multiplication-Sign 10{sup 23} m{sup -2}s{sup -1}), which approaches the upper limit for the flux range expected in ITER.

  7. Beam experiments related to the head-on beam-beam compensation project at RHIC

    SciTech Connect (OSTI)

    Montag, C.; Bai, M.; Drees, A.; Fischer, W.; Marusic, A.; Wang, G.

    2011-03-28

    Beam experiments have been performed in RHIC to determine some key parameters of the RHIC electron lenses, and to test the capability of verifying lattice modifications by beam measurements. We report the status and recent results of these experiments. The Relativistic Heavy Ion Collider (RHIC) consists of two superconducting storage rings that intersect at six locations around its circumference. Beams collide in interaction points (IPs) 6 and 8, which are equipped with the detectors STAR and PHENIX, respectively (Fig. 1). With the polarized proton working point constrained between 2/3 and 7/10 to achieve good luminosity lifetime and maintain polarization, the proton bunch intensity is limited to 2 {center_dot} 10{sup 11} protons per bunch by the resulting beam-beam tuneshift. To overcome this limitation, installation of an electron lens in IP 10 is foreseen to partially compensate the beam-beam effect and reduce the beam-beam tuneshift parameter. As part of this project, beam experiments are being performed at RHIC to determine key parameters of the electron lens as well as to verify lattice modifications.

  8. BEAM-BEAM SIMULATIONS FOR THE ERHIC ELECTRON RING.

    SciTech Connect (OSTI)

    MONTAG, C.

    2005-05-16

    To study collisions between polarized electrons and heavy ions or polarized protons at high energy, adding a 10 GeV electron storage ring to the existing RHIC facility is currently under consideration. To achieve high luminosities of several 10{sup 33} cm{sup -2} sec{sup -1} range, a vertical beam-beam tuneshift parameter of {zeta}{sub y} = 0.08 is required for the electron beam. Simulation studies are being performed to study the feasibility of this high tuneshift parameter and explore the potential for even higher tuneshifts. Recent results of these studies are presented.

  9. Simulations of Ion Migration in the LCLS RF Gun and Injector

    SciTech Connect (OSTI)

    Brachmann, Axel; Dowell, David; /SLAC

    2012-06-25

    The motivation for this work was the observed surface contamination of the first LCLS RF gun copper cathode. We will present the results of simulations in regards to ion migration in the LCLS gun. Ions of residual gases will be created by interaction of molecular gas species with the UV drive laser beam and by the electron beam itself. The larger part of those ionized molecules remain in the vicinity of creation, are transported towards beam line walls or away from the cathode. However a small fraction gains enough kinetic energy, focused by RF and magnetic fields and propagates to the cathode, producing an undesirable increase of the cathode's surface work function. Although this fraction is small, during long term operation, this effect may become a significant factor limiting the source performance.

  10. Beam History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Status Beam History Print Beamline History Request Form To request a beam current histograph from the ALS storage ring beam histograph database, select the year, month, and day, then click on "Submit Request". Histographs are available as far back as February 2, 1994. Year 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Day 01 02 03 04 05 06 07 08 09 10 11 12 13

  11. BEAM PROPAGATOR

    Energy Science and Technology Software Center (OSTI)

    003691MLTPL00 Beam Propagator for Weather Radars, Modules 1 and 2  http://www.exelisvis.com/ProductsServices/IDL.aspx 

  12. Stability of Single Particle Motion with Head-On Beam-Beam Compensation in the RHIC

    SciTech Connect (OSTI)

    Luo,Y.; Fischer, W.; Abreu, N.

    2008-05-01

    To compensate the large tune shift and tune spread generated by the head-on beam-beam interactions in the polarized proton run in the Relativistic Heavy Ion Collider (RHIC), we proposed a low energy electron beam with a Gaussian transverse profiles to collide head-on with the proton beam. In this article, with a weak-strong beam-beam interaction model, we investigate the stability of single particle motion in the presence of head-on beam-beam compensation. Tune footprints, tune diffusion, Lyapunov exponents, and 10{sup 6} turn dynamic apertures are calculated and compared between the cases without and with beam-beam compensation. A tune scan is performed and the possibility of increasing the bunch intensity is studied. The cause of tune footprint foldings is discussed, and the tune diffusion and Lyapunov exponent analysis are compared.

  13. MEIC Proton Beam Formation with a Low Energy Linac

    SciTech Connect (OSTI)

    Zhang, Yuhong

    2015-09-01

    The MIEC proton and ion beams are generated, accumulated, accelerated and cooled in a new green-field ion injector complex designed specifically to support its high luminosity goal. This injector consists of sources, a linac and a small booster ring. In this paper we explore feasibility of a short ion linac that injects low energy protons and ions into the booster ring.

  14. ION SOURCE WITH SPACE CHARGE NEUTRALIZATION

    DOE Patents [OSTI]

    Flowers, J.W.; Luce, J.S.; Stirling, W.L.

    1963-01-22

    This patent relates to a space charge neutralized ion source in which a refluxing gas-fed arc discharge is provided between a cathode and a gas-fed anode to provide ions. An electron gun directs a controlled, monoenergetic electron beam through the discharge. A space charge neutralization is effected in the ion source and accelerating gap by oscillating low energy electrons, and a space charge neutralization of the source exit beam is effected by the monoenergetic electron beam beyond the source exit end. The neutralized beam may be accelerated to any desired energy at densities well above the limitation imposed by Langmuir-Child' s law. (AEC)

  15. Laser ion source with solenoid field

    SciTech Connect (OSTI)

    Kanesue, Takeshi Okamura, Masahiro; Fuwa, Yasuhiro; Kondo, Kotaro

    2014-11-10

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90?mT, 1?m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2??s which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2?×?10{sup 11}, which was provided by a single 1?J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  16. Laser ion source with solenoid field

    SciTech Connect (OSTI)

    Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; Okamura, Masahiro

    2014-11-12

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. In this study, the laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 ?s which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  17. Laser ion source with solenoid field

    SciTech Connect (OSTI)

    Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; Okamura, Masahiro

    2014-11-10

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 ?s which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  18. Laser ion source with solenoid field

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; Okamura, Masahiro

    2014-11-12

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. In this study, the laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, whichmore » was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.« less

  19. Particle-in-cell modeling for MJ scale dense plasma focus with varied anode shape

    SciTech Connect (OSTI)

    Link, A. Halvorson, C. Schmidt, A.; Hagen, E. C.; Rose, D. V.; Welch, D. R.

    2014-12-15

    Megajoule scale dense plasma focus (DPF) Z-pinches with deuterium gas fill are compact devices capable of producing 10{sup 12} neutrons per shot but past predictive models of large-scale DPF have not included kinetic effects such as ion beam formation or anomalous resistivity. We report on progress of developing a predictive DPF model by extending our 2D axisymmetric collisional kinetic particle-in-cell (PIC) simulations from the 4 kJ, 200 kA LLNL DPF to 1 MJ, 2 MA Gemini DPF using the PIC code LSP. These new simulations incorporate electrodes, an external pulsed-power driver circuit, and model the plasma from insulator lift-off through the pinch phase. To accommodate the vast range of relevant spatial and temporal scales involved in the Gemini DPF within the available computational resources, the simulations were performed using a new hybrid fluid-to-kinetic model. This new approach allows single simulations to begin in an electron/ion fluid mode from insulator lift-off through the 5-6 ?s run-down of the 50+ cm anode, then transition to a fully kinetic PIC description during the run-in phase, when the current sheath is 2-3 mm from the central axis of the anode. Simulations are advanced through the final pinch phase using an adaptive variable time-step to capture the fs and sub-mm scales of the kinetic instabilities involved in the ion beam formation and neutron production. Validation assessments are being performed using a variety of different anode shapes, comparing against experimental measurements of neutron yield, neutron anisotropy and ion beam production.

  20. Doublet III neutral beam power system

    SciTech Connect (OSTI)

    Nerem, A.; Beal, J.W.; Colleraine, A.P.; LeVine, F.H.; Pipkins, J.F.; Remsen, D.B. Jr.; Tooker, J.F.; Varga, H.J.; Franck, J.V.

    1981-01-01

    The Doublet III neutral beam power system supplies pulsed power to the neutral beam injectors for plasma heating experiments on the Doublet III tokamak. The power supply system is connected to an ion source where the power is converted to an 80 kV, 80A, 0.5 sec beam of hydrogen ions at maximum power output. These energetic ions undergo partial neutralization via charge exchange in the beamline. The energetic neutral hydrogen atoms pass through the Doublet III toroidal and poloidal magnet fields and deposit their energy in the confined plasma. The unneutralized ions are deflected into a water-cooled dump. The entire system is interfaced through the neutral beam computer instrumentation and control system.

  1. MHD-induced Energetic Ion Loss during H-mode Discharges in the National Spherical Torus Experiment (NSTX)

    SciTech Connect (OSTI)

    S.S. Medley; N.N. Gorelenkov; R. Andre; R.E. Bell; D.S. Darrow; E.D. Fredrickson; S.M. Kaye; B.P. LeBlanc; A.L. Roquemore; and the NSTX Team

    2004-03-15

    MHD-induced energetic ion loss in neutral-beam-heated H-mode [high-confinement mode] discharges in NSTX [National Spherical Torus Experiment] is discussed. A rich variety of energetic ion behavior resulting from magnetohydrodynamic (MHD) activity is observed in the NSTX using a horizontally scanning Neutral Particle Analyzer (NPA) whose sightline views across the three co-injected neutral beams. For example, onset of an n = 2 mode leads to relatively slow decay of the energetic ion population (E {approx} 10-100 keV) and consequently the neutron yield. The effect of reconnection events, sawteeth, and bounce fishbones differs from that observed for low-n, low-frequency, tearing-type MHD modes. In this case, prompt loss of the energetic ion population occurs on a time scale of less than or equal to 1 ms and a precipitous drop in the neutron yield occurs. This paper focuses on MHD-induced ion loss during H-mode operation in NSTX. After H-mode onset, the NPA charge-exchange spectrum usually exhibits a significant loss of energetic ions only for E > E(sub)b/2 where E(sub)b is the beam injection energy. The magnitude of the energetic ion loss was observed to decrease with increasing tangency radius, R(sub)tan, of the NPA sightline, increasing toroidal field, B(sub)T, and increasing neutral-beam injection energy, E(sub)b. TRANSP modeling suggests that MHD-induced ion loss is enhanced during H-mode operation due to an evolution of the q and beam deposition profiles that feeds both passing and trapped ions into the region of low-n MHD activity. ORBIT code analysis of particle interaction with a model magnetic perturbation supported the energy selectivity of the MHD-induced loss observed in the NPA measurements. Transport analysis with the TRANSP code using a fast-ion diffusion tool to emulate the observed MHD-induced energetic ion loss showed significant modifications of the neutral- beam heating as well as the power balance, thermal diffusivities, energy confinement times, and toroidal beta. A proper accounting of energetic ion loss is therefore important for accurate analysis of power balance and transport in plasmas exhibiting MHD-induced energetic ion loss.

  2. Virtual mask digital electron beam lithography

    DOE Patents [OSTI]

    Baylor, L.R.; Thomas, C.E.; Voelkl, E.; Moore, J.A.; Simpson, M.L.; Paulus, M.J.

    1999-04-06

    Systems and methods for direct-to-digital holography are described. An apparatus includes a laser; a beamsplitter optically coupled to the laser; a reference beam mirror optically coupled to the beamsplitter; an object optically coupled to the beamsplitter, a focusing lens optically coupled to both the reference beam mirror and the object; and a digital recorder optically coupled to the focusing lens. A reference beam is incident upon the reference beam mirror at a non-normal angle, and the reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form an image. The systems and methods provide advantages in that computer assisted holographic measurements can be made. 5 figs.

  3. Virtual mask digital electron beam lithography

    DOE Patents [OSTI]

    Baylor, Larry R. (Farragut, TN); Thomas, Clarence E. (Knoxville, TN); Voelkl, Edgar (Oak Ridge, TN); Moore, James A. (Powell, TN); Simpson, Michael L. (Knoxville, TN); Paulus, Michael J. (Knoxville, TN)

    1999-01-01

    Systems and methods for direct-to-digital holography are described. An apparatus includes a laser; a beamsplitter optically coupled to the laser; a reference beam mirror optically coupled to the beamsplitter; an object optically coupled to the beamsplitter, a focusing lens optically coupled to both the reference beam mirror and the object; and a digital recorder optically coupled to the focusing lens. A reference beam is incident upon the reference beam mirror at a non-normal angle, and the reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form an image. The systems and methods provide advantages in that computer assisted holographic measurements can be made.

  4. Time-of-flight direct recoil ion scattering spectrometer

    DOE Patents [OSTI]

    Krauss, Alan R. (Naperville, IL); Gruen, Dieter M. (Downers Grove, IL); Lamich, George J. (Orland Park, IL)

    1994-01-01

    A time of flight direct recoil and ion scattering spectrometer beam line (10). The beam line (10) includes an ion source (12) which injects ions into pulse deflection regions (14) and (16) separated by a drift space (18). A final optics stage includes an ion lens and deflection plate assembly (22). The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions (14) and (16).

  5. Time-of-flight direct recoil ion scattering spectrometer

    DOE Patents [OSTI]

    Krauss, A.R.; Gruen, D.M.; Lamich, G.J.

    1994-09-13

    A time-of-flight direct recoil and ion scattering spectrometer beam line is disclosed. The beam line includes an ion source which injects ions into pulse deflection regions and separated by a drift space. A final optics stage includes an ion lens and deflection plate assembly. The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions. 23 figs.

  6. Beam commissioning of the RFQ for the RHIC-EBIS project

    SciTech Connect (OSTI)

    Okamura,M.; Alessi, J.; Beebe, E.; Lodestro, V.; Pikin, A.; Ritter, J.; Tamura, J.; Kanesue, T.; Schempp, A.; Schmidt, J.; Vossberg, M.

    2009-05-04

    Beam commissioning of a new 4 rod RFQ has started at Brookhaven National Laboratory (BNL). The RFQ will accelerate intense heavy ion beams provided by an Electron Beam ion Source (EBIS) up to 300 keV/u. The RFQ will accelerate a range of Q/M from 1 to 1/6, and the accelerated beam will be finally delivered to the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory (NSRL). The first beam was successfully accelerated and the bunch structures of He{sup +} and Cu{sup 10+} beams were measured. The further beam tests are in progress.

  7. Relativistic self-focusing in underdense plasma

    SciTech Connect (OSTI)

    Feit, M.D.; Garrison, J.C.; Komashko, A.; Musher, J.L.; Rubenchik, A.M.; Turistsyn, S.K.

    1997-04-24

    In the present paper, we discuss light self-focusing in underdense (nion motion is important even for picosecond pulse durations and a description of relativistic self-focusing including ion dynamics will be presented in second part of the paper. In particular, we will demonstrate the formation of empty, wide channels in underdense plasma in the wake of the laser pulse. we discuss the applicability of our results to real situations and possible consequences for the ``Fast Ignitor`` project.

  8. Polymer surface treatment with particle beams

    DOE Patents [OSTI]

    Stinnett, Regan W. (1033 Tramway La. NE., Albuquerque, NM 87122); VanDevender, J. Pace (7604 Lamplighter NE., Albuquerque, NM 87109)

    1999-01-01

    A polymer surface and near surface treatment process produced by irradiation with high energy particle beams. The process is preferably implemented with pulsed ion beams. The process alters the chemical and mechanical properties of the polymer surface in a manner useful for a wide range of commercial applications.

  9. Polymer surface treatment with particle beams

    DOE Patents [OSTI]

    Stinnett, R.W.; VanDevender, J.P.

    1999-05-04

    A polymer surface and near surface treatment process produced by irradiation with high energy particle beams is disclosed. The process is preferably implemented with pulsed ion beams. The process alters the chemical and mechanical properties of the polymer surface in a manner useful for a wide range of commercial applications. 16 figs.

  10. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    change. This distribution was to allow the Focus Group time to review the proposed language and be prepared for the matter to come to a vote at the next meeting of the Focus...

  11. Presentation: FracFocus

    Broader source: Energy.gov [DOE]

    Mike Paque, Gerry Baker, and Stan Belieu reported on the work of FracFocus and the improvements made in FracFocus 2.0 as well as their connection with Risk Based Data Management System (RBDMS) used...

  12. Dependence of the Electron Beam Energy and Types of Surface to Determine EBSD Indexing Reliability in Yttria-Stabilized Zirconia

    SciTech Connect (OSTI)

    Saraf, Laxmikant V.

    2012-04-01

    Electron backscatter diffraction (EBSD) is a powerful technique for the surface microstructure analysis. EBSD analysis of cubic yttria-stabilized zirconia (YSZ) in two and three dimensions (2-D, 3-D) is demonstrated using sequential slicing from a focused ion beam (FIB) followed by EBSD mapping to represent 3-D reconstructed high density grain structure with random orientation. The statistics related to accuracy of EBSD band detection shows that probability of accurate grain orientation detection increased significantly when the electron beam energy is increased from 10 kV to 30 kV. As a result of better sampling with increased interaction volume, a disparity between local and average grain orientation angle also exhibited the dependence of the electron beam energy to determine the accuracy of grain orientation. To study the accuracy and quality of EBSD band detection as a function of surface roughness and over layer formation, rapid EBSD measurement tests are performed on (a) YSZ surfaces ion-polished at ion beam energies of 65 nA at 30 kV and 1 nA at 30 kV and (b) carbon coated versus uncoated YSZ surfaces. The EBSD results at both 10 kV and 30 kV electron beam energies indicate that EBSD band detection accuracy is negatively affected by surface roughness and amorphous over layer formation.

  13. Beam History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam History Print Beamline History Request Form To request a beam current histograph from the ALS storage ring beam histograph database, select the year, month, and day, then click on "Submit Request". Histographs are available as far back as February 2, 1994. Year 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Day 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

  14. Beam History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam History Print Beamline History Request Form To request a beam current histograph from the ALS storage ring beam histograph database, select the year, month, and day, then click on "Submit Request". Histographs are available as far back as February 2, 1994. Year 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Day 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17

  15. Department of Li/sup /minus// and H/sup /minus// ion sources

    SciTech Connect (OSTI)

    Walther, S.R.

    1988-12-01

    Sources of Li/sup /minus// and H/sup /minus// ions are needed for diagnostic neutral beam and for current drive in fusion plasmas. Previous efforts to generate Li/sup /minus// beams have focused on electron capture in a gas or production on a low work function surface in a plasma. Volume production of Li/sup /minus// by dissociative attachment of optically pumped lithium molecules has also been studied. This thesis presents the first experimental results for volume production of a Li/sup /minus// ion beam from a plasma discharge. A theoretical model for volume production of Li/sup /minus// ions and separate model for Li/sub 2/ production in the lithium discharge are developed to explain the experimental results. The model is in good agreement with the experiment and shows favorable parameter scalings for further improvement of the Li/sup /minus// ion source. A /sup 6/Li/degree/ diagnostic neutral beam based on this ion source is proposed for measurement of magnetic pitch angle in the International Thermonuclear Experimental Reactor (ITER). Previous efforts in developing H/sup /minus// ion sources have concentrated on volume production in a plasma discharge. Experiments to improve the H/sup /minus// current density from a magnetically filtered multicusp ion source by seeding the discharge with cesium or barium have been conducted. A substantial (> factor of five) increase in H/sup /minus// output is achieved for both cesium and barium addition. Further experiments with barium have shown that the increase is due to H/sup /minus// production on the anode walls. The experiments with cesium are consistent with this formation mechanism. These results show that this new type of 'converterless' surface production H/sup /minus// source provides greatly improved performance when compared to a volume H/sup /minus// source. 92 refs., 47 figs.

  16. Distribution of ion current density on a rotating spherical cap substrate during ion-assisted deposition

    SciTech Connect (OSTI)

    Marushka, Viktor; Zabeida, Oleg Martinu, Ludvik

    2014-11-01

    The uniformity of ion density is critical for applications relying on the ion assisted deposition technique for the fabrication of the high quality thin films. The authors propose and describe here a method allowing one to calculate the ion density distribution on spherical substrate holders under stationary and rotating conditions for different positions of the ion source. The ion beam shape was approximated by a cos{sup n} function, and the ion current density was represented by a function inversely proportional to the distance from the ion source in accordance with our experimental results. As an example, a calculation of the current density distribution on the spherical cap substrate was performed for a broad beam ion source operated with an anode current of 3?A. The authors propose an approach for process optimization with respect to the ion source position and its inclination, in terms of uniformity and absolute value of the ion current density.

  17. Strategic Focus Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Focus Areas Lockheed Martin on behalf of Sandia National Laboratories will consider grant requests that best support the Corporation's strategic focus areas and reflect effective leadership, fiscal responsibility and program success. Education: K-16 Science, Technology, Engineering and Math (STEM) programs that are focused on reducing the achievement gap. Lockheed Martin dedicates 50% of its support to STEM education programs & activities. Customer & Constituent Relations:

  18. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2013 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:09 PM on December 17, 2013 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Taffy Almeida, Joe Archuleta, Jeff Cheadle, Glen Clark, Robert Elkins, Scot Fitzgerald, Joan Kessner, Karl Pool, Chris Sutton, Amanda Tuttle, Rich Weiss and Eric Wyse. I. Huei Meznarich asked if there were any comments on the minutes from the

  19. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2015 The meeting was called to order by Cliff Watkins, HASQARD Focus Group Secretary at 2:07 PM on May 26, 2015 in Conference Room 328 at 2420 Stevens. Those attending were: Jonathan Sanwald (Mission Support Alliance (MSA), Focus Group Chair), Cliff Watkins (Corporate Allocation Services, DOE-RL Support Contractor, Focus Group Secretary), Taffy Almeida (Pacific Northwest National Laboratory (PNNL)), Glen Clark (Washington River Protection Solution (WRPS)), Fred Dunhour (DOE-ORP), Scot

  20. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    22, 2015 The meeting was called to order by Cliff Watkins, HASQARD Focus Group Secretary at 2:05 PM on October 22, 2015 in Conference Room 328 at 2420 Stevens. Those attending were: Jonathan Sanwald (Mission Support Alliance (MSA), Focus Group Chair), Cliff Watkins (Corporate Allocation Services, DOE-RL Support Contractor, Focus Group Secretary), Glen Clark (Washington River Protection Solution (WRPS)), Fred Dunhour (DOE-ORP), Joan Kessner (Washington Closure Hanford (WCH)), Karl Pool (Pacific