National Library of Energy BETA

Sample records for focus area industry

  1. Focus Area 3 Deliverables

    Office of Environmental Management (EM)

    Services Office of Environmental Management And Energy Facility Contractors Group Quality Assurance Improvement Project Plan Project Focus Area Task and Description...

  2. Strategic Focus Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Focus Areas Lockheed Martin on behalf of Sandia National Laboratories will consider grant requests that best support the Corporation's strategic focus areas and reflect effective leadership, fiscal responsibility and program success. Education: K-16 Science, Technology, Engineering and Math (STEM) programs that are focused on reducing the achievement gap. Lockheed Martin dedicates 50% of its support to STEM education programs & activities. Customer & Constituent Relations:

  3. Decontamination & decommissioning focus area

    SciTech Connect (OSTI)

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  4. Plutonium focus area

    SciTech Connect (OSTI)

    1996-08-01

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this new approach, EM developed a management structure and principles that led to the creation of specific Focus Areas. These organizations were designed to focus the scientific and technical talent throughout DOE and the national scientific community on the major environmental restoration and waste management problems facing DOE. The Focus Area approach provides the framework for intersite cooperation and leveraging of resources on common problems. After the original establishment of five major Focus Areas within the Office of Technology Development (EM-50, now called the Office of Science and Technology), the Nuclear Materials Stabilization Task Group (EM-66) followed the structure already in place in EM-50 and chartered the Plutonium Focus Area (PFA). The following information outlines the scope and mission of the EM, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  5. Subsurface contaminants focus area

    SciTech Connect (OSTI)

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  6. Focus Areas | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Focus Areas FA 1: Diversifying Supply FA 2: Developing Substitutes FA 3: Improving Reuse and Recycling FA 4: Crosscutting Research

  7. Focus Areas | Department of Energy

    Energy Savers [EERE]

    Focus Areas Focus Areas Safety With this focus on cleanup completion and risk reducing results, safety still remains the utmost priority. EM will continue to maintain and demand the highest safety performance. All workers deserve to go home as healthy as they were when they came to the job in the morning. There is no schedule or milestone worth any injury to the work force. Project Management EM is increasing its concentration on project management to improve its overall performance toward

  8. Property:Focus Area | Open Energy Information

    Open Energy Info (EERE)

    and Greenhouse Gas Baselining Transportation Energy Supply Load Reduction Policy and Human Behavior Renewable Energy Food Supply Pages using the property "Focus Area" Showing 1...

  9. Tanks Focus Area annual report FY2000

    SciTech Connect (OSTI)

    2000-12-01

    The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation effort with tanks containing hazardous and radioactive waste resulting from the production of nuclear materials. With some 90 million gallons of waste in the form of solid, sludge, liquid, and gas stored in 287 tanks across the DOE complex, containing approximately 650 million curies, radioactive waste storage tank remediation is the nation's highest cleanup priority. Differing waste types and unique technical issues require specialized science and technology to achieve tank cleanup in an environmentally acceptable manner. Some of the waste has been stored for over 50 years in tanks that have exceeded their design lives. The challenge is to characterize and maintain these contents in a safe condition and continue to remediate and close each tank to minimize the risks of waste migration and exposure to workers, the public, and the environment. In 1994, the DOE's Office of Environmental Management (EM) created a group of integrated, multiorganizational teams focusing on specific areas of the EM cleanup mission. These teams have evolved into five focus areas managed within EM's Office of Science and Technology (OST): Tanks Focus Area (TFA); Deactivation and Decommissioning Focus Area; Nuclear Materials Focus Area; Subsurface Contaminants Focus Area; and Transuranic and Mixed Waste Focus Area.

  10. Summary of Weldon Spring Site Focus Area

    Office of Legacy Management (LM)

    of Weldon Spring Site Focus Area Work Session February 5, 2003 Weldon Spring Interpretive Center Focus Area: Monitoring and Maintenance This was the third of three work sessions that focus on specific issues addressed in the draft Long-Term Stewardship Plan for the Weldon Spring, Missouri, Site, dated August 9, 2002. At 6:00 p.m., before the start of the work session, Dan Collette, Technical Support Manager for S.M. Stoller, the U.S. Department of Energy (DOE) Grand Junction Office (GJO)

  11. CY15 Livermore Computing Focus Areas

    SciTech Connect (OSTI)

    Connell, Tom M.; Cupps, Kim C.; D'Hooge, Trent E.; Fahey, Tim J.; Fox, Dave M.; Futral, Scott W.; Gary, Mark R.; Goldstone, Robin J.; Hamilton, Pam G.; Heer, Todd M.; Long, Jeff W.; Mark, Rich J.; Morrone, Chris J.; Shoopman, Jerry D.; Slavec, Joe A.; Smith, David W.; Springmeyer, Becky R; Stearman, Marc D.; Watson, Py C.

    2015-01-20

    The LC team undertook a survey of primary Center drivers for CY15. Identified key drivers included enhancing user experience and productivity, pre-exascale platform preparation, process improvement, data-centric computing paradigms and business expansion. The team organized critical supporting efforts into three cross-cutting focus areas; Improving Service Quality; Monitoring, Automation, Delegation and Center Efficiency; and Next Generation Compute and Data Environments In each area the team detailed high level challenges and identified discrete actions to address these issues during the calendar year. Identifying the Centers primary drivers, issues, and plans is intended to serve as a lens focusing LC personnel, resources, and priorities throughout the year.

  12. TECHNICAL INTEGRATION ENVIRONMENTAL MANAGEMENT FOCUS AREAS

    SciTech Connect (OSTI)

    Carey R. Butler

    2001-10-01

    This contract involved a team of companies led by WPI (formerly the Waste Policy Institute). In addition to WPI, the team included four subcontractors--TRW (formerly BDM Federal), SAIC, Energetics, and the University of North Dakota Energy and Environmental Research Center (EERC). The team of companies functioned as a ''seamless team'' assembled to support the Environmental Management Program Focus Areas. Staff resources were applied in the following offices: Richland, Washington, Idaho Falls, Idaho, Morgantown, West Virginia, Grand Forks, North Dakota, Aiken, South Carolina, Gaithersburg, Maryland, and Blacksburg, Virginia. These locations represented a mixture of site support offices at the field focus area locations and central staff to support across the focus areas. The management of this dispersed resource base relied on electronic communication links to allow the team to function as a ''virtual office'' to address tasks with the best qualified staff matched to the task assignments. A variety of tasks were assigned and successfully completed throughout the life of the contract that involved program planning and analysis, program execution, program information management and communication and data transmission.

  13. Demand Response is Focus of New Effort by Electricity Industry Leaders |

    Office of Environmental Management (EM)

    Department of Energy is Focus of New Effort by Electricity Industry Leaders Demand Response is Focus of New Effort by Electricity Industry Leaders U.S. Utilities, Grid Operators, Others Come Together in National Effort to Tackle Important New Electricity Area PDF icon Demand Response is Focus of New Effort by Electricity Industry Leaders More Documents & Publications SEAD-Fact-Sheet.pdf The International CHP/DHC Collaborative - Advancing Near-Term Low Carbon Technologies, July 2008 2011

  14. Landfill stabilization focus area: Technology summary

    SciTech Connect (OSTI)

    1995-06-01

    Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed.

  15. Subsurface Contaminants Focus Area annual report 1997

    SciTech Connect (OSTI)

    1997-12-31

    In support of its vision for technological excellence, the Subsurface Contaminants Focus Area (SCFA) has identified three strategic goals. The three goals of the SCFA are: Contain and/or stabilize contamination sources that pose an imminent threat to surface and ground waters; Delineate DNAPL contamination in the subsurface and remediate DNAPL-contaminated soils and ground water; and Remove a full range of metal and radionuclide contamination in soils and ground water. To meet the challenges of remediating subsurface contaminants in soils and ground water, SCFA funded more than 40 technologies in fiscal year 1997. These technologies are grouped according to the following product lines: Dense Nonaqueous-Phase Liquids; Metals and Radionuclides; Source Term Containment; and Source Term Remediation. This report briefly describes the SCFA 1997 technologies and showcases a few key technologies in each product line.

  16. Radioactive tank waste remediation focus area

    SciTech Connect (OSTI)

    1996-08-01

    EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

  17. FY 2000 Deactivation and Decommissioning Focus Area Annual Report

    SciTech Connect (OSTI)

    2001-03-01

    This document describes activities of the Deactivation and Decommissioning Focus Area for the past year.

  18. Contaminant plumes containment and remediation focus area. Technology summary

    SciTech Connect (OSTI)

    1995-06-01

    EM has established a new approach to managing environmental technology research and development in critical areas of interest to DOE. The Contaminant Plumes Containment and Remediation (Plumes) Focus Area is one of five areas targeted to implement the new approach, actively involving representatives from basic research, technology implementation, and regulatory communities in setting objectives and evaluating results. This document presents an overview of current EM activities within the Plumes Focus Area to describe to the appropriate organizations the current thrust of the program and developing input for its future direction. The Plumes Focus Area is developing remediation technologies that address environmental problems associated with certain priority contaminants found at DOE sites, including radionuclides, heavy metals, and dense non-aqueous phase liquids (DNAPLs). Technologies for cleaning up contaminants of concern to both DOE and other federal agencies, such as volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs), and other organics and inorganic compounds, will be developed by leveraging resources in cooperation with industry and interagency programs.

  19. Mixed waste focus area alternative technologies workshop

    SciTech Connect (OSTI)

    Borduin, L.C.; Palmer, B.A.; Pendergrass, J.A.

    1995-05-24

    This report documents the Mixed Waste Focus Area (MWFA)-sponsored Alternative Technology Workshop held in Salt Lake City, Utah, from January 24--27, 1995. The primary workshop goal was identifying potential applications for emerging technologies within the Options Analysis Team (OAT) ``wise`` configuration. Consistent with the scope of the OAT analysis, the review was limited to the Mixed Low-Level Waste (MLLW) fraction of DOE`s mixed waste inventory. The Los Alamos team prepared workshop materials (databases and compilations) to be used as bases for participant review and recommendations. These materials derived from the Mixed Waste Inventory Report (MWIR) data base (May 1994), the Draft Site Treatment Plan (DSTP) data base, and the OAT treatment facility configuration of December 7, 1994. In reviewing workshop results, the reader should note several caveats regarding data limitations. Link-up of the MWIR and DSTP data bases, while representing the most comprehensive array of mixed waste information available at the time of the workshop, requires additional data to completely characterize all waste streams. A number of changes in waste identification (new and redefined streams) occurred during the interval from compilation of the data base to compilation of the DSTP data base with the end result that precise identification of radiological and contaminant characteristics was not possible for these streams. To a degree, these shortcomings compromise the workshop results; however, the preponderance of waste data was linked adequately, and therefore, these analyses should provide useful insight into potential applications of alternative technologies to DOE MLLW treatment facilities.

  20. Industrial Hygiene Functional Area Qualification Standard

    Office of Environmental Management (EM)

    38-2007 November 2007 DOE STANDARD INDUSTRIAL HYGIENE FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1138-2007 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1138-2007 iv INTENTIONALLY BLANK

  1. Figure 1. Project Area, Focused Study Area, Potential Access Agreement Land, and Land Not

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page 4 of 8 Figure 1. Project Area, Focused Study Area, Potential Access Agreement Land, and Land Not Suitable for Conveyance

  2. Figure 1. Project Area, Focused Study Area, Potential Access Agreement Land, and Land Not

    Office of Environmental Management (EM)

    Page 4 of 8 Figure 1. Project Area, Focused Study Area, Potential Access Agreement Land, and Land Not Suitable for Conveyance

  3. Public participation in a DOE national program: The mixed waste focus area`s approach

    SciTech Connect (OSTI)

    1997-05-01

    The authors describe the Mixed Waste Focus Area`s approach to involving interested Tribal and public members in the mixed waste technology development process. Evidence is provided to support the thesis that the Focus Area`s systems engineering process, which provides visible and documented requirements and decision criteria, facilitates effective Tribal and public participation. Also described is a status of Tribal and public involvement at three levels of Focus Area activities.

  4. Tanks Focus Area Site Needs Assessment FY 2000

    SciTech Connect (OSTI)

    Allen, Robert W.

    2000-03-10

    This document summarizes the Tanks Focus Area (TFA's) process of collecting, analyzing, and responding to high-level radioactive tank waste science and technology needs developed from across the DOE complex in FY 2000. The document also summarizes each science and technology need, and provides an initial prioritization of TFA's projected work scope for FY 2001 and FY 2002.

  5. Nuclear Materials Focus Area Fiscal Year 2002 Mid Year Review

    SciTech Connect (OSTI)

    Thiel, Elizabeth Chilcote

    2002-05-01

    The Nuclear Materials Focus Area (NMFA) held its annual mid-year review on February 12 and 14, 2002, in Santa Fe, New Mexico. The purpose of this review was to examine both the technical aspects and the programmatic aspects of its technology development program. The focus area activities were reviewed by a panel consisting of personnel representing the end users of the technologies, and technical experts in nuclear materials. This year's review was somewhat different than in the past, as the stress was on how well the various projects being managed through the NMFA aligned with the two thrust areas and nine key goals and priorities recently issued by the Deputy Assistant Secretary for DOE's Office of Environmental Management (EM).

  6. Nuclear Materials Focus Area Fiscal Year 2002 Mid Year Review

    SciTech Connect (OSTI)

    Thiel, E.C.; Fuhrman, P.W.

    2002-05-30

    The Nuclear Materials Focus Area (NMFA) held its annual mid-year review on February 12 and 14, 2002, in Santa Fe, New Mexico. The purpose of this review was to examine both the technical aspects and the programmatic aspects of its technology development program. The focus area activities were reviewed by a panel consisting of personnel representing the end users of the technologies, and technical experts in nuclear materials. This year's review was somewhat different than in the past, as the stress was on how well the various projects being managed through the NMFA aligned with the two thrust areas and nine key goals and priorities recently issued by the Deputy Assistant Secretary for DOE's Office of Environmental Management (EM).

  7. Tanks focus area multiyear program plan - FY96-FY98

    SciTech Connect (OSTI)

    1995-07-01

    The Tanks Focus Area (TFA) Multiyear Program Plan (MYPP) presents the recommended TFA technical program. The recommendation covers a 3-year funding outlook (FY96-FY98), with an emphasis on FY96 and FY97. In addition to defining the recommended program, this document also describes the processes used to develop the program, the implementation strategy for the program, the references used to write this report, data on the U.S. Department of Energy (DOE) tank site baselines, details on baseline assumptions and the technical elements, and a glossary.

  8. Tanks Focus Area site needs assessment FY 2000

    SciTech Connect (OSTI)

    RW Allen

    2000-04-11

    This report documents the process used by the Tanks Focus Area (TFA) to analyze and develop responses to technology needs submitted by five major U.S. Department of Energy (DOE) sites with radioactive tank waste problems, and the initial results of the analysis. The sites are the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation (ORR), Savannah River Site (SRS), and West Valley Demonstration Project (WVDP). During the past year, the TFA established a link with DOE's Fernald site to exchange, on a continuing basis, mutually beneficial technical information and assistance.

  9. Mixed Waste Focus Area: Department of Energy complex needs report

    SciTech Connect (OSTI)

    Roach, J.A.

    1995-11-16

    The Assistant Secretary for the Office of Environmental Management (EM) at the US Department of Energy (DOE) initiated a new approach in August of 1993 to environmental research and technology development. A key feature of this new approach included establishment of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA). The mission of the MWFA is to identify, develop, and implement needed technologies such that the major environmental management problems related to meeting DOE`s commitments for treatment of mixed wastes under the Federal Facility Compliance Act (FFCA), and in accordance with the Land Disposal Restrictions (LDR) of the Resource Conservation and Recovery Act (RCRA), can be addressed, while cost-effectively expending the funding resources. To define the deficiencies or needs of the EM customers, the MWFA analyzed Proposed Site Treatment Plans (PSTPs), as well as other applicable documents, and conducted site visits throughout the summer of 1995. Representatives from the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60) at each site visited were requested to consult with the Focus Area to collaboratively define their technology needs. This report documents the needs, deficiencies, technology gaps, and opportunities for expedited treatment activities that were identified during the site visit process. The defined deficiencies and needs are categorized by waste type, namely Wastewaters, Combustible Organics, Sludges/Soils, Debris/Solids, and Unique Wastes, and will be prioritized based on the relative affect the deficiency has on the DOE Complex.

  10. Radioactive Tank Waste Remediation Focus Area. Technology summary

    SciTech Connect (OSTI)

    1995-06-01

    In February 1991, DOE`s Office of Technology Development created the Underground Storage Tank Integrated Demonstration (UST-ID), to develop technologies for tank remediation. Tank remediation across the DOE Complex has been driven by Federal Facility Compliance Agreements with individual sites. In 1994, the DOE Office of Environmental Management created the High Level Waste Tank Remediation Focus Area (TFA; of which UST-ID is now a part) to better integrate and coordinate tank waste remediation technology development efforts. The mission of both organizations is the same: to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. The TFA has focused on four DOE locations: the Hanford Site in Richland, Washington, the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site (SRS) in Aiken, South Carolina.

  11. Tanks Focus Area (TFA) Site Needs Assessment FY 1999

    SciTech Connect (OSTI)

    RW Allen

    1999-05-03

    This report documents the process used by the Tanks Focus Area (TFA) to analyze and develop responses to technology needs submitted by five major U.S. Department of Energy (DOE) sites with radioactive tank waste problems, and the initial results of the analysis. The sites are the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation (ORR), Savannah River Site (SRS), and West Valley Demonstration Project (WVDP). This is the fifth edition of the TFA site needs assessment. As with previous editions, this edition serves to provide the basis for accurately defining the TFA program for the upcoming fiscal year (FY), and adds definition to the program for up to 4 additional outyears. Therefore, this version distinctly defines the FY 2000 progrti and adds further definition to the FY 2001- FY 2004 program. Each year, the TFA reviews and amends its program in response to site users' science and technology needs.

  12. Tanks focus area site needs assessment FY 1997

    SciTech Connect (OSTI)

    1997-04-01

    The Tanks Focus Area`s (TFA`s) mission is to manage an integrated technology development program that results in the application of technology to safely and efficiently accomplish tank waste remediation across the U.S. Department of Energy (DOE) complex. The TFA uses a systematic process for developing its annual program that draws from the tanks technology development needs expressed by four DOE tank waste sites - Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation (ORR), and Savannah River Site (SRS). The process is iterative and involves six steps: (1) Site needs identification and documentation, (2) Site communication of priority needs, (3) Technical response development, (4) Review technical responses, (5) Develop program planning documents, and (6) Review planning documents. This document describes the outcomes of the first two steps: site needs identification and documentation, and site communication of priority needs. It also describes the initial phases of the third and fourth steps: technical response development and review technical responses. Each site`s Site Technology Coordination Group (STCG) was responsible for developing and delivering priority tank waste needs. This was accomplished using a standardized needs template developed by the National STCG. The standard template helped improve the needs submission process this year. The TFA received the site needs during December 1996 and January 1997.

  13. Tanks Focus Area site needs assessment FY 1998

    SciTech Connect (OSTI)

    1998-03-01

    This report documents the process used by the Tanks Focus Area (TFA) to analyze and develop responses to technology needs submitted by four major US Department of Energy (DOE) sites with radioactive tank waste problems, and the initial results of the analysis. The sites are the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation (ORR), and Savannah River Site (SRS). This document describes the TFA`s process of collecting site needs, analyzing them, and creating technical responses to the sites. It also summarizes the information contained within the TFA needs database, portraying information provided by four major DOE sites with tank waste problems. The overall TFA program objective is to deliver a tank technology program that reduces the current cost, and the operational and safety risks of tank remediation. The TFA`s continues to enjoy close, cooperative relationships with each site. During the past year, the TFA has fostered exchanges of technical information between sites. These exchanges have proven to be healthy for all concerned. The TFA recognizes that site technology needs often change, and the TFA must be prepared not only to amend its program in response, but to help the sites arrive at the best technical approach to solve revised site needs.

  14. Plutonium Focus Area research and development plan. Revision 1

    SciTech Connect (OSTI)

    1996-11-01

    The Department of Energy (DOE) committed to a research and development program to support the technology needs for converting and stabilizing its nuclear materials for safe storage. The R and D Plan addresses five of the six material categories from the 94-1 Implementation Plan: plutonium (Pu) solutions, plutonium metals and oxides, plutonium residues, highly enriched uranium, and special isotopes. R and D efforts related to spent nuclear fuel (SNF) stabilization were specifically excluded from this plan. This updated plan has narrowed the focus to more effectively target specific problem areas by incorporating results form trade studies. Specifically, the trade studies involved salt; ash; sand, slag, and crucible (SS and C); combustibles; and scrub alloy. The plan anticipates possible disposition paths for nuclear materials and identifies resulting research requirements. These requirements may change as disposition paths become more certain. Thus, this plan represents a snapshot of the current progress and will continue to be updated on a regular basis. The paper discusses progress in safeguards and security, plutonium stabilization, special isotopes stabilization, highly-enriched uranium stabilization--MSRE remediation project, storage technologies, engineered systems, core technology, and proposed DOE/Russian technology exchange projects.

  15. Assessment of industrial minerals and rocks in the controlled area

    SciTech Connect (OSTI)

    Castor, S.B.; Lock, D.E.

    1996-08-01

    Yucca Mountain in Nye County, Nevada, is a potential site for a permanent repository for high-level nuclear waste in Miocene ash flow tuff. The Yucca Mountain controlled area occupies approximately 98 km{sup 2} that includes the potential repository site. The Yucca Mountain controlled area is located within the southwestern Nevada volcanic field, a large area of Miocene volcanism that includes at least four major calderas or cauldrons. It is sited on a remnant of a Neogene volcanic plateau that was centered around the Timber Mountain caldera complex. The Yucca Mountain region contains many occurrences of valuable or potentially valuable industrial minerals, including deposits with past or current production of construction aggregate, borate minerals, clay, building stone, fluorspar, silicate, and zeolites. The existence of these deposits in the region and the occurrence of certain mineral materials at Yucca Mountain, indicate that the controlled area may have potential for industrial mineral and rock deposits. Consideration of the industrial mineral potential within the Yucca Mountain controlled area is mainly based on petrographic and lithologic studies of samples from drill holes in Yucca Mountain. Clay minerals, zeolites, fluorite, and barite, as minerals that are produced economically in Nevada, have been identified in samples from drill holes in Yucca Mountain.

  16. Design considerations for solar industrial process heat systems: nontracking and line focus collector technologies

    SciTech Connect (OSTI)

    Kutscher, C.F.

    1981-03-01

    Items are listed that should be considered in each aspect of the design of a solar industrial process heat system. The collector technologies covered are flat-plate, evacuated tube, and line focus. Qualitative design considerations are stressed rather than specific design recommendations. (LEW)

  17. Laboratory Scientific Focus Area Guidance | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Scientific Focus Area Guidance Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Benefits of BER Funding Opportunities Closed Funding Opportunity Announcements (FOAs) Closed Lab Announcements Award Search / Public Abstracts Additional Requirements and Guidance for Digital Data Management Peer Review Policy Grants & Contracts Guidance Laboratory Scientific Focus Area Guidance SBIR/STTR Funding Opportunities Merit Review of BER

  18. Mixed waste focus area Department of Energy technology development needs identification and prioritization

    SciTech Connect (OSTI)

    Roach, J.A.

    1995-11-01

    The Assistant Secretary for the Office of Environmental Management (EM) at the US DOE initiated a new approach in August, 1993 to environmental research and technology development. The key features of this new approach included establishment of five focus areas and three crosscutting technology programs, which overlap the boundaries of the focus areas. The five focus areas include the Contaminant Plumes Containment and Remediation; Mixed Waste Characterization, Treatment, and Disposal; High-Level Waste Tank Remediation, Landfill Stabilization, and Decontamination and Decommissioning Focus Areas. The three crosscutting technologies programs include Characterization, Monitoring, and Sensor Technology; Efficient Separations and Processing; and Robotics. The DOE created the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA) to develop and facilitate implementation of technologies required to meet its commitments for treatment of mixed wastes. To accomplish this goal, the technology deficiencies must be identified and categorized, the deficiencies and needs must be prioritized, and a technical baseline must be established that integrates the requirements associated with these needs into the planned and ongoing environmental research and technology development activities supported by the MWFA. These steps are described.

  19. CY14 Livermore Computing Focus Areas (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    CY14 Livermore Computing Focus Areas Citation Details In-Document Search Title: CY14 Livermore Computing Focus Areas Authors: Connell, T M ; Cupps, K C ; D'Hooge, T E ; Fahey, T J ; Fox, D M ; Futral, W S ; Gary, M R ; Goldstone, R J ; Hamilton, P G ; Heer, T M ; Long, J W ; Mark, R J ; Morrone, C J ; Shoopman, J D ; Slavec, J A ; Smith, D W ; Springmeyer, R R ; Stearman, D M ; Watson, P C Publication Date: 2014-08-15 OSTI Identifier: 1165771 Report Number(s): LLNL-TR-659251 DOE Contract Number:

  20. Large Area Microcorrals and Cavity Formation on Cantilevers using a Focused Ion Beam

    SciTech Connect (OSTI)

    Saraf, Laxmikant V.; Britt, David W.

    2011-09-14

    We utilize focused ion beam (FIB) to explore various sputtering parameters to form large area microcorrals and cavities on cantilevers. Microcorrals were rapidly created by modifying ion beam blur and overlaps. Modification in FIB sputtering parameters affects the periodicity and shape of corral microstructure. Cantilever deflections show ion beam amorphization effects as a function of sputtered area and cantilever base cavities with or without side walls. The FIB sputtering parameters address a method for rapid creation of a cantilever tensiometer with integrated fluid storage and delivery.

  1. Mixed waste focus area integrated technical baseline report. Phase I, Volume 2: Revision 0

    SciTech Connect (OSTI)

    1996-01-16

    This document (Volume 2) contains the Appendices A through J for the Mixed Waste Focus Area Integrated Technical Baseline Report Phase I for the Idaho National Engineering Laboratory. Included are: Waste Type Managers` Resumes, detailed information on wastewater, combustible organics, debris, unique waste, and inorganic homogeneous solids and soils, and waste data information. A detailed list of technology deficiencies and site needs identification is also provided.

  2. Enhancing technology acceptance: The role of the subsurface contaminants focus area external integration team

    SciTech Connect (OSTI)

    Kirwan-Taylor, H.; McCabe, G.H.; Lesperance, A.; Kauffman, J.; Serie, P.; Dressen, L.

    1996-09-01

    The US DOE is developing and deploying innovative technologies for cleaning up its contaminated facilities using a market-oriented approach. This report describes the activities of the Subsurface Contaminant Focus Area`s (SCFA) External Integration Team (EIT) in supporting DOE`s technology development program. The SCFA program for technology development is market-oriented, driven by the needs of end users. The purpose of EIT is to understand the technology needs of the DOE sites and identify technology acceptance criteria from users and other stakeholders to enhance deployment of innovative technologies. Stakeholders include regulators, technology users, Native Americans, and environmental and other interest groups. The success of this national program requires close coordination and communication among technology developers and stakeholders to work through all of the various phases of planning and implementation. Staff involved must be willing to commit significant amounts of time to extended discussions with the various stakeholders.

  3. Plutonium stabilization and disposition focus area, FY 1999 and FY 2000 multi-year program plan

    SciTech Connect (OSTI)

    1998-03-01

    Consistent with the Environmental Management`s (EM`s) plan titled, ``Accelerating Cleanup: Paths to Closure``, and ongoing efforts within the Executive Branch and Congress, this Multi-Year Program Plan (MYPP) for the Plutonium Focus Area was written to ensure that technical gap projects are effectively managed and measured. The Plutonium Focus Area (PFA) defines and manages technology development programs that contribute to the effective stabilization of nuclear materials and their subsequent safe storage and final disposition. The scope of PFA activities includes the complete spectrum of plutonium materials, special isotopes, and other fissile materials. The PFA enables solutions to site-specific and complex-wide technology issues associated with plutonium remediation, stabilization, and preparation for disposition. The report describes the current technical activities, namely: Plutonium stabilization (9 studies); Highly enriched uranium stabilization (2 studies); Russian collaboration program (2 studies); Packaging and storage technologies (6 studies); and PFA management work package/product line (3 studies). Budget information for FY 1999 and FY 2000 is provided.

  4. Record of the facility deactivation, decommissioning, and material disposition (D and D) workshop: A new focus for technology development, opportunities for industry/government collaboration

    SciTech Connect (OSTI)

    Bedick, R.C.; Bossart, S.J.; Hart, P.W.

    1995-07-01

    This workshop was held at the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia, on July 11--12, 1995. The workshop sought to establish a foundation for continued dialogue between industry and the DOE to ensure that industry`s experiences, lessons learned, and recommendations are incorporated into D and D program policy, strategy, and plans. The mission of the D and D Focus Area is to develop improved technologies, processes and products, to characterize, deactivate, survey, maintain, decontaminate, dismantle, and dispose of DOE surplus structures, buildings, and contents. The target is a five-to-one return on investment through cost avoidance. The cornerstone of the D and D focus area activities is large-scale demonstration projects that actually decontaminate, decommission, and dispose of a building. The aim is to demonstrate innovative D and D technologies as part of an ongoing DOE D and D project. OTD would pay the incremental cost of demonstrating the innovative technologies. The goal is to have the first demonstration project completed within the next 2 years. The intent is to select projects, or a project, with visible impact so all of the stakeholders know that a building was removed, and demonstrate at a scale that is convincing to the customers in the EM program so they feel comfortable using it in subsequent D and D projects. The plan is to use a D and D integrating contractor who can then use the expertise in this project to use in jobs at other DOE sites.

  5. Subsurface Contaminant Focus Area: Monitored Natural Attenuation (MNA)--Programmatic, Technical, and Regulatory Issues

    SciTech Connect (OSTI)

    Krupka, Kenneth M.; Martin, Wayne J.

    2001-07-23

    Natural attenuation processes are commonly used for remediation of contaminated sites. A variety of natural processes occur without human intervention at all sites to varying rates and degrees of effectiveness to attenuate (decrease) the mass, toxicity, mobility, volume, or concentration of organic and inorganic contaminants in soil, groundwater, and surface water systems. The objective of this review is to identify potential technical investments to be incorporated in the Subsurface Contaminant Focus Area Strategic Plan for monitored natural attenuation. When implemented, the technical investments will help evaluate and implement monitored natural attenuation as a remediation option at DOE sites. The outcome of this review is a set of conclusions and general recommendations regarding research needs, programmatic guidance, and stakeholder issues pertaining to monitored natural attenuation for the DOE complex.

  6. Tanks Focus Area Alternative Salt Processing Research and Development Program Plan

    SciTech Connect (OSTI)

    Harmon, Harry D.

    2000-11-30

    In March 2000, DOE-Headquarters (HQ) requested the Tanks Focus Area (TFA) to assume management responsibility for the Salt Processing Project technology development program at Savannah River Site. The TFA was requested to conduct several activities, including review and revision of the technology development roadmaps, development of down-selection criteria, and preparation of a comprehensive Research and Development (R&D) Program Plan for three candidate cesium removal technologies, as well as the Alpha and strontium removal processes that must also be carried out. The three cesium removal candidate technologies are Crystalline Silicotitanate (CST) Non-Elutable Ion Exchange, Caustic Side Solvent Extraction (CSSX), and Small Tank Tetraphenylborate Precipitation (STTP). This plan describes the technology development needs for each process that must be satisfied in order to reach a down-selection decision, as well as continuing technology development required to support conceptual design activities.

  7. Tanks Focus Area Alternative Salt Processing Research and Development Program Plan

    SciTech Connect (OSTI)

    Harmon, Harry D.

    2000-05-15

    In March 2000, DOE-Headquarters (HQ) requested the Tanks Focus Area (TFA)to assume management responsibility for the Salt Processing Project technology development program at Savannah River Site. The TFA was requested to conduct several activities, including review and revision of the technology development roadmaps, development of down-selection criteria, and preparation of a comprehensive Research and Development (R&D) Program Plan for three candidate cesium removal technologies, as well as the Alpha and strontium removal processes that must also be carried out. The three cesium removal candidate technologies are Crystalline Silicotitanate (CST) Non-Elutable Ion Exchange, Caustic Side Solvent Extraction (CSSX), and Small Tank Tetraphenylborate Precipitation (STTP). This plan describes the technology development needs for each process that must be satisfied in order to reach a down-selection decision, as well as continuing technology development required to support conceptual design activities.

  8. Establishment of an Industry-Driven Consortium Focused on Improving the Production Performance of Domestic Stripper Wells

    SciTech Connect (OSTI)

    Joel Morrison; Sharon Elder

    2006-01-24

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the sixth quarterly technical progress report for the SWC. Key activities for this reporting period included: (1) Organized and hosted two technology transfer meetings; (2) Collaborated with the Pennsylvania Oil and Gas Association (POGAM) to host a Natural Gas Outlook conference in Pittsburgh, PA; (3) Provided a SWC presentation at the Interstate Oil and Gas Compact Commission (IOGCC) meeting in Jackson Hole, WY; and (4) Completed and released a stripper well industry documentary entitled: ''Independent Oil: Rediscovering America's Forgotten Wells''.

  9. EM-50 Tanks Focus Area retrieval process development and enhancements. FY97 technology development summary report

    SciTech Connect (OSTI)

    Rinker, M.W.; Bamberger, J.A.; Alberts, D.G.

    1997-09-01

    The Retrieval Process Development and Enhancements (RPD and E) activities are part of the US Department of Energy (DOE) EM-50 Tanks Focus Area, Retrieval and Closure program. The purpose of RPD and E is to understand retrieval processes, including emerging and existing technologies, and to gather data on these processes, so that end users have requisite technical bases to make retrieval decisions. Technologies addressed during FY97 include enhancements to sluicing, the use of pulsed air to assist mixing, mixer pumps, innovative mixing techniques, confined sluicing retrieval end effectors, borehole mining, light weight scarification, and testing of Russian-developed retrieval equipment. Furthermore, the Retrieval Analysis Tool was initiated to link retrieval processes with tank waste farms and tank geometric to assist end users by providing a consolidation of data and technical information that can be easily assessed. The main technical accomplishments are summarized under the following headings: Oak Ridge site-gunite and associated tanks treatability study; pulsed air mixing; Oak Ridge site-Old Hydrofracture Facility; hydraulic testbed relocation; cooling coil cleaning end effector; light weight scarifier; innovative tank mixing; advanced design mixer pump; enhanced sluicing; Russian retrieval equipment testing; retrieval data analysis and correlation; simulant development; and retrieval analysis tool (RAT).

  10. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect (OSTI)

    Joel L. Morrison

    2004-12-28

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the first quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) hosting the SWC spring proposal meeting in Golden Colorado, (2) planning of the upcoming SWC fall technology transfer meetings, and (3) recruiting the SWC base membership.

  11. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect (OSTI)

    Joel L. Morrison

    2004-12-23

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the fifteenth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) hosting the SWC spring proposal meeting in Golden Colorado, (2) planning of the upcoming SWC fall technology transfer meetings, and (3) recruiting the SWC base membership.

  12. TFA Tank Focus Area - multiyear program plan FY98-FY00

    SciTech Connect (OSTI)

    1997-09-01

    The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation problem with hundreds of waste tanks containing hundreds of thousands of cubic meters of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Approximately 80 tanks are known or assumed to have leaked. Some of the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in a safe condition and eventually remediated to minimize the risk of waste migration and/or exposure to workers, the public, and the environment. However, programmatic drivers are more ambitious than baseline technologies and budgets will support. Science and technology development investments are required to reduce the technical and programmatic risks associated with the tank remediation baselines. The Tanks Focus Area (TFA) was initiated in 1994 to serve as the DOE`s Office of Environmental Management`s (EM`s) national technology development program for radioactive waste tank remediation. The national program was formed to increase integration and realize greater benefits from DOE`s technology development budget. The TFA is responsible for managing, coordinating, and leveraging technology development to support DOE`s four major tank sites: Hanford Site (Washington), Idaho National Engineering and Environmental Laboratory (INEEL) (Idaho), Oak Ridge Reservation (ORR) (Tennessee), and Savannah River Site (SRS) (South Carolina). Its technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank with safety integrated into all the functions. The TFA integrates program activities across organizations that fund tank technology development EM, including the Offices of Waste Management (EM-30), Environmental Restoration (EM-40), and Science and Technology (EM-50).

  13. TFA Tanks Focus Area Multiyear Program Plan FY00-FY04

    SciTech Connect (OSTI)

    BA Carteret; JH Westsik; LR Roeder-Smith; RL Gilchrist; RW Allen; SN Schlahta; TM Brouns

    1999-10-12

    The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation problem with hundreds of waste tanks containing hundreds of thousands of cubic meters of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Approximately 68 tanks are known or assumed to have leaked contamination to the soil. Some of the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in a safe condition and eventually remediated to minimize the risk of waste migration and/or exposure to workers, the public, and the environment. However, programmatic drivers are more ambitious than baseline technologies and budgets will support. Science and technology development investments are required to reduce the technical and programmatic risks associated with the tank remediation baselines. The Tanks Focus Area (TFA) was initiated in 1994 to serve as the DOE Office of Environmental Management's (EM's) national technology development program. for radioactive waste tank remediation. The national program was formed to increase integration and realize greater benefits from DOE's technology development budget. The TFA is responsible for managing, coordinating, and leveraging technology development to support DOE's five major tank sites: Hanford Site (Washington), Idaho National Engineering and Environmental Laboratory (INEEL) (Idaho), Oak Ridge Reservation (ORR) (Tennessee), Savannah River Site (SRS) (South Carolina), and West Valley Demonstration Project (WVDP) (New York). Its technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank with safety integrated into all the functions. The TFA integrates program activities across EM organizations that fund tank technology development, including the Offices of Waste Management (EM-30), Environmental Restoration (EM-40), and Science and Technology (EM-50 or OST).

  14. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect (OSTI)

    Joel L. Morrison

    2002-08-27

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the sixth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) release of 2002 SWC request-for-proposal, (2) organized and hosted the Spring SWC meeting in Columbus, Ohio for membership proposal presentations and review; (3) tentatively scheduled the 2002 fall technology transfer meeting sites, and (4) continued to recruit additional Consortium members. In addition, a literature search that focuses on the use of lasers, microwaves, and acoustics for potential stripper well applications continued.

  15. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect (OSTI)

    Joel L. Morrison

    2002-09-30

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), has established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the second topical report. The SWC has grown and diversified its membership during its first 24 months of existence. The Consortium is now focused on building strategic alliances with additional industrial, state, and federal entities to expand further the SWC membership base and transfer technologies as they are developed. In addition, the Consortium has successfully worked to attract state support to co-fund SWC projects. Penn State has entered a co-funding arrangement with the New York State Energy Development Authority (NYSERDA) which has provided $200,000 over the last two years to co-fund stripper well production-orientated projects that have relevance to New York state producers. During this reporting period, the Executive Council approved co-funding for 14 projects that have a total project value of $2,116,897. Since its inception, the SWC has approved cofunding for 27 projects that have a total project value of $3,632,109.84. The SWC has provided $2,242,701 in co-funding for these projects and programmatically maintains a cost share of 39%.

  16. DOE-STD-1138-2000; Industrial Hygiene Funcational Area Qualification Standard

    Office of Environmental Management (EM)

    38-2000 July 2000 DOE STANDARD INDUSTRIAL HYGIENE FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823.

  17. ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

    SciTech Connect (OSTI)

    Joel L. Morrison

    2004-05-17

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the thirteenth quarterly technical progress report for the SWC. Key activities for this reporting period included: (1) hosting three fall technology transfer meetings in Wyoming, Texas, and Pennsylvania, (2) releasing the 2004 SWC request-for-proposal (RFP), and (3) initial planning of the SWC spring meeting in Golden Colorado for selecting the 2004 SWC projects. The Fall technology transfer meetings attracted 100+ attendees between the three workshops. The SWC membership which attended the Casper, Wyoming workshop was able to see several SWC-funded projects operating in the field at the Rocky Mountain Oilfield Testing Center. The SWC is nearing the end of its initial funding cycle. The Consortium has a solid membership foundation and a demonstrated ability to review and select projects that have relevancy to meet the needs of domestic stripper well operators.

  18. Technical program plan for the transitioning, decommissioning, and final disposition focus area

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    Hundreds of aging nuclear materials processing facilities within the Department of Energy`s (DOE) Weapons Complex are now being shut down and deactivated. These facilities, situated throughout the United States, will require a monumental effort to clean up safely and with minimal environmental insult. Current cleanup technologies tend to be labor intensive and expensive, they produce an unacceptably large volume of waste, and they expose workers to radioactive and other hazardous substances. This document describes an emerging program designed to develop and demonstrate new technical approaches to the decontamination and decommissioning (D&D) program for DOE`s nuclear materials processing facilities. Sponsored by the DOE Office of Technology Development within the Office of Environmental Restoration and Waste Management (EM), the program seeks to integrate the strengths of DOE`s technical, managerial, and systems engineering capabilities with those of industry, universities, and other government agencies. Once developed, these technologies will help to provide US industry with a competitive edge in the worldwide market that exists for improved environmental restoration and D&D services.

  19. AREA FACTOR DETERMINATIONS FOR AN INDUSTRIAL WORKER EXPOSED TO A CONCRETE SLAB END-STATE

    SciTech Connect (OSTI)

    Jannik, T; Patricia Lee, P; Eduardo Farfan, E; Jesse Roach, J

    2007-02-08

    The U.S. Department of Energy's (DOE) Savannah River Site (SRS) is decommissioning many of its excess facilities through removal of the facility structures leaving only the concrete-slab foundations in place. Site-specific, risk-based derived concentration guideline levels (DCGLs) for radionuclides have been determined for a future industrial worker potentially exposed to residual contamination on these concrete slabs as described in Jannik [1]. These risk-based DCGLs were estimated for an exposure area of 100 m{sup 2}. During deactivation and decommissioning (D&D) operations at SRS, the need for area factors for larger and smaller contaminated areas arose. This paper compares the area factors determined for an industrial worker exposed to a concrete slab end-state for several radionuclides of concern at SRS with (1) the illustrative area factors provided in MARSSIM [2], (2) the area correction factors provided in the U.S. Environmental Protection Agency's (EPA) Soil Screening Guidance [3], and (3) the hot spot criterion for field application provided in the RESRAD User's Manual [4].

  20. Expediting environmental cleanup--nationwide stakeholder involvement in U.S. Department of Energy`s plume focus area

    SciTech Connect (OSTI)

    McCabe, G.H.; Stein, S.L.; Serie, P.J.

    1995-12-01

    The U.S. Department of Energy (DOE) faces a major challenge in cleaning up its contaminated sites throughout the United States. One major area of concern is the plumes in soil and ground water, contaminated with a myriad of different pollutants. DOE recently established the Plume Focus Area to address these problems. The mission of the Plume Focus Area is to enhance the deployment of innovative technologies for containing and cleaning up contaminant plumes in ground water and soil at all DOE sites. By involving a range of stakeholders in the selection, demonstration, and evaluation of new technologies, the deployment of these technologies can be enhanced. Through this strategy, technology users join with other stakeholders to assess the appropriateness of new technologies for addressing plume contamination, and characterize the conditions under which those emerging technologies will be acceptable. If new plume cleanup technologies are to be deployable, they must improve on today`s baseline technologies. If sites and their stakeholders understood the technologies, recognize that their concerns are reflected in the evaluations and demonstrations, and participate in assessing how technology performance addresses their concerns, the likelihood of acceptance of those technologies is greater. Thus, broad stakeholder acceptance becomes part of the definition of an improved technology, evaluated in parallel with technical performance, cost, and other traditional parameters. This paper further describes the goals and objectives of the Plume Focus Area and emphasizes the importance of stakeholder involvement in achieving them. The process of coordinating with DOE sites is described to highlight how stakeholder input is considered throughout the Plume Focus Area decision-making process in selecting, developing, demonstrating, and evaluating innovative technologies to address plume problems.

  1. From Petascale to Exascale: Eight Focus Areas of R&D Challenges for HPC Simulation Environments

    SciTech Connect (OSTI)

    Springmeyer, R; Still, C; Schulz, M; Ahrens, J; Hemmert, S; Minnich, R; McCormick, P; Ward, L; Knoll, D

    2011-03-17

    Programming models bridge the gap between the underlying hardware architecture and the supporting layers of software available to applications. Programming models are different from both programming languages and application programming interfaces (APIs). Specifically, a programming model is an abstraction of the underlying computer system that allows for the expression of both algorithms and data structures. In comparison, languages and APIs provide implementations of these abstractions and allow the algorithms and data structures to be put into practice - a programming model exists independently of the choice of both the programming language and the supporting APIs. Programming models are typically focused on achieving increased developer productivity, performance, and portability to other system designs. The rapidly changing nature of processor architectures and the complexity of designing an exascale platform provide significant challenges for these goals. Several other factors are likely to impact the design of future programming models. In particular, the representation and management of increasing levels of parallelism, concurrency and memory hierarchies, combined with the ability to maintain a progressive level of interoperability with today's applications are of significant concern. Overall the design of a programming model is inherently tied not only to the underlying hardware architecture, but also to the requirements of applications and libraries including data analysis, visualization, and uncertainty quantification. Furthermore, the successful implementation of a programming model is dependent on exposed features of the runtime software layers and features of the operating system. Successful use of a programming model also requires effective presentation to the software developer within the context of traditional and new software development tools. Consideration must also be given to the impact of programming models on both languages and the associated compiler infrastructure. Exascale programming models must reflect several, often competing, design goals. These design goals include desirable features such as abstraction and separation of concerns. However, some aspects are unique to large-scale computing. For example, interoperability and composability with existing implementations will prove critical. In particular, performance is the essential underlying goal for large-scale systems. A key evaluation metric for exascale models will be the extent to which they support these goals rather than merely enable them.

  2. Focus Area Summary

    Office of Environmental Management (EM)

    Day held in Denver in July 2008 and Augusta in March 2009. 2.8 Evaluate impact of "Buy American" clause on efforts to expand the supplier base within EM. Complete Information...

  3. Focus Area 5 Deliverables

    Office of Environmental Management (EM)

    Input could be from recent assessments, trends, Performance Metrics, number of open action ... number of issues that could indicate serious performance problems or adverse trends. ...

  4. Focus Area 2 Deliverables

    Office of Environmental Management (EM)

    2 - Adequate NQA-1 Suppliers Department of Energy Washington, DC 20585 J U N 2 2 2069 MEMORANDUM FOR DISTRIBUTION FROM: DAE Y. CHUNG DEPUTY ASSISTANT SECRETARY FOR SAFETY...

  5. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  6. United Nations Industrial Development Organization (UNIDO) |...

    Open Energy Info (EERE)

    development of industry in developing nations. UNIDO focuses on three key areas: Poverty reduction through productive activities Trade capacity-building Energy and...

  7. Focused feasibility study for surface soil at the main pits and pushout area, J-field toxic burning pits area, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    Patton, T.; Benioff, P.; Biang, C.; Butler, J.

    1996-06-01

    The Environmental Management Division of Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation and feasibility study of the J-Field area at APG pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). J-Field is located within the Edgewood Area of APG in Harford County, Maryland. Since World War II, activities in the Edgewood Area have included the development, manufacture, testing, and destruction of chemical agents and munitions. These materials were destroyed at J-Field by open burning/open detonation. Portions of J-Field continue to be used for the detonation and disposal of unexploded ordnance (UXO) by open burning/open detonation under authority of the Resource Conservation and Recovery Act.

  8. Process Intensification - Chemical Sector Focus

    Energy Savers [EERE]

    Process Intensification - Chemical Sector Focus 1 Technology Assessment 2 Contents 3 1. Introduction ..................................................................................................................................................................... 1 4 2. Technology Assessment and Potential ................................................................................................................. 5 5 2.1 Chemical Industry Focus

  9. Bay Area Industrial Partners

    Broader source: Energy.gov [DOE]

    Michael Bauer, President, Chief Product Officer and Founder, Sentient Energy; Lloyd Hackel, Vice President for Advanced Technologies, Metal Improvement Corporation; and Charlie Hotz, Vice President of Research and Development, Nanosys, Inc. each presented on partnership with the National Labs.

  10. Transition from Consultation to Monitoring-NRC's Increasingly Focused Review of Factors Important to F-Area Tank Farm Facility Performance - 13153

    SciTech Connect (OSTI)

    Barr, Cynthia; Grossman, Christopher; Alexander, George; Parks, Leah; Fuhrmann, Mark; Shaffner, James; McKenney, Christepher; Pabalan, Roberto; Pickett, David; Dinwiddie, Cynthia

    2013-07-01

    In consultation with the NRC, DOE issued a waste determination for the F-Area Tank Farm (FTF) facility in March 2012. The FTF consists of 22 underground tanks, each 2.8 to 4.9 million liters in capacity, used to store liquid high-level waste generated as a result of spent fuel reprocessing. The waste determination concluded stabilized waste residuals and associated tanks and auxiliary components at the time of closure are not high-level and can be disposed of as LLW. Prior to issuance of the final waste determination, during the consultation phase, NRC staff reviewed and provided comments on DOE's revision 0 and revision 1 FTF PAs that supported the waste determination and produced a technical evaluation report documenting the results of its multi-year review in October 2011. Following issuance of the waste determination, NRC began to monitor DOE disposal actions to assess compliance with the performance objectives in 10 CFR Part 61, Subpart C. To facilitate its monitoring responsibilities, NRC developed a plan to monitor DOE disposal actions. NRC staff was challenged in developing a focused monitoring plan to ensure limited resources are spent in the most cost-effective manner practical. To address this challenge, NRC prioritized monitoring areas and factors in terms of risk significance and timing. This prioritization was informed by NRC staff's review of DOE's PA documentation, independent probabilistic modeling conducted by NRC staff, and NRC-sponsored research conducted by the Center for Nuclear Waste Regulatory Analyses in San Antonio, TX. (authors)

  11. The Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFC Focused on Hanfords 300 Area Uranium Plume Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-01-31

    The purpose of the project is to conduct research at an Integrated Field-Scale Research Challenge Site in the Hanford Site 300 Area, CERCLA OU 300-FF-5 (Figure 1), to investigate multi-scale mass transfer processes associated with a subsurface uranium plume impacting both the vadose zone and groundwater. The project will investigate a series of science questions posed for research related to the effect of spatial heterogeneities, the importance of scale, coupled interactions between biogeochemical, hydrologic, and mass transfer processes, and measurements/approaches needed to characterize a mass-transfer dominated system. The research will be conducted by evaluating three (3) different hypotheses focused on multi-scale mass transfer processes in the vadose zone and groundwater, their influence on field-scale U(VI) biogeochemistry and transport, and their implications to natural systems and remediation. The project also includes goals to 1) provide relevant materials and field experimental opportunities for other ERSD researchers and 2) generate a lasting, accessible, and high-quality field experimental database that can be used by the scientific community for testing and validation of new conceptual and numerical models of subsurface reactive transport.

  12. Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on Hanfords 300 Area Uranium Plume January 2010 to January 2011

    SciTech Connect (OSTI)

    Zachara, John M.; Bjornstad, Bruce N.; Christensen, John N.; Conrad, Mark S.; Fredrickson, Jim K.; Freshley, Mark D.; Haggerty, Roy; Hammond, Glenn E.; Kent, Douglas B.; Konopka, Allan; Lichtner, Peter C.; Liu, Chongxuan; McKinley, James P.; Murray, Christopher J.; Rockhold, Mark L.; Rubin, Yoram; Vermeul, Vincent R.; Versteeg, Roelof J.; Ward, Anderson L.; Zheng, Chunmiao

    2011-02-01

    The Integrated Field Research Challenge (IFRC) at the Hanford Site 300 Area uranium (U) plume addresses multi-scale mass transfer processes in a complex subsurface hydrogeologic setting where groundwater and riverwater interact. A series of forefront science questions on reactive mass transfer focus research. These questions relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements and approaches needed to characterize and model a mass-transfer dominated system. The project was initiated in February 2007, with CY 2007, CY 2008, and CY 2009 progress summarized in preceding reports. A project peer review was held in March 2010, and the IFRC project has responded to all suggestions and recommendations made in consequence by reviewers and SBR/DOE. These responses have included the development of Modeling and Well-Field Mitigation plans that are now posted on the Hanford IFRC web-site. The site has 35 instrumented wells, and an extensive monitoring system. It includes a deep borehole for microbiologic and biogeochemical research that sampled the entire thickness of the unconfined 300 A aquifer. Significant, impactful progress has been made in CY 2010 including the quantification of well-bore flows in the fully screened wells and the testing of means to mitigate them; the development of site geostatistical models of hydrologic and geochemical properties including the distribution of U; developing and parameterizing a reactive transport model of the smear zone that supplies contaminant U to the groundwater plume; performance of a second passive experiment of the spring water table rise and fall event with a associated multi-point tracer test; performance of downhole biogeochemical experiments where colonization substrates and discrete water and gas samplers were deployed to the lower aquifer zone; and modeling of past injection experiments for model parameterization, deconvolution of well-bore flow effects, system understanding, and publication. We continued efforts to assimilate geophysical logging and 3D ERT characterization data into our site wide geophysical model, and have now implemented a new strategy for this activity to bypass an approach that was found unworkable. An important focus of CY 2010 activities has been infrastructure modification to the IFRC site to eliminate vertical well bore flows in the fully screened wells. The mitigation procedure was carefully evaluated and is now being implementated. A new experimental campaign is planned for early spring 2011 that will utilize the modified well-field for a U reactive transport experiment in the upper aquifer zone. Preliminary geophysical monitoring experiments of rainwater recharge in the vadose zone have been initiated with promising results, and a controlled infiltration experiment to evaluate U mobilization from the vadose zone is now under planning for the September 2011. The increasingly comprehensive field experimental results, along with the field and laboratory characterization, are leading to a new conceptual model of U(VI) flow and transport in the IFRC footprint and the 300 Area in general, and insights on the microbiological community and associated biogeochemical processes.

  13. Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on Hanfords 300 Area Uranium Plume

    SciTech Connect (OSTI)

    Zachara, John M.; Bjornstad, Bruce N.; Christensen, John N.; Conrad, Mark E.; Fredrickson, Jim K.; Freshley, Mark D.; Haggerty, Roy; Hammon, Glenn; Kent, Douglas B.; Konopka, Allan; Lichtner, Peter C.; Liu, Chongxuan; McKinley, James P.; Murray, Christopher J.; Rockhold, Mark L.; Rubin, Yoram; Vermeul, Vincent R.; Versteeg, Roelof J.; Ward, Anderson L.; Zheng, Chunmiao

    2010-02-01

    The Integrated Field-Scale Subsurface Research Challenge (IFRC) at the Hanford Site 300 Area uranium (U) plume addresses multi-scale mass transfer processes in a complex hydrogeologic setting where groundwater and riverwater interact. A series of forefront science questions on mass transfer are posed for research which relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements and approaches needed to characterize and model a mass-transfer dominated system. The project was initiated in February 2007, with CY 2007 and CY 2008 progress summarized in preceding reports. The site has 35 instrumented wells, and an extensive monitoring system. It includes a deep borehole for microbiologic and biogeochemical research that sampled the entire thickness of the unconfined 300 A aquifer. Significant, impactful progress has been made in CY 2009 with completion of extensive laboratory measurements on field sediments, field hydrologic and geophysical characterization, four field experiments, and modeling. The laboratory characterization results are being subjected to geostatistical analyses to develop spatial heterogeneity models of U concentration and chemical, physical, and hydrologic properties needed for reactive transport modeling. The field experiments focused on: (1) physical characterization of the groundwater flow field during a period of stable hydrologic conditions in early spring, (2) comprehensive groundwater monitoring during spring to characterize the release of U(VI) from the lower vadose zone to the aquifer during water table rise and fall, (3) dynamic geophysical monitoring of salt-plume migration during summer, and (4) a U reactive tracer experiment (desorption) during the fall. Geophysical characterization of the well field was completed using the down-well Electrical Resistance Tomography (ERT) array, with results subjected to robust, geostatistically constrained inversion analyses. These measurements along with hydrologic characterization have yielded 3D distributions of hydraulic properties that have been incorporated into an updated and increasingly robust hydrologic model. Based on significant findings from the microbiologic characterization of deep borehole sediments in CY 2008, down-hole biogeochemistry studies were initiated where colonization substrates and spatially discrete water and gas samplers were deployed to select wells. The increasingly comprehensive field experimental results, along with the field and laboratory characterization, are leading to a new conceptual model of U(VI) flow and transport in the IFRC footprint and the 300 Area in general, and insights on the microbiological community and associated biogeochemical processes. A significant issue related to vertical flow in the IFRC wells was identified and evaluated during the spring and fall field experimental campaigns. Both upward and downward flows were observed in response to dynamic Columbia River stage. The vertical flows are caused by the interaction of pressure gradients with our heterogeneous hydraulic conductivity field. These impacts are being evaluated with additional modeling and field activities to facilitate interpretation and mitigation. The project moves into CY 2010 with ambitious plans for a drilling additional wells for the IFRC well field, additional experiments, and modeling. This research is part of the ERSP Hanford IFRC at Pacific Northwest National Laboratory.

  14. The impact of the oil industry on the indigenous population in the oil-producing areas of Nigeria: As measured by ecological factors

    SciTech Connect (OSTI)

    Ikein, A.A.

    1988-01-01

    Exploration and exploitation of the petroleum resource has created some of the largest fortunes and has helped to achieve some of the most impressive economic growth and development, yet little or no attention has been directed to its impact on the producing areas, particularly in developing countries. Therefore, the purpose of this study was to measure the impact of the oil industry on the inhabitants of the oil-producing areas as measured by certain ecological factors. The factors considered were education, health, housing, power, roads, water, and pollution. The selected socio-economic factors are thought to influence the social well being of the inhabitants.

  15. LANSCE Focus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear science observations and opportunities at the Los Alamos Neutron Science Center Colleagues, This special Focus issue highlights a set of nuclear physics capabilities at the ...

  16. Ion focusing

    DOE Patents [OSTI]

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2015-11-10

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  17. LANSCE Focus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Focus Nuclear science observations and opportunities at the Los Alamos Neutron Science Center Colleagues, This special Focus issue highlights a set of nuclear physics capabilities at the Los Alamos Neutron Science Center (LANSCE) serving Los Alamos National Laboratory's national security mis- sion and the global scientific user community. With a total of 10 flight paths, LANSCE pro- vides the opportunity to perform experiments with low- to high-energy neutron sources and high-energy proton

  18. Resource Conservation and Recovery Act industrial site environmental restoration site characterization report - area 6 steam cleaning effluent ponds

    SciTech Connect (OSTI)

    1996-09-01

    The Area 6 North and South Steam Cleaning Effluent Ponds (SCEPs) are historic disposal units located at the Nevada Test Site (NTS) in Nye County, Nevada. The NTS is operated by the U.S. Department of Energy, Nevada Operations Office (DOE/NV) which has been required by the Nevada Division of Environmental Protection (NDEP) to characterize the site under the requirements of the Resource Conservation and Recovery Act (RCRA) Part B Permit for the NTS and Title 40 Code of Federal Regulations, Part 265.

  19. Office of Industrial Technologies research in progress

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The US Department of Energy (DOE) Office of Industrial Technologies (OIT) conducts research and development activities which focus on improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial conservation. The mission of OIT is to increase the utilization of existing energy-efficient equipment and to find and promote new, cost-effective ways for industrial facilities to improve their energy efficiency and minimize waste products. To ensure advancement of the technological leadership of the United States and to improve the competitiveness of American industrial products in world markets, OIT works closely with industrial partners, the staffs of the national laboratories, and universities to identify research and development needs and to solve technological challenges. This report contains summaries of the currently active projects supported by the Office of Industrial Technologies.

  20. The Underground Test Area Project of the Nevada Test Site: Building Confidence in Groundwater Flow and Transport Models at Pahute Mesa Through Focused Characterization Studies

    SciTech Connect (OSTI)

    Pawloski, G A; Wurtz, J; Drellack, S L

    2009-12-29

    Pahute Mesa at the Nevada Test Site contains about 8.0E+07 curies of radioactivity caused by underground nuclear testing. The Underground Test Area Subproject has entered Phase II of data acquisition, analysis, and modeling to determine the risk to receptors from radioactivity in the groundwater, establish a groundwater monitoring network, and provide regulatory closure. Evaluation of radionuclide contamination at Pahute Mesa is particularly difficult due to the complex stratigraphy and structure caused by multiple calderas in the Southwestern Nevada Volcanic Field and overprinting of Basin and Range faulting. Included in overall Phase II goals is the need to reduce the uncertainty and improve confidence in modeling results. New characterization efforts are underway, and results from the first year of a three-year well drilling plan are presented.

  1. Industry @ ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry @ ALS Industry @ ALS ALS, Molecular Foundry, and aBeam Technologies Collaborate to Make Metrology History Print Thursday, 21 January 2016 12:47 A collaboration between Bay Area company aBeam Technologies, the ALS, and the Molecular Foundry is bringing cutting-edge metrology instrumentation to the semiconductor market, which will enable a new level of quality control. Summary Slide Read more... Takeda Advances Diabetes Drug Development at the ALS Print Tuesday, 19 May 2015 12:25 Type 2

  2. Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on Hanfords 300 Area Uranium Plume January 2011 to January 2012

    SciTech Connect (OSTI)

    Zachara, John M.; Bjornstad, Bruce N.; Christensen, John N.; Conrad, Mark S.; Fredrickson, Jim K.; Freshley, Mark D.; Haggerty, Roy; Hammond, Glenn E.; Kent, Douglas B.; Konopka, Allan; Lichtner, Peter C.; Liu, Chongxuan; McKinley, James P.; Murray, Christopher J.; Rockhold, Mark L.; Rubin, Yoram; Vermeul, Vincent R.; Versteeg, Roelof J.; Zheng, Chunmiao

    2012-03-05

    The Integrated Field Research Challenge (IFRC) at the Hanford Site 300 Area uranium (U) plume addresses multi-scale mass transfer processes in a complex subsurface biogeochemical setting where groundwater and riverwater interact. A series of forefront science questions on reactive mass transfer motivates research. These questions relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements and approaches needed to characterize and model a mass-transfer dominated biogeochemical system. The project was initiated in February 2007, with CY 2007, CY 2008, CY 2009, and CY 2010 progress summarized in preceding reports. A project peer review was held in March 2010, and the IFRC project acted upon all suggestions and recommendations made in consequence by reviewers and SBR/DOE. These responses have included the development of 'Modeling' and 'Well-Field Mitigation' plans that are now posted on the Hanford IFRC web-site, and modifications to the IFRC well-field completed in CY 2011. The site has 35 instrumented wells, and an extensive monitoring system. It includes a deep borehole for microbiologic and biogeochemical research that sampled the entire thickness of the unconfined 300 A aquifer. Significant, impactful progress has been made in CY 2011 including: (i) well modifications to eliminate well-bore flows, (ii) hydrologic testing of the modified well-field and upper aquifer, (iii) geophysical monitoring of winter precipitation infiltration through the U-contaminated vadose zone and spring river water intrusion to the IFRC, (iv) injection experimentation to probe the lower vadose zone and to evaluate the transport behavior of high U concentrations, (v) extended passive monitoring during the period of water table rise and fall, and (vi) collaborative down-hole experimentation with the PNNL SFA on the biogeochemistry of the 300 A Hanford-Ringold contact and the underlying redox transition zone. The modified well-field has functioned superbly without any evidence for well-bore flows. Beyond these experimental efforts, our site-wide reactive transport models (PFLOTRAN and eSTOMP) have been updated to include site geostatistical models of both hydrologic properties and adsorbed U distribution; and new hydrologic characterization measurements of the upper aquifer. These increasingly robust models are being used to simulate past and recent U desorption-adsorption experiments performed under different hydrologic conditions, and heuristic modeling to understand the complex functioning of the smear zone. We continued efforts to assimilate geophysical logging and 3D ERT characterization data into our site wide geophysical model, with significant and positive progress in 2011 that will enable publication in 2012. Our increasingly comprehensive field experimental results and robust reactive transport simulators, along with the field and laboratory characterization, are leading to a new conceptual model of U(VI) flow and transport in the IFRC footprint and the 300 Area in general, and insights on the microbiological community and associated biogeochemical processes influencing N, S, C, Mn, and Fe. Collectively these findings and higher scale models are providing a unique and unparalleled system-scale understanding of the biogeochemical function of the groundwater-river interaction zone.

  3. Focus Group | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outreach Forums » Focus Group and Work Group Activities » Focus Group Focus Group The Focus Group was formed in March 2007 to initiate dialogue and interface with labor unions, DOE Program Secretarial Offices, and stakeholders in areas of mutual interest and concern related to health, safety, security, and the environment. Meeting Documents Available for Download November 13, 2012 Work Group Leadership Meetings: Transition Elements This Focus Group Work Group telecom was held with the Work

  4. DOE Focus Areas and Panel Introduction

    Energy Savers [EERE]

    energy performance and lighting quality, but also a growing list of other benefits Big Data, Analytics Safety and Security Service-based business models Revenue streams...

  5. DOE Focus Areas and Panel Introduction

    Energy Savers [EERE]

    other benefits Big Data, Analytics Safety and Security Service-based business models Revenue streams Productivity Health and Human factors Resource, Process Optimization 11...

  6. Focus Areas 1 and 4 Deliverables

    Office of Environmental Management (EM)

    various consensus standards promulgated by the American Society of Testing Materials (ASTM) and in engineering specifications developed in accordance with design approaches...

  7. Waste combustion in boilers and industrial furnaces

    SciTech Connect (OSTI)

    1997-12-31

    This set of conference papers deals with the combustion of hazardous wastes in boilers and industrial furnaces. The majority of the papers pertain specifically to cement industry kiln incinerators and focus on environmental issues. In particular, stack emission requirements currently enforced or under consideration by the U.S. EPA are emphasized. The papers were drawn from seven areas: (1) proposed Maximum Achievable Control Technology rule, (2) trial burn planning and experience, (3) management and beneficial use of materials, (4) inorganic emissions and continuous emission monitoring, (5) organic emissions, (6) boiler and industrial furnace operations, and (7) risk assessment and communication.

  8. Presentations for Industry

    Broader source: Energy.gov [DOE]

    Learn energy-saving strategies from leading manufacturing companies and energy experts. The presentations are organized below by topic area. In addition, industrial energy managers, utilities, and...

  9. Industrial Utility Webinar: Public Power Open Session

    SciTech Connect (OSTI)

    2010-02-10

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  10. Industrial Utility Webinar: Natural Gas Efficiency Programs

    SciTech Connect (OSTI)

    2010-04-15

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  11. Industrial Utility Webinar: Financial Mechanisms and Incentives

    SciTech Connect (OSTI)

    2010-03-10

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  12. Millennium Energy Industries | Open Energy Information

    Open Energy Info (EERE)

    Industries Place: Jordan Zip: 1182 Sector: Solar Product: Jordan-based solar energy firm focused in MENA region. References: Millennium Energy Industries1 This article is a...

  13. Industrial Utility Webinar: Combined Heat and Power

    SciTech Connect (OSTI)

    2010-06-09

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  14. The Office of Industrial Technologies technical reports

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    The US Department of Energy's Office of Industrial Technologies (OIT) conducts R D activities which focus on the objectives of improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial energy conservation. The Office also conducts programs to reduce waste generation, increase recycling efforts, and improve the use of wastes as process feedstocks. An active program of technology transfer and education supports these activities and encourages adoption of new technologies. To accomplish these objectives OIT cooperates with the private sector to identify its technological needs and to share R D efforts. R D is conducted to the point that a new technology is shown to work and that it can be transferred to the private sector end-users. This bibliography contains information on all scientific and technical reports sponsored by the DOE Industrial Energy Conservation Program during the years 1988--1990.

  15. Industrial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Industrial Manufacturing Buildings Industrialmanufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey...

  16. Industrial Carbon Management Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Carbon Management Initiative Fact Sheets Research Team Members Key Contacts Industrial Carbon Management Initiative (ICMI) Background The ICMI project is part of a larger program called Carbon Capture Simulation and Storage Initiative (C2S2I). The C2S2I has a goal of expanding the DOE's focus on Carbon Capture Utilization and Storage (CCUS) for advanced coal power systems and other applications, including the use of petroleum coke as a feedstock for the industrial sector. The American

  17. Focus Group Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Outreach » Outreach Forums » Focus Group Activities Focus Group Activities Since February 2007, the Focus Group Forum has been a venue for communication among DOE managers, labor unions, and stakeholder representatives. The Focus Group Forum has resulted in integrated collaborative worker health and safety improvement activities in the areas of Training, 10 CFR 851 Implementation Improvement, Workforce Retention, and Strategic Initiatives. Learn more about the Focus Group FOCUS

  18. Market Report for the Industrial Sector, 2009

    SciTech Connect (OSTI)

    Sastri, Bhima; Brueske, Sabine; de los Reyes, Pamela; Jamison, Keith; Justiniano, Mauricio; Margolis, Nancy; Monfort, Joe; Raghunathan, Anand; Sabouni, Ridah

    2009-07-01

    This report provides an overview of trends in industrial-sector energy use. It focuses on some of the largest and most energy-intensive industrial subsectors and several emerging technologies that could transform key segments of industry.

  19. Industrial Utility Webinar: Opportunities for Cost-Effective Energy Efficiency in the Industrial Sector

    SciTech Connect (OSTI)

    2010-01-13

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  20. Industries & Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Industries & Technologies Industries & Technologies The Advanced Manufacturing Office (AMO) emphasizes innovative technologies to increase manufacturing agility and open new markets. AMO also maintains a range of projects, analyses, protocols, and strategies to reduce industrial energy intensity and carbon emissions in specific industries and technology areas: Industries Aluminum Chemicals Forest Products Glass Metal Casting Mining Other Industries Petroleum

  1. Qualified Specialists in Industrial Assessment Tools | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Qualified Specialists in Industrial Assessment Tools Qualified Specialists in Industrial Assessment Tools Locate a DOE-trained Qualified Specialist in your area to identify ways to...

  2. Strong focus space charge

    DOE Patents [OSTI]

    Booth, Rex (Livermore, CA)

    1981-01-01

    Strong focus space charge lens wherein a combination of current-carrying coils and charged electrodes form crossed magnetic and electric fields to focus charged particle beams.

  3. Urban Integrated Industrial Cogeneration Systems Analysis. Phase II final report

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    Through the Urban Integrated Industrial Cogeneration Systems Analysis (UIICSA), the City of Chicago embarked upon an ambitious effort to identify the measure the overall industrial cogeneration market in the city and to evaluate in detail the most promising market opportunities. This report discusses the background of the work completed during Phase II of the UIICSA and presents the results of economic feasibility studies conducted for three potential cogeneration sites in Chicago. Phase II focused on the feasibility of cogeneration at the three most promising sites: the Stockyards and Calumet industrial areas, and the Ford City commercial/industrial complex. Each feasibility case study considered the energy load requirements of the existing facilities at the site and the potential for attracting and serving new growth in the area. Alternative fuels and technologies, and ownership and financing options were also incorporated into the case studies. Finally, site specific considerations such as development incentives, zoning and building code restrictions and environmental requirements were investigated.

  4. Energy-Focused Trade Mission Will Yield Positive Effects for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    landed in China to lead a presidential trade mission focused on connecting U.S. businesses with opportunities in the green infrastructure and energy efficiency industries. ...

  5. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users The facility has been used for more than a decade by a virtual Who's Who of the semiconductor industry to simulate the potential failures posed by cosmic-ray-induced neutrons upon miniature electronic devices, such as chips that help control aircraft or complex integrated circuits in automobiles. Industrial User Information The Neutron and Nuclear Science (WNR) Facility welcomes proposals for beam time experiments from industry users. Proprietary and non-proprietary industrial

  6. Industrial Process Heating - Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... in these 182 development areas: 183 Digital Control Equipment, 184 Reduction of ... Industrial Companies Manufacturing and Marketing Process Heating and Combustion 199 ...

  7. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    change. This distribution was to allow the Focus Group time to review the proposed language and be prepared for the matter to come to a vote at the next meeting of the Focus...

  8. Presentation: FracFocus

    Broader source: Energy.gov [DOE]

    Mike Paque, Gerry Baker, and Stan Belieu reported on the work of FracFocus and the improvements made in FracFocus 2.0 as well as their connection with Risk Based Data Management System (RBDMS) used...

  9. Alternating phase focused linacs

    DOE Patents [OSTI]

    Swenson, Donald A. (Los Alamos, NM)

    1980-01-01

    A heavy particle linear accelerator employing rf fields for transverse and ongitudinal focusing as well as acceleration. Drift tube length and gap positions in a standing wave drift tube loaded structure are arranged so that particles are subject to acceleration and succession of focusing and defocusing forces which contain the beam without additional magnetic or electric focusing fields.

  10. Industrial Utility Webinar: Public Power Financial Incentive Programs

    SciTech Connect (OSTI)

    2010-05-14

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  11. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2013 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:09 PM on December 17, 2013 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Taffy Almeida, Joe Archuleta, Jeff Cheadle, Glen Clark, Robert Elkins, Scot Fitzgerald, Joan Kessner, Karl Pool, Chris Sutton, Amanda Tuttle, Rich Weiss and Eric Wyse. I. Huei Meznarich asked if there were any comments on the minutes from the

  12. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2015 The meeting was called to order by Cliff Watkins, HASQARD Focus Group Secretary at 2:07 PM on May 26, 2015 in Conference Room 328 at 2420 Stevens. Those attending were: Jonathan Sanwald (Mission Support Alliance (MSA), Focus Group Chair), Cliff Watkins (Corporate Allocation Services, DOE-RL Support Contractor, Focus Group Secretary), Taffy Almeida (Pacific Northwest National Laboratory (PNNL)), Glen Clark (Washington River Protection Solution (WRPS)), Fred Dunhour (DOE-ORP), Scot

  13. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    22, 2015 The meeting was called to order by Cliff Watkins, HASQARD Focus Group Secretary at 2:05 PM on October 22, 2015 in Conference Room 328 at 2420 Stevens. Those attending were: Jonathan Sanwald (Mission Support Alliance (MSA), Focus Group Chair), Cliff Watkins (Corporate Allocation Services, DOE-RL Support Contractor, Focus Group Secretary), Glen Clark (Washington River Protection Solution (WRPS)), Fred Dunhour (DOE-ORP), Joan Kessner (Washington Closure Hanford (WCH)), Karl Pool (Pacific

  14. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2012 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:04 PM on October 16, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Jeff Cheadle, Glen Clark, Robert Elkins, Larry Markel, Mary McCormick-Barger, Karl Pool, Noe'l Smith-Jackson, Chris Sutton, Steve Trent, Amanda Tuttle, Sam Vega, Rich Weiss and Eric Wyse. New personnel have joined the Focus Group since the last

  15. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27, 2012 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:09 PM on November 27, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Glen Clark, Robert Elkins, Joan Kessner, Larry Markel, Mary McCormick-Barger, Steve Trent, and Rich Weiss. I. Huei Meznarich requested comments on the minutes from the October 16, 2012 meeting. No HASQARD Focus Group members present stated any

  16. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0, 2013 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:05 PM on August 20, 2013 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Taffy Almeida, Glen Clark, Robert Elkins, Scot Fitzgerald, Joan Kessner, Steve Smith, Rich Weiss and Eric Wyse. I. Huei Meznarich asked if there were any comments on the minutes from the July 23, 2013 meeting. No Focus Group members stated they had

  17. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2014 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:10 PM on April 15, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Glen Clark, Robert Elkins, Scot Fitzgerald, Mary McCormick-Barger, Karl Pool, Noe'l Smith-Jackson, and Eric Wyse. I. Huei Meznarich asked if there were any comments on the minutes from the March 18, 2014 meeting. No Focus Group members stated they

  18. FEMP Focus - June 2001

    SciTech Connect (OSTI)

    2001-06-01

    FEMP Focus is FEMP's bimonthly newsletter that promotes energy awareness, recognizes successes, and communicates information about saving energy and dollars to the federal community.

  19. Focus on Energy Program

    Broader source: Energy.gov [DOE]

    Focus on Energy provides information, financial assistance, technical assistance and other services to residents, businesses, schools, institutions and local governments on energy efficiency and...

  20. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    deviations from a procedure or deviations from a published analytical method. Also, the language in this section of HASQARD uses the term "modification" and the Focus Group was...

  1. Microfabricated particle focusing device

    DOE Patents [OSTI]

    Ravula, Surendra K.; Arrington, Christian L.; Sigman, Jennifer K.; Branch, Darren W.; Brener, Igal; Clem, Paul G.; James, Conrad D.; Hill, Martyn; Boltryk, Rosemary June

    2013-04-23

    A microfabricated particle focusing device comprises an acoustic portion to preconcentrate particles over large spatial dimensions into particle streams and a dielectrophoretic portion for finer particle focusing into single-file columns. The device can be used for high throughput assays for which it is necessary to isolate and investigate small bundles of particles and single particles.

  2. Industrial Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the National Pollutant Discharge Elimination System. October 15, 2012 Outfall from the Laboratory's Data Communications Center cooling towers Intermittent flow of discharged water from the Laboratory's Data Communications Center eventually reaches perennial segment of Sandia Canyon during storm events (Outfall 03A199). Contact Environmental Communication & Public

  3. Industry Economists

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Economists The U.S. Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the Industry Economist, whose work is associated with the performance of economic analyses using economic techniques. Responsibilities: Industry Economists perform or participate in one or more of the following

  4. OTHER INDUSTRIES

    Broader source: Energy.gov [DOE]

    AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy...

  5. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:06 PM on June 12, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Jeff Cheadle, Glen Clark, Shannan Johnson, Joan Kessner, Larry Markel, Karl Pool, Steve Smith, Noe'l Smith-Jackson, Chris Sutton, Cindy Taylor, Chris Thomson, Amanda Tuttle, Sam Vega, Rick Warriner and Eric Wyse. I. Huei Meznarich requested comments on the

  6. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2013 The beginning of the meeting was delayed due to an unannounced loss of the conference room scheduled for the meeting. After securing another meeting location, the meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:18 PM on April 16, 2013 in Conference Room 156 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Jeff Cheadle, Glen Clark, Joan Kessner, Larry Markel, Mary McCormick-Barger, Karl Pool,

  7. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 28, 2014 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:04 PM on January 28, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Joe Archuleta, Glen Clark, Robert Elkins, Scot Fitzgerald, Joan Kessner, Mary McCormick-Barger, Karl Pool, Noe'l Smith-Jackson, Chris Sutton, Chris Thompson, Rich Weiss and Eric Wyse. I. Huei Meznarich asked if there were any comments on

  8. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2014 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:07 PM on February 25, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Lynn Albin, Taffy Almeida, Joe Archuleta, Glen Clark, Robert Elkins, Scot Fitzgerald, Joan Kessner, Mary McCormick-Barger, Karl Pool, Noe'l Smith-Jackson, Chris Sutton, Chris Thompson, and Eric Wyse. I. Huei Meznarich asked if there were any

  9. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0, 2014 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:05 PM on May 20, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Lynn Albin, Taffy Almeida, Joe Archuleta, Glen Clark, Robert Elkins, Scot Fitzgerald, Shannan Johnson, Joan Kessner, Mary McCormick-Barger, Craig Perkins, Karl Pool, Noe'l Smith-Jackson, Chris Sutton, Chris Thompson and Eric Wyse. I. Acknowledging the

  10. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:07 PM on June 12, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Joe Archuleta, Sara Champoux, Glen Clark, Jim Douglas, Robert Elkins, Scot Fitzgerald, Joan Kessner, Jan McCallum, Mary McCormick-Barger, Karl Pool, Noe'l Smith-Jackson, Rich Weiss and Eric Wyse. I. Acknowledging the presence of new and/or infrequent

  11. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2014 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:10 PM on June 17, 2014 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Focus Group Chair), Cliff Watkins (Focus Group Secretary), Robert Elkins, Shannan Johnson, Joan Kessner, Jan McCallum, Craig Perkins, Karl Pool, Chris Sutton and Rich Weiss. I. Because of the short time since the last meeting, Huei Meznarich stated that the minutes from the June 12, 2014 meeting have not yet

  12. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the September 21 meeting of the Focus Group, the concerns related to the current language in HASQARD Volume 1, Section 10.4, "Quality Systems" were discussed at the...

  13. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    been distributed to the Focus Group prior to the meeting. The comments that required editorial changes to the document were made in the working electronic version. b. At the June...

  14. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Elkins, Mary McCormick-Barger, Noe'l Smith-Jackson, Chris Sutton, Amanda Tuttle, Rick ... Noe'l Smith-Jackson stated that the HASQARD document is the work of the Focus Group not ...

  15. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the August meeting, the Focus Group Secretary continues to work on deleting the language proposed by the QA Sub-group that would have divided the section on methods into one...

  16. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the last Focus Group meeting to get together and see if an agreement on proposed language could be achieved that would satisfy CHPRC sampling personnel and WSCF laboratory...

  17. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the May 15 meeting, Rich Weiss sent an e-mail to the Focus Group to propose revised language for the last paragraph in Section 5.3 containing the sentence about measured...

  18. Tritium Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    matters related to tritium. Contacts Mike Rogers (505) 665-2513 Email Chandra Savage Marsden (505) 664-0183 Email The Tritium Focus Group consists of participants from member...

  19. Planar-focusing cathodes.

    SciTech Connect (OSTI)

    Lewellen, J. W.; Noonan, J.; Accelerator Systems Division

    2005-01-01

    Conventional {pi}-mode rf photoinjectors typically use magnetic solenoids for emittance compensation. This provides independent focusing strength but can complicate rf power feed placement, introduce asymmetries (due to coil crossovers), and greatly increase the cost of the photoinjector. Cathode-region focusing can also provide for a form of emittance compensation. Typically this method strongly couples focusing strength to the field gradient on the cathode, however, and usually requires altering the longitudinal position of the cathode to change the focusing. We propose a new method for achieving cathode-region variable-strength focusing for emittance compensation. The new method reduces the coupling to the gradient on the cathode and does not require a change in the longitudinal position of the cathode. Expected performance for an S-band system is similar to conventional solenoid-based designs. This paper presents the results of rf cavity and beam dynamics simulations of the new design. We have proposed a method for performing emittance compensation using a cathode-region focusing scheme. This technique allows the focusing strength to be adjusted somewhat independently of the on-axis field strength. Beam dynamics calculations indicate performance should be comparable to presently in-use emittance compensation schemes, with a simpler configuration and fewer possibilities for emittance degradation due to the focusing optics. There are several potential difficulties with this approach, including cathode material selection, cathode heating, and peak fields in the gun. We hope to begin experimenting with a cathode of this type in the near future, and several possibilities exist for reducing the peak gradients to more acceptable levels.

  20. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users - Media Publications and Information The Invisible Neutron Threat Neutron-Induced Failures in Semiconductor Devices Nuclear Science Research at the LANSCE-WNR Facility Links About WNR Industrial Users 4FP30L-A/ICE House 4FP30R/ICE II Media

  1. Cooling, heating, and power for industry: A market assessment

    SciTech Connect (OSTI)

    None, None

    2003-08-01

    The focus of this study was to assess the market for cooling, heating, and power applications in the industrial sector.

  2. Sagittal focusing Laue monochromator

    DOE Patents [OSTI]

    Zhong; Zhong (Stony Brook, NY), Hanson; Jonathan (Wading River, NY), Hastings; Jerome (Stanford, CA), Kao; Chi-Chang (Setauket, NY), Lenhard; Anthony (Medford, NY), Siddons; David Peter (Cutchogue, NY), Zhong; Hui (Coram, NY)

    2009-03-24

    An x-ray focusing device generally includes a slide pivotable about a pivot point defined at a forward end thereof, a rail unit fixed with respect to the pivotable slide, a forward crystal for focusing x-rays disposed at the forward end of the pivotable slide and a rearward crystal for focusing x-rays movably coupled to the pivotable slide and the fixed rail unit at a distance rearward from the forward crystal. The forward and rearward crystals define reciprocal angles of incidence with respect to the pivot point, wherein pivoting of the slide about the pivot point changes the incidence angles of the forward and rearward crystals while simultaneously changing the distance between the forward and rearward crystals.

  3. Bringing Clouds into Focus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bringing Clouds into Focus Bringing Clouds into Focus A New Global Climate Model May Reduce the Uncertainty of Climate Forecasting May 11, 2010 Contact: John Hules, JAHules@lbl.gov , +1 510 486 6008 Randall-fig4.png The large data sets generated by the GCRM require new analysis and visualization capabilities. This 3D plot of vorticity isosurfaces was developed using VisIt, a 3D visualization tool with a parallel distributed architecture, which is being extended to support the geodesic grid used

  4. Industry Economist

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will report to the Manager of Load Forecasting and Analysis of the Customer Services Organization. He/she serves as an industry economist engaged in load...

  5. Tritium Focus Group Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Restaurants (pdf) LANL Information Visting Los Alamos Area Map Weather Contacts Mike Rogers (505) 665-2513 mrogers@lanl.gov Chandra Savage Marsden (505) 664-0183 chandra@lanl.gov...

  6. Hierarchical Nanoceramics for Industrial Process Sensors

    SciTech Connect (OSTI)

    Ruud, James, A.; Brosnan, Kristen, H.; Striker, Todd; Ramaswamy, Vidya; Aceto, Steven, C.; Gao, Yan; Willson, Patrick, D.; Manoharan, Mohan; Armstrong, Eric, N., Wachsman, Eric, D.; Kao, Chi-Chang

    2011-07-15

    This project developed a robust, tunable, hierarchical nanoceramics materials platform for industrial process sensors in harsh-environments. Control of material structure at multiple length scales from nano to macro increased the sensing response of the materials to combustion gases. These materials operated at relatively high temperatures, enabling detection close to the source of combustion. It is anticipated that these materials can form the basis for a new class of sensors enabling widespread use of efficient combustion processes with closed loop feedback control in the energy-intensive industries. The first phase of the project focused on materials selection and process development, leading to hierarchical nanoceramics that were evaluated for sensing performance. The second phase focused on optimizing the materials processes and microstructures, followed by validation of performance of a prototype sensor in a laboratory combustion environment. The objectives of this project were achieved by: (1) synthesizing and optimizing hierarchical nanostructures; (2) synthesizing and optimizing sensing nanomaterials; (3) integrating sensing functionality into hierarchical nanostructures; (4) demonstrating material performance in a sensing element; and (5) validating material performance in a simulated service environment. The project developed hierarchical nanoceramic electrodes for mixed potential zirconia gas sensors with increased surface area and demonstrated tailored electrocatalytic activity operable at high temperatures enabling detection of products of combustion such as NOx close to the source of combustion. Methods were developed for synthesis of hierarchical nanostructures with high, stable surface area, integrated catalytic functionality within the structures for gas sensing, and demonstrated materials performance in harsh lab and combustion gas environments.

  7. Focused ion beam system

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Gough, Richard A. (Kensington, CA); Ji, Qing (Berkeley, CA); Lee, Yung-Hee Yvette (Berkeley, CA)

    1999-01-01

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 .mu.m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 .mu.m or less.

  8. Focused ion beam system

    DOE Patents [OSTI]

    Leung, K.; Gough, R.A.; Ji, Q.; Lee, Y.Y.

    1999-08-31

    A focused ion beam (FIB) system produces a final beam spot size down to 0.1 {mu}m or less and an ion beam output current on the order of microamps. The FIB system increases ion source brightness by properly configuring the first (plasma) and second (extraction) electrodes. The first electrode is configured to have a high aperture diameter to electrode thickness aspect ratio. Additional accelerator and focusing electrodes are used to produce the final beam. As few as five electrodes can be used, providing a very compact FIB system with a length down to only 20 mm. Multibeamlet arrangements with a single ion source can be produced to increase throughput. The FIB system can be used for nanolithography and doping applications for fabrication of semiconductor devices with minimum feature sizes of 0.1 m or less. 13 figs.

  9. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2012 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:04 PM on January 17, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Chair), Cliff Watkins (Secretary), Mike Barnes, Jeff Cheadle, Glen Clark, Scot Fitzgerald, Shannan Johnson, Joan Kessner, Larry Markel, Cindy Taylor, Chris Thompson, Amanda Tuttle, Sam Vega, Rich Weiss and Eric Wyse. I. Huei Meznarich requested comments on the minutes from the December 13, 2011 meeting.

  10. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 2012 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:02 PM on February 21, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Chair), Cliff Watkins (Secretary), Lynn Albin, Taffy Almeida, Courtney Blanchard, Glen Clark, Scot Fitzgerald, Shannan Johnson, Kris Kuhl-Klinger, Larry Markel, Karl Pool, Steve Smith, Cindy Taylor, Amanda Tuttle, Sam Vega, Rick Warriner, Rich Weiss and Eric Wyse. I. Huei Meznarich requested comments on

  11. Tritium Focus Group Meeting:

    Office of Environmental Management (EM)

    32 nd Tritium Focus Group Meeting: Tritium research activities in Safety and Tritium Applied Research (STAR) facility, Idaho National Laboratory Masashi Shimada Fusion Safety Program, Idaho National Laboratory April 25 th 2013, Germantown, MD STI #: INL/MIS-13-28975 Outlines 1. Motivation of tritium research activity in STAR facility 2. Unique capabilities in STAR facility 3. Research highlights from tritium retention in HFIR neutron- irradiated tungsten April 25th 2013 Germantown, MD STAR

  12. NETL Focused Standards List

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    24/08 Contact: Paul Lauterbach Reviewed: 10/28/08 Janet Lambert Page 1 of 15 This Focused Standards List has been primarily derived from selected standard references contained in NETL issued directives. All standards shall reference the most current edition/ version of that standard. DOE and other Government Standards and Requirements DOE DIRECTIVES Note: The following DOE directives can be found at http://www.directives.doe.gov DOE Policy 141.1, DOE Management of Cultural Resources DOE Order

  13. NETL Focused Standards List

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1/6/14 Contact: Janet Lambert Reviewed: 3/5/14 Page 1 of 17 The National Energy Technology Laboratory (NETL) Focused Standards List is primarily derived from standard references contained in the requirements section of NETL's environment, safety, security, and health (ESS&H) and cyber security directives. All standards shall reference the most current edition/version of that standard. 1. DEPARTMENT OF ENERGY (DOE) AND OTHER GOVERNMENT STANDARDS AND REQUIREMENTS a. DOE Directives The

  14. NETL Focused Standards List

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6/26/15 Contact: Janet Lambert Reviewed: 6/26/15 Page 1 of 18 The National Energy Technology Laboratory (NETL) Focused Standards List is primarily derived from standard references contained in the requirements section of NETL's environment, safety, security, and health (ESS&H) and cyber security directives. All standards shall reference the most current edition/version of that standard. 1. DEPARTMENT OF ENERGY (DOE) AND OTHER GOVERNMENT STANDARDS AND REQUIREMENTS a. DOE Directives The

  15. Strategic Focus Points

    Energy Savers [EERE]

    Focus Points June 2011 1. Establish the human capital and organizational foundation to create a high-performing organization. 2. Implement a cyber risk-management and incident response program that ensures effective security of Federal and M&O networks, provides appropriate flexibility, and meets legal requirements and OMB expectations. 3. Improve IT Services (EITS) into a best-in-class provider from both a technical and business perspective. 4. Implement and institutionalize a reformed,

  16. High temperature materials technology for industrial energy systems and processes. Final report, April 1984-May 1986

    SciTech Connect (OSTI)

    Bortz, S.A.

    1986-06-01

    GRI is pursuing new technologies that will improve the performance of natural gas in industrial processes and enable natural gas to be competitive in the industrial sector with other energy alternatives. The program focused on three areas of interest that require establishing a ceramic materials data base for technical input to GRI's RandD planning efforts. These areas are: Ceramics for Heat-Exchanger Applications in High-Temperature Corrosive Flue Streams; Advanced Material and Component Technology for Gas-Fueled Prime Movers; and Gas-Fired Indirect Heating and Melting Systems.

  17. Commercial / Industrial Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture Commercial & Industrial Lighting Efficiency Program The Commercial & Industrial...

  18. Dielectrophoretic columnar focusing device

    DOE Patents [OSTI]

    James, Conrad D. (Albuquerque, NM); Galambos, Paul C. (Albuquerque, NM); Derzon, Mark S. (Tijeras, NM)

    2010-05-11

    A dielectrophoretic columnar focusing device uses interdigitated microelectrodes to provide a spatially non-uniform electric field in a fluid that generates a dipole within particles in the fluid. The electric field causes the particles to either be attracted to or repelled from regions where the electric field gradient is large, depending on whether the particles are more or less polarizable than the fluid. The particles can thereby be forced into well defined stable paths along the interdigitated microelectrodes. The device can be used for flow cytometry, particle control, and other process applications, including cell counting or other types of particle counting, and for separations in material control.

  19. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:04 PM on December 13, 2011 in Conference Room 126 at 2420 Stevens. Those attending were: Huei Meznarich (Chair), Cliff Watkins (Secretary), Lynn Albin, Heather Anastos, Jeff Cheadle, Glen Clark, Scot Fitzgerald, Shannan Johnson, Kris Kuhl-Klinger, Joan Kessner, Karl Pool, Dave St. John, Noe'l Smith-Jackson, Chris Sutton, Cindy Taylor, Amanda Tuttle, Rich Weiss and Eric Wyse. I. Huei Meznarich requested comments

  20. HASQARD Focus Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2012 The meeting was called to order by Huei Meznarich, HASQARD Focus Group Chair at 2:06 PM on April 17, 2012 in Conference Room 308 at 2420 Stevens. Those attending were: Huei Meznarich (Chair), Cliff Watkins (Secretary), Lynn Albin, Taffy Almeida, Jeff Cheadle, Glen Clark, Scot Fitzgerald, Kris Kuhl-Klinger, Joan Kessner, Larry Markel, Noe'l Smith-Jackson, Cindy Taylor, Amanda Tuttle, Rich Weiss and Eric Wyse. I. Huei Meznarich requested comments on the minutes from the March 20, 2012

  1. Transverse field focused system

    DOE Patents [OSTI]

    Anderson, Oscar A. (Berkeley, CA)

    1986-01-01

    A transverse field focused (TFF) system for transport or acceleration of an intense sheet beam of negative ions in which a serial arrangement of a plurality of pairs of concentric cylindrical-arc electrodes is provided. Acceleration of the sheet beam can be achieved by progressively increasing the mean electrode voltage of successive electrode pairs. Because the beam is curved by the electrodes, the system can be designed to transport the beam through a maze passage which is baffled to prevent line of sight therethrough. Edge containment of the beam can be achieved by shaping the side edges of the electrodes to produce an electric force vector directed inwardly from the electrode edges.

  2. NETL Focused Standards List

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4/4/12 Contact: Janet Lambert Reviewed: 4/4/12 Page 1 of 17 This Focused Standards List has been primarily derived from selected standard references contained in NETL issued directives. All standards shall reference the most current edition/ version of that standard. DOE and other Government Standards and Requirements DOE DIRECTIVES Note: The following DOE directives can be found at http://www.directives.doe.gov: DOE Policy 141.1, DOE Management of Cultural Resources DOE Order 142.1, Classified

  3. NETL Focused Standards List

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6/12 Contact: Janet Lambert Reviewed: 10/4/12 Page 1 of 17 This Focused Standards List has been primarily derived from selected standard references contained in NETL issued directives. All standards shall reference the most current edition/ version of that standard. DOE and other Government Standards and Requirements DOE DIRECTIVES Note: The following DOE directives can be found at http://www.directives.doe.gov: DOE Policy 141.1, DOE Management of Cultural Resources DOE Order 142.1, Classified

  4. SLAC Science Focus Area | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rifle Research Ferrihydrite banner Nano biogenic uraninite Introduction: Uranium is a toxic and problematic redox-active contaminant at U.S. Department of Energy (DOE) legacy...

  5. TFA Tanks Focus Area midyear review report FY 2000

    SciTech Connect (OSTI)

    LR Roeder-Smith

    2000-05-02

    In accordance with EM's office of Science and Technology (OST), the TFA is committed to assessing the maturity of technology development projects and ensuring their readiness for implementation and subsequent deployment. The TFA conducts an annual Midyear Review to document the status of ongoing projects, reaffirm and document user commitment to selected projects, and to improve the effective deployment of technology by determining and documenting the readiness of selected projects to move ahead. Since 1995, OST has used a linear technology maturation model that spans through seven defined stages of maturity, from basic research to implementation. Application of this Stage/Gate model to technology development resulted in prescriptive and somewhat cumbersome review procedures, resulting in limited and inconsistent use. Subsequently, in February 2000, OST issued revised guidance in an effort to streamline the technology tracking and review process. While the new OST guidance reinforces peer review requirements and the use of the American Society of Mechanical Engineers (ASME) for independent reviews, it also implements a simplified Gate model. The TFA is now responsible for providing auditable documentation for passing only three stages of technology maturity: ready for research (Gate 0); ready for development (Gate 2); ready for demonstration (Gate 5). The TFA Midyear Review is a key element in the overall review procedure, as the tracking evidence for all active projects is required to be available at this time. While the Midyear Report contains an overview of the status of all TFA reviews and projects, not all the reviews were conducted during the Midyear Review. The TFA used a phased approach to accomplish the Midyear Review requirements.

  6. Tanks Focus Area Site Needs Assessment - FY 2001

    SciTech Connect (OSTI)

    Allen, Robert W.; Josephson, Gary B.; Westsik, Joseph H.; Nickola, Cheryl L.

    2001-04-30

    The TFA uses a systematic process for developing its annual program that draws from the tanks science and technology development needs expressed by the five DOE tank waste sites. TFA's annual program development process is iterative and involves the following steps: Collection of site needs; Needs analysis; Development of technical responses and initial prioritization; Refinement of the program for the next fiscal year; Formulation of the Corporate Review Budget (CRB); Preparation of Program Execution Guidance (PEG) for the next FY Revision of the Multiyear Program Plan (MYPP). This document describes the outcomes of the first phase of this process, from collection of site needs to the initial prioritization of technical activities. The TFA received site needs in October - December 2000. A total of 170 site needs were received, an increase of 30 over the previous year. The needs were analyzed and integrated, where appropriate. Sixty-six distinct technical responses were drafted and prioritized. In addition, seven strategic tasks were approved to compete for available funding in FY 2002 and FY 2003. Draft technical responses were prepared and provided to the TFA Site Representatives and the TFA User Steering Group (USG) for their review and comment. These responses were discussed at a March 15, 2001, meeting where the TFA Management Team established the priority listing in preparation for input to the DOE Office of Science and Technology (OST) budget process. At the time of publication of this document, the TFA continues to finalize technical responses as directed by the TFA Management Team and clarify the intended work scopes for FY 2002 and FY 2003.

  7. Handbook of Industrial Engineering Equations, Formulas, and Calculations

    SciTech Connect (OSTI)

    Badiru, Adedeji B; Omitaomu, Olufemi A

    2011-01-01

    The first handbook to focus exclusively on industrial engineering calculations with a correlation to applications, Handbook of Industrial Engineering Equations, Formulas, and Calculations contains a general collection of the mathematical equations often used in the practice of industrial engineering. Many books cover individual areas of engineering and some cover all areas, but none covers industrial engineering specifically, nor do they highlight topics such as project management, materials, and systems engineering from an integrated viewpoint. Written by acclaimed researchers and authors, this concise reference marries theory and practice, making it a versatile and flexible resource. Succinctly formatted for functionality, the book presents: Basic Math Calculations; Engineering Math Calculations; Production Engineering Calculations; Engineering Economics Calculations; Ergonomics Calculations; Facility Layout Calculations; Production Sequencing and Scheduling Calculations; Systems Engineering Calculations; Data Engineering Calculations; Project Engineering Calculations; and Simulation and Statistical Equations. It has been said that engineers make things while industrial engineers make things better. To make something better requires an understanding of its basic characteristics and the underlying equations and calculations that facilitate that understanding. To do this, however, you do not have to be computational experts; you just have to know where to get the computational resources that are needed. This book elucidates the underlying equations that facilitate the understanding required to improve design processes, continuously improving the answer to the age-old question: What is the best way to do a job?

  8. FAQS Reference Guide – Industrial Hygiene

    Broader source: Energy.gov [DOE]

    This reference guide addresses the competency statements in the November 2007 edition of DOE-STD-1138-2007, Industrial Hygiene Functional Area Qualification Standard.

  9. Global Industry Analysts | Open Energy Information

    Open Energy Info (EERE)

    search Name: Global Industry Analysts Address: 6150 Hellyer Avenue Place: San Jose, California Zip: 95138 Region: Bay Area Product: Market research services Year Founded:...

  10. Cable Diagnostic Focused Initiative

    SciTech Connect (OSTI)

    Hartlein, R.A.; Hampton, R.N.

    2010-12-30

    This report summarizes an extensive effort made to understand how to effectively use the various diagnostic technologies to establish the condition of medium voltage underground cable circuits. These circuits make up an extensive portion of the electric delivery infrastructure in the United States. Much of this infrastructure is old and experiencing unacceptable failure rates. By deploying efficient diagnostic testing programs, electric utilities can replace or repair circuits that are about to fail, providing an optimal approach to improving electric system reliability. This is an intrinsically complex topic. Underground cable systems are not homogeneous. Cable circuits often contain multiple branches with different cable designs and a range of insulation materials. In addition, each insulation material ages differently as a function of time, temperature and operating environment. To complicate matters further, there are a wide variety of diagnostic technologies available for assessing the condition of cable circuits with a diversity of claims about the effectiveness of each approach. As a result, the benefits of deploying cable diagnostic testing programs have been difficult to establish, leading many utilities to avoid the their use altogether. This project was designed to help address these issues. The information provided is the result of a collaborative effort between Georgia Tech NEETRAC staff, Georgia Tech academic faculty, electric utility industry participants, as well as cable system diagnostic testing service providers and test equipment providers. Report topics include: How cable systems age and fail, The various technologies available for detecting potential failure sites, The advantages and disadvantages of different diagnostic technologies, Different approaches for utilities to employ cable system diagnostics. The primary deliverables of this project are this report, a Cable Diagnostic Handbook (a subset of this report) and an online knowledge based system (KBS) that helps utilities select the most effective diagnostic technologies for a given cable circuit and circuit conditions.

  11. Emulsified industrial oils recycling

    SciTech Connect (OSTI)

    Gabris, T.

    1982-04-01

    The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

  12. Petroleum industry in Iran

    SciTech Connect (OSTI)

    Farideh, A.

    1981-01-01

    This study examines the oil industry in Iran from the early discovery of oil nearly two hundred years ago in Mazandaran (north part) to the development of a giant modern industry in the twentieth century. Chapter I presents a brief historical setting to introduce the reader to the importance of oil in Iran. It focuses on the economic implications of the early oil concessions in the period 1901 to 1951. Chapter II discusses the nationalization of the Iranian oil industry and creation of NIOC in 1951 and the international political and economic implication of these activities. Chapter III explains the activities of NIOC in Iran. Exploration and drilling, production, exports, refineries, natural gas, petrochemicals and internal distributions are studied. Chapter IV discusses the role of the development planning of Iran. A brief presentation of the First Development Plan through the Fifth Development Plan is given. Sources and uses of funds by plan organization during these Five Plans is studied. The Iran and Iraq War is also studied briefly, but the uncertainty of its resolution prevents any close analysis of its impact on the Iranian oil industry. One conclusion, however, is certain; oil has been a vital resource in Iran's past and it will remain the lifetime of its economic development in the future.

  13. 2008 Industrial Technologies Market Report, May 2009

    SciTech Connect (OSTI)

    Energetics; DOE

    2009-07-01

    The industrial sector is a critical component of the U.S. economy, providing an array of consumer, transportation, and national defense-related goods we rely on every day. Unlike many other economic sectors, however, the industrial sector must compete globally for raw materials, production, and sales. Though our homes, stores, hospitals, and vehicles are located within our borders, elements of our goods-producing industries could potentially be moved offshore. Keeping U.S. industry competitive is essential to maintaining and growing the U.S. economy. This report begins with an overview of trends in industrial sector energy use. The next section of the report focuses on some of the largest and most energy-intensive industrial subsectors. The report also highlights several emerging technologies that could transform key segments of industry. Finally, the report presents policies, incentives, and drivers that can influence the competitiveness of U.S. industrial firms.

  14. VAWT Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    Nevada Zip: 89118 Sector: Wind energy Product: Focused on design, production, and marketing of wind turbines in the 0.1-0.5MW range. References: VAWT Industries Inc1 This...

  15. Eck Industries, Inc. Realizes Savings Through Smarter Lighting Solutions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eck Industries, Inc. Realizes Savings Through Smarter Lighting Solutions Working with Wisconsin's Focus on Energy, Eck Industries, Inc. pursued a lighting retrofit project that reduced its facility's electricity use, achieved annual operating savings, and provided higher quality lighting When Eck Industries, Inc. made the decision to advance its energy effciency efforts, the company took stock of the resources made available to industry through Wisconsin's Focus on Energy program-a state-based

  16. Request for Information (RFI): Specific Clean Energy Manufacturing Focus

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Areas Suitable for a Manufacturing Innovation Institute | Department of Energy Request for Information (RFI): Specific Clean Energy Manufacturing Focus Areas Suitable for a Manufacturing Innovation Institute Request for Information (RFI): Specific Clean Energy Manufacturing Focus Areas Suitable for a Manufacturing Innovation Institute August 29, 2014 - 10:13am Addthis Funding: This RFI is not a Funding Opportunity Announcement (FOA); therefore, EERE is not accepting applications at this

  17. Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs

    Broader source: Energy.gov [DOE]

    Case study summarizing CleanTech Partners and Focus on Energy's success in deploying "shovel ready" energy-efficiency technologies at nine industrial plants in Wisconsin

  18. DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Hydrogen and Fuel Cells Program Record, Record 13008: Industry Deployed Fuel Cell Powered Lift Trucks This program record from the DOE Hydrogen and Fuel Cells Program focuses ...

  19. India-International Industrial Energy Efficiency Deployment Project...

    Open Energy Info (EERE)

    Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory (ORNL), Alliance for Energy Efficient Economy (India), Confederation of Indian Industry Sector Energy Focus...

  20. Nanocoatings for High-Efficiency Industrial Hydraulic and Tooling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from microstructural engineering of the constituent phases. ... This project is focusing on materials degradation resistance ... the Blades of an Aerospace Industry Titanium ...

  1. FOCUS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (given the uncertainties we are likely to face in coming years, such as the evolving electricity market, changes in the electricity policy landscape and technology...

  2. HASQARD Focus Group - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contracting Wastren Advantage, Inc. HASQARD Focus Group Contracting ORP Contracts and Procurements RL Contracts and Procurements CH2M HILL Plateau Remediation Company Mission Support Alliance Washington Closure Hanford HPM Corporation (HPMC) Wastren Advantage, Inc. Analytical Services HASQARD Focus Group Bechtel National, Inc. Washington River Protection Solutions HASQARD Focus Group Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size HASQARD Document HASQARD

  3. Window Industry Technology Roadmap | Open Energy Information

    Open Energy Info (EERE)

    AgencyCompany Organization United States Department of Energy Sector Energy Focus Area Energy Efficiency, Buildings Topics Technology characterizations Resource Type Guide...

  4. Partnerships For Industry - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    115.jpg Partnerships For Industry Connect With JCAP Contact Us Partnerships For Researchers Partnerships For Industry Visit JCAP Connect with JCAP Contact Us Partnerships For Researchers Partnerships For Industry Visit JCAP partnerships for industry JCAP has established an Industrial Partnership Program. For more information on Industrial Partnership Program or to learn more about other modes of industrial interactions with JCAP, please contact: California Institute of Technology Office of

  5. The chemical industry, by country

    SciTech Connect (OSTI)

    Not Available

    1995-03-01

    Beijing will be the site for the third ACHEMASIA, international petrochemical and chemical exhibition and conference, May 15--20, 1995. In preparation for this conference, Hydrocarbon Processing contacted executives of petrochemical/chemical industries and trade associations, seeking views on the state of the industry. The Asia-Pacific region is the center of new construction and expanded capacity and also a mixture of mature, developing and emerging petrochemical industries. Established countries must mold and grow with emerging economies as the newcomers access natural resources and develop their own petrochemical infrastructures. The following nation reports focus on product supply/demand trends, economic forecasts, new construction, etc. Space limitations prohibit publishing commentaries from all countries that have petrochemical/chemical capacity. Reports are published from the following countries: Australia, China, Japan, Korea, Malaysia, Philippines, Thailand, and Vietnam.

  6. Steel Industry Energy Bandwidth Study

    SciTech Connect (OSTI)

    none,

    2004-10-01

    ITP conducted a study on energy use and potential savings, or "bandwidth" study, in major steelmaking processes. Intended to provide a realistic estimate of the potential amount of energy that can be saved in an industrial process, the "bandwidth" refers to the difference between the amount of energy that would be consumed in a process using commercially available technology versus the minimum amount of energy needed to achieve those same results based on the 2nd law of thermodynamics. The Steel Industry Energy Bandwidth Study (PDF133 KB) also estimates steel industry energy use in the year 2010, and uses that value as a basis for comparison against the minimum requirements. This energy savings opportunity for 2010 will aid focus on longer term R&D.

  7. NERSC Seeks Industry Partners for Collaborative Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Seeks Industry Partners for Collaborative Research NERSC Seeks Industry Partners for Collaborative Research January 28, 2015 Contact: David Skinner, NERSC Strategic Partnerships Lead, deskinner@lbl.gov, 510-486-4748 Edison7 The National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory has launched a private sector partnership program (PSP) to make its computing capabilities available to industry partners working in key technology areas. Led by David

  8. Presentations for Industry | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentations for Industry Presentations for Industry Learn energy-saving strategies from leading manufacturing companies and energy experts. The presentations are organized below by topic area. In addition, industrial energy managers, utilities, and energy management professionals can find no-cost software tools, training (including online training), and technical publications. For presentations from workshops on R&D and Facilities activities, please review the workshop materials. Energy

  9. Carbon Emissions: Food Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct....

  10. Chemicals Industry Vision

    SciTech Connect (OSTI)

    none,

    1996-12-01

    Chemical industry leaders articulated a long-term vision for the industry, its markets, and its technology in the groundbreaking 1996 document Technology Vision 2020 - The U.S. Chemical Industry. (PDF 310 KB).

  11. Focus Series | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Focus Series Focus Series On-Bill Financing Brings Lenders and Homeowners on Board Photo of a man, woman, and small child standing in front of a house. Read how Clean Energy Works' partnership with a nonprofit community development financial institution resulted in an unprecedented number of upgrades in a short period of time. July 2014 Energy Advisors Help Homeowners Go the Extra Mile Advertisement for the Denver Energy Challenge, with a female smiling at the camera -- with something wrong with

  12. Chemical Industry Corrosion Management

    SciTech Connect (OSTI)

    2003-02-01

    Improved Corrosion Management Could Provide Significant Cost and Energy Savings for the Chemical Industry. In the chemical industry, corrosion is often responsible for significant shutdown and maintenance costs.

  13. Industrial | Open Energy Information

    Open Energy Info (EERE)

    Trends Despite a 54-percent increase in industrial shipments, industrial energy consumption increases by only 19 percent from 2009 to 2035 in the AEO2011 Reference case....

  14. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentationgiven at the April 2012 Federal Utility Partnership Working Group (FUPWG) meetingcovers significant electric industry trends and industry priorities with federal customers.

  15. Ultrasonic inspection apparatus and method using a focused wave device

    DOE Patents [OSTI]

    Gieske, John H. (Albuquerque, NM); Roach, Dennis P. (Albuquerque, NM); Walkington, Phillip D. (Albuquerque, NM)

    2001-01-01

    An ultrasonic pulse echo inspection apparatus and method for detecting structural failures. A focus lens is coupled to the transducer to focus the ultrasonic signal on an area to be inspected and a stop is placed in the focus lens to block selected ultrasonic waves. Other waves are not blocked and are transmitted through the structure to arrive at interfaces therein concurrently to produce an echo response with significantly less distortion.

  16. LS Industrial Systems Co Ltd formerly LG Industrial Systems ...

    Open Energy Info (EERE)

    LS Industrial Systems Co Ltd formerly LG Industrial Systems Jump to: navigation, search Name: LS Industrial Systems Co Ltd (formerly LG Industrial Systems) Place: Anyang,...

  17. Assessment of industrial activity in the utilization of biomass for energy

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    The objective of this report is to help focus the federal programs in biomass energy, by identifying the status and objectives of private sector activity in the biomass field as of mid-1979. In addition, the industry's perceptions of government activities are characterized. Findings and conclusions are based principally on confidential interviews with executives in 95 companies. These included forest products companies, agricultural products companies, equipment manufacturers, electric and gas utilities petroleum refiners and distributors, research and engineering firms, and trade organizations, as listed in Exhibit 1. Interview findings have been supplemented by research of recent literature. The study focused on four key questions: (1) what is the composition of the biomass industry; (2) what are the companies doing; (3) what are their objectives and strategies; and (4) what are the implications for government policy. This executive summary provides highlights of the key findings and conclusions. The summary discussion is presented in seven parts: (1) overview of the biomass field; (2) structure of the biomass industry today; (3) corporate activities in biomass-related areas; (4) motivations for these activities; (5) industry's outlook on the future for energy-from-biomass; (6) industry's view of government activities; and (7) implications for Federal policy.

  18. Career Map: Industrial Engineer

    Broader source: Energy.gov [DOE]

    The Wind Program's Career Map provides job description information for Industrial Engineer positions.

  19. Magnetically focused liquid drop radiator

    DOE Patents [OSTI]

    Botts, Thomas E. (Fairfax, VA); Powell, James R. (Shoreham, NY); Lenard, Roger (Redondo Beach, CA)

    1986-01-01

    A magnetically focused liquid drop radiator for application in rejecting rgy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.

  20. Magnetically focused liquid drop radiator

    DOE Patents [OSTI]

    Botts, T.E.; Powell, J.R.; Lenard, R.

    1984-12-10

    A magnetically focused liquid drop radiator for application in rejecting energy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.

  1. New charm results from FOCUS

    SciTech Connect (OSTI)

    Bianco, Stefano; /Frascati

    2004-12-01

    New results from the photoproduction experiment FOCUS are reported: Dalitz plot analysis, semileptonic form factor ratios and excited meson spectroscopy. The author reports on three new results from the photoproduction experiment FOCUS: the first Dalitz plot analysis of charm meson decays using the K-matrix approach[ 1], new measurements of the D{sub s}{sup +} {yields} {delta}(1020) {mu}{sup +}{nu} form factor ratios [2], and new measurements on L=1 excited meson spectroscopy [3], i.e., precise measurements of the masses and widths of the D*{sub 2}{sup +} and D*{sub 2}{sup 0} mesons, and evidence for broad states decaying to D{sup +}{pi}{sup -}, D{sup 0}{pi}{sup +} (the first such evidence in D{sup 0}{pi}{sup +}). The data for this paper were collected in the Wideband photoproduction experiment FOCUS during the Fermilab 1996-1997 fixed-target run.

  2. SIAM Workshop: Focus on Diversity 2001

    SciTech Connect (OSTI)

    2001-01-01

    The Society for Industrial and Applied Mathematics (SIAM) held a workshop focused on underrepresented minorities--graduate and undergraduate students, postdocs, and recent Ph.D's--in the mathematical and computational sciences on July 11, 2001, as part of the SIAM Annual Meeting in San Diego, California. The workshop was intended to accomplish several goals: (1) to a provide workshop focused on careers for and retention of minority students in the mathematical and computational sciences; (2) to bring together a mixture of people from different levels of professional experience, ranging from undergraduate students to senior scientists in an informal setting in order to share career experiences and options; (3) to provide an opportunity for minority graduate students, postdocs, and recent Ph.D's to present their research at an international meeting; (4) to expose undergraduate students to the many professional opportunities resulting from graduate degrees in science and mathematics; and (5) to encourage undergraduate and graduate students to speak frankly with each other about personal issues and experiences associated with pursuing a scientific career.

  3. Users from Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users from Industry Users from Industry Print The Advanced Light Source (ALS) welcomes industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, and/or provide economic benefits and jobs to the economy. The nature of industrial research can be different from traditional university and government sponsored projects, so the ALS has created unique opportunities for new and existing industrial

  4. Bay Area

    National Nuclear Security Administration (NNSA)

    8%2A en NNSA to Conduct Aerial Radiological Surveys Over San Francisco, Pacifica, Berkeley, And Oakland, CA Areas http:nnsa.energy.govmediaroompressreleasesamsca

  5. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in diverse research areas such as cell biology, lithography, infrared microscopy, radiology, and x-ray tomography. Time-Resolved These techniques exploit the pulsed nature of...

  6. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    environment and health issues; and to advance the engineering of biological systems for sustainable manufacturing. Biosciences Area research is coordinated through three...

  7. New Recovery Act Funding Boosts Industrial Carbon Capture and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    areas of carbon capture and storage (CCS) research and development: 1) Large scale ... in industrial-based systems to optimize CCS. One of the projects being funded is: ...

  8. High-Performance Renewable Base Oils for Industrial Lubricants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    When used in industrial lubricants of all types, Biosynthetic's oils achieved superior performance in many critical performance areas, including pour point, viscosity index, flash ...

  9. Focused X-ray source

    DOE Patents [OSTI]

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Maccagno, P.

    1990-08-21

    Disclosed is an intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator. 8 figs.

  10. Focused X-ray source

    DOE Patents [OSTI]

    Piestrup, Melvin A. (Woodside, CA); Boyers, David G. (Mountain View, CA); Pincus, Cary I. (Sunnyvale, CA); Maccagno, Pierre (Stanford, CA)

    1990-01-01

    An intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator.

  11. Best Practices in Industrial Data Management

    Office of Environmental Management (EM)

    Best Practices in Industrial Data Management Moderator: Paul Scheihing, AMO This presentation does not contain any proprietary, confidential, or otherwise restricted information. Industrial Data Management What is energy data management?  Monitoring  Recording  Analyzing  Reporting  Verification Strategic Importance of Robust Data Management  Provides data with a purpose  Without purpose, you can lose focus and drown in all of the data  Results in high quality data 

  12. Energy efficient industrialized housing research program

    SciTech Connect (OSTI)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. )

    1989-12-01

    This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

  13. Focusing monochromators for high energy synchrotron radiation

    SciTech Connect (OSTI)

    Suortti, P. )

    1992-01-01

    Bent crystals are introduced as monochromators for high energy synchrotron radiation. The reflectivity of the crystal can be calculated reliably from a model where the bent crystal is approximated by a stack of lamellas, which have a gradually changing angle of reflection. The reflectivity curves of a 4 mm thick, asymmetrically cut ({chi}=9.5{degree}) Si(220) crystal are measured using 150 keV radiation and varying the bending radius from 25 to 140 m. The width of the reflectivity curve is up to 50 times the Darwin width of the reflection, and the maximum reflectivity exceeds 80%. The crystal is used as a monochromator in Compton scattering measurements. The source is on the focusing circle, so that the resolution is limited essentially by the detector/analyzer. A wide bandpass, sharply focused beam is attained when the source is outside the focusing circle in the transmission geometry. In a test experiment. 10{sup 12} photons on an area of 2 mm{sup 2} was observed. The energy band was about 4 keV centered at 40 keV. A powder diffraction pattern of a few reflections of interest was recorded by an intrinsic Ge detector, and this demonstrated that a structural transition can be followed at intervals of a few milliseconds.

  14. Central focus solar energy system

    SciTech Connect (OSTI)

    Findell, M.

    1982-02-23

    A central focus solar energy system consists of one or more arrays of mirrors, a receiver for each array, a sun tracker, a sun tracker sun acquisition device and a control unit. Mirrors of the arrays are subjected to two-axis control by electromechanical devices actuated by sun-tracking error signals generated by the sun tracker. Mirrors are thus oriented so as to cause reflections of the direct rays of the sun from all mirrors in an array to converge on a receiver at a common focus. Fixed (Principal) axes of mirror rotation are parallel to the fixed (Principal) axis of rotation of the sun tracker sensor making orientation of the system independent of the earth's spin axis. The system includes a ''vernier'' or fine adjustment control for positioning mirrors that supplements sun tracker controls.

  15. Research and development in the textile industry

    SciTech Connect (OSTI)

    1987-06-01

    Included in the portfolio of IP's projects are the R and D activities for several advanced technologies targeted at the textile industry, one of the top ten energy intensive industries in the country. These R and D projects have primarily been aimed at improving the energy efficiency and productivity of textile production processes. Many projects in this area have been successfully completed, and some have resulted in the development and implementation of new technologies (e.g., foam processing) for various process steps. Other projects have produced technical results that have later been utilized by the industry in other capacities (e.g., hyperfiltration). Several projects at various stages of development are currently underway. This brochure describes the Office of Industrial Programs' R and D activities relevant to the textile industry. The brochure is comprised of the following: Industry Update, Energy Consumption in the Textile Industry, Energy Consumption in the Textile Industry, Potential Energy Savings in the Textile Industry, Office of Industrial Programs, R and D Efforts, and R and D Data Base.

  16. Cost-Effective, Customer-Focused, and Contractor-Focused Data...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost-Effective, Customer-Focused, and Contractor-Focused Data Tracking Systems Cost-Effective, Customer-Focused, and Contractor-Focused Data Tracking Systems Better Buildings ...

  17. FAQS Gap Analysis Qualification Card - Industrial Hygiene | Department of

    Office of Environmental Management (EM)

    Energy Industrial Hygiene FAQS Gap Analysis Qualification Card - Industrial Hygiene Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard. File Industrial Hygiene Gap Analysis Qualification Card More Documents & Publications FAQS Gap Analysis Qualification Card - Waste Management FAQS Gap Analysis Qualification Card - Occupational Safety FAQS Gap Analysis Qualification Card - Environmental

  18. EERE INDUSTRY DAY

    Broader source: Energy.gov [DOE]

    On September 23-24, 2015 the inaugural EERE Industry Day was held at Oak Ridge National Laboratory to foster relationships and encourage dialog among researchers, industry representatives, and U.S. Department of Energy representatives.

  19. Industrial Strength Pipes

    Energy Science and Technology Software Center (OSTI)

    2006-01-23

    Industrial Strength Pipes (ISP) is a toolkit for construction pipeline applications using the UNIX pipe and filter model.

  20. Geothermal Industry Partnership Opportunities

    Broader source: Energy.gov [DOE]

    Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

  1. Industrial Energy Efficiency Assessments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Assessments Lynn Price Staff Scientist China Energy Group Energy Analysis Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Industrial Energy Efficiency Assessments - Definition and overview of key components - International experience - Chinese situation and recommendations - US-China collaboration Industrial Energy Efficiency Assessments - Analysis of the use of energy and potential for energy efficiency in an industrial facility *

  2. Photovoltaics industry profile

    SciTech Connect (OSTI)

    1980-10-01

    A description of the status of the US photovoltaics industry is given. Principal end-user industries are identified, domestic and foreign market trends are discussed, and industry-organized and US government-organized trade promotion events are listed. Trade associations and trade journals are listed, and a photovoltaic product manufacturers list is included. (WHK)

  3. Industrial Dojo Program Fosters Industrial Internet Development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dojo,' Contributes to Open Source to Foster Continued Development of the Industrial Internet Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new...

  4. Assessment of industry needs for oil shale research and development

    SciTech Connect (OSTI)

    Hackworth, J.H.

    1987-05-01

    Thirty-one industry people were contacted to provide input on oil shale in three subject areas. The first area of discussion dealt with industry's view of the shape of the future oil shale industry; the technology, the costs, the participants, the resources used, etc. It assessed the types and scale of the technologies that will form the industry, and how the US resource will be used. The second subject examined oil shale R D needs and priorities and potential new areas of research. The third area of discussion sought industry comments on what they felt should be the role of the DOE (and in a larger sense the US government) in fostering activities that will lead to a future commercial US oil shale shale industry.

  5. GWI plan ensures focused, consistent approach to improvements | Y-12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Security Complex GWI plan ensures focused, ... GWI plan ensures focused, consistent approach to improvements Posted: July 9, 2015 - 4:31pm General Workplace Improvement projects are underway at both sites, including the modernization of Building 9119's auditorium, which will provide a large group meeting room inside the protected area at Y-12. Three years ago as part of the Quality of Life initiative, Y-12 Production developed a standardized checklist for evaluating livability in

  6. Antitrust issues and the restructuring of the power industry

    SciTech Connect (OSTI)

    Moritz, T.F.

    1999-11-01

    Because of extensive federal oversight and state regulation of the utility area, few antitrust cases have been brought concerning the electric power industry. The limited prior case law that exists in this area nonetheless provides valuable guidance regarding how the antitrust laws will protect consumers and, therefore, competition in the electric power industry. This article will discuss the primary antitrust doctrines likely to be utilized to protect competition in this industry.

  7. Non-focusing active warhead

    DOE Patents [OSTI]

    Hornig, H.C.

    1998-12-22

    A non-nuclear, non-focusing, active warhead that comprises a high explosive charge contained within a casing of reactive metal is disclosed. When the high explosive is detonated, the reactive metal is dispersed and reacts with the air, which significantly increases the explosive yield of the warhead. The active warhead produces therefore much higher blast effects with significantly reduced weight compared to conventional munitions. The warhead is highly effective against such targets as aircraft which typically have thin fuselages, for example. The explosiveness of this warhead can be enhanced further by elevating the temperature and therefore the reactivity of the reactive metal before or during the explosion. New methods of enhancing the reactivity of the metal are also taught. 4 figs.

  8. Energy efficient industrialized housing research program

    SciTech Connect (OSTI)

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. )

    1990-02-01

    This report summarizes three documents: Multiyear Research Plan, Volume I FY 1989 Task Reports, and Volume II Appendices. These documents describe tasks that were undertaken from November 1988 to December 1989, the first year of the project. Those tasks were: (1) the formation of a steering committee, (2) the development of a multiyear research plan, (3) analysis of the US industrialized housing industry, (4) assessment of foreign technology, (5) assessment of industrial applications, (6) analysis of computerized design and evaluation tools, and (7) assessment of energy performance of baseline and advanced industrialized housing concepts. While this document summarizes information developed in each task area, it doesn't review task by task, as Volume I FY 1989 Task Reports does, but rather treats the subject of energy efficient industrialized housing as a whole to give the reader a more coherent view. 7 figs., 9 refs.

  9. Industry Group Learns About Light Source Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Group Learns About Light Source Opportunities Industry Group Learns About Light Source Opportunities Print Tuesday, 25 September 2012 08:45 On Monday, September 24, the Silicon Valley Leadership Group (SVLG) hosted a meeting to introduce its members to the area's light sources and how they help advance innovation and promote economic competitiveness. The event was sponsored by Congresswomen Zoe Lofgren and Anna Eshoo together with Berkeley Lab (LBNL) and SLAC National Accelerator

  10. Accurate measure by weight of liquids in industry

    SciTech Connect (OSTI)

    Muller, M.R.

    1992-12-12

    This research's focus was to build a prototype of a computerized liquid dispensing system. This liquid metering system is based on the concept of altering the representative volume to account for temperature changes in the liquid to be dispensed. This is actualized by using a measuring tank and a temperature compensating displacement plunger. By constantly monitoring the temperature of the liquid, the plunger can be used to increase or decrease the specified volume to more accurately dispense liquid with a specified mass. In order to put the device being developed into proper engineering perspective, an extensive literature review was undertaken on all areas of industrial metering of liquids with an emphasis on gravimetric methods.

  11. Accurate measure by weight of liquids in industry. Final report

    SciTech Connect (OSTI)

    Muller, M.R.

    1992-12-12

    This research`s focus was to build a prototype of a computerized liquid dispensing system. This liquid metering system is based on the concept of altering the representative volume to account for temperature changes in the liquid to be dispensed. This is actualized by using a measuring tank and a temperature compensating displacement plunger. By constantly monitoring the temperature of the liquid, the plunger can be used to increase or decrease the specified volume to more accurately dispense liquid with a specified mass. In order to put the device being developed into proper engineering perspective, an extensive literature review was undertaken on all areas of industrial metering of liquids with an emphasis on gravimetric methods.

  12. Geothermal resource area 9: Nye County. Area development plan

    SciTech Connect (OSTI)

    Pugsley, M.

    1981-01-01

    Geothermal Resource area 9 encompasses all of Nye County, Nevada. Within this area there are many different known geothermal sites ranging in temperature from 70/sup 0/ to over 265/sup 0/ F. Fifteen of the more major sites have been selected for evaluation in this Area Development Plan. Various potential uses of the energy found at each of the resource sites discussed in this Area Development Plan were determined after evaluating the area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities, and comparing those with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the 15 geothermal sites considered in this Area Development Plan are summarized.

  13. Hydrogen Fuel Quality - Focus: Analytical Methods Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results Hydrogen Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results...

  14. Workshops, Focus Groups and Important Documents | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 17 Focus Group: May 18 Stationary Efficiency Portfolio Grid Scottsdale, AZ Public Talk: May 23 Workshop: May 23 Focus Group: May 24 Grid Portfolio Alternative Generation...

  15. Sustainable Nanomaterials Industry Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry Perspective U.S. Department of Energy Advanced Manufacturing Office Sustainable Nanomaterials Workshop Washington, DC Mark Watkins Senior Vice President MeadWestvaco Corporation July 26, 2012 Transforming the forest products industry through innovation 2 The U.S. Forest Products Industry's Economic Impact  5% of U.S. manufacturing GDP  Ninth largest manufacturing sector in U.S.  On par with plastics and automotive  Top 10 manufacturing employer in 48 states  418 pulp and

  16. U.S. Department of Energy Theorty Focus Session on Hydrogen Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials | Department of Energy Theorty Focus Session on Hydrogen Storage Materials U.S. Department of Energy Theorty Focus Session on Hydrogen Storage Materials An agenda for a four-part, theory-focus session on hydrogen storage materials to identify critical areas, key barriers, and gaps in current theory/modeling approaches for hydrogen storage materials and technologies. PDF icon theory_focus_session_agenda.pdf More Documents & Publications DOE Theory Focus Session on Hydrogen

  17. Commercial & Industrial Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  18. About Industrial Distributed Energy

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office's (AMO's) Industrial Distributed Energy activities build on the success of predecessor DOE programs on distributed energy and combined heat and power (CHP) while...

  19. Keystone coal industry manual

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The 1994 Keystone Coal Industry Manual is presented. Keystone has served as the one industry reference authority for the many diverse organizations concerned with the supply and utilization of coal in the USA and Canada. Through the continuing efforts of coal producers, buyers, users, sellers, and equipment designers and manufacturers, the coal industry supplies an abundant and economical fuel that is indispensable in meeting the expanding energy needs of North America. The manual is divided into the following sections: coal sales companies, coal export, transportation of coal, consumer directories, coal associations and groups, consulting and financial firms, buyers guide, industry statistics and ownership, coal preparation, coal mine directory, and coal seams.

  20. Appendix C - Industrial technologies

    SciTech Connect (OSTI)

    None, None

    2002-12-20

    This report describes the results, calculations, and assumptions underlying the GPRA 2004 Quality Metrics results for all Planning Units within the Office of Industrial Technologies.

  1. Users from Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, andor...

  2. Systems and Industry Analyses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    analyses see the NETL Energy Analysis Web page. U.S. and Worldwide Gasification Plant Databases. The Gasification Databases describe current gasification industry projects and...

  3. Midwest Industrial Energy Efficiency Handbook

    SciTech Connect (OSTI)

    2010-06-25

    This Industrial Technologies Program handbook connects industry with the various energy efficiency resources available in the midwest.

  4. NREL: Photovoltaics Research - NCPV Partnering Opportunities for Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Opportunities for Industry The National Center for Photovoltaics (NCPV) provides several non-proprietary and proprietary partnering opportunities for industry researchers. We are actively pursuing new partnerships that use our NCPV resources to complement a company's in-house capabilities. We focus on collaborative research and development with industry that will have a significant impact on making photovoltaics cost-competitive with other forms of energy by 2020. Follow the links below for more

  5. The methanol industry`s missed opportunities

    SciTech Connect (OSTI)

    Stokes, C.A.

    1995-12-31

    Throughout its history the methanol industry has been backward in research and development and in industry cooperation on public image and regulatory matters. It has been extremely reticent as to the virtue of its product for new uses, especially for motor fuel. While this is perhaps understandable looking back, it is inexcusable looking forward. The industry needs to cooperate on a worldwide basis in research and market development, on the one hand, and in image-building and political influence, on the other, staying, of course, within the US and European and other regional antitrust regulations. Unless the industry develops the motor fuel market, and especially the exciting new approach through fuel cell operated EVs, to siphon off incremental capacity and keep plants running at 90% or more of capacity, it will continue to live in a price roller-coaster climate. A few low-cost producers will do reasonably well and the rest will just get along or drop out here and there along the way, as in the past. Having come so far from such a humble beginning, it is a shame not to realize the full potential that is clearly there: a potential to nearly double sales dollars without new plants and to produce from a plentiful resource, at least for the next half-century, all the methanol that can be imagined to be needed. Beyond that the industry can turn to renewable energy--the sun--via biomass growth, to make their product. In so doing, it can perhaps apply methanol as a plant growth stimulant, in effect making the product fully self-sustainable. The world needs to know what methanol can do to provide--economically and reliably--the things upon which a better life rests.

  6. Tritium Focus Group - INEL | Department of Energy

    Office of Environmental Management (EM)

    Focus Group - INEL Tritium Focus Group - INEL Presentation from the 34th Tritium Focus Group Meeting held in Idaho Falls, Idaho on September 23-25, 2014. PDF icon Tritium Focus Group - INEL More Documents & Publications Monitoring of Tritium release at PTC DOE-HDBK-1129-2007 DOE-HDBK-1129-2008

  7. FAQS Qualification Card - Industrial Hygiene | Department of Energy

    Office of Environmental Management (EM)

    Industrial Hygiene FAQS Qualification Card - Industrial Hygiene A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS identify the

  8. May 19, 2011, HSS/Union Focus Group Meeting - Agenda

    Office of Environmental Management (EM)

    16-11 HSS Focus Group Telecom Meeting Worker Health, Safety and Security Improvement Priorities/Task Activities May 19, 2011 Proposed AGENDA Introductory Remarks........................................................................ Glenn Podonsky Meeting Purpose/Intended Outcomes/Process.................. Pete Stafford/Mari-Jo Campagnone Priority Improvement Areas/Tasks Discussion * Safety & Security Reform.................................Bill Eckroade/Steve Kirchhoff/Unions * Background

  9. Uranium industry annual 1996

    SciTech Connect (OSTI)

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  10. First biomass conference of the Americas: Energy, environment, agriculture, and industry. Proceedings, Volume 3

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this third volume deal with Environmental Issues, Biomass Energy System Studies, and Biomass in Latin America. Concerning Environmental Issues, the following topics are emphasized: Global Climate Change, Biomass Utilization, Biofuel Test Procedures, and Commercialization of Biomass Products. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  11. First Biomass Conference of the Americas: Energy, environment, agriculture, and industry. Proceedings, Volume 2

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this second volume cover Transportation Fuels, and Chemicals and Products. Transportation Fuels topics include: Biodiesel, Pyrolytic Liquids, Ethanol, Methanol and Ethers, and Commercialization. The Chemicals and Products section includes specific topics in: Research, Technology Transfer, and Commercial Systems. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  12. Engineering Research, Development and Technology, FY95: Thrust area report

    SciTech Connect (OSTI)

    1996-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through their collaboration with US industry in pursuit of the most cost-effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where they can establish unique competencies, and (2) conduct high-quality research and development to enhance their capabilities and establish themselves as the world leaders in these technologies. To focus Engineering`s efforts, technology thrust areas are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1995. The report provides timely summaries of objectives methods, and key results from eight thrust areas: computational electronics and electromagnetics; computational mechanics; microtechnology; manufacturing technology; materials science and engineering; power conversion technologies; nondestructive evaluation; and information engineering.

  13. The American nuclear power industry. A handbook

    SciTech Connect (OSTI)

    Pearman, W.A.; Starr, P.

    1984-01-01

    This book presents an overview of the history and current organization of the American nuclear power industry. Part I focuses on development of the industry, including the number, capacity, and type of plants in commercial operation as well as those under construction. Part II examines the safety, environmental, antitrust, and licensing issues involved in the use of nuclear power. Part III presents case studies of selected plants, such as Three Mile Island and Seabrook, to illustrate some of the issues discussed. The book also contains a listing of the Nuclear Regulatory Commission libraries and a subject index.

  14. Pacific Rim Summit on Industrial Biotechnology & Bioenergy

    Broader source: Energy.gov [DOE]

    The ninth annual Pacific Rim Summit on Industrial Biotechnology and Bioenergy will be held from December 79, 2014, in San Diego, California, at the Westin Gaslamp Quarter. Bringing together representatives from various countries all around the Pacific Rim, this event will focus on the growth of the industrial biotechnology and bioenergy sectors in North America and the Asia-Pacific region. Glenn Doyle, BETO's Deployment & Demonstration Technology Manager, will be moderating and speaking at a session on entitled "Utilizing Strategic Partnerships to Grow Your Business" on December 9.

  15. Science, technology, and the industrialization of laser-driven processes

    SciTech Connect (OSTI)

    Davis, J.I.; Paisner, J.A.

    1985-05-01

    Members of the laser program at Lawrence Livermore National Laboratory (LLNL) reviewed potential applications of lasers in industry, some of which are: isotope separation; cleanup of radioactive waste; trace impurity removal; selective chemical reactions; photochemical activation or dissociation of gases; control of combustion particulates; crystal and powder chemistry; and laser induced biochemistry. Many of these areas are currently under active study in the community. The investigation at LLNL focused on laser isotope separation of atomic uranium because of the large demand (> 1000 tonnes/year) and high product enrichment price (> $600/kg of product) for material used as fuel in commercial light-water nuclear power reactors. They also believed that once the technology was fully developed and deployed, it could be applied directly to separating many elements economically on an industrial scale. The Atomic Vapor Laser Isotope Separation (AVLIS) program at LLNL has an extensive uranium and plutonium program of >$100 M in FY85 and a minor research program for other elements. This report describes the AVLIS program conducted covering the following topics; candidate elements; separative work units; spectroscopic selectivety; major systems; facilities; integrated process model;multivariable sensitivety studies; world market; and US enrichment enterprise. 23 figs. (AT)

  16. Industrial Process Surveillance System

    DOE Patents [OSTI]

    Gross, Kenneth C.; Wegerich, Stephan W; Singer, Ralph M.; Mott, Jack E.

    2001-01-30

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  17. Industrial Green | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Green Industrial Green - This giant bag may not look green, but it keeps a potent greenhouse gas from being released into the atmosphere. It's part of a system at the Free-Electron Laser that retains sulfur hexafluoride gas when it isn't being used in the FEL's gun test stand. The concept received a 2011 Virginia Governor's Environmental Excellence Program Gold Award. Industrial Green On behalf of work done by Kevin Jordan, a senior engineer in the Free-Electron Laser Division, and

  18. Industrial process surveillance system

    DOE Patents [OSTI]

    Gross, Kenneth C. (Bolingbrook, IL); Wegerich, Stephan W. (Glendale Heights, IL); Singer, Ralph M. (Naperville, IL); Mott, Jack E. (Idaho Falls, ID)

    1998-01-01

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  19. Industrial process surveillance system

    DOE Patents [OSTI]

    Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

    1998-06-09

    A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

  20. Oil industry and antitrust merger policy

    SciTech Connect (OSTI)

    Weber, P.

    1980-01-01

    This paper examines the trends in merger activity in the petroleum industry in light of overall merger activity and of the Justice Department's merger guidelines. Supreme Court precedents and economic conditions within the petroleum area are discussed. Some conclusions concerning the Justice Department's merger policy are included. 7 refs.

  1. Presentations for Industry

    Broader source: Energy.gov [DOE]

    Industrial energy managers, utilities, and energy management professionals can find online trainings and information dissemination at no-cost. AMO has provided these energy-saving strategies from leading manufacturing companies and energy experts through several different presentation series.

  2. Caraustar Industries Energy Assessment

    SciTech Connect (OSTI)

    2010-06-25

    This plant-wide assessment case study is about commissioned energy assessments by the U.S. Department of Energy Industrial Technologies Program at two of Caraustar's recycled paperboard mills.

  3. Tritium Focus Group | Department of Energy

    Energy Savers [EERE]

    Tritium Focus Group Tritium Focus Group Tritium Focus Group The Tritium Focus Group (TFG), is a long standing DOE Working Group, whose purpose is to promote cost-effective improvements in tritium safety, handling, transportation, storage, and operations, and to enhance communication across the Department of Energy (DOE) (inclusive of the National Nuclear Security Administration (NNSA)) on all matters related to tritium. It was initially formed to develop corrective actions resulting from the

  4. Independent Oversight Focused Program Review, Argonne National

    Office of Environmental Management (EM)

    Laboratory-West - May 2001 | Department of Energy Focused Program Review, Argonne National Laboratory-West - May 2001 Independent Oversight Focused Program Review, Argonne National Laboratory-West - May 2001 May 2001 Focused Program Review at Argonne National Laboratory-West This report provides the results of an independent focused review of the Emergency Management Program at the Department of Energy's Argonne National Laboratory-West site that was conducted by the Office of Independent

  5. Macro Industrial Working Group

    Gasoline and Diesel Fuel Update (EIA)

    September 29, 2014 | Washington, DC WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Industrial team preliminary results for AEO2015 Overview AEO2015 2 Industrial Team Washington DC, September 29, 2014 WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE * AEO2015 is a "Lite" year - New ethane/propane pricing model only major update - Major side cases released with Reference case

  6. Industrial Energy Efficiency

    Office of Environmental Management (EM)

    Barriers to Industrial Energy Efficiency Report to Congress June 2015 United States Department of Energy Washington, DC 20585 Department of Energy | June 2015 Message from the Assistant Secretary The industrial sector has shown steady progress in improving energy efficiency over the past few decades and energy efficiency improvements are expected to continue. Studies suggest, however, that there is potential to accelerate the rate of adopting energy efficient technologies and practices that

  7. Industrial Fuel Flexibility Workshop

    SciTech Connect (OSTI)

    none,

    2006-09-01

    On September 28, 2006, in Washington, DC, ITP and Booz Allen Hamilton conducted a fuel flexibility workshop with attendance from various stakeholder groups. Workshop participants included representatives from the petrochemical, refining, food and beverage, steel and metals, pulp and paper, cement and glass manufacturing industries; as well as representatives from industrial boiler manufacturers, technology providers, energy and waste service providers, the federal government and national laboratories, and developers and financiers.

  8. Relativistic self-focusing in underdense plasma

    SciTech Connect (OSTI)

    Feit, M. D.; Garrison, J. C.; Rubenchik, A. M.; Komashko, A.; Musher, S. L.; Turitsyn, S. K.

    1997-04-15

    An improved cavitation model shows that stable beam channeling and electron cavitation occur for relativistic laser intensities even at powers hundreds of times larger than the critical power for self-focusing. Numerical calculations for long pulses (100 ps) demonstrate strong self-focusing at weakly relativistic intensities. The destructive effects of self-focusing are increasingly suppressed at high intensity.

  9. Title I implementation: Status report on nonattainment areas

    SciTech Connect (OSTI)

    Kenkeremath, L.D.; Snyder, T.C.

    1993-01-01

    Key provisions of Title I of the Clean Air Act Amendments of 1990 (CAAA) focus on bringing cities and other areas into attainment of the National Ambient Air Quality Standards for ozone, carbon monoxide (CO), and fine particulates (PM-10). The CAAA's new classification scheme for pollutant nonattainment areas is based on the relative severity of pollution in these areas and determines the stringency of control measures and the dates by which attainment of the standards will be required. The US Environmental Protection Agency's (EPA's) final rule on air quality designations and classifications, published in late 1991, shows that ozone pollution remains a persistent problem; the number of counties that fail to meet the ozone standard has sharply increased since 1987. In contrast, incidence of PM-10 pollution has decreased; many counties have achieved the PM-10 standard since 1987. Nationwide, the number of CO nonattainment areas has increased, though not dramatically. Many of the new Title I requirements focus on the role of nitrogen oxides (NO[sub x]) in the formation of ground-level ozone. In ozone nonattainment areas and ozone transport regions, Title I generally requires major sources of NO[sub x] to have the same control measures as those that apply to major sources of volatile organic compounds (VOCs). This requirement compels state regulators to adopt an integrated VOC/NO[sub x] control strategy. The NO[sub x] emission standards proposed by state regulators are considerably more stringent than those given in federal guidelines. Both the EPA and the states plan to allow the use of multifacility emissions averaging in state NO[sub x] control strategies, thereby providing industry flexibility. Proposed federal Economic Incentive Program (EIP) rules would also allow sources in states with approved EIPs to use mobile source emission reduction credits to meet certain stationary source emission reduction requirements.

  10. Title I implementation: Status report on nonattainment areas

    SciTech Connect (OSTI)

    Kenkeremath, L.D.; Snyder, T.C.

    1993-01-01

    Key provisions of Title I of the Clean Air Act Amendments of 1990 (CAAA) focus on bringing cities and other areas into attainment of the National Ambient Air Quality Standards for ozone, carbon monoxide (CO), and fine particulates (PM-10). The CAAA`s new classification scheme for pollutant nonattainment areas is based on the relative severity of pollution in these areas and determines the stringency of control measures and the dates by which attainment of the standards will be required. The US Environmental Protection Agency`s (EPA`s) final rule on air quality designations and classifications, published in late 1991, shows that ozone pollution remains a persistent problem; the number of counties that fail to meet the ozone standard has sharply increased since 1987. In contrast, incidence of PM-10 pollution has decreased; many counties have achieved the PM-10 standard since 1987. Nationwide, the number of CO nonattainment areas has increased, though not dramatically. Many of the new Title I requirements focus on the role of nitrogen oxides (NO{sub x}) in the formation of ground-level ozone. In ozone nonattainment areas and ozone transport regions, Title I generally requires major sources of NO{sub x} to have the same control measures as those that apply to major sources of volatile organic compounds (VOCs). This requirement compels state regulators to adopt an integrated VOC/NO{sub x} control strategy. The NO{sub x} emission standards proposed by state regulators are considerably more stringent than those given in federal guidelines. Both the EPA and the states plan to allow the use of multifacility emissions averaging in state NO{sub x} control strategies, thereby providing industry flexibility. Proposed federal Economic Incentive Program (EIP) rules would also allow sources in states with approved EIPs to use mobile source emission reduction credits to meet certain stationary source emission reduction requirements.

  11. Extractive industries and sustainable development: an evaluation of World Bank Group experience

    SciTech Connect (OSTI)

    Andres Liebenthal; Roland Michelitsch; Ethel Tarazona

    2005-07-01

    How effectively has the World Bank Group assisted its clients in enhancing the contribution of the extractive industries to sustainable development? (Extractive industries include oil, gas, and mining of minerals including coals and metals.) This evaluation finds that with its global mandate and experience, comprehensive country development focus, and overarching mission to fight poverty, the World Bank Group is well positioned to help countries overcome the policy, institutional, and technical challenges that prevent them from transforming resource endowments into sustainable benefits. Furthermore, the World Bank Group's achievements are many. On the whole, its extractive industries projects have produced positive economic and financial results, though compliance with its environmental and social safeguards remains a challenge. Its research has broadened and deepened understanding of the causes for the disappointing performance of resource-rich countries. Its guidelines for the mitigation of adverse environmental and social impacts have been widely used and appreciated. More recently, it has begun to address the challenge of country governance with a variety of instruments. The World Bank Group can, however, do much to improve its performance in enhancing the extractive industry sector's contribution to sustainable development and poverty reduction. The report identifies three main areas for improvement - formulating an integrated strategy, strengthening implementation and engagement of stakeholders. 5 annexes.

  12. How Healthcare + Industry Breeds Better Inspection Technology | GE Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research How Healthcare + Industry Breeds Better Inspection Technology Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) How Healthcare + Industry Breeds Better Inspection Technology Healthcare and industrial inspection technologies seem worlds apart; but overlapping areas of expertise like those are among the things

  13. CMI Course Inventory: Recycling/Industrial Engineering | Critical Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute Course Inventory: Recycling/Industrial Engineering Recycling/Industrial Engineering Of the six CMI Team members that are educational institutions, one offers courses in Recycling/Industrial Engineering: Iowa State University. CMI Education and Outreach group at Colorado School of Mines developed an inventory of courses offered by CMI Team members that are related to rare earths and critical materials. Other courses are available in these areas: Geology Engineering/Geochemistry

  14. A National Perspective on Energy and Industry

    Gasoline and Diesel Fuel Update (EIA)

    Using EIA's Energy Consumption Surveys to Analyze Energy Programs and Policies Steven Nadel American Council for an Energy-Efficient Economy EIA 2008 Energy Conference, April 7-8, 2008 The American Council for an Energy Efficient Economy (ACEEE) * Non-profit (501c (3)) dedicated to advancing energy efficiency through research and dissemination. * ~25 staffers in Washington DC, Delaware, Michigan and Wisconsin * Focus on End-Use Efficiency in Industry, Buildings, Utilities, Transportation, &

  15. OTHER INDUSTRIES | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OTHER INDUSTRIES OTHER INDUSTRIES AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy savings to a wide array of industries from information and communications technologies to food and beverage and others. Many more of the technologies developed with AMO support have applications across multiple industries because they target common industrial processes.

  16. Guardian Industries | Open Energy Information

    Open Energy Info (EERE)

    Industries Jump to: navigation, search Name: Guardian Industries Place: Auburn Hills, MI Website: www.guardian.com References: Results of NREL Testing (Glass Magazine)1 Guardian...

  17. Eolica Industrial | Open Energy Information

    Open Energy Info (EERE)

    Industrial Jump to: navigation, search Name: Eolica Industrial Place: Sao Paulo, Sao Paulo, Brazil Zip: 01020-901 Sector: Wind energy Product: Brazil based wind turbine steel...

  18. Agile Biomanufacturing Industry Listening Workshop

    Broader source: Energy.gov [DOE]

    A consortium of nine national laboratories is holding the Agile Biomanufacturing Industry Listening Workshop on March 15, 2016 in Berkeley, California, to increase understanding of industry needs...

  19. Data Archive and Portal Thrust Area Strategy Report

    SciTech Connect (OSTI)

    Sivaraman, Chitra; Stephan, Eric G.; Macduff, Matt C.; Hagler, Clay D.

    2014-09-30

    This report describes the Data Archive and Portal (DAP), a key capability of the U.S. Department of Energy's Atmosphere to Electron (A2e) initiative. The DAP Thrust Area Planning Group was organized to develop a plan for deploying this capability. Primarily, the report focuses on a distributed system--a DOE Wind Cloud--that functions as a repository for all A2e data. The Wind Cloud will be accessible via an open, easy-to-navigate user interface that facilitates community data access, interaction, and collaboration. DAP management will work with the community, industry, and international standards bodies to develop standards for wind data and to capture important characteristics of all data in the Wind Cloud.

  20. Cost-Effective, Customer-Focused, and Contractor-Focused Data Tracking

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy Cost-Effective, Customer-Focused, and Contractor-Focused Data Tracking Systems Cost-Effective, Customer-Focused, and Contractor-Focused Data Tracking Systems Better Buildings Residential Network Data and Evaluation Peer Exchange Call Series: Cost-Effective, Customer-Focused and Contractor-Focused Data Tracking Systems, July 24, 2014, Call Slides and Discussion Summary. PDF icon Call Slides and Discussion Summary More Documents & Publications Better

  1. Building America Industrialized Housing Partnership (BAIHP II)

    SciTech Connect (OSTI)

    Abernethy, Bob; Chandra, Subrato; Baden, Steven; Cummings, Jim; Cummings, Jamie; Beal, David; Chasar, David; Colon, Carlos; Dutton, Wanda; Fairey, Philip; Fonorow, Ken; Gil, Camilo; Gordon, Andrew; Hoak, David; Kerr, Ryan; Peeks, Brady; Kosar, Douglas; Hewes, Tom; Kalaghchy, Safvat; Lubliner, Mike; Martin, Eric; McIlvaine, Janet; Moyer, Neil; Liguori, Sabrina; Parker, Danny; Sherwin, John; Stroer, Dennis; Thomas-Rees, Stephanie; Daniel, Danielle; McIlvaine, Janet

    2010-11-30

    This report summarizes the work conducted by the Building America Industrialized Housing Partnership (BAIHP - www.baihp.org) during the final budget period (BP5) of our contract, January 1, 2010 to November 30, 2010. Highlights from the four previous budget periods are included for context. BAIHP is led by the Florida Solar Energy Center (FSEC) of the University of Central Florida. With over 50 Industry Partners including factory and site builders, work in BP5 was performed in six tasks areas: Building America System Research Management, Documentation and Technical Support; System Performance Evaluations; Prototype House Evaluations; Initial Community Scale Evaluations; Project Closeout, Final Review of BA Communities; and Other Research Activities.

  2. DeepFocus Acoustic Microscope Transducer

    ScienceCinema (OSTI)

    None

    2013-05-28

    A new nondestructive testing device being used to analyse nuclear fuel could reduce costs for manufacturing and other industry. For more information about INL research projects, visit http://www.facebook.com/idahonationallaboratory.

  3. Nondestructive millimeter wave imaging and spectroscopy using dielectric focusing probes

    SciTech Connect (OSTI)

    Hejase, Jose A.; Shane, Steven S.; Park, Kyoung Y.; Chahal, Premjeet [Terahertz Systems Laboratory (TeSLa) - Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48823 (United States)

    2014-02-18

    A tool for interrogating objects over a wide band of frequencies with subwavelength resolution at small standoff distances (near field region) in the transmission mode using a single source and detector measurement setup in the millimeter wave band is presented. The design utilizes optics like principles for guiding electromagnetic millimeter waves from large cross-sectional areas to considerably smaller sub-wavelength areas. While plano-convex lenses can be used to focus waves to a fine resolution, they usually require a large stand-off distance thus resulting in alignment and spacing issues. The design procedure and simulation analysis of the focusing probes are presented in this study along with experimental verification of performance and imaging and spectroscopy examples. Nondestructive evaluation will find benefit from such an apparatus including biological tissue imaging, electronic package integrity testing, composite dielectric structure evaluation for defects and microfluidic sensing.

  4. March 30 Tribal Webinar to Focus on Transmission and Grid Basics |

    Energy Savers [EERE]

    Department of Energy March 30 Tribal Webinar to Focus on Transmission and Grid Basics March 30 Tribal Webinar to Focus on Transmission and Grid Basics March 15, 2016 - 10:35am Addthis According to the U.S. Department of Energy (DOE), the U.S. electric energy industry comprises more than 7,000 power plants representing 1,151,812 megawatts of generation connected to more than 360,000 miles of high-voltage transmission lines. Understanding the basics of this industry, specifically transmission,

  5. Observations of underdense plasma lens focusing of relativistic electron beams

    SciTech Connect (OSTI)

    Thompson, M.C.; Badakov, H.; Rosenzweig, J.B.; Travish, G.; Fliller, R.; Kazakevich, G.M.; Piot, P.; Santucci, J.; Li, J.; Tikhoplav, R.; /Rochester U.

    2007-06-01

    Focusing of a 15 MeV, 19 nC electron bunch by an underdense plasma lens operated just beyond the threshold of the underdense condition has been demonstrated in experiments at the Fermilab NICADD Photoinjector Laboratory (FNPL). The strong 1.9 cm focal-length plasma-lens focused both transverse directions simultaneously and reduced the minimum area of the beam spot by a factor of 23. Analysis of the beam-envelope evolution observed near the beam waist shows that the spherical aberrations of this underdense lens are lower than those of an overdense plasma lens, as predicted by theory. Correlations between the beam charge and the properties of the beam focus corroborate this conclusion.

  6. Sandia National Laboratories: About Sandia: Mission Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mission Areas Mission Statements The Laboratory Leadership Team decided on a set of integrated Mission Areas that best reflect Sandia's mission based on three key characteristics: synergy with nuclear weapons capabilities, national security impact, and strategic value needed to ensure Sandia's enduring contribution to the nation. The Mission Areas bring focus to the work we conduct in national security. The middle tier Mission Areas are strongly interdependent with and essential to the nuclear

  7. Energy Savings from Industrial Water Reductions

    SciTech Connect (OSTI)

    Rao, Prakash; McKane, Aimee; de Fontaine, Andre

    2015-08-03

    Although it is widely recognized that reducing freshwater consumption is of critical importance, generating interest in industrial water reduction programs can be hindered for a variety of reasons. These include the low cost of water, greater focus on water use in other sectors such as the agriculture and residential sectors, high levels of unbilled and/or unregulated self-supplied water use in industry, and lack of water metering and tracking capabilities at industrial facilities. However, there are many additional components to the resource savings associated with reducing site water use beyond the water savings alone, such as reductions in energy consumption, greenhouse gas emissions, treatment chemicals, and impact on the local watershed. Understanding and quantifying these additional resource savings can expand the community of businesses, NGOs, government agencies, and researchers with a vested interest in water reduction. This paper will develop a methodology for evaluating the embedded energy consumption associated with water use at an industrial facility. The methodology developed will use available data and references to evaluate the energy consumption associated with water supply and wastewater treatment outside of a facility’s fence line for various water sources. It will also include a framework for evaluating the energy consumption associated with water use within a facility’s fence line. The methodology will develop a more complete picture of the total resource savings associated with water reduction efforts and allow industrial water reduction programs to assess the energy and CO2 savings associated with their efforts.

  8. Solar industrial process heat

    SciTech Connect (OSTI)

    Lumsdaine, E.

    1981-04-01

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  9. Industrial Energy Efficiency Assessments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Energy Efficiency Assessments Industrial Energy Efficiency Assessments Details about the Industrial Energy Efficiency Assessments program and its implementation in...

  10. Relativistic self-focusing in underdense plasma

    SciTech Connect (OSTI)

    Feit, M.D.; Garrison, J.C.; Rubenchik, A.M.; Musher, S.L.; Turitsyn, S.K.

    1997-04-01

    An improved cavitation model shows that stable beam channeling and electron cavitation occur for relativistic laser intensities even at powers hundreds of times larger than the critical power for self-focusing. Numerical calculations for long pulses (100 ps) demonstrate strong self-focusing at weakly relativistic intensities. The destructive effects of self-focusing are increasingly suppressed at high intensity. {copyright} {ital 1997 American Institute of Physics.}

  11. Independent Oversight Focused Safety Management Evaluation, Idaho...

    Broader source: Energy.gov (indexed) [DOE]

    January 2001 Focused Safety Management Evaluation of the Idaho National Engineering and Environmental Laboratory This report provides the results of an evaluation of the integrated...

  12. FEMP Focus: 2011 Volume 20 Issue 1

    SciTech Connect (OSTI)

    2011-04-05

    Department of Energy (DOE); Federal Energy Management Program; FEMP Focus Newsletter; December 2010; Alternative Financing, Guidance Documents, Recovery Act Technical Assistance, Training, Energy Awareness

  13. Flywheel energy storage system focus of display

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flywheel Energy Storage System Focus of Display Demonstration to feature advanced, solar-powered replacement for batteries For more information contact: e:mail: Public Affairs ...

  14. REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES

    SciTech Connect (OSTI)

    Reilkoff, T. E.; Hetland, M. D.; O'Leary, E. M.

    2002-02-25

    The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

  15. UAIEE and Industrial Assessment Centers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    55-62011| Industrial Assessment Centers * Started in 1976 * Currently 26 Centers across the US * Almost...

  16. Policy modeling for industrial energy use

    SciTech Connect (OSTI)

    Worrell, Ernst; Park, Hi-Chun; Lee, Sang-Gon; Jung, Yonghun; Kato, Hiroyuki; Ramesohl, Stephan; Boyd, Gale; Eichhammer, Wolfgang; Nyboer, John; Jaccard, Mark; Nordqvist, Joakim; Boyd, Christopher; Klee, Howard; Anglani, Norma; Biermans, Gijs

    2003-03-01

    The international workshop on Policy Modeling for Industrial Energy Use was jointly organized by EETA (Professional Network for Engineering Economic Technology Analysis) and INEDIS (International Network for Energy Demand Analysis in the Industrial Sector). The workshop has helped to layout the needs and challenges to include policy more explicitly in energy-efficiency modeling. The current state-of-the-art models have a proven track record in forecasting future trends under conditions similar to those faced in the recent past. However, the future of energy policy in a climate-restrained world is likely to demand different and additional services to be provided by energy modelers. In this workshop some of the international models used to make energy consumption forecasts have been discussed as well as innovations to enable the modeling of policy scenarios. This was followed by the discussion of future challenges, new insights in the data needed to determine the inputs into energy model s, and methods to incorporate decision making and policy in the models. Based on the discussion the workshop participants came to the following conclusions and recommendations: Current energy models are already complex, and it is already difficult to collect the model inputs. Hence, new approaches should be transparent and not lead to extremely complex models that try to ''do everything''. The model structure will be determined by the questions that need to be answered. A good understanding of the decision making framework of policy makers and clear communication on the needs are essential to make any future energy modeling effort successful. There is a need to better understand the effects of policy on future energy use, emissions and the economy. To allow the inclusion of policy instruments in models, evaluation of programs and instruments is essential, and need to be included in the policy instrument design. Increased efforts are needed to better understand the effects of innovative (no n-monetary) policy instruments through evaluation and to develop approaches to model both conventional and innovative policies. The explicit modeling of barriers and decision making in the models seems a promising way to enable modeling of conventional and innovative policies. A modular modeling approach is essential to not only provide transparency, but also to use the available resources most effectively and efficiently. Many large models have been developed in the past, but have been abandoned after only brief periods of use. A development path based on modular building blocks needs the establishment of a flexible but uniform modeling framework. The leadership of international agencies and organizations is essential in the establishment of such a framework. A preference is given for ''softlinks'' between different modules and models, to increase transparency and reduce complexity. There is a strong need to improve the efficiency of data collection and interpretation efforts to produce reliable model inputs. The workshop participants support the need for the establishment of an (in-)formal exchanges of information, as well as modeling approaches. The development of an informal network of research institutes and universities to help build a common dataset and exchange ideas on specific areas is proposed. Starting with an exchange of students would be a relative low-cost way to start such collaboration. It would be essential to focus on specific topics. It is also essential to maintain means of regular exchange of ideas between researchers in the different focus points.

  17. Industry Partners Panel

    Broader source: Energy.gov [DOE]

    Industry Panel presenters include: Michael G. Andrew, Director - Academic and Technical Programs, Advanced Products and Materials, Johnson Controls Power Solutions Michael A. Fetcenko, Vice President and Managing Director, BASF Battery Materials – Ovonic, BASF Corporation Adam Kahn, Founder and CEO, AKHAN Technologies, Inc. Stephen E. Zimmer, Executive Director, United States Council for Automotive Research (USCAR)

  18. Proceedings of ISEC 2008, International Solvent Extraction Conference - Solvent Extraction: Fundamentals to Industrial Applications

    SciTech Connect (OSTI)

    Moyer, Bruce A.

    2008-07-01

    The North American industry has employed major solvent-extraction processes to support a wide range of separations including but not limited to chemical, metallurgical, nuclear, biochemical, pharmaceutical, and petroleum applications. The knowledge enabling these separations has been obtained through fundamental studies in academe, government and industry. The International Solvent Extraction Conferences have been and continue to be a major gathering of scientists, engineers, operators, and vendors from around the world, who present new findings since the last meeting, exchange ideas, make business contacts, and conduct collegial discussions. The ISEC 2008 program emphasizes fundamentals to industrial applications of solvent extraction, particularly how this broad spectrum of activities is interconnected and has led to the implementation of novel processes. The oral and poster sessions have been organized into seven topics: Fundamentals; Novel Reagents, Materials and Techniques; Nuclear Fuel Reprocessing; Hydrometallurgy and Metals Extraction; Analytical and Preparative Applications; Biotechnology, Pharmaceuticals, Life-Science Products, and Organic Products; and Process Chemistry and Engineering. Over 350 abstracts were received, resulting in more than 260 manuscripts published in these proceedings. Five outstanding plenary presentations have been identified, with five parallel sessions for oral presentations and posters. In recognition of the major role solvent extraction (SX) plays in the hydrometallurgical and nuclear industries, these proceedings begin with sections focusing on hydrometallurgy, process chemistry, and engineering. More fundamental topics follow, including sections on novel reagents, materials, and techniques, featuring novel applications in analytical and biotechnology areas. Despite the diversity of topics and ideas represented, however, the primary focus of the ISEC community continues to be metals extraction. Four papers from these proceedings have been entered already in INIS in the form of individual reports. Among the remaining papers, 60 have been selected from the following sessions: Plenary Lectures, Hydrometallurgy and Metals Extraction, Nuclear Fuel Reprocessing, Analytical and Preparative Applications, Fundamentals, and Novel Reagents, Materials, and Techniques.

  19. Carlsbad Area Office strategic plan

    SciTech Connect (OSTI)

    NONE

    1995-10-01

    This edition of the Carlsbad Area Office Strategic Plan captures the U.S. Department of Energy`s new focus, and supercedes the edition issued previously in 1995. This revision reflects a revised strategy designed to demonstrate compliance with environmental regulations earlier than the previous course of action; and a focus on the selected combination of scientific investigations, engineered alternatives, and waste acceptance criteria for supporting the compliance applications. An overview of operations and historical aspects of the Waste Isolation Pilot Plant near Carlsbad, New Mexico is presented.

  20. Thrust Area Report, Engineering Research, Development and Technology

    SciTech Connect (OSTI)

    Langland, R. T.

    1997-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.

  1. Cooling, Heating, and Power for Industry: A Market Assessment, August 2003

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Industry: A Market Assessment, August 2003 Cooling, Heating, and Power for Industry: A Market Assessment, August 2003 Industrial applications of CHP have been around for decades, producing electricity and byproduct thermal energy onsite, and converting 80 percent or more of the input fuel into useable energy. The focus of this study was to assess the market for cooling, heating, and power applications in the industrial sector. PDF icon

  2. Assessment of industry needs for oil shale research and development. Final report

    SciTech Connect (OSTI)

    Hackworth, J.H.

    1987-05-01

    Thirty-one industry people were contacted to provide input on oil shale in three subject areas. The first area of discussion dealt with industry`s view of the shape of the future oil shale industry; the technology, the costs, the participants, the resources used, etc. It assessed the types and scale of the technologies that will form the industry, and how the US resource will be used. The second subject examined oil shale R&D needs and priorities and potential new areas of research. The third area of discussion sought industry comments on what they felt should be the role of the DOE (and in a larger sense the US government) in fostering activities that will lead to a future commercial US oil shale shale industry.

  3. An Industry/Academe Consortium for Achieving 20% wind by 2030 through Cutting-Edge Research and Workforce Training

    SciTech Connect (OSTI)

    Sotiropoulos, Fotis; Marr, Jeffrey D.G.; Milliren, Christopher; Kaveh, Mos; Mohan, Ned; Stolarski, Henryk; Glauser, Mark; Arndt, Roger

    2013-12-01

    In January 2010, the University of Minnesota, along with academic and industry project partners, began work on a four year project to establish new facilities and research in strategic areas of wind energy necessary to move the nation towards a goal of 20% wind energy by 2030. The project was funded by the U.S. Department of Energy with funds made available through the American Recovery and Reinvestment Act of 2009. $7.9M of funds were provided by DOE and $3.1M was provided through matching funds. The project was organized into three Project Areas. Project Area 1 focused on design and development of a utility scale wind energy research facility to support research and innovation. The project commissioned the Eolos Wind Research Field Station in November of 2011. The site, located 20 miles from St. Paul, MN operates a 2.5MW Clipper Liberty C-96 wind turbine, a 130-ft tall sensored meteorological tower and a robust sensor and data acquisition network. The site is operational and will continue to serve as a site for innovation in wind energy for the next 15 years. Project Areas 2 involved research on six distinct research projects critical to the 20% Wind Energy by 2030 goals. The research collaborations involved faculty from two universities, over nine industry partners and two national laboratories. Research outcomes include new knowledge, patents, journal articles, technology advancements, new computational models and establishment of new collaborative relationships between university and industry. Project Area 3 focused on developing educational opportunities in wind energy for engineering and science students. The primary outcome is establishment of a new graduate level course at the University of Minnesota called Wind Engineering Essentials. The seminar style course provides a comprehensive analysis of wind energy technology, economics, and operation. The course is highly successful and will continue to be offered at the University. The vision of U.S. DOE to establish unique, open-access research facilities and creation of university-industry research collaborations in wind energy were achieved through this project. The University of Minnesota, through the establishment of the Eolos Wind Energy Consortium and the Eolos Wind Research Field Station continue to develop new research collaborations with industry partners.

  4. Laser focus compensating sensing and imaging device

    DOE Patents [OSTI]

    Vann, Charles S. (Fremont, CA)

    1993-01-01

    A laser focus compensating sensing and imaging device permits the focus of a single focal point of different frequency laser beams emanating from the same source point. In particular it allows the focusing of laser beam originating from the same laser device but having differing intensities so that a low intensity beam will not convert to a higher frequency when passing through a conversion crystal associated with the laser generating device. The laser focus compensating sensing and imaging device uses a cassegrain system to fold the lower frequency, low intensity beam back upon itself so that it will focus at the same focal point as a high intensity beam. An angular tilt compensating lens is mounted about the secondary mirror of the cassegrain system to assist in alignment. In addition cameras or CCD's are mounted with the primary mirror to sense the focused image. A convex lens is positioned co-axial with the cassegrain system on the side of the primary mirror distal of the secondary for use in aligning a target with the laser beam. A first alternate embodiment includes a cassegrain system using a series of shutters and an internally mounted dichroic mirror. A second alternate embodiment uses two laser focus compensating sensing and imaging devices for aligning a moving tool with a work piece.

  5. Laser focus compensating sensing and imaging device

    DOE Patents [OSTI]

    Vann, C.S.

    1993-08-31

    A laser focus compensating sensing and imaging device permits the focus of a single focal point of different frequency laser beams emanating from the same source point. In particular it allows the focusing of laser beam originating from the same laser device but having differing intensities so that a low intensity beam will not convert to a higher frequency when passing through a conversion crystal associated with the laser generating device. The laser focus compensating sensing and imaging device uses a Cassegrain system to fold the lower frequency, low intensity beam back upon itself so that it will focus at the same focal point as a high intensity beam. An angular tilt compensating lens is mounted about the secondary mirror of the Cassegrain system to assist in alignment. In addition cameras or CCD's are mounted with the primary mirror to sense the focused image. A convex lens is positioned co-axial with the Cassegrain system on the side of the primary mirror distal of the secondary for use in aligning a target with the laser beam. A first alternate embodiment includes a Cassegrain system using a series of shutters and an internally mounted dichroic mirror. A second alternate embodiment uses two laser focus compensating sensing and imaging devices for aligning a moving tool with a work piece.

  6. Controlling NOx emission from industrial sources

    SciTech Connect (OSTI)

    Srivastava, R.K.; Nueffer, W.; Grano, D.; Khan, S.; Staudt, J.E.; Jozewicz, W.

    2005-07-01

    A number of regulatory actions focused on reducing NOx emissions from stationary combustion sources have been taken in the United States in the last decade. These actions include the Acid Rain NOx regulations, the Ozone Transport Commission's NOx Budget Program, and the NOx SIP Call rulemakings. In addition to these regulations, the recent Interstate Air Quality Rulemaking proposal and other bills in the Congress are focusing on additional reductions of NOx. Industrial combustion sources accounted for about 18016 of NOx emissions in the United States in 2000 and constituted the second largest emitting source category within stationary sources, only behind electric utility sources. Based on these data, reduction of NOx emissions from industrial combustion sources is an important consideration in efforts undertaken to address the environmental concerns associated with NOx. This paper discusses primary and secondary NOx control technologies applicable to various major categories of industrial sources. The sources considered in this paper include large boilers, furnaces and fired heaters, combustion turbines, large IC engines, and cement kilns. For each source category considered in this paper, primary NOx controls are discussed first, followed by a discussion of secondary NOx controls.

  7. Coal industry annual 1997

    SciTech Connect (OSTI)

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  8. Coal industry annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  9. Focused ion beam source method and apparatus

    DOE Patents [OSTI]

    Pellin, Michael J. (Naperville, IL); Lykke, Keith R. (Gaithersburg, MD); Lill, Thorsten B. (Sunnyvale, CA)

    2000-01-01

    A focused ion beam having a cross section of submicron diameter, a high ion current, and a narrow energy range is generated from a target comprised of particle source material by laser ablation. The method involves directing a laser beam having a cross section of critical diameter onto the target, producing a cloud of laser ablated particles having unique characteristics, and extracting and focusing a charged particle beam from the laser ablated cloud. The method is especially suited for producing focused ion beams for semiconductor device analysis and modification.

  10. Aerodynamic Focusing Of High-Density Aerosols

    SciTech Connect (OSTI)

    Ruiz, D. E.; Fisch, Nathaniel

    2014-02-24

    High-density micron-sized particle aerosols might form the basis for a number of applications in which a material target with a particular shape might be quickly ionized to form a cylindrical or sheet shaped plasma. A simple experimental device was built in order to study the properties of high-density aerosol focusing for 1#22; m silica spheres. Preliminary results recover previous findings on aerodynamic focusing at low densities. At higher densities, it is demonstrated that the focusing properties change in a way which is consistent with a density dependent Stokes number.

  11. Natural Gas Industrial Price

    Gasoline and Diesel Fuel Update (EIA)

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  12. Industrial Analytics Corporation

    SciTech Connect (OSTI)

    Industrial Analytics Corporation

    2004-01-30

    The lost foam casting process is sensitive to the properties of the EPS patterns used for the casting operation. In this project Industrial Analytics Corporation (IAC) has developed a new low voltage x-ray instrument for x-ray radiography of very low mass EPS patterns. IAC has also developed a transmitted visible light method for characterizing the properties of EPS patterns. The systems developed are also applicable to other low density materials including graphite foams.

  13. Fermilab | Resources | Industrial Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Navbar Toggle About Quick Info Science History Organization Photo and video gallery Diversity Education Safety Sustainability and environment Contact Newsroom Spotlight Press releases Fact sheets and brochures symmetry Interactions.org Photo and video archive Resources for ... Employees Researchers, Postdocs and Graduate Students Job Seekers Neighbors Industry K-12 Students, Teachers and Undergraduates Media Science Particle Physics Neutrinos Fermilab and the LHC Dark matter and dark

  14. Automotive Turbocharging: Industrial Requirements and Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbocharging: Industrial Requirements and Technology Developments Automotive Turbocharging: Industrial Requirements and Technology Developments Significant improvements in...

  15. U.S. Department of Energy Theorty Focus Session on Hydrogen Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An agenda for a four-part, theory-focus session on hydrogen storage materials to identify critical areas, key barriers, and gaps in current theorymodeling approaches for hydrogen...

  16. Apparatus for focusing flowing gas streams

    DOE Patents [OSTI]

    Nogar, N.S.; Keller, R.A.

    1985-05-20

    Apparatus for focusing gas streams. The principle of hydrodynamic focusing is applied to flowing gas streams in order to provide sample concentration for improved photon and sample utilization in resonance ionization mass spectrometric analysis. In a concentric nozzle system, gas samples introduced from the inner nozzle into the converging section of the outer nozzle are focused to streams 50-250-..mu..m in diameter. In some cases diameters of approximately 100-..mu..m are maintained over distances of several centimeters downstream from the exit orifice of the outer nozzle. The sheath gas employed has been observed to further provide a protective covering around the flowing gas sample, thereby isolating the flowing gas sample from possible unwanted reactions with nearby surfaces. A single nozzle variation of the apparatus for achieving hydrodynamic focusing of gas samples is also described.

  17. HelioFocus | Open Energy Information

    Open Energy Info (EERE)

    Israel-based firm engaged in the development of modular, high efficiency concentrated solar power (CSP)systems. References: HelioFocus1 This article is a stub. You can help...

  18. SolFocus Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Place: California Zip: 94043 Product: California-based developer of high concentration PV (CPV) technology using triple junction GaAs cells. References: SolFocus Inc1...

  19. Advanced technology options for industrial heating equipment research

    SciTech Connect (OSTI)

    Jain, R.C.

    1992-10-01

    This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

  20. Industrial Dojo Program Fosters Industrial Internet Development | GE Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Launches Cloud Foundry 'Industrial Dojo,' Contributes to Open Source to Foster Continued Development of the Industrial Internet Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Launches Cloud Foundry 'Industrial Dojo,' Contributes to Open Source to Foster Continued Development of the Industrial Internet

  1. Two-axis sagittal focusing monochromator

    DOE Patents [OSTI]

    Haas, Edwin G; Stelmach, Christopher; Zhong, Zhong

    2014-05-13

    An x-ray focusing device and method for adjustably focusing x-rays in two orthogonal directions simultaneously. The device and method can be operated remotely using two pairs of orthogonal benders mounted on a rigid, open frame such that x-rays may pass through the opening in the frame. The added x-ray flux allows significantly higher brightness from the same x-ray source.

  2. 2012_0112_Safety_Culture_FocusAreas_Attachment9.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  3. FY 2000 Tanks Focus Area Corrosion Monitoring Technical Committee Meeting Summary Report

    SciTech Connect (OSTI)

    NORMAN, E.C.

    2000-07-19

    The primary purpose of the annual meeting between the corrosion monitoring personnel at the various DOE sites is to facilitate communications and promote technology transfer between the two sites. The close communications and good spirit of teamwork being exhibited between the parties representing the Hanford and Savannah River Sites has helped the Savannah River Site effort avoid many of the problems encountered during the initial development effort at Hanford. Similar benefits can be expected over the next few years as the ORNL program is developed. Expected products of this meeting as defined in Milestone A.4-1 of TTP RL0-9-WT-41 are reports on the status of technical work at the sites, discussions of emerging technical issues, and results of laboratory experiments and field trials. The formal meeting, informal discussions throughout the week, and the presentation materials shown in the attachment to this document fulfill the expectations of this meeting. At the conclusion of the meeting it was agreed that close communications should continue between the concerned parties at ORNL, SRTC and Hanford. Tentative plans were made to hold a similar meeting in approximately one year.

  4. CY14 Livermore Computing Focus Areas (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    C J ; Shoopman, J D ; Slavec, J A ; Smith, D W ; Springmeyer, R R ; Stearman, D M ; Watson, P C Publication Date: 2014-08-15 OSTI Identifier: 1165771 Report Number(s): ...

  5. PROJECT RULISON A GOVERNMENT- INDUSTRY NATURAL GAS PRODUCT1 O

    Office of Legacy Management (LM)

    A GOVERNMENT- INDUSTRY NATURAL GAS PRODUCT1 O N S T I M U L A T I O N EXPERIMENT U S I N G A NUCLEAR EXPLOSIVE Issued By PROJECT RULISON JOINT OFFICE OF INFORMATION U. S. ATOMIC ENERGY COMMISSION - AUSTRAL OIL COMPANY, INCORPORATED THE DEPARTMENT OF THE INTERIOR - CER GEONUCLEAR CORPORATION May 1, 1969 OBSERVATION AREA J SURFACE GROUND ZERO AREA S C A L E - I inch e q u a l s approximatly I 2 m i l e s Project Rulison Area Map PROJECT RULISON A N INDUSTRY-GOVERNMENT NATURAL GAS PRODUCT1 ON

  6. Compact microwave ion source for industrial applications

    SciTech Connect (OSTI)

    Cho, Yong-Sub; Kim, Dae-Il; Kim, Han-Sung; Seol, Kyung-Tae; Kwon, Hyeok-Jung; Hong, In-Seok

    2012-02-15

    A 2.45 GHz microwave ion source for ion implanters has many good properties for industrial application, such as easy maintenance and long lifetime, and it should be compact for budget and space. But, it has a dc current supply for the solenoid and a rf generator for plasma generation. Usually, they are located on high voltage platform because they are electrically connected with beam extraction power supply. Using permanent magnet solenoid and multi-layer dc break, high voltage deck and high voltage isolation transformer can be eliminated, and the dose rate on targets can be controlled by pulse duty control with semiconductor high voltage switch. Because the beam optics does not change, beam transfer components, such as focusing elements and beam shutter, can be eliminated. It has shown the good performances in budget and space for industrial applications of ion beams.

  7. Emerging Energy-Efficient Technologies for Industry

    SciTech Connect (OSTI)

    Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliot, Neal; Shipley, Anna; Thorn, Jennifer

    2005-05-05

    U.S. industry consumes approximately 37 percent of thenation's energy to produce 24 percent of the nation's GDP. Increasingly,society is confronted with the challenge of moving toward a cleaner, moresustainable path of production and consumption, while increasing globalcompetitiveness. Technology is essential in achieving these challenges.We report on a recent analysis of emerging energy-efficient technologiesfor industry, focusing on over 50 selected technologies. The technologiesare characterized with respect to energy efficiency, economics andenvironmental performance. This paper provides an overview of theresults, demonstrating that we are not running out of technologies toimprove energy efficiency, economic and environmental performance, andneither will we in the future. The study shows that many of thetechnologies have important non-energy benefits, ranging from reducedenvironmental impact to improved productivity, and reduced capital costscompared to current technologies.

  8. SolFocus | Open Energy Information

    Open Energy Info (EERE)

    View, California Zip: 94043 Region: Bay Area Sector: Solar Product: Concentrator Photovoltaic Energy Systems Year Founded: 2005 Phone Number: 650-623-7100 Website:...

  9. Microsoft PowerPoint - 300 Area Perspective.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area Perspective 300 Area Perspective River and Plateau Committee February 15, 2012 February 15, 2012 John B. Price Business/Research Park in N Richland h d l h High Density Residential is the norm MSA Bldg and Townhouses "Smartpark" includes Townhouses High Density Residential Infiltration from Impervious Areas & Irrigation Townhouses Grass Townhouse Townhouses Grass Bare Ground from Construction Storm Sewer Asphalt Grass Grate p Remediated 1100 Area -Industrial Area f h l ff

  10. Forest Products Industry Technology Roadmap

    SciTech Connect (OSTI)

    none,

    2010-04-01

    This document describes the forest products industry's research and development priorities. The original technology roadmap published by the industry in 1999 and was most recently updated in April 2010.

  11. Industrial Process Heating - Technology Assessment

    Office of Environmental Management (EM)

    Industrial Process Heating - Technology Assessment 1 2 Contents 3 4 1. Introduction to the Technology/System ............................................................................................... 2 5 1.1. Industrial Process Heating Overview ............................................................................................ 2 6 2. Technology Assessment and Potential ................................................................................................. 6 7 2.1. Status

  12. Reid Industries | Open Energy Information

    Open Energy Info (EERE)

    Reid Industries Jump to: navigation, search Name: Reid Industries Address: PO Box 503 Place: San Francisco, CA Zip: 94104 Phone Number: 415-947-1050 Coordinates: 37.7923058,...

  13. Enviromech Industries | Open Energy Information

    Open Energy Info (EERE)

    search Name: Enviromech Industries Place: Thousands Palms, California Zip: 92276 Product: Alternative fuel system design and integration company. References: Enviromech...

  14. CEMI Industrial Efficiency (text version)

    Broader source: Energy.gov [DOE]

    Below is the text version for the Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video.

  15. Barriers to Industrial Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers to Industrial Energy Efficiency A Study Pursuant to Section 7 of the American Energy Manufacturing Technical Corrections Act June 2015 Blank Page iii Statutory Requirement American Energy Manufacturing Technical Corrections Act Public Law 112-210 Section 7. Reducing Barriers to the Deployment of Industrial Energy Efficiency (a) Definitions - In this section: 1) Industrial Energy Efficiency - The term "industrial energy efficiency" means the energy efficiency derived from

  16. Focused shock spark discharge drill using multiple electrodes

    DOE Patents [OSTI]

    Moeny, William M. (Albuquerque, NM); Small, James G. (Albuquerque, NM)

    1988-01-01

    A spark discharge focused drill provided with one pulse forming line or a number of pulse forming lines. The pulse forming line is connected to an array of electrodes which would form a spark array. One of the electrodes of each of the array is connected to the high voltage side of the pulse forming line and the other electrodes are at ground potential. When discharged in a liquid, these electrodes produce intense focused shock waves that can pulverize or fracture rock. By delaying the firing of each group of electrodes, the drill can be steered within the earth. Power can be fed to the pulse forming line either downhole or from the surface area. A high voltage source, such as a Marx generator, is suitable for pulse charging the lines.

  17. Coal industry annual 1996

    SciTech Connect (OSTI)

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  18. Coal Industry Annual 1995

    SciTech Connect (OSTI)

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  19. Recent developments: Industry briefs

    SciTech Connect (OSTI)

    1990-04-01

    Recent nuclear industry briefs are presented. These briefs include: Soviet Union to build Iran nuclear plant; Dension announces cuts in Elliot Lake production; Soviet environmental study delays Rostov startup; Cogema closes two mines; Namibian sanctions lifted by USA and Canada; US Energy and Kennecott restructors joint venture; Australians reelect Hawke; China to buy Soviet nuclear plant; Olympic Dam`s first sale of concentrates to USA; Uranevz buys one-third of Cogema`s Rabbit Lake operations; East and West Germany forming joint nuclear law; and Nova Scotia extends uranium exploration plan.

  20. Safety analysis--200 Area Savannah River Site: Separations Area operations Building 211-H Outside Facilities. Supplement 11, Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The H-Area Outside Facilities are located in the 200-H Separations Area and are comprised of a number of processes, utilities, and services that support the separations function. Included are enriched uranium loadout, bulk chemical storage, water handling, acid recovery, general purpose evaporation, and segregated solvent facilities. In addition, services for water, electricity, and steam are provided. This Safety Analysis Report (SAR) documents an analysis of the H-Area Outside Facilities and is one of a series of documents for the Separations Area as specified in the SR Implementation Plan for DOE order 5481.1A. The primary purpose of the analysis was to demonstrate that the facility can be operated without undue risk to onsite or offsite populations, to the environment, and to operating personnel. In this report, risks are defined as the expected frequencies of accidents, multiplied by the resulting radiological consequences in person-rem. Following the summary description of facility and operations is the site evaluation including the unique features of the H-Area Outside Facilities. The facility and process design are described in Chapter 3.0 and a description of operations and their impact is given in Chapter 4.0. The accident analysis in Chapter 5.0 is followed by a list of safety related structures and systems (Chapter 6.0) and a description of the Quality Assurance program (Chapter 7.0). The accident analysis in this report focuses on estimating the risk from accidents as a result of operation of the facilities. The operations were evaluated on the basis of three considerations: potential radiological hazards, potential chemical toxicity hazards, and potential conditions uniquely different from normal industrial practice.

  1. Water-Using Equipment: Commercial and Industrial

    SciTech Connect (OSTI)

    Solana, Amy E.; Mcmordie, Katherine

    2006-01-24

    Water is an important aspect of many facets in energy engineering. While the previous article detailed domestic related water-using equipment such as toilets and showerheads, this article focuses on various types of water-using equipment in commercial and industrial facilities, including commercial dishwashers and laundry, single-pass cooling equipment, boilers and steam generators, cooling towers, and landscape irrigation. Opportunities for water and energy conservation are explained, including both technology retrofits and operation and maintenance changes. Water management planning and leak detection are also included as they are essential to a successful water management program.

  2. The future of energy efficiency in the steel industry

    SciTech Connect (OSTI)

    Lakshminarayana, B.

    1997-07-01

    Steel is present in every aspect of life, in all industrial, transportation sectors as well as in households in US. The American steel industry today can be counted among the most productive, efficient and technologically advanced in the world. Steel combines low cost with attractive engineering properties and is the most recycled of all materials. Despite these appealing characteristics of steel, the steel industry has confronted significant challenges from other competitive materials. To keep abreast with the competition it faces, pursuit of research and development activities is an absolute necessity. This competition has forced the steel industry to address many issues that here to fore were deemed unimportant. One of these areas is energy efficiency. Steelmaking energy costs comprise over 15 percent of the manufacturing cost of steel. This compares to less than five percent for most other manufacturing industries. The US steel industry, which accounts for about nine percent (1.8 quads/year) of the US industrial energy use, has made considerable progress in the area of energy efficiency. Over the past 20 years, the US steel industry has reduced its energy intensity by 43 percent. The impact of energy usage on environmental and the results of government regulations have made the industry concentrate more and more on the issues of energy efficiency. In addition, a possible energy shortage could become a global phenomenon in the 21st century if steps to conserve energy are not taken. The risk in researching and adapting new technologies is greater in the steel industry than in many other manufacturing industries. Steelmaking is capital intensive in both equipment and processes. Government/industry partnerships can help reduce such risks. The Department of Energy's Office of Industrial Technologies (DOE/OIT) has been supporting energy efficient research relevant to the steel industry. Salient features of some of the projects will be explored in this paper. These endeavors bring together the collective resources not only of the government and the industry, but also of national laboratories, universities and advanced technology companies. Such efforts continued into 21st century will make the US steel industry more environmentally friendly, energy efficient and globally competitive.

  3. Remote adjustable focus Raman spectroscopy probe

    DOE Patents [OSTI]

    Schmucker, John E.; Blasi, Raymond J.; Archer, William B.

    1999-01-01

    A remote adjustable focus Raman spectroscopy probe allows for analyzing Raman scattered light from a point of interest external probe. An environmental barrier including at least one window separates the probe from the point of interest. An optical tube is disposed adjacent to the environmental barrier and includes a long working length compound lens objective next to the window. A beam splitter and a mirror are at the other end. A mechanical means is used to translated the prove body in the X, Y, and Z directions resulting in a variable focus optical apparatus. Laser light is reflected by the beam splitter and directed toward the compound lens objective, then through the window and focused on the point of interest. Raman scattered light is then collected by the compound lens objective and directed through the beam splitter to a mirror. A device for analyzing the light, such as a monochrometer, is coupled to the mirror.

  4. Engineering Research and Development and Technology thrust area report FY92

    SciTech Connect (OSTI)

    Langland, R.T.; Minichino, C.

    1993-03-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering.

  5. Relativistic self-focusing in underdense plasma

    SciTech Connect (OSTI)

    Feit, M.D.; Garrison, J.C.; Komashko, A.; Musher, J.L.; Rubenchik, A.M.; Turistsyn, S.K.

    1997-04-24

    In the present paper, we discuss light self-focusing in underdense (nfocusing including ion dynamics will be presented in second part of the paper. In particular, we will demonstrate the formation of empty, wide channels in underdense plasma in the wake of the laser pulse. we discuss the applicability of our results to real situations and possible consequences for the ``Fast Ignitor`` project.

  6. Advanced Industrial Materials (AIM) Program: Annual progress report FY 1995

    SciTech Connect (OSTI)

    1996-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven ``Vision Industries`` that use about 80% of industrial energy and generated about 90% of industrial wastes. The mission of AIM has, therefore, changed to ``Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`` Though AIM remains essentially a National Laboratory Program, it is essential that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains reasonably healthy and productive, thanks to the superb investigators and Laboratory Program Managers. This Annual Report for FY 1995 contains the technical details of some very remarkable work by the best materials scientists and engineers in the world. Areas covered here are: advanced metals and composites; advanced ceramics and composites; polymers and biobased materials; and new materials and processes.

  7. Pollution prevention in the pharmaceutical industry

    SciTech Connect (OSTI)

    Venkataramani, E.S.

    1995-09-01

    A clear understanding of the process, reaction pathways, process equipment, operational requirements, and waste stream characteristics are critical for the evaluation, selection, and implementation of pollution prevention in the pharmaceutical industry. Although pollution prevention opportunities are always preferred over treatment and disposal techniques, consideration of a full range of options--including at-source treatments and disposal--is a practical necessity to ensure protection of the environment using best available technology. General housekeeping can also play a major role in waste minimization. Waste minimization and pollution prevention are not new concepts for the pharmaceutical industry. But the confidential and highly competitive nature of the business stands in the way of disseminating information regarding specific activities in this area. The pharmaceutical industry could probably do much better in this respect. Successful implementation of waste minimization in the pharmaceutical industry requires that a process modification not have a negative impact on product quality. Recovered and recycled materials must meet quality specifications that are similar to those for virgin raw materials.

  8. Focused ion beam micromilling and articles therefrom

    DOE Patents [OSTI]

    Lamartine, Bruce C. (Los Alamos, NM); Stutz, Roger A. (Los Alamos, NM)

    1998-01-01

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are isclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters.

  9. Focused ion beam micromilling and articles therefrom

    DOE Patents [OSTI]

    Lamartine, B.C.; Stutz, R.A.

    1998-06-30

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are disclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters. 6 figs.

  10. Department of Energy Quadrennial Technology Review Building & Industrial

    Broader source: Energy.gov (indexed) [DOE]

    Efficiency Workshop | Department of Energy Public release of the documents and presentations shared during the stationary efficiency workshop, along with anonymous notes of the workshop and focus group. PDF icon Department of Energy Quadrennial Technology Review Building & Industrial Efficiency Workshop More Documents & Publications Quadrennial Technology Review Workshop Portfolios Quadrennial Technology Review Workshops Department of Energy Quadrennial Technology Review Grid

  11. The Clinch Bend Regional Industrial Site and economic development opportunities

    SciTech Connect (OSTI)

    1995-12-31

    This effort focuses initially on the Clinch Bend site. Other sites and developable tracts of land are identified with the assistance of communities in proximity to Oak Ridge, the State of Tennessee, and others, and compared with the projected site requirements for large industrial facilities.

  12. Focus Group Meeting (Activities Status) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oversight Concept PDF icon Accomplishments Overview More Documents & Publications Focus Group Meeting (Activities Status) Focus Group Meeting (Topical Wrap-Up) Focus Group...

  13. Technology Roadmap Research Program for the Steel Industry

    SciTech Connect (OSTI)

    Joseph R. Vehec

    2010-12-30

    The steel industry's Technology Roadmap Program (TRP) is a collaborative R&D effort jointly sponsored by the steel industry and the United States Department of Energy. The TRP program was designed to develop new technologies to save energy , increase competitiveness, and improve the environment. TRP ran from July, 1997 to December, 2008, with a total program budget of $38 million dollars. During that period 47 R&D projects were performed by 28 unique research organizations; co-funding was provided by DOE and 60 industry partners. The projects benefited all areas of steelmaking and much know-how was developed and transferred to industry. The American Iron and Steel Institute is the owner of all intellectual property developed under TRP and licenses it at commercial rates to all steelmakers. TRP technologies are in widespread use in the steel industry as participants received royalty-free use of intellectual property in return for taking the risk of funding this research.

  14. Industrial Assessment Centers (IACs) | Department of Energy

    Office of Environmental Management (EM)

    Technical Assistance Industrial Assessment Centers (IACs) Industrial Assessment Centers (IACs) Industrial Assessment Centers (IACs) Small- and medium-sized manufacturers may be...

  15. Meehan s Industrial | Open Energy Information

    Open Energy Info (EERE)

    Meehan s Industrial Jump to: navigation, search Name: Meehan's Industrial Place: Milton, Ontario, Canada Zip: L9T 5C1 Product: Meehan's Industrial is a manufacturer, project...

  16. Lien Hwa Industrial Corporation | Open Energy Information

    Open Energy Info (EERE)

    Lien Hwa Industrial Corporation Jump to: navigation, search Name: Lien Hwa Industrial Corporation Place: Taipei, Taiwan Product: Lien Hwa Industrial Corporation is an agricultural,...

  17. Equity Industrial Partners | Open Energy Information

    Open Energy Info (EERE)

    Equity Industrial Partners Jump to: navigation, search Name Equity Industrial Partners Facility Equity Industrial Partners Sector Wind energy Facility Type Community Wind Facility...

  18. TG Agro Industrial | Open Energy Information

    Open Energy Info (EERE)

    TG Agro Industrial Jump to: navigation, search Name: TG Agro Industrial Place: Brazil Product: Maranhao-based ethanol producer. References: TG Agro Industrial1 This article is a...

  19. Ternion Bio Industries | Open Energy Information

    Open Energy Info (EERE)

    Ternion Bio Industries Jump to: navigation, search Logo: Ternion Bio Industries Name: Ternion Bio Industries Address: 1060 Minnesota Ave., Suite 6 Place: San Jose, California Zip:...

  20. Biofuel Industries Group LLC | Open Energy Information

    Open Energy Info (EERE)

    Industries Group LLC Jump to: navigation, search Name: Biofuel Industries Group LLC Place: Adrian, Michigan Zip: 49221 Product: Biofuel Industries Group, LLC owns and operates the...

  1. Industrial Assessment Centers Update, March 2015 | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Read the Industrial Assessment Centers (IAC) Update -- March 2015 Industrial Assessment Centers Quarterly Update, March 2015 More Documents & Publications Industrial Assessment...

  2. Local Option- Industrial Facilities and Development Bonds

    Broader source: Energy.gov [DOE]

    Under the Utah Industrial Facilities and Development Act, counties, municipalities, and state universities in Utah may issue Industrial Revenue Bonds (IRBs) or Industrial Development Bonds (IDBs)...

  3. MRL Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    MRL Industries Inc Jump to: navigation, search Name: MRL Industries Inc Place: Sonora, California Zip: 95370 Sector: Solar Product: MRL Industries is a US company committed to...

  4. Pilot Program Builds Sustainable Lab-Industry Partnerships for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    With technology focus areas ranging from sustainable data centers to additive manufacturing (better known as 3D printing), this two-year, 2.6 million pilot program is designed to ...

  5. ITP Industrial Distributed Energy: Combined Heat and Power: Effective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Solutions for a Sustainable Future | Department of Energy ITP Industrial Distributed Energy: Combined Heat and Power: Effective Energy Solutions for a Sustainable Future ITP Industrial Distributed Energy: Combined Heat and Power: Effective Energy Solutions for a Sustainable Future Report describing the four key areas where CHP has proven its effectiveness and holds promise for the future PDF icon chp_report_12-08.pdf More Documents & Publications CHP: A Clean Energy Solution,

  6. Percentage of Total Natural Gas Industrial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Vehicle Fuel Price Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010

  7. Percentage of Total Natural Gas Industrial Deliveries included in Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    City Gate Price Residential Price Percentage of Total Residential Deliveries included in Prices Commercial Price Percentage of Total Commercial Deliveries included in Prices Industrial Price Percentage of Total Industrial Deliveries included in Prices Electric Power Price Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S.

  8. EV-141 Englehard Industries. Makepeace Dlvlslon E. Jacewsky. CORO

    Office of Legacy Management (LM)

    41 Englehard Industries. Makepeace Dlvlslon E. Jacewsky. CORO This office 1s conducting an lnvestlgatfon Into the.operation of the Makepa Dfvlslon of Englshard Industries to determlne the type and extent of actlvi conducted'for the Westinghouse. Bettls Fleld Operations around July 1956. Makepeace Dlvlslon was designated an accountability station by the former Ato Energy Conrmlsslon'o Chicago Operatfons Office under the Pittsburgh Area Offlce. Please provlde any records that can be obtalned In

  9. Fire Protection Functional Areas

    Office of Environmental Management (EM)

    implementation of nuclear safety requirements * Focus is on Site Office (fed) * Promote continuous improvement where deficiencies are identified * Encourage consistent...

  10. Document Number 00029500 Focused Feasibilitv Studv 5.0 Focused Feasibility Study

    Office of Legacy Management (LM)

    00029500 Focused Feasibilitv Studv 5.0 Focused Feasibility Study The purpose of a CERCLA feasibility study is to develop, screen, and analyze potential remedial options for managing risk at uncontrolled hazardous waste sites (EPA 1988) in a manner that "reflect[s] the scope and complexity of the remedial action under consideration and the site problems being addressed" (EPA 1990). The feasibility study presented in this section is a focused feasibility study (FFS) because it follows

  11. Profile of the chemicals industry in California: Californiaindustries of the future program

    SciTech Connect (OSTI)

    Galitsky, Christina; Worrell, Ernst

    2004-06-01

    The U.S. Department of Energy (DOE) Office of Industrial Technologies (OIT) established the Industries of the Future (IOF) program to increase energy efficiency, reduce waste production and to improve competitiveness, currently focusing on nine sectors. The IOF is a partnership strategy involving industry, the research community and the government, working together to identify technology needs, promote industrial partnerships and implement joint measures with all partners involved. The State Industries of the Future (SIOF) program delivers the accomplishments of the national Industries of the Future strategy to the local level, to expand the technology opportunities to a larger number of partners and reach smaller businesses and manufacturers that were not initially involved in the IOF effort. The state programs bring together industry, academia, and state agencies to address the important issues confronting industry in the state. These public-private coalitions facilitate industry solutions locally and enhance economic development. California has started a State Industries of the Future effort, in collaboration with the U.S. Department of Energy. The California Energy Commission (CEC) is leading the SIOF program in California, as part of many other programs to improve the energy efficiency and performance of industries in California. The California State IOF program aims to build a network of participants from industry, academia and government in four selected industrial sectors as a basis for the development of a strategic partnership for industrial energy efficient technology in the state. In California the IOF effort focuses petroleum refining, chemical processing, food processing and electronics. As part of this effort, the SIOF program will develop roadmaps for technology development for the selected sectors. On the basis of the roadmap, the program will develop successful projects with co-funding from state and federal government, and promote industry-specific energy-efficiency. An important element of the SIOF-program is the preparation of R&D roadmaps for each of the selected industries. The roadmap will help to identify priority needs for the participating industries to meet their energy challenges. The roadmap effort builds on the roadmaps developed by DOE, and on the conditions specific for the industry in California. Key to the successful preparation of a roadmap in the selected industries is the development of a profile of the industries. The profile provides a basis for the participants in the roadmap-effort, especially as the structure of the industries in California can be different than in the nation. The sector profiles describe the current economic and energy situation of these industries in California, the processes and energy uses, and the potential future developments in each industry. The profiles are an integral part of the roadmap, to help working group partners to evaluate the industry's R&D needs for their industry in California. In this report, we focus on the chemicals industry. The industry is an important economic factor in the state, providing over 82,300 jobs directly, and more in indirect employment. Value of shipments in 2001 was just under $25.7 Billion, or 6% of all manufacturing in California. There are over 1,500 chemical plants in California, of which 52% are pharmaceutical companies. Many companies operate chemical plants in California. The industry consumes 8% of the electricity and 5% of the natural gas in California. In this report, we start with a description of the chemical industry in the United States and California. This is followed by a discussion of the energy consumption and energy intensity of the Californian chemical industry. Chapter 3 focuses on the main sub-sectors. For each of the sub-sectors a general process description is provided in Chapter 4. Based on this analysis, in Chapter 5, we discuss potential technology developments that can contribute to further improving the energy efficiency in chemical plants, with a focus on the situation in California.

  12. Technical efforts focus on cutting LNG plant costs

    SciTech Connect (OSTI)

    Aoki, Ichizo; Kikkawa, Yoshitsugi

    1995-07-03

    LNG demand is growing due to the nuclear setback and environmental issues spurred by concern about the greenhouse effect and acid rain, especially in the Far East. However, LNG is expensive compared with other energy sources. Efforts continue to minimize capital and operating costs and to increase LNG plant availability and safety. Technical trends in the LNG industry aim at reducing plant costs in pursuit of a competitive LNG price on an energy value basis against the oil price. This article reviews key areas of technical development. Discussed are train size, liquefaction processes, acid gas removal, heavy end removal, nitrogen rejection, refrigeration compressor and drivers, expander application, cooling media selection, LNG storage and loading system, and plant availability.

  13. Sweet Surface Area

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sweet Surface Area Sweet Surface Area Create a delicious root beer float and learn sophisticated science concepts at the same time. Sweet Surface Area Science is all around us, so...

  14. Roadmap 2030: The U.S. Concrete Industry Technology Roadmap

    SciTech Connect (OSTI)

    none,

    2002-12-01

    Roadmap 2030: The U.S. Concrete Industry Technology Roadmap tracks the eight goals published in the American Concrete Institute Strategic Development Council's Vision 2030: A Vision for the U.S. Concrete Industry. Roadmap 2030 highlights existing state-of-the-art technologies and emerging scientific advances that promise high potential for innovation, and predicts future technological needs. It defines enabling research opportunities and proposes areas where governmental-industrial-academic partnerships can accelerate the pace of development. Roadmap 2030 is a living document designed to continually address technical, institutional, and market changes.

  15. Economics at the FTC: Cases and research, with a focus on petroleum

    SciTech Connect (OSTI)

    Froeb, L.; Cooper, J.; Frankena, M.; Pautler, P.; Silvia, L.

    2005-11-01

    Economics at the Federal Trade Commission (FTC) covers both the antitrust and consumer protection missions. In this year's essay, we focus mainly on the competition-side of the agency. Drawing on a wealth of recent research, we provide descriptive and analytical information about the petroleum industry. Mergers, as always, were a major preoccupation of the FTC, and we discuss a few oil industry mergers as well as one leading litigated case - Arch Coal's acquisition of Triton Coal. Finally, we review the empirical literature on the effects of vertical restraints, noting that the literature supporting an animus toward such restraints is surprisingly weak.

  16. The US textile industry: An energy perspective

    SciTech Connect (OSTI)

    Badin, J. S.; Lowitt, H. E.

    1988-01-01

    This report investigates the state of the US textile industry in terms of energy consumption and conservation. Specific objectives were: To update and verify energy and materials consumption data at the various process levels in 1984; to determine the potential energy savings attainable with current (1984), state-of-the-art, and future production practices and technologies (2010); and to identify new areas of research and development opportunity that will enable these potential future savings to be achieved. Results of this study concluded that in the year 2010, there is a potential to save between 34% and 53% of the energy used in current production practices, dependent on the projected technology mix. RandD needs and opportunities were identified for the industry in three categories: process modification, basic research, and improved housekeeping practices that reduce energy consumption. Potential RandD candidates for DOE involvement with the private sector were assessed and selected from the identified list.

  17. Macro-Industrial Working Group Meeting 2: Industrial updates...

    U.S. Energy Information Administration (EIA) Indexed Site

    energy efficiency side case - Allows for technology deployment based on economics of capital and fuel costs Industrial Team, MIWG 2, February 18, 2016 3 Data updates & regulation ...

  18. Physics Thrust Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thrust Areas Physics Thrust Areas Physics Division serves the nation through its broad portfolio of fundamental and applied research. Quality basic science research: critical ...

  19. Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011

    Broader source: Energy.gov [DOE]

    High-risk, high-value research and development focused on energy efficiency that industry would not typically pursue without federal leadership and support by public-private partnership.

  20. Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011- pg 7

    Broader source: Energy.gov [DOE]

    High-risk, high-value research and development focused on energy efficiency that industry would not typically pursue without federal leadership and support by public-private partnership.

  1. Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011- pg 3

    Broader source: Energy.gov [DOE]

    High-risk, high-value research and development focused on energy efficiency that industry would not typically pursue without federal leadership and support by public-private partnership.

  2. Grand Challenge Portfolio: Driving Innovations in Industrial Energy Efficiency, January 2011- pg 5

    Broader source: Energy.gov [DOE]

    High-risk, high-value research and development focused on energy efficiency that industry would not typically pursue without federal leadership and support by public-private partnership.

  3. Focused electron and ion beam systems

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Reijonen, Jani; Persaud, Arun; Ji, Qing; Jiang, Ximan

    2004-07-27

    An electron beam system is based on a plasma generator in a plasma ion source with an accelerator column. The electrons are extracted from a plasma cathode in a plasma ion source, e.g. a multicusp plasma ion source. The beam can be scanned in both the x and y directions, and the system can be operated with multiple beamlets. A compact focused ion or electron beam system has a plasma ion source and an all-electrostatic beam acceleration and focusing column. The ion source is a small chamber with the plasma produced by radio-frequency (RF) induction discharge. The RF antenna is wound outside the chamber and connected to an RF supply. Ions or electrons can be extracted from the source. A multi-beam system has several sources of different species and an electron beam source.

  4. Radio frequency focused interdigital linear accelerator

    DOE Patents [OSTI]

    Swenson, Donald A.; Starling, W. Joel

    2006-08-29

    An interdigital (Wideroe) linear accelerator employing drift tubes, and associated support stems that couple to both the longitudinal and support stem electromagnetic fields of the linac, creating rf quadrupole fields along the axis of the linac to provide transverse focusing for the particle beam. Each drift tube comprises two separate electrodes operating at different electrical potentials as determined by cavity rf fields. Each electrode supports two fingers, pointing towards the opposite end of the drift tube, forming a four-finger geometry that produces an rf quadrupole field distribution along its axis. The fundamental periodicity of the structure is equal to one half of the particle wavelength .beta..lamda., where .beta. is the particle velocity in units of the velocity of light and .lamda. is the free space wavelength of the rf. Particles are accelerated in the gaps between drift tubes. The particle beam is focused in regions inside the drift tubes.

  5. focused ion beam cross-sectioning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    focused ion beam cross-sectioning - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  6. CHARTER OF THE TRITIUM FOCUS GROUP (TFG)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CHARTER OF THE TRITIUM FOCUS GROUP (TFG) APRIL 2013 PURPOSE - The purpose of the TFG, a Standing DOE Working Group, is to promote cost-effective improvements in tritium safety, handling, transportation, storage, and operations, and to enhance communication across the Department of Energy (DOE) (inclusive of the National Nuclear Security Administration (NNSA)) on all matters related to tritium. OBJECTIVES - The objectives of the TFG include: 1. Serving as an efficient forum for communication and

  7. Permanent magnet focused X-band photoinjector

    DOE Patents [OSTI]

    Yu, David U. L. (Rancho Palos Verdes, CA); Rosenzweig, James (Los Angeles, CA)

    2002-09-10

    A compact high energy photoelectron injector integrates the photocathode directly into a multicell linear accelerator with no drift space between the injection and the linac. High electron beam brightness is achieved by accelerating a tightly focused electron beam in an integrated, multi-cell, X-band rf linear accelerator (linac). The photoelectron linac employs a Plane-Wave-Transformer (PWT) design which provides strong cell-to-cell coupling, easing manufacturing tolerances and costs.

  8. Jumpstarting the carbon capture industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jumpstarting the carbon capture industry: Science on the Hill Jumpstarting the carbon capture industry: Science on the Hill Carbon capture, utilization, and storage can provide a crucial bridge between our current global energy economy and a cleaner, more diversified energy future. Researchers from Los Alamos, OSU and the NETL have demonstrated that this approach is technically feasible and poised for full-scale roll-out. October 16, 2015 Jumpstarting the carbon capture industry: Science on the

  9. Industrial Hygiene | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hygiene Ames Laboratory's Industrial Hygiene (IH) Program is dedicated to providing employees a workplace free from or protected against recognized hazards that could potentially cause illness or injury. The basic principles of industrial hygiene are applied: Anticipation, recognition, evaluation and control of workplace hazards. The industrial hygienist participates on Readiness Review committees to assist in anticipation and recognition of chemical, physical, biological, or ergonomic hazards.

  10. Industrial energy management and utilization

    SciTech Connect (OSTI)

    Witte, L.C.; Schmidt, P.S.; Brown, D.

    1986-01-01

    This text covers the principles of industrial energy conservation and energy conservation applications, with emphasis on the energy-intensive industries. Topics covered include energy consumption, alternative energy sources, elements of energy audits, economic investment analysis, management of energy conservation programs, boilers and fired heaters, steam and condensate systems, classification and fouling of heat exchangers, heat transfer augmentation, waste heat sources, heat recovery equipment, properties and characteristics of insulation, energy conservation in industrial buildings, cogeneration, power circuit components and energy conversion devices, electrical energy conservation. A review of the fundamentals of fluid mechanics, heat transfer, and thermodynamics, as well as examples, problems, and case studies from specific industries are included.

  11. Greenline Industries | Open Energy Information

    Open Energy Info (EERE)

    Industries Place: San Rafael, California Zip: 94901 Product: Small to medium scale biodiesel plants designer and producer. They also run a biodiesel plant in Vallejo,...

  12. Commercial & Industrial Renewable Energy Grants

    Broader source: Energy.gov [DOE]

    The New Hampshire Public Utilities Commission (PUC) offers grant funding for renewable energy projects installed at commercial, industrial, public, non-profit, municipal or school facilities, or ...

  13. Industrial Feedstock Flexibility Workshop Results

    SciTech Connect (OSTI)

    Ozokwelu, Dickson; Margolis, Nancy; Justiniano, Mauricio; Monfort, Joe; Brueske, Sabine; Sabouni, Ridah

    2009-08-01

    This report (PDF 649 KB) summarizes the results of the 2009 Industrial Feedstock Flexibility Workshop, which took place in Atlanta, GA on August 19-20, 2009.

  14. Collaborating with Industry for Innovation

    SciTech Connect (OSTI)

    2004-03-01

    This is a brochure describing Laboratory Coordinating Council's network of labs and facilities to promote partnership between industry and national laboratories.

  15. CMMS in the Wind Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the tools sets available to the wind industry. To increase the insight into Computer Maintenance Management Systems (CMMS) or Enterprise Asset Management (EAM) systems, Sandia...

  16. Industry Interactive Procurement System (IIPS)

    Broader source: Energy.gov [DOE]

    Presentation on DOE’s Industry Interactive Procurement System (IIPS) presented at the PEM fuel cell pre-solicitation meeting held May 26, 2005 in Arlington, VA.

  17. Jax Industries | Open Energy Information

    Open Energy Info (EERE)

    Jax Industries Place: Hillsboro, Oregon Product: Developer of recharge systems for CZ process silicon ingot growers, some of which produce PV silicon feedstock. Coordinates:...

  18. DMI Industries | Open Energy Information

    Open Energy Info (EERE)

    (NASDAQ: OTTR), is a diversified heavy steel manufacturer with a primary concentration on wind tower fabrication. References: DMI Industries1 This article is a stub....

  19. Proceedings of the 1992 DOE-industry thermal distribution conference

    SciTech Connect (OSTI)

    Andrews, J.W.

    1992-06-01

    The subject of the conference was thermal distribution in small buildings. Thermal distribution systems are the ductwork, piping, or other means used to transport heat or cooling effect from the equipment in which the heat or cooling is produced to the building spaces in which it is used. The small buildings category is defined to include single-family residential and multifamily and commercial buildings with less than 10,000 ft{sup 2} floor area. The 1992 DOE-Industry Thermal Distribution Conference was conceived as the beginning of a process of information transfer between the DOE and the industries having a stake in thermal distribution systems, whereby the DOE can make the industry aware of its thinking and planned directions early enough for changes to be made, and whereby the industries represented can provide this input to the DOE on a timely and informed basis. In accordance with this, the objectives of the Conference were: To present--to a representative group of researchers and industry representative--the current industry thinking and DOE`s current directions for research in small-building thermal distribution. To obtain from industry and the research community a critique of the DOE priorities and additional ideas concerning how DOE can best assist the industry in promoting energy conservation in thermal distribution systems.

  20. Proceedings of the 1992 DOE-industry thermal distribution conference

    SciTech Connect (OSTI)

    Andrews, J.W.

    1992-06-01

    The subject of the conference was thermal distribution in small buildings. Thermal distribution systems are the ductwork, piping, or other means used to transport heat or cooling effect from the equipment in which the heat or cooling is produced to the building spaces in which it is used. The small buildings category is defined to include single-family residential and multifamily and commercial buildings with less than 10,000 ft{sup 2} floor area. The 1992 DOE-Industry Thermal Distribution Conference was conceived as the beginning of a process of information transfer between the DOE and the industries having a stake in thermal distribution systems, whereby the DOE can make the industry aware of its thinking and planned directions early enough for changes to be made, and whereby the industries represented can provide this input to the DOE on a timely and informed basis. In accordance with this, the objectives of the Conference were: To present--to a representative group of researchers and industry representative--the current industry thinking and DOE's current directions for research in small-building thermal distribution. To obtain from industry and the research community a critique of the DOE priorities and additional ideas concerning how DOE can best assist the industry in promoting energy conservation in thermal distribution systems.

  1. Southeast Electronic Book of Industrial Resources

    SciTech Connect (OSTI)

    2010-06-25

    This Industrial Technologies Program handbook connects industry with the various energy efficiency resources available in the midwest.

  2. Advanced Manufacturing Office (Formerly Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Office (Formerly Industrial Technologies Program) Advanced Manufacturing Office (Formerly Industrial Technologies Program) Presented at the NREL Hydrogen and Fuel...

  3. Midstate Electric Cooperative - Commercial and Industrial Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial and Industrial Energy Efficiency Rebate Program Midstate Electric Cooperative - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial...

  4. Guiding Principles for Successfully Implementing Industrial Energy...

    Office of Environmental Management (EM)

    Guiding Principles for Successfully Implementing Industrial Energy Assessment Recommendations Guiding Principles for Successfully Implementing Industrial Energy Assessment...

  5. Kerala Industrial Infrastructure Development Corporation Kinfra...

    Open Energy Info (EERE)

    Kerala Industrial Infrastructure Development Corporation Kinfra Jump to: navigation, search Name: Kerala Industrial Infrastructure Development Corporation (Kinfra) Place:...

  6. ITP Chemicals: Industrial Feedstock Flexibility Workshop Results...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Feedstock Flexibility Workshop Results, December 2009 ITP Chemicals: Industrial Feedstock Flexibility Workshop Results, December 2009 PDF icon feedstockworkshopreport....

  7. China National Machinery Industry Complete Engineering Corporation...

    Open Energy Info (EERE)

    Industry Complete Engineering Corporation CMCEC Jump to: navigation, search Name: China National Machinery Industry Complete Engineering Corporation (CMCEC) Place: Beijing,...

  8. The Industrialization of Thermoelectric Power Generation Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Industrialization of Thermoelectric Power Generation Technology The Industrialization of Thermoelectric Power Generation Technology Presents module and system requirements for...

  9. American Indian tribes and electric industry restructuring: Issues and opportunities

    SciTech Connect (OSTI)

    Howarth, D.; Busch, J.; Starrs, T.

    1997-07-01

    The US electric utility industry is undergoing a period of fundamental change that has significant implications for Native American tribes. Although many details remain to be determined, the future electric power industry will be very different from that of the present. It is anticipated that the new competitive electric industry will be more efficient, which some believe will benefit all participants by lowering electricity costs. Recent developments in the industry, however, indicate that the restructuring process will likely benefit some parties at the expense of others. Given the historical experience and current situation of Native American tribes in the US, there is good reason to pay attention to electric industry changes to ensure that the situation of tribes is improved and not worsened as a result of electric restructuring. This paper provides a review of electricity restructuring in the US and identifies ways in which tribes may be affected and how tribes may seek to protect and serve their interests. Chapter 2 describes the current status of energy production and service on reservations. Chapter 3 provides an overview of the evolution of the electric industry to its present form and introduces the regulatory and structural changes presently taking place. Chapter 4 provides a more detailed discussion of changes in the US electric industry with a specific focus on the implications of these changes for tribes. Chapter 5 presents a summary of the conclusions reached in this paper.

  10. 100 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    00 Area About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration Disposal Facility F Reactor H

  11. 200 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    00 Area About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration Disposal Facility F Reactor H

  12. 300 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration Disposal Facility F Reactor H

  13. 700 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    700 Area About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration Disposal Facility F Reactor H

  14. Energy Intensity Indicators: Industrial Source Energy Consumption |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Industrial Source Energy Consumption Energy Intensity Indicators: Industrial Source Energy Consumption The industrial sector comprises manufacturing and other nonmanufacturing industries not included in transportation or services. Manufacturing includes 18 industry sectors, generally defined at the three-digit level of the North American Industrial Classification System (NAICS). The nonmanufacturing sectors are agriculture, forestry and fisheries, mining, and

  15. Energy Conservation Projects to Benefit the Railroad Industry

    SciTech Connect (OSTI)

    Clifford Mirman; Promod Vohra

    2009-12-31

    The Energy Conservation Projects to benefit the railroad industry using the Norfolk Southern Company as a model for the railroad industry has five unique tasks which are in areas of importance within the rail industry, and specifically in the area of energy conservation. The NIU Engineering and Technology research team looked at five significant areas in which research and development work can provide unique solutions to the railroad industry in energy the conservation. (1) Alternate Fuels - An examination of various blends of bio-based diesel fuels for the railroad industry, using Norfolk Southern as a model for the industry. The team determined that bio-diesel fuel is a suitable alternative to using straight diesel fuel, however, the cost and availability across the country varies to a great extent. (2) Utilization of fuel cells for locomotive power systems - While the application of the fuel cell has been successfully demonstrated in the passenger car, this is a very advanced topic for the railroad industry. There are many safety and power issues that the research team examined. (3) Thermal and emission reduction for current large scale diesel engines - The current locomotive system generates large amount of heat through engine cooling and heat dissipation when the traction motors are used to decelerate the train. The research team evaluated thermal management systems to efficiently deal with large thermal loads developed by the operating engines. (4) Use of Composite and Exotic Replacement Materials - Research team redesigned various components using new materials, coatings, and processes to provide the needed protection. Through design, analysis, and testing, new parts that can withstand the hostile environments were developed. (5) Tribology Applications - Identification of tribology issues in the Railroad industry which play a significant role in the improvement of energy usage. Research team analyzed and developed solutions which resulted in friction modification to improve energy efficiency.

  16. Hacking Away at Soft Costs: 24-Hour Coding Event Focuses on Expanding Solar

    Office of Environmental Management (EM)

    Market | Department of Energy Hacking Away at Soft Costs: 24-Hour Coding Event Focuses on Expanding Solar Market Hacking Away at Soft Costs: 24-Hour Coding Event Focuses on Expanding Solar Market May 7, 2014 - 2:45pm Addthis Douglas Hitching (left), CEO of Silicon Solar Solutions and Henry Chung, LG, talk during a one-on-one networking session at the National Renewable Energy Laboratory's Industry Growth Forum in 2012. The SunShot Initiative and the National Renewable Energy Laboratory are

  17. AVLIS industrial access program

    SciTech Connect (OSTI)

    Not Available

    1984-11-15

    This document deals with the procurements planned for the construction of an Atomic Vapor Laser Isotope Separation (AVLIS) production plant. Several large-scale AVLIS facilities have already been built and tested; a full-scale engineering demonstration facility is currently under construction. The experience gained from these projects provides the procurement basis for the production plant construction and operation. In this document, the status of the AVLIS process procurement is presented from two viewpoints. The AVLIS Production Plant Work Breakdown Structure is referenced at the level of the items to be procured. The availability of suppliers for the items at this level is discussed. In addition, the work that will result from the AVLIS enrichment plant project is broken down by general procurement categories (construction, mechanical equipment, etc.) and the current AVLIS suppliers are listed according to these categories. A large number of companies in all categories are currently providing AVLIS equipment for the Full-Scale Demonstration Facility in Livermore, California. These companies form an existing and expanding supplier network for the AVLIS program. Finally, this document examines the relationship between the AVLIS construction project/operational facility and established commercial suppliers. The goal is to utilize existing industrial capability to meet the needs of the project in a competitive procurement situation. As a result, costs and procurement risks are both reduced because the products provided come from within the AVLIS suppliers' experience base. At the same time, suppliers can benefit by the potential to participate in AVLIS technology spin-off markets. 35 figures.

  18. Innovation investment area: Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The mission of Environmental Management`s (EM) Office of Technology Development (OTD) Innovation Investment Area is to identify and provide development support for two types of technologies that are developed to characterize, treat and dispose of DOE waste, and to remediate contaminated sites. They are: technologies that show promise to address specific EM needs, but require proof-of-principle experimentation; and (2) already proven technologies in other fields that require critical path experimentation to demonstrate feasibility for adaptation to specific EM needs. The underlying strategy is to ensure that private industry, other Federal Agencies, universities, and DOE National Laboratories are major participants in developing and deploying new and emerging technologies. To this end, about 125 different new and emerging technologies are being developed through Innovation Investment Area`s (IIA) two program elements: RDDT&E New Initiatives (RD01) and Interagency Agreements (RD02). Both of these activities are intended to foster research and development partnerships so as to introduce innovative technologies into other OTD program elements for expedited evaluation.

  19. Industrial energy management and utilization

    SciTech Connect (OSTI)

    Witte, L.C.; Schmidt, P.S.; Brown, D.R.

    1988-01-01

    This book presents a study of the technical, economic and management principles of effective energy use. The authors report on: energy consumption, conservation, and resources. They present an analysis of thermal-fluid systems. Energy conservation in combustion systems. Heat exchangers, heat recovery, energy conservation in industrial buildings, and industrial cogeneration are discussed.

  20. Industrial Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies » Technology Marketing Summaries Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Marketing Summaries (358) Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories

  1. Knowledge Boosting Curriculum for New Wind Industry Professionals Final Technical Report

    SciTech Connect (OSTI)

    Marsh, Ruth H.; Rogers, Anthony L.

    2012-12-18

    DNV Renewables (USA) Inc. (DNV KEMA) received a grant from the U.S. Department of Energy (DOE) to develop the curriculum for a series of short courses intended to address Topic Area 5 â?? Workforce Development, one of the focus areas to achieve the goals outlined in 20% Wind by 2030: Increasing Wind Energyâ??s Contribution to Electricity Supply. The aim of the curriculum development project was to provide material for instructors to use in a training program to help professionals transition into careers in wind energy. Under this grant DNV KEMA established a â??knowledge boostingâ? program for the wind energy industry with the following objectives: 1. Develop technical training curricula and teaching materials for six key topic areas that can be implemented in a flexible format by a knowledgeable instructor. The topic areas form a foundation that can be leveraged for subsequent, more detailed learning modules (not developed in this program). 2. Develop an implementation guidance document to accompany the curricula outlining key learning objectives, implementation methods, and guidance for utilizing the curricula. This curriculum is intended to provide experienced trainers course material that can be used to provide course participants with a basic background in wind energy and wind project development. The curriculum addresses all aspects of developing a wind project, that when implemented can be put to use immediately, making the participant an asset to U.S. wind industry employers. The curriculum is comprised of six short modules, together equivalent in level of content to a one-semester college-level course. The student who completes all six modules should be able to understand on a basic level what is required to develop a wind project, speak with a reasonable level of confidence about such topics as wind resource assessment, energy assessment, turbine technology and project economics, and contribute to the analysis and review of project information. The content of the curriculum is based on DNV KEMAâ??s extensive experience in consulting and falls under six general topics: 1. Introduction to wind energy 2. Wind resource and energy assessment 3. Wind turbine systems and components 4. Wind turbine installation, integration, and operation 5. Feasibility studies 6. Project economics Each general topic (module) covers 10-15 sub-topics. Representatives from industry provided input on the design and content of the modules as they were developed. DNV KEMA developed guidance documents to accompany the training curricula and materials in order to facilitate usage of the curricula in a manner consistent with industries requirements. Internal and external pilot trainings using selections of the curriculum provided valuable feedback that was then used to modify and improve the material and make it more relevant to participants. The pilot trainings varied in their content and intensity, and each served as an opportunity for the trainers to better understand which techniques proved to be the most successful for accelerated learning. In addition, the varied length and content of the trainings, which were adjusted to suit the focus and budget for each particular situation, highlight the flexibility of the format. The material developed under this program focused primarily on onshore wind project development. The course material could be extended in the future to address the unique aspects of offshore project development.

  2. LANSCE | Lujan Center | Science Thrust Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Thrust Areas User research at the Lujan Center is focused in four science thrust areas. Each has a contact person who is available to discuss proposed experiments and to provide advice on the appropriate instrument and instrument scientist, available sample environments, and other details for planned experiments. Lujan Center instrument scientists welcome questions and discussions about new experiments and are happy to provide guidance for proposal development. New users are encouraged

  3. Natural Gas Industrial Price

    Gasoline and Diesel Fuel Update (EIA)

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History U.S. 5.49 5.13 3.88 4.64 5.55 3.84 1997-2015 Alabama 6.64 5.57 4.35 4.98 5.49 3.94 1997-2015 Alaska 4.23 3.84 5.11 8.16 7.97 7.21 1997-2015 Arizona 7.54 6.86 5.78 6.29 7.52 NA 1997-2015 Arkansas 7.28 7.44 6.38 6.74 6.99 6.97 1997-2015 California 7.02 7.04 5.77 6.57 7.65 6.35 1997-2015 Colorado

  4. Natural Gas Industrial Price

    Gasoline and Diesel Fuel Update (EIA)

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History U.S. 5.49 5.13 3.88 4.64 5.55 3.84 1997-2015 Alabama 6.64 5.57 4.35 4.98 5.49 3.94 1997-2015 Alaska 4.23 3.84 5.11 8.16 7.97 7.21 1997-2015 Arizona 7.54 6.86 5.78 6.29 7.52 NA 1997-2015 Arkansas 7.28 7.44 6.38 6.74 6.99 6.97 1997-2015 California 7.02 7.04 5.77 6.57 7.65 6.35 1997-2015 Colorado

  5. Technical Area 21

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Area 21 Technical Area 21 Technical Area 21 was the site of chemical research for refining plutonium and plutonium metal production from 1945 to 1978. August 1, 2013 Technical Area 21 in 2011 Technical Area 21 in 2011 Technical Area 21 (TA-21), also known as DP Site was the site of chemical research for refining plutonium and plutonium metal production from 1945 to 1978. Between 2008 and 2011, MDAs B, U, and V were excavated and removed. 24 buildings were demolished in 2010 and 2011

  6. Environmental inequity, industrial siting, and the structure of american cities

    SciTech Connect (OSTI)

    Oakes, J.M.; Anderton, D.L.; Anderson, A.B.

    1995-12-01

    Much of the recent environmental equity research has emphasized the overlapping social and spatial distributions of commercial hazardous waste facilities (TDSFs). Yet, national studies using census tract data challenge the appearance of inequities in the distribution of TDSFs. This research suggest that the appearance of inequities may arise not from siting biases, but rather from general patterns of residential segregation, industrial zoning and the social construction of neighborhoods. In this article we consider this evidence and the longitudinal characteristics of communities both before and after TSDFs were sited. We also expand our national analyses to include pilot studies of both the broader set of all RCRA governed facilities and an even larger set of all industrial manufacturing firms. Consistent with our earlier research, these analyses suggest that TSDF, RCRA and industrial manufacturing firms in general, are not disproportionately sited in census tracts with greater percentages of minority or disadvantaged communities. We suggest the appearance of inequity in larger geographic areas of analysis may reflect patterns of city development and segregation. Historically, minority, ethnic and disadvantaged residents have been more likely to live in older and less costly residential areas which often emerged from working class or tenement housing on the fringe of industrial manufacturing areas. Regulatory initiatives, such as land use zoning, have reinforced these historical distinctions. We conclude by suggesting that environmental equity must address these more general patterns of residential segregation and historical industrial development in addition to questions of discriminatory siting.

  7. Future Public Policy and Ethical Issues Facing the Agricultural and Microbial Genomics Sectors of the Biotechnology Industry: A Roundtable Discussion

    SciTech Connect (OSTI)

    Diane E. Hoffmann

    2003-09-12

    On September 12, 2003, the University of Maryland School of Law's Intellectual Property and Law & Health Care Programs jointly sponsored and convened a roundtable discussion on the future public policy and ethical issues that will likely face the agricultural and microbial genomics sectors of the biotechnology industry. As this industry has developed over the last two decades, societal concerns have moved from what were often local issues, e.g., the safety of laboratories where scientists conducted recombinant DNA research on transgenic microbes, animals and crops, to more global issues. These newer issues include intellectual property, international trade, risks of genetically engineered foods and microbes, bioterrorism, and marketing and labeling of new products sold worldwide. The fast paced nature of the biotechnology industry and its new developments often mean that legislators, regulators and society, in general, must play ''catch up'' in their efforts to understand the issues, the risks, and even the benefits, that may result from the industry's new ways of conducting research, new products, and novel methods of product marketing and distribution. The goal of the roundtable was to develop a short list of the most significant public policy and ethical issues that will emerge as a result of advances in these sectors of the biotechnology industry over the next five to six years. More concretely, by ''most significant'' the conveners meant the types of issues that would come to the attention of members of Congress or state legislators during this time frame and for which they would be better prepared if they had well researched and timely background information. A concomitant goal was to provide a set of focused issues for academic debate and scholarship so that policy makers, industry leaders and regulators would have the intellectual resources they need to better understand the issues and concerns at stake. The goal was not to provide answers to any of the issues or problems, simply to identify those topics that deserve our attention as a society. Some of the issues may benefit from legislation at the federal or state levels, others may be more appropriately addressed by the private sector. Participants at the roundtable included over a dozen experts in the areas of microbiology, intellectual property, agricultural biotechnology, microbial genomics, bioterrorism, economic development, biotechnology research, and bioethics. These experts came from federal and state government, industry and academia. The participants were asked to come to the roundtable with a written statement of the top three to five public policy/ ethical issues they viewed as most likely to be significant to the industry and to policy makers over the next several years.

  8. Aug. 27 Webinar Will Focus on Financing Facility- and Community-Scale

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tribal Renewable Energy Projects | Department of Energy 27 Webinar Will Focus on Financing Facility- and Community-Scale Tribal Renewable Energy Projects Aug. 27 Webinar Will Focus on Financing Facility- and Community-Scale Tribal Renewable Energy Projects August 20, 2014 - 5:45pm Addthis Webinar Sponsors: EERE Tribal Energy Program, DOE Office of Indian Energy, Western Area Power Administration The U.S. Department of Energy (DOE) Office of Indian Energy, Tribal Energy Program, and Western

  9. Feb. 25 Webinar Will Focus on Managing and Implementing Energy Projects for

    Office of Environmental Management (EM)

    Community Economic Development | Department of Energy Feb. 25 Webinar Will Focus on Managing and Implementing Energy Projects for Community Economic Development Feb. 25 Webinar Will Focus on Managing and Implementing Energy Projects for Community Economic Development February 20, 2015 - 5:41pm Addthis The U.S. Department of Energy (DOE) Office of Indian Energy, in partnership with Western Area Power Administration (Western), will present the next Tribal Renewable Energy Series webinar,

  10. March 25 Webinar to Focus on Building Tribal Capacity to Deploy Strategic

    Office of Environmental Management (EM)

    Energy Plans and Guide Project Development Decisions | Department of Energy March 25 Webinar to Focus on Building Tribal Capacity to Deploy Strategic Energy Plans and Guide Project Development Decisions March 25 Webinar to Focus on Building Tribal Capacity to Deploy Strategic Energy Plans and Guide Project Development Decisions March 19, 2015 - 10:05am Addthis The U.S. Department of Energy (DOE) Office of Indian Energy, in partnership with Western Area Power Administration (Western), will

  11. The Focusing DIRC with Waveform Digitizing Electronics

    SciTech Connect (OSTI)

    Ruckman, L.L.; Nishimura, K.; Varner, G.S.; Vavra, J.; Aston, D.; Leith, D.W.G.S.; Ratcliff, B.; /SLAC

    2012-06-15

    We have tested a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC) with waveform digitizing electronics. The prototype's concept is based on the BaBar DIRC with several important improvements: (a) much faster, pixelated photon detectors, (b) a mirror that makes the photon detector smaller and less sensitive to background in future applications, and (c) electronics capable of measuring single photon resolution to {sigma} {approx} 150 ps, which allows for correction due to chromatic error. In this test, the prototype has been instrumented with seven Hamamatsu H-8500 MaPMTs. Waveforms from {approx}450 pixels are digitized with waveform sampling electronics based on the BLAB2 ASIC, operating at a sampling speed of {approx}2.5 GSa/s. This version of the FDIRC prototype was tested in a large cosmic ray telescope providing muon tracks with {approx}1 mrad angular resolution and a muon momentum cutoff of {ge} 1.6 GeV/c.

  12. Digital reverse propagation in focusing Kerr media

    SciTech Connect (OSTI)

    Goy, Alexandre; Psaltis, Demetri

    2011-03-15

    Lenses allow the formation of clear images in homogeneous linear media. Holography is an alternative imaging method, but its use is limited to cases in which it provides an advantage, such as three-dimensional imaging. In nonlinear media, lenses no longer work. The light produces intensity-dependent aberrations. The reverse propagation method used in digital holography to form images from recorded holograms works even in Kerr media [M. Tsang, D. Psaltis, and F. G. Omenetto, Opt. Lett. 28, 1873 (2003).]. The principle has been experimentally demonstrated recently in defocusing media [C. Barsi, W.Wan, and J.W. Fleischer, Nat. Photonics 3, 211 (2009).]. Here, we report experimental results in focusing media.

  13. Independent focuses Philippines exploration on Visayan basin

    SciTech Connect (OSTI)

    Rillera, F.G.

    1995-08-21

    Cophil Exploration Corp., a Filipino public company, spearheaded 1995 Philippine oil and gas exploration activity with the start of its gas delineation drilling operations in Libertad, northern Cebu. Cophil and its Australian partners, Coplex Resources NL and PacRim Energy NL, have set out to complete a seven well onshore drilling program within this block this year. The companies are testing two modest shallow gas plays, Libertad and Dalingding, and a small oil play, Maya, all in northern Cebu about 500 km southeast of Manila. Following a short discussion on the geology and exploration history of the Visayan basin, this article briefly summarizes Cophil`s ongoing Cebu onshore drilling program. Afterwards, discussion focuses on identified exploration opportunities in the basin`s offshore sector.

  14. Site Monitoring Area Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maps Individual Permit: Site Monitoring Area Maps Each Site Monitoring Area Map is updated whenever the map information is updated. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email What do these maps show? The Individual Permit for Storm Water site monitoring area maps display the following information: Surface hydrological features Locations of the Site(s) assigned to the Site Monitoring Area (SMA) The Site Monitoring

  15. Mining Industry Energy Bandwidth Study

    SciTech Connect (OSTI)

    none,

    2007-07-01

    The Industrial Technologies Program (ITP) relies on analytical studies to identify large energy reduction opportunities in energy-intensive industries and uses these results to guide its R&D portfolio. The energy bandwidth illustrates the total energy-saving opportunity that exists in the industry if the current processes are improved by implementing more energy-efficient practices and by using advanced technologies. This bandwidth analysis report was conducted to assist the ITP Mining R&D program in identifying energy-saving opportunities in coal, metals, and mineral mining. These opportunities were analyzed in key mining processes of blasting, dewatering, drilling, digging, ventilation, materials handling, crushing, grinding, and separations.

  16. Total quality management (TQM) and the future of the environmental industry: Integration of quality tools and techniques among competing interests

    SciTech Connect (OSTI)

    Bicknell, B.A.; Bicknell, K.D. )

    1993-01-01

    One of the most difficult problems facing industry, regulators, consultants and attorneys involved in the environmental arena is the lack of a functional method of prioritization of the seemingly unreconcilable interests of the varying entities involved in waste reduction, elimination and cleanup. This paper and presentation will address this problem by presenting methodology for problem solving that can be adopted by the competing interests to form a unified systems analysis that has enjoyed widespread use and success in both commercial business and industry, and other regulated government industries such as defense, aerospace and communication. The authors will employ specific examples of case studies with focus on hazardous waste reduction and how the quality tools and techniques commonly referred to as Total Quality Management (such as Quality Function Deployment, Experimental Design, Statistical Process Control and Functional Analysis) are and can be utilized in the process. The authors will illustrate the application of TQM techniques to areas such as process integration (e.g. implementation of the NEPA decision-making), as well as functional implementation in risk assessment, cost analysis and concurrent engineering (in the case of waste minimization technology development).

  17. Pollution prevention for the kraft pulp and paper industry

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The document is an annotated bibliography of publications related to pollution prevention in the Kraft segment of the pulp and paper industry. It is organized by process area as follows: chip preparation, chemical pulping, pulp washing, bleaching, chemical recovery, recausticizing, power generation, wastewater treatment, papermaking, and general plant. The document contains 269 citations.

  18. Meeting Attendance - 32nd Tritium Focus Group Meeting | Department...

    Office of Environmental Management (EM)

    2nd Tritium Focus Group Meeting Meeting Attendance - 32nd Tritium Focus Group Meeting Attendees to the 32nd Tritium Focus Group Meeting held in Germantown, Maryland, April 23-25,...

  19. Meeting Attendance - 35th Tritium Focus Group Meeting | Department...

    Office of Environmental Management (EM)

    5th Tritium Focus Group Meeting Meeting Attendance - 35th Tritium Focus Group Meeting Attendees to the 35th Tritium Focus Group Meeting held in Princeton, NJ on May 5-7, 2015. PDF...

  20. Advanced Energy Industries, Inc. SEGIS developments.

    SciTech Connect (OSTI)

    Scharf, Mesa P.; Bower, Ward Isaac; Mills-Price, Michael A.; Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali; Kuszmaul, Scott S.; Gonzalez, Sigifredo

    2012-03-01

    The Solar Energy Grid Integration Systems (SEGIS) initiative is a three-year, three-stage project that includes conceptual design and market analysis (Stage 1), prototype development/testing (Stage 2), and commercialization (Stage 3). Projects focus on system development of solar technologies, expansion of intelligent renewable energy applications, and connecting large-scale photovoltaic (PV) installations into the electric grid. As documented in this report, Advanced Energy Industries, Inc. (AE), its partners, and Sandia National Laboratories (SNL) successfully collaborated to complete the final stage of the SEGIS initiative, which has guided new technology development and development of methodologies for unification of PV and smart-grid technologies. The combined team met all deliverables throughout the three-year program and commercialized a broad set of the developed technologies.

  1. Meeting Attendance - 36th Tritium Focus Group Meeting | Department of

    Office of Environmental Management (EM)

    Energy 6th Tritium Focus Group Meeting Meeting Attendance - 36th Tritium Focus Group Meeting Attendees to the 36th Tritium Focus Group Meeting held in Los Alamos, New Mexico, November 03-05, 2015. PDF icon Meeting Attendance - 36th Tritium Focus Group Meeting More Documents & Publications Meeting Attendance - 35th Tritium Focus Group Meeting Meeting Attendance - 34th Tritium Focus Group Meeting Tritium Aging Studies of LaNi4.15Al0.85 (LANA.85)

  2. Industrial Plans for AEO2014

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 10 Industrial Team Washington DC, July 30, 2013 Macro Team: Kay Smith (202) 586-1132 | kay.smith@eia.gov Vipin Arora (202) 586-1048 | vipin.arora@eia.gov Russell Tarver ...

  3. Industrial Demand Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

  4. United States Electricity Industry Primer

    Broader source: Energy.gov [DOE]

    The United States Electricity Industry Primer provides a high-level overview of the U.S. electricity supply chain, including generation, transmission, and distribution; markets and ownership structures, including utilities and regulatory agencies; and system reliability and vulnerabilities.

  5. Industrial Hygienist/Health Physicist

    Broader source: Energy.gov [DOE]

    A successful candidate in this position wil l serve as an Industrial Hygienist/Health Physicist in the Operations and Oversight Division, providing technical oversight of the Oak Ridge National...

  6. Focus Series -- Chicago -- Energy Impact Illinois (EI2) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Series -- Chicago -- Energy Impact Illinois (EI2) Focus Series -- Chicago -- Energy Impact Illinois (EI2) Focus Series -- Chicago -- Energy Impact Illinois (EI2): A...

  7. Focus Series: Maine - Residential Direct Install Program | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maine - Residential Direct Install Program Focus Series: Maine - Residential Direct Install Program Better Buildings Neighborhood Program Focus Series: Maine - Residential Direct...

  8. Summary Report from Theory Focus Session on Hydrogen Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary Report from DOE Theory Focus Session on Hydrogen Storage Materials Kinetics, Mechanics and Microstructure Changes in Storage Media DOE Theory Focus Session on Hydrogen ...

  9. Vice President Biden Unveils Report Focused on Expanding Green...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unveils Report Focused on Expanding Green Jobs And Energy Savings For Middle Class Families Vice President Biden Unveils Report Focused on Expanding Green Jobs And Energy Savings ...

  10. System Simulations of Hybrid Electric Vehicles with Focus on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Simulations of Hybrid Electric Vehicles with Focus on Emissions System Simulations of Hybrid Electric Vehicles with Focus on Emissions Comparative simulations of hybrid ...

  11. Employee-Focused Structure Helps Produce Upgrades for Contractor...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Employee-Focused Structure Helps Produce Upgrades for Contractor Employee-Focused Structure Helps Produce Upgrades for Contractor Photo of a young man sitting on a couch, looking ...

  12. AMO's New Institute Focused on Wide Bandgap Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Focused on Wide Bandgap Power Electronics Manufacturing AMO's New Institute Focused on Wide Bandgap Power Electronics Manufacturing January 15, 2014 - 11:34am Addthis The Next ...

  13. Focus Group Meeting (Activities Status) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress Chart (June 15, 2011) More Documents & Publications Work Group Telecom (Draft Charters) Focus Group Meeting (Activities Status) Focus Group Meeting (Topical Wrap-Up...

  14. Focus Group Meeting (Activities Status) | Department of Energy

    Energy Savers [EERE]

    Activities Status) Focus Group Meeting (Activities Status) Meeting Date: January 20, 2011 The primary purpose of the January 20 Focus Group Meeting was to review the most recent...

  15. Laser Focus World highlights Kaminski's home-grown ARPES spectroscopy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Focus World highlights Kaminski's home-grown ARPES spectroscopy system Laser Focus World senior editor Gail Overton wrote a story on angled-resolved photo-emission...

  16. Staged Upgrades - Homeowner-focused Strategies for Encouraging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Homeowner-focused Strategies for Encouraging Energy Upgrades over Time Staged Upgrades - Homeowner-focused Strategies for Encouraging Energy Upgrades over Time Better Buildings ...

  17. AEO2014: Preliminary Industrial Output

    Gasoline and Diesel Fuel Update (EIA)

    Elizabeth Sendich, Analyst, and Kay Smith, Team Leader Macroeconomic Analysis Team September 26, 2013 Preliminary AEO2014 Macroeconomic Industrial Results DO NOT CITE OR DISTRIBUTE Overview * Preliminary AEO2014 industrial macroeconomic results; runs as of Sept. 23, 2013. * Macroeconomic results are inputs for a variety of NEMS modules, and cover: - Overall economy (for example GDP, interest rates, exports, etc.) - Sectoral detail (for example output of goods and services, employment, etc.) *

  18. Industry Perspective | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Perspective Industry Perspective Fuel cell and biogas industries perspectives. Presented by Mike Hicks, Fuel Cell and Hydrogen Energy Association, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado. PDF icon june2012_biogas_workshop_hicks.pdf More Documents & Publications The Business Case for Fuel Cells 2011: Energizing America's Top Companies 2011 Fuel Cell Technologies Market Report Florida Hydrogen Initiative

  19. Industry Cluster Development Grant winners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Cluster Development Grant winners Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit Industry Cluster Development Grant winners Recipients include Picuris Pueblo and Rio Arriba County February 1, 2015 A new community mural on the Hunter Ford facility in Española celebrates the building's planned revitalization and the future location of the Northern New Mexico Food Hub. A new community

  20. Neutron Radiography Reactor Reactivity -- Focused Lessons Learned

    SciTech Connect (OSTI)

    Eric Woolstenhulme; Randal Damiana; Kenneth Schreck; Ann Marie Phillips; Dana Hewit

    2010-11-01

    As part of the Global Threat Reduction Initiative, the Neutron Radiography Reactor (NRAD) at the Idaho National Laboratory (INL) was converted from using highly enriched uranium (HEU) to low enriched uranium (LEU) fuel. After the conversion, NRAD resumed operations and is meeting operational requirements. Radiography image quality and the number of images that can be produced in a given time frame match pre-conversion capabilities. However, following the conversion, NRADs excess reactivity with the LEU fuel was less than it had been with the HEU fuel. Although some differences between model predictions and actual performance are to be expected, the lack of flexibility in NRADs safety documentation prevented adjusting the reactivity by adding more fuel, until the safety documentation could be modified. To aid future reactor conversions, a reactivity-focused Lessons Learned meeting was held. This report summarizes the findings of the lessons learned meeting and addresses specific questions posed by DOE regarding NRADs conversion and reactivity.

  1. Liquid cooled, linear focus solar cell receiver

    DOE Patents [OSTI]

    Kirpich, Aaron S. (Broomall, PA)

    1985-01-01

    Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

  2. Liquid cooled, linear focus solar cell receiver

    DOE Patents [OSTI]

    Kirpich, A.S.

    1983-12-08

    Separate structures for electrical insulation and thermal conduction are established within a liquid cooled, linear focus solar cell receiver for use with parabolic or Fresnel optical concentrators. The receiver includes a V-shaped aluminum extrusion having a pair of outer faces each formed with a channel receiving a string of solar cells in thermal contact with the extrusion. Each cell string is attached to a continuous glass cover secured within the channel with spring clips to isolate the string from the external environment. Repair or replacement of solar cells is effected simply by detaching the spring clips to remove the cover/cell assembly without interrupting circulation of coolant fluid through the receiver. The lower surface of the channel in thermal contact with the cells of the string is anodized to establish a suitable standoff voltage capability between the cells and the extrusion. Primary electrical insulation is provided by a dielectric tape disposed between the coolant tube and extrusion. Adjacent solar cells are soldered to interconnect members designed to accommodate thermal expansion and mismatches. The coolant tube is clamped into the extrusion channel with a releasably attachable clamping strip to facilitate easy removal of the receiver from the coolant circuit.

  3. Digital radiography: a focus on clinical utility

    SciTech Connect (OSTI)

    Price, R.R.; Rollo, F.D.; Monahan, W.G.; James, A.E. Jr.

    1982-01-01

    This book is interesting and timely in that it covers the new and exciting area of digital radiography. The book begins with chapters on the physics, instrumentation, and terminology of digital radiography. Then cost-benefit ratios, legal implication, and outpatient vs. inpatient studies are discussed. The clinical chapters follow. These are applicable to the head and neck, heart, lungs, kidneys, peripheral arteries, and pediatric population. Discussion then centers on intraarterial digital subtraction, clinical experience at Wisconsin, nonangiography application of digital radiology in children, and analog film-screen subtraction intravenous angiography. The book ends by briefly discussing microwave imaging, nuclear magnetic resonance, emission tomography, real-time and Doppler sonography, analog tomography, and the future photoelectric radiology department.

  4. Assessment of industrial attitudes toward generic research needs in tribology

    SciTech Connect (OSTI)

    Sibley, L.B.; Zlotnick, M.; Levinson, T.M.

    1985-09-01

    Based on extended discussions during visits with 27 companies representing 13 different parts of the tribology industry (such as bearings, lubricants, coatings, powerplants), it is apparent that only a tiny fraction of the large sums publicly reported as R and D expenditures by industry are used to fund generic tribology research. For example, of the greater than $2 B expenditures reported for R and D in the lubricants sector for 1982, the estimated total for generic tribology research was $12 M. This was the largest expenditure in any sector of the tribology industry and one-third of the total of $36 M. In the automotive industry out of a reported expenditure of $4 B, the estimated generic tribology research was $3 M. In some segments of the tribology industry, for example coatings and filters, there were no expenditures on generic research. There was little tendency to improve the state of the art of the tribology industry through long-term investment in generic R and D in ways that would foster innovation and productivity of energy conservation technology. Expenditures were oriented to development of specific commercial and military products, or to basic research focused on unspecified far term results, although useful spin-off of military developments into commercial fields sometimes occurs. There was a broad consensus in the companies visited that existing research results were not always made easily accessible to potential users in industry. The implication was that industry might benefit more if a larger fraction of the funds were devoted to putting the research results into a form design and development engineers could more readily apply. The need for a more effective presentation of research results was expressed with greater urgency at the smaller companies, but there seemed to be a broad consensus on the need for improvement. Recommendations are given.

  5. Process Control Systems in the Chemical Industry: Safety vs. Security

    SciTech Connect (OSTI)

    Jeffrey Hahn; Thomas Anderson

    2005-04-01

    Traditionally, the primary focus of the chemical industry has been safety and productivity. However, recent threats to our nations critical infrastructure have prompted a tightening of security measures across many different industry sectors. Reducing vulnerabilities of control systems against physical and cyber attack is necessary to ensure the safety, security and effective functioning of these systems. The U.S. Department of Homeland Security has developed a strategy to secure these vulnerabilities. Crucial to this strategy is the Control Systems Security and Test Center (CSSTC) established to test and analyze control systems equipment. In addition, the CSSTC promotes a proactive, collaborative approach to increase industry's awareness of standards, products and processes that can enhance the security of control systems. This paper outlines measures that can be taken to enhance the cybersecurity of process control systems in the chemical sector.

  6. Final Technical Report for Industrial Assessment Center at West Virginia University

    SciTech Connect (OSTI)

    Gopalakrishnan, Bhaskaran

    2008-01-09

    The Industrial Assessment Center (IAC) program at West Virginia University (WVU), which is funded by the Industrial Technologies Program (ITP) in the U.S. Department of Energys (DOE) Office of Energy Efficiency and Renewable Energy (EERE), has provided a unique opportunity to enhance efficient energy utilization in small to medium-sized manufacturers. It has also provided training to engineering students in the identification and analysis of efficient energy use in each aspect of the manufacturing process and associated supporting elements. The outcomes of the IAC Program at WVU have assisted the manufacturers and the students in having a heightened sensitivity to industrial energy conservation, waste reduction, and productivity improvement, as well as a better understanding of the technical aspects of manufacturing processes and the supporting elements through which efficient energy utilization can be enhanced. The IAC at WVU has conducted 101 energy assessments from 2002 until 2006. The focus of the industrial assessments has been on energy savings. It has been the IACs interest to strongly focus on energy savings and on waste minimization and productivity improvements that strictly have an impact on energy. The IAC at WVU was selected as the Center of the year in 2005 from amongst 26 centers and has obtained a ranking within the top 5 in the previous few years. From 2002 to 2006, the total recommended energy savings produced by the IAC at WVU is 1,214,414 MMBtu, of which the electricity accounts for 93,826,067 kWh (equivalent to 320,226 MMBtu) and natural gas for 871,743 MMBtu. The balance is accounted for in savings in other fuels, mainly coal and wood. This results in an average recommended energy savings of 928,971 kWh from electricity and 8,631 MMBtu from natural gas per facility. The total CO2 emissions saved from 2002 to 2006 is 154,462 tons, with an average of 1,529.3 tons per facility. The average recommended energy cost savings per facility is $135,036. The overall implementation rate of the assessment recommendations is 60.6% for the 101 industrial assessments conducted since 2002. The implemented recommendations resulted in total energy savings of 62,328,006 kWh from electricity, 295,241 MMBtu from natural gas, and 43,593 MMBtu from other fuels, totaling 551,557 MMBtu. The average implemented energy savings per industrial facility is 5,461 MMBtu and the average implemented energy cost savings is $ 59,879. The average implemented energy and productivity cost savings exceeds the program average of $ 60,000 per assessment. The IAC at WVU has produced a variety of energy efficiency recommendations in areas of industrial energy consumption such as Boilers and Steam systems (19), Air Compressors (15), HVAC (4), Chillers (12), Furnaces and Ovens (17), Motors (8), Lighting (20), Insulation (3), CHP and Cogeneration (4), and Process Equipment (7). The project has benefited the public by enabling the reduction of CO2 emissions by 89,726 tons due to the implemented energy saving recommendations at 101 small and medium sized manufacturing facilities. Since CO2 is a green house gas, its reduction will improve the quality of the environment significantly. The reduction in operating costs for the manufacturing facilities in terms of energy cost savings will increase the manufacturing facilities profits and improve their competitive edge, thus causing possible expansion in the manufacturing activities, leading to increase in good paying jobs.

  7. Inner Area Principles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inner Area Principles The Inner Area principles proposed by the Tri-Parties are a good beginning toward consideration of what kind of approach will be needed to remedy the problems of the Central Plateau. However, the Board feels that some principles have been overlooked in the preparation of these. [1] While it has been generally agreed that designated waste disposal facilities of the Inner Area (like ERDF and IDF) would not be candidates for remediation. What happened to the remedial approach

  8. Imperial Valley Geothermal Area

    Broader source: Energy.gov [DOE]

    The Imperial Valley Geothermal project consists of 10 generating plants in the Salton Sea Known Geothermal Resource Area in Southern California's Imperial Valley. The combined capacity at Imperial...

  9. Material Disposal Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Disposal Areas Material Disposal Areas Material Disposal Areas, also known as MDAs, are sites where material was disposed of below the ground surface in excavated pits, trenches, or shafts. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Material Disposal Areas at LANL The following are descriptions and status updates of each MDA at LANL. To view a current fact sheet on the MDAs, click on LA-UR-13-25837 (pdf).

  10. Tank Farm Area Closure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Final Disposition Reactor Current Status (a) Decision Area Final Disposition B National Historic Landmark (2008) 100-BC ROD for Decommissioning of Eight Surplus Production ...

  11. Industrial Energy Efficiency Assessments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Energy Efficiency Assessments Industrial Energy Efficiency Assessments Details about the Industrial Energy Efficiency Assessments program and its implementation in China. PDF icon session_2_industry_track_price_en.pdf PDF icon session_2_industry_track_price_cn.pdf More Documents & Publications UAIEE and Industrial Assessment Centers The Second US-China Energy Efficiency Forum: Energy Management Standards and Implementation Energy Efficiency Financing

  12. Everbrite Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Everbrite Industries Inc. Place: Toronto, Ontario, Canada Zip: M1R 2T6 Sector: Solar Product: Everbrite Industries is an electrical contractor...

  13. Angelantoni Industrie Spa | Open Energy Information

    Open Energy Info (EERE)

    Angelantoni Industrie Spa Jump to: navigation, search Name: Angelantoni Industrie Spa Place: Massa Martana, Italy Zip: 6056 Sector: Renewable Energy Product: String representation...

  14. Residential Building Industry Consulting Services | Open Energy...

    Open Energy Info (EERE)

    Residential Building Industry Consulting Services Jump to: navigation, search Name: Residential Building Industry Consulting Services Place: New York, NY Information About...

  15. Colorado Industrial Challenge and Recognition Program

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Industrial Technologies Program 2009 State Award Fact Sheet that offers details of the Colorado Industrial program.

  16. Goat Industries Fuels | Open Energy Information

    Open Energy Info (EERE)

    Industries Fuels Jump to: navigation, search Name: Goat Industries Fuels Place: Gwynedd, Wales, United Kingdom Zip: LL56 4PZ Product: Welsh manufacturer of biodiesel equipment that...

  17. Industrial Assessment Center Awards: Recognizing Excellence in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... deployment of their global commercial and industrial energy-efficiency services in Europe. ... About Energy Efficiency President Barack Obama tours the University of Miami Industrial ...

  18. Clean Energy Manufacturing Initiative Industrial Efficiency and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis An error occurred. Try...

  19. Integrated Biodiesel Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    Industries Ltd Jump to: navigation, search Name: Integrated Biodiesel Industries Ltd Place: Sao Paulo, Sao Paulo, Brazil Zip: 01418-200 Product: Sao Paulo-based biodiesel producer....

  20. Guardian Industries Corp | Open Energy Information

    Open Energy Info (EERE)

    Industries Corp Jump to: navigation, search Name: Guardian Industries Corp Place: Auburn Hills, Michigan Zip: 48326-1714 Sector: Solar Product: Michigan-based firm that...

  1. Solventus Industrial SL | Open Energy Information

    Open Energy Info (EERE)

    Name: Solventus Industrial SL Place: Alczar de San Juan, Spain Zip: 13600 Product: Spanish project developer and engineering. References: Solventus Industrial SL1 This...

  2. Hebei Huazheng Industry | Open Energy Information

    Open Energy Info (EERE)

    Hebei Province, China Zip: 53500 Product: Hebei Huazheng Industry manufactures electrical semiconductor devices. References: Hebei Huazheng Industry1 This article is a stub. You...

  3. Green Energy Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    Industries Inc Jump to: navigation, search Name: Green Energy Industries Inc Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the...

  4. Solar Energy Industries Association | Open Energy Information

    Open Energy Info (EERE)

    Solar Energy Industries Association Name: Solar Energy Industries Association Address: 575 7th Street NW 400 Place: Washington, DC Zip: 20004 Number of Employees: 11-50 Year...

  5. Oregon Trail Mushrooms Industrial Low Temperature Geothermal...

    Open Energy Info (EERE)

    Mushrooms Industrial Low Temperature Geothermal Facility Jump to: navigation, search Name Oregon Trail Mushrooms Industrial Low Temperature Geothermal Facility Facility Oregon...

  6. Shanghai Aerospace Industrial General Corporation aka Shanghai...

    Open Energy Info (EERE)

    Industrial General Corporation aka Shanghai Academy of Spaceflight Technology Jump to: navigation, search Name: Shanghai Aerospace Industrial General Corporation (aka Shanghai...

  7. CRV industrial Ltda | Open Energy Information

    Open Energy Info (EERE)

    CRV industrial Ltda Jump to: navigation, search Name: CRV industrial Ltda Place: Carmo do Rio Verde, Goias, Brazil Sector: Biomass Product: Ethanol and biomass energy producer...

  8. Ennis Laundry Industrial Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Ennis Laundry Industrial Low Temperature Geothermal Facility Jump to: navigation, search Name Ennis Laundry Industrial Low Temperature Geothermal Facility Facility Ennis Laundry...

  9. Individual Industrial WPFC Permit | Open Energy Information

    Open Energy Info (EERE)

    Individual Industrial WPFC Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: Individual Industrial WPFC Permit Published Publisher Not Provided,...

  10. Nongqishi Electric Power Industrial Corporation | Open Energy...

    Open Energy Info (EERE)

    Nongqishi Electric Power Industrial Corporation Jump to: navigation, search Name: Nongqishi Electric Power Industrial Corporation Place: Kuitun City, Xinjiang Autonomous Region,...

  11. EIS-0428: Mississippi Gasification, LLC, Industrial Gasification...

    Office of Environmental Management (EM)

    8: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS EIS-0428: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS...

  12. Yusheng Industrial Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Yusheng Industrial Co Ltd Jump to: navigation, search Name: Yusheng Industrial Co., Ltd Place: Hunan Province, China Zip: 415000 Sector: Hydro Product: Hunan-based small hydro...

  13. IMPACTS: Industrial Technologies Program, Summary of Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009 IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009 PDF icon ...

  14. Aditya Solar Power Industries | Open Energy Information

    Open Energy Info (EERE)

    Aditya Solar Power Industries Jump to: navigation, search Name: Aditya Solar Power Industries Place: India Sector: Solar Product: Bangalore-based solar project developer....

  15. Industrial Energy Efficiency Projects Improve Competitiveness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... For more information, visit: manufacturing.energy.gov 4 RECOVERY ACT CASE STUDY Efficiency Projects Strengthen Industry and Save Jobs In today's competitive world economy, industry ...

  16. Industrial Technology Research Institute | Open Energy Information

    Open Energy Info (EERE)

    Technology Research Institute Jump to: navigation, search Logo: Industrial Technology Research Institute Name: Industrial Technology Research Institute Address: Rm. 112, Bldg. 24,...

  17. Clean Technology Sustainable Industries Organization | Open Energy...

    Open Energy Info (EERE)

    Sustainable Industries Organization Jump to: navigation, search Name: Clean Technology & Sustainable Industries Organization Place: Royal Oak, Michigan Zip: 48073 Product: A...

  18. Development of Industrially Viable Battery Electrode Coatings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrially Viable Battery Electrode Coatings Development of Industrially Viable Battery Electrode Coatings 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

  19. Phoenix Bio Industries LLC | Open Energy Information

    Open Energy Info (EERE)

    Bio Industries LLC Jump to: navigation, search Name: Phoenix Bio-Industries LLC Place: Goshen, California Zip: 93227 Product: Ethanol producer. Coordinates: 37.988525,...

  20. AgroIndustrial Capela | Open Energy Information

    Open Energy Info (EERE)

    AgroIndustrial Capela Jump to: navigation, search Name: AgroIndustrial Capela Place: Capela, Sergipe, Brazil Product: Brazil based ethanol producer located in Sergipe, part of...