Powered by Deep Web Technologies
Note: This page contains sample records for the topic "focus area fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Strategic Focus Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Focus Areas Lockheed Martin on behalf of Sandia National Laboratories will consider grant requests that best support the Corporation's strategic focus areas and reflect effective...

2

Decontamination & decommissioning focus area  

Science Conference Proceedings (OSTI)

In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

NONE

1996-08-01T23:59:59.000Z

3

Focus Area Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

information provided was consolidated from the original five focus areas for the EM information provided was consolidated from the original five focus areas for the EM Corporate QA Board. The status of QAP/QIP approvals etc. was accurate at the time of posting; however, additional approvals may have been achieved since that time. If you have any questions about the information provided, please contact Bob Murray at robert.murray@em.doe.gov Task # Task Description Status 1.1 Develop a brief questionnaire to send out to both commercial and EM contractors to describe their current approach for identifying the applicable QA requirements for subcontractors, tailoring the requirements based upon risk, process for working with procurement to ensure QA requirements are incorporated into subcontracts, and implementing verification of requirement flow-down by their

4

Focus Area 3 Deliverables  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 - Commercial Grade item and Services 3 - Commercial Grade item and Services Dedication Implementation and Nuclear Services Office of Environmental Management And Energy Facility Contractors Group Quality Assurance Improvement Project Plan Project Focus Area Task # and Description Deliverable Project Area 3-Commercial Grade Item and Services Dedication 3.1-Complete a survey of selected EM contractors to identify the process and basis for their CGI dedication program including safety classification of items being dedicated for nuclear applications within their facilities Completed Survey Approvals: Yes/No/NA Project Managers: S. Waisley, D. Tuttel Yes Executive Committee: D. Chung, J. Yanek, N. Barker, D. Amerine No EM QA Corporate Board: No Energy Facility Contractors Group

5

Focus Areas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission » Focus Areas Mission » Focus Areas Focus Areas Safety With this focus on cleanup completion and risk reducing results, safety still remains the utmost priority. EM will continue to maintain and demand the highest safety performance. All workers deserve to go home as healthy as they were when they came to the job in the morning. There is no schedule or milestone worth any injury to the work force. Project Management EM is increasing its concentration on project management to improve its overall performance toward cost-effective risk reduction. This will involve review of validated project baselines, schedules, and assumptions about effective identification and management of risks. Instrumental in refining the technical and business approaches to project management are the senior

6

Fueling area site assessment  

SciTech Connect

This report provides results of a Site Assessment performed at the Fuel Storage Area at Buckley ANG Base in Aurora, Colorado. Buckley ANG Base occupies 3,328 acres of land within the City of Aurora in Arapahoe County, Colorado. The Fuel Storage Area (also known as the Fueling Area) is located on the west side of the Base at the intersection of South Powderhorn Street and East Breckenridge Avenue. The Fueling Area consists of above ground storage tanks in a bermed area, pumps, piping, valves, an unloading stand and a fill stand. Jet fuel from the Fueling Area is used to support aircraft operations at the Base. Jet fuel is stored in two 200,000 gallon above ground storage tanks. Fuel is received in tanker trucks at the unloading stand located south and east of the storage tanks. Fuel required for aircraft fueling and other use is transferred into tanker trucks at the fill stand and transported to various points on the Base. The Fuel Storage Area has been in operation for over 20 years and handles approximately 7 million gallons of jet fuel annually.

1996-08-15T23:59:59.000Z

7

Mixed waste characterization, treatment & disposal focus area  

Science Conference Proceedings (OSTI)

The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

NONE

1996-08-01T23:59:59.000Z

8

Tanks focus area. Annual report  

SciTech Connect

The U.S. Department of Energy Office of Environmental Management is tasked with a major remediation project to treat and dispose of radioactive waste in hundreds of underground storage tanks. These tanks contain about 90,000,000 gallons of high-level and transuranic wastes. We have 68 known or assumed leaking tanks, that have allowed waste to migrate into the soil surrounding the tank. In some cases, the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in the safest possible condition until their eventual remediation to reduce the risk of waste migration and exposure to workers, the public, and the environment. Science and technology development for safer, more efficient, and cost-effective waste treatment methods will speed up progress toward the final remediation of these tanks. The DOE Office of Environmental Management established the Tanks Focus Area to serve as the DOE-EM`s technology development program for radioactive waste tank remediation in partnership with the Offices of Waste Management and Environmental Restoration. The Tanks Focus Area is responsible for leading, coordinating, and facilitating science and technology development to support remediation at DOE`s four major tank sites: the Hanford Site in Washington State, Idaho National Engineering and Environmental Laboratory in Idaho, Oak Ridge Reservation in Tennessee, and the Savannah River Site in South Carolina. The technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank. Safety is integrated across all the functions and is a key component of the Tanks Focus Area program.

Frey, J.

1997-12-31T23:59:59.000Z

9

NETL: Energy System Dynamics Focus Area  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy System Dynamics Onsite Research Energy System Dynamics Energy System Dynamics (ESD) is a focus area of the National Energy Technology Laboratory's Office of Research and...

10

Tanks Focus Area annual report FY2000  

SciTech Connect

The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation effort with tanks containing hazardous and radioactive waste resulting from the production of nuclear materials. With some 90 million gallons of waste in the form of solid, sludge, liquid, and gas stored in 287 tanks across the DOE complex, containing approximately 650 million curies, radioactive waste storage tank remediation is the nation's highest cleanup priority. Differing waste types and unique technical issues require specialized science and technology to achieve tank cleanup in an environmentally acceptable manner. Some of the waste has been stored for over 50 years in tanks that have exceeded their design lives. The challenge is to characterize and maintain these contents in a safe condition and continue to remediate and close each tank to minimize the risks of waste migration and exposure to workers, the public, and the environment. In 1994, the DOE's Office of Environmental Management (EM) created a group of integrated, multiorganizational teams focusing on specific areas of the EM cleanup mission. These teams have evolved into five focus areas managed within EM's Office of Science and Technology (OST): Tanks Focus Area (TFA); Deactivation and Decommissioning Focus Area; Nuclear Materials Focus Area; Subsurface Contaminants Focus Area; and Transuranic and Mixed Waste Focus Area.

None

2000-12-01T23:59:59.000Z

11

Focus Areas 1 and 4 Deliverables  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 - Requirements Flow Down 1 - Requirements Flow Down and Focus Area #4 - Graded Approach to Quality Assurance Graded Approach Model and Expectation Page 1 of 18 Office of Environmental Management And Energy Facility Contractors Group Quality Assurance Improvement Project Plan Project Focus Area Task # and Description Deliverable Project Area 1: Requirements Flow Down Task #1.9 - Complete White Paper covering procurement QA process flow diagram Draft White Paper and Amended Flow Diagram Project Area 4: Graded Approach Implementation Task #4.4 - In coordination with Project Focus Area #1, provide an EM expectation for application of the graded approach to procurement. EM Graded Approach Procedure for Procurements Approvals: Yes/No/NA Project Managers: S. Waisley, D. Tuttel Y

12

Summary of Weldon Spring Site Focus Area  

Office of Legacy Management (LM)

of Weldon Spring Site Focus Area of Weldon Spring Site Focus Area Work Session February 5, 2003 Weldon Spring Interpretive Center Focus Area: Monitoring and Maintenance This was the third of three work sessions that focus on specific issues addressed in the draft Long-Term Stewardship Plan for the Weldon Spring, Missouri, Site, dated August 9, 2002. At 6:00 p.m., before the start of the work session, Dan Collette, Technical Support Manager for S.M. Stoller, the U.S. Department of Energy (DOE) Grand Junction Office (GJO) contractor, gave a demonstration of the on-line document retrieval and geographic information systems. Introduction Dave Geiser, DOE Headquarters Director of the Office of Long-Term Stewardship, discussed a DOE Headquarters proposal to establish the Office of Legacy Management in fiscal year 2004.

13

Hydrogen, Fuel Cells, & Infrastructure - Program Areas - Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel cell Welcome> Program Areas> Program Areas Hydrogen, Fuel Cells & Infrastructure Production & Delivery | Storage | Fuel Cell R&D | Systems Integration & Analysis | Safety...

14

Property:Focus Area | Open Energy Information  

Open Energy Info (EERE)

Area Area Jump to: navigation, search This is a property of type String. The allowed values for this property are: Building Energy Efficiency Economic and Workforce Development Electrical Assessment Energy and Greenhouse Gas Baselining Transportation Energy Supply Load Reduction Policy and Human Behavior Renewable Energy Food Supply Pages using the property "Focus Area" Showing 2 pages using this property. N National Residential Efficiency Measures Database + Building Energy Efficiency + P PyTurbSim + Renewable Energy + Retrieved from "http://en.openei.org/w/index.php?title=Property:Focus_Area&oldid=307138#SMWResults" What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

15

MotorWeek: Fuel Economy Focus  

NLE Websites -- All DOE Office Websites (Extended Search)

Navigational links Navigational links Site Map | Videos | Links | More Info | Search | Contacts | HOME www.fueleconomy.gov Photograph of Cars Find and Compare Cars | Gas Mileage Tips | Gasoline Prices | Your MPG Will Vary | Why is Fuel Economy Important? | Your MPG | Hybrids, Diesels, Alt Fuels, Etc. | Tax Incentives | Extreme MPG U.S. Department of Energy | Print the Fuel Economy Guide | U.S. Environmental Protection Agency Gas Mileage Tips Driving more efficiently Keeping your car in shape Planning and combining trips Choosing a more efficient vehicle More Info MotorWeek: Text Version Video: MotorWeek test showing impact of driving style on MPG. Fuel Economy Focus John Davis The window sticker on a new car contains lots of information besides just the price. For instance, down at the bottom are the all important government fuel economy estimates. But just like the price on the sticker may have little in common with what you actually pay for the car, the mileage estimates may also be far different from real world results. So, why does gas mileage vary so much? Well, the answers are as varied as your mileage.

16

TECHNICAL INTEGRATION ENVIRONMENTAL MANAGEMENT FOCUS AREAS  

SciTech Connect

This contract involved a team of companies led by WPI (formerly the Waste Policy Institute). In addition to WPI, the team included four subcontractors--TRW (formerly BDM Federal), SAIC, Energetics, and the University of North Dakota Energy and Environmental Research Center (EERC). The team of companies functioned as a ''seamless team'' assembled to support the Environmental Management Program Focus Areas. Staff resources were applied in the following offices: Richland, Washington, Idaho Falls, Idaho, Morgantown, West Virginia, Grand Forks, North Dakota, Aiken, South Carolina, Gaithersburg, Maryland, and Blacksburg, Virginia. These locations represented a mixture of site support offices at the field focus area locations and central staff to support across the focus areas. The management of this dispersed resource base relied on electronic communication links to allow the team to function as a ''virtual office'' to address tasks with the best qualified staff matched to the task assignments. A variety of tasks were assigned and successfully completed throughout the life of the contract that involved program planning and analysis, program execution, program information management and communication and data transmission.

Carey R. Butler

2001-10-01T23:59:59.000Z

17

TECHNICAL INTEGRATION ENVIRONMENTAL MANAGEMENT FOCUS AREAS  

SciTech Connect

This contract involved a team of companies led by WPI (formerly the Waste Policy Institute). In addition to WPI, the team included four subcontractors--TRW (formerly BDM Federal), SAIC, Energetics, and the University of North Dakota Energy and Environmental Research Center (EERC). The team of companies functioned as a ''seamless team'' assembled to support the Environmental Management Program Focus Areas. Staff resources were applied in the following offices: Richland, Washington, Idaho Falls, Idaho, Morgantown, West Virginia, Grand Forks, North Dakota, Aiken, South Carolina, Gaithersburg, Maryland, and Blacksburg, Virginia. These locations represented a mixture of site support offices at the field focus area locations and central staff to support across the focus areas. The management of this dispersed resource base relied on electronic communication links to allow the team to function as a ''virtual office'' to address tasks with the best qualified staff matched to the task assignments. A variety of tasks were assigned and successfully completed throughout the life of the contract that involved program planning and analysis, program execution, program information management and communication and data transmission.

Carey R. Butler

2001-10-01T23:59:59.000Z

18

Variable area fuel cell cooling  

DOE Patents (OSTI)

A fuel cell arrangement having cooling fluid flow passages which vary in surface area from the inlet to the outlet of the passages. A smaller surface area is provided at the passage inlet, which increases toward the passage outlet, so as to provide more uniform cooling of the entire fuel cell. The cooling passages can also be spaced from one another in an uneven fashion.

Kothmann, Richard E. (Churchill Borough, PA)

1982-01-01T23:59:59.000Z

19

Mixed Waste Focus Area program management plan  

SciTech Connect

This plan describes the program management principles and functions to be implemented in the Mixed Waste Focus Area (MWFA). The mission of the MWFA is to provide acceptable technologies that enable implementation of mixed waste treatment systems developed in partnership with end-users, stakeholders, tribal governments and regulators. The MWFA will develop, demonstrate and deliver implementable technologies for treatment of mixed waste within the DOE Complex. Treatment refers to all post waste-generation activities including sampling and analysis, characterization, storage, processing, packaging, transportation and disposal.

Beitel, G.A.

1996-10-01T23:59:59.000Z

20

Fuel Cell Technologies Office: DOE Theory Focus Session on Hydrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

Theory Focus Session on Hydrogen Storage Materials to someone by E-mail Share Fuel Cell Technologies Office: DOE Theory Focus Session on Hydrogen Storage Materials on Facebook...

Note: This page contains sample records for the topic "focus area fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Landfill stabilization focus area: Technology summary  

SciTech Connect

Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed.

NONE

1995-06-01T23:59:59.000Z

22

Radioactive tank waste remediation focus area  

SciTech Connect

EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

1996-08-01T23:59:59.000Z

23

FY 2000 Deactivation and Decommissioning Focus Area Annual Report  

SciTech Connect

This document describes activities of the Deactivation and Decommissioning Focus Area for the past year.

None

2001-03-01T23:59:59.000Z

24

Fuel Cell Technologies Office: Delivering Renewable Hydrogen: A Focus on  

NLE Websites -- All DOE Office Websites (Extended Search)

Delivering Renewable Delivering Renewable Hydrogen: A Focus on Near-Term Applications to someone by E-mail Share Fuel Cell Technologies Office: Delivering Renewable Hydrogen: A Focus on Near-Term Applications on Facebook Tweet about Fuel Cell Technologies Office: Delivering Renewable Hydrogen: A Focus on Near-Term Applications on Twitter Bookmark Fuel Cell Technologies Office: Delivering Renewable Hydrogen: A Focus on Near-Term Applications on Google Bookmark Fuel Cell Technologies Office: Delivering Renewable Hydrogen: A Focus on Near-Term Applications on Delicious Rank Fuel Cell Technologies Office: Delivering Renewable Hydrogen: A Focus on Near-Term Applications on Digg Find More places to share Fuel Cell Technologies Office: Delivering Renewable Hydrogen: A Focus on Near-Term Applications on AddThis.com...

25

Mixed waste focus area alternative technologies workshop  

SciTech Connect

This report documents the Mixed Waste Focus Area (MWFA)-sponsored Alternative Technology Workshop held in Salt Lake City, Utah, from January 24--27, 1995. The primary workshop goal was identifying potential applications for emerging technologies within the Options Analysis Team (OAT) ``wise`` configuration. Consistent with the scope of the OAT analysis, the review was limited to the Mixed Low-Level Waste (MLLW) fraction of DOE`s mixed waste inventory. The Los Alamos team prepared workshop materials (databases and compilations) to be used as bases for participant review and recommendations. These materials derived from the Mixed Waste Inventory Report (MWIR) data base (May 1994), the Draft Site Treatment Plan (DSTP) data base, and the OAT treatment facility configuration of December 7, 1994. In reviewing workshop results, the reader should note several caveats regarding data limitations. Link-up of the MWIR and DSTP data bases, while representing the most comprehensive array of mixed waste information available at the time of the workshop, requires additional data to completely characterize all waste streams. A number of changes in waste identification (new and redefined streams) occurred during the interval from compilation of the data base to compilation of the DSTP data base with the end result that precise identification of radiological and contaminant characteristics was not possible for these streams. To a degree, these shortcomings compromise the workshop results; however, the preponderance of waste data was linked adequately, and therefore, these analyses should provide useful insight into potential applications of alternative technologies to DOE MLLW treatment facilities.

Borduin, L.C.; Palmer, B.A.; Pendergrass, J.A. [Los Alamos National Lab., NM (United States). Technology Analysis Group

1995-05-24T23:59:59.000Z

26

Fuel Cell Technologies Office: 2008 DOE Theory Focus Session...  

NLE Websites -- All DOE Office Websites (Extended Search)

2008 DOE Theory Focus Session on Hydrogen Storage Materials to someone by E-mail Share Fuel Cell Technologies Office: 2008 DOE Theory Focus Session on Hydrogen Storage Materials on...

27

Independent Oversight Focus Area Review, DOE Nuclear Facilities - April  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Oversight Focus Area Review, DOE Nuclear Facilities - Independent Oversight Focus Area Review, DOE Nuclear Facilities - April 2010 Independent Oversight Focus Area Review, DOE Nuclear Facilities - April 2010 April 2010 Review of Specific Administrative Controls at DOE Nuclear Facilities The U.S. Department of Energy (DOE) Office of Independent Oversight, within the Office of Health Safety and Security occasionally reviews specific focus areas. Focus areas are aspects of safety programs that Independent Oversight determines warrant increased management attention based on reviews of performance data, inspection results, and operating experience across DOE sites. Due, in part, to operating experience and previous inspection results. DOE selected specific administrative controls (SACs) as a focus area. SACs are new or revised technical safety requirements (TSRs)

28

The Gasifier Optimization and Plant Supporting Systems area focuses...  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasifier Optimization and Plant Supporting Systems area focuses on the development of technologies and models to improve the performance of advanced gasifiers. Specifically,...

29

Fuel Economy of the 2014 Ford Focus Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

Ford Focus Electric Search for Other Vehicles View the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side All-Electric Vehicle EPA Fuel Economy Miles per...

30

Plutonium Focus Area research and development plan. Revision 1  

SciTech Connect

The Department of Energy (DOE) committed to a research and development program to support the technology needs for converting and stabilizing its nuclear materials for safe storage. The R and D Plan addresses five of the six material categories from the 94-1 Implementation Plan: plutonium (Pu) solutions, plutonium metals and oxides, plutonium residues, highly enriched uranium, and special isotopes. R and D efforts related to spent nuclear fuel (SNF) stabilization were specifically excluded from this plan. This updated plan has narrowed the focus to more effectively target specific problem areas by incorporating results form trade studies. Specifically, the trade studies involved salt; ash; sand, slag, and crucible (SS and C); combustibles; and scrub alloy. The plan anticipates possible disposition paths for nuclear materials and identifies resulting research requirements. These requirements may change as disposition paths become more certain. Thus, this plan represents a snapshot of the current progress and will continue to be updated on a regular basis. The paper discusses progress in safeguards and security, plutonium stabilization, special isotopes stabilization, highly-enriched uranium stabilization--MSRE remediation project, storage technologies, engineered systems, core technology, and proposed DOE/Russian technology exchange projects.

NONE

1996-11-01T23:59:59.000Z

31

PNNL: Biological Sciences - A Subsurface Science Scientific Focus Area -  

NLE Websites -- All DOE Office Websites (Extended Search)

Role of Microenvironments and Transition Zones in Subsurface Reactive Role of Microenvironments and Transition Zones in Subsurface Reactive Contaminant Transport Subsurface Science Scientific Focus Area (SFA) The Subsurface Science Scientific Focus Area (SFA) is funded by the U.S. Department of Energy's Office of Biological and Environmental Research. The SFA team is performing integrated, multidisciplinary, science-theme-focused research on the role of microenvironments and transition zones in the reactive transport of technetium (Tc), uranium (U), and plutonium (Pu). The primary environmental system being studied is the groundwater-river interaction zone in the 300 area of the Hanford Site in southeastern Washington State. Ringold Sediments Redox boundary in Ringold sediments about 2.5 m below the Hanford-Ringold contact. The boundary is the point where oxygen and other terminal electron

32

Basic science research to support the nuclear material focus area  

SciTech Connect

The Department of Energy's (DOE'S) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

Boak, J. M. (Jeremy M.); Eller, P. Gary; Chipman, N. A.; Castle, P. M.

2002-01-01T23:59:59.000Z

33

Basic Science Research to Support the Nuclear Materials Focus Area  

SciTech Connect

The Department of Energy's (DOE's) Office of Environmental Management (EM) is responsible for managing more than 760,000 metric tons of nuclear material that is excess to the current DOE weapons program, as a result of shutdown of elements of the weapons program, mainly during the 1990s. EMowned excess nuclear material comprises a variety of material types, including uranium, plutonium, other actinides and other radioactive elements in numerous forms, all of which must be stabilized for storage and ultimate disposition. Much of this quantity has been in storage for many years. Shutdown of DOE sites and facilities requires removal of nuclear material and consolidation at other sites, and may be delayed by the lack of available technology. Within EM, the Office of Science and Technology (OST) is dedicated to providing timely, relevant technology to accelerate completion and reduce cleanup cost of the DOE environmental legacy. OST is organized around five focus areas, addressing crucial areas of end-user-defined technology need. The Focus Areas regularly identify potential technical solutions for which basic scientific research is needed to determine if the technical solution can be developed and deployed. To achieve a portfolio of projects that is balanced between near-term priorities driven by programmatic risks (such as site closure milestones) and long-term, high-consequence needs that depend on extensive research and development, OST has established the Environmental Management Science Program (EMSP) to develop the scientific basis for solutions to long-term site needs. The EMSP directs calls for proposals to address scientific needs of the focus areas. Needs are identified and validated annually by individual sites in workshops conducted across the complex. The process captures scope and schedule requirements of the sites, so that focus areas can identify technology that can be delivered to sites in time to complete site cleanup. The Nuclear Material Focus Area (NMFA) has identified over two hundred science and technology needs, of which more than thirty are science needs.

Chipman, N. A.; Castle, P. M.; Boak, J. M.; Eller, P. G.

2002-02-26T23:59:59.000Z

34

Tanks Focus Area Site Needs Assessment FY 2000  

SciTech Connect

This document summarizes the Tanks Focus Area (TFA's) process of collecting, analyzing, and responding to high-level radioactive tank waste science and technology needs developed from across the DOE complex in FY 2000. The document also summarizes each science and technology need, and provides an initial prioritization of TFA's projected work scope for FY 2001 and FY 2002.

Allen, Robert W.

2000-03-10T23:59:59.000Z

35

WORKSHOP THEMES The workshop will focus on the following areas  

E-Print Network (OSTI)

WORKSHOP THEMES The workshop will focus on the following areas: a) Greenhouse Gas Emissions from related Greenhouse Gas Emissions c) Technological Solutions to Greenhouse Emissions from and Greenhouse Gas Emissions New Delhi, India February 10-11, 2011 ORGANIZED BY AND SPONSORED BY #12;WORKSHOP

36

Contaminant plumes containment and remediation focus area. Technology summary  

Science Conference Proceedings (OSTI)

EM has established a new approach to managing environmental technology research and development in critical areas of interest to DOE. The Contaminant Plumes Containment and Remediation (Plumes) Focus Area is one of five areas targeted to implement the new approach, actively involving representatives from basic research, technology implementation, and regulatory communities in setting objectives and evaluating results. This document presents an overview of current EM activities within the Plumes Focus Area to describe to the appropriate organizations the current thrust of the program and developing input for its future direction. The Plumes Focus Area is developing remediation technologies that address environmental problems associated with certain priority contaminants found at DOE sites, including radionuclides, heavy metals, and dense non-aqueous phase liquids (DNAPLs). Technologies for cleaning up contaminants of concern to both DOE and other federal agencies, such as volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs), and other organics and inorganic compounds, will be developed by leveraging resources in cooperation with industry and interagency programs.

NONE

1995-06-01T23:59:59.000Z

37

Nuclear Materials Focus Area Fiscal Year 2002 Mid Year Review  

SciTech Connect

The Nuclear Materials Focus Area (NMFA) held its annual mid-year review on February 12 and 14, 2002, in Santa Fe, New Mexico. The purpose of this review was to examine both the technical aspects and the programmatic aspects of its technology development program. The focus area activities were reviewed by a panel consisting of personnel representing the end users of the technologies, and technical experts in nuclear materials. This year's review was somewhat different than in the past, as the stress was on how well the various projects being managed through the NMFA aligned with the two thrust areas and nine key goals and priorities recently issued by the Deputy Assistant Secretary for DOE's Office of Environmental Management (EM).

Thiel, E.C.; Fuhrman, P.W.

2002-05-30T23:59:59.000Z

38

Nuclear Materials Focus Area Fiscal Year 2002 Mid Year Review  

Science Conference Proceedings (OSTI)

The Nuclear Materials Focus Area (NMFA) held its annual mid-year review on February 12 and 14, 2002, in Santa Fe, New Mexico. The purpose of this review was to examine both the technical aspects and the programmatic aspects of its technology development program. The focus area activities were reviewed by a panel consisting of personnel representing the end users of the technologies, and technical experts in nuclear materials. This year's review was somewhat different than in the past, as the stress was on how well the various projects being managed through the NMFA aligned with the two thrust areas and nine key goals and priorities recently issued by the Deputy Assistant Secretary for DOE's Office of Environmental Management (EM).

Thiel, Elizabeth Chilcote

2002-05-01T23:59:59.000Z

39

Mixed waste characterization, treatment, and disposal focus area. Technology summary  

Science Conference Proceedings (OSTI)

This paper presents details about the technology development programs of the Department of Energy. In this document, waste characterization, thermal treatment processes, non-thermal treatment processes, effluent monitors and controls, development of on-site innovative technologies, and DOE business opportunities are applied to environmental restoration. The focus areas for research are: contaminant plume containment and remediation; mixed waste characterization, treatment, and disposal; high-level waste tank remediation; landfill stabilization; and decontamination and decommissioning.

NONE

1995-06-01T23:59:59.000Z

40

Tanks focus area multiyear program plan - FY96-FY98  

SciTech Connect

The Tanks Focus Area (TFA) Multiyear Program Plan (MYPP) presents the recommended TFA technical program. The recommendation covers a 3-year funding outlook (FY96-FY98), with an emphasis on FY96 and FY97. In addition to defining the recommended program, this document also describes the processes used to develop the program, the implementation strategy for the program, the references used to write this report, data on the U.S. Department of Energy (DOE) tank site baselines, details on baseline assumptions and the technical elements, and a glossary.

NONE

1995-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "focus area fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Tanks Focus Area site needs assessment FY 2000  

SciTech Connect

This report documents the process used by the Tanks Focus Area (TFA) to analyze and develop responses to technology needs submitted by five major U.S. Department of Energy (DOE) sites with radioactive tank waste problems, and the initial results of the analysis. The sites are the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation (ORR), Savannah River Site (SRS), and West Valley Demonstration Project (WVDP). During the past year, the TFA established a link with DOE's Fernald site to exchange, on a continuing basis, mutually beneficial technical information and assistance.

RW Allen

2000-04-11T23:59:59.000Z

42

NETL: Carbon Storage - CO2 Utilization Focus Area  

NLE Websites -- All DOE Office Websites (Extended Search)

CO2 Utilization CO2 Utilization Carbon Storage CO2 Utilization Focus Area Carbon dioxide (CO2) utilization efforts focus on pathways and novel approaches for reducing CO2 emissions by developing beneficial uses for the CO2 that will mitigate CO2 emissions in areas where geologic storage may not be an optimal solution. CO2 can be used in applications that could generate significant benefits. It is possible to develop alternatives that can use captured CO2 or convert it to useful products such chemicals, cements, or plastics. Revenue generated from the utilized CO2 could also offset a portion of the CO2 capture cost. Processes or concepts must take into account the life cycle of the process to ensure that additional CO2 is not produced beyond what is already being removed from or going into the atmosphere. Furthermore, while the utilization of CO2 has some potential to reduce greenhouse gas emissions to the atmosphere, CO2 has certain disadvantages as a chemical reactant. Carbon dioxide is rather inert and non-reactive. This inertness is the reason why CO2 has broad industrial and technical applications. Each potential use of CO2 has an energy requirement that needs to be determined; and the CO2 produced to create the energy for the specific utilization process must not exceed the CO2 utilized.

43

NETL: Carbon Storage - Simulation and Risk Assessment Focus Area  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulation and Risk Assessment Simulation and Risk Assessment Carbon Storage Simulation and Risk Assessment Focus Area The Simulation and Risk Assessment Focus Area is an integrated effort to develop advanced simulation models of the subsurface and integrate the results into a risk assessment that includes both technical and programmatic risks. As the simulation models are refined with new data, the uncertainty surrounding the identified risks decreases, which in turn provides a more accurate risk assessment and mitigation plan for each project site. Both qualitative and quantitative protocols will be developed to ensure the safe and permanent storage of carbon dioxide (CO2). Results from the simulation models will be incorporated into risk assessments on a project-by-project basis and on a larger basin-scale. As carbon capture and storage (CCS) becomes deployed in major basins, macro model results will be needed to manage reservoirs for pressure management, plume migration, and potential risks of multiple CO2 injection projects across the basin.

44

Tanks focus area multiyear program plan FY97-FY99  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) continues to face a major tank remediation problem with approximately 332 tanks storing over 378,000 ml of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Most of the tanks have significantly exceeded their life spans. Approximately 90 tanks across the DOE complex are known or assumed to have leaked. Some of the tank contents are potentially explosive. These tanks must be remediated and made safe. How- ever, regulatory drivers are more ambitious than baseline technologies and budgets will support. Therefore, the Tanks Focus Area (TFA) began operation in October 1994. The focus area manages, coordinates, and leverages technology development to provide integrated solutions to remediate problems that will accelerate safe and cost-effective cleanup and closure of DOE`s national tank system. The TFA is responsible for technology development to support DOE`s four major tank sites: Hanford Site (Washington), INEL (Idaho), Oak Ridge Reservation (ORR) (Tennessee), and Savannah River Site (SRS) (South Carolina). Its technical scope covers the major functions that comprise a complete tank remediation system: safety, characterization, retrieval, pretreatment, immobilization, and closure.

NONE

1996-08-01T23:59:59.000Z

45

Mixed Waste Focus Area: Department of Energy complex needs report  

Science Conference Proceedings (OSTI)

The Assistant Secretary for the Office of Environmental Management (EM) at the US Department of Energy (DOE) initiated a new approach in August of 1993 to environmental research and technology development. A key feature of this new approach included establishment of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA). The mission of the MWFA is to identify, develop, and implement needed technologies such that the major environmental management problems related to meeting DOE`s commitments for treatment of mixed wastes under the Federal Facility Compliance Act (FFCA), and in accordance with the Land Disposal Restrictions (LDR) of the Resource Conservation and Recovery Act (RCRA), can be addressed, while cost-effectively expending the funding resources. To define the deficiencies or needs of the EM customers, the MWFA analyzed Proposed Site Treatment Plans (PSTPs), as well as other applicable documents, and conducted site visits throughout the summer of 1995. Representatives from the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60) at each site visited were requested to consult with the Focus Area to collaboratively define their technology needs. This report documents the needs, deficiencies, technology gaps, and opportunities for expedited treatment activities that were identified during the site visit process. The defined deficiencies and needs are categorized by waste type, namely Wastewaters, Combustible Organics, Sludges/Soils, Debris/Solids, and Unique Wastes, and will be prioritized based on the relative affect the deficiency has on the DOE Complex.

Roach, J.A.

1995-11-16T23:59:59.000Z

46

Radioactive Tank Waste Remediation Focus Area. Technology summary  

SciTech Connect

In February 1991, DOE`s Office of Technology Development created the Underground Storage Tank Integrated Demonstration (UST-ID), to develop technologies for tank remediation. Tank remediation across the DOE Complex has been driven by Federal Facility Compliance Agreements with individual sites. In 1994, the DOE Office of Environmental Management created the High Level Waste Tank Remediation Focus Area (TFA; of which UST-ID is now a part) to better integrate and coordinate tank waste remediation technology development efforts. The mission of both organizations is the same: to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. The TFA has focused on four DOE locations: the Hanford Site in Richland, Washington, the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site (SRS) in Aiken, South Carolina.

NONE

1995-06-01T23:59:59.000Z

47

Subsurface contamination focus area technical requirements. Volume II  

Science Conference Proceedings (OSTI)

This is our vision, a vision that replaces the ad hoc or {open_quotes}delphi{close_quotes} method which is to get a group of {open_quotes}experts{close_quotes} together and make decisions based upon opinion. To fulfill our vision for the Subsurface Contaminants Focus Area (SCFA), it is necessary to generate technical requirements or performance measures which are quantitative or measurable. Decisions can be supported if they are based upon requirements or performance measures which can be traced to the origin (documented) and are verifiable, i.e., prove that requirements are satisfied by inspection (show me), demonstration, analysis, monitoring, or test. The data from which these requirements are derived must also reflect the characteristics of individual landfills or plumes so that technologies that meet these requirements will necessarily work at specific sites. Other subjective factors, such as stakeholder concerns, do influence decisions. Using the requirements as a basic approach, the SCFA can depend upon objective criteria to help influence the areas of subjectivity, like the stakeholders. In the past, traceable requirements were not generated, probably because it seemed too difficult to do so. There are risks that the requirements approach will not be accepted because it is new and represents a departure from the historical paradigm.

Nickelson, D.; Nonte, J.; Richardson, J.

1996-10-01T23:59:59.000Z

48

SLAC Science Focus Area | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Ferrihydrite banner Nano biogenic uraninite Energy and biogeochemistry: Nuclear fuel and weapons production have produced radionuclide and heavy metal contamination in terrestrial...

49

Tanks Focus Area site needs assessment FY 1998  

Science Conference Proceedings (OSTI)

This report documents the process used by the Tanks Focus Area (TFA) to analyze and develop responses to technology needs submitted by four major US Department of Energy (DOE) sites with radioactive tank waste problems, and the initial results of the analysis. The sites are the Hanford Site, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation (ORR), and Savannah River Site (SRS). This document describes the TFA`s process of collecting site needs, analyzing them, and creating technical responses to the sites. It also summarizes the information contained within the TFA needs database, portraying information provided by four major DOE sites with tank waste problems. The overall TFA program objective is to deliver a tank technology program that reduces the current cost, and the operational and safety risks of tank remediation. The TFA`s continues to enjoy close, cooperative relationships with each site. During the past year, the TFA has fostered exchanges of technical information between sites. These exchanges have proven to be healthy for all concerned. The TFA recognizes that site technology needs often change, and the TFA must be prepared not only to amend its program in response, but to help the sites arrive at the best technical approach to solve revised site needs.

NONE

1998-03-01T23:59:59.000Z

50

The Mixed Waste Focus Area: Status and accomplishments  

SciTech Connect

The Mixed Waste Focus Area began operations in February of 1995. Its mission is to provide acceptable technologies that enable implementation of mixed waste treatment systems developed in partnership with end-users, stakeholders, tribal governments, and regulators. The MWFA will develop, demonstrate, and deliver implementable technologies for treatment of mixed waste within the DOE complex. Treatment refers to all post waste-generation activities including sampling and analysis, characterization, storage, processing, packaging, transportation, and disposal. The MWFA`s mission arises from the Resources Conservation and Recovery Act (RCRA) as amended by the Federal Facility Compliance Act. Each DOE site facility that generates or stores mixed waste prepared a plan, the Site Treatment Plan, for developing treatment capacities and treating that waste. Agreements for each site were concluded with state regulators, resulting in Consent Orders providing enforceable milestones for achieving treatment of the waste. The paper discusses the implementation of the program, its status, accomplishments and goals for FY1996, and plans for 1997.

Conner, J.E. [Dept. of Energy, Idaho Falls, ID (United States). Idaho Operations Office; Williams, R.E. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1997-08-01T23:59:59.000Z

51

Mixed waste focus area technical baseline report. Volume 1  

SciTech Connect

The Department of Energy (DOE) established the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA) to develop and facilitate implementation of technologies required to meet the Department`s commitments for treatment of mixed low-level and transuranic wastes. The mission of the MWFA is to provide acceptable technologies, developed in partnership with end-users, stakeholders, tribal governments, and regulators, that enable implementation of mixed waste treatment systems. To accomplish this mission, a technical baseline was established in 1996 that forms the basis for determining which technology development activities will be supported by the MWFA. This technical baseline is revised on an annual basis to reflect changes in the DOE Mixed Waste Management strategies, changes in the MWFA technical baseline development process, and MWFA accomplishments. This report presents the first revision to the technical baseline and the resulting prioritized list of deficiencies that the MWFA will address. This report also reflects a higher level of stakeholder involvement in the prioritization of the deficiencies. This document summarizes the data and the assumptions upon which this work was based, as well as information concerning the DOE Office of Environmental Management (EM) mixed waste technology development needs.

1997-04-01T23:59:59.000Z

52

Focus Area 3 - Enabling Technologies : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Enabling Technologies BESC researchers in (Enabling Technologies) characterization, modeling, and data management areas are engaged in 1) applying advanced technologies to analyze...

53

Variable area fuel cell process channels  

DOE Patents (OSTI)

A fuel cell arrangement having a non-uniform distribution of fuel and oxidant flow paths, on opposite sides of an electrolyte matrix, sized and positioned to provide approximately uniform fuel and oxidant utilization rates, and cell conditions, across the entire cell.

Kothmann, Richard E. (Churchill Borough, PA)

1981-01-01T23:59:59.000Z

54

Fuel Economy of the 2013 Ford Focus Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side EV EPA Fuel Economy Miles per Gallon Personalize Electricity* 105 Combined 110 City 99 Highway...

55

Research Focus  

NLE Websites -- All DOE Office Websites (Extended Search)

Focus Focus Work at FEERC is centered on three interrelated areas of research: fuels, engines, and emis- sions. FEERC scientists study the impacts of fuel properties on advanced combustion processes as well as on emissions and emission control strategies and devices. The range of fuels studied includes gaseous (natural gas) and liquid fuels from conventional and unconventional fossil- based sources, as well as non-petroleum fuels from synthetic and renewable sources. The FEERC conducts research on innovative internal combustion engine technologies and control systems for improved efficiency. Combining novel diagnostic and experimental methods with modeling, the Center's scientists also develop improved understanding of the functions and key mechanisms of emission control devices

56

Laboratory Scientific Focus Area Guidance | U.S. DOE Office of...  

Office of Science (SC) Website

Closed Funding Opportunity Announcements (FOAs) Closed Lab Announcements Award Search Peer Review Policy Grants & Contracts Guidance Laboratory Scientific Focus Area...

57

Fuel Cell Technologies Office: 2008 DOE Theory Focus Session...  

NLE Websites -- All DOE Office Websites (Extended Search)

8 DOE Theory Focus Session on Hydrogen Storage Materials The U.S. Department of Energy, through the Office of Science (Basic Energy Sciences) and the Office of Energy Efficiency...

58

Fuel Cell Technologies Office: DOE Theory Focus Session on Hydrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

held a Theory Focus Session on Hydrogen Storage Materials on May 18, 2006 in Crystal City, Va., in conjunction with the DOE Hydrogen Program Annual Merit Review. The meeting...

59

5.2 FY14 Focus Area Self-Assessments 0913  

NLE Websites -- All DOE Office Websites (Extended Search)

AFRD Focus Area Self-Assessments Selection of 2014 Focus Areas AFRD identified two Focus Areas that will be evaluated as part of the ES&H Self- Assessment process for Fiscal Year 2014 (FY14): Focus Area 1. Compressed Gas and Cryogen Safety This Focus Area was recommended by the AFRD ES&H Operations Committee and approved by the Division Director because of potential impact on safety of personnel and to evaluate compliance with requirements. Compressed gas and/or cryogens are used in most AFRD technical areas. The safe handling of compressed gas and cryogens is most closely associated with the 4th ISM Core Function, performing work within controls. A search of the Lessons Learned/Best Practices Database reveals three LBNL Lessons. Two of them are related to a 2013 injury at the ALS from losing control while handling

60

Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel  

Gasoline and Diesel Fuel Update (EIA)

Gallon Excluding Taxes) - Continued Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Sales to End Users Sales for Resale Sales to End Users Sales for Resale...

Note: This page contains sample records for the topic "focus area fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Program Area of Interest: Fuel Transformer Solid Oxide Fuel Cell  

DOE Green Energy (OSTI)

The following report documents the technical approach and conclusions made by Acumentrics Corporation during latest budget period toward the development of a low cost 10kW tubular SOFC power system. The present program, guided under direction from the National Energy Technology Laboratory of the US DOE, is a nine-year cost shared Cooperative Agreement totaling close to $74M funded both by the US DOE as well as Acumentrics Corporation and its partners. The latest budget period ran from July of 2005 through December 2005. Work focused on cell technology enhancements as well as BOP and power electronics improvements and overall system design. Significant progress was made in increasing cell power enhancements as well as decreasing material cost in a drive to meet the SECA cost targets. The following report documents these accomplishments in detail as well as the layout plans for further progress in next budget period.

Norman Bessette; Douglas S. Schmidt; Jolyon Rawson; Rhys Foster; Anthony Litka

2006-02-01T23:59:59.000Z

62

Focused  

NLE Websites -- All DOE Office Websites (Extended Search)

milling: milling: Depth control for three-dimensional microfabrication M. J. Vasile, a) Z. Niu, R. Nassar, W. Zhang, and S. Liu Institute for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71272 ͑Received 29 May 1997; accepted 28 July 1997͒ Ion milling with a focused ion beam ͑FIB͒ is a potential method for making micromolds, which will then be the primary elements in the mass production of micro- or mini-objects by embossing or injection molding. The challenge lies in controlling the ion milling to produce cavities with predefined, arbitrary geometric cross-sections. This work involves programming variations as a function of position into the algorithm that generates the dwell times in the pixel address scheme of a FIB. These variations are done according to whether an axis of symmetry or a plane of symmetry determines the final geometry, and the result is 26 new

63

Focused  

NLE Websites -- All DOE Office Websites (Extended Search)

milling milling of diamond: Effects of H 2 O on yield, surface morphology and microstructure D. P. Adams, a) M. J. Vasile, T. M. Mayer, and V. C. Hodges Thin Film, Vacuum and Packaging Department, Sandia National Laboratories, Albuquerque, New Mexico 87185 ͑Received 1 July 2003; accepted 22 August 2003; published 24 November 2003͒ The effects of H 2 O vapor introduced during focused ion beam ͑FIB͒ milling of diamond͑100͒ are examined. In particular, we determine the yield, surface morphology, and microstructural damage that results from FIB sputtering and H 2 O-assisted FIB milling processes. Experiments involving 20 keV Ga ϩ bombardment to doses ϳ10 18 ions/cm 2 are conducted at a number of fixed ion incidence angles, ␪. For each ␪ selected, H 2 O-assisted ion milling shows an increased material removal rate compared with FIB sputtering ͑no gas assist͒. The amount by which the

64

Argonne Transportation - Clean Cities Area of Interest 4: Alternative Fuel,  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Cities Area of Interest 4: Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool Download Clean Cities Area of Interest 4 Emissions Benefit Tool (Excel 57 KB) This tool has been created for the Clean Cities Funding Opportunity Announcement for Area of Interest 4: Alternative Fuel and Advanced Technology Vehicles Pilot Program. The tool is based off the AirCRED model's methodology using EPA's MOBILE6 model and light duty vehicle and heavy duty engine certification data to generate criteria air pollutant emission credits. However, for this tool, the GREET model is also used to generate data for vehicles not certified and well-to-wheel greenhouse gas emissions. This tool requires the user to input: The number of vehicles planned to be purchased

65

A Program to Stabilize Nuclear Materials as Managed by the Plutonium Focus Area  

Science Conference Proceedings (OSTI)

This paper describes the program to stabilize nuclear materials, consistent with the Department of Energy Office of Environmental Management (EM) plan, Accelerating Cleanup: Paths to Closure. The program is managed by the Plutonium Stabilization and Disposition Focus Area, which defines and manages technology development programs to stabilize nuclear materials and assure their subsequent safe storage and final disposition. The scope of the Plutonium Stabilization and Disposition Focus Area (PFA) activities includes non-weapons plutonium materials, special isotopes, and other fissile materials. The PFA provides solutions to site-specific and complex wide technology issues associated with plutonium remediation, stabilization, and preparation for disposition. Our paper describes an important programmatic function of the Department of Energy nuclear materials stabilization program, including the tie-in of policy to research needs and funding for the nuclear materials disposition area. The PFA uses a rigorous systems engineering determination of technology needs and gaps, under the guidance of a Technical Advisory Panel, consisting of complex-wide experts. The Research and Development planning provides an example for other waste areas and should be of interest to Research and Development managers. The materials disposition maps developed by the PFA and described in this paper provide an evaluation of research needs, data gaps and subsequent guidance for the development of technologies for nuclear materials disposition. This paper also addresses the PFA prioritization methodology and its ability to forecast actual time to implementation.

B. Kenley (Kenley Consulting); B. Scott; B. Seidel (ANL-W); D. Knecht (LMITCO); F. Southworth; K. Osborne (DOE-ID); N. Chipman; T. Creque

1999-03-01T23:59:59.000Z

66

Historical Perspective on Subsurface Contaminants Focus Area (SCFA) Success: Counting the Things That Really Count  

Science Conference Proceedings (OSTI)

The Subsurface Contaminants Focus Area, (SCFA) is committed to, and has been accountable for, identifying and providing solutions for the most pressing subsurface contamination problems in the DOE Complex. The SCFA program is a DOE end user focused and problem driven organization that provides the best technical solutions for the highest priority problems. This paper will discuss in some detail specific examples of the most successful, innovative technical solutions and the DOE sites where they were deployed or demonstrated. These solutions exhibited outstanding performance in FY 2000/2001 and appear poised to achieve significant success in saving end users money and time. They also provide a reduction in risk to the environment, workers, and the public while expediting environmental clean up of the sites.

Wright, J. A. Jr.; Middleman, L. I.

2002-02-27T23:59:59.000Z

67

High Surface Area Molybdenum Nitride Support for Fuel Cell Electrodes  

SciTech Connect

Alternative supports for polymer electrolyte membrane fuel cells were synthesized and catalytic activity was explored using electrochemical analysis. High surface area, molybdenum nitride supports were synthesized by rapidly heating a gel of polyethyleneimine bound molybdenum in a tube furnace under a forming gas atmosphere. Subsequent disposition of platinum through an incipient wetness approach lead to dispersed crystallites of platinum on the conductive support. All the ceramic materials were characterized with XRD, SEM, TEM and electrochemical analysis. The supports without platinum are highly stable to acidic aqueous conditions and show no signs of oxygen reduction reactivity (ORR). However, once the 20 wt % platinum is added to the material, ORR activity comparable to XC72 based materials is observed.

Blackmore, Karen [Los Alamos National Laboratory (LANL); Elbaz, L [Los Alamos National Laboratory (LANL); Bauer, E D [Los Alamos National Laboratory (LANL); Brosha, Eric [Los Alamos National Laboratory (LANL); More, Karren Leslie [ORNL; Mccleskey, T [Los Alamos National Laboratory (LANL); Burrell, A [Los Alamos National Laboratory (LANL)

2011-01-01T23:59:59.000Z

68

Plutonium stabilization and disposition focus area, FY 1999 and FY 2000 multi-year program plan  

SciTech Connect

Consistent with the Environmental Management`s (EM`s) plan titled, ``Accelerating Cleanup: Paths to Closure``, and ongoing efforts within the Executive Branch and Congress, this Multi-Year Program Plan (MYPP) for the Plutonium Focus Area was written to ensure that technical gap projects are effectively managed and measured. The Plutonium Focus Area (PFA) defines and manages technology development programs that contribute to the effective stabilization of nuclear materials and their subsequent safe storage and final disposition. The scope of PFA activities includes the complete spectrum of plutonium materials, special isotopes, and other fissile materials. The PFA enables solutions to site-specific and complex-wide technology issues associated with plutonium remediation, stabilization, and preparation for disposition. The report describes the current technical activities, namely: Plutonium stabilization (9 studies); Highly enriched uranium stabilization (2 studies); Russian collaboration program (2 studies); Packaging and storage technologies (6 studies); and PFA management work package/product line (3 studies). Budget information for FY 1999 and FY 2000 is provided.

NONE

1998-03-01T23:59:59.000Z

69

Mixed Waste Focus Area Mercury Working Group: An integrated approach to mercury waste treatment and disposal  

SciTech Connect

In May 1996, the US Department of Energy (DOE) Mixed Waste Focus Area (MWFA) initiated the Mercury Working Group (HgWG). The HgWG was established to address and resolve the issues associated with mercury contaminated mixed wastes. During the MWFA`s initial technical baseline development process, three of the top four technology deficiencies identified were related to the need for amalgamation, stabilization, and separation removal technologies for the treatment of mercury and mercury contaminated mixed waste. The HgWG is assisting the MWFA in soliciting, identifying, initiating, and managing efforts to address these areas. The focus of the HgWG is to better establish the mercury related treatment technologies at the DOE sites, refine the MWFA technical baseline as it relates to mercury treatment, and make recommendations to the MWFA on how to most effectively address these needs. Based on the scope and magnitude of the mercury mixed waste problem, as defined by HgWG, solicitations and contract awards have been made to the private sector to demonstrate both the amalgamation and stabilization processes using actual mixed wastes. Development efforts are currently being funded that will address DOE`s needs for separation removal processes. This paper discusses the technology selection process, development activities, and the accomplishments of the HgWG to date through these various activities.

Conley, T.B.; Morris, M.I.; Osborne-Lee, I.W.

1998-01-01T23:59:59.000Z

70

Mixed waste focus area integrated master schedule (current as of May 6, 1996)  

SciTech Connect

The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA) is to provide acceptable treatment systems, developed in partnership with users and with the participation of stakeholders, tribal governments, and regulators, that are capable of treating the Department of Energy`s (DOE`s) mixed wastes. In support of this mission, the MWTA produced the Mixed Waste Focus Area Integrated Technical Baseline Report, Phase I Volume 1, January 16, 1996, which identified a prioritized list of 30 national mixed waste technology deficiencies. The MWFA is targeting funding toward technology development projects that address the current list of deficiencies. A clear connection between the technology development projects and the EM-30 and EM-40 treatment systems that they support is essential for optimizing the MWFA efforts. The purpose of the Integrated Master Schedule (IMS) is to establish and document these connections and to ensure that all technology development activities performed by the MWFA are developed for timely use in those treatment systems. The IMS is a list of treatment systems from the Site Treatment Plans (STPs)/Consent Orders that have been assigned technology development needs with associated time-driven schedules, Technology deficiencies and associated technology development (TD) needs have been identified for each treatment system based on the physical, chemical, and radiological characteristics of the waste targeted for the treatment system. The schedule, the technology development activities, and the treatment system have been verified through the operations contact from the EM-30 organization at the site.

NONE

1996-05-01T23:59:59.000Z

71

The mixed waste focus area mercury working group: an integrated approach for mercury treatment and disposal  

SciTech Connect

In May 1996, the U.S. Department of Energy (DOE) Mixed Waste Focus Area (MWFA) initiated the Mercury Work Group (HgWG), which was established to address and resolve the issues associated with mercury- contaminated mixed wastes. Three of the first four technology deficiencies identified during the MWFA technical baseline development process were related to mercury amalgamation, stabilization, and separation/removal. The HgWG will assist the MWFA in soliciting, identifying, initiating, and managing all the efforts required to address these deficiencies. The focus of the HgWG is to better establish the mercury-related treatment needs at the DOE sites, refine the MWFA technical baseline as it relates to mercury treatment, and make recommendations to the MWFA on how to most effectively address these needs. The team will initially focus on the sites with the most mercury-contaminated mixed wastes, whose representatives comprise the HgWG. However, the group will also work with the sites with less inventory to maximize the effectiveness of these efforts in addressing the mercury- related needs throughout the entire complex.

Conley, T.B.; Morris, M.I. [Oak Ridge National Lab., TN (United States); Holmes-Burns, H. [Westinghouse Savannah River Co., Aiken, SC (United States); Petersell, J. [AIMS, Inc., Golden, CO (United States); Schwendiman, L. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States)

1997-02-01T23:59:59.000Z

72

Tanks Focus Area Alternative Salt Processing Research and Development Program Plan  

SciTech Connect

In March 2000, DOE-Headquarters (HQ) requested the Tanks Focus Area (TFA) to assume management responsibility for the Salt Processing Project technology development program at Savannah River Site. The TFA was requested to conduct several activities, including review and revision of the technology development roadmaps, development of down-selection criteria, and preparation of a comprehensive Research and Development (R&D) Program Plan for three candidate cesium removal technologies, as well as the Alpha and strontium removal processes that must also be carried out. The three cesium removal candidate technologies are Crystalline Silicotitanate (CST) Non-Elutable Ion Exchange, Caustic Side Solvent Extraction (CSSX), and Small Tank Tetraphenylborate Precipitation (STTP). This plan describes the technology development needs for each process that must be satisfied in order to reach a down-selection decision, as well as continuing technology development required to support conceptual design activities.

Harmon, Harry D.

2000-11-30T23:59:59.000Z

73

Subsurface Contaminant Focus Area: Monitored Natural Attenuation (MNA)--Programmatic, Technical, and Regulatory Issues  

Science Conference Proceedings (OSTI)

Natural attenuation processes are commonly used for remediation of contaminated sites. A variety of natural processes occur without human intervention at all sites to varying rates and degrees of effectiveness to attenuate (decrease) the mass, toxicity, mobility, volume, or concentration of organic and inorganic contaminants in soil, groundwater, and surface water systems. The objective of this review is to identify potential technical investments to be incorporated in the Subsurface Contaminant Focus Area Strategic Plan for monitored natural attenuation. When implemented, the technical investments will help evaluate and implement monitored natural attenuation as a remediation option at DOE sites. The outcome of this review is a set of conclusions and general recommendations regarding research needs, programmatic guidance, and stakeholder issues pertaining to monitored natural attenuation for the DOE complex.

Krupka, Kenneth M.; Martin, Wayne J.

2001-07-23T23:59:59.000Z

74

Tanks Focus Area Alternative Salt Processing Research and Development Program Plan  

Science Conference Proceedings (OSTI)

In March 2000, DOE-Headquarters (HQ) requested the Tanks Focus Area (TFA)to assume management responsibility for the Salt Processing Project technology development program at Savannah River Site. The TFA was requested to conduct several activities, including review and revision of the technology development roadmaps, development of down-selection criteria, and preparation of a comprehensive Research and Development (R&D) Program Plan for three candidate cesium removal technologies, as well as the Alpha and strontium removal processes that must also be carried out. The three cesium removal candidate technologies are Crystalline Silicotitanate (CST) Non-Elutable Ion Exchange, Caustic Side Solvent Extraction (CSSX), and Small Tank Tetraphenylborate Precipitation (STTP). This plan describes the technology development needs for each process that must be satisfied in order to reach a down-selection decision, as well as continuing technology development required to support conceptual design activities.

Harmon, Harry D.

2000-05-15T23:59:59.000Z

75

Mixed Waste Focus Area integrated technical baseline report, Phase 1: Volume 1  

SciTech Connect

The Department of Energy (DOE) established the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA) to develop and facilitate implementation of technologies required to meet the Department`s commitments for treatment of mixed low-level and transuranic wastes. The mission of the MWFA is to provide acceptable treatment systems, developed in partnership with users and with participation of stakeholders, tribal governments, and regulators, that are capable of treating DOE`s mixed waste. These treatment systems include all necessary steps such as characterization, pretreatment, and disposal. To accomplish this mission, a technical baseline is being established that forms the basis for determining which technology development activities will be supported by the MWFA. The technical baseline is the prioritized list of deficiencies, and the resulting technology development activities needed to overcome these deficiencies. This document presents Phase I of the technical baseline development process, which resulted in the prioritized list of deficiencies that the MWFA will address. A summary of the data and the assumptions upon which this work was based is included, as well as information concerning the DOE Office of Environmental Management (EM) mixed waste technology development needs. The next phase in the technical baseline development process, Phase II, will result in the identification of technology development activities that will be conducted through the MWFA to resolve the identified deficiencies.

1996-01-16T23:59:59.000Z

76

Bay Area Transit Agencies Propel Fuel Cell Buses Toward Commercialization (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes the Zero Emission Bay Area (ZEBA) demonstration of the next generation of fuel cells buses. Several transit agencies in the San Francisco Bay Area are participating in demonstrating the largest single fleet of fuel cell buses in the United States.

Not Available

2010-07-01T23:59:59.000Z

77

TFA Tank Focus Area - multiyear program plan FY98-FY00  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation problem with hundreds of waste tanks containing hundreds of thousands of cubic meters of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Approximately 80 tanks are known or assumed to have leaked. Some of the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in a safe condition and eventually remediated to minimize the risk of waste migration and/or exposure to workers, the public, and the environment. However, programmatic drivers are more ambitious than baseline technologies and budgets will support. Science and technology development investments are required to reduce the technical and programmatic risks associated with the tank remediation baselines. The Tanks Focus Area (TFA) was initiated in 1994 to serve as the DOE`s Office of Environmental Management`s (EM`s) national technology development program for radioactive waste tank remediation. The national program was formed to increase integration and realize greater benefits from DOE`s technology development budget. The TFA is responsible for managing, coordinating, and leveraging technology development to support DOE`s four major tank sites: Hanford Site (Washington), Idaho National Engineering and Environmental Laboratory (INEEL) (Idaho), Oak Ridge Reservation (ORR) (Tennessee), and Savannah River Site (SRS) (South Carolina). Its technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank with safety integrated into all the functions. The TFA integrates program activities across organizations that fund tank technology development EM, including the Offices of Waste Management (EM-30), Environmental Restoration (EM-40), and Science and Technology (EM-50).

NONE

1997-09-01T23:59:59.000Z

78

TFA Tanks Focus Area Multiyear Program Plan FY00-FY04  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation problem with hundreds of waste tanks containing hundreds of thousands of cubic meters of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Approximately 68 tanks are known or assumed to have leaked contamination to the soil. Some of the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in a safe condition and eventually remediated to minimize the risk of waste migration and/or exposure to workers, the public, and the environment. However, programmatic drivers are more ambitious than baseline technologies and budgets will support. Science and technology development investments are required to reduce the technical and programmatic risks associated with the tank remediation baselines. The Tanks Focus Area (TFA) was initiated in 1994 to serve as the DOE Office of Environmental Management's (EM's) national technology development program. for radioactive waste tank remediation. The national program was formed to increase integration and realize greater benefits from DOE's technology development budget. The TFA is responsible for managing, coordinating, and leveraging technology development to support DOE's five major tank sites: Hanford Site (Washington), Idaho National Engineering and Environmental Laboratory (INEEL) (Idaho), Oak Ridge Reservation (ORR) (Tennessee), Savannah River Site (SRS) (South Carolina), and West Valley Demonstration Project (WVDP) (New York). Its technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank with safety integrated into all the functions. The TFA integrates program activities across EM organizations that fund tank technology development, including the Offices of Waste Management (EM-30), Environmental Restoration (EM-40), and Science and Technology (EM-50 or OST).

BA Carteret; JH Westsik; LR Roeder-Smith; RL Gilchrist; RW Allen; SN Schlahta; TM Brouns

1999-10-12T23:59:59.000Z

79

Decontamination of FAST (CPP-666) fuel storage area stainless steel fuel storage racks  

SciTech Connect

The purpose of this report was to identify and evaluate alternatives for the decontamination of the RSM stainless steel that will be removed from the Idaho Chemical Processing plant (ICPP) fuel storage area (FSA) located in the FAST (CPP-666) building, and to recommend decontamination alternatives for treating this material. Upon the completion of a literature search, the review of the pertinent literature, and based on the review of a variety of chemical, mechanical, and compound (both chemical and mechanical) decontamination techniques, the preliminary results of analyses of FSA critically barrier contaminants, and the data collected during the FSA Reracking project, it was concluded that decontamination and beneficial recycle of the FSA stainless steel produced is technically feasible and likely to be cost effective as compared to burying the material at the RWMC. It is recommended that an organic acid, or commercial product containing an organic acid, be used to decontaminate the FSA stainless steel; however, it is also recommended that other surface decontamination methods be tested in the event that this method proves unsuitable. Among the techniques that should be investigated are mechanical techniques (CO{sub 2} pellet blasting and ultra-high pressure water blasting) and chemical techniques that are compatible with present ICPP waste streams.

Kessinger, G.F.

1993-10-01T23:59:59.000Z

80

Alternative Fuel Transit Buses: DART's (Dallas Area Rapid Transit) LNG Bus Fleet Final Results  

DOE Green Energy (OSTI)

In 1998, Dallas Area Rapid Transit, a public transit agency in Dallas, Texas, began operating a large fleet of heavy-duty buses powered by liquefied natural gas. As part of a $16 million commitment to alternative fuels, DART operates 139 LNG buses serviced by two new LNG fueling stations.

Chandler, K. [Battelle (US); Norton, P. [National Renewable Energy Lab., Golden, CO (US); Clark, N.

2000-11-07T23:59:59.000Z

Note: This page contains sample records for the topic "focus area fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

EPA-Fuel Economy Guide | Open Energy Information  

Open Energy Info (EERE)

Fuel Economy Guide Jump to: navigation, search Name Fuel Economy Guide AgencyCompany Organization United States Environmental Protection Agency Focus Area Energy Efficiency,...

82

Focused ion beam patterned Fe thin films A study by selective area Stokes polarimetry and soft x-Ray microscopy  

Science Conference Proceedings (OSTI)

We demonstrate the potential to modify the magnetic behavior and structural properties of ferromagnetic thin films using focused ion beam 'direct-write' lithography. Patterns inspired by the split-ring resonators often used as components in meta-materials were defined upon 15 nm Fe films using a 30 keV Ga{sup +} focused ion beam at a dose of 2 x 10{sup 16} ions cm{sup -2}. Structural, chemical and magnetic changes to the Fe were studied using transmission soft X-ray microscopy at the ALS, Berkeley CA. X-ray absorption spectra showed a 23% reduction in the thickness of the film in the Ga irradiated areas, but no chemical change to the Fe was evident. X-ray images of the magnetic reversal process show domain wall pinning around the implanted areas, resulting in an overall increase in the coercivity of the film. Transmission electron microscopy showed significant grain growth in the implanted regions.

Cook, P. J.; Shen, T. H.; Grundy, P. J.; Im, M.-Y.; Fischer, P.; Morton, S. A.; Kilcoyne, A. L. D.

2010-11-14T23:59:59.000Z

83

Subsurface Contaminants Focus Area (SCFA) Lead Laboratory Providing Technical Assistance to the DOE Weapons Complex in Subsurface Contamination  

SciTech Connect

The Subsurface Contaminants Focus Area (SCFA), a DOE-HQ EM-50 organization, is hosted and managed at the Savannah River Site in Aiken, South Carolina. SCFA is an integrated program chartered to find technology and scientific solutions to address DOE subsurface environmental restoration problems throughout the DOE Weapons Complex. Since its inception in 1989, the SCFA program has resulted in a total of 269 deployments of 83 innovative technologies. Until recently, the primary thrust of the program has been to develop, demonstrate, and deploy those remediation technology alternatives that are solutions to technology needs identified by the DOE Sites. Over the last several years, the DOE Sites began to express a need not only for innovative technologies, but also for technical assistance. In response to this need, DOE-HQ EM-50, in collaboration with and in support of a Strategic Lab Council recommendation directed each of its Focus Areas to implement a Lead Laboratory Concept to enhance their technical capabilities. Because each Focus Area is unique as defined by the contrast in either the type of contaminants involved or the environments in which they are found, the Focus Areas were given latitude in how they set up and implemented the Lead Lab Concept. The configuration of choice for the SCFA was a Lead-Partner Lab arrangement. Savannah River Technology Center (SRTC) teamed with the SCFA as the Focus Area's Lead Laboratory. SRTC then partnered with the DOE National Laboratories to create a virtual consulting function within DOE. The National Laboratories were established to help solve the Nation's most difficult problems, drawing from a resource pool of the most talented and gifted scientists and engineers. Following that logic, SRTC, through the Lead-Partner Lab arrangement, has that same resource base to draw from to provide assistance to any SCFA DOE customer throughout the Complex. This paper briefly describes how this particular arrangement is organized and provides case histories that illustrate its strengths in solving problems and offering solutions. The program is designed to minimize red tape, maximize value, and to rapidly and cost effectively disseminate solutions to common problems facing the DOE.

Wright, J. A. Jr.; Corey, J. C.

2002-02-27T23:59:59.000Z

84

From Petascale to Exascale: Eight Focus Areas of R&D Challenges for HPC Simulation Environments  

Science Conference Proceedings (OSTI)

Programming models bridge the gap between the underlying hardware architecture and the supporting layers of software available to applications. Programming models are different from both programming languages and application programming interfaces (APIs). Specifically, a programming model is an abstraction of the underlying computer system that allows for the expression of both algorithms and data structures. In comparison, languages and APIs provide implementations of these abstractions and allow the algorithms and data structures to be put into practice - a programming model exists independently of the choice of both the programming language and the supporting APIs. Programming models are typically focused on achieving increased developer productivity, performance, and portability to other system designs. The rapidly changing nature of processor architectures and the complexity of designing an exascale platform provide significant challenges for these goals. Several other factors are likely to impact the design of future programming models. In particular, the representation and management of increasing levels of parallelism, concurrency and memory hierarchies, combined with the ability to maintain a progressive level of interoperability with today's applications are of significant concern. Overall the design of a programming model is inherently tied not only to the underlying hardware architecture, but also to the requirements of applications and libraries including data analysis, visualization, and uncertainty quantification. Furthermore, the successful implementation of a programming model is dependent on exposed features of the runtime software layers and features of the operating system. Successful use of a programming model also requires effective presentation to the software developer within the context of traditional and new software development tools. Consideration must also be given to the impact of programming models on both languages and the associated compiler infrastructure. Exascale programming models must reflect several, often competing, design goals. These design goals include desirable features such as abstraction and separation of concerns. However, some aspects are unique to large-scale computing. For example, interoperability and composability with existing implementations will prove critical. In particular, performance is the essential underlying goal for large-scale systems. A key evaluation metric for exascale models will be the extent to which they support these goals rather than merely enable them.

Springmeyer, R; Still, C; Schulz, M; Ahrens, J; Hemmert, S; Minnich, R; McCormick, P; Ward, L; Knoll, D

2011-03-17T23:59:59.000Z

85

Mixed Waste Focus Area mercury contamination product line: An integrated approach to mercury waste treatment and disposal  

SciTech Connect

The US Department of Energy (DOE) Mixed Waste Focus Area (MWFA) is tasked with ensuring that solutions are available for the mixed waste treatment problems of the DOE complex. During the MWFA`s initial technical baseline development process, three of the top four technology deficiencies identified were related to the need for amalgamation, stabilization, and separation/removal technologies for the treatment of mercury and mercury-contaminated mixed waste. The focus area grouped mercury-waste-treatment activities into the mercury contamination product line under which development, demonstration, and deployment efforts are coordinated to provide tested technologies to meet the site needs. The Mercury Working Group (HgWG), a selected group of representatives from DOE sites with significant mercury waste inventories, is assisting the MWFA in soliciting, identifying, initiating, and managing efforts to address these areas. Based on the scope and magnitude of the mercury mixed waste problem, as defined by HgWG, solicitations and contract awards have been made to the private sector to demonstrate amalgamation and stabilization processes using actual mixed wastes. Development efforts are currently being funded under the product line that will address DOE`s needs for separation/removal processes. This paper discusses the technology selection process, development activities, and the accomplishments of the MWFA to date through these various activities.

Hulet, G.A. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Conley, T.B.; Morris, M.I. [Oak Ridge National Lab., TN (United States)

1998-07-01T23:59:59.000Z

86

Mixed Waste Focus Area Working Group: An Integrated Approach to Mercury Waste Treatment and Disposal. Revision 1  

SciTech Connect

May 1996, the U.S. Department of Energy (DOE) Mixed Waste Focus Area (MWFA) initiated the Mercury Work Group (HgWG). The HgWG was established to address and resolve the issues associated with Mercury- contaminated mixed wastes (MWs). During the initial technical baseline development process of the MWFA, three of the top four technology deficiencies identified were related to (1) amalgamation, (2) stabilization, and (3) separation and removal for the treatment of mercury and mercury-contaminated mixed waste (MW). The HgWG is assisting the MWFA in soliciting, identifying, initiating, and managing efforts to address these needs.

Morris, M.I.; Conley, T.B.; Osborne-Lee, I.W.

1997-09-08T23:59:59.000Z

87

The Nuclear Material Focus Area Roadmapping Process Utilizing Environmental Management Complex-Wide Nuclear Material Disposition Pathways  

SciTech Connect

This paper describes the process that the Nuclear Materials Focus Area (NMFA) has developed and utilizes in working with individual Department of Energy (DOE) sites to identify, address, and prioritize research and development efforts in the stabilization, disposition, and storage of nuclear materials. By associating site technology needs with nuclear disposition pathways and integrating those with site schedules, the NMFA is developing a complex wide roadmap for nuclear material technology development. This approach will leverage technology needs and opportunities at multiple sites and assist the NMFA in building a defensible research and development program to address the nuclear material technology needs across the complex.

Sala, D. R.; Furhman, P.; Smith, J. D.

2002-02-26T23:59:59.000Z

88

Tanks Focus Area  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnership Partnership Project Number 08.1.3.1.7, DOE-EM 21 K. Brown (Presenter), Senior Research Scientist, CRESP/Vanderbilt U. D. Esh, M. Furman, J. Phillip, US NRC D. Kosson, S. Mahadevan, A. Garrabrants, CRESP/Vanderbilt U. H. van der Sloot, J.C.L. Meeussen, R. Comans, P. Seignette, ECN (NL) E. Garboczi, K. Snyder, J. Bullard, NIST (US) E. Samson, J. Marchand, SIMCO, Inc. (Canada) C. Langton, G. Flach, R. Seitz, G. Taylor, S. Marra, SRNL DOE Project Manager: Al Baione U.S. DOE Office of Waste Processing Technical Exchange 19-21 May 2009 2 Partnership Members Department of Energy - Office of Environmental Management (DOE-EM) * Principal supporting agency * Primary end-user Nuclear Regulatory Commission (US NRC) * Oversight & Research Divisions * Primary end-user

89

Focus Area 2 Deliverables  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 - Adequate NQA-1 Suppliers 2 - Adequate NQA-1 Suppliers Department of Energy Washington, DC 20585 J U N 2 2 2069 MEMORANDUM FOR DISTRIBUTION FROM: DAE Y. CHUNG DEPUTY ASSISTANT SECRETARY FOR SAFETY MANAGEMENT AND OPERATIONS ENVIRONlMENTAL MANAGEMENT SUBJECT: Issuance of the Office of Environmental Management Nuclear Supplier Alert System The Office of Environmental Management (EM) and the Energy Facility Contractors Group (EFCOG) Quality Assurance (QA) Corporate Board has developed a Nuclear Supplier Alert System as part of its EMIEFCOG QA Improvement Project Plan. This Corporate Board deliverable was approved by the voting members in the last meeting held on March 19,2009. This system is critical to mitigating past weaknesses in supplier qualification and oversight that have resulted in: I

90

Focus Area 5 Deliverables  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 - Line Management Understanding of QA 5 - Line Management Understanding of QA and Oversight Top Right Quadrant: Quality Assurance Point of Contact: Sandra Waisley * Issues: Users will provide current or on-going QA issues of concern that impact work being done correctly, timely, and safely. Input could be from recent assessments, trends, Performance Metrics, number of open action items, recurring issues, etc. Example: Issue #1: Training database was not updated for a 60 day period following termination of training coordinator * Risks: Users will identify risks that impact the project (can be related to "issues" [above] or any other FPD identified risk) being done correctly, timely, and safely. Example: Risk #1: Unqualified personnel may have performed hazardous work

91

Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production Facilities  

E-Print Network (OSTI)

Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production: Commercial Facilities · Applicant's Legal Name: Yokayo Biofuels, Inc. · Name of project: A Catalyst for Success · Project Description: Yokayo Biofuels, an industry veteran with over 10 years experience

92

Environment, safety, health, and quality plan for the TRU- Contaminated Arid Soils Project of the Landfill Stabilization Focus Area Program  

SciTech Connect

The Landfill Stabilization Focus Area (LSFA) is a program funded by the US Department of Energy Office of Technology Development. LSFA supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that together form a comprehensive remediation system for the effective and efficient remediation of buried waste. The TRU-Contaminated Arid Soils project is being conducted under the auspices of the LSFA Program. This document describes the Environment, Safety, Health, and Quality requirements for conducting LSFA/Arid Soils activities at the Idaho National Engineering Laboratory. Topics discussed in this report, as they apply to LSFA/Arid Soils operations, include Federal, State of Idaho, and Environmental Protection Agency regulations, Health and Safety Plans, Quality Program, Data Quality Objectives, and training and job hazard analysis. Finally, a discussion is given on CERCLA criteria and system and performance audits as they apply to the LSFA Program.

Watson, L.R.

1995-06-01T23:59:59.000Z

93

Accident safety analysis for 300 Area N Reactor Fuel Fabrication and Storage Facility  

SciTech Connect

The purpose of the accident safety analysis is to identify and analyze a range of credible events, their cause and consequences, and to provide technical justification for the conclusion that uranium billets, fuel assemblies, uranium scrap, and chips and fines drums can be safely stored in the 300 Area N Reactor Fuel Fabrication and Storage Facility, the contaminated equipment, High-Efficiency Air Particulate filters, ductwork, stacks, sewers and sumps can be cleaned (decontaminated) and/or removed, the new concretion process in the 304 Building will be able to operate, without undue risk to the public, employees, or the environment, and limited fuel handling and packaging associated with removal of stored uranium is acceptable.

Johnson, D.J.; Brehm, J.R.

1994-01-01T23:59:59.000Z

94

Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration: Second Results Report  

DOE Green Energy (OSTI)

This report presents results of a demonstration of 12 new fuel cell electric buses (FCEB) operating in Oakland, California. The 12 FCEBs operate as a part of the Zero Emission Bay Area (ZEBA) Demonstration, which also includes two new hydrogen fueling stations. This effort is the largest FCEB demonstration in the United States and involves five participating transit agencies. The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service. The first results report was published in August 2011, describing operation of these new FCEBs from September 2010 through May 2011. New results in this report provide an update through April 2012.

Eudy, L.; Chandler, K.

2012-07-01T23:59:59.000Z

95

Phase I Focused Corrective Measures Study/Feasibility Study for the L-Area Oil and Chemical Basin (904-83G)  

SciTech Connect

This report presents the completed Resource Conservation and Recovery Act (RCRA) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Focused Corrective Measures Study/Feasibility Study (CMS/FS) for the L-Area Oil and Chemical Basin (LAOCB)/L-Area Acid Caustic Basin (9LAACB) Solid Waste Management Unit/Operable Unit (SWMU/OU) at the Savannah River Site (SRS).

Palmer, E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

1997-02-01T23:59:59.000Z

96

Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration: First Results Report  

DOE Green Energy (OSTI)

This report documents the early implementation experience for the Zero Emission Bay Area (ZEBA) Demonstration, the largest fleet of fuel cell buses in the United States. The ZEBA Demonstration group includes five participating transit agencies: AC Transit (lead transit agency), Santa Clara Valley Transportation Authority (VTA), Golden Gate Transit (GGT), San Mateo County Transit District (SamTrans), and San Francisco Municipal Railway (Muni). The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service.

Chandler, K.; Eudy, L.

2011-08-01T23:59:59.000Z

97

Supplemental information for a notice of construction for the Fueled Clad Fabrication System, the Radioisotope Power Systems Facility, and the Fuel Assembly Area  

Science Conference Proceedings (OSTI)

This ''Notice of Construction'' has been submitted by the US Department of Energy-Richland Operations Office (P.O. Box 550, Richland, Washington 99352), pursuant to WAC 402-80-070, for three new sources of radionuclide emissions at the Hanford Site in Washington State (Figure 1). The three new sources, the Fueled Clad Fabrication System (FCFS) the Radioisotope Power Systems Facility (RPSF) and the Fuel Assembly Area (FAA) will be located in one facility, the Fuels and materials Examination Facility (FMEF) of the 400 Area. The FMEF was originally designed to provide for post- irradiation examination and fabrication of breeder reactor fuels. These FMEF missions were cancelled before the introduction of any fuel materials or any irradiated material. The current plans are to use the facility to fabricate power supplies to be used in space applications and to produce Fast Flux Test Facility (FFTF) fuel and target assemblies. The FCFS and the RPSF will produce materials and assemblies for application in space. The FAA project will produce FFTF fuel and target assemblies. The FCFS and the RPSF will share the same building, stack, and, in certain cases, the same floor space. Given this relationship, to the extent possible, these systems will be dealt with separately. The FAA is a comparatively independent operation though it will share the FMEF complex.

Not Available

1989-08-01T23:59:59.000Z

98

Prevention of significant deterioration permit application for the Fueled Clad Fabrication System, the Radioisotope Power Systems Facility, and the Fuel Assembly Area  

SciTech Connect

This New Source Review'' has been submitted by the US Department of Energy-Richland Operations Office (PO Box 550, Richland, Washington 99352), pursuant to WAC 173-403-050 and in compliance with the Department of Ecology Guide to Processing A Prevention Of Significant Deterioration (PSD) Permit'' for three new sources of radionuclide emissions at the Hanford Site in Washington State. The three new sources, the Fueled Clad Fabrication System (FCFS), the Radioisotope Power Systems Facility (RPSF), and the Fuel Assembly Area (FAA), will be located in one facility, the Fuels and Materials Examination Facility (FMEF) of the 400 Area. The FMEF was originally designed to provide for post-irradiation examination and fabrication of breeder reactor fuels. These FMEF missions were cancelled before the introduction of any fuel materials or any irradiated material. The current plans are to use the facility to fabricate power supplies for use in space applications and to produce Fast Flux Test Facility (FFTF) fuel and target assemblies. The FCFS and the RPSF will produce materials and assemblies for application in space. The FAA project will produce FFTF fuel and target assemblies. The FCFS and the RPSF will share the same building, stack, and, in certain cases, the same floor space. Given this relationship, these systems will be dealt with separately to the extent possible. The FAA is a comparatively independent operation though it will share the FMEF complex.

Not Available

1989-08-01T23:59:59.000Z

99

Safety classification of systems 300 area N reactor fuel supply facilities  

Science Conference Proceedings (OSTI)

Classification of the Fuel Supply Shutdown (FSS) safety systems, equipment, and components is presented.

Benecke, M.W., Westinghouse Hanford, Richland, WA

1997-10-10T23:59:59.000Z

100

Corrective Action Investigation Plan for Corrective Action Unit 321: Area 22 Weather Station Fuel Storage, Nevada Test Site, Nevada  

SciTech Connect

This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO (1996), CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. A CAU consists of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the CAU 321 Area 22 Weather Station Fuel Storage, CAS 22-99-05 Fuel Storage Area. For purposes of this discussion, this site will be referred to as either CAU 321 or the Fuel Storage Area. The Fuel Storage Area is located in Area 22 of the Nevada Test Site (NTS). The NTS is approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1-1) (DOE/NV, 1996a). The Fuel Storage Area (Figure 1-2) was used to store fuel and other petroleum products necessary for motorized operations at the historic Camp Desert Rock facility which was operational from 1951 to 1958 at the Nevada Test Site, Nevada. The site was dismantled after 1958 (DOE/NV, 1996a).

DOE /NV

1999-01-28T23:59:59.000Z

Note: This page contains sample records for the topic "focus area fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Improved Hydrogen Gas Getters for TRU Waste Transuranic and Mixed Waste Focus Area - Phase 2 Final Report  

DOE Green Energy (OSTI)

Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission (NRC) limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB. It has the needed binding rate and capacity, but some of the chemical species that might be present in the containers could interfere with its ability to remove hydrogen. This project is focused upon developing a protective polymeric membrane coating for the DEB getter material, which comes in the form of small, irregularly shaped particles. This report summarizes the experimental results of the second phase of the development of the materials.

Stone, Mark Lee

2002-04-01T23:59:59.000Z

102

CONFIRMATORY SURVEY OF THE FUEL OIL TANK AREA HUMBOLDT BAY POWER PLANT EUREKA, CALIFORNIA  

SciTech Connect

During the period of February 14 to 15, 2012, ORISE performed radiological confirmatory survey activities for the former Fuel Oil Tank Area (FOTA) and additional radiological surveys of portions of the Humboldt Bay Power Plant site in Eureka, California. The radiological survey results demonstrate that residual surface soil contamination was not present significantly above background levels within the FOTA. Therefore, it is ORISEs opinion that the radiological conditions for the FOTA surveyed by ORISE are commensurate with the site release criteria for final status surveys as specified in PG&Es Characterization Survey Planning Worksheet. In addition, the confirmatory results indicated that the ORISE FOTA survey unit Cs-137 mean concentrations results compared favorably with the PG&E FOTA Cs-137 mean concentration results, as determined by ORISE from the PG&E characterization data. The interlaboratory comparison analyses of the three soil samples analyzed by PG&Es onsite laboratory and the ORISE laboratory indicated good agreement for the sample results and provided confidence in the PG&E analytical procedures and final status survey soil sample data reporting.

WADE C. ADAMS

2012-04-09T23:59:59.000Z

103

Fuel Cells Team  

NLE Websites -- All DOE Office Websites (Extended Search)

Judith Valerio at one of our 31 single-cell test stands Fuel Cell Team The FC team focus is R&D on polymer electrolyte membrane (PEM) fuel cells for commercial and military applications. Our program has had ongoing funding in the area of polymer electrolyte fuel cells since 1977 and has been responsible for enabling breakthroughs in the areas of thin film electrodes and air bleed for CO tolerance. For more information on the history of fuel cell research at Los Alamos, please click here. Fuel cells are an important enabling technology for the Hydrogen Economy and have the potential to revolutionize the way we power the nation and the world. The FC team is exploring the potential of fuel cells as energy-efficient, clean, and fuel-flexible alternatives that will

104

Alternative Fuel News  

NLE Websites -- All DOE Office Websites (Extended Search)

direction for alternative fuels is emerging within direction for alternative fuels is emerging within the U.S. Department of Energy (DOE). As a result of public input and new requirements, consideration of a proposed rule for local government and private fleet alternative fuel vehicle (AFV) acquisition requirements has been delayed. In this special issue of Alternative Fuel News, we summa- rize DOE's current position on the local government and private fleet rulemaking that has been under considera- tion. We'll also take a look at the new area of focus-niche markets-an area that is promising to be another effective way to help meet national targets for displacing petroleum- based fuels. The Local Government and Private Fleet Rule The Energy Policy Act of 1992 (EPAct) requires that replacement fuels comprise 10% of total U.S. motor fuel

105

Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

106

Analysis of the Impact of Fuel Cell Vehicles on Energy Systems...  

Open Energy Info (EERE)

AgencyCompany Organization Tohoku University Focus Area Fuels & Efficiency, Hydrogen Topics Analysis Tools, Policy Impacts, Policy Impacts Website http:www.iaee.org...

107

Tribal and public involvement in the U.S. Department of Energy Mixed Waste Focus Area -- First quarter status report for the period ending December 31, 1995  

SciTech Connect

The US Department of Energy (DOE) Mixed Waste Focus Area (MWFA) began operations in February 1995 to provide technologies for the design, construction, and operation of implementable mixed waste treatment systems as identified in DOE Site Treatment Plans of the Federal Facilities Compliance Act. Implementable mixed waste treatment systems means that they meet the MWFA success criteria and that potential barriers to implementing those treatment systems have been identified and eliminated through effective communications and meaningful involvement with regulators, stakeholders, and tribal governments. The Regulatory and External Liaison Product Area of the MWFA is responsible for ensuring that possible teaming arrangements are considered and integrated into the MWFA technology development and decision-making processes. The Tribal and Public Involvement Team of the MWFA Regulatory and External Liaison Product Area has initiated a variety of activities to facilitate tribal and stakeholder involvement within the MWFA. This document discusses the status of those activities as of the end of the first quarter of the 1996 fiscal year and describes applicable lessons learned and process improvements.

Owens, K.J.

1996-02-01T23:59:59.000Z

108

AREA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AREA AREA FAQ # Question Response 316 vs DCAA FAQ 1 An inquiry from CH about an SBIR recipient asking if a DCAA audit is sufficient to comply with the regulation or if they need to add this to their audit they have performed yearly by a public accounting firm. 316 audits are essentially A-133 audits for for-profit entities. They DO NOT replace DCAA or other audits requested by DOE to look at indirect rates or incurred costs or closeouts. DCAA would never agree to perform A-133 or our 316 audits. They don't do A-133 audits for DOD awardees. The purpose of the audits are different, look at different things and in the few instances of overlap, from different perspectives. 316

109

Fuel  

E-Print Network (OSTI)

heavy-water-moderated, light-water-moderated and liquid-metal cooled fast breeder reactors fueled with natural or low-enriched uranium and containing thorium mixed with the uranium or in separate target channels. U-232 decays with a 69-year half-life through 1.9-year half-life Th-228 to Tl-208, which emits a 2.6 MeV gamma ray upon decay. We find that pressurized light-water-reactors fueled with LEU-thorium fuel at high burnup (70 MWd/kg) produce U-233 with U-232 contamination levels of about 0.4 percent. At this contamination level, a 5 kg sphere of U-233 would produce a gammaray dose rate of 13 and 38 rem/hr at 1 meter one and ten years after chemical purification respectively. The associated plutonium contains 7.5 percent of the undesirable heat-generating 88-year half-life isotope Pu-238. However, just as it is possible to produce weapon-grade plutonium in low-burnup fuel, it is also practical to use heavy-water reactors to produce U-233 containing only a few ppm of U-232 if the thorium is segregated in target channels and discharged a few times more frequently than the natural-uranium driver fuel. The dose rate from a 5-kg solid sphere of U-233 containing 5 ppm U-232 could be reduced by a further factor of 30, to about 2 mrem/hr, with a close-fitting lead sphere weighing about 100 kg. Thus the proliferation resistance of thorium fuel cycles depends very much upon how they are implemented. The original version of this manuscript was received by Science & Global Security on

Jungmin Kang A

2001-01-01T23:59:59.000Z

110

Integrated fuel processor development challenges.  

DOE Green Energy (OSTI)

In the absence of a hydrogen-refueling infrastructure, the success of the fuel cell system in the market will depend on fuel processors to enable the use of available fuels, such as gasoline, natural gas, etc. The fuel processor includes several catalytic reactors, scrubbers to remove chemical species that can poison downstream catalysts or the fuel cell electrocatalyst, and heat exchangers. Most fuel cell power applications seek compact, lightweight hardware with rapid-start and load- following capabilities. Although packaging can partially address the size and volume, balancing the performance parameters while maintaining the fuel conversion (to hydrogen) efficiency requires careful integration of the unit operations and processes. Argonne National Laboratory has developed integrated fuel processors that are compact and light, and that operate efficiently. This paper discusses some of the difficulties encountered in the development process, focusing on the factors/components that constrain performance, and areas that need further research and development.

Ahmed, S.; Pereira, Lee, S. H. D.; Kaun, T.; Krumpelt, M.

2002-01-09T23:59:59.000Z

111

Technological analysis of options for generating electricity with solid waste fuel in the Bangkok metropolitan area  

SciTech Connect

A discussion of relatively current techniques for converting mixed municipal waste into electricity is presented. A brief review of the comparative capabilities of the relevant energy recovery systems is documented in this section. The discussion is focused on the principal system and technological strategies that would be best suited for the municipal solid waste recovery project in Thailand. Emphasis in the review was placed on mixed waste processing in a mass burning waterwalled system.

1985-09-01T23:59:59.000Z

112

The Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFC Focused on Hanfords 300 Area Uranium Plume Quality Assurance Project Plan  

Science Conference Proceedings (OSTI)

The purpose of the project is to conduct research at an Integrated Field-Scale Research Challenge Site in the Hanford Site 300 Area, CERCLA OU 300-FF-5 (Figure 1), to investigate multi-scale mass transfer processes associated with a subsurface uranium plume impacting both the vadose zone and groundwater. The project will investigate a series of science questions posed for research related to the effect of spatial heterogeneities, the importance of scale, coupled interactions between biogeochemical, hydrologic, and mass transfer processes, and measurements/approaches needed to characterize a mass-transfer dominated system. The research will be conducted by evaluating three (3) different hypotheses focused on multi-scale mass transfer processes in the vadose zone and groundwater, their influence on field-scale U(VI) biogeochemistry and transport, and their implications to natural systems and remediation. The project also includes goals to 1) provide relevant materials and field experimental opportunities for other ERSD researchers and 2) generate a lasting, accessible, and high-quality field experimental database that can be used by the scientific community for testing and validation of new conceptual and numerical models of subsurface reactive transport.

Fix, N. J.

2008-01-31T23:59:59.000Z

113

Hydrogen and fuel cell research | Open Energy Information  

Open Energy Info (EERE)

Hydrogen and fuel cell research Hydrogen and fuel cell research Jump to: navigation, search Tool Summary Name: Hydrogen and fuel cell research Agency/Company /Organization: National Renewable Energy Laboratory Focus Area: Fuels & Efficiency Topics: Potentials & Scenarios Resource Type: Website Website: www.nrel.gov/hydrogen/proj_fc_bus_eval.html This webside contributes to the growing role that advanced technologies play in addressing the nation's energy challenges. Their projects focus on hydrogen production, delivery, and storage; fuel cells; technology validation; safety, codes, and standards; analysis; education; and manufacturing. References Retrieved from "http://en.openei.org/w/index.php?title=Hydrogen_and_fuel_cell_research&oldid=515025" Categories: Transportation Toolkits

114

Recent research efforts in the area of biotechnology for fuels and chemicals: Poster session papers  

DOE Green Energy (OSTI)

This report presents research presented at the poster session of the Symposium covering a wide spectrum of current biotechnological research activities. Research focused mostly on ethanol production and methane generation from biomass material via microbial processing, as well as on enhanced hydrogen yield from algae. Several of the posters dealt with the pretreatment of cellulosic materials, and enzyme production/characterization, while a good number of papers displayed research efforts on bioremediation, photosynthesis, production of various useful chemicals from biomass by bioprocessing, and on other miscellaneous subjects. One of the papers treated a very interesting topic of cellulose-cellulase complexes. Many of the poster papers are included in this volume, and a synopsis of all the poster/papers presented is the subject of this article.

Antonopoulos, A.A. [Argonne National Lab., IL (United States); Grohmann, K. [US Citrus and Subtropical Products Lab., Winter Haven, FL (United States)

1992-09-01T23:59:59.000Z

115

Recent research efforts in the area of biotechnology for fuels and chemicals: Poster session papers  

DOE Green Energy (OSTI)

This report presents research presented at the poster session of the Symposium covering a wide spectrum of current biotechnological research activities. Research focused mostly on ethanol production and methane generation from biomass material via microbial processing, as well as on enhanced hydrogen yield from algae. Several of the posters dealt with the pretreatment of cellulosic materials, and enzyme production/characterization, while a good number of papers displayed research efforts on bioremediation, photosynthesis, production of various useful chemicals from biomass by bioprocessing, and on other miscellaneous subjects. One of the papers treated a very interesting topic of cellulose-cellulase complexes. Many of the poster papers are included in this volume, and a synopsis of all the poster/papers presented is the subject of this article.

Antonopoulos, A.A. (Argonne National Lab., IL (United States)); Grohmann, K. (US Citrus and Subtropical Products Lab., Winter Haven, FL (United States))

1992-01-01T23:59:59.000Z

116

Fuel Cell Technologies Office: Key Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Activities Key Activities The Fuel Cell Technologies Office conducts work in several key areas to advance the development and commercialization of hydrogen and fuel cell technologies. Research, Development, and Demonstration Key areas of research, development, and demonstration (RD&D) include the following: Fuel Cell R&D, which seeks to improve the durability, reduce the cost, and improve the performance of fuel cell systems, through advances in fuel cell stack and balance of plant components Hydrogen Fuel R&D, which focuses on enabling the production of low-cost hydrogen fuel from diverse renewable pathways and addressing key challenges to hydrogen delivery and storage Manufacturing R&D, which works to develop and demonstrate advanced manufacturing technologies and processes that will reduce the cost of fuel cell systems and hydrogen technologies

117

Alternative Fueling Station Locator - Mobile | Open Energy Information  

Open Energy Info (EERE)

Fueling Station Locator - Mobile Fueling Station Locator - Mobile Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fueling Station Locator - Mobile Agency/Company /Organization: United States Department of Energy Partner: National Renewable Energy Laboratory Sector: Energy Focus Area: Transportation Phase: Evaluate Options, Prepare a Plan Resource Type: Online calculator User Interface: Mobile Device Website: www.afdc.energy.gov/afdc/locator/m/stations/ Web Application Link: www.afdc.energy.gov/afdc/locator/m/stations/ Cost: Free References: National Renewable Energy Laboratory Advanced Vehicles and Fuels Research: Data and Resources[1] Logo: Alternative Fueling Station Locator - Mobile Find fueling stations for your alternative fuel vehicle on-the-go with the

118

Corrective Action Plan for Corrective Action Unit 321: Area 22 Weather Station Fuel Storage Nevada Test Site, Nevada  

Science Conference Proceedings (OSTI)

The purpose of this Corrective Action Plan (CAP) is to provide the strategy and methodology to close the Area 22 Weather Station Fuel Storage. The CAU will be closed following state and federal regulations and the FFACO (1996). Site characterization was done during February 1999. Soil samples were collected using a direct-push method. Soil samples were collected at 0.6-m (2-ft) intervals from the surface to 1.8 m (6 ft) below ground surface. The results of the characterization were reported in the Corrective Action Decision Document (CADD) (DOE, 1999b). Soil sample results indicated that two locations in the bermed area contain total petroleum hydrocarbons (TPH) as diesel at concentrations of 124 milligrams per kilogram (mg/kg) and 377 mg/kg. This exceeds the Nevada Division of Environmental Protection (NDEP) regulatory action level for TPH of 100 mg/kg (Nevada Administrative Code, 1996). The TPH-impacted soil will be removed and disposed as part of the corrective action.

D. S. Tobiason

2000-06-01T23:59:59.000Z

119

Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on Hanfords 300 Area Uranium Plume  

Science Conference Proceedings (OSTI)

The Integrated Field-Scale Subsurface Research Challenge (IFRC) at the Hanford Site 300 Area uranium (U) plume addresses multi-scale mass transfer processes in a complex hydrogeologic setting where groundwater and riverwater interact. A series of forefront science questions on mass transfer are posed for research which relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements and approaches needed to characterize and model a mass-transfer dominated system. The project was initiated in February 2007, with CY 2007 and CY 2008 progress summarized in preceding reports. The site has 35 instrumented wells, and an extensive monitoring system. It includes a deep borehole for microbiologic and biogeochemical research that sampled the entire thickness of the unconfined 300 A aquifer. Significant, impactful progress has been made in CY 2009 with completion of extensive laboratory measurements on field sediments, field hydrologic and geophysical characterization, four field experiments, and modeling. The laboratory characterization results are being subjected to geostatistical analyses to develop spatial heterogeneity models of U concentration and chemical, physical, and hydrologic properties needed for reactive transport modeling. The field experiments focused on: (1) physical characterization of the groundwater flow field during a period of stable hydrologic conditions in early spring, (2) comprehensive groundwater monitoring during spring to characterize the release of U(VI) from the lower vadose zone to the aquifer during water table rise and fall, (3) dynamic geophysical monitoring of salt-plume migration during summer, and (4) a U reactive tracer experiment (desorption) during the fall. Geophysical characterization of the well field was completed using the down-well Electrical Resistance Tomography (ERT) array, with results subjected to robust, geostatistically constrained inversion analyses. These measurements along with hydrologic characterization have yielded 3D distributions of hydraulic properties that have been incorporated into an updated and increasingly robust hydrologic model. Based on significant findings from the microbiologic characterization of deep borehole sediments in CY 2008, down-hole biogeochemistry studies were initiated where colonization substrates and spatially discrete water and gas samplers were deployed to select wells. The increasingly comprehensive field experimental results, along with the field and laboratory characterization, are leading to a new conceptual model of U(VI) flow and transport in the IFRC footprint and the 300 Area in general, and insights on the microbiological community and associated biogeochemical processes. A significant issue related to vertical flow in the IFRC wells was identified and evaluated during the spring and fall field experimental campaigns. Both upward and downward flows were observed in response to dynamic Columbia River stage. The vertical flows are caused by the interaction of pressure gradients with our heterogeneous hydraulic conductivity field. These impacts are being evaluated with additional modeling and field activities to facilitate interpretation and mitigation. The project moves into CY 2010 with ambitious plans for a drilling additional wells for the IFRC well field, additional experiments, and modeling. This research is part of the ERSP Hanford IFRC at Pacific Northwest National Laboratory.

Zachara, John M.; Bjornstad, Bruce N.; Christensen, John N.; Conrad, Mark E.; Fredrickson, Jim K.; Freshley, Mark D.; Haggerty, Roy; Hammon, Glenn; Kent, Douglas B.; Konopka, Allan; Lichtner, Peter C.; Liu, Chongxuan; McKinley, James P.; Murray, Christopher J.; Rockhold, Mark L.; Rubin, Yoram; Vermeul, Vincent R.; Versteeg, Roelof J.; Ward, Anderson L.; Zheng, Chunmiao

2010-02-01T23:59:59.000Z

120

Canada's Fuel Consumption Guide | Open Energy Information  

Open Energy Info (EERE)

Canada's Fuel Consumption Guide Canada's Fuel Consumption Guide Jump to: navigation, search Tool Summary Name: Canada's Fuel Consumption Guide Agency/Company /Organization: Natural Resources Canada Focus Area: Fuels & Efficiency Topics: Analysis Tools Website: oee.nrcan.gc.ca/transportation/tools/fuel-consumption-guide/fuel-consu Natural Resources Canada has compiled fuel consumption ratings for passenger cars and light-duty pickup trucks, vans, and special purpose vehicles sold in Canada. The website links to the Fuel Consumption Guide and allows users to search for vehicles from current and past model years. It also provides information about vehicle maintenance and other practices to reduce fuel consumption. How to Use This Tool This tool is most helpful when using these strategies:

Note: This page contains sample records for the topic "focus area fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Puget Sound Area Electric Reliability Plan. Appendix D, Conservation, Load Management and Fuel Switching Analysis : Draft Environmental Impact Statement.  

SciTech Connect

Various conservation, load management, and fuel switching programs were considered as ways to reduce or shift system peak load. These programs operate at the end-use level, such as residential water heat. Figure D-1a shows what electricity consumption for water heat looks like on normal and extreme peak days. Load management programs, such as water heat control, are designed to reduce electricity consumption at the time of system peak. On the coldest day in average winter, system load peaks near 8:00 a.m. In a winter with extremely cold weather, electricity consumption increases fr all hours, and the system peak shifts to later in the morning. System load shapes in the Puget Sound area are shown in Figure D-1b for a normal winter peak day (February 2, 1988) and extreme peak day (February 3, 1989). Peak savings from any program are calculated to be the reduction in loads on the entire system at the hour of system peak. Peak savings for all programs are measured at 8:00 a.m. on a normal peak day and 9:00 a.m. on an extreme peak day. On extremely cold day, some water heat load shifts to much later in the morning, with less load available for shedding at the time of system peak. Models of hourly end-use consumption were constructed to simulate the impact of conservation, land management, and fuel switching programs on electricity consumption. Javelin, a time-series simulating package for personal computers, was chosen for the hourly analysis. Both a base case and a program case were simulated. 15 figs., 7 tabs.

United States. Bonneville Power Administration.

1991-09-01T23:59:59.000Z

122

Canadian Fuel Cell Commercialization Roadmap Update: Progress of Canada's  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Canadian Fuel Cell Commercialization Roadmap Update: Progress of Canada's Hydrogen and Fuel Cell Industry Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Canadian Fuel Cell Commercialization Roadmap Update: Progress of Canada's Hydrogen and Fuel Cell Industry Focus Area: Hydrogen Topics: Potentials & Scenarios Website: www.chfca.ca/files/IC_FC_PDF_final.pdf Equivalent URI: cleanenergysolutions.org/content/canadian-fuel-cell-commercialization- Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This roadmap update provides an overview of global hydrogen and fuel cell markets as context for the activities of the Canadian industry. It presents

123

Fuel performance annual report for 1991. Volume 9  

Science Conference Proceedings (OSTI)

This report is the fourteenth in a series that provides a compilation of information regarding commercial nuclear fuel performance. The series of annual reports were developed as a result of interest expressed by the public, advising bodies, and the US Nuclear Regulatory Commission (NRC) for public availability of information pertaining to commercial nuclear fuel performance. During 1991, the nuclear industry`s focus regarding fuel continued to be on extending burnup while maintaining fuel rod reliability. Utilities realize that high-burnup fuel reduces the amount of generated spent fuel, reduces fuel costs, reduces operational and maintenance costs, and improves plant capacity factors by extending operating cycles. Brief summaries of fuel operating experience, fuel design changes, fuel surveillance programs, high-burnup experience, problem areas, and items of general significance are provided.

Painter, C.L.; Alvis, J.M.; Beyer, C.E. [Pacific Northwest Lab., Richland, WA (United States); Marion, A.L. [Oregon State Univ., Corvallis, OR (United States). Dept. of Nuclear Engineering; Payne, G.A. [Northwest Coll. and Univ. Association for Science, Richland, WA (United States); Kendrick, E.D. [Nuclear Regulatory Commission, Washington, DC (United States)

1994-08-01T23:59:59.000Z

124

North Central Texas Council of Governments North Central Texas Alternative Fuel and Advanced Technology Investments initiative is one of 25 Area of Interest 4 Selections  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CLEAN CITIES RECOVERY ACT AWARDS CLEAN CITIES RECOVERY ACT AWARDS FOR ALTERNATIVE AND ADVANCED VEHICLES North Central Texas Council of Governments' North Central Texas Alternative Fuel and Advanced Technology. The project will deploy refueling stations and alternative fuel vehicles in the Dallas-Fort Worth area. The project includes a portfolio of different technologies and fuels, including B20 (three stations), ethanol E85 (three stations), compressed natural gas (three stations and 97 vehicles), electricity (four recharging sites and 34 vehicles), and 251 hybrid electric vehicles. In addition to the city fleets, high mileage and high visibility fleets are included, such as Coca-Cola, Sysco, Frito Lay, school districts, and taxis. DOE estimates that this project will help displace approximately 1.3 million gallons of petroleum annually.

125

Summary report : universal fuel processor.  

DOE Green Energy (OSTI)

The United States produces only about 1/3 of the more than 20 million barrels of petroleum that it consumes daily. Oil imports into the country are roughly equivalent to the amount consumed in the transportation sector. Hence the nation in general, and the transportation sector in particular, is vulnerable to supply disruptions and price shocks. The situation is anticipated to worsen as the competition for limited global supplies increases and oil-rich nations become increasingly willing to manipulate the markets for this resource as a means to achieve political ends. The goal of this project was the development and improvement of technologies and the knowledge base necessary to produce and qualify a universal fuel from diverse feedstocks readily available in North America and elsewhere (e.g. petroleum, natural gas, coal, biomass) as a prudent and positive step towards mitigating this vulnerability. Three major focus areas, feedstock transformation, fuel formulation, and fuel characterization, were identified and each was addressed. The specific activities summarized herein were identified in consultation with industry to set the stage for collaboration. Two activities were undertaken in the area of feedstock transformation. The first activity focused on understanding the chemistry and operation of autothermal reforming, with an emphasis on understanding, and therefore preventing, soot formation. The second activity was focused on improving the economics of oxygen production, particularly for smaller operations, by integrating membrane separations with pressure swing adsorption. In the fuel formulation area, the chemistry of converting small molecules readily produced from syngas directly to fuels was examined. Consistent with the advice from industry, this activity avoided working on improving known approaches, giving it an exploratory flavor. Finally, the fuel characterization task focused on providing a direct and quantifiable comparison of diesel fuel and JP-8.

Coker, Eric Nicholas; Rice, Steven F. (Sandia National Laboratories, Livermore, CA); Kemp, Richard Alan; Stewart, Constantine A.; Miller, James Edward; Cornelius, Christopher James; Staiger, Chad Lynn; Pickett, Lyle M. (Sandia National Laboratories, Livermore, CA)

2008-01-01T23:59:59.000Z

126

The Underground Test Area Project of the Nevada Test Site: Building Confidence in Groundwater Flow and Transport Models at Pahute Mesa Through Focused Characterization Studies  

SciTech Connect

Pahute Mesa at the Nevada Test Site contains about 8.0E+07 curies of radioactivity caused by underground nuclear testing. The Underground Test Area Subproject has entered Phase II of data acquisition, analysis, and modeling to determine the risk to receptors from radioactivity in the groundwater, establish a groundwater monitoring network, and provide regulatory closure. Evaluation of radionuclide contamination at Pahute Mesa is particularly difficult due to the complex stratigraphy and structure caused by multiple calderas in the Southwestern Nevada Volcanic Field and overprinting of Basin and Range faulting. Included in overall Phase II goals is the need to reduce the uncertainty and improve confidence in modeling results. New characterization efforts are underway, and results from the first year of a three-year well drilling plan are presented.

Pawloski, G A; Wurtz, J; Drellack, S L

2009-12-29T23:59:59.000Z

127

Alternative Fueling Station Locator | Open Energy Information  

Open Energy Info (EERE)

Alternative Fueling Station Locator Alternative Fueling Station Locator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fueling Station Locator Agency/Company /Organization: United States Department of Energy Partner: National Renewable Energy Laboratory Sector: Energy Focus Area: Fuels & Efficiency, Transportation Phase: Evaluate Options, Prepare a Plan Topics: Datasets Resource Type: Online calculator User Interface: Website Website: www.afdc.energy.gov/afdc/locator/stations/ Web Application Link: www.afdc.energy.gov/afdc/locator/stations/ Cost: Free OpenEI Keyword(s): Featured References: National Renewable Energy Laboratory Advanced Vehicles and Fuels Research: Data and Resources[1] Logo: Alternative Fueling Station Locator The alternative fuel station locator uses an address based search to find

128

Global Fuel Economy Initiative | Open Energy Information  

Open Energy Info (EERE)

Global Fuel Economy Initiative Global Fuel Economy Initiative Jump to: navigation, search Tool Summary Name: Global Fuel Economy Initiative Agency/Company /Organization: FIA Foundation, International Energy Agency, International Transport Forum, United Nations Environment Programme Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.globalfueleconomy.org/ The Global Fuel Economy Initiative has launched the 50by50 challenge to facilitate large reductions of greenhouse gas emissions and oil use through improvements in automotive fuel economy. The website provides access to working papers, a map showing countries with fuel economy standards, and other related information. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel

129

FOCUS COOLING  

NLE Websites -- All DOE Office Websites (Extended Search)

www.datacenterdynamics.com www.datacenterdynamics.com FOCUS COOLING Issue 28, March/April 2013 LBNL'S NOVEL APPROACH TO COOLING Lawrence Berkeley National Laboratory and APC by Schneider Electric test a unique double-exchanger cooling system LBNL program manager Henry Coles says can cut energy use by half A s part of a demonstration sponsored by the California Energy Commission in support of the Silicon Valley Leadership Group's data center summit, Lawrence Berkeley National Laboratory (LBNL) collaborated with APC by Schneider Electric to demonstrate a novel prototype data center cooling device. The device was installed at an LBNL data center in Berkeley, California. It included two air-to-water heat exchangers. Unlike common single-heat-exchanger configurations, one of these was supplied with

130

Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on Hanfords 300 Area Uranium Plume January 2011 to January 2012  

SciTech Connect

The Integrated Field Research Challenge (IFRC) at the Hanford Site 300 Area uranium (U) plume addresses multi-scale mass transfer processes in a complex subsurface biogeochemical setting where groundwater and riverwater interact. A series of forefront science questions on reactive mass transfer motivates research. These questions relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements and approaches needed to characterize and model a mass-transfer dominated biogeochemical system. The project was initiated in February 2007, with CY 2007, CY 2008, CY 2009, and CY 2010 progress summarized in preceding reports. A project peer review was held in March 2010, and the IFRC project acted upon all suggestions and recommendations made in consequence by reviewers and SBR/DOE. These responses have included the development of 'Modeling' and 'Well-Field Mitigation' plans that are now posted on the Hanford IFRC web-site, and modifications to the IFRC well-field completed in CY 2011. The site has 35 instrumented wells, and an extensive monitoring system. It includes a deep borehole for microbiologic and biogeochemical research that sampled the entire thickness of the unconfined 300 A aquifer. Significant, impactful progress has been made in CY 2011 including: (i) well modifications to eliminate well-bore flows, (ii) hydrologic testing of the modified well-field and upper aquifer, (iii) geophysical monitoring of winter precipitation infiltration through the U-contaminated vadose zone and spring river water intrusion to the IFRC, (iv) injection experimentation to probe the lower vadose zone and to evaluate the transport behavior of high U concentrations, (v) extended passive monitoring during the period of water table rise and fall, and (vi) collaborative down-hole experimentation with the PNNL SFA on the biogeochemistry of the 300 A Hanford-Ringold contact and the underlying redox transition zone. The modified well-field has functioned superbly without any evidence for well-bore flows. Beyond these experimental efforts, our site-wide reactive transport models (PFLOTRAN and eSTOMP) have been updated to include site geostatistical models of both hydrologic properties and adsorbed U distribution; and new hydrologic characterization measurements of the upper aquifer. These increasingly robust models are being used to simulate past and recent U desorption-adsorption experiments performed under different hydrologic conditions, and heuristic modeling to understand the complex functioning of the smear zone. We continued efforts to assimilate geophysical logging and 3D ERT characterization data into our site wide geophysical model, with significant and positive progress in 2011 that will enable publication in 2012. Our increasingly comprehensive field experimental results and robust reactive transport simulators, along with the field and laboratory characterization, are leading to a new conceptual model of U(VI) flow and transport in the IFRC footprint and the 300 Area in general, and insights on the microbiological community and associated biogeochemical processes influencing N, S, C, Mn, and Fe. Collectively these findings and higher scale models are providing a unique and unparalleled system-scale understanding of the biogeochemical function of the groundwater-river interaction zone.

Zachara, John M.; Bjornstad, Bruce N.; Christensen, John N.; Conrad, Mark S.; Fredrickson, Jim K.; Freshley, Mark D.; Haggerty, Roy; Hammond, Glenn E.; Kent, Douglas B.; Konopka, Allan; Lichtner, Peter C.; Liu, Chongxuan; McKinley, James P.; Murray, Christopher J.; Rockhold, Mark L.; Rubin, Yoram; Vermeul, Vincent R.; Versteeg, Roelof J.; Zheng, Chunmiao

2012-03-05T23:59:59.000Z

131

Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on Hanfords 300 Area Uranium Plume January 2011 to January 2012  

SciTech Connect

The Integrated Field Research Challenge (IFRC) at the Hanford Site 300 Area uranium (U) plume addresses multi-scale mass transfer processes in a complex subsurface biogeochemical setting where groundwater and riverwater interact. A series of forefront science questions on reactive mass transfer motivates research. These questions relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements and approaches needed to characterize and model a mass-transfer dominated biogeochemical system. The project was initiated in February 2007, with CY 2007, CY 2008, CY 2009, and CY 2010 progress summarized in preceding reports. A project peer review was held in March 2010, and the IFRC project acted upon all suggestions and recommendations made in consequence by reviewers and SBR/DOE. These responses have included the development of 'Modeling' and 'Well-Field Mitigation' plans that are now posted on the Hanford IFRC web-site, and modifications to the IFRC well-field completed in CY 2011. The site has 35 instrumented wells, and an extensive monitoring system. It includes a deep borehole for microbiologic and biogeochemical research that sampled the entire thickness of the unconfined 300 A aquifer. Significant, impactful progress has been made in CY 2011 including: (i) well modifications to eliminate well-bore flows, (ii) hydrologic testing of the modified well-field and upper aquifer, (iii) geophysical monitoring of winter precipitation infiltration through the U-contaminated vadose zone and spring river water intrusion to the IFRC, (iv) injection experimentation to probe the lower vadose zone and to evaluate the transport behavior of high U concentrations, (v) extended passive monitoring during the period of water table rise and fall, and (vi) collaborative down-hole experimentation with the PNNL SFA on the biogeochemistry of the 300 A Hanford-Ringold contact and the underlying redox transition zone. The modified well-field has functioned superbly without any evidence for well-bore flows. Beyond these experimental efforts, our site-wide reactive transport models (PFLOTRAN and eSTOMP) have been updated to include site geostatistical models of both hydrologic properties and adsorbed U distribution; and new hydrologic characterization measurements of the upper aquifer. These increasingly robust models are being used to simulate past and recent U desorption-adsorption experiments performed under different hydrologic conditions, and heuristic modeling to understand the complex functioning of the smear zone. We continued efforts to assimilate geophysical logging and 3D ERT characterization data into our site wide geophysical model, with significant and positive progress in 2011 that will enable publication in 2012. Our increasingly comprehensive field experimental results and robust reactive transport simulators, along with the field and laboratory characterization, are leading to a new conceptual model of U(VI) flow and transport in the IFRC footprint and the 300 Area in general, and insights on the microbiological community and associated biogeochemical processes influencing N, S, C, Mn, and Fe. Collectively these findings and higher scale models are providing a unique and unparalleled system-scale understanding of the biogeochemical function of the groundwater-river interaction zone.

Zachara, John M.; Bjornstad, Bruce N.; Christensen, John N.; Conrad, Mark S.; Fredrickson, Jim K.; Freshley, Mark D.; Haggerty, Roy; Hammond, Glenn E.; Kent, Douglas B.; Konopka, Allan; Lichtner, Peter C.; Liu, Chongxuan; McKinley, James P.; Murray, Christopher J.; Rockhold, Mark L.; Rubin, Yoram; Vermeul, Vincent R.; Versteeg, Roelof J.; Zheng, Chunmiao

2012-03-05T23:59:59.000Z

132

Groundwater monitoring results for the 100-K Area fuel storage basins: January 1 to March 31, 1994  

SciTech Connect

Fuel storage basins associated with the 105-KE and 105-KW reactor buildings are currently being used to store irradiated fuel rods from past operations. Each reactor building contains a basin that holds approximately 1.3 million gal of water. The water provides a radiation shield, as well as a thermal sink for heat generated by the stored fuel. Some of the fuel rods stored in the K-East basin have damaged cladding and are stored in open canisters, allowing contact between the metallic uranium fuel and basin water. The interaction results in radionuclides being released to the basin water. Various exchange columns and filters associated with a closed-circuit circulation system are in place to reduce radionuclide concentrations in basin water. Tritium cannot be removed by these methods and is present in K-East basin water at a concentration of several million pCi/L. In contrast, K-West basin, where only fully encapsulated, undamaged fuel is stored, exhibits tritium concentrations at much lower levels--several hundred thousand pCi/L. The water budget for the basins includes water losses resulting from evaporation and possibly leakage, and the addition of make-up water to maintain a specific level. Water loss calculations are based on water level decreases during time intervals when no make-up water is added. A calculated loss rate beyond what is expected due to evaporation and uncertainty in the calculations, is assumed to be leakage to the soil column. Given sufficiently high leakage rates, and/or a preferential pathway for downward migration through the soil column, basin water may contaminate groundwater flowing beneath the basins.

Peterson, R.E.

1994-08-29T23:59:59.000Z

133

Fuel Cell Power (FCPower) Model | Open Energy Information  

Open Energy Info (EERE)

Fuel Cell Power (FCPower) Model Fuel Cell Power (FCPower) Model Jump to: navigation, search Tool Summary Name: Fuel Cell Power (FCPower) Model Agency/Company /Organization: United States Department of Energy Partner: National Renewable Energy Laboratory Sector: Energy Focus Area: Hydrogen Topics: Finance Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.hydrogen.energy.gov/fc_power_analysis.html Cost: Free OpenEI Keyword(s): EERE tool Fuel Cell Power (FCPower) Model Screenshot References: DOE Fuel Cell Power Analysis[1] Logo: Fuel Cell Power (FCPower) Model The Fuel Cell Power (FCPower) Model is a financial tool for analyzing high-temperature, fuel cell-based tri-generation systems. "The Fuel Cell Power (FCPower) Model is a financial tool for analyzing

134

Closure Report for Corrective Action Unit 329: Area 22 Desert Rock Airstrip Fuel Spill with Errata Sheet, Revision 0  

SciTech Connect

In Appendix 0, Use Restriction (UR) Form, the drawing of the use restricted area shows the incorrect coordinates for the use restricted area, the coordinates on the drawing do not match the approved UR Form. The coordinates have been verified and this Errata Sheet replaces the drawing of the use restricted area with an aerial photo showing the use restricted area and the correct coordinates that match the approved UR Form.

Navarro Nevada Environmental Services

2010-08-10T23:59:59.000Z

135

Advanced Fuels Campaign FY 2011 Accomplishments Report  

SciTech Connect

One of the major research and development (R&D) areas under the Fuel Cycle Research and Development (FCRD) program is advanced fuels development. The Advanced Fuels Campaign (AFC) has the responsibility to develop advanced fuel technologies for the Department of Energy (DOE) using a science-based approach focusing on developing a microstructural understanding of nuclear fuels and materials. Accomplishments made during fiscal year (FY 20) 2011 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section. The order of the accomplishments in this report is consistent with the AFC work breakdown structure (WBS).

Not Listed

2011-11-01T23:59:59.000Z

136

Liquidyne Fuels | Open Energy Information  

Open Energy Info (EERE)

Liquidyne Fuels Jump to: navigation, search Name Liquidyne Fuels Place Washington, DC Zip 20015 Product Focused on waste-to-energy hybrid approach for bioethanol production....

137

Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet | Open Energy  

Open Energy Info (EERE)

Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet Agency/Company /Organization: FIA Foundation, International Energy Agency, International Transport Forum, United Nations Environment Programme Focus Area: Vehicles Topics: Best Practices Website: www.unep.org/transport/gfei/autotool/ This tool is designed to provide policymakers and interested individuals and groups with overviews of policy tools and approaches to improving fleet-wide automobile fuel efficiency and promote lower CO2 and non-CO2 emissions from cars, along with case studies that depict these approaches from developed and developing countries. How to Use This Tool

138

Decontamination and decommissioning focus area. Technology summary  

SciTech Connect

This report presents details of the facility deactivation, decommissioning, and material disposition research for development of new technologies sponsored by the Department of Energy. Topics discussed include; occupational safety, radiation protection, decontamination, remote operated equipment, mixed waste processing, recycling contaminated metals, and business opportunities.

1995-06-01T23:59:59.000Z

139

Development of internal reforming carbonate fuel cell stack technology  

DOE Green Energy (OSTI)

Activities under this contract focused on the development of a coal-fueled carbonate fuel cell system design and the stack technology consistent with the system design. The overall contract effort was divided into three phases. The first phase, completed in January 1988, provided carbonate fuel cell component scale-up from the 1ft{sup 2} size to the commercial 4ft{sup 2} size. The second phase of the program provided the coal-fueled carbonate fuel cell system (CGCFC) conceptual design and carried out initial research and development needs of the CGCFC system. The final phase of the program emphasized stack height scale-up and improvement of stack life. The results of the second and third phases are included in this report. Program activities under Phase 2 and 3 were designed to address several key development areas to prepare the carbonate fuel cell system, particularly the coal-fueled CFC power plant, for commercialization in late 1990's. The issues addressed include: Coal-Gas Related Considerations; Cell and Stack Technology Improvement; Carbonate Fuel Cell Stack Design Development; Stack Tests for Design Verification; Full-Size Stack Design; Test Facility Development; Carbonate Fuel Cell Stack Cost Assessment; and Coal-Fueled Carbonate Fuel Cell System Design. All the major program objectives in each of the topical areas were successfully achieved. This report is organized along the above-mentioned topical areas. Each topical area has been processed separately for inclusion on the data base.

Farooque, M.

1990-10-01T23:59:59.000Z

140

Canada's Fuel Consumption Guide Website | Open Energy Information  

Open Energy Info (EERE)

Canada's Fuel Consumption Guide Website Canada's Fuel Consumption Guide Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Canada's Fuel Consumption Guide Website Focus Area: Fuel Efficiency Topics: Market Analysis Website: oee.nrcan.gc.ca/transportation/tools/fuelratings/ratings-search.cfm Equivalent URI: cleanenergysolutions.org/content/canadas-fuel-consumption-guide-websit Language: English Policies: Regulations Regulations: Fuel Efficiency Standards This website provides a compilation of fuel consumption ratings for passenger cars and light-duty pickup trucks, vans and special purpose vehicles sold in Canada. The website links to the Fuel Consumption Guide and allows users to search for vehicles from current and past model years. It also provides information about vehicle maintenance and other practices

Note: This page contains sample records for the topic "focus area fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

A Greener Focus: 2012 Ford Focus Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

Greener Focus: 2012 Ford Focus Electric Greener Focus: 2012 Ford Focus Electric JOHN DAVIS: With its 2012 re-design, the Focus compact has become Ford's core global program. Focus is already generating offspring, including small vans, a high performance hatchback, and this car - the Ford Focus Electric. It's actually one of only several new plug-ins and hybrids due from the blue oval this year. So let's go for a drive in the EV Focus and see if this green approach means greener pastures for Ford. At first glance, the 2012 Ford Focus Electric doesn't look that much different than the compact, front-

142

Fuels processing for transportation fuel cell systems  

DOE Green Energy (OSTI)

Fuel cells primarily use hydrogen as the fuel. This hydrogen must be produced from other fuels such as natural gas or methanol. The fuel processor requirements are affected by the fuel to be converted, the type of fuel cell to be supplied, and the fuel cell application. The conventional fuel processing technology has been reexamined to determine how it must be adapted for use in demanding applications such as transportation. The two major fuel conversion processes are steam reforming and partial oxidation reforming. The former is established practice for stationary applications; the latter offers certain advantages for mobile systems and is presently in various stages of development. This paper discusses these fuel processing technologies and the more recent developments for fuel cell systems used in transportation. The need for new materials in fuels processing, particularly in the area of reforming catalysis and hydrogen purification, is discussed.

Kumar, R.; Ahmed, S.

1995-07-01T23:59:59.000Z

143

DART's (Dallas Area Rapid Transit) LNG Bus Fleet Start-Up Experience (Alternative Fuel Transit Buses Brochure)  

SciTech Connect

This report, based on interviews and site visits conducted in October 1999, describes the start-up activities of the DART liquefied natural gas program, identifying problem areas, highlighting successes, and capturing the lessons learned in DART's ongoing efforts to remain at the forefront of the transit industry.

Battelle

2000-06-30T23:59:59.000Z

144

Geographic Area Month  

Gasoline and Diesel Fuel Update (EIA)

Fuels by PAD District and State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month No. 1 Distillate No. 2 Distillate a No. 4 Fuel b Sales to End Users Sales for...

145

Modeling & Simulation - Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

GCTool Computer Model Helps Focus Fuel Cell Vehicle Research Somewhere near Detroit, an automotive engineer stares at the ceiling, wondering how to squeeze 1% more efficiency out...

146

Alternative Fuels and Advanced Vehicles Data Center | Open Energy  

Open Energy Info (EERE)

Alternative Fuels and Advanced Vehicles Data Center Alternative Fuels and Advanced Vehicles Data Center Jump to: navigation, search Tool Summary Name: Alternative Fuels and Advanced Vehicles Data Center Agency/Company /Organization: United States Department of Energy Sector: Energy Focus Area: Fuels & Efficiency, Biomass, Hydrogen, Transportation Phase: Evaluate Options, Develop Goals, Prepare a Plan Topics: Datasets, Technology characterizations Resource Type: Dataset, Guide/manual User Interface: Website Website: www.afdc.energy.gov/afdc/ Cost: Free References: Alternative Fuels and Advanced Vehicles Data Center[1] The Alternative Fuels and Advanced Vehicles Data Center provides a wide range of information and resources to enable the use of alternative fuels, in addition to other petroleum reduction options such as advanced vehicles,

147

APEC-Alternative Transport Fuels: Implementation Guidelines | Open Energy  

Open Energy Info (EERE)

APEC-Alternative Transport Fuels: Implementation Guidelines APEC-Alternative Transport Fuels: Implementation Guidelines Jump to: navigation, search Tool Summary Name: APEC-Alternative Transport Fuels: Implementation Guidelines Agency/Company /Organization: Asia-Pacific Economic Cooperation Sector: Energy Focus Area: Transportation Topics: Implementation Resource Type: Guide/manual Website: www.egnret.ewg.apec.org/news/Alternative%20Transport%20Fuels%20Final%2 Cost: Free Language: English References: APEC-Alternative Transport Fuels: Implementation Guidelines[1] "Worldwide, there are at least 35 million vehicles already operating on some form of alternative transport fuel and many millions more that are fuelled by blends with conventional gasoline and diesel or powered by electricity. Many alternative fuel programs are being, or have been,

148

Alternatives to Traditional Transportation Fuels | Open Energy Information  

Open Energy Info (EERE)

Alternatives to Traditional Transportation Fuels Alternatives to Traditional Transportation Fuels Jump to: navigation, search Tool Summary Name: Alternatives to Traditional Transportation Fuels Agency/Company /Organization: U.S. Energy Information Administration Focus Area: Fuels & Efficiency Topics: Analysis Tools, Policy Impacts Website: www.eia.gov/renewable/afv/index.cfm This report provides annual data on the number of alternative fuel vehicles produced, the number of alternative fuel vehicles in use, and the amount of alternative transportation fuels consumed in the United States. How to Use This Tool This tool is most helpful when using these strategies: Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air

149

Alternatives to Traditional Transportation Fuels 2009 | Open Energy  

Open Energy Info (EERE)

Alternatives to Traditional Transportation Fuels 2009 Alternatives to Traditional Transportation Fuels 2009 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternatives to Traditional Transportation Fuels 2009 Focus Area: Propane Topics: Policy Impacts Website: www.eia.gov/renewable/alternative_transport_vehicles/pdf/afv-atf2009.p Equivalent URI: cleanenergysolutions.org/content/alternatives-traditional-transportati Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation This report provides data on the number of alternative fuel vehicles produced, the number of alternative fuel vehicles in use and the amount of alternative transportation fuels consumed in the United States in 2009. References Retrieved from "http://en.openei.org/w/index.php?title=Alternatives_to_Traditional_Transportation_Fuels_2009&oldid=514311

150

Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Fuel Blend Tax Ethanol Fuel Blend Tax Rate to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Tax Rate The tax rate on fuel containing ethanol is $0.06 per gallon less than the tax rate on other motor fuels in certain geographic areas. This reduced

151

Category Key Area Sub Area Do?an, .N., "Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Papers funded by the Fuels Program (2013) Category Key Area Sub Area Doan, .N., "Materials Development for Fossil Fueled Energy Conversion Systems," Materials Science...

152

Light Water Reactor Fuel Cladding Research and Testing | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Water Reactor Fuel Cladding Research Light Water Reactor Fuel Cladding Research June 01, 2013 Severe Accident Test Station ORNL is the focus point for Light Water Reactor (LWR) fuel cladding research and testing. The purpose of this research is to furnish U.S. industry (EPRI, Areva, Westinghouse), and regulators (NRC) with much-needed data supporting safe and economical nuclear power generation and used fuel management. LWR fuel cladding work is tightly integrated with ORNL accident tolerant fuel development and used fuel disposition programs thereby providing a powerful capability that couples basic materials science research with the nuclear applications research and development. The ORNL LWR fuel cladding program consists of five complementary areas of research: Accident tolerant fuel and cladding material testing under design

153

Air Force Achieves Fuel Efficiency through Industry Best Practices (Brochure), Federal Energy Management Program (FEMP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

highest potential to save aviation fuel. highest potential to save aviation fuel. All MAF personnel are encouraged to propose fuel savings ideas. These ideas are then processed as initiatives, assigned a primary point of contact, and routed through an analysis process to prepare the initiative for presenta- tion to the Air Force's corporate structure. The corporate structure then evaluates and determines the initiatives with the highest potential fuel savings. Fuel-saving efforts focus on six major areas: policy, planning, execution, maintenance, science and technology, and fuel-efficient aircraft systems. The MAF also established a predetermined set of fuel-savings metrics and required reporting. In fiscal year 2011, implemented fuel initiatives saved the MAF more than 42 million gallons of aviation fuel in both

154

NREL: Hydrogen and Fuel Cells Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects NREL's hydrogen and fuel cell research projects focus on developing, integrating, and demonstrating advanced hydrogen production, hydrogen storage, and fuel cell...

155

Fuel Systems Solutions Inc | Open Energy Information  

Open Energy Info (EERE)

company with divisions focusing on bringing cleaner-burning gaseous fuel (such as propane and natural gas) technology to various types of vehicles. References Fuel Systems...

156

Alternative Fuels and Advanced Vehicles Data Center - Fleet Experiences |  

Open Energy Info (EERE)

Alternative Fuels and Advanced Vehicles Data Center - Fleet Experiences Alternative Fuels and Advanced Vehicles Data Center - Fleet Experiences Jump to: navigation, search Tool Summary Name: Alternative Fuels and Advanced Vehicles Data Center - Fleet Experiences Agency/Company /Organization: National Renewable Energy Laboratory Focus Area: Vehicles Topics: Best Practices Complexity/Ease of Use: Not Available Website: www.afdc.energy.gov/afdc/fleets/fleet_experiences.html Related Tools Finalize Historic National Program to Reduce Greenhouse Gases and Improve Fuel Economy for Cars and Trucks Diesel Idling Reduction Tool and Calculator (Transit, Fuel) ... further results Find Another Tool FIND TRANSPORTATION TOOLS This compilation of case studies shows how other fleets are using alternative fuel vehicles, dealing with infrastructure issues, obtaining

157

Focus on Obesity  

Science Conference Proceedings (OSTI)

AOCS focuses on obesity with this fully searchable multimedia CD ROM. Focus on Obesity Health Nutrition DVD & CD-ROMs Health - Nutrition - Biochemistry Biochemistry AOCS Press AOCS focuses on obesity with this fully searchable multimedia CD ROM.

158

Advanced LWR Nuclear Fuel Cladding System Development Trade-Off Study  

SciTech Connect

The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R&D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental improvements are required in the areas of nuclear fuel composition, cladding integrity, and the fuel/cladding interaction to allow power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an accident tolerant fuel system that would offer improved coping time under accident scenarios. With a development time of about 20 25 years, advanced fuel designs must be started today and proven in current reactors if future reactor designs are to be able to use them with confidence.

Kristine Barrett; Shannon Bragg-Sitton

2012-09-01T23:59:59.000Z

159

Focusing in Linear Accelerators  

DOE R&D Accomplishments (OSTI)

Review of the theory of focusing in linear accelerators with comments on the incompatibility of phase stability and first-order focusing in a simple accelerator.

McMillan, E. M.

1950-08-24T23:59:59.000Z

160

Business Case Slide 31: High-Value: Energy Uses - Program Focus  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Uses - Program Focus Program Focus Battery research (Univ. Kentucky) Proof-of-principle experiment underway Fuel cell research (Rutgers) Measuring relevant properties of...

Note: This page contains sample records for the topic "focus area fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Advanced Fuels Synthesis  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Fuels Synthesis Advanced Fuels Synthesis Coal and Coal/Biomass to Liquids Advanced Fuels Synthesis The Advanced Fuels Synthesis Key Technology is focused on catalyst and reactor optimization for producing liquid hydrocarbon fuels from coal/biomass mixtures, supports the development and demonstration of advanced separation technologies, and sponsors research on novel technologies to convert coal/biomass to liquid fuels. Active projects within the program portfolio include the following: Fischer-Tropsch fuels synthesis Small Scale Coal Biomass Liquids Production Using Highly Selective Fischer Tropsch Catalyst Small Scale Pilot Plant for the Gasification of Coal and Coal/Biomass Blends and Conversion of Derived Syngas to Liquid Fuels Via Fischer-Tropsch Synthesis Coal Fuels Alliance: Design and Construction of Early Lead Mini Fischer-Tropsch Refinery

162

Hydrogen & Fuel Cells | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 17, 2013 May 17, 2013 Zero Emission Bay Area (ZEBA) -- a group of regional transit agencies in Northern California -- operates twelve, zero-emission, fuel cell buses in real-world service throughout the Bay Area's diverse communities and landscapes. | Photo courtesy of Leslie Eudy, NREL. Top 11 Things You Didn't Know About Fuel Cells Test your fuel cell knowledge with these little-known facts. March 15, 2013 In his 2013 State of the Union address, President Obama called on Congress to create an Energy Security Trust Fund, which would free American families and business from painful spikes in gas prices. The President's plan builds on an idea that has bipartisan support from experts including retired admirals and generals and leading CEOs, and it focuses on one goal: shifting America's cars and trucks off oil entirely. | Infographic from the White House.

163

Fuel cells seminar  

SciTech Connect

This year`s meeting highlights the fact that fuel cells for both stationary and transportation applications have reached the dawn of commercialization. Sales of stationary fuel cells have grown steadily over the past 2 years. Phosphoric acid fuel cell buses have been demonstrated in urban areas. Proton-exchange membrane fuel cells are on the verge of revolutionizing the transportation industry. These activities and many more are discussed during this seminar, which provides a forum for people from the international fuel cell community engaged in a wide spectrum of fuel cell activities. Discussions addressing R&D of fuel cell technologies, manufacturing and marketing of fuel cells, and experiences of fuel cell users took place through oral and poster presentations. For the first time, the seminar included commercial exhibits, further evidence that commercial fuel cell technology has arrived. A total of 205 papers is included in this volume.

1996-12-01T23:59:59.000Z

164

DOE Hydrogen and Fuel Cells Program: 2012 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Printable Version 2012 Annual Progress Report V. Fuel Cells This section of the 2012 Annual Progress Report for the DOE Hydrogen and Fuel Cells Program focuses on fuel...

165

NREL: Hydrogen and Fuel Cells Research - Fuel Cell Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

with a focus on improving the performance and durability and reducing the cost of fuel cell components and systems. Research efforts involve: Developing advanced catalysts,...

166

MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT  

DOE Green Energy (OSTI)

The carbonate fuel cell promises highly efficient, cost-effective and environmentally superior power generation from pipeline natural gas, coal gas, biogas, and other gaseous and liquid fuels. FuelCell Energy, Inc. has been engaged in the development of this unique technology, focusing on the development of the Direct Fuel Cell (DFC{reg_sign}). The DFC{reg_sign} design incorporates the unique internal reforming feature which allows utilization of a hydrocarbon fuel directly in the fuel cell without requiring any external reforming reactor and associated heat exchange equipment. This approach upgrades waste heat to chemical energy and thereby contributes to a higher overall conversion efficiency of fuel energy to electricity with low levels of environmental emissions. Among the internal reforming options, FuelCell Energy has selected the Indirect Internal Reforming (IIR)--Direct Internal Reforming (DIR) combination as its baseline design. The IIR-DIR combination allows reforming control (and thus cooling) over the entire cell area. This results in uniform cell temperature. In the IIR-DIR stack, a reforming unit (RU) is placed in between a group of fuel cells. The hydrocarbon fuel is first fed into the RU where it is reformed partially to hydrogen and carbon monoxide fuel using heat produced by the fuel cell electrochemical reactions. The reformed gases are then fed to the DIR chamber, where the residual fuel is reformed simultaneously with the electrochemical fuel cell reactions. FuelCell Energy plans to offer commercial DFC power plants in various sizes, focusing on the subMW as well as the MW-scale units. The plan is to offer standardized, packaged DFC power plants operating on natural gas or other hydrocarbon-containing fuels for commercial sale. The power plant design will include a diesel fuel processing option to allow dual fuel applications. These power plants, which can be shop-fabricated and sited near the user, are ideally suited for distributed power generation, industrial cogeneration, marine applications and uninterrupted power for military bases. FuelCell Energy operated a 1.8 MW plant at a utility site in 1996-97, the largest fuel cell power plant ever operated in North America. This proof-of-concept power plant demonstrated high efficiency, low emissions, reactive power control, and unattended operation capabilities. Drawing on the manufacture, field test, and post-test experience of the full-size power plant; FuelCell Energy launched the Product Design Improvement (PDI) program sponsored by government and the private-sector cost-share. The PDI efforts are focused on technology and system optimization for cost reduction, commercial design development, and prototype system field trials. The program was initiated in December 1994. Year 2000 program accomplishments are discussed in this report.

H.C. Maru; M. Farooque

2002-02-01T23:59:59.000Z

167

Focused natural deduction  

Science Conference Proceedings (OSTI)

Natural deduction for intuitionistic linear logic is known to be full of non-deterministic choices. In order to control these choices, we combine ideas from intercalation and focusing to arrive at the calculus of focused natural deduction. The calculus ...

Taus Brock-Nannestad; Carsten Schrmann

2010-10-01T23:59:59.000Z

168

DIESEL FUEL LUBRICATION  

Science Conference Proceedings (OSTI)

The diesel fuel injector and pump systems contain many sliding interfaces that rely for lubrication upon the fuels. The combination of the poor fuel lubricity and extremely tight geometric clearance between the plunger and bore makes the diesel fuel injector vulnerable to scuffing damage that severely limits the engine life. In order to meet the upcoming stricter diesel emission regulations and higher engine efficiency requirements, further fuel refinements that will result in even lower fuel lubricity due to the removal of essential lubricating compounds, more stringent operation conditions, and tighter geometric clearances are needed. These are expected to increase the scuffing and wear vulnerability of the diesel fuel injection and pump systems. In this chapter, two approaches are discussed to address this issue: (1) increasing fuel lubricity by introducing effective lubricity additives or alternative fuels, such as biodiesel, and (2) improving the fuel injector scuffing-resistance by using advanced materials and/or surface engineering processes. The developing status of the fuel modification approach is reviewed to cover topics including fuel lubricity origins, lubricity improvers, alternative fuels, and standard fuel lubricity tests. The discussion of the materials approach is focused on the methodology development for detection of the onset of scuffing and evaluation of the material scuffing characteristics.

Qu, Jun [ORNL

2012-01-01T23:59:59.000Z

169

Alternating phase focused linacs  

SciTech Connect

A heavy particle linear accelerator employing rf fields for transverse and ongitudinal focusing as well as acceleration. Drift tube length and gap positions in a standing wave drift tube loaded structure are arranged so that particles are subject to acceleration and succession of focusing and defocusing forces which contain the beam without additional magnetic or electric focusing fields.

Swenson, Donald A. (Los Alamos, NM)

1980-01-01T23:59:59.000Z

170

EPA-Fuel Economy Guide | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » EPA-Fuel Economy Guide (Redirected from EPA Fuel Economy Guide) Jump to: navigation, search Tool Summary Name: Fuel Economy Guide Agency/Company /Organization: United States Environmental Protection Agency Focus Area: Energy Efficiency, Transportation Resource Type: Guide/manual User Interface: Website Website: www.fueleconomy.gov/ Research light duty vehicles by fuel economy and greenhouse gas emissions. Retrieved from "http://en.openei.org/w/index.php?title=EPA-Fuel_Economy_Guide&oldid=375897" Categories: Tools Community Energy Tools

171

Alternative Fuels and Advanced Vehicles Data Center - Codes and Standards  

Open Energy Info (EERE)

Alternative Fuels and Advanced Vehicles Data Center - Codes and Standards Alternative Fuels and Advanced Vehicles Data Center - Codes and Standards Resources Jump to: navigation, search Tool Summary Name: Alternative Fuels and Advanced Vehicles Data Center - Codes and Standards Resources Agency/Company /Organization: National Renewable Energy Laboratory Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.afdc.energy.gov/afdc/codes_standards.html This resource provides an overview of codes and standards related to alternative fuel vehicles, dispensing, storage, and infrastructure to help project developers and code officials prepare and review code-compliant projects. How to Use This Tool This tool is most helpful when using these strategies: Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air

172

Experiences from Ethanol Buses and Fuel Station Report - Nanyang | Open  

Open Energy Info (EERE)

Experiences from Ethanol Buses and Fuel Station Report - Nanyang Experiences from Ethanol Buses and Fuel Station Report - Nanyang Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Experiences from Ethanol Buses and Fuel Station Report - Nanyang Agency/Company /Organization: BioEthanol for Sustainable Transport Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.best-europe.org/upload/BEST_documents/info_documents/Best%20report This report addresses the experience of introducing ethanol buses and fuel stations in Nanyang (China). Though the demonstration met initial obstacles, significant data and information was collected. The responses from drivers and passengers show that the ethanol buses were well accepted, and the function and performance of the ethanol buses was satisfactory. How to Use This Tool

173

VISION Model for Vehicle Technologies and Alternative Fuels | Open Energy  

Open Energy Info (EERE)

VISION Model for Vehicle Technologies and Alternative Fuels VISION Model for Vehicle Technologies and Alternative Fuels Jump to: navigation, search Tool Summary LAUNCH TOOL Name: VISION Model for Vehicle Technologies and Alternative Fuels Agency/Company /Organization: Argonne National Laboratory Sector: Energy Focus Area: Transportation Phase: Create a Vision Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.transportation.anl.gov/modeling_simulation/VISION/ OpenEI Keyword(s): EERE tool, VISION Model for Vehicle Technologies and Alternative Fuels References: The VISION Model [1] Estimate the potential energy use, oil use, and carbon emission impacts of advanced light and heavy-duty vehicle technologies and alternative fuels through 2050. The VISION model has been developed to provide estimates of the potential

174

Five Kilowatt Fuel Cell Demonstration for Remote Power Applications  

DOE Green Energy (OSTI)

While most areas of the US are serviced by inexpensive, dependable grid connected electrical power, many areas of Alaska are not. In these areas, electrical power is provided with Diesel Electric Generators (DEGs), at much higher cost than in grid connected areas. The reasons for the high cost of power are many, including the high relative cost of diesel fuel delivered to the villages, the high operational effort required to maintain DEGs, and the reverse benefits of scale for small utilities. Recent progress in fuel cell technologies have lead to the hope that the DEGs could be replaced with a more efficient, reliable, environmentally friendly source of power in the form of fuel cells. To this end, the University of Alaska Fairbanks has been engaged in testing early fuel cell systems since 1998. Early tests were conducted on PEM fuel cells, but since 2001, the focus has been on Solid Oxide Fuel Cells. In this work, a 5 kW fuel cell was delivered to UAF from Fuel Cell Technologies of Kingston, Ontario. The cell stack is of a tubular design, and was built by Siemens Westinghouse Fuel Cell division. This stack achieved a run of more than 1 year while delivering grid quality electricity from natural gas with virtually no degradation and at an electrical efficiency of nearly 40%. The project was ended after two control system failures resulted in system damage. While this demonstration was successful, considerable additional product development is required before this technology is able to provide electrical energy in remote Alaska. The major issue is cost, and the largest component of system cost currently is the fuel cell stack cost, although the cost of the balance of plant is not insignificant. While several manufactures are working on schemes for significant cost reduction, these systems do not as yet provide the same level of performance and reliability as the larger scale Siemens systems, or levels that would justify commercial deployment.

Dennis Witmer; Tom Johnson; Jack Schmid

2008-12-31T23:59:59.000Z

175

MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT  

DOE Green Energy (OSTI)

The ongoing program is designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE) for stationary power plant applications. The program efforts are focused on technology and system optimization for cost reduction, leading to commercial design development and prototype system field trials. FCE, Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where the fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several FCE sub-megawatt power plants are currently operating in Europe, Japan and the US. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste water treatment gas, DFC power plants are ready today and do not require the creation of a hydrogen infrastructure. Product improvement progress made during the reporting period in the areas of technology, manufacturing processes, cost reduction and balance of plant equipment designs is discussed in this report.

H.C. Maru; M. Farooque

2004-08-01T23:59:59.000Z

176

Alternative Fuel News  

NLE Websites -- All DOE Office Websites (Extended Search)

One For All: One For All: Station Cars U. S. D E P A R T M E N T o f E N E R G Y Vol. 5 - No. 2 An Official Publication of the Clean Cities Network and the Alternative Fuels Data Center From the Office of Energy Efficiency and Renewable Energy PLUS: Clean Cities Conference Coverage NATIONAL ENERGY POLICY Brings Alternative Fuels, AFVs, and Clean Cities into Focus in Washington NATIONAL ENERGY POLICY Brings Alternative Fuels, AFVs, and Clean Cities into Focus in Washington 2 ear Readers, The landscape for alternative fuels continues to be lush and vibrant. This was most evident as we celebrated the 7th National Clean Cities Conference and Expo in Philadelphia. Alternative fuel stakeholders from across the country-from all over the world, for that matter-spent three robust days in Philadelphia, experiencing "The Alternative Fuels Revolution." The conference

177

Surface Water Management Areas (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Surface Water Management Areas (Virginia) Surface Water Management Areas (Virginia) Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General...

178

Fuel Economy Web Services  

NLE Websites -- All DOE Office Websites (Extended Search)

FuelEconomy.gov Web Services FuelEconomy.gov Web Services Data Description atvtype - alternative fuel or advanced technology vehicle Bifuel (CNG) - Bi-fuel gasoline and compressed natural gas vehicle Bifuel (LPG) - Bi-fuel gasoline and propane vehicle CNG - Compressed natural gas vehicle Diesel - Diesel vehicle EV - Electric vehicle FFV - Flexible fueled vehicle (gasoline or E85) Hybrid - Hybrid vehicle Plug-in Hybrid - Plug-in hybrid vehicle drive - drive axle type 2-Wheel Drive 4-Wheel Drive* 4-Wheel or All-Wheel Drive* All-Wheel Drive* Front-Wheel Drive Part-time 4-Wheel Drive* Rear-Wheel Drive *Prior to Model Year 2010 EPA did not differentiate between All Wheel Drive and Four Wheel Drive salesArea - EPA sales area code. The area of the country where the vehicle can legally be sold. New federally certified vehicles can be sold in all states except California

179

Focus on Solar Energy  

Science Conference Proceedings (OSTI)

... Focus on Solar Energy. Why a net-zero energy house? ... Solar Energy Presentation. Additional information, tools, weblinks, and photos from the day. ...

2012-12-03T23:59:59.000Z

180

300 AREA URANIUM CONTAMINATION  

SciTech Connect

{sm_bullet} Uranium fuel production {sm_bullet} Test reactor and separations experiments {sm_bullet} Animal and radiobiology experiments conducted at the. 331 Laboratory Complex {sm_bullet} .Deactivation, decontamination, decommissioning,. and demolition of 300 Area facilities

BORGHESE JV

2009-07-02T23:59:59.000Z

Note: This page contains sample records for the topic "focus area fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

DOE Hydrogen and Fuel Cells Program: 2011 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reinvestment Act (ARRA) This section of the 2011 Progress Report for the DOE Hydrogen and Fuel Cells Program focuses on the fuel cell technologies America Recovery and Reinvestment...

182

Oil Shale and Other Unconventional Fuels Activities | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Naval Reserves Oil Shale and Other Unconventional Fuels Activities Oil Shale and Other Unconventional Fuels Activities The Fossil Energy program in oil shale focuses on...

183

SMALL SCALE FUEL CELL AND REFORMER SYSTEMS FOR REMOTE POWER  

DOE Green Energy (OSTI)

New developments in fuel cell technologies offer the promise of clean, reliable affordable power, resulting in reduced environmental impacts and reduced dependence on foreign oil. These developments are of particular interest to the people of Alaska, where many residents live in remote villages, with no roads or electrical grids and a very high cost of energy, where small residential power systems could replace diesel generators. Fuel cells require hydrogen for efficient electrical production, however. Hydrogen purchased through conventional compressed gas suppliers is very expensive and not a viable option for use in remote villages, so hydrogen production is a critical piece of making fuel cells work in these areas. While some have proposed generating hydrogen from renewable resources such as wind, this does not appear to be an economically viable alternative at this time. Hydrogen can also be produced from hydrocarbon feed stocks, in a process known as reforming. This program is interested in testing and evaluating currently available reformers using transportable fuels: methanol, propane, gasoline, and diesel fuels. Of these, diesel fuels are of most interest, since the existing energy infrastructure of rural Alaska is based primarily on diesel fuels, but this is also the most difficult fuel to reform, due to the propensity for coke formation, due to both the high vaporization temperature and to the high sulfur content in these fuels. There are several competing fuel cell technologies being developed in industry today. Prior work at UAF focused on the use of PEM fuel cells and diesel reformers, with significant barriers identified to their use for power in remote areas, including stack lifetime, system efficiency, and cost. Solid Oxide Fuel Cells have demonstrated better stack lifetime and efficiency in demonstrations elsewhere (though cost still remains an issue), and procuring a system for testing was pursued. The primary function of UAF in the fuel cell industry is in the role of third party independent testing. In order for tests to be conducted, hardware must be purchased and delivered. The fuel cell industry is still in a pre-commercial state, however. Commercial products are defined as having a fixed set of specifications, fixed price, fixed delivery date, and a warrantee. Negotiations with fuel cell companies over these issues are often complex, and the results of these discussions often reveal much about the state of development of the technology. This work includes some of the results of these procurement experiments. Fuel cells may one day replace heat engines as the source of electrical power in remote areas. However, the results of this program to date indicate that currently available hardware is not developed sufficiently for these environments, and that significant time and resources will need to be committed for this to occur.

Dennis Witmer

2003-12-01T23:59:59.000Z

184

Potential opportunities for nano materials to help enable enhanced nuclear fuel performance  

Science Conference Proceedings (OSTI)

This presentation is an overview of the technical challenges for development of nuclear fuels with enhanced performance and accident tolerance. Key specific aspects of improved fuel performance are noted. Examples of existing nanonuclear projects and concepts are presented and areas of potential focus are suggested. The audience for this presentation includes representatives from: DOE-NE, other national laboratories, industry and academia. This audience is a mixture of nanotechnology experts and nuclear energy researchers and managers.

McClellan, Kenneth J. [Los Alamos National Laboratory

2012-06-06T23:59:59.000Z

185

NREL: Vehicles and Fuels Research - Fuel Combustion Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Combustion Lab Fuel Combustion Lab NREL's Fuel Combustion Laboratory focuses on characterizing fuels at the molecular level. This information can then be used to understand and predict the fuel's effect on engine performance and emissions. By understanding the effects of fuel chemistry on ignition we can develop fuels that enable more efficient engine designs, using both today's technology and future advanced combustion concepts. This lab supports the distributed Renewable Fuels and Lubricants (ReFUEL) Laboratory, and the Biofuels activity. Photo of assembled IQT. Ignition Quality Tester The central piece of equipment in the Fuel Combustion Laboratory is the Ignition Quality Tester (IQT(tm)). The IQT(tm) is a constant volume combustion vessel that is used to study ignition properties of liquid

186

Metal- and Cluster-Modified Ultrahigh-Area Materials for the Ambient Temperature Storage of Molecular Hydrogen - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Joseph E. Mondloch (Primary Contact), Joseph T. Hupp, Omar K. Farha Northwestern University 2145 Sheridan Road Evanston, IL 60208 Phone: (847) 467-4932 Email: mojo0001@gmail.com DOE Managers HQ: Grace Ordaz Phone: (202) 586-8350 Email: Grace.Ordaz@ee.doe.gov GO: Gregory Kleen Phone: (720) 356-1672 Email: Gregory.Kleen@go.doe.gov Contract Number: This research was supported in part by the Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Awards under the EERE Fuel Cell Technologies Program administered by Oak Ridge Institute for Science and Education (ORISE) for the DOE. ORISE is managed by Oak Ridge Associated

187

Fuel cycles for the 80's  

SciTech Connect

Papers presented at the American Nuclear Society's topical meeting on the fuel cycle are summarized. Present progress and goals in the areas of fuel fabrication, fuel reprocessing, spent fuel storage, accountability, and safeguards are reported. Present governmental policies which affect the fuel cycle are also discussed. Individual presentations are processed for inclusion in the Energy Data Base.(DMC)

Not Available

1980-01-01T23:59:59.000Z

188

Focus Group I  

NLE Websites -- All DOE Office Websites (Extended Search)

CARBON SEQUESTRATION - A COMMUNITY FOCUS GROUP STUDY OF CARBON SEQUESTRATION - A COMMUNITY FOCUS GROUP STUDY OF ATTITUDES IN WILLISTON, NORTH DAKOTA Sheila K. Hanson, Energy & Environmental Research Center Daniel J. Daly, Energy & Environmental Research Center Edward N. Steadman, Energy & Environmental Research Center John A. Harju, Energy & Environmental Research Center June 2005 EXECUTIVE SUMMARY In April 2005, representatives of the Plains CO 2 Reduction (PCOR) Partnership, led by the Energy & Environmental Research Center (EERC) at the University of North Dakota, held two focus groups in Williston, North Dakota. A total of sixteen people participated; seven on April 20 and nine on April 21. The purpose of the focus group research was to gain insight into the public perception of carbon sequestration from

189

Focus on trans Fat  

Science Conference Proceedings (OSTI)

This comprehensive CD-ROM contains a surplus of information regarding trans fats. Focus on trans Fat Health Nutrition Biochemistry Trans DVD & CD-ROMs Health - Nutrition - Biochemistry Food Science This comprehensive CD-ROM contains a

190

Focus on Biodiesel  

Science Conference Proceedings (OSTI)

AOCS spotlights the topic of renewable energy with this comprehensive CD-ROM containing various Powerpoint presentations, abstracts, book chapters, technical tables, biodiesel standards, and numerous links to Internet resources. Focus on Biodiesel Biofuel

191

DOE Theory Focus Session on Hydrogen Storage Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy U.S. Department of Energy Theory Focus Session on Hydrogen Storage Materials DOE Hydrogen Program Basic Energy Sciences (Office of Science) and Office of Hydrogen, Fuel Cells and Infrastructure Technologies (Energy Efficiency and Renewable Energy) Thursday, May 18, 2006 (1 pm to 6 pm) Crystal Gateway Marriott, Crystal City, VA (In conjunction with the DOE Hydrogen Program Annual Merit Review, May 16-19) Co-organizers: Chris Wolverton (Ford), Karl Johnson (U. of Pittsburgh), Maciek Gutowski (Pacific Northwest National Laboratory) DOE Contacts: Sunita Satyapal and Dale Koelling Objectives: * Identify critical areas, key barriers and gaps in current theory/modeling approaches for hydrogen storage materials and technologies * Provide an overview of current state of the art and most recent technical progress

192

Analysis of the Impact of Fuel Cell Vehicles on Energy Systems in the  

Open Energy Info (EERE)

Analysis of the Impact of Fuel Cell Vehicles on Energy Systems in the Analysis of the Impact of Fuel Cell Vehicles on Energy Systems in the Transportation Sector in Japan Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Analysis of the Impact of Fuel Cell Vehicles on Energy Systems in the Transportation Sector in Japan Agency/Company /Organization: Tohoku University Focus Area: Fuels & Efficiency, Hydrogen Topics: Analysis Tools, Policy Impacts, Policy Impacts Website: www.iaee.org/documents/Aberdeen/a02nakata.pdf Equivalent URI: cleanenergysolutions.org/content/analysis-impact-fuel-cell-vehicles-en Language: English Policies: Financial Incentives This report examines the recent advances in fuel cell vehicles. The report then evaluates the impact of such vehicles on energy systems in the transportation sector in Japan and effectiveness of government subsidies in

193

Global Fuel Economy Initiative: 50by50 Prospects and Progress | Open Energy  

Open Energy Info (EERE)

Global Fuel Economy Initiative: 50by50 Prospects and Progress Global Fuel Economy Initiative: 50by50 Prospects and Progress Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Fuel Economy Initiative: 50by50 Prospects and Progress Focus Area: Clean Transportation Topics: Potentials & Scenarios Website: www.globalfueleconomy.org/Documents/Publications/prospects_and_progres Equivalent URI: cleanenergysolutions.org/content/global-fuel-economy-initiative-50by50 Language: English Policies: Regulations Regulations: "Fuel Efficiency Standards,Mandates/Targets" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

194

UNDP-GEF Fuel Cell Bus Programme: Update | Open Energy Information  

Open Energy Info (EERE)

UNDP-GEF Fuel Cell Bus Programme: Update UNDP-GEF Fuel Cell Bus Programme: Update Jump to: navigation, search Tool Summary Name: UNDP-GEF Fuel Cell Bus Programme: Update Agency/Company /Organization: United Nations Development Programme, Global Environment Facility Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.thegef.org/gef/sites/thegef.org/files/documents/GEF.C.28.Inf_.12.p The Global Environment Facility (GEF) and the United Nations Development Programme launched a fuel cell bus deployment program to support commercial demonstrations of buses and fueling infrastructure in large bus markets in developing countries. The program's objective was to reduce the long-term greenhouse gas emissions from the transport sector in GEF program countries. How to Use This Tool This tool is most helpful when using these strategies:

195

Fuel Cell Technologies Office: Transportation and Stationary...  

NLE Websites -- All DOE Office Websites (Extended Search)

HOME ABOUT PROGRAM AREAS INFORMATION RESOURCES FINANCIAL OPPORTUNITIES TECHNOLOGIES MARKET TRANSFORMATION NEWS EVENTS EERE Fuel Cell Technologies Office Information...

196

Fossil fuels -- future fuels  

Science Conference Proceedings (OSTI)

Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

NONE

1998-03-01T23:59:59.000Z

197

Sagittal focusing Laue monochromator  

Science Conference Proceedings (OSTI)

An x-ray focusing device generally includes a slide pivotable about a pivot point defined at a forward end thereof, a rail unit fixed with respect to the pivotable slide, a forward crystal for focusing x-rays disposed at the forward end of the pivotable slide and a rearward crystal for focusing x-rays movably coupled to the pivotable slide and the fixed rail unit at a distance rearward from the forward crystal. The forward and rearward crystals define reciprocal angles of incidence with respect to the pivot point, wherein pivoting of the slide about the pivot point changes the incidence angles of the forward and rearward crystals while simultaneously changing the distance between the forward and rearward crystals.

Zhong; Zhong (Stony Brook, NY), Hanson; Jonathan (Wading River, NY), Hastings; Jerome (Stanford, CA), Kao; Chi-Chang (Setauket, NY), Lenhard; Anthony (Medford, NY), Siddons; David Peter (Cutchogue, NY), Zhong; Hui (Coram, NY)

2009-03-24T23:59:59.000Z

198

Vertical Velocity Focus Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Velocity Focus Group Velocity Focus Group ARM 2008 Science Team Meeting Norfolk, VA March 10-14 Background Vertical velocity measurements have been at the top of the priority list of the cloud modeling community for some time. Doppler measurements from ARM profiling radars operating at 915-MHz, 35-GHz and 94-GHz have been largely unexploited. The purpose of this new focus group is to develop vertical velocity ARM products suitable for modelers. ARM response to their request has been slow. Most ARM instruments are suitable for cloud observations and have limited capabilities in precipitation Using ARM datasets for evaluating and improving cloud parameterization in global climate models (GCMs) is not straightforward, due to gigantic scale mismatches. Consider this... Looking only vertically drastically limits opportunities

199

Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station |  

Open Energy Info (EERE)

Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station Agency/Company /Organization: BioEthanol for Sustainable Transport Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.best-europe.org/upload/BEST_documents/info_documents/Best%20report Ethanol buses were demonstrated within BioEthanol for Sustainable Transport (BEST). This report describes the problems at the sites and how they were solved. The aim of the report is to guide other local transport authorities on how to deal with the questions raised when a bus demonstration begins. How to Use This Tool This tool is most helpful when using these strategies:

200

Fuel Economy.gov - Mobile | Open Energy Information  

Open Energy Info (EERE)

Economy.gov - Mobile Economy.gov - Mobile Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Fuel Economy.gov - Mobile Agency/Company /Organization: United States Department of Energy Sector: Energy Focus Area: Transportation Phase: Evaluate Options, Prepare a Plan Resource Type: Online calculator User Interface: Mobile Device Website: fueleconomy.gov/ Web Application Link: fueleconomy.gov/m/ Cost: Free References: www.fueleconomy.gov[1] Logo: Fuel Economy.gov - Mobile Calculate gas mileage (MPG), annual fuel costs, annual petroleum use, and the carbon footprint information for your car or truck. Overview Calculate gas mileage (MPG), annual fuel costs, annual petroleum use, and the carbon footprint information for your car or truck. Highlights Find a Car MPG ratings for new and used cars.

Note: This page contains sample records for the topic "focus area fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Customer-Focused Deployment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Customer-Focused Customer-Focused Deployment SAM RASHKIN Chief Architect Building Technologies Program February 29, 2012 Building America Meeting 2 | INNOVATION & INTEGRATION: Transforming the Energy Efficiency Market Buildings.Energy.gov 'Good Government' As-A-System IECC Code: Mandates technologies and practices proven reliable and cost- effective ENERGY STAR: Recognizes Builders Who Deliver Significantly Above Code Performance Builders Challenge: Recognizes Leading Builders Applying Proven Innovations and Best Practices Building America: Develops New Innovations and Best Practices 3 | INNOVATION & INTEGRATION: Transforming the Energy Efficiency Market Buildings.Energy.gov Disseminating Research Results: Building America Resource Tool 4 | INNOVATION & INTEGRATION: Transforming the Energy Efficiency Market

202

Biorefinery and Hydrogen Fuel Cell Research  

Science Conference Proceedings (OSTI)

In this project we focused on several aspects of technology development that advances the formation of an integrated biorefinery. These focus areas include: [1] establishment of pyrolysis processing systems and characterization of the product oils for fuel applications, including engine testing of a preferred product and its pro forma economic analysis; [2] extraction of sugars through a novel hotwater extaction process, and the development of levoglucosan (a pyrolysis BioOil intermediate); [3] identification and testing of the use of biochar, the coproduct from pyrolysis, for soil applications; [4] developments in methods of atomic layer epitaxy (for efficient development of coatings as in fuel cells); [5] advancement in fermentation of lignocellulosics, [6] development of algal biomass as a potential substrate for the biorefinery, and [7] development of catalysts from coproducts. These advancements are intended to provide a diverse set of product choices within the biorefinery, thus improving the cost effectiveness of the system. Technical effectiveness was demonstrated in the pyrolysis biooil based diesel fuel supplement, sugar extraction from lignocelluose, use of biochar, production of algal biomass in wastewaters, and the development of catalysts. Economic feasibility of algal biomass production systems seems attractive, relative to the other options. However, further optimization in all paths, and testing/demonstration at larger scales are required to fully understand the economic viabilities. The various coproducts provide a clear picture that multiple streams of value can be generated within an integrated biorefinery, and these include fuels and products.

K.C. Das; Thomas T. Adams; Mark A. Eiteman; John Stickney; Joy Doran Peterson; James R. Kastner; Sudhagar Mani; Ryan Adolphson

2012-06-12T23:59:59.000Z

203

The effects of chemical pressurization on screen electrode fuel cells  

E-Print Network (OSTI)

A large amount of fuel cell research focuses on porous gas diffusion (PGD) fuel cells which currently produce the best power density. However, this sect of fuel cell technology has many obstacles to overcome before becoming ...

Ahmed, Ali, S.B. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

204

Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Fueling Infrastructure Incentives to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on AddThis.com... More in this section... Federal State Advanced Search

205

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) and Fueling Infrastructure Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on AddThis.com...

206

Focus Article Nuclear winter  

E-Print Network (OSTI)

Focus Article Nuclear winter Alan Robock Nuclear winter is the term for a theory describing the climatic effects of nuclear war. Smoke from the fires started by nuclear weapons, especially the black, sooty smoke from cities and industrial facilities, would be heated by the Sun, lofted into the upper

Robock, Alan

207

Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems  

DOE Green Energy (OSTI)

The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel processor subsystems (fuel reformer, CO cleanup, and exhaust cleanup) that were small enough to integrate on a vehicle and (2) evaluating the fuel processor system performance for hydrogen production, efficiency, thermal integration, startup, durability and ability to integrate with fuel cells. Nuvera carried out a three-part development program that created multi-fuel (gasoline, ethanol, natural gas) fuel processing systems and investigated integration of fuel cell / fuel processor systems. The targets for the various stages of development were initially based on the goals of the DOE's Partnership for New Generation Vehicles (PNGV) initiative and later on the Freedom Car goals. The three parts are summarized below with the names based on the topic numbers from the original Solicitation for Financial Assistance Award (SFAA).

Nuvera Fuel Cells

2005-04-15T23:59:59.000Z

208

A Brief Literature Overview of Various Routes to Biorenewable Fuels from Lipids for the National Alliance for Advanced Biofuels and Bio-products (NAABB) Consortium  

DOE Green Energy (OSTI)

Renewable methods of producing transportation fuels are currently the focus of numerous large research efforts across the globe. Renewable fuel produced from algal lipids is one aspect of this research that could have profound implications on future transportation fuel requirements. However, technical challenges remain in several areas of algal-lipid-based fuels. These challenges include the identification and development of robust and productive algal species as well as extraction methods to recover the produced lipids. Not the least of these technical challenges is the conversion of the algae lipids to fungible fuels. This brief literature review focuses primarily on state-of-the-art downstream applications of producing fuel from fats and lipids, which can be applied to ongoing research with algae-derived lipids.

Albrecht, Karl O.; Hallen, Richard T.

2011-03-29T23:59:59.000Z

209

MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT  

DOE Green Energy (OSTI)

The ongoing program is designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE) for stationary power plant applications. The program efforts are focused on technology and system optimization for cost reduction leading to commercial design development and prototype system field trials. FCE, Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations or in distributed locations near the customer, including hospitals, schools, universities, hotels and other commercial and industrial applications. FuelCell Energy has designed three different fuel cell power plant models (DFC300, DFC1500 and DFC3000). FCE's power plants are based on its patented Direct FuelCell technology, where the fuel is directly fed to fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating, and air conditioning. Several FCE sub-megawatt power plants are currently operating in Europe, Japan and the US. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste water treatment gas, DFC power plants are ready today and do not require the creation of a hydrogen infrastructure. Product improvement progress made during the reporting period in the areas of technology, manufacturing processes, cost reduction and balance of plant equipment designs is discussed in this report. FCE's DFC products development has been carried out under a joint public-private effort with DOE being the major contributor. Current funding is primarily under a Cooperative Agreement with DOE.

H. C. Maru; M. Farooque

2003-12-19T23:59:59.000Z

210

MN Center for Renewable Energy: Cellulosic Ethanol, Optimization of Bio-fuels in Internal Combustion Engines, & Course Development for Technicians in These Areas  

DOE Green Energy (OSTI)

This final report for Grant #DE-FG02-06ER64241, MN Center for Renewable Energy, will address the shared institutional work done by Minnesota State University, Mankato and Minnesota West Community and Technical College during the time period of July 1, 2006 to December 30, 2008. There was a no-cost extension request approved for the purpose of finalizing some of the work. The grant objectives broadly stated were to 1) develop educational curriculum to train technicians in wind and ethanol renewable energy, 2) determine the value of cattails as a biomass crop for production of cellulosic ethanol, and 3) research in Optimization of Bio-Fuels in Internal Combustion Engines. The funding for the MN Center for Renewable Energy was spent on specific projects related to the work of the Center.

John Frey

2009-02-22T23:59:59.000Z

211

Poolside Measurement of AREVA BWR Fuel Channels  

Science Conference Proceedings (OSTI)

As part of the EPRI Fuel Reliability Program, a fuel channel focus group formed in 2002 to initiate measurements on irradiated boiling water reactor (BWR) fuel channels. Fuel channels designed and supplied by Framatome ANP, Inc., an AREVA and Siemens Company (AREVA), were of particular interest, since no measurement information existed from U.S. BWRs with modern AREVA channels. The efforts of the focus group culminated in development of a new channel measurement machine by AREVA and the measurement of AR...

2004-12-13T23:59:59.000Z

212

Strategic Focus Points  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Focus Points Focus Points June 2011 1. Establish the human capital and organizational foundation to create a high-performing organization. 2. Implement a cyber risk-management and incident response program that ensures effective security of Federal and M&O networks, provides appropriate flexibility, and meets legal requirements and OMB expectations. 3. Improve IT Services (EITS) into a best-in-class provider from both a technical and business perspective. 4. Implement and institutionalize a reformed, integrated information management governance process that respects the goal to treat M&Os distinctively different than true Federal entities. 5. Transition to 5-year planning and programming, using the NNSA Planning, Programming, Budgeting and Evaluation (PPBE) process as a starting point to include resource and requirements validation.

213

U.S. Department of Energy Theorty Focus Session on Hydrogen Storage...  

NLE Websites -- All DOE Office Websites (Extended Search)

Theory Focus Session on Hydrogen Storage Materials Office of Hydrogen, Fuel Cells and Infrastructure Technologies, Energy Efficiency and Renewable Energy Office of Basic Energy...

214

Review of the Research Program of the FreedomCAR and Fuel Partnership:  

Open Energy Info (EERE)

Review of the Research Program of the FreedomCAR and Fuel Partnership: Review of the Research Program of the FreedomCAR and Fuel Partnership: Third Report Jump to: navigation, search Tool Summary Name: Review of the Research Program of the FreedomCAR and Fuel Partnership: Third Report Agency/Company /Organization: National Academies Press Focus Area: Vehicles Topics: Best Practices Website: www.nap.edu/catalog.php?record_id=12939 This report reviews the FreedomCAR and Fuel Partnership, a public-private partnership focusing on the high-risk, pre-competitive research needed to develop clean, energy efficient vehicle and infrastructure technologies to transform the personal transportation system. How to Use This Tool This tool is most helpful when using these strategies: Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air

215

USCEA fuel cycle '93  

SciTech Connect

The US Council for Energy Awareness sponsored the Fuel Cycle '93 conference in Dallas, Texas, on March 21-24, 1993. Over 250 participants attended, numerous papers were presented, and several panel discussions were held. The focus of most industry participants remains the formation of USEC and the pending US-Russian HEU agreement. Following are brief summaries of two key papers and the Fuel Market Issues panel discussion.

Not Available

1993-04-01T23:59:59.000Z

216

Overview of the NETL Onsite Fuel Cell R&D Program  

DOE Green Energy (OSTI)

Onsite fuel cell R&D at the National Energy Technology Laboratory (NETL) has been ongoing since the late 1990's. The objective of the onsite program is to support development efforts of the fuel cell technology-related product lines and conduct fundamental research of advanced fuel cell technology. Of special focus is NETL's new 10-yr, multimillion dollar development program call the Solid State Energy Conversion Alliance (SECA). This program is aimed at developing low-cost mass manufactured solid oxide fuel cell technology for a wide variety of applications. In addition to SECA, there are a variety of other products/programs at NETL that can be supported by the onsite R&D group. Vision 21 is one such program and is the U. S. Department of Energy's initiative to deploy high efficiency, ultra-clean co-production coal conversion power plants in the twenty-first century. These plants will consist of power and coproduction modules, which are integrated to meet specific power and chemical markets. In response to these program initiatives, NETL's onsite R&D group is developing significant capability and focusing current activity on the following areas: (1) High-Temperature Fuel Cell Test & Characterization; (2) Integrated Fuel Processing; (3) Fuel Cell Component and Systems Modeling; and (4) Sensors, Controls, and Instrumentation. This report discusses plans and ongoing activities in each of these areas.

Berry, David A.; Gemmen, Randall S.

2001-11-06T23:59:59.000Z

217

Findings: LANL outsourcing focus groups  

Science Conference Proceedings (OSTI)

In March 1996, a series of 24 3-hour dialog focus groups were held with randomly selected Laboratory employees and contractors to gain their perceptions regarding potentials and problems for privatization and consolidation. A secondary goal was to educate and inform the workforce about potentials and issues in privatization and consolidation. Two hundred and thirty-six participants engaged in a learning session and structured input exercises resulting in 2,768 usable comments. Comments were categorized using standard qualitative methods; resulting categories included positive and negative comments on four models (consolidation, spin offs, outsourcing, and corporate partnering) and implications for the workforce, the Laboratory, and the local economy. Categories were in the areas of increasing/decreasing jobs, expertise, opportunity/salary/benefits, quality/efficiency, and effect on the local area and economy. An additional concern was losing Laboratory culture and history. Data were gathered and categorized on employee opinion regarding elements of successful transition to the four models, and issues emerged in the areas of terms and conditions of employment; communication; involvement; sound business planning; ethics and fairness; community infrastructure. From the aggregated opinion of the participants, it is recommended that decision-makers: Plan using sound business principles and continually communicate plans to the workforce; Respect workforce investments in the Laboratory; Tell the workforce exactly what is going on at all times; Understand that economic growth in Northern New Mexico is not universally viewed as positive; and Establish dialog with stakeholders on growth issues.

Jannotta, M.J.; McCabe, V.B.

1996-12-31T23:59:59.000Z

218

Renewable Fuels and Lubricants (ReFUEL) Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the Renewable Fuels and Lubricants (ReFUEL) Laboratory at the U.S. Department of Energy National Renewable Energy Laboratory (NREL) is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development aims to improve vehicle efficiency and overcome barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such as biodiesel and synthetic diesel derived from biomass. The ReFUEL Laboratory features a chassis dynamometer for vehicle performance and emissions research, two engine dynamometer test cells for advanced fuels research, and precise emissions analysis equipment. As a complement to these capabilities, detailed studies of fuel properties, with a focus on ignition quality, are performed at NREL's Fuel Chemistry Laboratory.

Not Available

2012-03-01T23:59:59.000Z

219

Hydrogen and Fuel Cells News and Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

About Us » News & Blog » Hydrogen and Fuel Cells News and Blog About Us » News & Blog » Hydrogen and Fuel Cells News and Blog Hydrogen and Fuel Cells News and Blog Blog Zero Emission Bay Area (ZEBA) -- a group of regional transit agencies in Northern California -- operates twelve, zero-emission, fuel cell buses in real-world service throughout the Bay Area's diverse communities and landscapes. | Photo courtesy of Leslie Eudy, NREL. Top 11 Things You Didn't Know About Fuel Cells May 17, 2013 1:20 PM Test your fuel cell knowledge with these little-known facts. Read The Full Story In his 2013 State of the Union address, President Obama called on Congress to create an Energy Security Trust Fund, which would free American families and business from painful spikes in gas prices. The President's plan builds on an idea that has bipartisan support from experts including retired admirals and generals and leading CEOs, and it focuses on one goal: shifting America's cars and trucks off oil entirely. | Infographic from the White House.

220

Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Use Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative

Note: This page contains sample records for the topic "focus area fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative

222

Fuel Cell Technologies Office: 2013 Webinar Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

partnership focused on advancing hydrogen infrastructure to support more transportation energy options for U.S. consumers, including fuel cell electric vehicles. The new...

223

Toward alternative transportation fuels  

Science Conference Proceedings (OSTI)

At some time in the future the U.S. will make a transition to alternative fuels for transportation. The motivation for this change is the decline in urban air quality and the destruction of the ozone layer. Also, there is a need for energy independence. The lack of consensus on social priorities makes it difficult to compare benefits of different fuels. Fuel suppliers and automobile manufacturers would like to settle on a single alternative fuel. The factors of energy self-sufficiency, economic efficiency, varying anti-pollution needs in different locales, and global warming indicate a need for multiple fuels. It is proposed that instead of a Federal command-and-control type of social regulation for alternative fuels for vehicles, the government should take an incentive-based approach. The main features of this market-oriented proposal would be averaging automobile emission standards, banking automobile emissions reductions, and trading automobile emission rights. Regulation of the fuel industry would allow for variations in the nature and magnitude of the pollution problems in different regions. Different fuels or fuel mixture would need to be supplied for each area. The California Clean Air Resources Board recently adopted a fuel-neutral, market-oriented regulatory program for reducing emissions. This program will show if incentive-based strategies can be extended to the nation as a whole.

Sperling, D. (Univ. of California, Davis (USA))

1990-01-01T23:59:59.000Z

224

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

West Virginia Incentives and Laws West Virginia Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Alternative Fuels Studies Archived: 04/01/2012 The Joint Committee on Government and Finance (Committee) must conduct two separate studies related to alternative fuels. The first study must focus on the impact of alternative fuels on West Virginia's economy, specifically the use of alternative fuels in transportation. This report must include input from state agencies and private industry. The second study must investigate the environmental benefits and economic impact of renewable energy utilization, including the use of biofuels in vehicles, and the

225

Fuel Cell Handbook, Fourth Edition  

DOE Green Energy (OSTI)

sections have been updated from the previous edition. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 7, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 8 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

Stauffer, D.B; Hirschenhofer, J.H.; Klett, M.G.; Engleman, R.R.

1998-11-01T23:59:59.000Z

226

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane ...  

U.S. Energy Information Administration (EIA)

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) Geographic Area

227

Fuel Cell Technologies Office: Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Cells Search Search Help Fuel Cells EERE Fuel Cell Technologies Office Fuel Cells Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Fuel...

228

Fuel Cell Economic Development Plan Hydrogen Roadmap | Open Energy  

Open Energy Info (EERE)

Fuel Cell Economic Development Plan Hydrogen Roadmap Fuel Cell Economic Development Plan Hydrogen Roadmap Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Fuel Cell Economic Development Plan Hydrogen Roadmap Agency/Company /Organization: Connecticut Department of Economic & Community Development Focus Area: Fuels & Efficiency, Hydrogen Topics: Analysis Tools, Policy Impacts, Socio-Economic Website: www.chfcc.org/Publications/reports/Fuel_Cell_Plan%201-31-08_DECD.pdf Equivalent URI: cleanenergysolutions.org/content/fuel-cell-economic-development-plan-h Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. Regulations: "Safety Standards,Emissions Standards" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

229

SLAC National Accelerator Laboratory: SLAC Science Focus Area...  

NLE Websites -- All DOE Office Websites (Extended Search)

accelerated closure of costly large-scale DOE legacy site operations such as the Rocky Flats Environmental Technology Site1. The SLAC SFA is working to leverage SR studies to...

230

TFA Tanks Focus Area midyear review report FY 2000  

SciTech Connect

In accordance with EM's office of Science and Technology (OST), the TFA is committed to assessing the maturity of technology development projects and ensuring their readiness for implementation and subsequent deployment. The TFA conducts an annual Midyear Review to document the status of ongoing projects, reaffirm and document user commitment to selected projects, and to improve the effective deployment of technology by determining and documenting the readiness of selected projects to move ahead. Since 1995, OST has used a linear technology maturation model that spans through seven defined stages of maturity, from basic research to implementation. Application of this Stage/Gate model to technology development resulted in prescriptive and somewhat cumbersome review procedures, resulting in limited and inconsistent use. Subsequently, in February 2000, OST issued revised guidance in an effort to streamline the technology tracking and review process. While the new OST guidance reinforces peer review requirements and the use of the American Society of Mechanical Engineers (ASME) for independent reviews, it also implements a simplified Gate model. The TFA is now responsible for providing auditable documentation for passing only three stages of technology maturity: ready for research (Gate 0); ready for development (Gate 2); ready for demonstration (Gate 5). The TFA Midyear Review is a key element in the overall review procedure, as the tracking evidence for all active projects is required to be available at this time. While the Midyear Report contains an overview of the status of all TFA reviews and projects, not all the reviews were conducted during the Midyear Review. The TFA used a phased approach to accomplish the Midyear Review requirements.

LR Roeder-Smith

2000-05-02T23:59:59.000Z

231

TFA Tanks Focus Area midyear review report FY 2000  

SciTech Connect

In accordance with EM's office of Science and Technology (OST), the TFA is committed to assessing the maturity of technology development projects and ensuring their readiness for implementation and subsequent deployment. The TFA conducts an annual Midyear Review to document the status of ongoing projects, reaffirm and document user commitment to selected projects, and to improve the effective deployment of technology by determining and documenting the readiness of selected projects to move ahead. Since 1995, OST has used a linear technology maturation model that spans through seven defined stages of maturity, from basic research to implementation. Application of this Stage/Gate model to technology development resulted in prescriptive and somewhat cumbersome review procedures, resulting in limited and inconsistent use. Subsequently, in February 2000, OST issued revised guidance in an effort to streamline the technology tracking and review process. While the new OST guidance reinforces peer review requirements and the use of the American Society of Mechanical Engineers (ASME) for independent reviews, it also implements a simplified Gate model. The TFA is now responsible for providing auditable documentation for passing only three stages of technology maturity: ready for research (Gate 0); ready for development (Gate 2); ready for demonstration (Gate 5). The TFA Midyear Review is a key element in the overall review procedure, as the tracking evidence for all active projects is required to be available at this time. While the Midyear Report contains an overview of the status of all TFA reviews and projects, not all the reviews were conducted during the Midyear Review. The TFA used a phased approach to accomplish the Midyear Review requirements.

LR Roeder-Smith

2000-05-02T23:59:59.000Z

232

SLAC National Accelerator Laboratory: SLAC Science Focus Area...  

NLE Websites -- All DOE Office Websites (Extended Search)

Clark, S D. Conradson, and J.R. Bargar (2008) Structure of biogenic UO2 produced by Shewanella Oneidensis, strain MR-1. Environ. Sci. Technol., 42, 7898-7904. K.-U. Ulrich, D....

233

Mixed waste focus area technical baseline report. Volume 2  

SciTech Connect

As part of its overall program, the MWFA uses a national mixed waste data set to develop approaches for treating mixed waste that cannot be treated using existing capabilities at DOE or commercial facilities. The current data set was originally compiled under the auspices of the 1995 Mixed Waste Inventory Report. The data set has been updated over the past two years based on Site Treatment Plan revisions and clarifications provided by individual sites. The current data set is maintained by the MWFA staff and is known as MWFA97. In 1996, the MWFA developed waste groupings, process flow diagrams, and treatment train diagrams to systematically model the treatment of all mixed waste in the DOE complex. The purpose of the modeling process was to identify treatment gaps and corresponding technology development needs for the DOE complex. Each diagram provides the general steps needed to treat a specific type of waste. The NWFA categorized each MWFA97 waste stream by waste group, treatment train, and process flow. Appendices B through F provide the complete listing of waste streams by waste group, treatment train, and process flow. The MWFA97 waste strewn information provided in the appendices is defined in Table A-1.

1997-04-01T23:59:59.000Z

234

Focus Area 1 - Biomass Formation and Modification : BioEnergy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Formation and Modification BESC biomass formation and modification research involves working directly with two potential bioenergy crops (switchgrass and Populus) to develop...

235

Focus Area 2 - Biomass Deconstruction and Conversion : BioEnergy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Deconstruction and Conversion BESC research in biomass deconstruction and conversion targets CBP by studying model organisms and thermophilic anaerobes to understand novel...

236

SLAC National Accelerator Laboratory: SLAC Science Focus Area...  

NLE Websites -- All DOE Office Websites (Extended Search)

settings. Dan Giammar Dan Giammar (PI) Dan is an Assistant Professor in the Department Energy, Environmental, and Chemical Engineering at Washington University in St. Louis,...

237

SLAC National Accelerator Laboratory: SLAC Science Focus Area...  

NLE Websites -- All DOE Office Websites (Extended Search)

nuclear waste repositories. The need to understand the biogeochemical factors controlling Pu mobility in the environment is driven not only by regulatory requirements, but also by...

238

Tanks Focus Area Site Needs Assessment - FY 2001  

SciTech Connect

The TFA uses a systematic process for developing its annual program that draws from the tanks science and technology development needs expressed by the five DOE tank waste sites. TFA's annual program development process is iterative and involves the following steps: Collection of site needs; Needs analysis; Development of technical responses and initial prioritization; Refinement of the program for the next fiscal year; Formulation of the Corporate Review Budget (CRB); Preparation of Program Execution Guidance (PEG) for the next FY Revision of the Multiyear Program Plan (MYPP). This document describes the outcomes of the first phase of this process, from collection of site needs to the initial prioritization of technical activities. The TFA received site needs in October - December 2000. A total of 170 site needs were received, an increase of 30 over the previous year. The needs were analyzed and integrated, where appropriate. Sixty-six distinct technical responses were drafted and prioritized. In addition, seven strategic tasks were approved to compete for available funding in FY 2002 and FY 2003. Draft technical responses were prepared and provided to the TFA Site Representatives and the TFA User Steering Group (USG) for their review and comment. These responses were discussed at a March 15, 2001, meeting where the TFA Management Team established the priority listing in preparation for input to the DOE Office of Science and Technology (OST) budget process. At the time of publication of this document, the TFA continues to finalize technical responses as directed by the TFA Management Team and clarify the intended work scopes for FY 2002 and FY 2003.

Allen, Robert W.; Josephson, Gary B.; Westsik, Joseph H.; Nickola, Cheryl L.

2001-04-30T23:59:59.000Z

239

Suggested IMI Focus Area A Mature Industry's Demographics:  

Science Conference Proceedings (OSTI)

... Existing plants should be able to reduce energy costs by 10 ... should see a 25% to 30% energy reduction. ... at are less than 25% of the average times. ...

2012-10-16T23:59:59.000Z

240

SLAC National Accelerator Laboratory: SLAC Science Focus Area...  

NLE Websites -- All DOE Office Websites (Extended Search)

program. The inner portion of the particles is well ordered and similar to stoichiometric or near-stoichiometric UO2.0, and the material consequently exhibits a solubility...

Note: This page contains sample records for the topic "focus area fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Compressed Natural Gas and Hydrogen Fuels Workshop Compressed Natural Gas and Hydrogen Fuels Workshop Fuel experts from China, India, and the United States shared lessons learned about deploying CNG- and hydrogen-fueled vehicles in public transit fleets and the consumer sector at the Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles workshop. The U.S. Department of Energy (DOE) and the U.S. Department of Transportation (DOT) hosted the workshop on December 10-11, 2009. Here you'll find information about the workshop's focus, agenda and notes, and presentations. Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Focus of the Workshop The workshop aimed to: Compare fuel properties-including blends-industries, and applications (e.g., product specifications, tanks, reliability, safety procedures, risk mitigation, and dispensing)

242

SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report  

DOE Green Energy (OSTI)

SunLine Transit Agency, which provides public transit services to the Coachella Valley area of California, has demonstrated hydrogen and fuel cell bus technologies for more than 10 years. In May 2010, SunLine began demonstrating the advanced technology (AT) fuel cell bus with a hybrid electric propulsion system, fuel cell power system, and lithium-based hybrid batteries. This report describes operations at SunLine for the AT fuel cell bus and five compressed natural gas buses. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is working with SunLine to evaluate the bus in real-world service to document the results and help determine the progress toward technology readiness. NREL has previously published three reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from February 2012 through November 2012.

Eudy, L.; Chandler, K.

2013-01-01T23:59:59.000Z

243

Processing of Soybean Oil into Fuels  

DOE Green Energy (OSTI)

Abundant and easily refined, petroleum has provided high energy density liquid fuels for a century. However, recent price fluctuations, shortages, and concerns over the long term supply and greenhouse gas emissions have encouraged the development of alternatives to petroleum for liquid transportation fuels (Van Gerpen, Shanks et al. 2004). Plant-based fuels include short chain alcohols, now blended with gasoline, and biodiesels, commonly derived from seed oils. Of plant-derived diesel feedstocks, soybeans yield the most of oil by weight, up to 20% (Mushrush, Willauer et al. 2009), and so have become the primary source of biomass-derived diesel in the United States and Brazil (Lin, Cunshan et al. 2011). Worldwide ester biodiesel production reached over 11,000,000 tons per year in 2008 (Emerging Markets 2008). However, soybean oil cannot be burned directly in modern compression ignition vehicle engines as a direct replacement for diesel fuel because of its physical properties that can lead to clogging of the engine fuel line and problems in the fuel injectors, such as: high viscosity, high flash point, high pour point, high cloud point (where the fuel begins to gel), and high density (Peterson, Cook et al. 2001). Industrial production of biodiesel from oil of low fatty-acid content often follows homogeneous base-catalyzed transesterification, a sequential reaction of the parent triglyceride with an alcohol, usually methanol, into methyl ester and glycerol products. The conversion of the triglyceride to esterified fatty acids improves the characteristics of the fuel, allowing its introduction into a standard compression engine without giving rise to serious issues with flow or combustion. Commercially available biodiesel, a product of the transesterification of fats and oils, can also be blended with standard diesel fuel up to a maximum of 20 vol.%. In the laboratory, the fuel characteristics of unreacted soybean oil have also been improved by dilution with petroleum based fuels, or by aerating and formation of microemulsions. However, it is the chemical conversion of the oil to fuel that has been the area of most interest. The topic has been reviewed extensively (Van Gerpen, Shanks et al. 2004), so this aspect will be the focus in this chapter. Important aspects of the chemistry of conversion of oil into diesel fuel remain the same no matter the composition of the triglyceride. Hence, although the focus in this book is on soybean oil, studies on other plant based oils and simulated oils have occasional mention in this chapter. Valuable data can be taken on systems that are simpler than soybean based oils, with fewer or shorter chain components. Sometimes the triglycerides will behave differently under reaction conditions, and when relevant, these have been noted in the text. Although the price of diesel fuel has increased, economical production of biodiesel is a challenge because of (1) the increasing price of soybean oil feedstocks and reagent methanol, (2) a distributed supply of feedstocks that reduces the potential for economies of scale, (3) processing conditions that include pressures and temperatures above ambient, and (4) multiple processing steps needed to reduce contaminant levels to ASTM specification D6751 limits (Vasudevan & Briggs 2008). Much of the cost of biodiesel production is related to the conversion of the oil to the methyl ester and so there has been an emphasis to research improved methods of converting soybean oil to biodiesel. However, most of these studies have taken place at the bench scale, and have not demonstrated a marked improvement in yield or reduced oil-to-methanol ratio in comparison with standard base-catalyzed transesterification. One aspect that has a short term chance of implementation is the improvement of the conversion process by the use of a continuous rather than batch process, with energy savings generated by combined reaction and separation, online analysis, and reagent methanol added by titration as needed to produce ASTM specification grade fuel. By adapting process intensif

McFarlane, Joanna [ORNL

2011-01-01T23:59:59.000Z

244

Calling All Fuel Cells | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Calling All Fuel Cells Calling All Fuel Cells Calling All Fuel Cells December 7, 2012 - 4:31pm Addthis Altergy had more than 60 fuel cells in the immediate Hurricane Sandy disaster area that acted as backup power for cell phone towers. | Photo courtesy of Altergy. Altergy had more than 60 fuel cells in the immediate Hurricane Sandy disaster area that acted as backup power for cell phone towers. | Photo courtesy of Altergy. Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program What is a fuel cell? A fuel cell is a device that uses a fuel and oxygen to create electricity by an electrochemical process. A fuel cell can provide energy for systems as large as a utility power station and as small as a laptop computer. During Hurricane Sandy, fuel cells were instrumental in providing backup

245

Calling All Fuel Cells | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Calling All Fuel Cells Calling All Fuel Cells Calling All Fuel Cells December 7, 2012 - 4:31pm Addthis Altergy had more than 60 fuel cells in the immediate Hurricane Sandy disaster area that acted as backup power for cell phone towers. | Photo courtesy of Altergy. Altergy had more than 60 fuel cells in the immediate Hurricane Sandy disaster area that acted as backup power for cell phone towers. | Photo courtesy of Altergy. Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program What is a fuel cell? A fuel cell is a device that uses a fuel and oxygen to create electricity by an electrochemical process. A fuel cell can provide energy for systems as large as a utility power station and as small as a laptop computer. During Hurricane Sandy, fuel cells were instrumental in providing backup

246

Fuel pin  

DOE Patents (OSTI)

A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

1987-11-24T23:59:59.000Z

247

Neutron Radiography Reactor Reactivity -- Focused Lessons Learned  

SciTech Connect

As part of the Global Threat Reduction Initiative, the Neutron Radiography Reactor (NRAD) at the Idaho National Laboratory (INL) was converted from using highly enriched uranium (HEU) to low enriched uranium (LEU) fuel. After the conversion, NRAD resumed operations and is meeting operational requirements. Radiography image quality and the number of images that can be produced in a given time frame match pre-conversion capabilities. However, following the conversion, NRADs excess reactivity with the LEU fuel was less than it had been with the HEU fuel. Although some differences between model predictions and actual performance are to be expected, the lack of flexibility in NRADs safety documentation prevented adjusting the reactivity by adding more fuel, until the safety documentation could be modified. To aid future reactor conversions, a reactivity-focused Lessons Learned meeting was held. This report summarizes the findings of the lessons learned meeting and addresses specific questions posed by DOE regarding NRADs conversion and reactivity.

Eric Woolstenhulme; Randal Damiana; Kenneth Schreck; Ann Marie Phillips; Dana Hewit

2010-11-01T23:59:59.000Z

248

NREL: Vehicles and Fuels Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects Projects NREL's vehicles and fuels projects focus on developing, evaluating, and demonstrating innovative technologies that reduce the nation's dependence on imported petroleum and improve air quality. We work in partnership with vehicle manufacturers, equipment suppliers, fuel providers, and others to develop and commercialize vehicle and fuel technologies that meet our nation's energy and environmental goals. Advanced Combustion and Fuels Biofuels Electric Vehicle Grid Integration Energy Storage Fleet Test and Evaluation Power Electronics ReFUEL Laboratory Secure Transportation Data Vehicle Ancillary Loads Reduction Vehicle Systems Analysis Printable Version Vehicles & Fuels Research Home Projects Advanced Combustion & Fuels Biofuels Electric Vehicle Grid Integration

249

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Fueling Infrastructure Funding and Technical Assistance and Fueling Infrastructure Funding and Technical Assistance to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Digg

250

Analysis of operational, institutional and international limitations for alternative fuel vehicles and technologies: Means/methods for implementing changes  

DOE Green Energy (OSTI)

This project focused upon the development of an approach to assist public fleet managers in evaluating the characteristics and availability of alternative fuels (AF`s) and alternative fuel vehicles (AFV`s) that will serve as possible replacements for vehicles currently serving the needs of various public entities. Also of concern were the institutional/international limitations for alternative fuels and alternative fuel vehicles. The City of Detroit and other public agencies in the Detroit area were the particular focus for the activities. As the development and initial stages of use of alternative fuels and alternative fuel vehicles proceeds, there will be an increasing need to provide information and guidance to decision-makers regarding differences in requirements and features of these fuels and vehicles. There wig be true differences in requirements for servicing, managing, and regulating. There will also be misunderstanding and misperception. There have been volumes of data collected on AFV`S, and as technology is improved, new data is constantly added. There are not, however, condensed and effective sources of information for public vehicle fleet managers on vehicle and equipment sources, characteristics, performance, costs, and environmental benefits. While theoretical modeling of public fleet requirements has been done, there do not seem to be readily available ``practical``. There is a need to provide the best possible information and means to minimize the problems for introducing the effective use of alternative fuels and alternative fuel vehicles.

Not Available

1992-07-01T23:59:59.000Z

251

MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT  

DOE Green Energy (OSTI)

The program was designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE, formerly Energy Research Corporation) from an early state of development for stationary power plant applications. The current program efforts were focused on technology and system development, and cost reduction, leading to commercial design development and prototype system field trials. FCE, in Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where a hydrocarbon fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several sub-MW power plants based on the DFC design are currently operating in Europe, Japan and the US. Several one-megawatt power plant design was verified by operation on natural gas at FCE. This plant is currently installed at a customer site in King County, WA under another US government program and is currently in operation. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste water treatment gas, DFC power plants are ready today and do not require the creation of a hydrogen infrastructure. Product improvement progress made during the program period in the areas of technology, manufacturing processes, cost reduction and balance-of-plant equipment designs is discussed in this report.

H.C. Maru; M. Farooque

2005-03-01T23:59:59.000Z

252

Question of the Week: Do You Use Alternative Fuels? | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Alternative Fueling Station Locator to find fueling stations in your area. Do you use alternative fuels? E-mail your responses to the Energy Saver team at consumer.webmaster@nr...

253

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ohio Incentives and Laws Ohio Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Fuel Cell Development Funding Archived: 12/31/2012 The Ohio Third Frontier Fuel Cell Program (Program) aims to stimulate job creation in Ohio and position the state as a national leader in the fuel cell industry. The Program is an integral part of the Ohio Third Frontier, a technology-based economic development initiative designed to create jobs and bring new products to market. The Program offers grants and loans to support the growth of targeted areas of fuel cell technology, including: advanced materials related to advanced polymers, ceramics, composites,

254

Fuels Technology - Capabilities - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Capabilities Fuels Technology Advanced petroleum-based fuels Fuel-borne reductants On-board reforming Alternative fuels...

255

How to utilize hedging and a fuel surcharge program to stabilize the cost of fuel.  

E-Print Network (OSTI)

??This paper looks at some of these travails as well as the common tools used to approach a volatile priced commodity, diesel fuel. It focuses (more)

Witalec, Michael R

2010-01-01T23:59:59.000Z

256

Alternative Fuels Data Center: Alternative Fuel and Special Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Special Fuel Definitions to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel and Special Fuel Definitions

257

Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Motor Fuel Motor Carrier Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Motor Carrier Fuel Tax Effective January 1, 2014, a person who operates a commercial motor vehicle

258

Fuel cells for transportation program: FY1997 national laboratory annual report  

DOE Green Energy (OSTI)

The Department of Energy (DOE) Fuel Cells for Transportation Program is structured to effectively implement the research and development (R and D) required for highly efficient, low or zero emission fuel cell power systems to be a viable replacement for the internal combustion engine in automobiles. The Program is part of the Partnership for a New Generation of Vehicles (PNGV), a government-industry initiative aimed at development of an 80 mile-per-gallon vehicle. This Annual Report summarizes the technical accomplishments of the laboratories during 1997. Participants include: Argonne National Laboratory (ANL), Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and the National Renewable Energy Laboratory (NREL). During 1997, the laboratory R and D included one project on solid oxide fuel cells; this project has since been terminated to focus Department resources on PEM fuel cells. The technical component of this report is divided into five key areas: fuel cell stack research and development; fuel processing; fuel cell modeling, testing, and evaluation; direct methanol PEM fuel cells; and solid oxide fuel cells.

NONE

1997-12-31T23:59:59.000Z

259

Alternative Fuels and Advanced Vehicles Data Center - Federal and State  

Open Energy Info (EERE)

Federal and State Federal and State Incentives and Laws Database Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fuels and Advanced Vehicles Data Center - Federal and State Incentives and Laws Database Agency/Company /Organization: National Renewable Energy Laboratory Focus Area: Standards - Incentives - Policies - Regulations Topics: Best Practices Website: www.afdc.energy.gov/afdc/laws/ This database provides U.S. federal and state laws and incentives related to alternative fuels and vehicles, air quality, fuel efficiency, and other transportation-related topics. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies

260

Fuel-Efficient Stove Programs in Humanitarian Settings | Open Energy  

Open Energy Info (EERE)

Fuel-Efficient Stove Programs in Humanitarian Settings Fuel-Efficient Stove Programs in Humanitarian Settings Jump to: navigation, search Tool Summary Name: Fuel-Efficient Stove Programs in Humanitarian Settings Agency/Company /Organization: USAID Sector: Energy Focus Area: Biomass, Energy Efficiency Phase: Evaluate Options, Prepare a Plan, Evaluate Effectiveness and Revise as Needed Resource Type: Guide/manual, Lessons learned/best practices, Presentation, Publications User Interface: Spreadsheet, Website Website: www.energytoolbox.org/cookstoves/ Cost: Free Language: English A step-by-step process of assessment, planning, implementation, and monitoring and evaluation of a Cookstove activity This Toolkit is designed to take you and your organization through a step-by-step process of assessment, planning, implementation, and

Note: This page contains sample records for the topic "focus area fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

DOD -DOE MOU WTE Using Fuel Cells Briefing  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Program DOD - DOE MOU WTE Using Fuel Cells Briefing Pete Devlin Market Transformation and Intergovernmental Coordination Manager July 13, 2011 Biogas Resource Example: Methane from Waste Water Treatment Biogas from waste water treatment plants is ideally located near urban centers to supply hydrogen for fuel cell vehicles. Focus Area Source: NREL report A Geographic Perspective on Current Biomass Resource Availability in the United States, 2005 * 500,000 MT per year of methane available from waste water treatment plants in U.S. * Majority of resource located near urban centers. * If ~50% of the bio- methane was available, ~340,000 kg/day of renewable hydrogen could be produced from steam methane reforming * Renewable hydrogen is enough to fuel

262

Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions  

Open Energy Info (EERE)

Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool Agency/Company /Organization: Argonne National Laboratory Sector: Energy Focus Area: Transportation Phase: Determine Baseline, Evaluate Options Topics: Co-benefits assessment, GHG inventory Resource Type: Online calculator, Software/modeling tools User Interface: Spreadsheet Complexity/Ease of Use: Moderate Website: www.transportation.anl.gov/modeling_simulation/AirCred/index.html

263

Spent-fuel-storage alternatives  

Science Conference Proceedings (OSTI)

The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

Not Available

1980-01-01T23:59:59.000Z

264

Alternative Fuels Data Center: Alternative Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Promotion The Missouri Alternative Fuels Commission (Commission) promotes the continued production and use of alternative transportation fuels in

265

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The definition of an alternative fuel includes natural gas, liquefied petroleum gas, electricity, hydrogen, fuel mixtures containing not less

266

Alternative Fuels Data Center: Ethanol Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Ethanol Fueling Stations Photo of an ethanol fueling station. Thousands of ethanol fueling stations are available in the United States.

267

Alternative Fuels Data Center: Hydrogen Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Hydrogen Fueling Stations Photo of a hydrogen fueling station. A handful of hydrogen fueling stations are available in the United States

268

Alternative Fuels Data Center: Biodiesel Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fueling Stations on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Biodiesel Fueling Stations Photo of a biodiesel fueling station. Hundreds of biodiesel fueling stations are available in the United States.

269

Clean Cities Guide to Alternative Fuel Commercial Lawn Equipment (Brochure)  

Science Conference Proceedings (OSTI)

Guide explains the different types of alternative fuel commercial mowers and lists the makes and models of the ones available on the market. Turf grass is a fixture of the American landscape and the American economy. It is the nation's largest irrigated crop, covering more than 40 million acres. Legions of lawnmowers care for this expanse during the growing season-up to year-round in the warmest climates. The annual economic impact of the U.S. turf grass industry has been estimated at more than $62 billion. Lawn mowing also contributes to the nation's petroleum consumption and pollutant emissions. Mowers consume 1.2 billion gallons of gasoline annually, about 1% of U.S. motor gasoline consumption. Commercial mowing accounts for about 35% of this total and is the highest-intensity use. Large property owners and mowing companies cut lawns, sports fields, golf courses, parks, roadsides, and other grassy areas for 7 hours per day and consume 900 to 2,000 gallons of fuel annually depending on climate and length of the growing season. In addition to gasoline, commercial mowing consumes more than 100 million gallons of diesel annually. Alternative fuel mowers are one way to reduce the energy and environmental impacts of commercial lawn mowing. They can reduce petroleum use and emissions compared with gasoline- and diesel-fueled mowers. They may also save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and promote a 'green' image. And on ozone alert days, alternative fuel mowers may not be subject to the operational restrictions that gasoline mowers must abide by. To help inform the commercial mowing industry about product options and potential benefits, Clean Cities produced this guide to alternative fuel commercial lawn equipment. Although the guide's focus is on original equipment manufacturer (OEM) mowers, some mowers can be converted to run on alternative fuels. For more information about propane conversions. This guide may be particularly helpful for organizations that are already using alternative fuels in their vehicles and have an alternative fuel supply or electric charging in place (e.g., golf cart charging stations at most golf courses). On the flip side, experiencing the benefits of using alternative fuels in mowing equipment may encourage organizations to try them in on-road vehicles as well. Whatever the case, alternative fuel commercial lawnmowers are a powerful and cost-effective way to reduce U.S. petroleum dependence and help protect the environment.

Not Available

2011-10-01T23:59:59.000Z

270

1990 fuel cell seminar: Program and abstracts  

DOE Green Energy (OSTI)

This volume contains author prepared short resumes of the presentations at the 1990 Fuel Cell Seminar held November 25-28, 1990 in Phoenix, Arizona. Contained herein are 134 short descriptions organized into topic areas entitled An Environmental Overview, Transportation Applications, Technology Advancements for Molten Carbonate Fuel Cells, Technology Advancements for Solid Fuel Cells, Component Technologies and Systems Analysis, Stationary Power Applications, Marine and Space Applications, Technology Advancements for Acid Type Fuel Cells, and Technology Advancement for Solid Oxide Fuel Cells.

Not Available

1990-12-31T23:59:59.000Z

271

Fuel cell membrane humidification  

DOE Patents (OSTI)

A polymer electrolyte membrane fuel cell assembly has an anode side and a cathode side separated by the membrane and generating electrical current by electrochemical reactions between a fuel gas and an oxidant. The anode side comprises a hydrophobic gas diffusion backing contacting one side of the membrane and having hydrophilic areas therein for providing liquid water directly to the one side of the membrane through the hydrophilic areas of the gas diffusion backing. In a preferred embodiment, the hydrophilic areas of the gas diffusion backing are formed by sewing a hydrophilic thread through the backing. Liquid water is distributed over the gas diffusion backing in distribution channels that are separate from the fuel distribution channels.

Wilson, Mahlon S. (Los Alamos, NM)

1999-01-01T23:59:59.000Z

272

Development of Green Fuels From Algae - The University of Tulsa  

Science Conference Proceedings (OSTI)

The general public has become increasingly aware of the pitfalls encountered with the continued reliance on fossil fuels in the industrialized world. In response, the scientific community is in the process of developing non-fossil fuel technologies that can supply adequate energy while also being environmentally friendly. In this project, we concentrate on ??green fuels? which we define as those capable of being produced from renewable and sustainable resources in a way that is compatible with the current transportation fuel infrastructure. One route to green fuels that has received relatively little attention begins with algae as a feedstock. Algae are a diverse group of aquatic, photosynthetic organisms, generally categorized as either macroalgae (i.e. seaweed) or microalgae. Microalgae constitute a spectacularly diverse group of prokaryotic and eukaryotic unicellular organisms and account for approximately 50% of global organic carbon fixation. The PI??s have subdivided the proposed research program into three main research areas, all of which are essential to the development of commercially viable algae fuels compatible with current energy infrastructure. In the fuel development focus, catalytic cracking reactions of algae oils is optimized. In the species development project, genetic engineering is used to create microalgae strains that are capable of high-level hydrocarbon production. For the modeling effort, the construction of multi-scaled models of algae production was prioritized, including integrating small-scale hydrodynamic models of algae production and reactor design and large-scale design optimization models.

Crunkleton, Daniel; Price, Geoffrey; Johannes, Tyler; Cremaschi, Selen

2012-12-03T23:59:59.000Z

273

RECENT DEVELOPMENT IN TEM CHARACTERIZATION OF IRRADIATED RERTR FUELS  

SciTech Connect

The recent development on TEM work of irradiated RERTR fuels includes microstructural characterization of the irradiated U-10Mo/alloy-6061 monolithic fuel plate, the RERTR-7 U-7Mo/Al-2Si and U-7Mo/Al-5Si dispersion fuel plates. It is the first time that a TEM sample of an irradiated nuclear fuel was prepared using the focused-ion-beam (FIB) lift-out technical at the Idaho National Laboratory. Multiple FIB TEM samples were prepared from the areas of interest in a SEM sample. The characterization was carried out using a 200kV TEM with a LaB6 filament. The three dimensional orderings of nanometer-sized fission gas bubbles are observed in the crystalline region of the U-Mo fuel. The co-existence of bubble superlattice and dislocations is evident. Detailed microstructural information along with composition analysis is obtained. The results and their implication on the performance of these fuels are discussed.

J. Gan; B.D. Miller; D.D. Keiser Jr.; A.B. Robinson; J.W. Madden; P.G. Medvedev; D.M. Wachs

2011-10-01T23:59:59.000Z

274

Advanced fuel cells and their future market  

Science Conference Proceedings (OSTI)

The advantages of fuel cells over competing technologies are outlined. These include higher fuel-efficiency (and thus lower fuel costs) and financial credits that may help reduce the effective introductory capital costs and thus help broaden the market. The credits for fuel cells result from their modularity, relative independence of efficiency on size and load, dispersibility, and rapid installation time. The fuel cell of primary interest in the United States and Japan is the PAFC (whose operation is limited by materials problems to ca. 200{degrees}C), because it is the most highly developed for use with natural gas or clean light distillate fuels. Competing fuel cell (FC) technologies are the alkaline fuel cell (AFC, limited to 80{degrees}C if inexpensive construction materials are used), the molten carbonate fuel cell (MCFC, 650{degrees}C), and the solid oxide fuel cell (SOFC, 1000{degrees}C). The author focuses on the MCFC in this paper.

Appleby, A.J. (Electric Power Research Inst., Palo Alto, CA (US))

1988-01-01T23:59:59.000Z

275

Spent graphite fuel element processing  

SciTech Connect

The Department of Energy currently sponsors two programs to demonstrate the processing of spent graphite fuel elements. General Atomic in San Diego operates a cold pilot plant to demonstrate the processing of both US and German high-temperature reactor fuel. Exxon Nuclear Idaho Company is demonstrating the processing of spent graphite fuel elements from Rover reactors operated for the Nuclear Rocket Propulsion Program. This work is done at Idaho National Engineering Laboratory, where a hot facility is being constructed to complete processing of the Rover fuel. This paper focuses on the graphite combustion process common to both programs.

Holder, N.D.; Olsen, C.W.

1981-07-01T23:59:59.000Z

276

Fuel Cell Technologies Office: Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cells Search Search Help Fuel Cells EERE Fuel Cell Technologies Office Fuel Cells...

277

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on AddThis.com...

278

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on AddThis.com...

279

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on AddThis.com...

280

Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on AddThis.com... More in this section...

Note: This page contains sample records for the topic "focus area fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on AddThis.com...

282

Cerenkov Particle Identification in FOCUS  

E-Print Network (OSTI)

We describe the algorithm used to identify charged tracks in the fixed-target charm-photoproduction experiment FOCUS.

The FOCUS Collaboration

2001-08-06T23:59:59.000Z

283

Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell  

NLE Websites -- All DOE Office Websites (Extended Search)

Act Projects Funded for Fuel Cell Market Transformation Act Projects Funded for Fuel Cell Market Transformation Following the fuel cell funding announcement, DOE funded the fuel cell market transformation projects listed below. These projects focus on fuel cell systems in emergency backup power, material handling, and combined heat and power applications, with the goal of improving the potential of fuel cells to provide power in stationary, portable, and specialty vehicles. The Fuel Cell Technologies Office is collecting and analyzing data from these projects to show potential adopters the benefits and real-world performance of fuel cells. These data are aggregated across industries and sites as composite data products to provide relevant technology status results and fuel cell performance data without revealing proprietary information. These publicly available data products build the business case for fuel cells and help fuel cell developers understand the state of technologies while identifying ways to improve them.

284

Fuel Cell Seminar, 1992: Program and abstracts  

DOE Green Energy (OSTI)

This year`s theme, ``Fuel Cells: Realizing the Potential,`` focuses on progress being made toward commercial manufacture and use of fuel cell products. Fuel cell power plants are competing for market share in some applications and demonstrations of market entry power plants are proceeding for additional applications. Development activity on fuel cells for transportation is also increasing; fuel cell products have potential in energy and transportation industries, with very favorable environmental impacts. This Seminar has the purpose of fostering communication by providing a forum for the international community interested in development, application, and business opportunities related fuel cells. Over 190 technical papers are included, the majority being processed for the data base.

Not Available

1992-12-31T23:59:59.000Z

285

Fuel Cell Handbook, Fourth Edition  

SciTech Connect

Robust progress has been made in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in January 1994. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultra high efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 6 describe the four major fuel cell types and their performance based on cell operating conditions. The section on polymer electrolyte membrane fuel cells has been added to reflect their emergence as a significant fuel cell technology. Phosphoric acid, molten carbonate, and solid oxide fuel cell technology description sections have been updated from the previous edition. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 7, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 8 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

Stauffer, D.B; Hirschenhofer, J.H.; Klett, M.G.; Engleman, R.R.

1998-11-01T23:59:59.000Z

286

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Infrastructure Grants to someone by E-mail Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on AddThis.com...

287

Hydrogen Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

explored as a fuel for passenger vehicles. It can be used in fuel cells to power electric motors or burned in internal combustion engines (ICEs). It is an environmentally...

288

Clean Cities Alternative Fuel Price Report  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

1 1 Clean Cities Alternative Fuel Price Report October 2011 Page 2 WELCOME! Welcome to the October 2011 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between September 30, 2011 and October 14, 2011 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were contacted to request that they provide prices for fuels in their area on a voluntary basis. Prices were

289

Alternative Fuel Price Report January 2011  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

1 1 Clean Cities Alternative Fuel Price Report January 2011 Page 2 WELCOME! Welcome to the January 2011 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between January 24, 2011 and February 7, 2011 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were contacted to request that they provide prices for fuels in their area on a voluntary basis. Prices were

290

Clean Cities Alternative Fuel Price Report  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

0 0 Clean Cities Alternative Fuel Price Report January 2010 Page 2 WELCOME! Welcome to the January 2010 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between January 19, 2010 and January 29, 2010 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were contacted to request that they provide prices for fuels in their area on a voluntary basis. Prices were

291

Alternative Fuel Price Report April 2010  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

0 0 Clean Cities Alternative Fuel Price Report April 2010 Page 2 WELCOME! Welcome to the April 2010 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between April 2, 2010 and April 12, 2010 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were contacted to request that they provide prices for fuels in their area on a voluntary basis. Prices were

292

Alternative Fuel Price Report April 2008  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

April 2008 April 2008 8 CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT APRIL 2008 WELCOME! Welcome to the April 2008 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between April 1, 2008 and April 11, 2008 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were contacted to request that they provide prices for fuels in their area on a voluntary basis. Prices were

293

Clean Cities Alternative Fuel Price Report  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

1 1 Clean Cities Alternative Fuel Price Report April 2011 Page 2 WELCOME! Welcome to the April 2011 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between April 1, 2011 and April 15, 2011 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were contacted to request that they provide prices for fuels in their area on a voluntary basis. Prices were

294

Alternative Fuel Price Report January 2008  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Jan Jan nuary 2008 8 CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT JANUARY 2008 WELCOME! Welcome to the January 2008 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between January 21, 2008 and January 31, 2008 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were contacted to request that they provide prices for fuels in their area on a voluntary basis. Prices were

295

Alternative Fuel Price Report - September 2005  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

September 2005 September 2005 CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT SEPTEMBER 2005 Page 2 WELCOME! Welcome to the September issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected in the month of September 2005 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, DOE Regional Offices, and other key stakeholders were contacted to request that they provide prices for fuels in their area on a voluntary basis.

296

Fuel Cell Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Recent news stories and press releases related to the Fuel Cell Technologies Office are presented below. To see past news items, refer to the news archives for 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, and 2003. Subscribe to Fuel Cell Technologies Office updates. January 10, 2014 Upcoming Live Discussion on Energy 101: Fuel Cells Join the Energy Department at 2:00 p.m. ET on Thursday, January 16 for the first Energy 101 Google+ Hangout, which will focus on fuel cells. More January 10, 2014 Help Design the Hydrogen Fueling Station of Tomorrow The Energy Department posted a blog yesterday about the Hydrogen Education Foundation's Hydrogen Student Design Contest. More December 20, 2013 Your Holidays...Brought to You by Fuel Cells

297

Proceedings: pellet fuels conference  

DOE Green Energy (OSTI)

The conference brought together professionals from the process- engineered-fuels (PEF), utility, paper, plastics, and boiler industries. Although the last two decades have produced technical breakthroughs, efforts to advance PEF must now focus on increasing commercial breakthroughs. Successful commercialization will depend on increasing supplier, consumer, and regulator confidence and support by demonstrating the performance and value of PEF products. Speakers provided updates on how PEF technology is evolving with respect to technical, economic, and regulatory challenges. Actions critical toward full commercialization of PEF were then considered. Discussion groups addressed materials sourcing, fuel processing and transportation, combustion, and ash handling.

Not Available

1995-12-31T23:59:59.000Z

298

Fuel Cell Handbook, Fifth Edition  

DOE Green Energy (OSTI)

Progress continues in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in November 1998. Uppermost, polymer electrolyte fuel cells, molten carbonate fuel cells, and solid oxide fuel cells have been demonstrated at commercial size in power plants. The previously demonstrated phosphoric acid fuel cells have entered the marketplace with more than 220 power plants delivered. Highlighting this commercial entry, the phosphoric acid power plant fleet has demonstrated 95+% availability and several units have passed 40,000 hours of operation. One unit has operated over 49,000 hours. Early expectations of very low emissions and relatively high efficiencies have been met in power plants with each type of fuel cell. Fuel flexibility has been demonstrated using natural gas, propane, landfill gas, anaerobic digester gas, military logistic fuels, and coal gas, greatly expanding market opportunities. Transportation markets worldwide have shown remarkable interest in fuel cells; nearly every major vehicle manufacturer in the U.S., Europe, and the Far East is supporting development. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultrahigh efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 8 describe the six major fuel cell types and their performance based on cell operating conditions. Alkaline and intermediate solid state fuel cells were added to this edition of the Handbook. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 9, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 10 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

Energy and Environmental Solutions

2000-10-31T23:59:59.000Z

299

Experiences from Ethanol Buses and Fuel Station Report - La Spezia | Open  

Open Energy Info (EERE)

Experiences from Ethanol Buses and Fuel Station Report - La Spezia Experiences from Ethanol Buses and Fuel Station Report - La Spezia Jump to: navigation, search Tool Summary Name: Experiences from Ethanol Buses and Fuel Station Report - La Spezia Agency/Company /Organization: BioEthanol for Sustainable Transport Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.best-europe.org/upload/BEST_documents/info_documents/Best%20report This report summarizes the introduction and utilization of E95 buses and E95 pumps in the region of La Spezia (Italy) within the framework of the BioEthanol for Sustainable Transport (BEST) project. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies

300

Hydrogen & Fuel Cells: Review of National Research and Development (R&D)  

Open Energy Info (EERE)

Hydrogen & Fuel Cells: Review of National Research and Development (R&D) Hydrogen & Fuel Cells: Review of National Research and Development (R&D) Programs Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Hydrogen & Fuel Cells: Review of National Research and Development (R&D) Programs Focus Area: Hydrogen Topics: Policy Impacts Website: www.iea.org/Textbase/npsum/hydrogenSUM.pdf Equivalent URI: cleanenergysolutions.org/content/hydrogen-fuel-cells-review-national-r Language: English Policies: "Regulations,Deployment Programs,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Public-Private Partnerships Regulations: Safety Standards This book maps the various governmental research activities and policies

Note: This page contains sample records for the topic "focus area fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Low Temperature Fuel Cell and Electrolyzer Balance-of-Plant Manufacturing Needs  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop: Manufacturing Progress and Barriers Low Temperature Fuel Cell and Electrolyser Balance-of-Plant Manufacturing Needs Agenda 2 1. Market and development overview 2. DOE manufacturing overview 3. Current mfg status (automation, volume, etc.) 4. Barriers to achieving high volume production 5. Manufacturing R&D needs Near Term Market Trends  I will focus on the green highlighted areas below as they are the near term applications:  Electrolyser  Industrial Applications  Fuel Cell Refuelling Applications  Energy Storage Applications  Fuel Cells  Automotive  Stationary Long Life  Stationary Intermittent / Short Life / Back-Up Power  Material Handling  APUs (cars/trucks/planes/boats/etc.)  Portable Applications Summary of Hydrogenics' Fuel Cell

302

Semester Project FS 2014 Focus on Energy, Flow  

E-Print Network (OSTI)

to the chamber for liquefied Xe. Liquid nitrogen will be used as a coolant. The major challenge with this projectSemester Project ­ FS 2014 Focus on Energy, Flow and Processes Cryogenic Feed System for liquefied temperatures to keep the fuel in a liquefied state (

Daraio, Chiara

303

Clean Energy: Fuel Cells, Batteries, Renewables - Materials ...  

Science Conference Proceedings (OSTI)

Major areas of rapid advancement include fuel cells, wind, solar, and geothermal ... Hot Section Corrosion Issues in Microturbines Operating on B100 Bio-Diesel.

304

2012 Fuel Cycle MPACT Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

meeting is to review findings and help advance research and development in the Fuel Cycle Materials Protection, Accounting and Control Technologies area. It will include a campaign...

305

Secondary fuel delivery system  

SciTech Connect

A secondary fuel delivery system for delivering a secondary stream of fuel and/or diluent to a secondary combustion zone located in the transition piece of a combustion engine, downstream of the engine primary combustion region is disclosed. The system includes a manifold formed integral to, and surrounding a portion of, the transition piece, a manifold inlet port, and a collection of injection nozzles. A flowsleeve augments fuel/diluent flow velocity and improves the system cooling effectiveness. Passive cooling elements, including effusion cooling holes located within the transition boundary and thermal-stress-dissipating gaps that resist thermal stress accumulation, provide supplemental heat dissipation in key areas. The system delivers a secondary fuel/diluent mixture to a secondary combustion zone located along the length of the transition piece, while reducing the impact of elevated vibration levels found within the transition piece and avoiding the heat dissipation difficulties often associated with traditional vibration reduction methods.

Parker, David M. (Oviedo, FL); Cai, Weidong (Oviedo, FL); Garan, Daniel W. (Orlando, FL); Harris, Arthur J. (Orlando, FL)

2010-02-23T23:59:59.000Z

306

Analysis of operational, institutional and international limitations for alternative fuel vehicles and technologies: Means/methods for implementing changes. [Public fleet groups--information needs  

DOE Green Energy (OSTI)

This project focused upon the development of an approach to assist public fleet managers in evaluating the characteristics and availability of alternative fuels (AF's) and alternative fuel vehicles (AFV's) that will serve as possible replacements for vehicles currently serving the needs of various public entities. Also of concern were the institutional/international limitations for alternative fuels and alternative fuel vehicles. The City of Detroit and other public agencies in the Detroit area were the particular focus for the activities. As the development and initial stages of use of alternative fuels and alternative fuel vehicles proceeds, there will be an increasing need to provide information and guidance to decision-makers regarding differences in requirements and features of these fuels and vehicles. There wig be true differences in requirements for servicing, managing, and regulating. There will also be misunderstanding and misperception. There have been volumes of data collected on AFV'S, and as technology is improved, new data is constantly added. There are not, however, condensed and effective sources of information for public vehicle fleet managers on vehicle and equipment sources, characteristics, performance, costs, and environmental benefits. While theoretical modeling of public fleet requirements has been done, there do not seem to be readily available practical''. There is a need to provide the best possible information and means to minimize the problems for introducing the effective use of alternative fuels and alternative fuel vehicles.

Not Available

1992-07-01T23:59:59.000Z

307

Tuning the transport properties of layer-by-layer thin films for fuel cell applications  

E-Print Network (OSTI)

The increasing global focus on alternative energy sources has led to a renewed interest in fuel cells. For low power, portable applications, direct methanol fuel cells (DMFCs) are the most promising type of fuel cell. DMFCs ...

Ashcraft, James Nathan

2009-01-01T23:59:59.000Z

308

Corrugated Membrane Fuel Cell Structures  

DOE Green Energy (OSTI)

By corrugating the fuel cell membrane electrode structure, Ion Power?s goal is to realize both the Pt utilization targets as well as the power density targets of the DOE. This will be achieved by demonstrating a fuel cell single cell (50 cm2) with a twofold increase in the membrane active area over the geometric area of the cell by corrugating the MEA structure. The corrugating structure must be able to demonstrate the target properties of < 10 mOhm-cm2 electrical resistance at > 20 psi compressive strength over the active area, in combination with offering at least 80% of power density that can be achieved by using the same MEA in a flat plate structure. Corrugated membrane fuel cell structures also have the potential to meet DOE power density targets by essentially packaging more membrane area into the same fuel cell volume as compared to conventional stack constructions.

Grot, Stephen [President, Ion Power Inc.

2013-09-30T23:59:59.000Z

309

Focus  

NLE Websites -- All DOE Office Websites (Extended Search)

the year 2009. With rising global temperatures, scientists worry about the potential impact that the thawing perma- frost and ensuing release of trapped carbon might have on the...

310

Mirror alignment and focus of point-focus solar concentrators  

DOE Green Energy (OSTI)

Distributed point-focusing solar concentrators are being developed for dish-Stirling systems and other applications. Many of these concentrators make use of faceted mirrors that have to be accurately aligned. Some of the solar concentrator designs use stretched-membrane facets that also require focusing. Accurate mirror alignment and focus of faceted solar concentrators have two benefits. First, the concentration ratio of the concentrator/receiver (collector) system is improved with accurate alignment and focus. The receiver aperture diameter can therefore be smaller, thereby reducing thermal losses from the receiver and improving the overall efficiency of the collector. Second, and perhaps more importantly, flux intensities on the receiver can be sensitive to facet alignment and focus. In this paper, the theory and practical application of an alignment and focusing technique are presented. In the technique, light from an artificial source is reflected from the concentrator`s facets to a target. From basic geometric principles, the shape and location of the reflected light on the target can be predicted. Alignment is accomplished by adjusting the facets aim so that the reflected image falls on the predetermined location. To focus a stretched-membrane facet, the reflected image size is adjusted to match that of the target. The governing equations used to draw the alignment targets are developed and the practical application of the technique to the alignment and focus of the Cummins Power Generation, Inc. CPG-460 are presented. Alignment uncertainty associated with this technique on the CPG-460 is also discussed.

Diver, R.B.

1994-11-01T23:59:59.000Z

311

Clean Cities Alternative Fuel Price Report  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

October 2008 October 2008 Clean Cities Alternative Fuel Price Report CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT OCTOBER 2008 Page 2 WELCOME! Welcome to the October 2008 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between October 2, 2008 and October 16, 2008 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were contacted to request that they provide prices for fuels in

312

Clean Cities Alternative Fuel Price Report  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

9 9 Clean Cities Alternative Fuel Price Report CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT OCTOBER 2009 Page 2 WELCOME! Welcome to the October 2009 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between October 16, 2009 and October 26, 2009 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were contacted to request that they provide prices for fuels in

313

Clean Cities Alternative Fuel Price Report  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

July 2008 July 2008 Clean Cities Alternative Fuel Price Report CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT JULY 2008 Page 2 WELCOME! Welcome to the July 2008 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between July 21, 2008 and July 31, 2008 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were contacted to request that they provide prices for fuels in

314

Clean Cities Alternative Fuel Price Report  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Cities Alternative Fuel Price Report July 2009 CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT JULY 2009 WELCOME! Welcome to the July 2009 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between July 20, 2009 and July 31, 2009 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were contacted to request that they provide prices for fuels in

315

Clean Cities Alternative Fuel Price Report  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

April 2009 April 2009 Clean Cities Alternative Fuel Price Report CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT APRIL 2009 Page 2 WELCOME! Welcome to the April 2009 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between April 1, 2009 and April 15, 2009 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were contacted to request that they provide prices for fuels in

316

Clean Cities Alternative Fuel Price Report  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

January 2009 January 2009 Clean Cities Alternative Fuel Price Report CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT JANUARY 2009 Page 2 WELCOME! Welcome to the January 2009 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between January 12, 2009 and January 30, 2009 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were contacted to request that they provide prices for fuels in

317

Alternative Fuels Data Center: State Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tools Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center: State Information to someone by E-mail Share Alternative Fuels Data Center: State Information on Facebook Tweet about Alternative Fuels Data Center: State Information on Twitter Bookmark Alternative Fuels Data Center: State Information on Google Bookmark Alternative Fuels Data Center: State Information on Delicious Rank Alternative Fuels Data Center: State Information on Digg Find More places to share Alternative Fuels Data Center: State Information on AddThis.com... State Information Click on the map below to obtain state-specific information on alternative fuel and advanced vehicle incentives and laws, locations of alternative fueling stations and truck stop electrification sites, area fuel prices,

318

Alternative Fuels Data Center: Alternative Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fueling Alternative Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

319

Stainless steel wire mesh flow-fields for polymer electrolyte fuel cells  

DOE Green Energy (OSTI)

The high cost of fuel cells has delayed their potential widespread use. Stack manufacturers have historically used high-Pt loading membrane/electrode assemblies (MEAs) and intricately machined graphite bipolar plates. We have focused our efforts on decreasing the cost of these components in order to demonstrate an inexpensive, yet high performance PEM fuel cell. This paper describes the design and demonstration of a 100 cm{sup 2} (active area) cell that utilizes ultra-low Pt loading MEAs and inexpensive stainless steel wire screen flow fields.

Zawodzinski, C.; Wilson, M.S.; Gottesfeld, S.

1996-10-01T23:59:59.000Z

320

D1 Fuel Crops Ltd | Open Energy Information  

Open Energy Info (EERE)

D1 Fuel Crops Ltd Jump to: navigation, search Name D1 Fuel Crops Ltd Place London, United Kingdom Zip SE1 2RE Product London-based JV between BP and D1 oils focusing on the...

Note: This page contains sample records for the topic "focus area fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

American Ref Fuel Corporation ARC | Open Energy Information  

Open Energy Info (EERE)

Ref Fuel Corporation ARC Jump to: navigation, search Name American Ref-Fuel Corporation (ARC) Place Montvale, NJ, New Jersey Zip 76450 Product Focused on waste-to-energy facilities...

322

Three essays on biofuel's and fossil fuel's stochastic prices.  

E-Print Network (OSTI)

??The dissertation consists of three essays on biofuel's and fossil fuel's stochastic prices focusing on the U.S. corn-based fuel-ethanol market. The research objectives include investigating (more)

Zhang, Zibin

2009-01-01T23:59:59.000Z

323

Fuel Cell Technologies Office: Fuel Cell Animation  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Animation to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Animation on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Animation on...

324

Alternative Fuels Data Center: Emerging Fuels  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emerging Fuels Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Emerging Fuels to someone by E-mail Share Alternative Fuels Data Center: Emerging Fuels on Facebook Tweet about Alternative Fuels Data Center: Emerging Fuels on Twitter Bookmark Alternative Fuels Data Center: Emerging Fuels on Google Bookmark Alternative Fuels Data Center: Emerging Fuels on Delicious Rank Alternative Fuels Data Center: Emerging Fuels on Digg Find More places to share Alternative Fuels Data Center: Emerging Fuels on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol P-Series Renewable Natural Gas xTL Fuels Emerging Alternative Fuels Several emerging alternative fuels are under development or already developed and may be available in the United States. These fuels may

325

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Converting chemical energy of hydrogenated fuels into electricity Project Description Invented in 1839, fuels cells powered the Gemini and Apollo space missions, as well as the space shuttle. Although fuel cells have been successfully used in such applications, they have proven difficult to make more cost-effective and durable for commercial applications, particularly for the rigors of daily transportation. Since the 1970s, scientists at Los Alamos have managed to make various scientific breakthroughs that have contributed to the development of modern fuel cell systems. Specific efforts include the following: * Finding alternative and more cost-effective catalysts than platinum. * Enhancing the durability of fuel cells by developing advanced materials and

326

Industries in focus | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY STAR Energy Performance Indicators for plants Industries in focus Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers...

327

Wildlife Management Areas (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minnesota) Minnesota) Wildlife Management Areas (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Siting and Permitting Certain areas of the State are designated as wildlife protection areas and refuges; new construction and development is restricted in these areas

328

Wildlife Management Areas (Maryland) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wildlife Management Areas (Maryland) Wildlife Management Areas (Maryland) Wildlife Management Areas (Maryland) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Retail Supplier Rural Electric Cooperative State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maryland Program Type Environmental Regulations Siting and Permitting Provider Maryland Department of Natural Resources Wildlife Management Areas exist in the State of Maryland as wildlife sanctuaries, and vehicles, tree removal, and construction are severely

329

Preventing CO poisoning in fuel cells  

DOE Patents (OSTI)

Proton exchange membrane (PEM) fuel cell performance with CO contamination of the H.sub.2 fuel stream is substantially improved by injecting O.sub.2 into the fuel stream ahead of the fuel cell. It is found that a surface reaction occurs even at PEM operating temperatures below about 100.degree. C. to oxidatively remove the CO and restore electrode surface area for the H.sub.2 reaction to generate current. Using an O.sub.2 injection, a suitable fuel stream for a PEM fuel cell can be formed from a methanol source using conventional reforming processes for producing H.sub.2.

Gottesfeld, Shimshon (Los Alamos, NM)

1990-01-01T23:59:59.000Z

330

NREL: Vehicles and Fuels Research - ReFUEL Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Search More Search Options Site Map NREL's Renewable Fuels and Lubricants (ReFUEL) Laboratory is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development focuses on overcoming barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such as biodiesel and synthetic diesel derived from biomass, and improving vehicle efficiency. Using biofuels and improving vehicle efficiency reduces our dependence on imported petroleum and enhances our national energy security. The ReFUEL Laboratory houses the following specialized equipment: Heavy-duty chassis dynamometer with a simulation capability of 8,000 to 80,000 lbs for vehicle performance and emissions research Heavy-duty (up to 600 hp) and light-duty (up to 75 hp) engine

331

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science » Materials Science » Fuel Cells Fuel Cells Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Melissa Fox Applied Energy Email Catherine Padro Sensors & Electrochemical Devices Email Fernando Garzon Sensors & Electrochemical Devices Email Piotr Zelenay Sensors & Electrochemical Devices Email Rod Borup Sensors & Electrochemical Devices Email Karen E. Kippen Experimental Physical Sciences Email Like a battery, a fuel cell consists of two electrodes separated by an electrolyte-in polymer electrolyte fuel cells, the separator is made of a thin polymeric membrane. Unlike a battery, a fuel cell does not need recharging-it continues to produce electricity as long as fuel flows

332

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of $175 per kW, and demonstrating lifetime performance degradation of less than 0.2 percent per

333

Alternative Fuels Data Center: Fuel Prices  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicles Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Prices to someone by E-mail Share Alternative Fuels Data Center: Fuel Prices on Facebook Tweet about Alternative Fuels Data Center: Fuel Prices on Twitter Bookmark Alternative Fuels Data Center: Fuel Prices on Google Bookmark Alternative Fuels Data Center: Fuel Prices on Delicious Rank Alternative Fuels Data Center: Fuel Prices on Digg Find More places to share Alternative Fuels Data Center: Fuel Prices on AddThis.com... Fuel Prices As gasoline prices increase, alternative fuels appeal more to vehicle fleet managers and consumers. Like gasoline, alternative fuel prices can fluctuate based on location, time of year, and political climate. Alternative Fuel Price Report

334

Alternative Fuels Data Center: Alternative Fuel License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel License to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel License on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel License on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel License on Google Bookmark Alternative Fuels Data Center: Alternative Fuel License on Delicious Rank Alternative Fuels Data Center: Alternative Fuel License on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel License Any person acting as an alternative fuels dealer must hold a valid alternative fuel license and certificate from the Wisconsin Department of Administration. Except for alternative fuels that a dealer delivers into a

335

Alternative Fuels Data Center: Alternative Fuel License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel License to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel License on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel License on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel License on Google Bookmark Alternative Fuels Data Center: Alternative Fuel License on Delicious Rank Alternative Fuels Data Center: Alternative Fuel License on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel License Alternative fuel providers, bulk users, and retailers, or any person who fuels an alternative fuel vehicle from a private source that does not pay

336

Novel Fuel  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2009. Symposium, Energy Materials. Presentation Title, Novel Fuel. Author(s), Naum Gosin, Igor...

337

Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

Fuel cells are an emerging technology that can provide heat and electricity for buildings and electrical power for vehicles and electronic devices.

338

Fuel Cell Council Working Group on Aircraft and Aircraft Ground...  

NLE Websites -- All DOE Office Websites (Extended Search)

US Fuel Cell Council Trade Association for the industry since 1998 Member driven - Market focused Developers, suppliers, customers, nonprofits, government Advocacy...

339

DOE Hydrogen and Fuel Cells Program: 2012 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Annual Progress Report XI. Systems Analysis This section of the 2012 Annual Progress Report for the DOE Hydrogen and Fuel Cells Program focuses on systems analysis. Systems...

340

An advanced fuel cell simulator  

E-Print Network (OSTI)

Fuel cell power generation systems provide a clean alternative to the conventional fossil fuel based systems. Fuel cell systems have a high e?ciency and use easily available hydrocarbons like methane. Moreover, since the by-product is water, they have a very low environmental impact. The fuel cell system consists of several subsystems requiring a lot of e?ort from engineers in diverse areas. Fuel cell simulators can provide a convenient and economic alternative for testing the electrical subsystems such as converters and inverters. This thesis proposes a low-cost and an easy-to-use fuel cell simulator using a programmable DC supply along with a control module written in LabVIEW. This simulator reproduces the electrical characteristics of a 5kW solid oxide fuel cell (SOFC) stack under various operating conditions. The experimental results indicate that the proposed simulator closely matches the voltage-current characteristic of the SOFC system under varying load conditions. E?ects of non-electrical parameters like hydrogen ?ow rate are also modeled and these parameters are taken as dynamic inputs from the user. The simulator is customizable through a graphical user interface and allows the user to model other types of fuel cells with the respective voltage-current data. The simulator provides an inexpensive and accurate representation of a solid oxide fuel cell under steady state and transient conditions and can replace an actual fuel cell during testing of power conditioning equipment.

Acharya, Prabha Ramchandra

2004-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "focus area fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

High Specific Power, Direct Methanol Fuel Cell Stack  

NLE Websites -- All DOE Office Websites (Extended Search)

High Specific Power, Direct Methanol Fuel Cell Stack High Specific Power, Direct Methanol Fuel Cell Stack High Specific Power, Direct Methanol Fuel Cell Stack The present invention is a fuel cell stack including at least one direct methanol fuel cell. Available for thumbnail of Feynman Center (505) 665-9090 Email High Specific Power, Direct Methanol Fuel Cell Stack The present invention is a fuel cell stack including at least one direct methanol fuel cell. A cathode manifold is used to convey ambient air to each fuel cell, and an anode manifold is used to convey liquid methanol fuel to each fuel cell. Tie-bolt penetrations and tie-bolts are spaced evenly around the perimeter to hold the fuel cell stack together. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet manifold

342

Hydrogen Storage Requirements for Fuel Cell Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

GENERAL MOTORS GENERAL MOTORS HYDROGEN STORAGE REQUIREMENTS FOR FUEL CELL VEHICLES Brian G. Wicke GM R&D and Planning DOE Hydrogen Storage Workshop August 14-15, 2002 Argonne National Laboratory General Motors Fuel Cell Vehicles * GM fuel cell vehicle Goal - be the first to profitably sell one million fuel cell vehicles * Fuel cell powerplant must be suitable for a broad range of light-duty vehicles (not just niche) * UNCOMPROMISED performance & reliability are REQUIRED * SAFETY IS A GIVEN * Evolutionary and Revolutionary vehicle designs are included-GM AUTONOMY-as long as the customer is (more than) satisfied GENERAL MOTORS AUTONOMY GENERAL MOTORS AUTONOMY General Motors Fuel Cell Vehicles * Focus on PEM fuel cell technology * Must consider entire hydrogen storage & (unique) fuel delivery systems,

343

Role of solid oxide fuel cell distributed generation for stationary power application.  

E-Print Network (OSTI)

??Based on an availabe fuel cell dyanmical model, an inportant concept feasible operating area is introduced. Fuel cell based distributed generator is studied to solve (more)

Li, Yonghui.

2008-01-01T23:59:59.000Z

344

Clean Cities: East Tennessee Clean Fuels coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tennessee Clean Fuels Coalition Tennessee Clean Fuels Coalition The East Tennessee Clean Fuels coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. East Tennessee Clean Fuels coalition Contact Information Jonathan Overly 865-974-3625 jonathan@etcleanfuels.org Coalition Website Clean Cities Coordinator Jonathan Overly Photo of Jonathan Overly Jonathan Overly founded the East Tennessee Clean Fuels Coalition (ETCleanFuels) in 2002 and has managed it since its inception. He has spoken to thousands of people across east Tennessee including over 100 companies and organizations about partnering to expand alternative fuel use in the area. Many government and industry fleets are coalition members. Although biodiesel was an early lead fuel for the coalition, more recently

345

Alternative Fuel Price Report October 2010 Corrected  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Cities Alternative Fuel Price Report October 2010 Clean Cities Alternative Fuel Price Report October 2010 WELCOME! Welcome to the October 2010 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between October 4, 2010 and October 14, 2010 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were contacted to request that they provide prices for

346

Fuel cells for the '90s  

SciTech Connect

Nontraditional power plants may be needed to help utilities meet the need for additional generating capacity in the late 1980s. Fuel cell power plants can be built in small factory-assembled modules and installed in just 2 or 3 years. Because the fuel cell converts fuel-oil, gas, even coal distillates and other synthetic fuels-directly to electricity without combustion, it has almost no sulfur and nitrogen oxide emissions. With no harmful emissions, fuel cells can be sited in populated areas. And because there is no combustion cycle to waste much of the fuel's energy, fuel cells have potentially higher efficiencies than thermal power plants. As a result of 12 years of intensive development by EPRI, DOE, utilities, manufacturers, and a fuel cell users group, the fuel cell technology will be ready when it is needed.

Lihach, N.; Fickett, A.; Gillis, E.

1984-09-01T23:59:59.000Z

347

Alternative Fuels Data Center: Case Studies  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Case Studies to Case Studies to someone by E-mail Share Alternative Fuels Data Center: Case Studies on Facebook Tweet about Alternative Fuels Data Center: Case Studies on Twitter Bookmark Alternative Fuels Data Center: Case Studies on Google Bookmark Alternative Fuels Data Center: Case Studies on Delicious Rank Alternative Fuels Data Center: Case Studies on Digg Find More places to share Alternative Fuels Data Center: Case Studies on AddThis.com... Case Studies Find case studies and success stories about alternative transportation technologies and alternative fuels. A Chevy Volt sedan is plugged into a charging station in a parking area outside the City of Fort Collins fleet facility. Fort Collins: A Multi-Fuel Approach to Sustainable Fleet Operations A diversity of fuels and technologies offers flexibility in reaching energy

348

Focus On.... Biodiversity and Conservation  

E-Print Network (OSTI)

Focus On.... Biodiversity and Conservation This resource guide aims to provide useful, detailed, high quality sources of information on biodiversity and conservation for students in Higher and Further and Conservation Introduction.....................................................................................3

Miranda, Eduardo Reck

349

FEMP Focus: Fall 2003 Issue  

NLE Websites -- All DOE Office Websites (Extended Search)

event of utility interruptions, and will provide 68 percent (56,402 megawatt-hours per year) of the Base's electricity requirement. FEMP Focus: As a FEMP constituent, how do you...

350

LANL: Facility Focus: Sigma Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy under contract DE-AC52-06NA25396. A U.S. Department of Energy Laboratory. www.lanl.govorgsmst Materials Science and Technology Division Facility Focus Materials...

351

Focus Groups | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Outreach & Collaboration » Focus Groups Outreach & Collaboration » Focus Groups Focus Groups A forum for interface between union worker representatives and senior DOE managers and stakeholders to address key issues and concerns from worker perspectives, share information regarding HSS activities and programs, and identify potential opportunities to work together to improve worker health and safety at DOE sites. Learn more about the HSS Focus Groups... Labor Management Meetings and Activities HSS provides forums for communication between labor and management related to worker health, safety and security improvements across the DOE complex. 10 CFR 851 Worker Safety and Health Program The 10 C.F.R. 851 Work Group promotes excellence in the implementation of 10 C.F.R. 851, "Worker Safety and Health" and continuous improvement in the

352

Air quality effects of alternative fuels. Final report  

DOE Green Energy (OSTI)

To support the Alternative Fuels Utilization Program, a comparison of potential air quality effects of alternative transportation fuels is being performed. This report presents the results of Phase 1 of this program, focusing on reformulated gasoline (RFG), methanol blended with 15 percent gasoline (M85), and compressed natural gas (CNG). The fuels are compared in terms of effects on simulated future concentrations of ozone and mobile source air toxics in a photochemical grid model. The fuel comparisons were carried out for the future year 2020 and assumed complete replacement of gasoline in the projected light-duty gasoline fleet by each of the candidate fuels. The model simulations were carried out for the areas surrounding Los Angeles and Baltimore/DC, and other (non-mobile) sources of atmospheric emissions were projected according to published estimates of economic and population growth, and planned emission control measures specific to each modeling domain. The future-year results are compared to a future-year run with all gasoline vehicle emissions removed. The results of the comparison indicate that the use of M85 is likely to produce similar ozone and air toxics levels as those projected from the use of RFG. Substitution of CNG is projected to produce significantly lower levels of ozone and the mobile source air toxics than those projected for RFG or M85. The relative benefits of CNG substitution are consistent in both modeling domains. The projection methodologies used for the comparison are subject to a large uncertainty, and modeled concentration distributions depend on meteorological conditions. The quantitative comparison of fuel effects is thus likely to be sensitive to alternative assumptions. The consistency of the results for two very different modeling domains, using very different base assumptions, lends credibility to the qualitative differentiation among these fuels. 32 refs., 42 figs., 47 tabs.

Guthrie, P.; Ligocki, M.; Looker, R.; Cohen, J.

1997-11-01T23:59:59.000Z

353

Alternative Fuels Data Center: Electricity Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Fuel Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on AddThis.com... More in this section... Electricity Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Electricity Fuel Basics Photo of a plug-in hybrid vehicle fueling. Electricity is considered an alternative fuel under the Energy Policy Act

354

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of

355

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax A state excise tax is imposed on the use of alternative fuels. Alternative fuels include liquefied petroleum gas (LPG or propane), compressed natural gas (CNG), and liquefied natural gas (LNG). The current tax rates are as

356

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard RFS Volumes by Year Enlarge illustration The Renewable Fuel Standard (RFS) is a federal program that requires transportation fuel sold in the U.S. to contain a minimum volume of

357

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuels Tax Alternative Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Excise taxes on alternative fuels are imposed on a gasoline gallon equivalent basis. The tax rate for each alternative fuel type is based on the number of motor vehicles licensed in the state that use the specific

358

Alternative Fuels Data Center: Alternative Fuel Loans  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Loans Fuel Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Loans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Loans The Oregon Department of Energy administers the State Energy Loan Program (SELP) which offers low-interest loans for qualified projects. Eligible alternative fuel projects include fuel production facilities, dedicated

359

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Alternative fuels are subject to an excise tax at a rate of $0.205 per gasoline gallon equivalent, with a variable component equal to at least 5% of the average wholesale price of the fuel. (Reference Senate Bill 454,

360

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax The excise tax imposed on an alternative fuel distributed in New Mexico is $0.12 per gallon. Alternative fuels subject to the excise tax include liquefied petroleum gas (or propane), compressed natural gas, and liquefied

Note: This page contains sample records for the topic "focus area fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Tax Alternative Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The Minnesota Department of Revenue imposes an excise tax on the first licensed distributor that receives E85 fuel products in the state and on distributors, special fuel dealers, or bulk purchasers of other alternative

362

DOE Hydrogen and Fuel Cells Program: 2008 Annual Progress Report - Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Printable Version 2008 Annual Progress Report V. Fuel Cells This section of the 2008 Progress Report for the DOE Hydrogen Program focuses on fuel cells. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Fuel Cells Sub-Program Overview, Nancy Garland, U.S. Department of Energy (PDF 204 KB) A. Analysis/Characterization Fuel Cell Systems Analysis, Rajesh Ahluwalia, Argonne National Laboratory (PDF 375 KB) Mass Production Cost Estimation for Direct H2 PEM Fuel Cell System for Automotive Applications, Brian James, Directed Technologies, Inc. (PDF 1.0 MB) Cost Analyses of Fuel Cell Stack/Systems, Jayanti Sinha, TIAX LLC (PDF 437 KB) Microstructural Characterization Of PEM Fuel Cell MEAs, Karren More, Oak Ridge National Laboratory (PDF 414 KB)

363

DOE Hydrogen and Fuel Cells Program: 2009 Annual Progress Report - Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Printable Version 2009 Annual Progress Report V. Fuel Cells This section of the 2009 Progress Report for the DOE Hydrogen Program focuses on fuel cells. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Fuel Cells Program Element Introduction, Dimitrios Papageorgopoulos, U.S. Department of Energy (PDF 262 KB) A. Analysis/Characterization Fuel Cell Systems Analysis (PDF 560 KB), Rajesh Ahluwalia, Argonne National Laboratory Mass Production Cost Estimation for Direct H2 PEM Fuel Cell System for Automotive Applications (PDF 1.4 MB), Brian James, Directed Technologies, Inc. Cost Analyses of Fuel Cell Stack/Systems (PDF 724 KB), Jayanti Sinha , TIAX LLC Fuel Cell Testing at Argonne National Laboratory (PDF 458 KB), Ira

364

Alternative Fuel News, Volume 4, Number 3  

DOE Green Energy (OSTI)

This issue of Alternative Fuel News focuses on transit buses and refuse haulers. Many transit agencies and waste management companies are investigating alternatives to traditional diesel buses and refuse haulers.

Ficker, C.

2000-11-14T23:59:59.000Z

365

An analysis of distributed solar fuel systems  

E-Print Network (OSTI)

While solar fuel systems offer tremendous potential to address global clean energy needs, most existing analyses have focused on the feasibility of large centralized systems and applications. Not much research exists on ...

Thomas, Alex, S.M. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

366

Advanced Fuels Campaign FY 2010 Accomplishments Report  

Science Conference Proceedings (OSTI)

The Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) Accomplishment Report documents the high-level research and development results achieved in fiscal year 2010. The AFC program has been given responsibility to develop advanced fuel technologies for the Department of Energy (DOE) using a science-based approach focusing on developing a microstructural understanding of nuclear fuels and materials. The science-based approach combines theory, experiments, and multi-scale modeling and simulation aimed at a fundamental understanding of the fuel fabrication processes and fuel and clad performance under irradiation. The scope of the AFC includes evaluation and development of multiple fuel forms to support the three fuel cycle options described in the Sustainable Fuel Cycle Implementation Plan4: Once-Through Cycle, Modified-Open Cycle, and Continuous Recycle. The word fuel is used generically to include fuels, targets, and their associated cladding materials. This document includes a brief overview of the management and integration activities; but is primarily focused on the technical accomplishments for FY-10. Each technical section provides a high level overview of the activity, results, technical points of contact, and applicable references.

Lori Braase

2010-12-01T23:59:59.000Z

367

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Tax Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax Special fuels, including biodiesel, biodiesel blends, biomass-based diesel, biomass-based diesel blends, and liquefied natural gas, have a reduced tax rate of $0.27 per gallon. Liquefied petroleum gas (LPG or propane) and

368

Alternative Fuels Data Center: Special Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Special Fuel Tax to Special Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Special Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Special Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Special Fuel Tax on Google Bookmark Alternative Fuels Data Center: Special Fuel Tax on Delicious Rank Alternative Fuels Data Center: Special Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Special Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Special Fuel Tax Effective January 1, 2014, certain special fuels sold or used to propel motor vehicles are subject to a license tax. Liquefied natural gas is subject to a tax of $0.16 per diesel gallon equivalent. Compressed natural

369

Alternative Fuels Data Center: Renewable Fuels Assessment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Assessment to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Assessment on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Assessment on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Assessment on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Assessment on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Assessment on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Assessment on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Assessment The U.S. Department of Defense (DOD) prepared a report, Opportunities for DOD Use of Alternative and Renewable Fuels, on the use and potential use of

370

Alternative Fuels Data Center: Biodiesel Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Basics Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in this section... Biodiesel Basics Blends Production & Distribution Specifications Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Biodiesel Fuel Basics Related Information National Biofuels Action Plan Biodiesel is a domestically produced, renewable fuel that can be

371

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard At least 2% of all diesel fuel sold in Washington must be biodiesel or renewable diesel. This requirement will increase to 5% 180 days after the

372

Alternative Fuels Data Center: Biodiesel Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Fuel Use to Biodiesel Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Fuel Use The Iowa Department of Transportation (IDOT) may purchase biodiesel for use in IDOT vehicles through the biodiesel fuel revolving fund created in the state treasury. The fund consists of money received from the sale of Energy

373

Alternative Fuels Data Center: Ethanol Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Basics to Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Fuel Basics Related Information National Biofuels Action Plan Ethanol is a renewable fuel made from various plant materials collectively

374

Alternative Fuels Data Center: Biodiesel Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Use to Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Fuel Use The South Dakota Department of Transportation and employees using state diesel vehicles must stock and use fuel blends containing a minimum of 2% biodiesel (B2) that meets or exceeds the most current ASTM specification

375

Alternative Fuels Data Center: Hydrogen Fuel Specifications  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fuel Hydrogen Fuel Specifications to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Specifications on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Specifications on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Specifications on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Specifications on Delicious Rank Alternative Fuels Data Center: Hydrogen Fuel Specifications on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fuel Specifications on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hydrogen Fuel Specifications The California Department of Food and Agriculture, Division of Measurement Standards (DMS) established interim specifications for hydrogen fuels for

376

Alternative Fuels Data Center: Flexible Fuel Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg Find More places to share Alternative Fuels Data Center: Flexible Fuel Vehicles on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Flexible Fuel Vehicles Photo of a flexible fuel vehicle.

377

Alternative Fuels Data Center: Alternative Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Use Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Use on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Use on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Use All state employees operating flexible fuel or diesel vehicles as part of the state fleet must use E85 or biodiesel blends whenever reasonably available. Additionally, the Nebraska Transportation Services Bureau and

378

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Alternative fuels used to propel vehicles of any kind on public highways are taxed at a rate determined on a gasoline gallon equivalent basis. The tax rates are posted in the Pennsylvania Bulletin. (Reference Title 75

379

Green optical network design : power optimization of wide area and metropolitan area networks  

E-Print Network (OSTI)

Advancements in technology are fueling huge growth in network traffic capacity. Demand for low cost, reliable, and high bitrate transmissions grows 40-110% internationally every year. To date, most research has focused on ...

Lin, Katherine Xiaoyan

2011-01-01T23:59:59.000Z

380

Clean Cities Alternative Fuel Price Report - April 2012  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

April 2012 April 2012 Clean Cities Alternative Fuel Price Report April 2012 Page 2 WELCOME! Welcome to the April 2012 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep Clean Cities coalitions and other interested parties up to date on the prices of alternative fuels and conventional fuels in the United States. This issue summarizes prices that were collected between March 30, 2012 and April 13, 2012 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were

Note: This page contains sample records for the topic "focus area fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Clean Cities Alternative Fuel Price Report Jan 2012  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

January 2012 January 2012 Clean Cities Alternative Fuel Price Report January 2012 Page 2 WELCOME! Welcome to the January 2012 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep Clean Cities coalitions and other interested parties up to date on the prices of alternative fuels and conventional fuels in the United States. This issue summarizes prices that were collected between January 13, 2012 and January 27, 2012 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were

382

2007 Fuel Cell Technologies Market Report  

SciTech Connect

The fuel cell industry, which has experienced continued increases in sales, is an emerging clean energy industry with the potential for significant growth in the stationary, portable, and transportation sectors. Fuel cells produce electricity in a highly efficient electrochemical process from a variety of fuels with low to zero emissions. This report describes data compiled in 2008 on trends in the fuel cell industry for 2007 with some comparison to two previous years. The report begins with a discussion of worldwide trends in units shipped and financing for the fuel cell industry for 2007. It continues by focusing on the North American and U.S. markets. After providing this industry-wide overview, the report identifies trends for each of the major fuel cell applications -- stationary power, portable power, and transportation -- including data on the range of fuel cell technologies -- polymer electrolyte membrane fuel cell (PEMFC), solid oxide fuel cell (SOFC), alkaline fuel cell (AFC), molten carbonate fuel cell (MCFC), phosphoric acid fuel cell (PAFC), and direct-methanol fuel cell (DMFC) -- used for these applications.

McMurphy, K.

2009-07-01T23:59:59.000Z

383

Comparative analysis of selected fuel cell vehicles  

DOE Green Energy (OSTI)

Vehicles powered by fuel cells operate more efficiently, more quietly, and more cleanly than internal combustion engines (ICEs). Furthermore, methanol-fueled fuel cell vehicles (FCVs) can utilize major elements of the existing fueling infrastructure of present-day liquid-fueled ICE vehicles (ICEVs). DOE has maintained an active program to stimulate the development and demonstration o fuel cell technologies in conjunction with rechargeable batteries in road vehicles. The purpose of this study is to identify and assess the availability of data on FCVs, and to develop a vehicle subsystem structure that can be used to compare both FCVs and ICEV, from a number of perspectives--environmental impacts, energy utilization, materials usage, and life cycle costs. This report focuses on methanol-fueled FCVs fueled by gasoline, methanol, and diesel fuel that are likely to be demonstratable by the year 2000. The comparative analysis presented covers four vehicles--two passenger vehicles and two urban transit buses. The passenger vehicles include an ICEV using either gasoline or methanol and an FCV using methanol. The FCV uses a Proton Exchange Membrane (PEM) fuel cell, an on-board methanol reformer, mid-term batteries, and an AC motor. The transit bus ICEV was evaluated for both diesel and methanol fuels. The transit bus FCV runs on methanol and uses a Phosphoric Acid Fuel Cell (PAFC) fuel cell, near-term batteries, a DC motor, and an on-board methanol reformer. 75 refs.

NONE

1993-05-07T23:59:59.000Z

384

Chemistry Monitoring and Control for Fuel Reliability  

Science Conference Proceedings (OSTI)

Water chemistry has been identified as a known or potential contributing cause in recent corrosion-induced fuel failures and anomalies such as fuel crud spallation and enhanced nodular corrosion. The 2004 revision of the BWR Water Chemistry Guidelines (EPRI report 1008192) addressed these concerns by recommending tighter chemistry control limits and additional monitoring for contaminants and additives that can have an adverse effect on fuel cladding corrosion. The revision focused on chemistry control fo...

2004-12-13T23:59:59.000Z

385

Magnetically focused liquid drop radiator  

DOE Patents (OSTI)

A magnetically focused liquid drop radiator for application in rejecting energy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.

Botts, T.E.; Powell, J.R.; Lenard, R.

1984-12-10T23:59:59.000Z

386

Alternative Fuels Data Center: Alternative Fuel Infrastructure...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Type Alternative Fuel Infrastructure Development Program The Tennessee Department of Environment and Conservation provides funding for alternative fueling infrastructure...

387

Fuel Chemistry Preprints  

Science Conference Proceedings (OSTI)

Papers are presented under the following symposia titles: advances in fuel cell research; biorefineries - renewable fuels and chemicals; chemistry of fuels and emerging fuel technologies; fuel processing for hydrogen production; membranes for energy and fuel applications; new progress in C1 chemistry; research challenges for the hydrogen economy, hydrogen storage; SciMix fuel chemistry; and ultraclean transportation fuels.

NONE

2005-09-30T23:59:59.000Z

388

Advanced thermally stable jet fuels  

Science Conference Proceedings (OSTI)

The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume (Sections 1 through 5).

Schobert, H.H.

1999-01-31T23:59:59.000Z

389

FUEL ELEMENT  

DOE Patents (OSTI)

A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)

Bean, R.W.

1963-11-19T23:59:59.000Z

390

Alternative Fuels Data Center: Fuel Quality Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Quality Standards Fuel Quality Standards to someone by E-mail Share Alternative Fuels Data Center: Fuel Quality Standards on Facebook Tweet about Alternative Fuels Data Center: Fuel Quality Standards on Twitter Bookmark Alternative Fuels Data Center: Fuel Quality Standards on Google Bookmark Alternative Fuels Data Center: Fuel Quality Standards on Delicious Rank Alternative Fuels Data Center: Fuel Quality Standards on Digg Find More places to share Alternative Fuels Data Center: Fuel Quality Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Quality Standards The South Dakota Department of Public Safety may promulgate rules establishing: Standards for the maximum volume percentages of ethanol and methanol

391

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate One year after in-state production has reached 350 million gallons of cellulosic ethanol and sustained this volume for three months, all gasoline

392

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate All gasoline sold in the state must be blended with 10% ethanol (E10). Gasoline with an octane rating of 91 or above is exempt from this mandate,

393

Alternative Fuels Data Center: Renewable Fuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Promotion Recognizing that biofuels such as ethanol and biodiesel will be an important part of the state's energy economy and advanced research in

394

Alternative Fuels Data Center: Alternative Fuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuels Alternative Fuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Promotion The state of Hawaii has signed a memorandum of understanding (MOU) with the U.S. Department of Energy to collaborate to produce 70% of the state's

395

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Tax Alternative Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The excise tax imposed on compressed natural gas (CNG), liquefied natural gas (LNG), and liquefied petroleum gas (LPG or propane) used to operate a vehicle can be paid through an annual flat rate sticker tax based on the

396

Alternative Fuels Data Center: Renewable Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Promotion The Texas Bioenergy Policy Council and the Texas Bioenergy Research Committee were established to promote the goal of making biofuels a

397

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard Within six months following the point at which monthly production of denatured ethanol produced in Louisiana equals or exceeds a minimum annualized production volume of 50 million gallons, at least 2% of the

398

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Tax Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The state road tax for vehicles that operate on propane (liquefied petroleum gas, or LPG) or natural gas is paid through the purchase of an annual flat fee sticker, and the amount is based on the vehicle's gross

399

Alternative Fuels Data Center: Propane Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Stations to someone by E-mail Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Propane Fueling Stations Photo of a liquefied petroleum gas fueling station. Thousands of liquefied petroleum gas (propane) fueling stations are

400

Alternative Fuels Data Center: Alternative Fuel Study  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Study Alternative Fuel Study to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Study on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Study on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Study on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Study on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Study on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Study As directed by the Nevada Legislature, the Legislative Commission (Commission) conducted an interim study in 2011 concerning the production and use of energy in the state. The study included information on the use

Note: This page contains sample records for the topic "focus area fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

FAHR: focused A* heuristic recomputation  

Science Conference Proceedings (OSTI)

In this paper we introduce Focused A* Heuristic Recomputation (FAHR), an enhancement to A* search that can detect and correct large discrepancies between the heuristic cost-to-go estimate and the true cost function. In situations where these large discrepancies ...

Matthew McNaughton; Chris Urmson

2009-10-01T23:59:59.000Z

402

Irradiated Fuels Examination Laboratory (IFEL) | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Irradiated Fuels Examination Laboratory Irradiated Fuels Examination Laboratory May 30, 2013 The Irradiated Fuels Examination Laboratory (IFEL) was initially designed and constructed to permit the safe handling of increasing levels of radiation in the chemical, physical, and metallurgical examination of nuclear reactor fuel elements and reactor parts. The IFEL was constructed in 1963 and is a two-story brick building with a partial basement. The front or northern-most section is a single-story office area. The two story area to the immediate rear houses the cell complex, the operating areas, and other supporting activities. The office area is isolated from the main part of the building, so the office area can be excluded from the secondary containment zone. The facility has a gross floor area of about 27,000 ft2.

403

Mobile Alternative Fueling Station Locator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fueling Station Locator Alternative Fueling Station Locator Fuel Type Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) Location Enter a city, postal code, or address Include private stations Not all stations are open to the public. Choose this option to also search private fueling stations. Search Caution: The AFDC recommends that users verify that stations are open, available to the public, and have the fuel prior to making a trip to that location. Some stations in our database have addresses that could not be located by the Station Locator application. This may result in the station appearing in the center of the zip code area instead of the actual location. If you're having difficulty, please contact the technical response team at

404

Alternative Fuel Price Report October 2006  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

October 2006 October 2006 CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT OCTOBER 2006 Page 2 WELCOME! Welcome to the October 2006 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected in the months of September and October 2006 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, DOE Regional Offices, and other key stakeholders were contacted to request that they provide prices for

405

Fuel Cell Technologies Office: Key Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Activities to Key Activities to someone by E-mail Share Fuel Cell Technologies Office: Key Activities on Facebook Tweet about Fuel Cell Technologies Office: Key Activities on Twitter Bookmark Fuel Cell Technologies Office: Key Activities on Google Bookmark Fuel Cell Technologies Office: Key Activities on Delicious Rank Fuel Cell Technologies Office: Key Activities on Digg Find More places to share Fuel Cell Technologies Office: Key Activities on AddThis.com... Key Activities Plans, Implementation, & Results Accomplishments Organization Chart & Contacts Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Key Activities The Fuel Cell Technologies Office conducts work in several key areas to

406

Solid Oxide Fuel Cells | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid Oxide Fuel Cells Solid Oxide Fuel Cells Solid Oxide Fuel Cells FE researchers at NETL have developed a unique test platform, called the multi-cell array (MCA), to rapidly test multiple fuel cells and determine how they degrade when contaminants exist in the fuel stream, such as might occur when using syngas from a coal gasifier. FE researchers at NETL have developed a unique test platform, called the multi-cell array (MCA), to rapidly test multiple fuel cells and determine how they degrade when contaminants exist in the fuel stream, such as might occur when using syngas from a coal gasifier. Fuel cells are an energy user's dream: an efficient, combustion-less, virtually pollution-free power source, capable of being sited in downtown urban areas or in remote regions that runs almost silently and has few

407

Fuels - Biodiesel  

NLE Websites -- All DOE Office Websites (Extended Search)

* Biodiesel * Biodiesel * Butanol * Ethanol * Hydrogen * Natural Gas * Fischer-Tropsch Batteries Cross-Cutting Assessments Engines GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Clean Diesel Fuels Background Reducing our country's dependence on foreign oil and the rising costs of crude oil are primary reasons for a renewed interest in alternative fuels for the transportation sector. Stringent emissions regulations and public concern about mobile sources of air pollution provide additional incentives to develop fuels that generate fewer emissions, potentially reducing the need for sophisticated, expensive exhaust after-treatment devices.

408

Hydrogen Fuel  

Energy.gov (U.S. Department of Energy (DOE))

Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal, natural gas, nuclear power, and renewable power. These...

409

Fuel Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

Selling your car? Advertise its fuel economy with our Used Car Label tool. Download a label for on-line ads. Print a label to attach to your car. Did you know? You can purchase...

410

NREL: ReFUEL Laboratory - Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities Capabilities The Renewable Fuels and Lubricants (ReFUEL) Laboratory is a world-class testing facility dedicated to advanced fuels and vehicles research. The lab features a chassis dynamometer for vehicle performance and emissions research, two engine dynamometer test cells for advanced fuels research, and precise emissions analysis equipment. As a complement to these capabilities, detailed studies of fuel properties, with a focus on ignition quality, are performed at NREL's Fuel Combustion Lab. Because the ReFUEL Laboratory is located in Denver, Colorado, it offers the additional capability of testing emissions and vehicle performance at high altitude. It also features an altitude simulation system to mimic results found at lower altitudes, including sea level.

411

NETL: Turbines - Oxy-Fuel Turbines  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-Fuel Turbines Oxy-Fuel Turbines Oxy-fuel combustion potentially can be used in plants based on both conventional and advanced technology. Studies have shown that plants equipped with oxy-fuel systems could reach nominal efficiencies in the 30 percent range with today's steam turbines when fueled with natural gas and when capturing the CO2. With anticipated advances in gasification, oxygen separation, and steam turbine technology, plants using oxy-fuel systems are expected to achieve efficiencies in the mid-40 percent range, with near-100 percent CO2 capture and near-zero NOx emissions. By 2012: In the near-term, efforts are focused on the development of oxy- fuel turbine and combustor technologies for highly efficient (50-60 percent), near-zero emissions, coal-based power systems

412

Federal Energy Management Program: Program Areas  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

program areas of the Federal Energy Management Program (FEMP) focus on specific energy management actions to help Federal agencies deploy the available technologies appropriate...

413

Combustion chemistry and an evolving transportation fuel environment.  

DOE Green Energy (OSTI)

The world currently faces tremendous energy challenges stemming from the need to curb potentially catastrophic anthropogenic climate change. In addition, many nations, including the United States, recognize increasing political and economic risks associated with dependence on uncertain and limited energy sources. For these and other reasons the chemical composition of transportation fuels is changing, both through introduction of nontraditional fossil sources, such as oil sands-derived fuels in the US stream, and through broader exploration of biofuels. At the same time the need for clean and efficient combustion is leading engine research towards advanced low-temperature combustion strategies that are increasingly sensitive to this changing fuel chemistry, particularly in the areas of pollutant formation and autoignition. I will highlight the new demands that advanced engine technologies and evolving fuel composition place on investigations of fundamental reaction chemistry. I will focus on recent progress in measuring product formation in elementary reactions by tunable synchrotron photoionization, on the elucidation of pressure-dependent effects in the reactions of alkyl and substituted alkyl radicals with O{sub 2}, and on new combined efforts in fundamental combustion chemistry and engine performance studies of novel potential biofuels.

Taatjes, Craig A. (Org. 8353, Combustion Chemistry Department)

2010-05-01T23:59:59.000Z

414

Fuel Tax Incidence in Developing Countries: The Case of Costa Rica | Open  

Open Energy Info (EERE)

Tax Incidence in Developing Countries: The Case of Costa Rica Tax Incidence in Developing Countries: The Case of Costa Rica Jump to: navigation, search Name Fuel Tax Incidence in Developing Countries: The Case of Costa Rica Agency/Company /Organization Resources for the Future Sector Energy Focus Area Conventional Energy Topics Finance, Market analysis, Background analysis Resource Type Lessons learned/best practices Website http://www.rff.org/RFF/Documen Country Costa Rica UN Region Latin America and the Caribbean References Fuel Tax Incidence in Developing Countries: The Case of Costa Rica[1] Abstract "Although fuel taxes are a practical means of curbing vehicular air pollution, congestion, and accidents in developing countries-all of which are typically major problems-they are often opposed on distributional

415

Soybean Oil Derivatives for Fuel and Chemical Feedstocks  

Science Conference Proceedings (OSTI)

Plant based sources of hydrocarbons are being considered as alternatives to petrochemicals because of the need to conserve petroleum resources for reasons of national security and climate change. Changes in fuel formulations to include ethanol from corn sugar and methyl esters from soybean oil are examples of this policy in the United States and elsewhere. Replacements for commodity chemicals are also being considered, as this value stream represents much of the profit for the oil industry and one that would be affected by shortages in oil or other fossil fuels. While the discovery of large amounts of natural gas associated with oil shale deposits has abated this concern, research into bio-based feedstock materials continues. In particular, this chapter reviews a literature on the conversion of bio-based extracts to hydrocarbons for fuels and for building block commodity chemicals, with a focus on soybean derived products. Conversion of methyl esters from soybean triglycerides for replacement of diesel fuel is an active area of research; however, the focus of this chapter will not reside with esterification or transesterification, except has a means to provide materials for the production of hydrocarbons for fuels or chemical feedstocks. Methyl ester content in vehicle fuel is limited by a number of factors, including the performance in cold weather, the effect of oxygen content on engine components particularly in the case of older engines, shelf-life, and higher NOx emissions from engines that are not tuned to handle the handle the enhanced pre-ignition conditions of methyl ester combustion [1]. These factors have led to interest in synthesizing a hydrocarbon fuel from methyl esters, one that will maintain the cetane number but will achieve better performance in an automobile: enhanced mixing, injection, and combustion, and reduce downstream issues such as emissions and upstream issues such as fuel preparation and transportation. Various catalytic pathways from oxygenated precursor to hydrocarbon will be considered in the review: pyrolysis [2], deoxygenation and hydrogenation [3, 4], and hydrotreatment [5]. The focus of many of these studies has been production of fuels that are miscible or fungible with petroleum products, e.g., the work published by the group of Daniel Resasco at U. Oklahoma [6]. Much of the published literature focuses on simpler chemical representatives of the methyl esters form soybean oil; but these results are directly applicable to the production of chemical feedstocks, such as ethylbenzene that can be used for a variety of products: polymers, solvent, and reagent [3]. Although many chemical pathways have been demonstrated in the laboratory, the scale-up to handle quantities of bio-derived material presents a number of challenges in comparison with petroleum refining. These range from additional transportation costs because of distributed feedstock production to catalyst cost and regeneration. Other chapters in the book appear to address the cultivation and harvesting of soybeans and production of oil, so these areas will not be dealt with directly in this chapter except as they may relate to chemical changes in the feedstock material. However, the feasibility of the production of hydrocarbons from soybean triglycerides or methyl esters derived from these triglycerides will be considered, along with remaining technical hurdles before soybeans can make a significant contribution to the hydrocarbon economy.

McFarlane, Joanna [ORNL

2013-01-01T23:59:59.000Z

416

Research Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Areas Areas Research Areas Print Scientists from a wide variety of fields come to the ALS to perform experiements. Listed below are some of the most common research areas covered by ALS beamlines. Below each heading are a few examples of the specific types of topics included in that category. Click on a heading to learn more about that research area at the ALS. Energy Science Photovoltaics, photosynthesis, biofuels, energy storage, combustion, catalysis, carbon capture/sequestration. Bioscience General biology, structural biology. Materials/Condensed Matter Correlated materials, nanomaterials, magnetism, polymers, semiconductors, water, advanced materials. Physics Atomic, molecular, and optical (AMO) physics; accelerator physics. Chemistry Surfaces/interfaces, catalysts, chemical dynamics (gas-phase chemistry), crystallography, physical chemistry.

417

Clean Cities Alternative Fuel Price Report July 2007  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Alternative Fuel Price Report July 2007 CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT JULY 2007 WELCOME! Welcome to the July 2007 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between July 3, 2007 and July 13, 2007 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were contacted to request that they provide prices for fuels in their area on a voluntary basis. Prices were

418

Alternative Fuels Data Center: Delaware Reduces Truck Idling With  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Delaware Reduces Truck Delaware Reduces Truck Idling With Electrified Parking Areas to someone by E-mail Share Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Facebook Tweet about Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Twitter Bookmark Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Google Bookmark Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Delicious Rank Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Digg Find More places to share Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on AddThis.com...

419

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Grants - Bay Area to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Grants - Bay Area on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Grants - Bay Area on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Grants - Bay Area on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Grants - Bay Area on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Grants - Bay Area on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Grants - Bay Area on AddThis.com... More in this section...

420

TESTING AND ACCEPTANCE OF FUEL PLATES FOR RERTR FUEL DEVELOPMENT EXPERIMENTS  

SciTech Connect

This paper discusses how candidate fuel plates for RERTR Fuel Development experiments are examined and tested for acceptance prior to reactor insertion. These tests include destructive and nondestructive examinations (DE and NDE). The DE includes blister annealing for dispersion fuel plates, bend testing of adjacent cladding, and microscopic examination of archive fuel plates. The NDE includes Ultrasonic (UT) scanning and radiography. UT tests include an ultrasonic scan for areas of debonds and a high frequency ultrasonic scan to determine the "minimum cladding" over the fuel. Radiography inspections include identifying fuel outside of the maximum fuel zone and measurements and calculations for fuel density. Details of each test are provided and acceptance criteria are defined. These tests help to provide a high level of confidence the fuel plate will perform in the reactor without a breach in the cladding.

J.M. Wight; G.A. Moore; S.C. Taylor

2008-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "focus area fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Fuel Cycle Subcommittee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report to NEAC Report to NEAC Fuel Cycle Subcommittee Meeting of April 23, 2013 Washington D.C. June 13, 2013 Burton Richter (Chair), Margaret Chu, Darleane Hoffman, Raymond Juzaitis, Sekazi K Mtingwa, Ronald P Omberg, Joy L Rempe, Dominique Warin 2 I Introduction and Summary The Fuel Cycle Subcommittee of NEAC met in Washington on April 23, 2013. The meeting focused on issues relating to the NE advanced reactor program (sections II, III, and IV), and on storage and transportation issues (section V) related to a possible interim storage program that is the first step in moving toward a new permanent repository as recommended by the Blue Ribbon Commission (BRC) and discussed in the recent response by DOE to Congress on the BRC report 1 . The agenda is given in

422

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Definition to someone by E-mail Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition Alternative fuel is defined as compressed natural gas, propane, ethanol, or any mixture containing 85% or more ethanol (E85) with gasoline or other

423

Development of a Fissile Materials Irradiation Capability for Advanced Fuel Testing at the MIT Research Reactor  

SciTech Connect

A fissile materials irradiation capability has been developed at the Massachusetts Institute of Technology (MIT) Research Reactor (MITR) to support nuclear engineering studies in the area of advanced fuels. The focus of the expected research is to investigate the basic properties of advanced nuclear fuels using small aggregates of fissile material. As such, this program is intended to complement the ongoing fuel evaluation programs at test reactors. Candidates for study at the MITR include vibration-packed annular fuel for light water reactors and microparticle fuels for high-temperature gas reactors. Technical considerations that pertain to the design of the MITR facility are enumerated including those specified by 10 CFR 50 concerning the definition of a research reactor and those contained in a separate license amendment that was issued by the U.S. Nuclear Regulatory Commission to MIT for these types of experiments. The former includes limits on the cross-sectional area of the experiment, the physical form of the irradiated material, and the removal of heat. The latter addresses experiment reactivity worth, thermal-hydraulic considerations, avoidance of fission product release, and experiment specific temperature scrams.

Hu Linwen; Bernard, John A.; Hejzlar, Pavel; Kohse, Gordon [Massachusetts Institute of Technology (United States)

2005-05-15T23:59:59.000Z

424

HIGH EFFICIENCY, LOW EMISSIONS, SOLID OXIDE FUEL CELL SYSTEMS FOR MULTIPLE APPLICATIONS  

DOE Green Energy (OSTI)

Technology Management Inc. (TMI), teamed with the Ohio Office of Energy Efficiency and Renewable Energy, has engineered, constructed, and demonstrated a stationary, low power, multi-module solid oxide fuel cell (SOFC) prototype system operating on propane and natural gas. Under Phase I, TMI successfully operated two systems in parallel, in conjunction with a single DC-AC inverter and battery bus, and produced net AC electricity. Phase II testing expanded to include alternative and renewable fuels typically available in rural regions of Ohio. The commercial system is expected to have ultra-low pollution, high efficiency, and low noise. The TMI SOFC uses a solid ceramic electrolyte operating at high temperature (800-1000 C) which electrochemically converts gaseous fuels (hydrogen or mixed gases) and oxygen into electricity. The TMI system design oxidizes fuel primarily via electrochemical reactions and uses no burners (which pollute and consume fuel)--resulting in extremely clean exhaust. The use of proprietary sulfur tolerant materials developed by TMI allows system operation without additional fuel pre-processing or sulfur removal. Further, the combination of high operating temperatures and solid state operation increases the potential for higher reliability and efficiencies compared to other types of fuel cells. Applications for the TMI SOFC system cover a wide range of transportation, building, industrial, and military market sectors. A generic technology, fuel cells have the potential to be embodied into multiple products specific to Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) program areas including: Fuel Cells and Microturbines, School Buildings, Transportation, and Bioenergy. This program focused on low power stationary applications using a multi-module system operating on a range of common fuels. By producing clean electricity more efficiently (thus using less fuel), fuel cells have the triple effect of cleaning up the environment, reducing the amount of fuel consumed and, for energy intensive manufacturers, boosting their profits (by reducing energy expenses). Compared to conventional power generation technologies such as internal combustion engines, gas turbines, and coal plants, fuel cells are extremely clean and more efficient, particularly at smaller scales.

Sara Ward; Michael A. Petrik

2004-07-28T23:59:59.000Z

425

Fuel Economy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Fuel Economy Fuel Economy Learn how a revolutionary new tire technology could mean never having to worry about under-inflated tires on your vehicle. Learn how a revolutionary new tire technology could mean never having to worry about under-inflated tires on your vehicle. The Energy Department is investing in groundbreaking research that will make cars weigh less, drive further and consume less fuel. Featured New Investment in Energy-Efficient Manufacturing The Energy Department is supporting new research and development projects that focus on reducing energy use and costs for U.S. manufacturers. One project is expected to dramatically reduce the cost and lower the energy needed to produce aircrafts. | Photo courtesy of ARM Climate Research Facility.

426

FUNDAMENTAL INVESTIGATION OF FUEL TRANSFORMATIONS IN PULVERIZED COAL COMBUSTION AND GASIFICATION TECHNOLOGIES  

Science Conference Proceedings (OSTI)

The goal of this project was to carry out the necessary experiments and analyses to extend current capabilities for modeling fuel transformations to the new conditions anticipated in next-generation coal-based, fuel-flexible combustion and gasification processes. This multi-organization, multi-investigator project has produced data, correlations, and submodels that extend present capabilities in pressure, temperature, and fuel type. The combined experimental and theoretical/computational results are documented in detail in Chapters 1-8 of this report, with Chapter 9 serving as a brief summary of the main conclusions. Chapters 1-3 deal with the effect of elevated pressure on devolatilization, char formation, and char properties. Chapters 4 and 5 deal with advanced combustion kinetic models needed to cover the extended ranges of pressure and temperature expected in next-generation furnaces. Chapter 6 deals with the extension of kinetic data to a variety of alternative solid fuels. Chapter 7 focuses on the kinetics of gasification (rather than combustion) at elevated pressure. Finally, Chapter 8 describes the integration, testing, and use of new fuel transformation submodels into a comprehensive CFD framework. Overall, the effects of elevated pressure, temperature, heating rate, and alternative fuel use are all complex and much more work could be further undertaken in this area. Nevertheless, the current project with its new data, correlations, and computer models provides a much improved basis for model-based design of next generation systems operating under these new conditions.

Robert Hurt; Joseph Calo; Thomas H. Fletcher; Alan Sayre

2005-04-29T23:59:59.000Z

427

Fuel fabrication acceptance report FSV: initial core  

SciTech Connect

The fabrication of the Fort St. Vrain initial core is described. Detailed summaries of the final fuel element metal loadings and other properties are given. Problems that occurred during fabrication and their resolutions have been given special attention, including the results of analyses made prior to their adoption. A final substantiation for the Fort St. Vrain initial core was provided by a full-core, three-dimensional analysis considering control rod insertion and fuel depletion and with explicit representation of the as-built fuel elements. The calculated power distributions from the three dimensional analysis are well within the limits specified for the reference design. During fabrication of the initial core fuel elements, some difficulties with assayed quantities of uranium and thorium were encountered. These difficulties resulted from changes in the fuel rod standards used in assay equipment calibration and in the techniques employed for assaying fuel particles and fuel rods. As a result the apparent values for the average metal loadings for some fuel rods and fuel elements changed. For certain blends some already-assembled fuel elements were outside the tolerances given in the fuel specification. A study was undertaken to make recommendations on the disposition of already-fabricated fuel and adjustments for the remainder of fuel fabrication. This study focused on utilizing, as much as possible, already-fabricated fuel without compromising the performance of the core. A variety of adjustments were considered and used in some instances, but the most successful method was the imposition of a layer location on fuel elements. By use of this additional core assembly requirement, a distribution of high metal load and low metal load fuel elements was obtained that assured that power perturbations would be small and localized and that temperature perturbations would be small and confined to axial layers where temperatures are nominally low. (auth)

Kapernick, R.J.; Nirschl, R.J.

1973-12-01T23:59:59.000Z

428

Research Areas  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Print Research Areas Print Scientists from a wide variety of fields come to the ALS to perform experiements. Listed below are some of the most common research areas covered by ALS beamlines. Below each heading are a few examples of the specific types of topics included in that category. Click on a heading to learn more about that research area at the ALS. Energy Science Photovoltaics, photosynthesis, biofuels, energy storage, combustion, catalysis, carbon capture/sequestration. Bioscience General biology, structural biology. Materials/Condensed Matter Correlated materials, nanomaterials, magnetism, polymers, semiconductors, water, advanced materials. Physics Atomic, molecular, and optical (AMO) physics; accelerator physics. Chemistry Surfaces/interfaces, catalysts, chemical dynamics (gas-phase chemistry), crystallography, physical chemistry.

429

Dry Transfer Systems for Used Nuclear Fuel  

Science Conference Proceedings (OSTI)

The potential need for a dry transfer system (DTS) to enable retrieval of used nuclear fuel (UNF) for inspection or repackaging will increase as the duration and quantity of fuel in dry storage increases. This report explores the uses for a DTS, identifies associated general functional requirements, and reviews existing and proposed systems that currently perform dry fuel transfers. The focus of this paper is on the need for a DTS to enable transfer of bare fuel assemblies. Dry transfer systems for UNF canisters are currently available and in use for transferring loaded canisters between the drying station and storage and transportation casks.

Brett W. Carlsen; Michaele BradyRaap

2012-05-01T23:59:59.000Z

430

Pyrochemical Treatment of Spent Nuclear Fuel  

SciTech Connect

Over the last 10 years, pyrochemical treatment of spent nuclear fuel has progressed from demonstration activities to engineering-scale production operations. As part of the Advanced Fuel Cycle Initiative within the U.S. Department of Energys Office of Nuclear Energy, Science and Technology, pyrochemical treatment operations are being performed as part of the treatment of fuel from the Experimental Breeder Reactor II at the Idaho National Laboratory. Integral to these treatment operations are research and development activities that are focused on scaling further the technology, developing and implementing process improvements, qualifying the resulting high-level waste forms, and demonstrating the overall pyrochemical fuel cycle.

K. M. Goff; K. L. Howden; G. M. Teske; T. A. Johnson

2005-10-01T23:59:59.000Z

431

How to utilize hedging and a fuel surcharge program to stabilize the cost of fuel  

E-Print Network (OSTI)

This paper looks at some of these travails as well as the common tools used to approach a volatile priced commodity, diesel fuel. It focuses on the impacts of hedging for companies that are directly impacted through the ...

Shehadi, Charles A., III (Charles Anthony)

2010-01-01T23:59:59.000Z

432

Winters fuels report  

SciTech Connect

The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter`s pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration`s (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter`s, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year`s STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories.

1995-10-27T23:59:59.000Z

433

Charge-Focusing Readout of Time Projection Chambers  

E-Print Network (OSTI)

Time projection chambers (TPCs) have found a wide range of applications in particle physics, nuclear physics, and homeland security. For TPCs with high-resolution readout, the readout electronics often dominate the price of the final detector. We have developed a novel method which could be used to build large-scale detectors while limiting the necessary readout area. By focusing the drift charge with static electric fields, we would allow a small area of electronics to be sensitive to particle detection for a much larger detector volume. The resulting cost reduction could be important in areas of research which demand large-scale detectors, including dark matter searches and detection of special nuclear material. We present simulations made using the software package Garfield of a focusing structure to be used with a prototype TPC with pixel readout. This design should enable significant focusing while retaining directional sensitivity to incoming particles. We also present first experimental results and compare them with simulation.

S. J. Ross; M. T. Hedges; I. Jaegle; M. D. Rosen; I. S. Seong; T. N. Thorpe; S. E. Vahsen; J. Yamaoka

2013-04-02T23:59:59.000Z

434

Charge-Focusing Readout of Time Projection Chambers  

E-Print Network (OSTI)

Time projection chambers (TPCs) have found a wide range of applications in particle physics, nuclear physics, and homeland security. For TPCs with high-resolution readout, the readout electronics often dominate the price of the final detector. We have developed a novel method which could be used to build large-scale detectors while limiting the necessary readout area. By focusing the drift charge with static electric fields, we would allow a small area of electronics to be sensitive to particle detection for a much larger detector volume. The resulting cost reduction could be important in areas of research which demand large-scale detectors, including dark matter searches and detection of special nuclear material. We present simulations made using the software package Garfield of a focusing structure to be used with a prototype TPC with pixel readout. This design should enable significant focusing while retaining directional sensitivity to incoming particles. We also present first experimental results and com...

Ross, S J; Jaegle, I; Rosen, M D; Seong, I S; Thorpe, T N; Vahsen, S E; Yamaoka, J

2013-01-01T23:59:59.000Z

435