Sample records for foam flow conditions

  1. Generalized correlation for foam flow in tubes

    E-Print Network [OSTI]

    Cotter, Carol Lynnette

    1996-01-01T23:59:59.000Z

    . Data collected allow for the determination of material parameters. The corresponding friction factors and generalized Reynolds numbers are calculated and their relationship examined. Results indicate that the flow of foam follows the same f = 16/NRe,gen...

  2. Gravity as Quantum Foam In-Flow

    E-Print Network [OSTI]

    Cahill, R T

    2003-01-01T23:59:59.000Z

    The new information-theoretic Process Physics provides an explanation of space as a quantum foam system in which gravity is an inhomogeneous flow of the quantum foam into matter. The older Newtonian and General Relativity theories for gravity are analysed. It is shown that Newtonian gravity may be written in the form of an in-flow. General Relativity is also analysed as an in-flow, for those cases where it has been tested. An analysis of various experimental data demonstrates that absolute motion relative to space has been observed by Michelson and Morley, Miller, Illingworth, Jaseja et al, Torr and Kolen, and by DeWitte. The Dayton Miller and Roland DeWitte data also reveal the in-flow of space into matter which manifests as gravity. The experimental data suggests that the in-flow is turbulent, which amounts to the observation of a gravitational wave phenomena. A new in-flow theory of gravity is proposed which passes all the tests that General Relativity was claimed to have passed, but as well the new theory...

  3. Gravity as Quantum Foam In-Flow

    E-Print Network [OSTI]

    Reginald T Cahill

    2003-07-01T23:59:59.000Z

    The new information-theoretic Process Physics provides an explanation of space as a quantum foam system in which gravity is an inhomogeneous flow of the quantum foam into matter. The older Newtonian and General Relativity theories for gravity are analysed. It is shown that Newtonian gravity may be written in the form of an in-flow. General Relativity is also analysed as an in-flow, for those cases where it has been tested. An analysis of various experimental data demonstrates that absolute motion relative to space has been observed by Michelson and Morley, Miller, Illingworth, Jaseja et al, Torr and Kolen, and by DeWitte. The Dayton Miller and Roland DeWitte data also reveal the in-flow of space into matter which manifests as gravity. The experimental data suggests that the in-flow is turbulent, which amounts to the observation of a gravitational wave phenomena. A new in-flow theory of gravity is proposed which passes all the tests that General Relativity was claimed to have passed, but as well the new theory suggests that the so-called spiral galaxy rotation-velocity anomaly may be explained without the need of `dark matter'. Various other gravitational anomalies also appear to be explainable. Newtonian gravity appears to be strictly valid only outside of spherically symmetric matter systems.

  4. Transient foam flow in porous media with CAT Scanner

    SciTech Connect (OSTI)

    Liu, Dianbin; Brigham, W.E.

    1992-03-01T23:59:59.000Z

    Transient behavior is likely to dominate over most of the duration of a foam injection field project. Due to the lack of date, little is presently known about transient foam flow behavior. Foam flow does not follow established models such as the Buckley-Leverett theory, and no general predictive model has been derived. Therefore, both experimental data and a foam flow theory are needed. In this work, foam was injected at a constant mass rate into one-dimensional sandpacks of 1-in diameter and 24-in or 48-in length that had initially been saturate with distilled water. The system was placed in a cat Scanner. Data, obtained at room temperature and low pressure at various times, include both the pressure and saturation distributions. Pressure profiles showed that the pressure gradient is much greater behind the foam front than ahead of it. Moreover, the pressure gradients keep changing as the foam advances in the sandpack. This behavior differs from Buckley-Leverett theory. The CT scan results demonstrated gas channeling near the front, but eventually the foam block all these channels and sweeps the entire cross section after many pore volumes of injection. Three series of experiments were run: (1) surfactant adsorption measurements; (2) gas displacements of surfactant-laden solutions and (3) foam displacements. The first two series of experiments were made to provide the necessary parameters required to match the foam displacements. To this end, it was necessary to smooth the saturation history data, using a Langmuir-type formula. A theory was proposed based on the principles of the fractional flow curve construction method. This foam theory treats the foam as composed of infinitesimal slugs of gas of varying viscosities. The foam front has the lowest viscosity and foam at the injection end has the highest.

  5. Foam flow around an obstacle: obstacle-wall interaction , B. Dollet2

    E-Print Network [OSTI]

    Cox, Simon

    two-dimensional (2D) foams, such as can be made by squeezing a foam between two glass plates soFoam flow around an obstacle: obstacle-wall interaction S.J. Cox1 , B. Dollet2 , F. Graner2 1- chanics, University of Wales Aberystwyth, Ceredigion SY23 3BZ, UK, e-mail: foams@aber.ac.uk 2 Spectrom

  6. Localization of topological changes in Couette and Poiseuille flows of two-dimensional foams

    E-Print Network [OSTI]

    Cox, Simon

    -dimensional (2D) foams, such as can be made by squeezing a foam between parallel glass plates until it consistsLocalization of topological changes in Couette and Poiseuille flows of two-dimensional foams S. Quasistatic simulations show that the topological changes or plastic events that occur when an aqueous foam

  7. Magnetic Resonance Flow Velocity and Temperature Mapping of a Shape Memory Polymer Foam Device

    SciTech Connect (OSTI)

    Small IV, W; Gjersing, E; Herberg, J L; Wilson, T S; Maitland, D J

    2008-10-29T23:59:59.000Z

    Interventional medical devices based on thermally responsive shape memory polymer (SMP) are under development to treat stroke victims. The goals of these catheter-delivered devices include re-establishing blood flow in occluded arteries and preventing aneurysm rupture. Because these devices alter the hemodynamics and dissipate thermal energy during the therapeutic procedure, a first step in the device development process is to investigate fluid velocity and temperature changes following device deployment. A laser-heated SMP foam device was deployed in a simplified in vitro vascular model. Magnetic resonance imaging (MRI) techniques were used to assess the fluid dynamics and thermal changes associated with device deployment. Spatial maps of the steady-state fluid velocity and temperature change inside and outside the laser-heated SMP foam device were acquired. Though non-physiological conditions were used in this initial study, the utility of MRI in the development of a thermally-activated SMP foam device has been demonstrated.

  8. Mechanical Characterization of Rigid Polyurethane Foams.

    SciTech Connect (OSTI)

    Lu, Wei-Yang

    2014-12-01T23:59:59.000Z

    Foam materials are used to protect sensitive components from impact loading. In order to predict and simulate the foam performance under various loading conditions, a validated foam model is needed and the mechanical properties of foams need to be characterized. Uniaxial compression and tension tests were conducted for different densities of foams under various temperatures and loading rates. Crush stress, tensile strength, and elastic modulus were obtained. A newly developed confined compression experiment provided data for investigating the foam flow direction. A biaxial tension experiment was also developed to explore the damage surface of a rigid polyurethane foam.

  9. Flow of fracturing foams in vertical, horizontal and inclined pipes

    E-Print Network [OSTI]

    Krindinti, Kshipraprasad H

    2002-01-01T23:59:59.000Z

    of Journal of Petroleum Technology. In clnlling. thc ieduced density ol' the foam Fluids, their high solids carrying capacity, and thcii icduced c?tcultition losses;ire among the dcsirablc properties dunng underbalanced drilling operauons. Thc high solids... I I 95 quality foam 10 100 1000 Itlfvatl cheer rate (tiu) Ivlitchcll, 1871 ? - ? Bctcr cl nl. 1878 ? -- ? - 8 nyhnnr and Ikol'u, 1888 Figure 2. 1 Effective viscosity of foam as a function of shear rate and foam quality. From Underbalanced...

  10. Yield drag in a two-dimensional foam flow around a circular obstacle: Effect of liquid fraction

    E-Print Network [OSTI]

    Cox, Simon

    Yield drag in a two-dimensional foam flow around a circular obstacle: Effect of liquid fraction of foams around a circular obstacle within a long channel. In experiments, we confine the foam between liquid and glass surfaces. In simulations, we use a deterministic software, the Surface Evolver

  11. Mechanistic Foam Flow Simulation in Heterogeneous and Multidimensional Porous Media

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    -scale simulation is a vital component of the engineering and economic evaluation of any enhanced oil recovery (EOR Copyright 1997, Society of Petroleum Engineers, Inc. Received for review, April 24, 1997 Revised, July 23 generation, and foam propagation in rock formations. Efficient application and evaluation of candidates

  12. Flow in linearly sheared two dimensional foams: from bubble to bulk scale

    E-Print Network [OSTI]

    Gijs Katgert; Andrzej Latka; Matthias E. Möbius; Martin van Hecke

    2009-03-31T23:59:59.000Z

    We probe the flow of two dimensional foams, consisting of a monolayer of bubbles sandwiched between a liquid bath and glass plate, as a function of driving rate, packing fraction and degree of disorder. First, we find that bidisperse, disordered foams exhibit strongly rate dependent and inhomogeneous (shear banded) velocity profiles, while monodisperse, ordered foams are also shear banded, but essentially rate independent. Second, we introduce a simple model based on balancing the averaged drag forces between the bubbles and the top plate and the averaged bubble-bubble drag forces. This model captures the observed rate dependent flows, and the rate independent flows. Third, we perform independent rheological measurements, both for ordered and disordered systems, and find these to be fully consistent with the scaling forms of the drag forces assumed in the simple model, and we see that disorder modifies the scaling. Fourth, we vary the packing fraction $\\phi$ of the foam over a substantial range, and find that the flow profiles become increasingly shear banded when the foam is made wetter. Surprisingly, our model describes flow profiles and rate dependence over the whole range of packing fractions with the same power law exponents -- only a dimensionless number $k$ which measures the ratio of the pre-factors of the viscous drag laws is seen to vary with packing fraction. We find that $k \\sim (\\phi-\\phi_c)^{-1}$, where $\\phi_c \\approx 0.84$, corresponding to the 2d jamming density, and suggest that this scaling follows from the geometry of the deformed facets between bubbles in contact. Overall, our work suggests a route to rationalize aspects of the ubiquitous Herschel-Bulkley (power law) rheology observed in a wide range of disordered materials.

  13. hal-00090531,version4-6Jul2007 Yield drag in a two-dimensional foam flow around a circular obstacle

    E-Print Network [OSTI]

    Boyer, Edmond

    hal-00090531,version4-6Jul2007 Yield drag in a two-dimensional foam flow around a circular obstacle-dimensional flow of foams around a circular obstacle within a long channel. In experiments, we confine the foam between liquid and glass surfaces. In simulations, we use a deterministic software, the Surface Evolver

  14. Foam Transport in Porous Media - A Review

    SciTech Connect (OSTI)

    Zhang, Z. F.; Freedman, Vicky L.; Zhong, Lirong

    2009-11-11T23:59:59.000Z

    Amendment solutions with or without surfactants have been used to remove contaminants from soil. However, it has drawbacks such that the amendment solution often mobilizes the plume, and its movement is controlled by gravity and preferential flow paths. Foam is an emulsion-like, two-phase system in which gas cells are dispersed in a liquid and separated by thin liquid films called lamellae. Potential advantages of using foams in sub-surface remediation include providing better control on the volume of fluids injected, uniformity of contact, and the ability to contain the migration of contaminant laden liquids. It is expected that foam can serve as a carrier of amendments for vadose zone remediation, e.g., at the Hanford Site. As part of the U.S. Department of Energy’s EM-20 program, a numerical simulation capability will be added to the Subsurface Transport Over Multiple Phases (STOMP) flow simulator. The primary purpose of this document is to review the modeling approaches of foam transport in porous media. However, as an aid to understanding the simulation approaches, some experiments under unsaturated conditions and the processes of foam transport are also reviewed. Foam may be formed when the surfactant concentration is above the critical micelle concentration. There are two main types of foams – the ball foam (microfoam) and the polyhedral foam. The characteristics of bulk foam are described by the properties such as foam quality, texture, stability, density, surface tension, disjoining pressure, etc. Foam has been used to flush contaminants such as metals, organics, and nonaqueous phase liquids from unsaturated soil. Ball foam, or colloidal gas aphrons, reportedly have been used for soil flushing in contaminated site remediation and was found to be more efficient than surfactant solutions on the basis of weight of contaminant removed per gram of surfactant. Experiments also indicate that the polyhedral foam can be used to enhance soil remediation. The transport of foam in porous media is complicated in that the number of lamellae present governs flow characteristics such as viscosity, relative permeability, fluid distribution, and interactions between fluids. Hence, foam is a non-Newtonian fluid. During transport, foam destruction and formation occur. The net result of the two processes determines the foam texture (i.e., bubble density). Some of the foam may be trapped during transport. According to the impacts of the aqueous and gas flow rates, foam flow generally has two regimes – weak and strong foam. There is also a minimum pressure gradient to initiate foam flow and a critical capillary for foam to be sustained. Similar to other fluids, the transport of foam is described by Darcy’s law with the exception that the foam viscosity is variable. Three major approaches to modeling foam transport in porous media are the empirical, semi-empirical, and mechanistic methods. Mechanistic approaches can be complete in principal but may be difficult to obtain reliable parameters, whereas empirical and semi-empirical approaches can be limited by the detail used to describe foam rheology and mobility. Mechanistic approaches include the bubble population-balance model, the network/percolation theory, the catastrophe theory, and the filtration theory. Among these methods, all were developed for modeling polyhedral foam with the exception that the method based on the filtration theory was for the ball foam (microfoam).

  15. Three-dimensional foam flow resolved by fast X-ray tomographic microscopy

    E-Print Network [OSTI]

    Raufaste, Christophe; Mader, Kevin; Santucci, Stéphane; Mokso, Rajmund

    2015-01-01T23:59:59.000Z

    Thanks to ultra fast and high resolution X-ray tomography, we managed to capture the evolution of the local structure of the bubble network of a 3D foam flowing around a sphere. As for the 2D foam flow around a circular obstacle, we observed an axisymmetric velocity field with a recirculation zone, and indications of a negative wake downstream the obstacle. The bubble deformations, quantified by a shape tensor, are smaller than in 2D, due to a purely 3D feature: the azimuthal bubble shape variation. Moreover, we were able to detect plastic rearrangements, characterized by the neighbor-swapping of four bubbles. Their spatial structure suggest that rearrangements are triggered when films faces get smaller than a characteristic area.

  16. Three-dimensional foam flow resolved by fast X-ray tomographic microscopy

    E-Print Network [OSTI]

    Christophe Raufaste; Benjamin Dollet; Kevin Mader; Stéphane Santucci; Rajmund Mokso

    2015-03-19T23:59:59.000Z

    Thanks to ultra fast and high resolution X-ray tomography, we managed to capture the evolution of the local structure of the bubble network of a 3D foam flowing around a sphere. As for the 2D foam flow around a circular obstacle, we observed an axisymmetric velocity field with a recirculation zone, and indications of a negative wake downstream the obstacle. The bubble deformations, quantified by a shape tensor, are smaller than in 2D, due to a purely 3D feature: the azimuthal bubble shape variation. Moreover, we were able to detect plastic rearrangements, characterized by the neighbor-swapping of four bubbles. Their spatial structure suggest that rearrangements are triggered when films faces get smaller than a characteristic area.

  17. Yield drag in a two-dimensional foam flow around a circular obstacle: Effect of liquid fraction

    E-Print Network [OSTI]

    Christophe Raufaste; B. Dollet; Simon Cox; Yi Jiang; François Graner

    2007-07-09T23:59:59.000Z

    We study the two-dimensional flow of foams around a circular obstacle within a long channel. In experiments, we confine the foam between liquid and glass surfaces. In simulations, we use a deterministic software, the Surface Evolver, for bubble details and a stochastic one, the extended Potts model, for statistics. We adopt a coherent definition of liquid fraction for all studied systems. We vary it in both experiments and simulations, and determine the yield drag of the foam, that is, the force exerted on the obstacle by the foam flowing at very low velocity. We find that the yield drag is linear over a large range of the ratio of obstacle to bubble size, and is independent of the channel width over a large range. Decreasing the liquid fraction, however, strongly increases the yield drag; we discuss and interpret this dependence.

  18. Foam Micromechanics

    SciTech Connect (OSTI)

    Kraynik, A.M.; Neilsen, M.K.; Reinelt, D.A.; Warren, W.E.

    1998-11-03T23:59:59.000Z

    Foam evokes many different images: waves breaking at the seashore, the head on a pint of Guinness, an elegant dessert, shaving, the comfortable cushion on which you may be seated... From the mundane to the high tech, foams, emulsions, and cellular solids encompass a broad range of materials and applications. Soap suds, mayonnaise, and foamed polymers provide practical motivation and only hint at the variety of materials at issue. Typical of mukiphase materiaIs, the rheoIogy or mechanical behavior of foams is more complicated than that of the constituent phases alone, which may be gas, liquid, or solid. For example, a soap froth exhibits a static shear modulus-a hallmark of an elastic solid-even though it is composed primarily of two Newtonian fluids (water and air), which have no shear modulus. This apparent paradox is easily resolved. Soap froth contains a small amount of surfactant that stabilizes the delicate network of thin liq- uid films against rupture. The soap-film network deforms in response to a macroscopic strain; this increases interracial area and the corresponding sur- face energy, and provides the strain energy of classical elasticity theory [1]. This physical mechanism is easily imagined but very challenging to quantify for a realistic three-dimensional soap froth in view of its complex geome- try. Foam micromechanics addresses the connection between constituent properties, cell-level structure, and macroscopic mechanical behavior. This article is a survey of micromechanics applied to gas-liquid foams, liquid-liquid emulsions, and cellular solids. We will focus on static response where the foam deformation is very slow and rate-dependent phenomena such as viscous flow can be neglected. This includes nonlinear elasticity when deformations are large but reversible. We will also discuss elastic- plastic behavior, which involves yield phenomena. Foam structures based on polyhedra packed to fill space provide a unify- ing geometrical theme. Because a two-dimensional situation is always easier to visualize and usually easier to analyze, the roots of foam micromechanics lie in the plane packed with polygons. There are striking similarities as well as obvious differences between 2D and 3D.

  19. Foam process models.

    SciTech Connect (OSTI)

    Moffat, Harry K.; Noble, David R.; Baer, Thomas A. (Procter & Gamble Co., West Chester, OH); Adolf, Douglas Brian; Rao, Rekha Ranjana; Mondy, Lisa Ann

    2008-09-01T23:59:59.000Z

    In this report, we summarize our work on developing a production level foam processing computational model suitable for predicting the self-expansion of foam in complex geometries. The model is based on a finite element representation of the equations of motion, with the movement of the free surface represented using the level set method, and has been implemented in SIERRA/ARIA. An empirically based time- and temperature-dependent density model is used to encapsulate the complex physics of foam nucleation and growth in a numerically tractable model. The change in density with time is at the heart of the foam self-expansion as it creates the motion of the foam. This continuum-level model uses an homogenized description of foam, which does not include the gas explicitly. Results from the model are compared to temperature-instrumented flow visualization experiments giving the location of the foam front as a function of time for our EFAR model system.

  20. Interlaboratory comparison of four heat flow meter apparatuses on planed polyisocyanurate boards foamed with CFC-11

    SciTech Connect (OSTI)

    Graves, R.S.; McElroy, D.L. (Oak Ridge National Lab., TN (USA)); Miller, R.G. (Walter (Jim) Research Corp., St. Petersburg, FL (USA)); Yarbrough, D.W. (Tennessee Technological Univ., Cookeville, TN (USA)); Zarr, R.R. (National Inst. of Standards and Technology, Gaithersburg, MD (USA))

    1991-06-01T23:59:59.000Z

    This report describes an interlaboratory comparison of apparent thermal conductivity (k) results on planed polyisocyanurate (PIR) boards foamed with chlorofluorocarbon-11 (CFC-11). Sequential tests were conducted at 75{degrees}F (24{degrees}C) at four facilities on two rigid (PIR) boards, individually and as a pair, using four comparative heat flow meter apparatuses. The specimens were shipped from lab to lab, and testing yielded 15 k-values that have two standard deviation (2 {alpha}) value of 2.2% when described by: k(Btu{center dot}in./h{center dot}ft{sup 2}{center dot}F) = 0/1365 + 1.15 {times} 10{sup {minus}4} t k(W/m{center dot}K) = 0.0197 + 1.66 {times} 10{sup {minus}5} t, where t is the elapsed time in days after planing of the boards. An increased 2 {sigma} value for board 2 may be associated with a larger variation in thickness. The 15 thermal conductance (C) values have a 2 {sigma} value of 3.2% when described by: C(Btu/H{center dot}h{center dot}{sup 2}{center dot}{degrees}F) = 0.1069 + 1.20 {times} 10{sup {minus}4} t. Thus, the 2 {sigma} (k-values) of the interlaboratory comparison is not reduced by comparing C values. 5 refs., 1 fig., 8 tabs.

  1. Experiments for foam model development and validation.

    SciTech Connect (OSTI)

    Bourdon, Christopher Jay; Cote, Raymond O.; Moffat, Harry K.; Grillet, Anne Mary; Mahoney, James F. (Honeywell Federal Manufacturing and Technologies, Kansas City Plant, Kansas City, MO); Russick, Edward Mark; Adolf, Douglas Brian; Rao, Rekha Ranjana; Thompson, Kyle Richard; Kraynik, Andrew Michael; Castaneda, Jaime N.; Brotherton, Christopher M.; Mondy, Lisa Ann; Gorby, Allen D.

    2008-09-01T23:59:59.000Z

    A series of experiments has been performed to allow observation of the foaming process and the collection of temperature, rise rate, and microstructural data. Microfocus video is used in conjunction with particle image velocimetry (PIV) to elucidate the boundary condition at the wall. Rheology, reaction kinetics and density measurements complement the flow visualization. X-ray computed tomography (CT) is used to examine the cured foams to determine density gradients. These data provide input to a continuum level finite element model of the blowing process.

  2. Fluctuating initial conditions and fluctuations in elliptic and triangular flow

    E-Print Network [OSTI]

    A. K. Chaudhuri

    2012-02-24T23:59:59.000Z

    In heavy ion collisions, event-by-event fluctuations in participating nucleon positions can lead to triangular flow. With fluctuating initial conditions, flow coefficients will also fluctuate. In a hydrodynamic model, we study the fluctuations in elliptic and triangular flow, due to fluctuating initial conditions. Both elliptic and triangular flow fluctuates strongly, triangular flow more strongly than the elliptic flow. Strong fluctuations greatly reduce the sensitivity of elliptic and triangular flow to viscosity.

  3. VOLUME 87, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 22 OCTOBER 2001 Deformation and Flow of a Two-Dimensional Foam under Continuous Shear

    E-Print Network [OSTI]

    Debrégeas, Georges

    ­3]. For such sys- tems, thermal energies are orders of magnitude lower than the typical energy required to relax. But the resulting flow field may still differ a lot from what would be expected for a molecular liquid. Dry sand. In this Letter, we report the formation of shear bands in aqueous foams. We believe that foams may shed light

  4. Epoxy Foam Encapsulants: Processing and Dielectric Characterization

    SciTech Connect (OSTI)

    Linda Domeier; Marion Hunter

    1999-01-01T23:59:59.000Z

    The dielectric performance of epoxy foams was investigated to determine if such materials might provide advantages over more standard polyurethane foams in the encapsulation of electronic assemblies. Comparisons of the dielectric characteristics of epoxy and urethane encapsulant foams found no significant differences between the two resin types and no significant difference between as-molded and machined foams. This study specifically evaluated the formulation and processing of epoxy foams using simple methylhydrosiloxanes as the flowing agent and compared the dielectric performance of those to urethane foams of similar density.

  5. Pipe viscometry of foams C. Enzendorfer

    E-Print Network [OSTI]

    ValkĂł, Peter

    of foams is usually characterized by the quality, r, defined as the ratio of the gas volume to the total,and quality was determined in pipes of five diameters. The flow curves showed a marked dependenceon foam volume. High-quality foams, above 93%-97% have the tendency to invert into mist. In a mist

  6. Fluctuating initial conditions and fluctuations in elliptic and triangular flow

    E-Print Network [OSTI]

    Chaudhuri, A K

    2011-01-01T23:59:59.000Z

    In heavy ion collisions, event-by-event fluctuations in participating nucleon positions can lead to triangular flow. In a hydrodynamic model with fluctuating initial conditions, we study the fluctuations in elliptic and triangular flow. Both elliptic and triangular flow fluctuates strongly. Strong fluctuations greatly reduces the sensitivity of elliptic and triangular flow on viscosity.

  7. Forming foam structures with carbon foam substrates

    DOE Patents [OSTI]

    Landingham, Richard L.; Satcher, Jr., Joe H.; Coronado, Paul R.; Baumann, Theodore F.

    2012-11-06T23:59:59.000Z

    The invention provides foams of desired cell sizes formed from metal or ceramic materials that coat the surfaces of carbon foams which are subsequently removed. For example, metal is located over a sol-gel foam monolith. The metal is melted to produce a metal/sol-gel composition. The sol-gel foam monolith is removed, leaving a metal foam.

  8. Foam patterns

    DOE Patents [OSTI]

    Chaudhry, Anil R; Dzugan, Robert; Harrington, Richard M; Neece, Faurice D; Singh, Nipendra P; Westendorf, Travis

    2013-11-26T23:59:59.000Z

    A method of creating a foam pattern comprises mixing a polyol component and an isocyanate component to form a liquid mixture. The method further comprises placing a temporary core having a shape corresponding to a desired internal feature in a cavity of a mold and inserting the mixture into the cavity of the mold so that the mixture surrounds a portion of the temporary core. The method optionally further comprises using supporting pins made of foam to support the core in the mold cavity, with such pins becoming integral part of the pattern material simplifying subsequent processing. The method further comprises waiting for a predetermined time sufficient for a reaction from the mixture to form a foam pattern structure corresponding to the cavity of the mold, wherein the foam pattern structure encloses a portion of the temporary core and removing the temporary core from the pattern independent of chemical leaching.

  9. Low density microcellular foams

    DOE Patents [OSTI]

    LeMay, James D. (Castro Valley, CA)

    1991-01-01T23:59:59.000Z

    Disclosed is a process of producing microcellular foam which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.

  10. Low density microcellular foams

    DOE Patents [OSTI]

    LeMay, J.D.

    1991-11-19T23:59:59.000Z

    Disclosed is a process of producing microcellular foam which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 [mu]m is produced. Also disclosed are the foams produced by the process. 8 figures.

  11. NEUTROPHILS INFLUENCE MELANOMA ADHESION AND MIGRATION UNDER FLOW CONDITIONS

    E-Print Network [OSTI]

    Dong, Cheng

    NEUTROPHILS INFLUENCE MELANOMA ADHESION AND MIGRATION UNDER FLOW CONDITIONS Margaret J. SLATTERY State University, University Park, PA, USA We have studied human melanoma cell (C8161) adhesion to be very low on these melanoma cells. As a result, C8161 trans- endothelial migration under a flow

  12. Treatment of concentrated industrial wastewaters originating from oil shale and the like by electrolysis polyurethane foam interaction

    DOE Patents [OSTI]

    Tiernan, Joan E. (Novato, CA)

    1990-01-01T23:59:59.000Z

    Highly concentrated and toxic petroleum-based and synthetic fuels wastewaters such as oil shale retort water are treated in a unit treatment process by electrolysis in a reactor containing oleophilic, ionized, open-celled polyurethane foams and subjected to mixing and laminar flow conditions at an average detention time of six hours. Both the polyurethane foams and the foam regenerate solution are re-used. The treatment is a cost-effective process for waste-waters which are not treatable, or are not cost-effectively treatable, by conventional process series.

  13. The effects between two slotted plate flow meter under single, two, three components flow condition

    E-Print Network [OSTI]

    Park, Sang Hyan

    2005-02-17T23:59:59.000Z

    suggested a universal calibration for the slotted flow meter under various situations using only the Euler number (Eu) and the ratio of ? = AAslot pipe The calibration curve of the slotted meter?s flow coefficient KY versus Euler number was obtained..., or Three Component Flow Conditions. (December 2004) Sang Hyun Park, B.S., Yonsei University, Republic of Korea Chair of Advisory Committee: Dr. Gerald L. Morrison In previous work on the slotted flow meter, repeatibility and reproducibility were studied...

  14. Analysis of pressure drops under reversing flow conditions

    SciTech Connect (OSTI)

    Krazinski, J.L.; Holtz, R.E.; Uherka, K.L.; Lottes, P.A.

    1986-01-01T23:59:59.000Z

    This paper examines pressure-drop data from the Reversing Flow Test Facility (RFTF) at Argonne National Laboratory (ANL). The data comprise part of an initial series of measurements conducted with pressurized helium gas under reversing flow conditions. The characteristics of fluid pressure drops in compressible, reversing flows are discussed in the paper and compared with pressure-drop measurements for steady, incompressible flows. The methodology used to calculate instantaneous mass flows in the test section of the RFTF is summarized. The measured pressure drops are analyzed in terms of their frictional and inertial components. Pressure-drop data are presented for both tubes and wire mesh regenerators over a range of flow reversal frequencies. The results are discussed with reference to other experimental data and analytical models available in the literature. 10 refs., 6 figs., 2 tabs.

  15. Drainage induced convection rolls in foams (revised version)

    E-Print Network [OSTI]

    Cox, Simon

    , where soap solution is added to the foam at constant flow rate, the irregular motion in the beer glass results for convection in quasi two-dimensional foams (monolayers of bubbles between two glass platesDrainage induced convection rolls in foams (revised version) S. Hutzler, S.J. Cox*, E. Janiaud

  16. Liquid foams of graphene

    E-Print Network [OSTI]

    Alcazar Jorba, Daniel

    2012-01-01T23:59:59.000Z

    Liquid foams are dispersions of bubbles in a liquid. Bubbles are stabilized by foaming agents that position at the interface between the gas and the liquid. Most foaming agents, such as the commonly used sodium dodecylsulfate, ...

  17. Low density microcellular foams

    DOE Patents [OSTI]

    LeMay, James D. (Castro Valley, CA)

    1992-01-01T23:59:59.000Z

    Disclosed is a process of producing microcellular from which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.

  18. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    SciTech Connect (OSTI)

    Rapp, F., E-mail: florian.rapp@ict.fraunhofer.de, E-mail: anja.schneider@ict.fraunhofer.de; Schneider, A., E-mail: florian.rapp@ict.fraunhofer.de, E-mail: anja.schneider@ict.fraunhofer.de [Fraunhofer Institute for Chemical Technology ICT (Germany); Elsner, P., E-mail: peter.elsner@ict.fraunhofer.de [Fraunhofer Institute for Chemical Technology ICT, Germany and Karlsruhe Institute of Technology KIT (Germany)

    2014-05-15T23:59:59.000Z

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO{sub 2} balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength)

  19. Flexible corrugated cryotransferlines, long term experience at JET and the experience with supercritical helium flow conditions

    E-Print Network [OSTI]

    Obert, W

    1996-01-01T23:59:59.000Z

    Flexible corrugated cryotransferlines, long term experience at JET and the experience with supercritical helium flow conditions

  20. Flexible Corrugated Cryotransferlines, Long Term Experience at JET and the Experience with Supercritical Helium Flow Conditions

    E-Print Network [OSTI]

    Flexible Corrugated Cryotransferlines, Long Term Experience at JET and the Experience with Supercritical Helium Flow Conditions

  1. Foam generator and viscometer apparatus and process

    DOE Patents [OSTI]

    Reed, Troy D.; Pickell, Mark B.; Volk, Leonard J.

    2004-10-26T23:59:59.000Z

    An apparatus and process to generate a liquid-gas-surfactant foam and to measure its viscosity and enable optical and or electronic measurements of physical properties. The process includes the steps of pumping selected and measured liquids and measured gases into a mixing cell. The mixing cell is pressurized to a desired pressure and maintained at a desired pressure. Liquids and gas are mixed in the mixing cell to produce a foam of desired consistency. The temperature of the foam in the mixing cell is controlled. Foam is delivered from the mixing cell through a viscometer under controlled pressure and temperature conditions where the viscous and physical properties of the foam are measured and observed.

  2. The gradient flow running coupling with twisted boundary conditions

    E-Print Network [OSTI]

    A. Ramos

    2014-09-04T23:59:59.000Z

    We study the gradient flow for Yang-Mills theories with twisted boundary conditions. The perturbative behavior of the energy density $\\langle E(t)\\rangle$ is used to define a running coupling at a scale given by the linear size of the finite volume box. We compute the non-perturbative running of the pure gauge $SU(2)$ coupling constant and conclude that the technique is well suited for further applications due to the relatively mild cutoff effects of the step scaling function and the high numerical precision that can be achieved in lattice simulations. We also comment on the inclusion of matter fields.

  3. Revisiting Johnson and Jackson boundary conditions for granular flows

    SciTech Connect (OSTI)

    Li, Tingwen; Benyahia, Sofiane

    2012-07-01T23:59:59.000Z

    In this article, we revisit Johnson and Jackson boundary conditions for granular flows. The oblique collision between a particle and a flat wall is analyzed by adopting the classic rigid-body theory and a more realistic semianalytical model. Based on the kinetic granular theory, the input parameter for the partial-slip boundary conditions, specularity coefficient, which is not measurable in experiments, is then interpreted as a function of the particle-wall restitution coefficient, the frictional coefficient, and the normalized slip velocity at the wall. An analytical expression for the specularity coefficient is suggested for a flat, frictional surface with a low frictional coefficient. The procedure for determining the specularity coefficient for a more general problem is outlined, and a working approximation is provided.

  4. On stability condition for bifluid flows with surface tension : application to microfluidics

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    On stability condition for bifluid flows with surface tension : application to microfluidics C immiscible bifluid flows with surface tension are here considered. Since Brackbill, Kothe and Zemach (J mixing dynamics inside microdroplets. Key words: surface tension, curvature, stability condition, bifluid

  5. Method and apparatus for measuring coupled flow, transport, and reaction processes under liquid unsaturated flow conditions

    DOE Patents [OSTI]

    McGrail, Bernard P. (Pasco, WA); Martin, Paul F. (Richland, WA); Lindenmeier, Clark W. (Richland, WA)

    1999-01-01T23:59:59.000Z

    The present invention is a method and apparatus for measuring coupled flow, transport and reaction processes under liquid unsaturated flow conditions. The method and apparatus of the present invention permit distinguishing individual precipitation events and their effect on dissolution behavior isolated to the specific event. The present invention is especially useful for dynamically measuring hydraulic parameters when a chemical reaction occurs between a particulate material and either liquid or gas (e.g. air) or both, causing precipitation that changes the pore structure of the test material.

  6. DEVELOPMENT STATUS OF A SiC-FOAM BASED FLOW CHANNEL INSERT FOR A U.S.-ITER DCLL TBM

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    , CA, 91331, U.S.A. The U.S.-ITER DCLL (Dual Coolant Liquid Lead) TBM (Test Blanket Module) uses a Flow structure. I. INTRODUCTION The U.S. ITER Double Coolant Lead Lithium (DCLL) Test Blanket Module (TBM liquid breeder (PbLi) at elevated temperatures of more than 700 o C and at low velocities of ~10 cm

  7. Smolt Responses to Hydrodynamic Conditions in Forebay Flow Nets of Surface Flow Outlets, 2007

    SciTech Connect (OSTI)

    Johnson, Gary E.; Richmond, Marshall C.; Hedgepeth, J. B.; Ploskey, Gene R.; Anderson, Michael G.; Deng, Zhiqun; Khan, Fenton; Mueller, Robert P.; Rakowski, Cynthia L.; Sather, Nichole K.; Serkowski, John A.; Steinbeck, John R.

    2009-04-01T23:59:59.000Z

    This study provides information on juvenile salmonid behaviors at McNary and The Dalles dams that can be used by the USACE, fisheries resource managers, and others to support decisions on long-term measures to enhance fish passage. We researched smolt movements and ambient hydrodynamic conditions using a new approach combining simultaneous acoustic Doppler current profiler (ADCP) and acoustic imaging device (AID) measurements at surface flow outlets (SFO) at McNary and The Dalles dams on the Columbia River during spring and summer 2007. Because swimming effort vectors could be computed from the simultaneous fish and flow data, fish behavior could be categorized as passive, swimming against the flow (positively rheotactic), and swimming with the flow (negatively rheotactic). We present bivariate relationships to provide insight into fish responses to particular hydraulic variables that engineers might consider during SFO design. The data indicate potential for this empirical approach of simultaneous water/fish measurements to lead to SFO design guidelines in the future.

  8. Preferential flow occurs in unsaturated conditions John R. Nimmo*

    E-Print Network [OSTI]

    classification schemes, but usual consideration of preferential flow includes macropore or fracture flow in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/hyp.8380 786Copyright © 2011 John Wiley

  9. High performance polymeric foams

    SciTech Connect (OSTI)

    Gargiulo, M.; Sorrentino, L. [Institute for Composite and Biomedical Materials (IMCB)-CNR, P.le Tecchio 80, 80125 Naples (Italy); Iannace, S. [Institute for Composite and Biomedical Materials (IMCB)-CNR, P.le Tecchio 80, 80125 Naples (Italy) and Technological District on Polymeric and Composite Materials Engineering and Structures (IMAST), P.le E.Fermi 1, location Porto del Granatello, 80055 Portici (Naples)

    2008-08-28T23:59:59.000Z

    The aim of this work was to investigate the foamability of high-performance polymers (polyethersulfone, polyphenylsulfone, polyetherimide and polyethylenenaphtalate). Two different methods have been used to prepare the foam samples: high temperature expansion and two-stage batch process. The effects of processing parameters (saturation time and pressure, foaming temperature) on the densities and microcellular structures of these foams were analyzed by using scanning electron microscopy.

  10. Flow conditions of fresh mortar and concrete in different pipes

    SciTech Connect (OSTI)

    Jacobsen, Stefan, E-mail: stefan.jacobsen@ntnu.n [Norwegian University of Science and Technology, Dept of Structural Engineering, Trondheim (Norway); Haugan, Lars; Hammer, Tor Arne [SINTEF Byggforsk AS Building and Infrastructure, Trondheim (Norway); Kalogiannidis, Evangelos [Norwegian University of Science and Technology, Dept of Structural Engineering, Trondheim (Norway)

    2009-11-15T23:59:59.000Z

    The variation in fresh concrete flow rate over the pipe cross section was investigated on differently coloured and highly flowable concrete mixes flowing through pipes of different materials (rubber, steel, acryl). First, uncoloured (gray) concrete was poured through the pipe and the pipe blocked. Similar but coloured (black) concrete was then poured into the pipe filled with gray concrete, flowing after the gray concrete for a while before being blocked and hardened. The advance of the colouring along the pipe wall (showing boundary flow rate) was observed on the moulded concrete surface appearing after removing the pipe from the hardened concrete. The shapes of the interfaces between uncoloured and coloured concrete (showing variation of flow rate over the pipe cross section) were observed on sawn surfaces of concrete half cylinders cut along the length axes of the concrete-filled pipe. Flow profiles over the pipe cross section were clearly seen with maximum flow rates near the centre of the pipe and low flow rate at the pipe wall (typically rubber pipe with reference concrete without silica fume and/or stabilizers). More plug-shaped profiles, with long slip layers and less variation of flow rate over the cross section, were also seen (typically in smooth acrylic pipes). Flow rate, amount of concrete sticking to the wall after flow and SEM-images of pipe surface roughness were observed, illustrating the problem of testing full scale pumping.

  11. Area 2: Use Of Engineered Nanoparticle-Stabilized CO 2 Foams...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nanoparticle's surface, nanoparticle concentration, salinity, presence of surfactant, CO2:water ratio, and fluid flow rate are each discussed. This work on NP-CW foam...

  12. Compressive properties of a closed-cell aluminum foam as a function of strain-rate and temperature

    SciTech Connect (OSTI)

    Cady, Carl M [Los Alamos National Laboratory; Gray, Ill, George T [Los Alamos National Laboratory; Liu, Cheng [Los Alamos National Laboratory; Lovato, Manuel L [Los Alamos National Laboratory; Mukai, T [JAPAN

    2008-01-01T23:59:59.000Z

    The compressive constitutive behavior of a closed-cell aluminum foam (ALPORAS) manufactured by Shinko Wire Co. in Japan was evaluated under static and dynamic loading conditions as a function of temperature. High-strain-rate tests (1000-2000 s{sup -1}) were conducted using a split-Hopkinson pressure bar (SHPB). Quasi-static and intermediate-strain-rate tests were conducted on a hydraulic load frame. A small but discernable change in the flow stress behavior as a function of strain rate was measured. The deformation behavior of the Al-foam was however found to be strongly temperature dependent under both quasi-static and dynamic loading. Localized deformation and stress state instability during testing of metal foams is discussed in detail since the mechanical behavior over the entire range of strain rates indicates non-uniform deformation. Additionally, investigation of the effect of residual stresses created during manufacturing on the mechanical behavior was investigated.

  13. The Effect of Pressure Difference Control on Hydraulic Stability in a Variable Flow Air Conditioning System

    E-Print Network [OSTI]

    Zhang, Z.; Fu, Y.; Chen, Y.

    2006-01-01T23:59:59.000Z

    This paper analyzes the effects of different pressure difference control methods on hydraulic stability in a variable flow air conditioning system when it is applied to different air conditioning water systems. According to control method and water...

  14. In-situ and thin-specimen aging of experimental polyisocyanurate roof insulation foamed with alternative blowing agents

    SciTech Connect (OSTI)

    Christian, J.E.; Courville, G.E.; Graves, R.S.; Linkous, R.L.; McElroy, D.L.; Weaver, F.J.; Yarbrough, D.W.

    1991-01-01T23:59:59.000Z

    This paper reports apparent thermal conductivity (k) values from field and laboratory aging tests on a set of industry-produced, experimental polyisocyanurate (PIR) laminated boardstock foamed with hydrochlorofluorocarbons (HCFCs) as alternatives to chlorofluorocarbon (CFC). The PIR boards were blown with five gases: CFC-11, HCFC-123, HCFC-14lb, and 50/50 and 65/35 blends of HCFC-123/HCFC-14lb. The k-values were determined from 0 to 50{degree}C (30 to 120{degree}F) using techniques that meet ASTM C 114 (Thin Heater Apparatus) and ASTM C 518 (Heat Flow Meter Apparatus). Results on laminate boards with facers provide an independent laboratory check on the increase in k observed for field exposure in the ORNL Roof Thermal Research Apparatus (RTRA). The observed laboratory increase in k was between 8% and 11% for a 240 day field exposure in the RTRA. A thin-specimen aging procedure established the long-term thermal resistance of gas-filled foams. Thin specimens were planed from the industry-produced boardstock foams and aged at 24 and 65{degree}C (75{degree}F and 150{degree}F) for up to 300 days. An exponential dependency of k with the quantity (diffusion coefficient X time){sup {1/2}}/ thickness, provide effective diffusion coefficients for air components into the foams and blowing agent out of the foams. The foams blown with alternative blowing agents exhibited k-values 3 to 16% (average 9.4%) above CFC-11 foams under similar conditions. Field exposures were conducted on specimens under single ply EPDM membranes in the RTRA for over 400 days. Hourly averages of panel temperature and heat flux were analyzed to obtain K as a function of mean temperature on a week by week basis. The relative performance of test specimens of HCFC-14B under a black and under a white membrane is reported. 29 refs., 10 figs., 10 tabs.

  15. Electrically conductive rigid polyurethane foam

    DOE Patents [OSTI]

    Neet, T.E.; Spieker, D.A.

    1983-12-08T23:59:59.000Z

    A rigid, moldable polyurethane foam comprises about 2 to 10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.

  16. Electrically conductive rigid polyurethane foam

    DOE Patents [OSTI]

    Neet, Thomas E. (Grandview, MO); Spieker, David A. (Olathe, KS)

    1985-03-19T23:59:59.000Z

    A rigid, polyurethane foam comprises about 2-10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.

  17. Diagnosis of Fracture Flow Conditions with Acoustic Sensing

    E-Print Network [OSTI]

    Martinez, Roberto

    2014-07-10T23:59:59.000Z

    that this turbulent flow can generate sound as fluid flows from the fracture into the well. According to Testud et al. (2009) it is widely known that industry pipe systems, valves, taps and orifices whistle when fluid flows through them. Lacombe et al. (2013... of the fluid downstream of the shear layer (Lacombe et al. 2013). During this process there is a transfer of energy from the fluid moving to vortices that create sound. Poldervaart et al. (1974) illustrated how vortices can act as an acoustic source in Fig...

  18. Low density microcellular foams

    DOE Patents [OSTI]

    Aubert, James H. (Albuquerque, NM); Clough, Roger L. (Albuquerque, NM); Curro, John G. (Placitas, NM); Quintana, Carlos A. (Albuquerque, NM); Russick, Edward M. (Albuquerque, NM); Shaw, Montgomery T. (Mansfield Center, CT)

    1987-01-01T23:59:59.000Z

    Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the resultant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Means for subjecting such a solvent to one-dimensional cooling are also provided. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 .mu.m and a volume such that the foams have a length greater than 1 cm are provided.

  19. Low density microcellular foams

    DOE Patents [OSTI]

    Aubert, J.H.; Clough, R.L.; Curro, J.G.; Quintana, C.A.; Russick, E.M.; Shaw, M.T.

    1985-10-02T23:59:59.000Z

    Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the reusltant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 ..mu..m and a volume such that the foams have a length greater than 1 cm are provided.

  20. Foam encapsulated targets

    DOE Patents [OSTI]

    Nuckolls, John H. (Livermore, CA); Thiessen, Albert R. (Livermore, CA); Dahlbacka, Glen H. (Livermore, CA)

    1983-01-01T23:59:59.000Z

    Foam encapsulated laser-fusion targets wherein a quantity of thermonuclear fuel is embedded in low density, microcellular foam which serves as an electron conduction channel for symmetrical implosion of the fuel by illumination of the target by one or more laser beams. The fuel, such as DT, is contained within a hollow shell constructed of glass, for example, with the foam having a cell size of preferably no greater than 2 .mu.m, a density of 0.065 to 0.6.times.10.sup.3 kg/m.sup.3, and external diameter of less than 200 .mu.m.

  1. Module Development and Simulation of the Variable Refrigerant Flow Air Conditioning System under Cooling Conditions in Energyplus

    E-Print Network [OSTI]

    Zhou, Y.; Wu, J.; Wang, R.; Shiochi, S.

    2006-01-01T23:59:59.000Z

    ICEBO2006, Shenzhen, China HVAC Technologies for Energy Efficiency Vol.IV-1-2 Module Development and Simulation of the Variable Refrigerant Flow Air Conditioning System under Cooling Conditions in Energyplus Yanping Zhou Jingyi..., especially for those who ICEBO2006, Shenzhen, China HVAC Technologies for Energy Efficiency Vol.IV-1-2 show some interest about high-efficiency systems like VRF, it becomes of interest to compare the VRF to other systems and evaluate VRF?s performance...

  2. Rigid zeolite containing polyurethane foams

    DOE Patents [OSTI]

    Frost, C.B.

    1984-05-18T23:59:59.000Z

    A closed cell rigid polyurethane foam has been prepared which contains up to about 60% by weight of molecular sieves capable of sorbing molecules with effective critical diameters of up to about 10 A. The molecular sieve component of the foam can be preloaded with catalysts or with reactive compounds that can be released upon activation of the foam to control and complete crosslinking after the foam is formed. The foam can also be loaded with water or other flame-retarding agents, after completion. Up to about 50% of the weight of the isocyanate component of the foam can be replaced by polyimide resin precursors for incorporation into the final polymeric network.

  3. Rigid zeolite containing polyurethane foams

    DOE Patents [OSTI]

    Frost, Charles B. (Livermore, CA)

    1985-01-01T23:59:59.000Z

    A closed cell rigid polyurethane foam has been prepared which contains up to about 60% by weight of molecular sieves capable of sorbing molecules with effective critical diameters of up to about 10 .ANG.. The molecular sieve component of the foam can be preloaded with catalysts or with reactive compounds that can be released upon activation of the foam to control and complete crosslinking after the foam is formed. The foam can also be loaded with water or other flame-retarding agents, after completion. Up to about 50% of the weight of the isocyanate component of the foam can be replaced by polyimide resin precursors for incorporation into the final polymeric network.

  4. Energy-Saving Design for Pressure Difference Control in Variable Flow Air Conditioning Systems

    E-Print Network [OSTI]

    Chen, Y.; Zhang, Z.

    2006-01-01T23:59:59.000Z

    This paper analyzes energy-saving design for pressure-difference control in a variable flow air conditioning system, including the application of a pressure-difference control valve and the installation position of a pressure-difference transducer...

  5. On stability condition for bifluid flows with surface tension: Application to microfluidics

    E-Print Network [OSTI]

    Frey, Pascal

    On stability condition for bifluid flows with surface tension: Application to microfluidics Ce simulations of microfluidic flows using a Level Set method, namely the exploration of different mixing-vol- umes; Microfluidics; Droplets 1. Introduction Analysis and algorithms derived herein are the result

  6. FLOW CONDITIONING DESIGN IN THICK LIQUID PROTECTION S.G. Durbin

    E-Print Network [OSTI]

    California at San Diego, University of

    issuing downwards from nozzles of thickness (small dimension) = 1 cm into ambient air for Reynolds conditioner was studied. As the flow conditioning element immediately upstream of the nozzle inlet, fine, and that free-surface fluctuations are strongly affected by changes in flow conditioner design, even in the near

  7. Low density metal hydride foams

    DOE Patents [OSTI]

    Maienschein, Jon L. (Oakland, CA); Barry, Patrick E. (Pleasant Hill, CA)

    1991-01-01T23:59:59.000Z

    Disclosed is a low density foam having a porosity of from 0 to 98% and a density less than about 0.67 gm/cc, prepared by heating a mixture of powered lithium hydride and beryllium hydride in an inert atmosphere at a temperature ranging from about 455 to about 490 K for a period of time sufficient to cause foaming of said mixture, and cooling the foam thus produced. Also disclosed is the process of making the foam.

  8. Long lasting decontamination foam

    DOE Patents [OSTI]

    Demmer, Ricky L. (Idaho Falls, ID); Peterman, Dean R. (Idaho Falls, ID); Tripp, Julia L. (Pocatello, ID); Cooper, David C. (Idaho Falls, ID); Wright, Karen E. (Idaho Falls, ID)

    2010-12-07T23:59:59.000Z

    Compositions and methods for decontaminating surfaces are disclosed. More specifically, compositions and methods for decontamination using a composition capable of generating a long lasting foam are disclosed. Compositions may include a surfactant and gelatin and have a pH of less than about 6. Such compositions may further include affinity-shifting chemicals. Methods may include decontaminating a contaminated surface with a composition or a foam that may include a surfactant and gelatin and have a pH of less than about 6.

  9. Effect of Coal Properties and Operation Conditions on Flow Behavior of Coal Slag in Entrained Flow Gasifiers: A Brief Review

    SciTech Connect (OSTI)

    Wang,Ping; Massoudi, Mehrdad

    2011-01-01T23:59:59.000Z

    Integrated gasification combined cycle (IGCC) is a potentially promising clean technology with an inherent advantage of low emissions, since the process removes contaminants before combustion instead of from flue gas after combustion, as in a conventional coal steam plant. In addition, IGCC has potential for cost-effective carbon dioxide capture. Availability and high capital costs are the main challenges to making IGCC technology more competitive and fully commercial. Experiences from demonstrated IGCC plants show that, in the gasification system, low availability is largely due to slag buildup in the gasifier and fouling in the syngas cooler downstream of the gasification system. In the entrained flow gasifiers used in IGCC plants, the majority of mineral matter transforms to liquid slag on the wall of the gasifier and flows out the bottom. However, a small fraction of the mineral matter (as fly ash) is entrained with the raw syngas out of the gasifier to downstream processing. This molten/sticky fly ash could cause fouling of the syngas cooler. Therefore, it is preferable to minimize the quantity of fly ash and maximize slag. In addition, the hot raw syngas is cooled to convert any entrained molten fly slag to hardened solid fly ash prior to entering the syngas cooler. To improve gasification availability through better design and operation of the gasification process, better understanding of slag behavior and characteristics of the slagging process are needed. Slagging behavior is affected by char/ash properties, gas compositions in the gasifier, the gasifier wall structure, fluid dynamics, and plant operating conditions (mainly temperature and oxygen/carbon ratio). The viscosity of the slag is used to characterize the behavior of the slag flow and is the dominating factor to determine the probability that ash particles will stick. Slag viscosity strongly depends on the temperature and chemical composition of the slag. Because coal has varying ash content and composition, different operating conditions are required to maintain the slag flow and limit problems downstream. This report briefly introduces the IGCC process, the gasification process, and the main types and operating conditions of entrained flow gasifiers used in IGCC plants. This report also discusses the effects of coal ash and slag properties on slag flow and its qualities required for the entrained flow gasifier. Finally this report will identify the key operating conditions affecting slag flow behaviors, including temperature, oxygen/coal ratio, and flux agents.

  10. Foam Processing of Textiles

    E-Print Network [OSTI]

    Bafford, R. A.; Namboodri, C. G.

    1984-01-01T23:59:59.000Z

    and half by the foam pro Finish Wet Pick-Up 68.4% 25% cess. A typical lot consists of 10 to 20 thou Calculated Holst.ure on Fabric 67.6 24.4 sand lineal yards. The solids add-on of finish Dryer Temp.op. 345/380 260/265 ing chemicals was the same...

  11. Fluctuating initial condition and smoothening effect on elliptic and triangular flow

    E-Print Network [OSTI]

    Haque, Md Rihan; Chaudhuri, A K

    2012-01-01T23:59:59.000Z

    In heavy ion collisions, event-by-event fluctuations in participating nucleon positions can lead to triangular flow. Generally, one uses Monte-Carlo Glauber model to obtain the participating nucleon positions. To use in a hydrodynamic model, the positions needs to be smoothened. We study the effect of smoothening of Glauber Monte-Carlo initial conditions on elliptic and triangular flow. It is shown that integrated as well as differential elliptic and triangular flow remain largely unaltered, irrespective of functional form of the smoothening function, or the smoothening parameter

  12. Fluctuating initial condition and smoothening effect on elliptic and triangular flow

    E-Print Network [OSTI]

    Md. Rihan Haque; Victor Roy; A. K. Chaudhuri

    2012-04-13T23:59:59.000Z

    In heavy ion collisions, event-by-event fluctuations in participating nucleon positions can lead to triangular flow. Generally, one uses Monte-Carlo Glauber model to obtain the participating nucleon positions. To use in a hydrodynamic model, the positions needs to be smoothened. We study the effect of smoothening of Glauber Monte-Carlo initial conditions on elliptic and triangular flow. It is shown that integrated as well as differential elliptic and triangular flow remain largely unaltered, irrespective of functional form of the smoothening function, or the smoothening parameter

  13. Toxicity evaluation and hazard review for Rigid Foam

    SciTech Connect (OSTI)

    Archuleta, M.M.; Stocum, W.E.

    1994-02-01T23:59:59.000Z

    Rigid Foam is a chemical delay foam used to completely encapsulate an object or to block access to an area. Prior studies have indicated that the final foam product is essentially non-toxic. The purpose of this study was to evaluate and summarize the current chemical and toxicological data available on the components of Rigid Foam and to update the information available on the toxicity of the final Rigid Foam product. Since the possibility exists for a partial deployment of Rigid Foam where only one of the components is released, this study also examined the toxicity of its chemical constituents. Rigid Foam is composed of an {open_quotes}A{close_quotes} and {open_quotes}B{close_quotes} Component. The {open_quotes}A{close_quotes} component is primarily a polymeric isocyanate and the {open_quotes}B{close_quotes} component is a mixture of polyols. In addition to the primary constituents, dichlorodifluoromethane and trichlorofluoromethane are present as blowing agents along with catalysts and silicone surfactants necessary for foaming. The pre-deployed {open_quotes}A{close_quotes} and {open_quotes}B{close_quotes} components are stored in separate vessels and are brought together in static mixing nozzles for dispersal. The results of this evaluation indicate that a completely deployed Rigid Foam under normal conditions is essentially non-toxic as determined previously. However, in the event of a partial deployment or deployment of an individual component directly at an unprotected individual, the degree of hazard is increased due to the toxic and corrosive nature of the individual constituents. The health hazard would depend on the properties of the material to which the person was exposed.

  14. Artificial boundary conditions for stationary Navier-Stokes flows past bodies in the half-plane

    E-Print Network [OSTI]

    Boeckle, Christoph

    2012-01-01T23:59:59.000Z

    We discuss artificial boundary conditions for stationary Navier-Stokes flows past bodies in the half-plane, for a range of low Reynolds numbers. When truncating the half-plane to a finite domain for numerical purposes, artificial boundaries appear. We present an explicit Dirichlet condition for the velocity at these boundaries in terms of an asymptotic expansion for the solution to the problem. We show a substantial increase in accuracy of the computed values for drag and lift when compared with results for traditional boundary conditions. We also analyze the qualitative behavior of the solutions in terms of the streamlines of the flow. The new boundary conditions are universal in the sense that they depend on a given body only through one constant, which can be determined in a feed-back loop as part of the solution process.

  15. Permeability-dependent propagation of polyacrylamides under near-wellbore flow conditions

    SciTech Connect (OSTI)

    Zitha, P.; Chauveteau, G.; Zaitoun, A. [Inst. Francais du Petrole, Rueil-Malmaison (France)

    1995-11-01T23:59:59.000Z

    A new type of polyacrylamide flow-induced retention has been observed in core experiments simulating near-wellbore flow conditions. The retention is due to the bridging of pore throats by adsorbed macromolecules previously stretched under elongational flow. It occurs in low-to-medium permeability granular packs (up to k = 1,000 mD in the test conditions) and leads to progressive but severe plugging. The present paper shows that polymer placement in the reservoir surrounding the wellbore can be very different from what is predicted from stable values of polymer mobility. In heterogeneous reservoirs, polymer penetration in low-permeability layers is expected to be strongly reduced, thus allowing a deeper penetration into higher permeability zones. The polymer can thus improve reservoir conformance around the wellbore when injected directly through the entire opened interval. Near-wellbore polymer or gel treatments may thus not require zone isolation to be efficient.

  16. Research Plan: Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation

    SciTech Connect (OSTI)

    Zhong, Lirong; Hart, Andrea T.; Szecsody, James E.; Zhang, Z. F.; Freedman, Vicky L.; Ankeny, Mark; Hull, Laurence; Oostrom, Martinus; Freshley, Mark D.; Wellman, Dawn M.

    2009-01-16T23:59:59.000Z

    Research proposals were submitted to the Scientific and Technical Basis for In Situ Treatment of Metals and Radionuclides Technical Working Group under the US Department of Energy (DOE) Environmental Management Office (specifically, EM-22). After a peer review and selection process, the proposal, “Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation,” submitted by Pacific Northwest National Laboratory (PNNL) was selected for support by the program. A research plan was requested for this EM funded project. The overall objective of this project is to develop foam delivery technology for the distribution of remedial amendments to deep vadose zone sediments for in situ immobilization of metal and radionuclide contaminants. The focus of this research in FY 2009 is on the physical aspects of the foam delivery approach. Specific objectives are to 1) study the foam quality (i.e. the gas volume fraction in foam) influence on injection pressure, 2) study the sediment air permeability influence on injection pressure, 3) investigate liquid uptake in sediment and determine whether a water front will be formed during foam delivery, 4) test amendment distance (and mass) delivery by foam from the injection point, 5) study the enhanced sweeping over heterogeneous systems (i.e., low K zones) by foam delivery relative to water-based delivery under vadose zone conditions, and 6) numerically simulate foam delivery processes in the vadose zone. Laboratory scale experiments will be conducted at PNNL to study a range of basic physical aspects of the foam propagation in sediments, including foam quality and sediment permeability influence on injection pressure, liquid uptake, and foam sweeping across heterogeneous systems. This study will be augmented with separate studies to be conducted at MSE Technology Applications, Inc. (MSE) to evaluate foam transport and amendment delivery at the intermediate-scale. The results of intermediate-scale tests will be used to bridge the gap between the small-scale foam transport studies and the field-scale demonstration. Numerical simulation studies on foam delivery under vadose conditions will be performed to simulate observed foam transport behavior under vadose zone conditions and predict the foam delivery performance at field-scale.

  17. Comments on Cahill's Quantum Foam Inflow Theory of Gravity

    E-Print Network [OSTI]

    T. D. Martin

    2004-07-20T23:59:59.000Z

    We reveal an underlying flaw in Reginald T. Cahill's recently promoted quantum foam inflow theory of gravity. It appears to arise from a confusion of the idea of the Galilean invariance of the acceleration of an individual flow with what is obtained as an acceleration when a homogeneous flow is superposed with an inhomogeneous flow. We also point out that the General Relativistic covering theory he creates by substituting a generalized Painleve-Gullstrand metric into Einstein's field equations leads to absurd results.

  18. Chapter 3 -Basic Water Quality in the Boulder Creek Watershed, Colorado, During High-Flow and Low-Flow Conditions, 2000

    E-Print Network [OSTI]

    Chapter 3 - Basic Water Quality in the Boulder Creek Watershed, Colorado, During High-Flow and Low of the water quality of Boulder Creek, Colorado, during high-flow and low-flow conditions in the year 2000 constituents in Boulder Creek increased after the creek received wastewater effluent. INTRODUCTION Two programs

  19. CO[sub 2] flow patterns under multiphase flow: Heterogeneous field-scale conditions

    SciTech Connect (OSTI)

    Chang, Y.B.; Lim, M.T.; Pope, G.A.; Sepehrnoori, K. (Univ. of Texas, Austin, TX (United States))

    1994-08-01T23:59:59.000Z

    A finite-difference, equation-of-state (EOS), compositional simulator has been used to study CO[sub 2] flooding. First, unstable first-contact-miscible (FCM) displacements were simulated with a fine mesh to investigate the transition from gravity override to viscous fingering. Next, a direct comparison was made for FCM and multiple-contact-miscible (MCM) displacements under the same conditions to investigate effects of phase behavior on the growth of viscous fingers. Then, the effects of gravity, physical dispersion, capillary pressure, phase behavior, and heterogeneity were combined and simulated for CO[sub 2] flooding on a field scale with stochastic permeability fields.

  20. Final Report: Use of Graphite Foam as a Thermal Performance Enhancement of Heavy Hybrid Propulsion Systems

    SciTech Connect (OSTI)

    Klett, James William [ORNL; Conklin, Jim [ORNL

    2011-06-01T23:59:59.000Z

    Oak Ridge National Laboratory's graphite foam has the potential to be used as a heat exchanger for the Army's Future Combat System Manned Ground Vehicle and thus has the potential to improve its thermal performance. The computational fluid dynamics (CFD) program FLOW3D was used to develop a new CFD model for the graphite foam to be used in the development of a proper heat exchanger. The program was calibrated by first measuring the properties of the solid foams and determining the parameters to be used in the CFD model. Then the model was used to predict within 5% error the performance of finned foam heat sinks. In addition, the f factors and j factors commonly used to predict pressure drop and heat transfer were calculated for both the solid and finned structures. There was some evidence that corrugating the foams would yield higher j/f ratios than state of the art heat exchangers, confirming previously measured data. Because the results show that the CFD model was validated, it is recommended that the funding for Phases 2 through 5 be approved for the design of both the finned heat exchanger using tubes and round fin structures and the solid foam design using corrugated foams. It was found that the new CFD model using FLOW3D can predict both solid foam heat transfer and finned foam heat transfer with the validated model parameters. In addition, it was found that the finned foam structures exhibited j/f ratios that indicate that significant heat transfer is occurring within the fin structures due to aerodynamically induced flow, which is not present in solid aluminum fin structures. It is possible that the foam surfaces can act as turbulators that increase heat transfer without affecting pressure drop, like the vortex generators seen in state of the art heat exchangers. These numbers indicate that the foam can be engineered into an excellent heat exchanger. It was also found that corrugating the solid foams would increase the j/f ratio dramatically, allowing the solid foams to compete directly with standard heat exchangers. Although corrugated L1 foam samples have not been produced (attempts are under way), it is possible that their j/f ratio can be even higher than those of the finned structures.

  1. Method of preparation of removable syntactic foam

    DOE Patents [OSTI]

    Arnold, Jr., Charles (Albuquerque, NM); Derzon, Dora K. (Albuquerque, NM); Nelson, Jill S. (Albuquerque, NM); Rand, Peter B. (Albuquerque, NM)

    1995-01-01T23:59:59.000Z

    Easily removable, environmentally safe, low-density, syntactic foams are disclosed which are prepared by mixing insoluble microballoons with a solution of water and/or alcohol-soluble polymer to produce a pourable slurry, optionally vacuum filtering the slurry in varying degrees to remove unwanted solvent and solute polymer, and drying to remove residual solvent. The properties of the foams can be controlled by the concentration and physical properties of the polymer, and by the size and properties of the microballoons. The suggested solute polymers are non-toxic and soluble in environmentally safe solvents such as water or low-molecular weight alcohols. The syntactic foams produced by this process are particularly useful in those applications where ease of removability is beneficial, and could find use in packaging recoverable electronic components, in drilling and mining applications, in building trades, in art works, in the entertainment industry for special effects, in manufacturing as temporary fixtures, in agriculture as temporary supports and containers and for delivery of fertilizer, in medicine as casts and splints, as temporary thermal barriers, as temporary protective covers for fragile objects, as filters for particulate matter, which matter may be easily recovered upon exposure to a solvent, as in-situ valves (for one-time use) which go from maximum to minimum impedance when solvent flows through, and for the automatic opening or closing of spring-loaded, mechanical switches upon exposure to a solvent, among other applications.

  2. Method of preparation of removable syntactic foam

    DOE Patents [OSTI]

    Arnold, C. Jr.; Derzon, D.K.; Nelson, J.S.; Rand, P.B.

    1995-07-11T23:59:59.000Z

    Easily removable, environmentally safe, low-density, syntactic foams are disclosed which are prepared by mixing insoluble microballoons with a solution of water and/or alcohol-soluble polymer to produce a pourable slurry, optionally vacuum filtering the slurry in varying degrees to remove unwanted solvent and solute polymer, and drying to remove residual solvent. The properties of the foams can be controlled by the concentration and physical properties of the polymer, and by the size and properties of the microballoons. The suggested solute polymers are non-toxic and soluble in environmentally safe solvents such as water or low-molecular weight alcohols. The syntactic foams produced by this process are particularly useful in those applications where ease of removability is beneficial, and could find use in packaging recoverable electronic components, in drilling and mining applications, in building trades, in art works, in the entertainment industry for special effects, in manufacturing as temporary fixtures, in agriculture as temporary supports and containers and for delivery of fertilizer, in medicine as casts and splints, as temporary thermal barriers, as temporary protective covers for fragile objects, as filters for particulate matter, which matter may be easily recovered upon exposure to a solvent, as in-situ valves (for one-time use) which go from maximum to minimum impedance when solvent flows through, and for the automatic opening or closing of spring-loaded, mechanical switches upon exposure to a solvent, among other applications. 1 fig.

  3. Joint Industry/Government Research Project: Comparison of thermal aging for roof exposures and thin-specimens of experimental polyisocyanurate insulation foamed with alternative blowing agents

    SciTech Connect (OSTI)

    Graves, R.S.; Christian, J.E.; McElroy, D.L.

    1991-01-01T23:59:59.000Z

    This paper reports apparent thermal conductivity (k) values from field exposures and laboratory aging of a set of industry-produced, experimental polyisocyanurate (PIR) laminated boardstock foamed with hydrochlorofluorocarbons (HCFCs) as alternative to chlorofluorocarbons (CFCs). The k-values were determined from 0 to 50{degree}C using techniques that meet ASTM C 1114 (Thin Heater Apparatus) and ASTM C 518 (Heat Flow Meter Apparatus). The increase in k observed for field exposure in the ORNL Roof Thermal Research Apparatus (RTRA) was confirmed by independent laboratory tests. The observed laboratory increase in k was about the same, between 17 and 22%, for all three blowing agent foams for a 450 day field exposure in the RTRA. Thin specimens were planed from the industry-produced boardstock foams and aged at 24 and 65{degree}C for up to 460 days. The foams blown with alternative blowing agents exhibited long-term k-values 7 to 15% above those for CFC foams under similar conditions. Field exposures were conducted on specimens under single ply EPDM membranes in the RTRA for over 680 days. Hourly averages of panel temperature and heat flux were analyzed to obtain k as a function of mean insulation temperature on a week-by-week basis. The k-values derived from the field data provided effective diffusion coefficients for air in the foam, which were within 7% of those obtained from the thin-specimen aging procedure at 24%C except for one sample. The relative performance of test specimens of HCFC-141b under a black and under a white membrane is reported, and data suggest that differences are relatively small. 26 refs., 10 figs., 8 tabs.

  4. High temperature lightweight foamed cements

    DOE Patents [OSTI]

    Sugama, Toshifumi (Mastic Beach, NY)

    1989-01-01T23:59:59.000Z

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  5. High temperature lightweight foamed cements

    DOE Patents [OSTI]

    Sugama, Toshifumi.

    1989-10-03T23:59:59.000Z

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  6. Spherical Foams in Flat Space

    E-Print Network [OSTI]

    Carl D. Modes; Randall D. Kamien

    2008-10-31T23:59:59.000Z

    Regular tesselations of space are characterized through their Schlafli symbols {p,q,r}, where each cell has regular p-gonal sides, q meeting at each vertex, and r meeting on each edge. Regular tesselations with symbols {p,3,3} all satisfy Plateau's laws for equilibrium foams. For general p, however, these regular tesselations do not embed in Euclidean space, but require a uniform background curvature. We study a class of regular foams on S^3 which, through conformal, stereographic projection to R^3 define irregular cells consistent with Plateau's laws. We analytically characterize a broad classes of bulk foam bubbles, and extend and explain recent observations on foam structure and shape distribution. Our approach also allows us to comment on foam stability by identifying a weak local maximum of A^(3/2)/V at the maximally symmetric tetrahedral bubble that participates in T2 rearrangements.

  7. A Convective-like Energy-Stable Open Boundary Condition for Simulations of Incompressible Flows

    E-Print Network [OSTI]

    Dong, Suchuan

    2015-01-01T23:59:59.000Z

    We present a new energy-stable open boundary condition, and an associated numerical algorithm, for simulating incompressible flows with outflow/open boundaries. This open boundary condition ensures the energy stability of the system, even when strong vortices or backflows occur at the outflow boundary. Under certain situations it can be reduced to a form that can be analogized to the usual convective boundary condition. One prominent feature of this boundary condition is that it provides a control over the velocity on the outflow/open boundary. This is not available with the other energy-stable open boundary conditions from previous works. Our numerical algorithm treats the proposed open boundary condition based on a rotational velocity-correction type strategy. It gives rise to a Robin-type condition for the discrete pressure and a Robin-type condition for the discrete velocity on the outflow/open boundary, respectively at the pressure and the velocity sub-steps. We present extensive numerical experiments on...

  8. Coarse graining methods for spin net and spin foam models

    E-Print Network [OSTI]

    Bianca Dittrich; Frank C. Eckert; Mercedes Martin-Benito

    2011-09-22T23:59:59.000Z

    We undertake first steps in making a class of discrete models of quantum gravity, spin foams, accessible to a large scale analysis by numerical and computational methods. In particular, we apply Migdal-Kadanoff and Tensor Network Renormalization schemes to spin net and spin foam models based on finite Abelian groups and introduce `cutoff models' to probe the fate of gauge symmetries under various such approximated renormalization group flows. For the Tensor Network Renormalization analysis, a new Gauss constraint preserving algorithm is introduced to improve numerical stability and aid physical interpretation. We also describe the fixed point structure and establish an equivalence of certain models.

  9. Multifunctional Corrosion-resistant Foamed Well Cement Composites...

    Broader source: Energy.gov (indexed) [DOE]

    Multifunctional Corrosion-resistant Foamed Well Cement Composites Multifunctional Corrosion-resistant Foamed Well Cement Composites Multifunctional Corrosion-resistant Foamed Well...

  10. Thermal resistance of composite panels containing superinsulation and urethane foam

    SciTech Connect (OSTI)

    Wilkes, K.E.; Graves, R.S.; Childs, K.W.

    1996-09-01T23:59:59.000Z

    Laboratory data are presented on the thermal resistance of composite panels that incorporate superinsulation embedded in urethane foam. Composite panels were fabricated using four types of advanced insulations (three types of evacuated panel superinsulation and one type of gas-filled panel), and three foam blowing agents (CFC-11, HCFC-141b, and HCFC-142b/22 blend). Panels were also fabricated with only the urethane foam to serve as a baseline. Thermal measurements were performed using an ASTM C 518 Heat Flow Meter Apparatus. The thermal resistances of the panels were measured over a two-year period to detect whether any significant changes occurred. A computer model was used to analyze the data, adjusting for differences in size of the advanced insulations, and extrapolating to different sizes of composite panels.

  11. Thermal resistance of superinsulation/foam composite panels

    SciTech Connect (OSTI)

    Wilkes, K.E.; Graves, R.S.; Childs, K.W.

    1996-05-01T23:59:59.000Z

    Laboratory data are presented on the thermal resistance of composite panels that incorporate superinsulation embedded in urethane foam. Composite panels were fabricated using four types of advanced insulations (three types of evacuated panel superinsulation and one type of gas-filled panel), and three foam blowing agents (CFC-11, HCFC-141b, and HCFC-142b/22 blend). Panels were also fabricated with only the urethane foam to serve as a baseline. Thermal measurements were performed using an ASTM C 518 Heat Flow Meter Apparatus. The thermal resistances of the panels were measured over a two-year period to detect whether any significant changes occurred. A computer model was used to analyze the data, normalizing for differences in size of the advanced insulations, and extrapolating to different sizes of composite panels.

  12. Carbon foam characterization tensile evaluation of carbon foam ligaments 

    E-Print Network [OSTI]

    Verdugo Rodriguez, Rogelio Alberto

    2004-09-30T23:59:59.000Z

    A methodology for ligament isolation and specimen preparation for tensile testing of single ligaments from the unit cell of open-cell carbon foams has been successfully developed and implemented. Results are presented for ...

  13. Carbon foam characterization tensile evaluation of carbon foam ligaments

    E-Print Network [OSTI]

    Verdugo Rodriguez, Rogelio Alberto

    2004-09-30T23:59:59.000Z

    foam microstructure 100 µ 6 In this procedure, Crystalbond? is used which is a commercially available wax for temporarily mounting of materials that require dicing, polishing, and other machining processes. When processing is complete, this wax...

  14. Composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-05-06T23:59:59.000Z

    Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  15. Composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1997-01-01T23:59:59.000Z

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  16. Pore-Scale Characterization of Biogeochemical Controls on Iron and Uranium Speciation under Flow Conditions

    SciTech Connect (OSTI)

    Pearce, Carolyn I.; Wilkins, Michael J.; Zhang, Changyong; Heald, Steve M.; Fredrickson, Jim K.; Zachara, John M.

    2012-09-17T23:59:59.000Z

    Etched silicon microfluidic pore network models (micromodels) with controlled chemical and redox gradients, mineralogy, and microbiology under continuous flow conditions are used for the incremental development of complex microenvironments that simulate subsurface conditions. We demonstrate the colonization of micromodel pore spaces by an anaerobic Fe(III)-reducing bacterial species (Geobacter sulfurreducens) and the enzymatic reduction of a bioavailable Fe(III) phase within this environment. Using both X-ray Microprobe and X-ray Absorption Spectroscopy, we investigate the combined effects of the precipitated Fe(III) phases and the microbial population on uranium biogeochemistry under flow conditions. Precipitated Fe(III) phases within the micromodel were most effectively reduced in the presence of an electron shuttle (AQDS), and Fe(II) ions adsorbed onto the precipitated mineral surface without inducing any structural change. In the absence of Fe(III), U(VI) was effectively reduced by the microbial population to insoluble U(IV), which was precipitated in discrete regions associated with biomass. In the presence of Fe(III) phases, however, both U(IV) and U(VI) could be detected associated with biomass, suggesting re-oxidation of U(IV) by localized Fe(III) phases. These results demonstrate the importance of the spatial localization of biomass and redox active metals, and illustrate the key effects of pore-scale processes on contaminant fate and reactive transport.

  17. Supercapacitors based on carbon foams

    DOE Patents [OSTI]

    Kaschmitter, J.L.; Mayer, S.T.; Pekala, R.W.

    1993-11-09T23:59:59.000Z

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc-1.0 g/cc) electrically conductive and have high surface areas (400 m[sup 2]/g-1000 m[sup 2]/g). Capacitances on the order of several tens of farad per gram of electrode are achieved. 9 figures.

  18. Supercapacitors based on carbon foams

    DOE Patents [OSTI]

    Kaschmitter, James L. (6291 Alisal St., Pleasanton, CA 94566); Mayer, Steven T. (16026 Selborne Dr., San Leandro, CA 94578); Pekala, Richard W. (802 Cliffside Dr., Pleasant Hill, CA 94523)

    1993-01-01T23:59:59.000Z

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc-1.0 g/cc) electrically conductive and have high surface areas (400 m.sup.2 /g-1000 m.sup.2 /g). Capacitances on the order of several tens of farad per gram of electrode are achieved.

  19. MECHANISTIC STUDIES OF IMPROVED FOAM EOR PROCESSES

    SciTech Connect (OSTI)

    William R. Rossen

    2005-01-05T23:59:59.000Z

    The objective of this research is to widen the application of foam to enhanced oil recovery (EOR) by investigating fundamental mechanisms of foams in porous media. This research will lay the groundwork for more applied research on foams for improved sweep efficiency in miscible gas, steam and surfactant-based EOR. Task 1 investigates the pore-scale interactions between foam bubbles and polymer molecules. Task 2 examines the mechanisms of gas trapping, and interaction between gas trapping and foam effectiveness. Task 3 investigates mechanisms of foam generation in porous media.

  20. MECHANISTIC STUDIES OF IMPROVED FOAM EOR PROCESSES

    SciTech Connect (OSTI)

    William R. Rossen

    2005-03-16T23:59:59.000Z

    The objective of this research is to widen the application of foam to enhanced oil recovery (EOR) by investigating fundamental mechanisms of foams in porous media. This research is to lay the groundwork for more-applied research on foams for improved sweep efficiency in miscible gas, steam and surfactant-based EOR. Task 1 investigates the pore-scale interactions between foam bubbles and polymer molecules. Task 2 examines the mechanisms of gas trapping, and interaction between gas trapping and foam effectiveness. Task 3 investigates mechanisms of foam generation in porous media.

  1. Proton Gradient Regulation 5-Mediated Cyclic Electron Flow under ATP-or Redox-Limited Conditions: A Study of

    E-Print Network [OSTI]

    Proton Gradient Regulation 5-Mediated Cyclic Electron Flow under ATP- or Redox-Limited Conditions.K.N.) The Chlamydomonas reinhardtii proton gradient regulation5 (Crpgr5) mutant shows phenotypic and functional traits discriminate two pathways for CEF and determine their maximum electron flow rates. The PGR5/proton gradient

  2. Buoyancy Effects on Smoldering of Polyurethane Foam 

    E-Print Network [OSTI]

    Torero, Jose L

    1992-11-19T23:59:59.000Z

    An experimental study has been carried out to investigate the effects of buoyancy on smoldering of polyurethane foam. The experiments are conducted with a high void fraction flexible polyurethane foam as fuel and air as ...

  3. Determination of foam stability at constant pressure in the Plateau-Biggs borders of the foam

    SciTech Connect (OSTI)

    Khristov, K.I.; Exerowa, D.R.; Kurgljakov, P.M.

    1981-02-01T23:59:59.000Z

    The lifetime of a foam column (or of a part of the column) is a parameter widely used as a characteristic of foam stability. During the destruction process, the pressure in the upper layers of the foam changes (the height H of the foam column decreases) and the lifetime of the different layers of the foam column will be different. Therefore, the lifetime of a foam column at constant pressure in the Plateau-Gibbs borders (constant along the height of the column and with time) is a much more accurate characteristic of foam stability.

  4. Unloading using auger tool and foam and experimental identification of liquid loading of low rate natural gas wells

    E-Print Network [OSTI]

    Bose, Rana

    2007-09-17T23:59:59.000Z

    flow rate versus liquid flow rate at 30 psi……………………… 68 8.1b Air flow rate versus liquid flow rate at 22 psi……………………… 68 8.1c Air flow rate versus liquid flow rate at 15 psi……………………… 69 8.2a Liquid holdup through the tubing at 30 psi... with and without Auger (air-water) and with and without Auger (air-foam)……………70 8.2b Liquid holdup through the tubing at 22 psi with and without Auger(air-water) and with and without Auger (air-foam)…………… 71 8.2c Liquid...

  5. Engineering the Quantum Foam

    E-Print Network [OSTI]

    Reginald T. Cahill

    2005-06-06T23:59:59.000Z

    In 1990 Alcubierre, within the General Relativity model for space-time, proposed a scenario for `warp drive' faster than light travel, in which objects would achieve such speeds by actually being stationary within a bubble of space which itself was moving through space, the idea being that the speed of the bubble was not itself limited by the speed of light. However that scenario required exotic matter to stabilise the boundary of the bubble. Here that proposal is re-examined within the context of the new modelling of space in which space is a quantum system, viz a quantum foam, with on-going classicalisation. This model has lead to the resolution of a number of longstanding problems, including a dynamical explanation for the so-called `dark matter' effect. It has also given the first evidence of quantum gravity effects, as experimental data has shown that a new dimensionless constant characterising the self-interaction of space is the fine structure constant. The studies here begin the task of examining to what extent the new spatial self-interaction dynamics can play a role in stabilising the boundary without exotic matter, and whether the boundary stabilisation dynamics can be engineered; this would amount to quantum gravity engineering.

  6. Panelized wall system with foam core insulation

    DOE Patents [OSTI]

    Kosny, Jan (Oak Ridge, TN); Gaskin, Sally (Houston, TX)

    2009-10-20T23:59:59.000Z

    A wall system includes a plurality of wall members, the wall members having a first metal panel, a second metal panel, and an insulating core between the first panel and the second panel. At least one of the first panel and the second panel include ridge portions. The insulating core can be a foam, such as a polyurethane foam. The foam can include at least one opacifier to improve the k-factor of the foam.

  7. Foam vessel for cryogenic fluid storage

    DOE Patents [OSTI]

    Spear, Jonathan D (San Francisco, CA)

    2011-07-05T23:59:59.000Z

    Cryogenic storage and separator vessels made of polyolefin foams are disclosed, as are methods of storing and separating cryogenic fluids and fluid mixtures using these vessels. In one embodiment, the polyolefin foams may be cross-linked, closed-cell polyethylene foams with a density of from about 2 pounds per cubic foot to a density of about 4 pounds per cubic foot.

  8. Highly concentrated foam formulation for blast mitigation

    DOE Patents [OSTI]

    Tucker, Mark D. (Albuquerque, NM); Gao, Huizhen (Albuquerque, NM)

    2010-12-14T23:59:59.000Z

    A highly concentrated foam formulation for blast suppression and dispersion mitigation for use in responding to a terrorism incident involving a radiological dispersion device. The foam formulation is more concentrated and more stable than the current blast suppression foam (AFC-380), which reduces the logistics burden on the user.

  9. UNIAXIAL STRESSSTRAIN BEHAVIOUR OF ALUMINIUM ALLOY FOAMS

    E-Print Network [OSTI]

    Fleck, Norman A.

    UNIAXIAL STRESS±STRAIN BEHAVIOUR OF ALUMINIUM ALLOY FOAMS K.Y.G. McCULLOUGH, N.A. FLECK and M of closed cell aluminium alloy foams (trade name ``Alulight'') has been measured and interpreted in terms. All rights reserved. Keywords: Aluminium alloys; Foams; Deformation mechanisms 1. INTRODUCTION Recent

  10. CPUF - a chemical-structure-based polyurethane foam decomposition and foam response model.

    SciTech Connect (OSTI)

    Fletcher, Thomas H. (Brigham Young University, Provo, UT); Thompson, Kyle Richard; Erickson, Kenneth L.; Dowding, Kevin J.; Clayton, Daniel (Brigham Young University, Provo, UT); Chu, Tze Yao; Hobbs, Michael L.; Borek, Theodore Thaddeus III

    2003-07-01T23:59:59.000Z

    A Chemical-structure-based PolyUrethane Foam (CPUF) decomposition model has been developed to predict the fire-induced response of rigid, closed-cell polyurethane foam-filled systems. The model, developed for the B-61 and W-80 fireset foam, is based on a cascade of bondbreaking reactions that produce CO2. Percolation theory is used to dynamically quantify polymer fragment populations of the thermally degrading foam. The partition between condensed-phase polymer fragments and gas-phase polymer fragments (i.e. vapor-liquid split) was determined using a vapor-liquid equilibrium model. The CPUF decomposition model was implemented into the finite element (FE) heat conduction codes COYOTE and CALORE, which support chemical kinetics and enclosure radiation. Elements were removed from the computational domain when the calculated solid mass fractions within the individual finite element decrease below a set criterion. Element removal, referred to as ?element death,? creates a radiation enclosure (assumed to be non-participating) as well as a decomposition front, which separates the condensed-phase encapsulant from the gas-filled enclosure. All of the chemistry parameters as well as thermophysical properties for the CPUF model were obtained from small-scale laboratory experiments. The CPUF model was evaluated by comparing predictions to measurements. The validation experiments included several thermogravimetric experiments at pressures ranging from ambient pressure to 30 bars. Larger, component-scale experiments were also used to validate the foam response model. The effects of heat flux, bulk density, orientation, embedded components, confinement and pressure were measured and compared to model predictions. Uncertainties in the model results were evaluated using a mean value approach. The measured mass loss in the TGA experiments and the measured location of the decomposition front were within the 95% prediction limit determined using the CPUF model for all of the experiments where the decomposition gases were vented sufficiently. The CPUF model results were not as good for the partially confined radiant heat experiments where the vent area was regulated to maintain pressure. Liquefaction and flow effects, which are not considered in the CPUF model, become important when the decomposition gases are confined.

  11. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    SciTech Connect (OSTI)

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.; Lowenstein, A.

    2014-09-01T23:59:59.000Z

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by first overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.

  12. Chromium Isotope Fractionation During Reduction of Cr(VI) Under Saturated Flow Conditions

    SciTech Connect (OSTI)

    Jamieson-Hanes, Julia H.; Gibson, Blair D.; Lindsay, Matthew B.J.; Kim, Yeongkyoo; Ptacek, Carol J.; Blowes, David W. (Waterloo); (Kyungpook National University)

    2012-10-25T23:59:59.000Z

    Chromium isotopes are potentially useful indicators of Cr(VI) reduction reactions in groundwater flow systems; however, the influence of transport on Cr isotope fractionation has not been fully examined. Laboratory batch and column experiments were conducted to evaluate isotopic fractionation of Cr during Cr(VI) reduction under both static and controlled flow conditions. Organic carbon was used to reduce Cr(VI) in simulated groundwater containing 20 mg L{sup -1} Cr(VI) in both batch and column experiments. Isotope measurements were performed on dissolved Cr on samples from the batch experiments, and on effluent and profile samples from the column experiment. Analysis of the residual solid-phase materials by scanning electron microscopy (SEM) and by X-ray absorption near edge structure (XANES) spectroscopy confirmed association of Cr(III) with organic carbon in the column solids. Decreases in dissolved Cr(VI) concentrations were coupled with increases in {delta}{sup 53}Cr, indicating that Cr isotope enrichment occurred during reduction of Cr(VI). The {delta}{sup 53}Cr data from the column experiment was fit by linear regression yielding a fractionation factor ({alpha}) of 0.9979, whereas the batch experiments exhibited Rayleigh-type isotope fractionation ({alpha} = 0.9965). The linear characteristic of the column {delta}{sup 53}Cr data may reflect the contribution of transport on Cr isotope fractionation.

  13. Flow and morphological conditions associated with the directional solidification of aqueous ammonium chloride

    SciTech Connect (OSTI)

    Magirl, C.S.; Incropera, F.P.

    1993-01-01T23:59:59.000Z

    Using 27% aq. NH[sub 4]Cl solutions as transparent analog, shadowgraphy and dye injection were used to observe flow and morphology in unidirectional solidification (UDS) from below. Dendritic crystals that form at the cold surface reject lighter, solute-deficient fluid, and instability is shown by finger-type double-diffusive convection. As the mushy two-phase region grows, perturbations at the liquidus interface cause localized remelting and downward development of channels. Solsutal plumes emanate from the channels, and in time, double-diffusive convection layers also form in the melt. When the solution is chilled at the sides as well as at the bottom, conditions are influenced by detachment and settling of crystals from the sidewall and by plumes from slanted channels. When a slow, oscillatory rocking motion is imposed on UDS, the freckle-type segregates in the final cast is suppressed. Within the melt, plumes and double-diffusive convection are eliminated. Inertially induced convection mixes the melt and produces a dense slurry. Although channels are eliminated from the bottom mushy region, overall heat transfer and macrosegregation in the cavity are unaffected by the slow rocking. Numerical simulations qualitatively predict trends in the field variables and provide insights on interdendritic flows and macrosegregation (freckle-, A-type segregates), although its quantitative predictions are hampered by simplifying assumptions.

  14. Flow and morphological conditions associated with the directional solidification of aqueous ammonium chloride. Annual performance report

    SciTech Connect (OSTI)

    Magirl, C.S.; Incropera, F.P.

    1993-01-01T23:59:59.000Z

    Using 27% aq. NH{sub 4}Cl solutions as transparent analog, shadowgraphy and dye injection were used to observe flow and morphology in unidirectional solidification (UDS) from below. Dendritic crystals that form at the cold surface reject lighter, solute-deficient fluid, and instability is shown by finger-type double-diffusive convection. As the mushy two-phase region grows, perturbations at the liquidus interface cause localized remelting and downward development of channels. Solsutal plumes emanate from the channels, and in time, double-diffusive convection layers also form in the melt. When the solution is chilled at the sides as well as at the bottom, conditions are influenced by detachment and settling of crystals from the sidewall and by plumes from slanted channels. When a slow, oscillatory rocking motion is imposed on UDS, the freckle-type segregates in the final cast is suppressed. Within the melt, plumes and double-diffusive convection are eliminated. Inertially induced convection mixes the melt and produces a dense slurry. Although channels are eliminated from the bottom mushy region, overall heat transfer and macrosegregation in the cavity are unaffected by the slow rocking. Numerical simulations qualitatively predict trends in the field variables and provide insights on interdendritic flows and macrosegregation (freckle-, A-type segregates), although its quantitative predictions are hampered by simplifying assumptions.

  15. Process for epoxy foam production

    DOE Patents [OSTI]

    Celina, Mathias C. (Albuquerque, NM)

    2011-08-23T23:59:59.000Z

    An epoxy resin mixture with at least one epoxy resin of between approximately 60 wt % and 90 wt %, a maleic anhydride of between approximately 1 wt % and approximately 30 wt %, and an imidazole catalyst of less than approximately 2 wt % where the resin mixture is formed from at least one epoxy resin with a 1-30 wt % maleic anhydride compound and an imidazole catalyst at a temperature sufficient to keep the maleic anhydride compound molten, the resin mixture reacting to form a foaming resin which can then be cured at a temperature greater than 50.degree. C. to form an epoxy foam.

  16. Heat exchanger using graphite foam

    DOE Patents [OSTI]

    Campagna, Michael Joseph; Callas, James John

    2012-09-25T23:59:59.000Z

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  17. Spacetime Foam and Dark Energy

    E-Print Network [OSTI]

    Y. Jack Ng

    2008-08-08T23:59:59.000Z

    Due to quantum fluctuations, spacetime is foamy on small scales. The degree of foaminess is found to be consistent with the holographic principle. One way to detect spacetime foam is to look for halos in the images of distant quasars. Applying the holographic foam model to cosmology we "predict" that the cosmic energy density takes on the critical value; and basing only on existing archived data on active galactic nuclei from the Hubble Space Telescope, we also "predict" the existence of dark energy which, we argue, is composed of an enormous number of inert "particles" of extremely long wavelength. We speculate that these "particles" obey infinite statistics.

  18. Virtual Measurement in Pipes, Part 1: Flowing Bottom Hole Pressure Under Multi-Phase Flow and Inclined Wellbore Conditions

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    SPE 30975 Virtual Measurement in Pipes, Part 1: Flowing Bottom Hole Pressure Under Multi-Phase Flow, 163245 SPEUT. Abstract Pressure drop prediction in pipes is an old petroleum engineering problem. There is a long history of attempts to develop empirical correlations to predict the pressure drop in pipes. Some

  19. Low density, microcellular foams, preparation, and articles

    DOE Patents [OSTI]

    Young, A.T.

    1982-03-03T23:59:59.000Z

    A microcellular low-density foam of poly(4-methyl-1-pentene) particularly useful for forming targets for inertial confinement fusion has been developed. Articles made from the foam have been machined to tolerances of 0.0001 inch, although the densities of the fragile foam are low (about 10 to about 100 mg/cc) and the cell sizes are small (about 10 to about 30 ..mu..m). Methods for forming the foam and articles are given. The yield strength of the foam of the invention is higher than was obtained in other structures of this same material.

  20. Low density, microcellular foams, preparation, and articles

    DOE Patents [OSTI]

    Young, Ainslie T. (Los Alamos, NM); Marsters, Robert G. (Jemez Springs, NM); Moreno, Dawn K. (Espanola, NM)

    1984-01-01T23:59:59.000Z

    A microcellular low density foam of poly(4-methyl-1-pentene) which is particularly useful for forming targets for inertial confinement fusion has been developed. Articles made from the foam have been machined to tolerances of 0.0001 inch, although the densities of the fragile foam are low (about 10 to about 100 mg/cc) and the cell sizes are small (about 10 to about 30 .mu.m). Methods for forming the foam and articles are given; and the yield strength of the foam of the invention is higher than was obtained in other structures of this same material.

  1. Method of making a cyanate ester foam

    DOE Patents [OSTI]

    Celina, Mathias C.; Giron, Nicholas Henry

    2014-08-05T23:59:59.000Z

    A cyanate ester resin mixture with at least one cyanate ester resin, an isocyanate foaming resin, other co-curatives such as polyol or epoxy compounds, a surfactant, and a catalyst/water can react to form a foaming resin that can be cured at a temperature greater than 50.degree. C. to form a cyanate ester foam. The cyanate ester foam can be heated to a temperature greater than 400.degree. C. in a non-oxidative atmosphere to provide a carbonaceous char foam.

  2. Assessment of Controlling Processes for Field-Scale Uranium Reactive Transport under Highly Transient Flow Conditions

    SciTech Connect (OSTI)

    Ma, Rui; Zheng, Chunmiao; Liu, Chongxuan; Greskowiak, Janek; Prommer, Henning; Zachara, John M.

    2014-02-13T23:59:59.000Z

    This paper presents the results of a comprehensive model-based analysis of a uranium tracer test conducted at the U.S Department of Energy Hanford 300 Area (300A) IFRC site. A three-dimensional multi-component reactive transport model was employed to assess the key factors and processes that control the field-scale uranium reactive transport. Taking into consideration of relevant physical and chemical processes, the selected conceptual/numerical model replicates the spatial and temporal variations of the observed U(VI) concentrations reasonably well in spite of the highly complex field conditions. A sensitivity analysis was performed to interrogate the relative importance of various processes and factors for reactive transport of U(VI) at the field-scale. The results indicate that multi-rate U(VI) sorption/desorption, U(VI) surface complexation reactions, and initial U(VI) concentrations were the most important processes and factors controlling U(VI) migration. On the other hand, cation exchange reactions, the choice of the surface complexation model, and dual-domain mass transfer processes, which were previously identified to be important in laboratory experiments, played less important roles under the field-scale experimental condition at the 300A site. However, the model simulations also revealed that the groundwater chemistry was relatively stable during the uranium tracer experiment and therefore presumably not dynamic enough to appropriately assess the effects of ion exchange reaction and the choice of surface complexation models on U(VI) sorption and desorption. Furthermore, it also showed that the field experimental duration (16 days) was not sufficiently long to precisely assess the role of a majority of the sorption sites that were accessed by slow kinetic processes within the dual domain model. The sensitivity analysis revealed the crucial role of the intraborehole flow that occurred within the long-screened monitoring wells and thus significantly affected both field-scale measurements and simulated U(VI) concentrations as a combined effect of aquifer heterogeneity and highly dynamic flow conditions. Overall, this study, which provides one of the few detailed and highly data-constrained uranium transport simulations, highlights the difference in controlling processes between laboratory and field scale that prevent a simple direct upscaling of laboratory-scale models.

  3. Stimulation results in the low-permeability Wasatch formation - An evolution to foam fracturing

    SciTech Connect (OSTI)

    Harris, P.C.; Bailey, D.E.; Evertz, G.L.

    1984-05-01T23:59:59.000Z

    The Wasatch Formation of the Uinta Basin in eastern Utah is typical of many formations in the Rocky Mountains, having low permeability and high sensitivity to water. Stimulation treatments with several types of fracturing fluids, including oilwater emulsion fluids, complex gel fluids and foam fluids, have been generally successful. Production decline curves from twenty four wells in the field were used for comparison of the different stimulation methods. Although foam fracturing has been used for the shortest period of time, comparison of the production histories show the relatively higher efficiency of the foam fracturing treatments compared to other stimulation methods in the Wasatch formation. Foam fluids gave higher production rates and higher flowing pressures than offset wells fractured with complex gel fluids. A stimulation model for oil and gas production was used to match the production history from this reservoir. The model allowed a projection of gas production based on early production from the wells and knowledge of the reservoir.

  4. Laboratory and field evaluation of polyurethane foam for lost circulation control

    SciTech Connect (OSTI)

    Glowka, D.A.; Loeppke, G.E.; Rand, P.B.; Wright, E.K. (Sandia National Labs., Albuquerque, NM (USA))

    1989-01-01T23:59:59.000Z

    A two-part polyurethane foam has been tested in the laboratory and in the field to assess its utility in controlling lost circulation encountered when drilling geothermal wells. A field test was conducted in The Geysers in January, 1988, to evaluate the chemical formulation and downhole tool used to deploy the chemicals. Although the tool apparently functioned properly in the field test, the chemicals failed to expand sufficiently downhole, instead forming a dense polymer that may be ineffective in sealing loss zones. Subsequent laboratory tests conducted under simulated downhole conditions indicate that the foam chemical undergo sever mixing with water in the wellbore, which disturbs the kinetics of the chemical reaction more than was previously contemplated. The results indicate that without significant changes in the foam chemical formulation or delivery technique, the foam system will be ineffective in lost circulation control except under very favorable conditions. 4 refs., 6 figs., 2 tabs.

  5. Flow Components in a NaK Test Loop Designed to Simulate Conditions in a Nuclear Surface Power Reactor

    SciTech Connect (OSTI)

    Polzin, Kurt A.; Godfroy, Thomas J. [NASA Marshall Space Flight Center Propulsion Research and Technology Applications Branch/ER24, MSFC, AL 35812 (United States)

    2008-01-21T23:59:59.000Z

    A test loop using NaK as the working fluid is presently in use to study material compatibility effects on various components that comprise a possible nuclear reactor design for use on the lunar surface. A DC electromagnetic (EM) pump has been designed and implemented as a means of actively controlling the NaK flow rate through the system and an EM flow sensor is employed to monitor the developed flow rate. These components allow for the matching of the flow rate conditions in test loops with those that would be found in a full-scale surface-power reactor. The design and operating characteristics of the EM pump and flow sensor are presented. In the EM pump, current is applied to a set of electrodes to produce a Lorentz body force in the fluid. A measurement of the induced voltage (back-EMF) in the flow sensor provides the means of monitoring flow rate. Both components are compact, employing high magnetic field strength neodymium magnets thermally coupled to a water-cooled housing. A vacuum gap limits the heat transferred from the high temperature NaK tube to the magnets and a magnetically-permeable material completes the magnetic circuit. The pump is designed to produce a pressure rise of 34.5 kPa, and the flow sensor's predicted output is roughly 20 mV at the loop's nominal flow rate of 0.114 m{sup 3}/hr.

  6. Use of an Accurate DNS Particulate Flow Method to Supply and Validate Boundary Conditions for the MFIX Code

    SciTech Connect (OSTI)

    Zhi-Gang Feng

    2012-05-31T23:59:59.000Z

    The simulation of particulate flows for industrial applications often requires the use of two-fluid models, where the solid particles are considered as a separate continuous phase. One of the underlining uncertainties in the use of the two-fluid models in multiphase computations comes from the boundary condition of the solid phase. Typically, the gas or liquid fluid boundary condition at a solid wall is the so called no-slip condition, which has been widely accepted to be valid for single-phase fluid dynamics provided that the Knudsen number is low. However, the boundary condition for the solid phase is not well understood. The no-slip condition at a solid boundary is not a valid assumption for the solid phase. Instead, several researchers advocate a slip condition as a more appropriate boundary condition. However, the question on the selection of an exact slip length or a slip velocity coefficient is still unanswered. Experimental or numerical simulation data are needed in order to determinate the slip boundary condition that is applicable to a two-fluid model. The goal of this project is to improve the performance and accuracy of the boundary conditions used in two-fluid models such as the MFIX code, which is frequently used in multiphase flow simulations. The specific objectives of the project are to use first principles embedded in a validated Direct Numerical Simulation particulate flow numerical program, which uses the Immersed Boundary method (DNS-IB) and the Direct Forcing scheme in order to establish, modify and validate needed energy and momentum boundary conditions for the MFIX code. To achieve these objectives, we have developed a highly efficient DNS code and conducted numerical simulations to investigate the particle-wall and particle-particle interactions in particulate flows. Most of our research findings have been reported in major conferences and archived journals, which are listed in Section 7 of this report. In this report, we will present a brief description of these results.

  7. Thermalization, Isotropization and Elliptic Flow from Nonequilibrium Initial Conditions with a Saturation Scale

    E-Print Network [OSTI]

    Marco Ruggieri; Francesco Scardina; Salvatore Plumari; Vincenzo Greco

    2014-07-09T23:59:59.000Z

    In this article we report on our results about the computation of the elliptic flow of the quark-gluon-plasma produced in relativistic heavy ion collisions, simulating the expansion of the fireball by solving the relativistic Boltzmann equation for the parton distribution function tuned at a fixed shear viscosity to entropy density ratio $\\eta/s$. Our main goal is to put emphasis on the role of a saturation scale in the initial gluon spectrum, which makes the initial distribution far from a thermalized one. We find that the presence of the saturation scale reduces the efficiency in building-up the elliptic flow, even if the thermalization process is quite fast $\\tau_{therm} \\approx 0.8 \\,\\rm fm/c$ and the pressure isotropization even faster $\\tau_{isotr} \\approx 0.3 \\,\\rm fm/c$. The impact of the non-equilibrium implied by the saturation scale manifests for non-central collisions and can modify the estimate of the viscosity respect to the assumption of full thermalization in $p_T$-space. We find that the estimate of $\\eta/s$ is modified from $\\eta/s \\approx 2/4\\pi$ to $\\eta/s \\approx 1/4\\pi$ at RHIC and from $\\eta/s \\approx 3/4\\pi$ to $\\eta/s \\approx 2/4\\pi$ at LHC. We complete our investigation by a study of the thermalization and isotropization times of the fireball for different initial conditions and values of $\\eta/s$ showing how the latter affects both isotropization and thermalization. Lastly, we have seen that the range of values explored by the phase-space distribution function $f$ is such that at $p_T<0.5\\, \\rm GeV$ the inner part of the fireball stays with occupation number significantly larger than unity despite the fast longitudinal expansion, which might suggest the possibility of the formation of a transient Bose-Einstein Condensate.

  8. Effects of mesh density and flow conditioning in simulating 7-pin wire wrapped fuel pins.

    SciTech Connect (OSTI)

    Smith, J. G.; Babin, B. R.; Pointer, W. D.; Fischer, P. F. (Mathematics and Computer Science); ( NE); (Kansas State Univ.)

    2008-01-01T23:59:59.000Z

    In response to the goals outlined by the U.S. Department of Energy's Global Nuclear Energy Partnership program, Argonne National Laboratory has initiated an effort to create an integrated multi-physics multi-resolution thermal hydraulic simulation tool package for the evaluation of nuclear power plant design and safety. As part of this effort, the applicability of a variety of thermal hydraulic analysis methods for the prediction of heat transfer and fluid dynamics in the wire-wrapped fuel-rod bundles found in a fast reactor core is being evaluated. The work described herein provides an initial assessment of the capabilities of the general purpose commercial computational fluid dynamics code Star-CD for the prediction of fluid dynamic characteristics in a wire wrapped fast reactor fuel assembly. A 7-pin wire wrapped fuel rod assembly based on the dimensions of fuel elements in the concept Advanced Burner Test Reactor [1] was simulated for different mesh densities and domain configurations. A model considering a single axial span of the wire wrapped fuel assembly was initially used to assess mesh resolution effects. The influence of the inflow/outflow boundary conditions on the predicted flow fields in the single-span model were then investigated through comparisons with the central span region of models which included 3 and 5 spans. The change in grid refinement had minimal impact on the inter-channel exchange within the assembly resulting in roughly a 5 percent maximum difference. The central span of the 3-span and 5-span cases exhibits much higher velocities than the single span case,, with the largest deviation (15 to 20 percent) occurring furthest away from the wire spacer grids in the higher velocity regions. However, the differences between predicted flow fields in the 3-span and 5-span models are minimal.

  9. Molecular dynamics simulations of oscillatory Couette flows with slip boundary conditions

    E-Print Network [OSTI]

    Priezjev, Nikolai V

    2012-01-01T23:59:59.000Z

    The effect of interfacial slip on steady-state and time-periodic flows of monatomic liquids is investigated using non-equilibrium molecular dynamics simulations. The fluid phase is confined between atomically smooth rigid walls, and the fluid flows are induced by moving one of the walls. In steady shear flows, the slip length increases almost linearly with shear rate. We found that the velocity profiles in oscillatory flows are well described by the Stokes flow solution with the slip length that depends on the local shear rate. Interestingly, the rate dependence of the slip length obtained in steady shear flows is recovered when the slip length in oscillatory flows is plotted as a function of the local shear rate magnitude. For both types of flows, the friction coefficient at the liquid-solid interface correlates well with the structure of the first fluid layer near the solid wall.

  10. Molecular dynamics simulations of oscillatory Couette flows with slip boundary conditions

    E-Print Network [OSTI]

    Nikolai V. Priezjev

    2012-08-27T23:59:59.000Z

    The effect of interfacial slip on steady-state and time-periodic flows of monatomic liquids is investigated using non-equilibrium molecular dynamics simulations. The fluid phase is confined between atomically smooth rigid walls, and the fluid flows are induced by moving one of the walls. In steady shear flows, the slip length increases almost linearly with shear rate. We found that the velocity profiles in oscillatory flows are well described by the Stokes flow solution with the slip length that depends on the local shear rate. Interestingly, the rate dependence of the slip length obtained in steady shear flows is recovered when the slip length in oscillatory flows is plotted as a function of the local shear rate magnitude. For both types of flows, the friction coefficient at the liquid-solid interface correlates well with the structure of the first fluid layer near the solid wall.

  11. Antioxidant behavior in flexible PU foam

    SciTech Connect (OSTI)

    Skorpenske, R.G.; Schrock, A.K.

    1991-09-01T23:59:59.000Z

    In this article, data are given regarding the AO concentration profiles across foam buns as a function of the corresponding temperature profile of the foams studied, three were produced on a Varimax pilot line located at Dow Chemical Company Freeport, Texas. The fourth foam used for this study was a production scale foam made at Texas Fibers, a Division of Leggett and Platt, Brenham, Texas. The foams produced on the Varimas include formulations using 4.1, 5.1 and 6.1 parts per hundred parts (pphp) water based on polyol and can be compared to the 4.1 pphp water foam made at Texas Fibers. Temperature data, collected from a foam-in-place grid of thermocouples, gives the time-temperature profile within the foam bun as a function of location. Foam samples which have been removed from locations corresponding to the thermocouples are examined, via methylene chloride extraction and liquid chromatographic analysis, for antioxidant content. The objective is to determine the significance of the foam environment, as a function of formulation, on the behavior of antioxidants.

  12. Second order adaptive boundary conditions for exterior flow problems: non-symmetric stationary flows in two dimensions

    E-Print Network [OSTI]

    called "artificial boundary conditions" to replace the boundary conditions at infinity. To solve this problem we construct -- by combining results from dynamical systems theory with matched asymptotic field depending explicitly on drag and lift and describing the solution to second and dominant third

  13. Effect of furnace atmosphere on E-glass foaming

    E-Print Network [OSTI]

    Kim, D. S.; Dutton, Bryan C.; Hrma, Pavel R.; Pilon, Laurent

    2006-01-01T23:59:59.000Z

    oxy-fired furnaces. E-glass foams were generated in a fused-81.05.K 1. Introduction Glass foams generated in glass-that the stability of E-glass foam decreased with increasing

  14. Activated, coal-based carbon foam

    DOE Patents [OSTI]

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2004-12-21T23:59:59.000Z

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  15. Nanostructured metal foams: synthesis and applications

    SciTech Connect (OSTI)

    Luther, Erik P [Los Alamos National Laboratory; Tappan, Bryce [Los Alamos National Laboratory; Mueller, Alex [Los Alamos National Laboratory; Mihaila, Bogdan [Los Alamos National Laboratory; Volz, Heather [Los Alamos National Laboratory; Cardenas, Andreas [Los Alamos National Laboratory; Papin, Pallas [Los Alamos National Laboratory; Veauthier, Jackie [Los Alamos National Laboratory; Stan, Marius [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    Fabrication of monolithic metallic nanoporous materials is difficult using conventional methodology. Here they report a relatively simple method of synthesizing monolithic, ultralow density, nanostructured metal foams utilizing self-propagating combustion synthesis of novel metal complexes containing high nitrogen energetic ligands. Nanostructured metal foams are formed in a post flame-front dynamic assembly with densities as low as 0.011 g/cc and surface areas as high as 270 m{sup 2}/g. They have produced metal foams via this method of titanium, iron, cobalt, nickel, zirconium, copper, palladium, silver, hafnium, platinum and gold. Microstructural features vary as a function of composition and process parameters. Applications for the metal foams are discussed including hydrogen absorption in palladium foams. A model for the sorption kinetics of hydrogen in the foams is presented.

  16. Blast mitigation capabilities of aqueous foam.

    SciTech Connect (OSTI)

    Hartman, William Franklin; Larsen, Marvin Elwood; Boughton, Bruce A.

    2006-02-01T23:59:59.000Z

    A series of tests involving detonation of high explosive blanketed by aqueous foam (conducted from 1982 to 1984) are described in primarily terms of recorded peak pressure, positive phase specific impulse, and time of arrival. The investigation showed that optimal blast mitigation occurs for foams with an expansion ratio of about 60:1. Simple analyses representing the foam as a shocked single phase mixture are presented and shown inadequate. The experimental data demonstrate that foam slows down and broadens the propagated pressure disturbance relative to a shock in air. Shaped charges and flyer plates were evaluated for operation in foam and appreciable degradation was observed for the flyer plates due to drag created by the foam.

  17. Aqueous foam toxicology evaluation and hazard review

    SciTech Connect (OSTI)

    Archuleta, M.M.

    1995-10-01T23:59:59.000Z

    Aqueous foams are aggregates of bubbles mechanically generated by passing air or other gases through a net, screen, or other porous medium that is wetted by an aqueous solution of surface-active foaming agents (surfactants). Aqueous foams are important in modem fire-fighting technology, as well as for military uses for area denial and riot or crowd control. An aqueous foam is currently being developed and evaluated by Sandia National Laboratories (SNL) as a Less-Than-Lethal Weapon for the National Institute of Justice (NIJ). The purpose of this study is to evaluate the toxicity of the aqueous foam developed for the NIJ and to determine whether there are any significant adverse health effects associated with completely immersing individuals without protective equipment in the foam. The toxicity of the aqueous foam formulation developed for NIJ is determined by evaluating the toxicity of the individual components of the foam. The foam is made from a 2--5% solution of Steol CA-330 surfactant in water generated at expansion ratios ranging from 500:1 to 1000:1. SteoI CA-330 is a 35% ammonium laureth sulfate in water and is produced by Stepan Chemical Company and containing trace amounts (<0.1%) of 1,4-dioxane. The results of this study indicate that Steol CA-330 is a non-toxic, mildly irritating, surfactant that is used extensively in the cosmetics industry for hair care and bath products. Inhalation or dermal exposure to this material in aqueous foam is not expected to produce significant irritation or systemic toxicity to exposed individuals, even after prolonged exposure. The amount of 1,4-dioxane in the surfactant, and subsequently in the foam, is negligible and therefore, the toxicity associated with dioxane exposure is not significant. In general, immersion in similar aqueous foams has not resulted in acute, immediately life-threatening effects, or chronic, long-term, non-reversible effects following exposure.

  18. Process for preparing silicon carbide foam

    DOE Patents [OSTI]

    Whinnery, L.L.; Nichols, M.C.; Wheeler, D.R.; Loy, D.A.

    1997-09-16T23:59:59.000Z

    A method of preparing near net shape, monolithic, porous SiC foams is disclosed. Organosilicon precursors are used to produce polymeric gels by thermally induced phase separation, wherein, a sufficiently concentrated solution of an organosilicon polymer is cooled below its solidification temperature to form a gel. Following solvent removal from the gel, the polymer foam is pretreated in an oxygen plasma in order to raise its glass transition temperature. The pretreated foam is then pyrolyzed in an inert atmosphere to form a SiC foam. 9 figs.

  19. Process for preparing silicon carbide foam

    DOE Patents [OSTI]

    Whinnery, LeRoy Louis (Livermore, CA); Nichols, Monte Carl (Livermore, CA); Wheeler, David Roger (Albuquerque, NM); Loy, Douglas Anson (Albuquerque, NM)

    1997-01-01T23:59:59.000Z

    A method of preparing near net shape, monolithic, porous SiC foams is disclosed. Organosilicon precursors are used to produce polymeric gels by thermally induced phase separation, wherein, a sufficiently concentrated solution of an organosilicon polymer is cooled below its solidification temperature to form a gel. Following solvent removal from the gel, the polymer foam is pretreated in an oxygen plasma in order to raise its glass transition temperature. The pretreated foam is then pyrolized in an inert atmosphere to form a SiC foam.

  20. Efficient continuous dryer for flexible polyurethane foam and cleaning apparatus

    DOE Patents [OSTI]

    Jody, Bassam (Chicago, IL); Daniels, Edward (Oak Lawn, IL); Libera, Joseph A. (Clarendon Hills, IL)

    1999-01-01T23:59:59.000Z

    A method of cleaning polyurethane foams where the material is transported through a wash station while alternately soaking the polyurethane foam in an organic solvent and squeezing solvent from the polyurethane foam a number of times. Then the polyurethane foam is sent through a rinse or solvent transfer station for reducing the concentration of solvent in the foam. The rinsed polyurethane foam is sent to a drying station wherein the foam is repeatedly squeezed while being exposed to hot air to remove wet air from the foam.

  1. Alloy Foam Diesel Emissions Control School Bus Implementation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alloy Foam Diesel Emissions Control School Bus Implementation Alloy Foam Diesel Emissions Control School Bus Implementation Poster presentation from the 2007 Diesel...

  2. Efficient continuous dryer for flexible polyurethane foam and cleaning apparatus

    DOE Patents [OSTI]

    Jody, B.; Daniels, E.; Libera, J.A.

    1999-03-16T23:59:59.000Z

    A method of cleaning polyurethane foams where the material is transported through a wash station while alternately soaking the polyurethane foam in an organic solvent and squeezing solvent from the polyurethane foam a number of times. Then the polyurethane foam is sent through a rinse or solvent transfer station for reducing the concentration of solvent in the foam. The rinsed polyurethane foam is sent to a drying station wherein the foam is repeatedly squeezed while being exposed to hot air to remove wet air from the foam. 4 figs.

  3. Carbon Foam Thermal Management Materials for Electronic Packaging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Foam Thermal Management Materials for Electronic Packaging Carbon Foam Thermal Management Materials for Electronic Packaging Presentation from the U.S. DOE Office of Vehicle...

  4. abrogating foam cell: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are easily prepared by micro- emulsion templates. These silica foams resemble dense aerogels. Introduction Because of their greatly enhanced pore Yang, Peidong 16 Foams in a...

  5. Sensor Fish Characterization of Fish Passage Conditions through John Day Dam Spillbay 20 with a Modified Flow Deflector

    SciTech Connect (OSTI)

    Duncan, Joanne P.

    2011-04-29T23:59:59.000Z

    Fish passage conditions over a modified deflector in Spillbay 20 at John Day Dam were evaluated by Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers (USACE), Portland District, using Sensor Fish devices. The objectives of the study were to describe and compare passage exposure conditions at two spill discharges, 2.4 and 4.0 thousand cubic feet per second (kcfs), identifying potential fish injury regions within the routes, and to evaluate a low-tailwater condition at the 2.4-kcfs discharge. The study was performed in April 2010 concurrent with HI-Z balloon-tag studies by Normandeau Associates, Inc. Sensor Fish data were analyzed to estimate 1) exposure conditions, particularly exposure to severe collision and shear events; 2) differences in passage conditions between treatments; and 3) relationships to live-fish injury and mortality data estimates. Nearly all Sensor Fish significant events were classified as collisions; the most severe occurred at the gate, on the spillbay chute, or at the deflector transition. Collisions in the gate region were observed only during the 2.4-kcfs discharge, when the tainter gate was open 1.2 ft. One shear event was observed during the evaluation, occurring at the deflector transition during passage at the 2.4-kcfs discharge at low tailwater. Flow quality, computed using the Sensor Fish turbulence index, was best for passage at the low-flow low-tailwater condition as well. The worst flow quality was observed for the 4.0-kcfs test condition. Contrasting the passage exposure conditions, the 2.4-kcfs low-tailwater treatment would be most deleterious to fish survival and well-being.

  6. Groundwater flow and salt transport in a subterranean estuary2 driven by intensified wave conditions3

    E-Print Network [OSTI]

    Candea, George

    1 Groundwater flow and salt transport in a subterranean estuary2 driven by intensified wave, Western University, London, Canada.6 Email: crobinson@eng.uwo.ca7 b National Centre for Groundwater A numerical study, based on a density-dependent variably saturated groundwater flow model,26 was conducted

  7. Passive Acoustic Detection of Wind Turbine In-Flow Conditions for Active Control and Optimization

    SciTech Connect (OSTI)

    Murray, Nathan E.

    2012-03-12T23:59:59.000Z

    Wind is a significant source of energy; however, the human capability to produce electrical energy still has many hurdles to overcome. One of these is the unpredictability of the winds in the atmospheric boundary layer (ABL). The ABL is highly turbulent in both stable and unstable conditions (based on the vertical temperature profile) and the resulting fluctuations can have a dramatic impact on wind turbine operation. Any method by which these fluctuations could be observed, estimated, or predicted could provide a benefit to the wind energy industry as a whole. Based on the fundamental coupling of velocity fluctuations to pressure fluctuations in the nearly incompressible flow in the ABL, This work hypothesizes that a ground-based array of infrasonic pressure transducers could be employed to estimate the vertical wind profile over a height relevant for wind turbines. To analyze this hypothesis, experiments and field deployments were conducted. Wind tunnel experiments were performed for a thick turbulent boundary layer over a neutral or heated surface. Surface pressure and velocity probe measurements were acquired simultaneously. Two field deployments yielded surface pressure data from a 49 element array. The second deployment at the Reese Technology Center in Lubbock, TX, also included data from a smaller aperture, 96-element array and a 200-meter tall meteorological tower. Analysis of the data successfully demonstrated the ability to estimate the vertical velocity profile using coherence data from the pressure array. Also, dynamical systems analysis methods were successful in identifying and tracking a gust type event. In addition to the passive acoustic profiling method, this program also investigated a rapid response Doppler SODAR system, the optimization of wind turbine blades for enhanced power with reduced aeroacoustic noise production, and the implementation of a wireless health monitoring system for the wind turbine blades. Each of these other objectives was met successfully. The use of phase unwrapping applied to SODAR data was found to yield reasonable results for per-pulse measurements. A health monitoring system design analysis was able to demonstrate the ability to use a very small number of sensors to monitor blade health based on the blade's overall structural modes. Most notable was the development of a multi-objective optimization methodology that successfully yielded an aerodynamic blade design that produces greater power output with reduced aerodynamic loading noise. This optimization method could be significant for future design work.

  8. 23.11.2014bo Akademi Univ -Thermal and Flow Engineering Piispankatu 8, 20500 Turku 1/36 7. Air conditioning, cooling towers

    E-Print Network [OSTI]

    Zevenhoven, Ron

    23.11.2014Ĺbo Akademi Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 1/36 7. Air conditioning, cooling towers Ron Zevenhoven Ĺbo Akademi University Thermal and Flow Engineering Laboratory Engineering Piispankatu 8, 20500 Turku 2/36 7.1 Humid air #12;23.11.2014 Ĺbo Akademi Univ - Thermal and Flow

  9. Visualization of flow boiling in an annular heat exchanger under reduced gravity conditions

    E-Print Network [OSTI]

    Westheimer, David Thomas

    2000-01-01T23:59:59.000Z

    This work examines the effects of gravitational acceleration on the flow boiling process. A test facility focusing on an annular heat exchanger was designed, built out of borosilicate glass, and flown on NASA's KC-135 reduced gravity airplane...

  10. Vertical Flow Dynamics in Kelp Forests: Implications for Nutrient Uptake, Condition and Survival

    E-Print Network [OSTI]

    Edwards, Matthew S.

    2008-01-01T23:59:59.000Z

    change and ENSO impacts on kelp forests. As yet, we areVertical Flow Dynamics in Kelp Forests: Implications forof ocean waves on giant kelp fronds results in the vertical

  11. Nonlocal and localized analyses of conditional mean transient flow in bounded, randomly heterogeneous

    E-Print Network [OSTI]

    Tartakovsky, Daniel M.

    TERMS: 1829 Hydrology: Groundwater hydrology; 1869 Hydrology: Stochastic processes; 3210 Mathematical Geophysics: Modeling; 3230 Mathematical Geophysics: Numerical solutions; KEYWORDS: transient flow.1029/2003WR002099. 1. Introduction [2] Hydraulic parameters vary randomly in space and are therefore often

  12. Development of Steel Foam Materials and Structures

    SciTech Connect (OSTI)

    Kenneth Kremer; Anthony Liszkiewicz; James Adkins

    2004-10-20T23:59:59.000Z

    In the past few years there has been a growing interest in lightweight metal foams. Demands for weight reduction, improved fuel efficiency, and increased passenger safety in automobiles now has manufacturers seriously considering the use of metal foams, in contrast to a few years ago, when the same materials would have been ruled out for technical or economical reasons. The objective of this program was to advance the development and use of steel foam materials, by demonstrating the advantages of these novel lightweight materials in selected generic applications. Progress was made in defining materials and process parameters; characterization of physical and mechanical properties; and fabrication and testing of generic steel foam-filled shapes with compositions from 2.5 wt.% to 0.7 wt.% carbon. A means of producing steel foam shapes with uniform long range porosity levels of 50 to 60 percent was demonstrated and verified with NDE methods. Steel foam integrated beams, cylinders and plates were mechanically tested and demonstrated advantages in bend stiffness, bend resistance, and crush energy absorption. Methods of joining by welding, adhesive bonding, and mechanical fastening were investigated. It is important to keep in mind that steel foam is a conventional material in an unconventional form. A substantial amount of physical and mechanical properties are presented throughout the report and in a properties database at the end of the report to support designer's in applying steel foam in unconventional ways.

  13. Damping of liquid sloshing by foams

    E-Print Network [OSTI]

    Alban Sauret; François Boulogne; Jean Cappello; Emilie Dressaire; Howard A. Stone

    2015-02-01T23:59:59.000Z

    When a container is set in motion, the free surface of the liquid starts to oscillate or slosh. Such effects can be observed when a glass of water is handled carelessly and the fluid sloshes or even spills over the rims of the container. However, beer does not slosh as readily as water, which suggests that foam could be used to damp sloshing. In this work, we study experimentally the effect on sloshing of a liquid foam placed on top of a liquid bath. We generate a monodisperse two-dimensional liquid foam in a rectangular container and track the motion of the foam. The influence of the foam on the sloshing dynamics is experimentally characterized: only a few layers of bubbles are sufficient to significantly damp the oscillations. We rationalize our experimental findings with a model that describes the foam contribution to the damping coefficient through viscous dissipation on the walls of the container. Then we extend our study to confined three-dimensional liquid foam and observe that the behavior of 2D and confined 3D systems are very similar. Thus we conclude that only the bubbles close to the walls have a significant impact on the dissipation of energy. The possibility to damp liquid sloshing using foam is promising in numerous industrial applications such as the transport of liquefied gas in tankers or for propellants in rocket engines.

  14. Two-phase stratified flow regime transition analysis for low gravity conditions

    E-Print Network [OSTI]

    Miller, Kathryn M.

    1990-01-01T23:59:59.000Z

    the effect of the gas and liquid mass flow rates, fluid properties, pipe diameter, angle of pipe inclination, and gravity. Five basic flow regimes were considered: smooth stratified, wavy stratified, intermittent (slug and plug), annular with dispersed... Numerical Solution The premise used in this work for solving for the transition boundary is based on the assumption that the transition from the stratified regime to some other regime will occur when a very small wave exists on the surface of the liquid...

  15. Ice stream basal conditions from block-wise surface data inversion and simple regression models of ice stream flow: Application to

    E-Print Network [OSTI]

    Boyce, C. Kevin

    Ice stream basal conditions from block-wise surface data inversion and simple regression models of ice stream flow: Application to Bindschadler Ice Stream O. V. Sergienko,1 R. A. Bindschadler,2 P. L; published 4 December 2008. [1] Widespread basal conditions controlling ice stream flows are still beyond

  16. Influence of initial conditions on turbulence and mixing in Richtmyer-Meshkov flows in presence of re-shock

    SciTech Connect (OSTI)

    Balasubramanian, Sridhar [Los Alamos National Laboratory; Prestridge, Katherine P [Los Alamos National Laboratory; Orlicz, Gregory C [Los Alamos National Laboratory; Balasubramaniam, Balakumar J [Los Alamos National Laboratory

    2010-11-15T23:59:59.000Z

    The study of influence of initial conditions [amplitude ({delta}) and wavelength ({lambda}) of perturbations] on variable-density flows stems from the the recent work done by Dimonte et at. 2004, Miles et al. 2005 and Balakumar et al. 2008a, where it was shown that both Richtmyer-Meshkov (R-M) and Rayleigh-Taylor (R-T) turbulent flows are not truly self similar and have a strong initial conditions dependence on turbulence transport and mixing. However, so far most of the work on this topic has been numerical studies which suggest that for multi-mode systems, the emergence of a regime of self-similar instability growth independent of the initial conditions does not occur. Experimental evidence is needed to verify this theory. Thus, the present work focuses on conducting an experimental study at moderate Mach number (Ma = 1.2) to understand the effects of multi-mode perturbations of the shocked interface on instability growth rate and mixing for R-M flows, which are important mechanisms in inertial confinement fusion reactions, supernovae, combustion and general fluid mixing processes. The ongoing 3-D numerical simulations using ILES will be used for validation of our experimental results. The experiments to study R-M turbulence and mixing are carreid out at the Los Alamos Gas Shock Tube facility shown in Figure I and described in detail in Balakumar et al. 2008b. A heavy gas curtain of SF{sub 6}, surrounded on both sides by ambient air, representing a light/heavy/light interface is flowed through a varicose nozzle (shown in Figure 1c). This initial interface is then accelerated by a Mach 1.2 shock, generated in the driver section. Simultaneous Particle Image Velocimetry (PIV) and Planar Laser Induced Fluorescence (PLIF) diagnostics are used to characterize the initial conditions and also image the evolving flow to measure instantaneous velocity and density fields. The evolving structures are re-shocked at various times using a moveable reflecting wall to study the initial condition effects on turbulence and mixing. Mean flow fields are averaged from an ensemble of experiments whose initial density fields correlate to within 97% of each other. From the mean field, the fluctuating quantities are determined, and the density self-correlations and density-velocity correlations are calculated.

  17. Carbon Foam for Fuel Cell Humidification R. D. Ott, P. Kadolkar, J. W. Klett

    E-Print Network [OSTI]

    /min) Air in 0.17 kg/min Air out Water in Heater block (32 W/cm2) #12;Current Status of Research Previous air with water · With increased water flow rate into the foam Decreased simulated electronics temperature (heater block) Decreased outlet temperature Increased RH of outlet air 0 50 100 150 200 0 5 10 15

  18. Chemical Engineering and Processing 43 (2004) 149160 Minimum superficial gas velocity for onset of foaming

    E-Print Network [OSTI]

    Pilon, Laurent

    ; Foam fractionation; Slag foaming; Glass foam 1. Introduction Semi-batch foams or pneumatic foams protein concentration [2]. In food processes or in glass melting furnaces, foam is unde- sirable since of foaming Laurent Pilona,, Raymond Viskantab a Mechanical and Aerospace Engineering Department, University

  19. Factors Contributing to Petroleum Foaming. 2. Synthetic Crude Oil Systems

    E-Print Network [OSTI]

    Kilpatrick, Peter K.

    to the petroleum industry. Nonaqueous foams occur in the production of and refining of crude oil. Crude oil foamsFactors Contributing to Petroleum Foaming. 2. Synthetic Crude Oil Systems Nael N. Zaki, Michael K August 28, 2001 The influence of petroleum asphaltenes and resins on stabilizing model oil foams

  20. Synthesis method for amorphous metallic foam Jan Schroersa)

    E-Print Network [OSTI]

    Haller, Gary L.

    be classified as ei- ther open or closed porous. Open foams are characterized by interconnected bubbles

  1. High temperature adhesive silicone foam composition, foam generating system and method of generating foam. [For access denial

    DOE Patents [OSTI]

    Mead, J.W.; Montoya, O.J.; Rand, P.B.; Willan, V.O.

    1983-12-21T23:59:59.000Z

    Access to a space is impeded by generation of a sticky foam from a silicone polymer and a low boiling solvent such as a halogenated hydrocarbon. In a preferred aspect, the formulation is polydimethylsiloxane gel mixed with F502 Freon as a solvent and blowing agent, and pressurized with CO/sub 2/ in a vessel to about 250 PSI, whereby when the vessel is opened, a sticky and solvent resistant foam is deployed. The foam is deployable, over a wide range of temperatures, adhering to wet surfaces as well as dry, is stable over long periods of time and does not propagate flame or lose adhesive properties during an externally supported burn.

  2. Susceptibility and predictability of conditions for preferential flow Zhi Wang1 and Jan Feyen

    E-Print Network [OSTI]

    Wang, Zhi "Luke"

    Institute for Land and Water Management, Katholieke Universiteit Leuven, Leuven, Belgium Coen J. Ritsema DLO Winand Staring Centre for Integrated Land, Soil and Water Research, Wageningen, Netherlands Abstract unstable preferen- tial flow) in porous media affects the efficiency of oil recovery from a reservoir

  3. Quasi-steady model for predicting temperature of aqueous foams circulating in geothermal wellbores

    SciTech Connect (OSTI)

    Blackwell, B.F.; Ortega, A.

    1983-01-01T23:59:59.000Z

    A quasi-steady model has been developed for predicting the temperature profiles of aqueous foams circulating in geothermal wellbores. The model assumes steady one-dimensional incompressible flow in the wellbore; heat transfer by conduction from the geologic formation to the foam is one-dimensional radially and time-dependent. The vertical temperature distribution in the undisturbed geologic formation is assumed to be composed of two linear segments. For constant values of the convective heat-transfer coefficient, a closed-form analytical solution is obtained. It is demonstrated that the Prandtl number of aqueous foams is large (1000 to 5000); hence, a fully developed temperature profile may not exist for representative drilling applications. Existing convective heat-transfer-coefficient solutions are adapted to aqueous foams. The simplified quasi-steady model is successfully compared with a more-sophisticated finite-difference computer code. Sample temperature-profile calculations are presented for representative values of the primary parameters. For a 5000-ft wellbore with a bottom hole temperature of 375{sup 0}F, the maximum foam temperature can be as high as 300{sup 0}F.

  4. Spin Foam Models from the Tetrad Integration

    E-Print Network [OSTI]

    A. Mikovic

    2005-11-15T23:59:59.000Z

    We describe a class of spin foam models of four-dimensional quantum gravity which is based on the integration of the tetrad one-forms in the path integral for the Palatini action of General Relativity. In the Euclidian gravity case this class of models can be understood as a modification of the Barrett-Crane spin foam model. Fermionic matter can be coupled by using the path integral with sources for the tetrads and the spin connection, and the corresponding state sum is based on a spin foam where both the edges and the faces are colored independently with the irreducible representations of the spacetime rotations group.

  5. Low density inorganic foams fabricated using microwaves

    SciTech Connect (OSTI)

    Meek, T.T.; Blake, R.D.; Gregory, T.G.

    1985-01-01T23:59:59.000Z

    The objective of our work was to determine if high temperature foams could be made using microwave heating; and if so, to investigate some of their properties. Several foams were made and their compressive strengths, tensile strengths and densities were determined. Foams were made of glass, metal-glass, glass-fiber, metal-glass-fiber, and fly ash. The microwave source used was a Litton model 1521 microwave oven which operated at 2.45 GHz and had an output of 700 watts.

  6. The physical properties of microcellular composite foams

    SciTech Connect (OSTI)

    Nyitray, A.M.; Williams, J.M.; Onn, D.; Witek, A. (Los Alamos National Lab., NM (USA); Delaware Univ., Newark, DE (USA). Applied Thermal Physics Lab.)

    1989-01-01T23:59:59.000Z

    Recently we reported on a method of preparing microcellular composite foams. In this procedure an open-celled polystyrene foam is prepared by the polymerization of a high-internal-phase water-in-oil emulsion containing styrene, divinylbenzene, surfactant, free-radial initiator and water. After drying, the cells of the polystyrene foam are then filled with other materials such as aerogel or resoles. The physical properties of these materials, e.g., surface area, density, thermal conductivity, and compressive strength will be presented. 10 refs., 1 fig., 3 tabs.

  7. Real time monitoring of multiple wells flowing under pseudosteady state condition by using Kalman filtering

    E-Print Network [OSTI]

    Jacob, Suresh

    2002-01-01T23:59:59.000Z

    This work develops a method for the real time monitoring of well performance by using Kalman filtering. A system of two or more wells draining the same reservoir under pseudo steady state condition is monitored simultaneously to estimate both...

  8. Numerical simulation of the flow over a coastal structure in depth-limited conditions

    E-Print Network [OSTI]

    Ginting, Victor Eralingga

    1998-01-01T23:59:59.000Z

    of detailed measurements of irregular wave transformation in front of the structure in depth-limited conditions. The second data set consists of several test runs to study the irregular wave reflection and runup on the coastal structure in depth...

  9. Comparison of in-cylinder scavenging flows in a two-stroke cycle engine under motored and fired conditions

    SciTech Connect (OSTI)

    Miles, P.C.; Green, R.M.; Witze, P.O.

    1994-06-01T23:59:59.000Z

    The in-cylinder flow field of a loop-scavenged, two-stroke engine has been characterized using laser Doppler velocimetry. The radial component of gas velocity was measured along the axis of the cylinder for both motored and fired operation. Measurements were obtained under conditions simulating both crankcase and external blower driven scavenging. Mean profiles of the radial velocity show marked differences in the global flow structure between motored and fired operation for both scavenging methods. These differences persist throughout the scavenging process and survive compression of the fresh charge. Root mean square (rms) velocity fluctuations near TDC were also determined, and significant differences between motored and fired operation are observed. The rms fluctuations are found to correlate well with the mean shear during compression.

  10. Uniformly dense polymeric foam body

    DOE Patents [OSTI]

    Whinnery Jr., Leroy

    2003-07-15T23:59:59.000Z

    A method for providing a uniformly dense polymer foam body having a density between about 0.013 g/cm.sup.3 to about 0.5 g/cm.sup.3 is disclosed. The method utilizes a thermally expandable polymer microsphere material wherein some of the microspheres are unexpanded and some are only partially expanded. It is shown that by mixing the two types of materials in appropriate ratios to achieve the desired bulk final density, filling a mold with this mixture so as to displace all or essentially all of the internal volume of the mold, heating the mold for a predetermined interval at a temperature above about 130.degree. C., and then cooling the mold to a temperature below 80.degree. C. the molded part achieves a bulk density which varies by less then about .+-.6% everywhere throughout the part volume.

  11. Proper initial conditions for the lubrication model of the flow of a thin film of fluid

    E-Print Network [OSTI]

    S. A. Suslov; A. J. Roberts

    1998-04-08T23:59:59.000Z

    A lubrication model describes the dynamics of a thin layer of fluid spreading over a solid substrate. But to make forecasts we need to supply correct initial conditions to the model. Remarkably, the initial fluid thickness is not the correct initial thickness for the lubrication model. Theory recently developed in \\cite{Roberts89b,Roberts97b} provides the correct projection of initial conditions onto a model of a dynamical system. The correct projection is determined by requiring that the model's solution exponentially quickly approaches that of the actual fluid dynamics. For lubrication we show that although the initial free surface shape contributes the most to the model's initial conditions, the initial velocity field is also an influence. The projection also gives a rationale for incorporating miscellaneous small forcing effects into the lubrication model; gravitational forcing is given as one example.

  12. Coated foams, preparation, uses and articles

    DOE Patents [OSTI]

    Duchane, D.V.; Barthell, B.L.

    1982-10-21T23:59:59.000Z

    Hydrophobic cellular material is coated with a thin hydrophilic polymer skin which stretches tightly over the foam but which does not fill the cells of the foam, thus resulting in a polymer-coated foam structure having a smoothness which was not possible in the prior art. In particular, when the hydrophobic cellular material is a specially chosen hydrophobic polymer foam and is formed into arbitrarily chosen shapes prior to the coating with hydrophilic polymer, inertial confinement fusion (ICF) targets of arbitrary shapes can be produced by subsequently coating the shapes with metal or with any other suitable material. New articles of manufacture are produced, including improved ICF targets, improved integrated circuits, and improved solar reflectors and solar collectors. In the coating method, the cell size of the hydrophobic cellular material, the viscosity of the polymer solution used to coat, and the surface tension of the polymer solution used to coat are all very important to the coating.

  13. Evaluation of aqueous-foam surfactants for geothermal drilling fluids

    SciTech Connect (OSTI)

    Rand, P.B.; Montoya, O.J.

    1983-07-01T23:59:59.000Z

    Aqueous foams are potentially useful drilling and cleanout fluids for geothermal applications. Successful use of foams requires surfactants (foaming agents) that can survive in the high-temperature geothermal environment. In this study, solutions of aqueous-foam-forming surfactants have been exposed to 260/sup 0/C (500/sup 0/F) and 310/sup 0/C (590/sup 0/F) in various chemical environments to determine if they can survive and make foams after exposure. Comparison of foams before and after exposure and the change in solution pH were used to evaluate their performance. Controlled liquid-volume-fraction foams, made in a packed-bed foam generator, were used for all tests. These tests have shown that many commercially available surfactants can survive short high-temperature cycles in mild acids, mild bases, and salt solutions as evidenced by their ability to make foams after exposure to high temperatures.

  14. Carbon foams for energy storage devices

    DOE Patents [OSTI]

    Kaschmitter, James L. (Pleasanton, CA); Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA)

    1996-01-01T23:59:59.000Z

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc-1.0 g/cc) electrically conductive and have high surface areas (400 m.sup.2 /g-1000 m.sup.2 /g). Capacitances on the order of several tens of farad per gram of electrode are achieved.

  15. Carbon foams for energy storage devices

    DOE Patents [OSTI]

    Kaschmitter, J.L.; Mayer, S.T.; Pekala, R.W.

    1996-06-25T23:59:59.000Z

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc--1.0 g/cc) electrically conductive and have high surface areas (400 m{sup 2}/g-1000 m{sup 2}/g). Capacitances on the order of several tens of farad per gram of electrode are achieved. 9 figs.

  16. DNS of vertical plane channel flow with finite-size particles: Voronoi analysis, acceleration statistics and particle-conditioned averaging

    E-Print Network [OSTI]

    Garcia-Villalba, Manuel; Uhlmann, Markus

    2012-01-01T23:59:59.000Z

    We have performed a direct numerical simulation of dilute turbulent particulate flow in a vertical plane channel, fully resolving the phase interfaces. The flow conditions are the same as those in the main case of "Uhlmann, M., Phys. Fluids, vol. 20, 2008, 053305", with the exception of the computational domain length which has been doubled in the present study. The statistics of flow and particle motion are not significantly altered by the elongation of the domain. The large-scale columnar-like structures which had previously been identified do persist and they are still only marginally decorrelated in the prolonged domain. Voronoi analysis of the spatial particle distribution shows that the state of the dispersed phase can be characterized as slightly more ordered than random tending towards a homogeneous spatial distribution. It is also found that the p.d.f.'s of Lagrangian particle accelerations for wall-normal and spanwise directions follow a lognormal distribution as observed in previous experiments of ...

  17. Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations

    SciTech Connect (OSTI)

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.

    2014-09-01T23:59:59.000Z

    Dehumidification or latent cooling in buildings is an area of growing interest that has been identified as needing more research and improved technologies for higher performance. Heating, ventilating, and air-conditioning (HVAC) systems typically expend excessive energy by using overcool-and-reheat strategies to dehumidify buildings. These systems first overcool ventilation air to remove moisture and then reheat the air to meet comfort requirements. Another common strategy incorporates solid desiccant rotors that remove moisture from the air more efficiently; however, these systems increase fan energy consumption because of the high airside pressure drop of solid desiccant rotors and can add heat of absorption to the ventilation air. Alternatively, liquid desiccant air-conditioning (LDAC) technology provides an innovative dehumidification solution that: (1) eliminates the need for overcooling and reheating from traditional cooling systems; and (2) avoids the increased fan energy and air heating from solid desiccant rotor systems.

  18. Radiative transfer and thermal performance levels in foam insulation boardstocks

    E-Print Network [OSTI]

    Moreno, John David

    1991-01-01T23:59:59.000Z

    The validity of predictive models for the thermal conductivity of foam insulation is established based on the fundamental geometry of the closed-cell foam. The extinction coefficient is experimentally and theoretically ...

  19. Fenton Oxidation of TCE Vapors in a Foam Reactor

    E-Print Network [OSTI]

    Fenton Oxidation of TCE Vapors in a Foam Reactor Eunsung Kan,a,b Seongyup Kim,a and Marc A.interscience.wiley.com). DOI 10.1002/ep.10205 Oxidation of dilute TCE vapors in a foam reactor using Fenton's reagent composition of Fenton's reagents, the foam reactor configuration provided a higher rate absorption and greater

  20. Experiments to Populate and Validate a Processing Model for Polyurethane Foam: Additional Data for Structural Foams.

    SciTech Connect (OSTI)

    Rao, Rekha R.; Celina, Mathias C.; Giron, Nicholas Henry; Long, Kevin Nicholas; Russick, Edward M.

    2015-01-01T23:59:59.000Z

    We are developing computational models to help understand manufacturing processes, final properties and aging of structural foam, polyurethane PMDI. Th e resulting model predictions of density and cure gradients from the manufacturing process will be used as input to foam heat transfer and mechanical models. BKC 44306 PMDI-10 and BKC 44307 PMDI-18 are the most prevalent foams used in structural parts. Experiments needed to parameterize models of the reaction kinetics and the equations of motion during the foam blowing stages were described for BKC 44306 PMDI-10 in the first of this report series (Mondy et al. 2014). BKC 44307 PMDI-18 is a new foam that will be used to make relatively dense structural supports via over packing. It uses a different catalyst than those in the BKC 44306 family of foams; hence, we expect that the reaction kineti cs models must be modified. Here we detail the experiments needed to characteriz e the reaction kinetics of BKC 44307 PMDI-18 and suggest parameters for the model based on these experiments. In additi on, the second part of this report describes data taken to provide input to the preliminary nonlinear visco elastic structural response model developed for BKC 44306 PMDI-10 foam. We show that the standard cu re schedule used by KCP does not fully cure the material, and, upon temperature elevation above 150 o C, oxidation or decomposition reactions occur that alter the composition of the foam. These findings suggest that achieving a fully cured foam part with this formulation may be not be possible through therma l curing. As such, visco elastic characterization procedures developed for curing thermosets can provide only approximate material properties, since the state of the material continuously evolves during tests.

  1. Non-Darcy natural convection in high porosity metal foams M.S. Phanikumar a,*, R.L. Mahajan b

    E-Print Network [OSTI]

    ­Forchheimer-extended Darcy flow model and a semi-heuristic two-equation energy model obtained by relaxing the local thermalNon-Darcy natural convection in high porosity metal foams M.S. Phanikumar a,*, R.L. Mahajan b but only a heated plate. Thermal dispersion effects and the effects of Darcy number on heat transfer

  2. Effect of Heating Rate on Glass Foaming: Transition to Bulk Foam

    SciTech Connect (OSTI)

    Hrma, Pavel R.

    2009-02-15T23:59:59.000Z

    Foaming of glass is an undesirable side effect of glass fining. According to a recent experimental study, the gas-phase volume in the melt heated at a constant rate dramatically increased with an increased rate of heating. This observation indicates that an increased rate of heating (a natural consequence of the increased processing rate experienced as a result of transition to oxy-fuel firing) may exert a substantial influence on glass foaming in advanced glass-melting furnaces. This paper attributes this effect to the change of mode of foam formation in response to an increased rate of heating.

  3. Finite element modeling of syntactic foam.

    SciTech Connect (OSTI)

    Hobbs, Michael L.

    2004-10-01T23:59:59.000Z

    A decomposition model has been developed to predict the response of removable syntactic foam (RSF) exposed to fire-like heat fluxes. RSF consists of glass micro-balloons (GMB) in a cured epoxy polymer matrix. A chemistry model is presented based on the chemical structure of the epoxy polymer, mass transport of polymer fragments to the bulk gas, and vapor-liquid equilibrium. Thermophysical properties were estimated from measurements. A bubble nucleation, growth, and coalescence model was used to describe changes in properties with the extent of reaction. Decomposition of a strand of syntactic foam exposed to high temperatures was simulated.

  4. Low density microcellular carbon foams and method of preparation

    DOE Patents [OSTI]

    Arnold, C. Jr.; Aubert, J.H.; Clough, R.L.; Rand, P.B.; Sylwester, A.P.

    1988-06-20T23:59:59.000Z

    A low density, open-celled microcellular carbon foam is disclosed which is prepared by dissolving a carbonizable polymer or copolymer in a solvent, pouring the solution into a mold, cooling the solution, removing the solvent, and then carbonizing the polymer or copolymer in a high temperature oven to produce the foam. If desired, an additive can be introduced in order to produce a doped carbon foam, and the foams can be made isotropic by selection of a suitable solvent. The low density, microcellular foams produced by this process are particularly useful in the fabrication of inertial confinement fusion targets, but can also be used as catalysts, absorbents, and electrodes.

  5. Investigation of Kelvin-like solid foams for potential engineering applications: An attractive set of geometrical and thermo-hydraulic properties

    E-Print Network [OSTI]

    Prashant Kumar

    2014-12-02T23:59:59.000Z

    Open cell foams have diverse industrial applications e.g. heat exchangers, structured reactors, filtration due to their unique properties such as high porosity and high specific surface area. In order to theoretically determine the geometric specific surface area and relationships between geometrical parameters of isotropic open cell foams, a generalized mathematical correlation was developed. For this purpose the tetrakaidecahedron geometry was used and different shapes of strut cross-sections of foam structures were taken explicitly into account. The derived correlation to predict geometrical properties can be easily extended to different strut shapes. 3-D numerical simulations at pore scale were performed to study the pressure drop characteristics and effective thermal conductivity. Fluid flow through open cell foam was performed in three different regimes: Darcy regime, transition regime and inertia regime. Importance of geometrical properties on fluid flow characteristics and their inclusion in the proposed correlations for predicting pressure drop is discussed. Can Ergun parameters have constant numerical values or not is also extensively discussed. Three different correlations were derived to predict the effective thermal conductivity for both, isotropic and anisotropic open cell foams. Geometrical parameters of foam matrix were introduced in the correlations to predict effective thermal conductivity.

  6. Spacetime Foam Model of the Schwarzschild Horizon

    E-Print Network [OSTI]

    Jarmo Makela; Ari Peltola

    2004-03-19T23:59:59.000Z

    We consider a spacetime foam model of the Schwarzschild horizon, where the horizon consists of Planck size black holes. According to our model the entropy of the Schwarzschild black hole is proportional to the area of its event horizon. It is possible to express geometrical arguments to the effect that the constant of proportionality is, in natural units, equal to one quarter.

  7. Application of convolution and average pressure approximation for solving non-linear flow problems. constant pressure inner boundary condition for gas flow

    E-Print Network [OSTI]

    Zhakupov, Mansur

    2006-08-16T23:59:59.000Z

    properties are specifically taken as implicit functions of pressure, temperature, and composition) are particularly challenging because the diffusivity equation for the "real gas" flow case is strongly non-linear. Whereas different methods exist which allow...

  8. Application of convolution and average pressure approximation for solving non-linear flow problems. constant pressure inner boundary condition for gas flow 

    E-Print Network [OSTI]

    Zhakupov, Mansur

    2006-08-16T23:59:59.000Z

    The accurate description of fluid flow through porous media allows an engineer to properly analyze past behavior and predict future reservoir performance. In particular, appropriate mathematical models which describe fluid ...

  9. WATER-QUALITY CONDITIONS DURING LOW FLOW IN THE LOWER YOUGHIOGHENY RIVER BASIN, PENNSYLVANIA, OCTOBER 5-7, 1998

    SciTech Connect (OSTI)

    James I. Sams, III, Karl T. Schroeder; Terry E. Ackman; J. Kent Crawford; Kim L. Otto

    2001-01-01T23:59:59.000Z

    In October 1998, a chemical synoptic survey was conducted by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, National Energy Technology Laboratory, in the Lower Youghiogheny River Basin in Pennsylvania to give a snap-shot of present (1998) water quality during low-flow conditions. Water samples from 38 sites--12 mainstem sites, 22 tributaries, and 4 mine discharges that discharge directly to the Youghiogheny River--were used to identify sources of contaminants from mining operations. Specific conductance, water temperature, pH, and dissolved oxygen were measured in the field at each site and concentrations of major ions and trace elements were measured in the laboratory. Unaccounted for gains and losses in streamflow were measured during the study. Unaccounted for losses in streamflow might be attributed to water loss through streambed fractures. Extensive mine tunnels are present in the basin and loss of water to these tunnels seems likely. Unaccounted for gains in streamflow may be from unmeasured tributaries or surface seeps, but most of the gains are suspected to come from artesian flow through fractures in the streambed from underground mine pools. Influent flows of rust-colored water were noted in some river sections. The pH values for all the samples collected during this survey were above 5.8, and most (33 of 38 samples) were above 7.0. Samples from the four mine-discharge sites also had pH values between 6.3 and 6.7. The lowest pH (5.8) was in a tributary, Galley Run. All 38 sampling sites had net alkalinity. The alkalinity load in the Youghiogheny River increased between Connellsville and McKeesport from 35 to 79 tons per day. Above Smithton, the measured alkalinity load in the Lower Youghiogheny River agreed well with the estimated alkalinity load. Below Smithton, measured alkalinity loads in the Lower Youghiogheny River are greater than calculated loads, resulting in unaccounted for gains in alkalinity. These gains are believed to be from seeps in the streambed. Approximately one-third of the load of total alkalinity in the Youghiogheny River at McKeesport is attributed to Sewickley Creek, which contributes 14 tons per day. Sulfate concentrations in the Youghiogheny River steadily increase from 33 milligrams per liter at Connellsville to 77 milligrams per liter near McKeesport. The measured concentrations of sulfate exceeded Pennsylvania water-quality standards at four tributary sites (Galley Run, Hickman Run, Sewickley Creek, and Gillespie Run) and all four mine-discharge sites but not at any main-stem sites. A large increase in sulfate load between West Newton and Sutersville can be attributed almost entirely to the contribution from Sewickley Creek (49 tons per day). Approximately 25 percent of the load measured between Connellsville and McKeesport is unaccounted for. These gains are believed to be from seeps in the streambed from underground mine pools. Similar patterns also were observed for loads of sodium, calcium, and magnesium. Unmeasured inputs from mine rainage are believed to be the source of these loads. Elevated concentrations (above background levels) of chemicals associated with drainage from coal-mining operations were measured in samples from tributaries, especially from Galley Run, Gillespie Run, and Sewickley Creek, and from the mine-discharge sites. The synoptic survey conducted for this study was successful in identifying generalized reaches of the Youghiogheny River where unaccounted for loads of constituents associated with mining activities are entering the river. However, the survey was not able to pinpoint the location of these loads. Remote-sensing techniques, such as thermal infrared imaging by the National Energy Technology Laboratory, could be useful for determining the precise locations of these inputs.

  10. Effect of furnace atmosphere on E-glass foaming

    SciTech Connect (OSTI)

    Kim, Dong-Sang; Dutton, Bryan C.; Hrma, Pavel R.; Pilon, Laurent

    2006-12-01T23:59:59.000Z

    The effect of furnace atmosphere on E-glass foaming generated in crucible has been studied with a specific goal to understand the impact of increased water content on foaming in oxy-fired furnaces. E-glass foams were generated in a fused-quartz crucible located in a quartz window furnace equipped with video recording. The present study showed that humidity in the furnace atmosphere destabilizes foam, while other gases have little effect on foam stability. This study suggests that the higher foaming in oxy-fired furnace compared to air-fired is caused by the effect of water on early sulfate decomposition, promoting more efficient refining gas generation from sulfate (known as “dilution effect”).

  11. Military housing foam application and analysis

    SciTech Connect (OSTI)

    Torres, J. J.

    2012-03-01T23:59:59.000Z

    Sandia and Forest City have established a Cooperative Research and Development Agreement (CRADA), the partnership provides a unique opportunity to take technology research and development from demonstration to application in sustainable communities. This project consists of two activities conducted in Hawaii that focus on performance, integration and application of energy saving technologies. Hawaii has many energy challenges, making this location an excellent testbed for these activities. Under this project, spray foam technology was applied at military housing on Oahu and the consumption data collected. A cost benefit and operational analysis of the foam was completed. The second phase of this project included design, integration, and analysis of photovoltaic systems at a military community on Oahu. This phase of the project was conducted as part of Forest City's second Solar America Showcase Award.

  12. Dynamical Heterogeneities in Grains and Foams

    E-Print Network [OSTI]

    Olivier Dauchot; Douglas J. Durian; Martin van Hecke

    2010-10-05T23:59:59.000Z

    Dynamical heterogeneities have been introduced in the context of the glass transition of molecular liquids and the lengthscale associated with them has been argued to be at the origin of the observed quasi-universal behaviour of glassy systems. Dense amorphous packings of granular media and foams also exhibit slow dynamics, intermittency and heterogeneities. We review a number of recent experimental studies of these systems, where one has direct access to the relevant space-time dynamics, allowing for direct visualisations of the dynamical heterogeneities. On one hand these visualisations provide a unique opportunity to access the microscopic mechanisms responsible for the growth of dynamical correlations. On the other hand focussing on the differences in these heterogeneities in microscopically different systems allows to discuss the range of the analogies between molecular thermal glasses and athermal glasses such as granular media and foams. Finally this review is the opportunity to discuss various approaches to actually extract quantitatively the dynamical lengthscale from experimental data.

  13. ENHANCEMENT OF STRUCTURAL FOAM MATERIALS BY INCORPORATION OF GASIFIER SLAG

    SciTech Connect (OSTI)

    Olin Perry Norton; Ronald A. Palmer; W. Gene Ramsey

    2006-03-15T23:59:59.000Z

    As advanced gasification technology is increasingly adopted as an energy source, disposal of the resulting slag will become a problem. We have shown that gasifier slag can be incorporated into foamed glass, which is currently being manufactured as an abrasive and as an insulating material. The slag we add to foamed glass does not simply act as filler, but improves the mechanical properties of the product. Incorporation of gasifier slag can make foamed glass stronger and more abrasion resistant.

  14. The effect of velocity boundary conditions on the heat transfer and flow topology in two-dimensional Rayleigh-B\\'enard convection

    E-Print Network [OSTI]

    van der Poel, Erwin P; Verzicco, Roberto; Lohse, Detlef

    2015-01-01T23:59:59.000Z

    The effect of various velocity boundary condition is studied in two-dimensional Rayleigh-B\\'enard convection. Combinations of no-slip, stress-free and periodic boundary conditions are used on both the sidewalls and the horizontal plates. For the studied Rayleigh numbers Ra between $10^8$ and $10^{11}$ the heat transport is lower for $\\Gamma = 0.33$ than for $\\Gamma = 1$ in case of no-slip sidewalls. This is surprisingly opposite for stress-free sidewalls, where the heat transport increases for lower aspect-ratio. In wider cells the aspect-ratio dependence is observed to disappear for $\\text{Ra} \\ge 10^{10}$. Two distinct flow types with very different dynamics can be seen, mostly dependent on the plate velocity boundary condition, namely roll-like flow and horizontal zonal flow, which have a substantial effect on the dynamics and heat transport in the system. The predominantly horizontal zonal flow suppresses heat flux and is observed for stress-free and asymmetric plates. Low aspect-ratio periodic sidewall s...

  15. Climatological conditions for the subpolar North Atlantic during the field campaign of the Greenland Flow Distortion Experiment

    E-Print Network [OSTI]

    Pickart, Robert S.

    of the Greenland Flow Distortion Experiment G.W.K. Moore Department of Physics University of Toronto R.S. Pickart January 21, 2009 #12; 2 Abstract: Due to its high topography, Greenland results in significant to help document this flow distortion as part of the international research project called the Greenland

  16. Tissue Magnetic Susceptibility Matched Pyrolytic Graphite Foam for Improved MRI

    E-Print Network [OSTI]

    Lee, Gary Chiaray

    2011-01-01T23:59:59.000Z

    on a ZPrinter Model 150 3D printer (ZCorp, Burlington, MA),PG foam neck cushions. A 3D printer was used to create the

  17. Doping of carbon foams for use in energy storage devices

    DOE Patents [OSTI]

    Mayer, S.T.; Pekala, R.W.; Morrison, R.L.; Kaschmitter, J.L.

    1994-10-25T23:59:59.000Z

    A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located there between. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery. 3 figs.

  18. Doping of carbon foams for use in energy storage devices

    DOE Patents [OSTI]

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Morrison, Robert L. (Modesto, CA); Kaschmitter, James L. (Pleasanton, CA)

    1994-01-01T23:59:59.000Z

    A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located therebetween. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery.

  19. Multifunctional Corrosion-resistant Foamed Well Cement Composites

    Broader source: Energy.gov (indexed) [DOE]

    Multifunctional Corrosion-resistant Foamed Well Cement Composites Project Officer: Dan KingGreg Stillman Total budget: 300 K April 24 , 2013 Principal Investigator: Dr. Toshifumi...

  20. Design of composite plastic foams for improved cushioning

    E-Print Network [OSTI]

    Eskew, James Oliver

    1989-01-01T23:59:59.000Z

    and Polyethylene Foams at 0. 5G w/ 0. 444 psi Static Load 36 37 41 16. Example of a Parallel Configuration with Polyurethane and Polyethylene Foams at 0. 5G w/ 0. 311 psi Static Load on Composite . 41 17. Single Polyurethane Foam at 0. 5G w/ 0. 156 psi... w/ 0. 444 psi Static Load 45 45 53 54 55 57 57 58 58 59 59 60 60 LIST OF FIGURES (Continued) Figure Page 33 34 35 36 37 38. 40. 41 42. 43 44. 45 Single Polyethylene Foam at 0. 5G w/ 0. 156 psi Static Load Single...

  1. Carbon Foam Thermal Management Materials for Electronic Packaging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Foam Thermal Management Materials for Electronic Packaging David P. Stinton Oak Ridge National Laboratory Project Team: Nidia C. Gallego, ORNL Brian Thompson, ThermalCentric...

  2. Hyper-dendritic nanoporous zinc foam anodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chamoun, Mylad [Brookhaven National Lab. (BNL), Upton, NY (United States); Hertzberg, Benjamin J. [Princeton Univ., NJ (United States); Gupta, Tanya [Princeton Univ., NJ (United States); Davies, Daniel [Princeton Univ., NJ (United States); Bhadra, Shoham [Princeton Univ., NJ (United States); Van Tassell, Barry. [City College of New York, NY (United States); Erdonmez, Can [Brookhaven National Lab. (BNL), Upton, NY (United States); Steingart, Daniel A. [Princeton Univ., NJ (United States)

    2015-04-24T23:59:59.000Z

    The low cost, significant reducing potential, and relative safety of the zinc electrode is a common hope for a reductant in secondary batteries, but it is limited mainly to primary implementation due to shape change. In this work we exploit such shape change for the benefit of static electrodes through the electrodeposition of hyper-dendritic nanoporous zinc foam. Electrodeposition of zinc foam resulted in nanoparticles formed on secondary dendrites in a three-dimensional network with a particle size distribution of 54.1 - 96.0 nm. The nanoporous zinc foam contributed to highly oriented crystals, high surface area and more rapid kinetics in contrast to conventional zinc in alkaline mediums. The anode material presented had a utilization of ~ 88% at full depth-of-discharge at various rates indicating a superb rate-capability. The rechargeability of Zn?/Zn˛? showed significant capacity retention over 100 cycles at a 40% depth-of-discharge to ensure that the dendritic core structure was imperforated. The dendritic architecture was densified upon charge-discharge cycling and presented superior performance compared to bulk zinc electrodes.

  3. Hyper-dendritic nanoporous zinc foam anodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chamoun, Mylad; Hertzberg, Benjamin J.; Gupta, Tanya; Davies, Daniel; Bhadra, Shoham; Van Tassell, Barry.; Erdonmez, Can; Steingart, Daniel A.

    2015-04-24T23:59:59.000Z

    The low cost, significant reducing potential, and relative safety of the zinc electrode is a common hope for a reductant in secondary batteries, but it is limited mainly to primary implementation due to shape change. In this work we exploit such shape change for the benefit of static electrodes through the electrodeposition of hyper-dendritic nanoporous zinc foam. Electrodeposition of zinc foam resulted in nanoparticles formed on secondary dendrites in a three-dimensional network with a particle size distribution of 54.1 - 96.0 nm. The nanoporous zinc foam contributed to highly oriented crystals, high surface area and more rapid kinetics in contrastmore »to conventional zinc in alkaline mediums. The anode material presented had a utilization of ~ 88% at full depth-of-discharge at various rates indicating a superb rate-capability. The rechargeability of Zn?/Zn˛? showed significant capacity retention over 100 cycles at a 40% depth-of-discharge to ensure that the dendritic core structure was imperforated. The dendritic architecture was densified upon charge-discharge cycling and presented superior performance compared to bulk zinc electrodes.« less

  4. Show me the (shortest) way to go home Foams, soap films and minimization

    E-Print Network [OSTI]

    Cox, Simon

    importance: · Oil recovery · Car manufacture · (Industrial) cleaning · Fire-fighting · Ore separation · Personal Care · Food products Why are foams of interest? foams@aber.ac.uk #12;

  5. Carbon dioxide foam with surfactants used below their critical micelle concentrations

    SciTech Connect (OSTI)

    Kuhlman, M.I.; Lau, H.C.; Falls, A.H.

    1995-11-01T23:59:59.000Z

    Laboratory results demonstrate that adsorption on sandstones is minimized and foam performance improved by reducing the ethoxylate chain length in alcohol ethoxy sulfonates and blending unethoxylated and ethoxylated sulfonates to optimize desirable properties. These properties include increased mobility reduction, more gas-oil foam formation, and enhanced surfactant transport in the oil and water, which all appear to be negatively affected by the presence of long ethoxylate chains in a surfactant. A series of experiments are used to show that laboratory adsorption measurements can only be extrapolated to reservoirs by (1) replicating the anaerobic conditions of reservoirs, (2) matching the reservoir pH in a CO{sub 2} flood and (3) differentiating authogenic minerals from drilling mud found in reservoir cores.

  6. Development of Foamed Emulsion Bioreactor for Air Pollution Control

    E-Print Network [OSTI]

    Development of Foamed Emulsion Bioreactor for Air Pollution Control Eunsung Kan, Marc A. Deshusses used bioreactors for air pollution control. © 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 84: 240­244, 2003. Keywords: VOC control; biofilter; air pollution control; toluene; biologically activated foam

  7. Continuous Operation of Foamed Emulsion Bioreactors Treating Toluene Vapors

    E-Print Network [OSTI]

    Continuous Operation of Foamed Emulsion Bioreactors Treating Toluene Vapors Eunsung Kan, Marc A.interscience.wiley.com). DOI: 10.1002/bit.20619 Abstract: Continuous operation of a new bioreactor for air pollution control called the foamed emulsion bioreactor (FEBR) has been investigated. The effect of several liquid feeding

  8. Modeling of a Foamed Emulsion Bioreactor: II. Model Parametric Sensitivity

    E-Print Network [OSTI]

    ARTICLE Modeling of a Foamed Emulsion Bioreactor: II. Model Parametric Sensitivity Eunsung Kan: The sensitivity of a conceptual model of a foam emulsion bioreactor (FEBR) used for the control of toluene vapors mass transfer and kinetic limitations can coexist in the bioreactor system. These results will help

  9. Mechanical Inhibition of Foam Formation via a Rotating Nozzle

    E-Print Network [OSTI]

    Ristenpart, William

    have been devel- oped to minimize the impact of foams [2]. Anti-foaming agents are added to prevent environmental disposal problems, and increase the overall process cost and complexity [3]. Non report a design for a rotating nozzle that prevents successive collocated impacts, thereby minimizing

  10. Mechanical properties and energy absorption characteristics of a polyurethane foam

    SciTech Connect (OSTI)

    Goods, S.H.; Neuschwanger, C.L.; Henderson, C.; Skala, D.M.

    1997-03-01T23:59:59.000Z

    Tension, compression and impact properties of a polyurethane encapsulant foam have been measured as a function of foam density. Significant differences in the behavior of the foam were observed depending on the mode of testing. Over the range of densities examined, both the modulus and the elastic collapse stress of the foam exhibited power-law dependencies with respect to density. The power-law relationship for the modulus was the same for both tension and compression testing and is explained in terms of the elastic compliance of the cellular structure of the foam using a simple geometric model. Euler buckling is used to rationalize the density dependence of the collapse stress. Neither tension nor compression testing yielded realistic measurements of energy absorption (toughness). In the former case, the energy absorption characteristics of the foam were severely limited due to the inherent lack of tensile ductility. In the latter case, the absence of a failure mechanism led to arbitrary measures of energy absorption that were not indicative of true material properties. Only impact testing revealed an intrinsic limitation in the toughness characteristics of the material with respect to foam density. The results suggest that dynamic testing should be used when assessing the shock mitigating qualities of a foam.

  11. Environmentally-benign Flame Retardant Nanocoating for Foam and Fabric

    E-Print Network [OSTI]

    Cain, Amanda Ashley

    2014-12-09T23:59:59.000Z

    wt% coating addition) are necessary to cut the pkHRR of polyether-based polyurethane by 54.8%, relative to control, uncoated foam. The influence of clay aspect ratio and composition on fire behavior of coated polyurethane foam was studied as a...

  12. Mechanical Properties of a Metal Powder-Loaded Polyurethane Foam

    SciTech Connect (OSTI)

    C. L. Neuschwanger; L. L. Whinnery; S. H. Goods

    1999-04-01T23:59:59.000Z

    Quasi-static compression tests have been performed on polyurethane foam specimens. The modulus of the foam exhibited a power-law dependence with respect to density of the form: E* {proportional_to} {rho}*{sup n}, where n = 1.7. The modulus data is well described by a simple geometric model (attributed to the work of Gibson and Ashby) for closed-cell foam in which the stiffness of the foam is governed by the flexure of the cell struts and cell walls. The compressive strength of the foam is also found to follow a power-law behavior with respect to foam density. In this instance, Euler buckling is used to rationalize the density dependence. The modulus of the polyurethane foam was modified by addition of a gas atomized, spherical aluminum powder. Additions of 30 and 50 weight percent of the powder significantly increased the foam modulus. However, there were only slight increases in modulus with 5 and 10 weight percent additions of the metal powder. Strength was also slightly increased at high loading fractions of powder. This increase in modulus and strength could be predicted by combining the above geometric model with a well-known model describing the effect on modulus of a rigid dispersoid in a compliant matrix.

  13. Sandia-Power Surety Task Force Hawaii foam analysis.

    SciTech Connect (OSTI)

    McIntyre, Annie

    2010-11-01T23:59:59.000Z

    The Office of Secretary of Defense (OSD) Power Surety Task Force was officially created in early 2008, after nearly two years of work in demand reduction and renewable energy technologies to support the Warfighter in Theater. The OSD Power Surety Task Force is tasked with identifying efficient energy solutions that support mission requirements. Spray foam insulation demonstrations were recently expanded beyond field structures to include military housing at Ft. Belvoir. Initial results to using the foam in both applications are favorable. This project will address the remaining key questions: (1) Can this technology help to reduce utility costs for the Installation Commander? (2) Is the foam cost effective? (3) What application differences in housing affect those key metrics? The critical need for energy solutions in Hawaii and the existing relationships among Sandia, the Department of Defense (DOD), the Department of Energy (DOE), and Forest City, make this location a logical choice for a foam demonstration. This project includes application and analysis of foam to a residential duplex at the Waikulu military community on Oahu, Hawaii, as well as reference to spray foam applied to a PACOM facility and additional foamed units on Maui, conducted during this project phase. This report concludes the analysis and describes the utilization of foam insulation at military housing in Hawaii and the subsequent data gathering and analysis.

  14. Recovery of flexible polyurethane foam from shredder residue.

    SciTech Connect (OSTI)

    Daniels, E. J.; Jody, b. J.

    1999-06-29T23:59:59.000Z

    Argonne National Laboratory has developed a patented, continuous process for the recovery of flexible polyurethane foam (PUF) from auto shredder residue (ASR). To test the process, Argonne researchers conceived of, designed, and built a continuous foam washing and drying system that was pilot-tested at a shredder facility for six months. Economic analysis of the process, using manufacturers' quotes and operating data from Argonne's pilot plant, indicates a payback of less than two years for a plant producing about 1,000 ton/yr of foam. Samples of clean foam were shipped to three major foam reprocessors; all three indicated that the quality of the PUF recovered by the Argonne process met their requirements. Tests of the recovered foam by an independent testing laboratory showed that the recycled foam met the specifications for several automotive applications, including carpet padding, headliner, and sound-suppression support materials. Recovery of foam reduces the mass and the volume of material going to the landfill by about 5% and 30%, respectively. Annually, recovery will save about 1.2 x 10{sup 12} Btu of energy, cut the amount of solid waste being landfilled by about 150,000 tons, and eliminate the emission of about 250 tons of volatile organic compounds (VOCs) into the air.

  15. Foams and granular media known state of mat-

    E-Print Network [OSTI]

    Cox, Simon

    Foams and granular media 2 known state of mat- design glasses with de- perties on an industrial n disordered ail in this review, mod- proaches to the glass ledge of advanced liq- renormalization group, FIG a broad range of lengthscales, such as atomic (top left), colloidal (top right) systems, but also in foams

  16. Proceedings of the 1993 non-fluorocarbon insulation, refrigeration and air conditioning technology workshop

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    Sessions included: HFC blown polyurethanes, carbon dioxide blown foam and extruded polystyrenes, plastic foam insulations, evacuated panel insulation, refrigeration and air conditioning, absorption and adsorption and stirling cycle refrigeration, innovative cooling technologies, and natural refrigerants. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  17. Foam and gel methods for the decontamination of metallic surfaces

    DOE Patents [OSTI]

    Nunez, Luis; Kaminski, Michael Donald

    2007-01-23T23:59:59.000Z

    Decontamination of nuclear facilities is necessary to reduce the radiation field during normal operations and decommissioning of complex equipment. In this invention, we discuss gel and foam based diphosphonic acid (HEDPA) chemical solutions that are unique in that these solutions can be applied at room temperature; provide protection to the base metal for continued applications of the equipment; and reduce the final waste form production to one step. The HEDPA gels and foams are formulated with benign chemicals, including various solvents, such as ionic liquids and reducing and complexing agents such as hydroxamic acids, and formaldehyde sulfoxylate. Gel and foam based HEDPA processes allow for decontamination of difficult to reach surfaces that are unmanageable with traditional aqueous process methods. Also, the gel and foam components are optimized to maximize the dissolution rate and assist in the chemical transformation of the gel and foam to a stable waste form.

  18. Method of forming a foamed thermoplastic polymer

    DOE Patents [OSTI]

    Duchane, D.V.; Cash, D.L.

    1984-11-21T23:59:59.000Z

    A solid thermoplastic polymer is immersed in an immersant solution comprising a compatible carrier solvent and an infusant solution containing an incompatible liquid blowing agent for a time sufficient for the immersant solution to infuse into the polymer. The carrier solvent is then selectively extracted, preferably by a solvent exchange process in which the immersant solution is gradually diluted with and replaced by the infusant solution, so as to selectively leave behind the infustant solution permanently entrapped in the polymer. The polymer is then heated to volatilize the blowing agent and expand the polymer into a foamed state.

  19. Growth of aqueous foam on flexible membranes

    E-Print Network [OSTI]

    Hiroyuki Shima

    2009-05-30T23:59:59.000Z

    In this paper, I study the coarsening dynamics of two-dimensional dry foam sandwiched by deformable membranes. The time-varying deformation of the confining membranes gives rise to a significant alteration in the evolution of polygonal cells of bubbles when compared to the case of rigid membranes. This alteration is attributed to the correlation between the rate of inter-cell gas transfer and temporal fluctuation in surface curvature within a cell domain. The existing material constants are referred to understand the utility of the correlation effect toward the artificial control of the coarsening dynamics.

  20. A three-dimensional numerical model of predevelopment conditions in the Death Valley regional ground-water flow system, Nevada and California

    SciTech Connect (OSTI)

    D'Agnese, F.A.; O'Brien, G.M.; Faunt, C.C.; Belcher, W.R.; San Juan, Carma

    2002-11-22T23:59:59.000Z

    In the early 1990's, two numerical models of the Death Valley regional ground-water flow system were developed by the U.S. Department of Energy. In general, the two models were based on the same basic hydrogeologic data set. In 1998, the U.S. Department of Energy requested that the U.S. Geological Survey develop and maintain a ground-water flow model of the Death Valley region in support of U.S. Department of Energy programs at the Nevada Test Site. The purpose of developing this ''second-generation'' regional model was to enhance the knowledge and understanding of the ground-water flow system as new information and tools are developed. The U.S. Geological Survey also was encouraged by the U.S. Department of Energy to cooperate to the fullest extent with other Federal, State, and local entities in the region to take advantage of the benefits of their knowledge and expertise. The short-term objective of the Death Valley regional ground-water flow system project was to develop a steady-stat e representation of the predevelopment conditions of the ground-water flow system utilizing the two geologic interpretations used to develop the previous numerical models. The long-term objective of this project was to construct and calibrate a transient model that simulates the ground-water conditions of the study area over the historical record that utilizes a newly interpreted hydrogeologic conceptual model. This report describes the result of the predevelopment steady-state model construction and calibration.

  1. Electron Heating by the Ion Cyclotron Instability in Collisionless Accretion Flows. II. Electron Heating Efficiency as a Function of Flow Conditions

    E-Print Network [OSTI]

    Sironi, Lorenzo

    2014-01-01T23:59:59.000Z

    In the innermost regions of low-luminosity accretion flows, including Sgr A* at the center of our Galaxy, the frequency of Coulomb collisions is so low that the plasma is two-temperature, with the ions substantially hotter than the electrons. This paradigm assumes that Coulomb collisions are the only channel for transferring the ion energy to the electrons. In this work, the second of a series, we assess the efficiency of electron heating by ion velocity-space instabilities in collisionless accretion flows. The instabilities are seeded by the pressure anisotropy induced by magnetic field amplification, coupled to the adiabatic invariance of the particle magnetic moments. Using two-dimensional (2D) particle-in-cell (PIC) simulations, we showed in Paper I that if the electron-to-ion temperature ratio is < 0.2, the ion cyclotron instability is the dominant mode for values of ion beta_i ~ 5-30 (here, beta_i is the ratio of ion thermal pressure to magnetic pressure), as appropriate for the midplane of low-lumin...

  2. Fusion Engineering and Design 81 (2006) 455460 Breeder foam: an innovative low porosity solid breeder material

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    2006-01-01T23:59:59.000Z

    ; Foam processing; Foam applications 1. Introduction Solid breeder blanket concepts are typically based structural and Be material requirements in a breeder blanket. However, high density Li-ceramic foams haveFusion Engineering and Design 81 (2006) 455­460 Breeder foam: an innovative low porosity solid

  3. The response of clamped sandwich plates with metallic foam cores to simulated blast loading

    E-Print Network [OSTI]

    Fleck, Norman A.

    projectiles. The sandwich plates comprise AISI 304 stainless steel face sheets and aluminium alloy metal foam

  4. FATIGUE FAILURE OF AN OPEN CELL AND A CLOSED CELL ALUMINIUM ALLOY FOAM

    E-Print Network [OSTI]

    Fleck, Norman A.

    FATIGUE FAILURE OF AN OPEN CELL AND A CLOSED CELL ALUMINIUM ALLOY FOAM A.-M. HARTE, N. A. FLECK reserved. Keywords: Aluminium alloys; Foams; Fatigue; Plastic collapse 1. INTRODUCTION Metallic foams such as aluminium alloy foams show potential for use in ultra-lightweight metallic structures. Recently, a number

  5. Hybrid fiber reinforced Composite Phenolic foam Amit Desai, Steven R. Nutt

    E-Print Network [OSTI]

    Southern California, University of

    Composite Center Hybrid Composite Phenolic foams were reinforced with glass and aramid fibers in different the hybrid foams exhibited higher strength and modulus as compared to foams reinforced with only glass with only glass fibers of different length , the elastic properties of foam such as modulus and density do

  6. Investigating the changes in matrix and fracture properties and fluid flow under different stress-state conditions

    E-Print Network [OSTI]

    Muralidharan, Vivek

    2004-11-15T23:59:59.000Z

    pressure of 500 psi................................................................33 3.16 The average flow rate comparison between laboratory and simulation results at 5 cc/min and each different overburden pressure.............................35... .........................................................................................................87 xiii FIGURE Pa ge 5.28 Sample scans taken along the length of the core with 500 psi overburden pressure...

  7. Electrochemical study of multi-electrode microbial fuel cells under fed-batch and continuous flow conditions

    E-Print Network [OSTI]

    Electrochemical study of multi-electrode microbial fuel cells under fed-batch and continuous flow November 2013 Available online 18 December 2013 Keywords: Multi-electrode Microbial fuel cells Hydraulic connected microbial fuel cells (MFCs) was compared with the reactors operated using individual electrical

  8. Adsorption of Trace Levels of Arsenic from Aqueous Solutions by Conditioned Layered Double Hydroxides: Batch and Flow

    E-Print Network [OSTI]

    Southern California, University of

    Adsorption of Trace Levels of Arsenic from Aqueous Solutions by Conditioned Layered Double to humans. The focus of the present work is to do a systematic study of the adsorption of As by conditioned the dissolution observed with uncalcined and calcined LDH3. The adsorption rates and isotherms have been

  9. Step-flow anisotropy of the m-plane GaN (1100) grown under nitrogen-rich conditions by plasma-assisted molecular beam epitaxy

    SciTech Connect (OSTI)

    Sawicka, Marta; Siekacz, Marcin; Skierbiszewski, Czeslaw [Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, PL-01-142 Warszawa (Poland); TopGaN Ltd., Sokolowska 29/37, PL-01-142 Warszawa (Poland); Turski, Henryk; Krysko, Marcin; DziePcielewski, Igor; Grzegory, Izabella [Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, PL-01-142 Warszawa (Poland); Smalc-Koziorowska, Julita [Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, PL-01-142 Warszawa (Poland); TopGaN Ltd., Sokolowska 29/37, PL-01-142 Warszawa (Poland); Warsaw University of Technology, Faculty of Material Science and Engineering, Woloska 141, PL-02-507 Warszawa (Poland)

    2011-06-15T23:59:59.000Z

    The homoepitaxial growth of m-plane (1100) GaN was investigated by plasma-assisted molecular beam epitaxy under nitrogen-rich conditions. The surface morphologies as a function of sample miscut were studied, providing evidence for a strong growth anisotropy that is a consequence of the anisotropy of Ga adatom diffusion barriers on the m-plane surface recently calculated ab initio[Lymperakis and Neugebauer, Phys. Rev. B 79, 241308(R) (2009)]. We found that substrate miscut toward [0001] implies a step flow toward <1126> while substrate miscut toward [0001] causes formation of atomic steps either perpendicular or parallel to the [0001] direction, under N-rich conditions at 730 deg C. We describe the growth conditions for achieving atomically flat m-plane GaN layers with parallel atomic steps.

  10. Pyrophoric metal-carbon foam composites and methods of making the same

    DOE Patents [OSTI]

    Gash, Alexander E. (Brentwood, CA); Satcher, Jr., Joe H. (Patterson, CA); Simpson, Randall L. (Livermore, CA); Baumann, Theodore F. (Discovery Bay, CA); Worsley, Marcus A. (Belmont, CA)

    2012-05-08T23:59:59.000Z

    A method for creating a pyrophoric material according to one embodiment includes thermally activating a carbon foam for creating micropores therein; contacting the activated carbon foam with a liquid solution comprising a metal salt for depositing metal ions in the carbon foam; and reducing the metal ions in the foam to metal particles. A pyrophoric material in yet another embodiment includes a pyrophoric metal-carbon foam composite comprising a carbon foam having micropores and mesopores and a surface area of greater than or equal to about 2000 m.sup.2/g, and metal particles in the pores of the carbon foam. Additional methods and materials are also disclosed.

  11. Materials Applications for Non-Lethal: Aqueous Foams

    SciTech Connect (OSTI)

    GOOLSBY,TOMMY D.; SCOTT,STEVEN H.

    1999-09-15T23:59:59.000Z

    High expansion aqueous foam is an aggregation of bubbles that has the appearance of soap suds and is used to isolate individuals both visually and acoustically. It was developed in the 1920's in England to fight coal mine fires and has been widely used since for fire fighting and dust suppression. It was developed at Sandia National Laboratories (SNL) in the 1970's for nuclear safeguards and security applications. In the mid-1990s, the National Institute of Justice (NIJ), the research arm of the Department of Justice, began a project with SNL to determine the applicability of high expansion aqueous foam for correctional applications. NIJ funded the project as part of its search for new and better less-than-lethal weapons for responding to violent and dangerous individuals, where other means of force could lead to serious injuries. The phase one objectives of the project were to select a low-to-no toxicity foam concentrate (foaming agent) with physical characteristics suited for use in a single cell or large prison disturbances, and to determine if the selected foam concentrate could serve as a carrier for Oleoresin Capsicum (OC) irritant. The phase two objectives were to conduct an extensive toxicology review of the selected foam concentrate and OC irritant, and to conduct respiration simulation experiments in the selected high expansion aqueous foam. The phase three objectives were to build a prototype individual cell aqueous foam system and to study the feasibility of aqueous foams for large prison facility disturbances. The phase four and five objectives were to use the prototype system to do large scale foam physical characteristics testing of the selected foam concentrate, and to have the prototype single cell system further evaluated by correctional representatives. Prison rather than street scenarios were evaluated as the first and most likely place for using the aqueous foam since prisons have recurrent incidents where officers and inmates might be seriously injured during violent confrontations. The very low density of the high expansion foam also makes it more suitable for indoor use. This paper summarizes the results of the project.

  12. An elastic, plastic, viscous model for slow shear of a liquid foam

    E-Print Network [OSTI]

    Philippe Marmottant; François Graner

    2007-07-06T23:59:59.000Z

    We suggest a scalar model for deformation and flow of an amorphous material such as a foam or an emulsion. To describe elastic, plastic and viscous behaviours, we use three scalar variables: elastic deformation, plastic deformation rate and total deformation rate; and three material specific parameters: shear modulus, yield deformation and viscosity. We obtain equations valid for different types of deformations and flows slower than the relaxation rate towards mechanical equilibrium. In particular, they are valid both in transient or steady flow regimes, even at large elastic deformation. We discuss why viscosity can be relevant even in this slow shear (often called "quasi-static") limit. Predictions of the storage and loss moduli agree with the experimental literature, and explain with simple arguments the non-linear large amplitude trends.

  13. Rigid polyurethane foam (RPF) technology for Countermine (Sea) Program -- Phase 1

    SciTech Connect (OSTI)

    Woodfin, R.L. [Sandia National Labs., Albuquerque, NM (United States). Exploratory Sensors and Munitions Dept.] [Sandia National Labs., Albuquerque, NM (United States). Exploratory Sensors and Munitions Dept.

    1997-01-01T23:59:59.000Z

    This Phase 1 report documents the results of one of the subtasks that was initiated under the joint Department of Energy (DOE)/Department of Defense (DoD) Memorandum of Understanding (MOU) for Countermine Warfare. The development of a foam that can neutralize mines and barriers and allow the safe passage of amphibious landing craft and vehicles was the objective of this subtask of the Sea Mine Countermeasures Technology program. This phase of the program concentrated on laboratory characterization of foam properties and field experiments with prefabricated foam blocks to determine the capability of RPF to adequately carry military traffic. It also established the flammability characteristics of the material under simulated operational conditions, extended the understanding of explosive cavity formation in RPF to include surface explosions, established the tolerance to typical military fluids, and the response to bullet impact. Many of the basic analyses required to establish the operational concept are reported. The initial field experiments were conducted at the Energetic Materials Research and Testing Center (EMRTC) of the New Mexico Institute of Mining and Technology, Socorro, NM in November 1995 through February 1996.

  14. Evaluation of Foaming and Antifoam Effectiveness During the WTP Oxidative Leaching Process

    SciTech Connect (OSTI)

    Burket, P. R.; Jones, T. M.; White, T. L.; Crawford, C. L.; Calloway, T. B

    2005-10-11T23:59:59.000Z

    The River Protection Project-Waste Treatment Plant (RPP-WTP) requested Savannah River National Laboratory (SRNL) to conduct small-scale foaming and antifoam testing using a Hanford waste simulant subjected to air sparging during oxidative leaching. The foaminess of Hanford tank waste solutions was previously demonstrated by SRNL during WTP evaporator foaming studies and in small scale air sparger studies. The commercial antifoam, Dow Corning Q2-3183A was recommended to mitigate the foam in the evaporators and in vessel equipped with pulse jet mixers and air spargers. Currently, WTP is planning to use air spargers in the HLW Lag Storage Vessels (HLP-VSL-00027A/B), the Ultrafiltration Vessels (UFP-VSL-00002A&B), and the HLW Feed Blend Vessel (HLPVSL-00028) to assist the performance of the Pulse Jet Mixers (PJM). The previous air sparger antifoam studies conducted by SRNL researchers did not evaluate the hydrogen generation rate expected from antifoam additions or the effectiveness of the antifoam during caustic leaching or oxidative leaching. The fate of the various antifoam components and breakdown products in the WTP process under prototypic process conditions (temperature & radiation) was also not investigated. The effectiveness of the antifoam during caustic leaching, expected hydrogen generation rate associated with antifoam addition, and the fate of various antifoam components are being conducted under separate SRNL research tasks.

  15. Experimental analysis of the vorticity and turbulent flow dynamics of a pitching airfoil at realistic flight (helicopter) conditions

    E-Print Network [OSTI]

    Sahoo, Dipankar

    2008-10-10T23:59:59.000Z

    staff members, Karen Knabe, Andrea Loggins, and Colleen Leatherman for their help with official paper work which saved me a lot of time. I extend my gratitude to all employees at the Oran W Nicks Low Speed Wind Tunnel for their valuable assistance... ..................................................... 31 4.1 Oran Nicks Low-Speed Wind Tunnel .................................................. 31 4.1.1 The DSF Inserts ..................................................................... 32 4.1.2 Tunnel Flow...

  16. Note and calculations concerning elastic dilatancy in 2D glass-glass liquid foams

    E-Print Network [OSTI]

    François Molino; Pierre Rognon; Cyprien Gay

    2010-10-30T23:59:59.000Z

    When deformed, liquid foams tend to raise their liquid contents like immersed granular materials, a phenomenon called dilatancy. We have aready described a geometrical interpretation of elastic dilatancy in 3D foams and in very dry foams squeezed between two solid plates (2D GG foams). Here, we complement this work in the regime of less dry 2D GG foams. In particular, we highlight the relatively strong dilatancy effects expected in the regime where we have predicted rapid Plateau border variations.

  17. Modeling Foamy Oil Flow in Porous Media D.D. Joseph, A.M. Kamp, R. Bai

    E-Print Network [OSTI]

    Joseph, Daniel D.

    Modeling Foamy Oil Flow in Porous Media D.D. Joseph˝, A.M. Kampľ, R. Bai˝ ˝Univ. of Minnesota, Dept, PO Box 76343, Caracas 1070-A, Venezuela October 2001 Abstract Certain heavy oils which foam under so- lution gas drive. These oils not only stabilize foam, but also stabilize dis- persion of gas

  18. Fluid dynamics of rivulet flow between plates W. Drenckhan, H. Ritacco, A. Saint-Jalmes, A. Saugey, P. McGuinness, A. van der Net, D. Langevin, and D.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    spaced, vertical glass plates. Such a "rivulet" is bounded by two liquid/solid and two mobile liquid/gas interfaces, posing fluid dynamic problems of direct relevance to local fluid flow in liquid foams/liquid or liquid/gas interfaces, as found in foams and emulsions, which respond to flow by adjusting their shape

  19. Aspiration tests in aqueous foam using a breathing simulator

    SciTech Connect (OSTI)

    Archuleta, M.M.

    1995-12-01T23:59:59.000Z

    Non-toxic aqueous foams are being developed by Sandia National Laboratories (SNL) for the National Institute of Justice (NIJ) for use in crowd control, cell extractions, and group disturbances in the criminal justice prison systems. The potential for aspiration of aqueous foam during its use and the resulting adverse effects associated with complete immersion in aqueous foam is of major concern to the NIJ when examining the effectiveness and safety of using this technology as a Less-Than-Lethal weapon. This preliminary study was designed to evaluate the maximum quantity of foam that might be aspirated by an individual following total immersion in an SNL-developed aqueous foam. A.T.W. Reed Breathing simulator equipped with a 622 Silverman cam was used to simulate the aspiration of an ammonium laureth sulfate aqueous foam developed by SNL and generated at expansion ratios in the range of 500:1 to 1000:1. Although the natural instinct of an individual immersed in foam is to cover their nose and mouth with a hand or cloth, thus breaking the bubbles and decreasing the potential for aspiration, this study was performed to examine a worst case scenario where mouth breathing only was examined, and no attempt was made to block foam entry into the breathing port. Two breathing rates were examined: one that simulated a sedentary individual with a mean breathing rate of 6.27 breaths/minute, and one that simulated an agitated or heavily breathing individual with a mean breathing rate of 23.7 breaths/minute. The results of this study indicate that, if breathing in aqueous foam without movement, an air pocket forms around the nose and mouth within one minute of immersion.

  20. Innovative Technologies to Manufacture Hybrid Metal Foam/Composite Components

    SciTech Connect (OSTI)

    Carrino, L.; Durante, M.; Franchitti, S. [DIMP, University of Naples 'Federico II', P.le Tecchio, 80-80125 Naples (Italy); Sorrentino, L.; Tersigni, L. [DII, University of Cassino, Via G. Di Biasio, 43-03043 Cassino (Italy)

    2011-01-17T23:59:59.000Z

    The aim of this paper is to verify the technological feasibility to realize hybrid metal-foam/composite component and the mechanical performances of the final structure. The hybrid component is composed by a cylindrical core in aluminum foam, the most used between those commercially available, and an outer layer in epoxy/S2-glass, manufactured by filament winding technology.A set of experimental tests have been carried out, to the aim to estimate the improvement of the hybrid component characteristics, compared to the sum of the single components (metal foam cylinder and epoxy/S2-glass tube).

  1. Note and calculations concerning elastic dilatancy in 2D glassglass liquid foams Francois Molino, Pierre Rognon, and Cyprien Gay #

    E-Print Network [OSTI]

    Recanati, Catherine

    Note and calculations concerning elastic dilatancy in 2D glass­glass liquid foams Fran�cois Molino: October 30, 2010) When deformed, liquid foams tend to raise their liquid contents like immersed granular dilatancy in 3D foams and in very dry foams squeezed between two solid plates (2D GG foams). Here, we

  2. A computational study of ultrasonic film thickness measurements in annular two-phase flows under microgravity conditions

    E-Print Network [OSTI]

    Pautz, Shawn Daniel

    1995-01-01T23:59:59.000Z

    wave equation: 11 V p(x, t) ? z z' = S(x, t), o p(x, t) c'(x) cl' (2. 1) where p(x, t) is the sound pressure, c(x) is the sound speed of propagation, and S(x, t) is a time-dependent source. Equation (2. 1) is derived from conservation laws... of level liquid film with epoxy layer, 2D approximation . . . . . 55 4. 13 Return signal of level liquid film with epoxy layer, 2D approximation . . . . . . . . . . . . . 56 5. 1 Maximum return amplitude vs. interfacial slope for smooth annular flow...

  3. A study of the rate of dissolution of rock salt in drilling mud flowing under down hole conditions 

    E-Print Network [OSTI]

    Forsyth, Jackie Lee

    1990-01-01T23:59:59.000Z

    , at this and higher temperatures, the flow rate was determined from the total volume displaced and the total run time, and the salt dissolution rate was determined primarily from the weight loss measurements. MATERIALS The mud used in the tests was supplied..., the transfer of a full reservoir of mud was timed to estimate the flowrate for some of the tests at 375 F [191 Cj. Again, the polymer was tested only at room temperature. 16 DATA The rate of salt dissolution per unit area of salt surface (R...

  4. TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions

    SciTech Connect (OSTI)

    Xu, T.; Spycher, N.; Sonnenthal, E.; Zhang, G.; Zheng, L.; Pruess, K.

    2010-08-01T23:59:59.000Z

    TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media, and was developed by introducing reactive chemistry into the multiphase fluid and heat flow simulator TOUGH2 V2. The first version of TOUGHREACT was released to the public through the U.S. Department of Energy's Energy Science and Technology Software Center (ESTSC) in August 2004. It is among the most frequently requested of ESTSC's codes. The code has been widely used for studies in CO{sub 2} geological sequestration, nuclear waste isolation, geothermal energy development, environmental remediation, and increasingly for petroleum applications. Over the past several years, many new capabilities have been developed, which were incorporated into Version 2 of TOUGHREACT. Major additions and improvements in Version 2 are discussed here, and two application examples are presented: (1) long-term fate of injected CO{sub 2} in a storage reservoir and (2) biogeochemical cycling of metals in mining-impacted lake sediments.

  5. Sufficient condition for a finite-time singularity in a high-symmetry Euler flow: Analysis and statistics

    E-Print Network [OSTI]

    Ng, Chung-Sang

    City, Iowa 52242 Received 20 March 1995 A sufficient condition is obtained for the development that for fixed total energy, pxxxx is predominantly positive with the average value growing with the numbers spontaneously, dissipa- tion intervenes, and the dynamical balance between the two processes determines

  6. Method for making thin carbon foam electrodes

    DOE Patents [OSTI]

    Pekala, R.W.; Mayer, S.T.; Kaschmitter, J.L.; Morrison, R.L.

    1999-08-03T23:59:59.000Z

    A method for fabricating thin, flat carbon electrodes by infiltrating highly porous carbon papers, membranes, felts, metal fibers/powders, or fabrics with an appropriate carbon foam precursor material is disclosed. The infiltrated carbon paper, for example, is then cured to form a gel-saturated carbon paper, which is subsequently dried and pyrolyzed to form a thin sheet of porous carbon. The material readily stays flat and flexible during curing and pyrolyzing to form thin sheets. Precursor materials include polyacrylonitrile (PAN), polymethylacrylonitrile (PMAN), resorcinol/formaldehyde, catechol/formaldehyde, phenol/formaldehyde, etc., or mixtures thereof. These thin films are ideal for use as high power and energy electrodes in batteries, capacitors, and fuel cells, and are potentially useful for capacitive deionization, filtration and catalysis.

  7. Capacitor with a composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1999-01-01T23:59:59.000Z

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid partides being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  8. Capacitor with a composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1999-04-27T23:59:59.000Z

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  9. Method for fabricating composite carbon foam

    DOE Patents [OSTI]

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    2001-01-01T23:59:59.000Z

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  10. Spectroscopic diagnosis of foam z-pinch plasmas on SATURN

    SciTech Connect (OSTI)

    Nash, T.J.; Derzon, M.S.; Allshouse, G.; Deeney, C.; Jobe, D.; Seaman, J.; Gilliland, T.; McGurn, J. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1193 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87185-1193 (United States); MacFarlane, J.J.; Wang, P. [University of Wisconsin, Madison, Wisconsin (United States)] [University of Wisconsin, Madison, Wisconsin (United States)

    1997-01-01T23:59:59.000Z

    Solid and annular silicon aerogel and agar foams were imploded on the SATURN accelerator to study plasma initiation, acceleration, and stagnation. SATURN delivers 7 MA with a 50 ns rise time to these foam loads. We fielded several spectroscopic diagnostics to measure plasma parameters throughout the z-pinch discharge. A spatially resolved single frame time-gated extreme ultraviolet spectrometer measured the extent of plasma ablation off the surface of the foam. A time integrated crystal spectrometer showed that characteristic K shell radiation of silicon in the aerogel and of sulfur and sodium impurities in the agar were attenuated when the foam loads were coated with a conductive layer of gold. A time-resolved pinhole camera showed that in general the quality of the pinch implosions was poor but improved with increasing efforts to improve current continuity such as prepulse and conductive coatings. {copyright} {ital 1997 American Institute of Physics.}

  11. Spectroscopic diagnosis of foam z-pinch plasmas on SATURN

    SciTech Connect (OSTI)

    Nash, T.J.; Derzon, M.S.; Allshouse, G.; Deeney, C.; Jobe, D.; McGurn, J. [Sandia National Labs., Albuquerque, NM (United States); MacFarlane, J.J.; Wang, P. [Wisconsin Univ., Madison, WI (United States)

    1996-06-01T23:59:59.000Z

    Solid and annular silicon aerogel and agar foams were shot on the accelerator SATURN to study plasma initiation, acceleration, and stagnation. SATURN delivers 7 MA with a 50 nsec rise time to these foam loads. We fielded several spectroscopic diagnostics to measure plasma parameters throughout the z-pinch discharge. A spatially resolved single frame time-gated EUV spectrometer measured the extent of plasma ablation off the surface foam. A time integrated crystal spectrometer showed that characteristic K shell radiation of silicon in the aerogel and of S and Na impurities in the agar were all attenuated when the foam loads were coated with a conductive layer of gold. The time resolved pinhole camera showed that in general the quality of the pinch implosions was poor but improved with increasing efforts to improve current continuity such as prepulse and conductive coatings.

  12. Carbon foam characterization: sandwich flexure, tensile and shear response

    E-Print Network [OSTI]

    Sarzynski, Melanie Diane

    2004-09-30T23:59:59.000Z

    The focus of this research is characterizing a new material system composed of carbon and graphite foams, which has potential in a wide variety of applications encompassing aerospace, military, offshore, power production and other commercial...

  13. Carbon foam characterization: sandwich flexure, tensile and shear response 

    E-Print Network [OSTI]

    Sarzynski, Melanie Diane

    2004-09-30T23:59:59.000Z

    The focus of this research is characterizing a new material system composed of carbon and graphite foams, which has potential in a wide variety of applications encompassing aerospace, military, offshore, power production and other commercial...

  14. Graphite Foams for Lithium-Ion Battery Current Collectors

    SciTech Connect (OSTI)

    Dudney, Nancy J [ORNL; Tiegs, Terry N [ORNL; Kiggans, Jim [ORNL; Jang, Young-Il [ORNL; Klett, James William [ORNL

    2007-01-01T23:59:59.000Z

    Graphite open-cell foams, with their very high electronic and thermal conductivities, may serve as high surface area and corrosion resistant current collectors for lithium-ion batteries. As a proof of principle, cathodes were prepared by sintering carbon-coated LiFePO4 particles into the porous graphite foams. Cycling these cathodes in a liquid electrolyte cell showed promising performance even for materials and coatings that have not been optimized. The specific capacity is not limited by the foam structure, but by the cycling performance of the coated LiFePO4 particles. Upon extended cycling for more than 100 deep cycles, no loss of capacity is observed for rates of C/2 or less. The uncoated graphite foams will slowly intercalate lithium reversibly at potentials less than 0.2 volts versus lithium.

  15. Process for producing carbon foams for energy storage devices

    DOE Patents [OSTI]

    Kaschmitter, J.L.; Mayer, S.T.; Pekala, R.W.

    1998-08-04T23:59:59.000Z

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc--1.0 g/cc) electrically conductive and have high surface areas (400 m{sup 2}/g--1,000 m{sup 2}/g). Capacitances on the order of several tens of farad per gram of electrode are achieved. 9 figs.

  16. Process for producing carbon foams for energy storage devices

    DOE Patents [OSTI]

    Kaschmitter, James L. (Pleasanton, CA); Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA)

    1998-01-01T23:59:59.000Z

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc-1.0 g/cc) electrically conductive and have high surface areas (400 m.sup.2 /g-1000 m.sup.2 /g). Capacitances on the order of several tens of farad per gram of electrode are achieved.

  17. Phase and foam behavior study of CO{sub 2}-based foams at reservoir temperature and pressure. Final report, August 20, 1990--July 15, 1993

    SciTech Connect (OSTI)

    Whiting, W.B.; Lim, K.H.

    1993-10-01T23:59:59.000Z

    A major objective of the Enhanced Oil Recovery Program at Morgantown Energy Technology Center (METC) is to develop technologies based on CO{sub 2}, foams, emulsions, or other fluid dispersions that will alleviate viscous fingering and mobility control problems that severely limit the production of oil by miscible CO{sub 2}, flooding. In this project, data on the phase behavior of a model surfactant/water system were generated both to help in modeling work for phase behavior and dispersion morphologies and to provide an efficient experimental methodology for determination of these data from flow calorimetric measurements. The project consists of two separate but compatible subtasks, the results of which are described in detail in the two parts of the main body of this report.

  18. Three-dimensional analysis of future groundwater flow conditions and contaminant plume transport in the Hanford Site unconfined aquifer system: FY 1996 and 1997 status report

    SciTech Connect (OSTI)

    Cole, C.R.; Wurstner, S.K.; Williams, M.D.; Thorne, P.D.; Bergeron, M.P.

    1997-12-01T23:59:59.000Z

    A three-dimensional numerical model of groundwater flow and transport, based on the Coupled Fluid Energy, and Solute Transport (CFEST) code, was developed for the Hanford Site to support the Hanford Groundwater Project (HGWP), managed by Pacific Northwest National Laboratory. The model was developed to increase the understanding and better forecast the migration of several contaminant plumes being monitored by the HGWP, and to support the Hanford Site Composite Analysis for low-level waste disposal in the 200-Area Plateau. Recent modeling efforts have focused on continued refinement of an initial version of the three-dimensional model developed in 1995 and its application to simulate future transport of selected contaminant plumes in the aquifer system. This version of the model was updated using a more current version of the CFEST code called CFEST96. Prior to conducting simulations of contaminant transport with the three-dimensional model, a previous steady-state, two-dimensional model of the unconfined aquifer system was recalibrated to 1979 water-table conditions with a statistical inverse method implemented in the CFEST-INV computer code. The results of the recalibration were used to refine the three-dimensional conceptual model and to calibrate it with a conceptualization that preserves the two-dimensional hydraulic properties and knowledge of the aquifer`s three-dimensional properties for the same 1979 water-table conditions. The transient behavior of the three-dimensional flow model was also calibrated by adjusting model storage properties (specific yield) until transient water-table predictions approximated observed water-table elevations between 1979 and 1996.

  19. The microcanonical thermodynamics of finite systems: The microscopic origin of condensation and phase separations; and the conditions for heat flow from lower to higher temperatures

    E-Print Network [OSTI]

    D. H. E. Gross; J. F. Kenney

    2005-03-24T23:59:59.000Z

    Microcanonical thermodynamics allows the application of statistical mechanics both to finite and even small systems and also to the largest, self-gravitating ones. However, one must reconsider the fundamental principles of statistical mechanics especially its key quantity, entropy. Whereas in conventional thermostatistics, the homogeneity and extensivity of the system and the concavity of its entropy are central conditions, these fail for the systems considered here. For example, at phase separation, the entropy, S(E), is necessarily convex to make exp[S(E)-E/T] bimodal in E. Particularly, as inhomogeneities and surface effects cannot be scaled away, one must be careful with the standard arguments of splitting a system into two subsystems, or bringing two systems into thermal contact with energy or particle exchange. Not only the volume part of the entropy must be considered. As will be shown here, when removing constraints in regions of a negative heat capacity, the system may even relax under a flow of heat (energy) against a temperature slope. Thus the Clausius formulation of the second law: ``Heat always flows from hot to cold'', can be violated. Temperature is not a necessary or fundamental control parameter of thermostatistics. However, the second law is still satisfied and the total Boltzmann entropy increases. In the final sections of this paper, the general microscopic mechanism leading to condensation and to the convexity of the microcanonical entropy at phase separation is sketched. Also the microscopic conditions for the existence (or non-existence) of a critical end-point of the phase-separation are discussed. This is explained for the liquid-gas and the solid-liquid transition.

  20. Self-Similar Collapse of Stationary Bulk Foams Tad W. Patzek

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    flotation (Sutherland and Clark, 1955). Foam barriers might also be used to control gas mi- gration again. Preformed drilling foams are used to lift crushed rock, sand or mud, and their lifetimes

  1. Control of Vapor Dispersion and Pool Fire of Liquefied Natural Gas (LNG) with Expansion Foam 

    E-Print Network [OSTI]

    Yun, Geun Woong

    2011-10-21T23:59:59.000Z

    in outdoor field tests. Thus, this research focused on experimental determination of the effect of expansion foam application on LNG vapor dispersion and pool fire. Specifically, for evaluating the use of foam to control the vapor hazard from spilled LNG...

  2. Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure and method of processing

    DOE Patents [OSTI]

    Brown, Jr., Jesse J. (Christiansburg, VA); Hirschfeld, Deidre A. (Elliston, VA); Li, Tingkai (Blacksburg, VA)

    1993-12-07T23:59:59.000Z

    Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure are created using sol-gel processes. The processes have particular application in creating calcium magnesium zirconium phosphate, CMZP, coatings and foams.

  3. Mesoscale simulation of shocked poly-(4-methyl-1-pentene) (PMP) foams.

    SciTech Connect (OSTI)

    Schroen, Diana Grace; Flicker, Dawn G.; Haill, Thomas A.; Root, Seth; Mattsson, Thomas Kjell Rene

    2011-06-01T23:59:59.000Z

    Hydrocarbon foams are commonly used in HEDP experiments, and are subject to shock compression from tens to hundreds of GPa. Modeling foams is challenging due to the heterogeneous character of the foam. A quantitative understanding of foams under strong dynamic compression is sought. We use Sandia's ALEGRA-MHD code to simulate 3D mesoscale models of pure poly(4-methyl-1-petene) (PMP) foams. We employ two models of the initial polymer-void structure of the foam and analyze the statistical properties of the initial and shocked states. We compare the simulations to multi-Mbar shock experiments at various initial foam densities and flyer impact velocities. Scatter in the experimental data may be a consequence of the initial foam inhomogeneity. We compare the statistical properties the simulations with the scatter in the experimental data.

  4. The Effect of Moisture Absorption on the Physical Properties of Polyurethane Shape Memory Polymer Foams

    E-Print Network [OSTI]

    Yu, Ya-Jen

    2012-07-16T23:59:59.000Z

    The effect of moisture absorption on the glass transition temperature (Tg) and stress/strain behavior of network polyurethane shape memory polymer (SMP) foams has been investigated. With our ultimate goal of engineering polyurethane SMP foams...

  5. Carbon or graphite foam as a heating element and system thereof

    DOE Patents [OSTI]

    Ott, Ronald D. (Knoxville, TN) [Knoxville, TN; McMillan, April D. (Knoxville, TN) [Knoxville, TN; Choudhury, Ashok (Oak Ridge, TN) [Oak Ridge, TN

    2004-05-04T23:59:59.000Z

    A temperature regulator includes at least one electrically conductive carbon foam element. The foam element includes at least two locations adapted for receiving electrical connectors thereto for heating a fluid, such as engine oil. A combustion engine includes an engine block and at least one carbon foam element, the foam element extending into the engine block or disposed in thermal contact with at least one engine fluid.

  6. Collapse mechanisms of sandwich beams with composite faces and a foam core,

    E-Print Network [OSTI]

    Fleck, Norman A.

    - strated for aluminium alloy face sheets and polymeric foam cores, it has since been extended to other

  7. Redox reaction and foaming in nuclear waste glass melting

    SciTech Connect (OSTI)

    Ryan, J.L.

    1995-08-01T23:59:59.000Z

    This document was prepared by Pacific Northwest Laboratory (PNL) and is an attempt to analyze and estimate the effects of feed composition variables and reducing agent variables on the expected chemistry of reactions occurring in the cold cap and in the glass melt in the nuclear waste glass Slurry-fed, joule-heated melters as they might affect foaming during the glass-making process. Numerous redox reactions of waste glass components and potential feed additives, and the effects of other feed variables on these reactions are reviewed with regard to their potential effect on glass foaming. A major emphasis of this report is to examine the potential positive or negative aspects of adjusting feed with formic acid as opposed to other feed modification techniques including but not limited to use of other reducing agents. Feed modification techniques other than the use of reductants that should influence foaming behavior include control of glass melter feed pH through use of nitric acid. They also include partial replacement of sodium salts by lithium salts. This latter action (b) apparently lowers glass viscosity and raises surface tension. This replacement should decrease foaming by decreasing foam stability.

  8. HPC realization of a controlled turbulent round jet using OpenFOAM

    E-Print Network [OSTI]

    Önder, Asim

    2014-01-01T23:59:59.000Z

    The present paper investigates high performance computing abilities of OpenFOAM for a low Reynolds number ($Re_D=2000$) axisymmetric jet subject to multiple zero net mass flux (ZNMF) actuators. First, parallel performance of OpenFOAM is tested by performing a scaling study up to $2048$ processors on a supercomputer of Flemish Supercomputer Center(VSC). Then, a method to improve the parallel efficiency is proposed. The method is based on developing a hybrid concept to calculate the statistical moments. This new concept combines ensemble and time averaging in order to allow data sampling in parallel. The motivation is obtaining a reduction in the walltime to collect turbulent statistics which is observed to be the dominating part in the ZNMF controlled jet flow. Employing this parallel statistical averaging approach in combination with regular grid partitioning parallelism, allowed us conducting DNS cases on $P=624$ processors with an overall speed-up of $S_e=540.56$ and a parallel efficiency of $E_e=0.87$. The...

  9. Shape memory poly(3-caprolactone)-co-poly(ethylene glycol) foams with body temperature triggering and

    E-Print Network [OSTI]

    Mather, Patrick T.

    Shape memory poly(3-caprolactone)-co-poly(ethylene glycol) foams with body temperature triggering the fabrication of porous foams with shape memory triggering at body temperature. Employing a modified porogen are crosslinked via thiol­ene chemistry to generate highly porous foam scaffolds with shape memory capacity

  10. Foam Control using a Fluidized Bed of Hydrophobic Particles by Clara Mata*

    E-Print Network [OSTI]

    Joseph, Daniel D.

    Applications of foams and foaming are found in many industries like the flotation of minerals, enhanced oil recovery, drilling in oil reservoirs, insulation, construction and refining processes such as Vacuum and foaming are found in many industries like the flotation of minerals, enhanced oil recovery, drilling

  11. Composites: Part B 44 (2013) 584591 584 Tensile Properties of Carbon Nanofiber Reinforced Multiscale Syntactic Foams

    E-Print Network [OSTI]

    Gupta, Nikhil

    The mechanical behavior of hollow glass microballoon-epoxy matrix syntactic foams reinforced with carbon compositions of syntactic foams, epoxy resins filled with glass microballoons are widely studied due to the extensive use of epoxy resins in aerospace applications [5-7]. Studies on these glass/epoxy syntactic foams

  12. 1Cellular Polymers, Vol. 26, No. 1, 2007 On the Bulk Modulus of Open Cell Foams

    E-Print Network [OSTI]

    Lakes, Roderic

    Hydrostaticcompressionoffoamisofinterestinavarietyofcontextsincluding under-sea applications. Syntactic foam, for instance, consists of hollow glass1Cellular Polymers, Vol. 26, No. 1, 2007 On the Bulk Modulus of Open Cell Foams © Rapra Technology, 2007 On the Bulk Modulus of Open Cell Foams B. Moore, T. Jaglinski, D.S. Stone§ and R.S. Lakes

  13. Glass foams: formation, transport properties, and heat, mass, and radiation transfer

    E-Print Network [OSTI]

    Pilon, Laurent

    Glass foams: formation, transport properties, and heat, mass, and radiation transfer Andrei G depend, to a large extent, on foams formed on the surface of the molten glass and of the batch due models for thermophysical and transport properties and heat, mass, and radiation transfer in glass foams

  14. Sedimenting discs in a two-dimensional foam I. T. Davies, S. J. Cox

    E-Print Network [OSTI]

    Cox, Simon

    -dimensional foams can be thought of as a monolayer of bubbles squeezed between two glass plates. We choose to probeSedimenting discs in a two-dimensional foam I. T. Davies, S. J. Cox Institute of Mathematics in a dry two-dimensional, monodisperse foam is studied. This, a variation of the classical Stokes

  15. Experimental characterization and numerical simulations of a syntactic-foam/glass-bre composite sandwich

    E-Print Network [OSTI]

    Corigliano, Alberto

    Experimental characterization and numerical simulations of a syntactic-foam/glass-®bre composite core. Such core consists of a syntactic foam made by hollow glass microspheres embedded in an epoxy. Keywords: A. Glass ®bre; Composite sandwich; Syntactic foam; Mechanical tests; Numerical simulations (FE) 1

  16. Plateau border bulimia transition: discontinuities expected in three simple experiments on 2D liquid foams

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    be observable. II. 2D GLASS-GLASS FOAM GEOMETRICAL VADEMECUM In the present section, we shall provide a geometri- cal description and some corresponding results for two- dimensional foams squeezed between two glass liquid foams Pierre Rognon, Fran¸cois Molino, and Cyprien Gay Centre de Recherche Paul Pascal, CNRS, UPR

  17. Plateau border bulimia transition: discontinuities expected in three simple experiments on 2D liquid foams

    E-Print Network [OSTI]

    Recanati, Catherine

    be observable. II. 2D GLASS-GLASS FOAM GEOMETRICAL VADEMECUM In the present section, we shall provide a geometri- cal description and some corresponding results for two- dimensional foams squeezed between two glass liquid foams Pierre Rognon, Fran#24;cois Molino, and Cyprien Gay #3; Centre de Recherche Paul Pascal

  18. Ultra-low density microcellular polymer foam and method

    DOE Patents [OSTI]

    Simandl, R.F.; Brown, J.D.

    1996-03-19T23:59:59.000Z

    An ultra-low density, microcellular open-celled polymer foam and a method for making such foam are disclosed. A polymer is dissolved in a heated solution consisting essentially of at least one solvent for the dissolution of the polymer in the heated solution and the phase inversion of the dissolved polymer to a liquid gel upon sufficient cooling of the heated solution. The heated solution is contained in a containment means provided with a nucleating promoting means having a relatively rough surface formed of fixed nucleating sites. The heated solution is cooled for a period of time sufficient to form a liquid gel of the polymer by phase inversion. From the gel, a porous foam having a density of less than about 12.0 mg/cm{sup 3} and open porosity provided by well interconnected strut morphology is formed.

  19. Ultra-low density microcellular polymer foam and method

    DOE Patents [OSTI]

    Simandl, Ronald F. (Farragut, TN); Brown, John D. (Harriman, TN)

    1996-01-01T23:59:59.000Z

    An ultra-low density, microcellular open-celled polymer foam and a method for making such foam. A polymer is dissolved in a heated solution consisting essentially of at least one solvent for the dissolution of the polymer in the heated solution and the phase inversion of the dissolved polymer to a liquid gel upon sufficient cooling of the heated solution. The heated solution is contained in a containment means provided with a nucleating promoting means having a relatively rough surface formed of fixed nucleating sites. The heated solution is cooled for a period of time sufficient to form a liquid gel of the polymer by phase inversion. From the gel, a porous foam having a density of less than about 12.0 mg/cm.sup.3 and open porosity provided by well interconnected strut morphology is formed.

  20. Method for epoxy foam production using a liquid anhydride

    DOE Patents [OSTI]

    Celina, Mathias (Albuquerque, NM)

    2012-06-05T23:59:59.000Z

    An epoxy resin mixture with at least one epoxy resin of between approximately 50 wt % and 100 wt %, an anhydride cure agent of between approximately 0 wt % and approximately 50 wt %, a tert-butoxycarbonyl anhydride foaming agent of between proximately 0.1-20 wt %, a surfactant and an imidazole or similar catalyst of less than approximately 2 wt %, where the resin mixture is formed from at least one epoxy resin with a 1-10 wt % tert-butoxycarbonyl anhydride compound and an imidazole catalyst at a temperature sufficient to keep the resin in a suitable viscosity range, the resin mixture reacting to form a foaming resin which in the presence of an epoxy curative can then be cured at a temperature greater than 50.degree. C. to form an epoxy foam.

  1. Modeling epoxy foams exposed to fire-like heat fluxes.

    SciTech Connect (OSTI)

    Hobbs, Michael L.

    2004-11-01T23:59:59.000Z

    A decomposition chemistry and heat transfer model to predict the response of removable epoxy foam (REF) exposed to fire-like heat fluxes is described. The epoxy foam was created using a perfluorohexane blowing agent with a surfactant. The model includes desorption of the blowing agent and surfactant, thermal degradation of the epoxy polymer, polymer fragment transport, and vapor-liquid equilibrium. An effective thermal conductivity model describes changes in thermal conductivity with reaction extent. Pressurization is modeled assuming: (1) no strain in the condensed-phase, (2) no resistance to gas-phase transport, (3) spatially uniform stress fields, and (4) no mass loss from the system due to venting. The model has been used to predict mass loss, pressure rise, and decomposition front locations for various small-scale and large-scale experiments performed by others. The framework of the model is suitable for polymeric foams with absorbed gases.

  2. Modeling epoxy foams exposed to fire-like heat fluxes.

    SciTech Connect (OSTI)

    Hobbs, Michael L.

    2004-10-01T23:59:59.000Z

    A decomposition chemistry and heat transfer model to predict the response of removable epoxy foam (REF) exposed to fire-like heat fluxes is described. The epoxy foam was created using a perfluorohexane blowing agent with a surfactant. The model includes desorption of the blowing agent and surfactant, thermal degradation of the epoxy polymer, polymer fragment transport, and vapor-liquid equilibrium. An effective thermal conductivity model describes changes in thermal conductivity with reaction extent. Pressurization is modeled assuming: (1) no strain in the condensed-phase, (2) no resistance to gas-phase transport, (3) spatially uniform stress fields, and (4) no mass loss from the system due to venting. The model has been used to predict mass loss, pressure rise, and decomposition front locations for various small-scale and large-scale experiments performed by others. The framework of the model is suitable for polymeric foams with absorbed gases.

  3. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    SciTech Connect (OSTI)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope

    2005-07-01T23:59:59.000Z

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A combination of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. A formulation has been designed for a particular field application. The addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. The design of the process to maximize the region of ultra-low IFT is more challenging since the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Compositional simulation of the displacement process demonstrates the interdependence of the various components for oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. It has been modified to represent the effects of a change in wettability. Simulated case studies demonstrate the effects of wettability.

  4. Foaming and Antifoaming in Radioactive Waste Pretreatment and Immobilization Processes

    SciTech Connect (OSTI)

    Darsh T. Wasan; Alex D. Nikolov; D.P. Lamber; T. Bond Calloway; M.E. Stone

    2005-03-12T23:59:59.000Z

    Savannah River National Laboratory (SRNL) has reported severe foaminess in the bench scale evaporation of the Hanford River Protection - Waste Treatment Plant (RPP-WPT) envelope C waste. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. The antifoams used at Hanford and tested by SRNL are believed to degrade and become inactive in high pH solutions. Hanford wastes have been known to foam during evaporation causing excessive down time and processing delays.

  5. Humidifier for fuel cell using high conductivity carbon foam

    DOE Patents [OSTI]

    Klett, James W.; Stinton, David P.

    2006-12-12T23:59:59.000Z

    A method and apparatus of supplying humid air to a fuel cell is disclosed. The extremely high thermal conductivity of some graphite foams lends itself to enhance significantly the ability to humidify supply air for a fuel cell. By utilizing a high conductivity pitch-derived graphite foam, thermal conductivity being as high as 187 W/m.dot.K, the heat from the heat source is more efficiently transferred to the water for evaporation, thus the system does not cool significantly due to the evaporation of the water and, consequently, the air reaches a higher humidity ratio.

  6. Toxicology evaluation and hazard review for non-CFC containing rigid foams BKC 44317 and last-a-foam MSL-02A

    SciTech Connect (OSTI)

    Greulich, K.A.; Archuleta, M.M.

    1996-06-01T23:59:59.000Z

    New pour-in-place, low density, rigid polyurethane foam kits have been developed to mechanically stabilize damaged explosive ordnance. Although earlier foam systems used chlorofluorocarbons as blowing agents, the current versions rely on carbon dioxide generated by the reaction of isocynates with water. In addition, these kits were developed to manually generate small quantifies of rigid foam in the field with minimal or no protective equipment. The purpose of this study was to evaluate and summarize available hazard information for the components of these rigid foam kits and to provide recommendations for personal protective equipment to be used while performing the manual combination of the components. As with most rigid foam systems, these kits consist of two parts, one a mixture of isocyanates; the other, a combination of polyols, surfactants, and amine catalysts. Once completely deployed, the rigid foam is non-toxic. The components, however, have some important health effects which must be considered when establishing handling procedures.

  7. FLOW CONDITIONING DESIGN IN TURBULENT

    E-Print Network [OSTI]

    /L) · Free surface = interface between fluorescing (bright) water and (dark) air · Image obliquely with B-Injection Fusion Energy) #12;3 Motivation · Effective protection Minimize clearance between edge of liquid sheet) at FWHM · Positioning controlled by two linear stages · Water seeded with TiO2 particles (typical dia. 0

  8. PRODUCTION OF FOAMS, FIBERS AND PITCHES USING A COAL EXTRACTION PROCESS

    SciTech Connect (OSTI)

    Chong Chen; Elliot B. Kennel; Liviu Magean; Pete G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2004-06-20T23:59:59.000Z

    This Department of Energy National Energy Technology Laboratory sponsored project developed processes for converting coal feedstocks to carbon products, including coal-derived pitch, coke foams and fibers based on solvent extraction processes. A key technology is the use of hydrogenation accomplished at elevated temperatures and pressures to obtain a synthetic coal pitch. Hydrogenation, or partial direct liquefaction of coal, is used to modify the properties of raw coal such that a molten synthetic pitch can be obtained. The amount of hydrogen required to produce a synthetic pitch is about an order of magnitude less than the amount required to produce synthetic crude oil. Hence the conditions for synthetic pitch production consume very little hydrogen and can be accomplished at substantially lower pressure. In the molten state, hot filtration or centrifugation can be used to separate dissolved coal chemicals from mineral matter and insolubles (inertinite), resulting in the production of a purified hydrocarbon pitch. Alternatively, if hydrogenation is not used, aromatic hydrocarbon liquids appropriate for use as precursors to carbon products can obtained by dissolving coal in a solvent. As in the case for partial direct liquefaction pitches, undissolved coal is removed via hot filtration or centrifugation. Excess solvent is boiled off and recovered. The resultant solid material, referred to as Solvent Extracted Carbon Ore or SECO, has been used successfully to produce artificial graphite and carbon foam.

  9. Environmental Conditions Environmental Conditions

    E-Print Network [OSTI]

    Environmental Conditions Environmental Conditions Appendix II The unique geology, hydrology and instream habitat. This chapter examines how environmental conditions in the Deschutes watershed affect, the discussion characterizes the environmental conditions within three watershed areas: the Lower Deschutes

  10. Environmentally-benign Flame Retardant Nanocoating for Foam and Fabric 

    E-Print Network [OSTI]

    Cain, Amanda Ashley

    2014-12-09T23:59:59.000Z

    for the purpose of inhibiting or suppressing the combustion cycle. Inspiration for first applying polymer/clay thin films (i.e., nanobrick walls) as flame retardant (FR) coatings to polyurethane foam via LbL came from the final stage of a proposed flame...

  11. Factors Contributing to Petroleum Foaming. 1. Crude Oil Systems

    E-Print Network [OSTI]

    Kilpatrick, Peter K.

    Factors Contributing to Petroleum Foaming. 1. Crude Oil Systems Michael K. Poindexter,*, Nael N production, producers often determine beforehand various processing issues that might be encountered during full-scale production. A host of issues are considered pertinent, some of which include production line

  12. Cometabolic Degradation of TCE Vapors in a Foamed Emulsion

    E-Print Network [OSTI]

    Cometabolic Degradation of TCE Vapors in a Foamed Emulsion Bioreactor E U N S U N G K A N A N D M the experiments, 85-101% of the degraded TCE chlorine was recovered as chloride. Overall, the results suggest to complete degradation of TCE to harmless end products. Unfortunately, no microorganism can grow on TCE

  13. 1 INTRODUCTION Flexible polyurethane foams are usually applied in

    E-Print Network [OSTI]

    Boyer, Edmond

    , producing polyurea and carbon dioxide, with simultaneous expansion of CO2 bubbles (foaming) and polymerization of the mixture. The first step of the expansion is bubble nucleation, where CO2 molecules chemical reactions take place: the first one creates CO2 into the fluid matrix (germination of bubbles

  14. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    SciTech Connect (OSTI)

    George J. Hirasaki; Clarence A. Miller

    2006-09-09T23:59:59.000Z

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A mixture of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. The mixture is single phase for higher salinity or calcium concentrations than that for either surfactant used alone. This makes it possible to inject the surfactant slug with polymer close to optimal conditions and yet be single phase. A formulation has been designed for a particular field application. It uses partially hydrolyzed polyacrylamide for mobility control. The addition of an alkali such as sodium carbonate makes possible in situ generation of naphthenic soap and significant reduction of synthetic surfactant adsorption. The design of the process to maximize the region of ultra-low IFT takes advantage of the observation that the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Even for a fixed ratio of soap to surfactant, the range of salinity for low IFT was wider than that reported for surfactant systems in the literature. Low temperature, forced displacement experiments in dolomite and silica sandpacks demonstrate that greater than 95% recovery of the waterflood remaining oil is possible with 0.2% surfactant concentration, 0.5 PV surfactant slug, with no alcohol. Compositional simulation of the displacement process demonstrates the role of soap/surfactant ratio on passage of the profile through the ultralow IFT region, the importance of a wide salinity range of low IFT, and the importance of the viscosity of the surfactant slug. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs as well as a drive fluid for ASP flooding. UTCHEM is a reservoir simulator specially designed for surfactant EOR. It has been modified to represent the effects of a change in wettability produced by surfactant injection.

  15. STANDING WAVE PROBES FOR DIMENSIONAL METROLOGY OF LOW DENSITY FOAMS

    SciTech Connect (OSTI)

    Seugling, R M; Woody, S C; Bauza, M B

    2010-03-23T23:59:59.000Z

    Typically, parts and geometries of interest to LLNL are made from a combination of complex geometries and a wide array of different materials ranging from metals and ceramics to low density foams and plastic foils. These parts are combined to develop physics experiments for studying material properties, equation of state (EOS) and radiation transport. Understanding the dimensional uncertainty of the parts contained within an experiment is critical to the physical understanding of the phenomena being observed and represents the motivation for developing probe metrology capability that can address LLNL's unique problems. Standing wave probes were developed for measuring high aspect ratio, micrometer scaled features with nanometer resolution. Originally conceived of for the use in the automotive industry for characterizing fuel injector bores and similar geometries, this concept was investigated and improved for use on geometries and materials important to LLNL needs within target fabrication. As part of the original project, detailed understanding of the probe dynamics and interactions with the surface of the sample was investigated. In addition, the upgraded system was utilized for measuring fuel injector bores and micro-lenses as a means of demonstrating capability. This report discusses the use of the standing wave probe for measuring features in low density foams, 55 mg/cc SiO{sub 2} and 982 mg/cc (%6 relative density) copper foam respectively. These two foam materials represent a difficult metrology challenge because of their material properties and surface topography. Traditional non-contact metrology systems such as normal incident interferometry and/or confocal microscopy have difficulty obtaining a signal from the relatively absorptive characteristics of these materials. In addition to the foam samples, a solid copper and plastic (Rexolite{trademark}) sample of similar geometry was measured with the standing wave probe as a reference for both conductive and dielectric materials.

  16. Note and calculations concerning elastic dilatancy in 2D glass-glass liquid foams Francois Molino, Pierre Rognon, and Cyprien Gay

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Note and calculations concerning elastic dilatancy in 2D glass-glass liquid foams Fran¸cois Molino 30, 2010) When deformed, liquid foams tend to raise their liquid contents like immersed granular dilatancy in 3D foams and in very dry foams squeezed between two solid plates (2D GG foams). Here, we

  17. Low volume flow meter

    DOE Patents [OSTI]

    Meixler, Lewis D. (East Windsor, NJ)

    1993-01-01T23:59:59.000Z

    The low flow monitor provides a means for determining if a fluid flow meets a minimum threshold level of flow. The low flow monitor operates with a minimum of intrusion by the flow detection device into the flow. The electrical portion of the monitor is externally located with respect to the fluid stream which allows for repairs to the monitor without disrupting the flow. The electronics provide for the adjustment of the threshold level to meet the required conditions. The apparatus can be modified to provide an upper limit to the flow monitor by providing for a parallel electronic circuit which provides for a bracketing of the desired flow rate.

  18. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

    1990-01-01T23:59:59.000Z

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under full pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  19. Portable wastewater flow meter

    DOE Patents [OSTI]

    Hunter, Robert M. (320 S. Wilson Ave., Bozeman, MT 59715)

    1999-02-02T23:59:59.000Z

    A portable wastewater flow meter particularly adapted for temporary use at a single location in measuring the rate of liquid flow in a circular entrance conduit of a sewer manhole both under free flow and submerged, open channel conditions and under fill pipe, surcharged conditions, comprising an apparatus having a cylindrical external surface and an inner surface that constricts the flow through the apparatus in such a manner that a relationship exists between (1) the difference between the static pressure head of liquid flowing through the entrance of the apparatus and the static pressure head of liquid flowing through the constriction, and (2) the rate of liquid flow through the apparatus.

  20. A moving overset grid method for interface dynamics applied to non-Newtonian HeleShaw flow

    E-Print Network [OSTI]

    Shelley, Michael

    of boundary conditions. Ă? 2003 Elsevier Inc. All rights reserved. 1. Introduction Consider two parallel glass with complex liquids such as liquid crystals [7,8], polymer solutions and melts [39,40], clays [12], and foams

  1. Current initiation in low-density foam z-pinch plasmas

    SciTech Connect (OSTI)

    Derzon, M.; Nash, T.; Allshouse, G. [and others

    1996-07-01T23:59:59.000Z

    Low density agar and aerogel foams were tested as z-pinch loads on the SATURN accelerator. In these first experiments, we studied the initial plasma conditions by measuring the visible emission at early times with a framing camera and 1-D imaging. At later time, near the stagnation when the plasma is hotter, x-ray imaging and spectral diagnostics were used to characterize the plasma. Filamentation and arcing at the current contacts was observed. None of the implosions were uniform along the z-axis. The prime causes of these problems are believed to be the electrode contacts and the current return configuration and these are solvable. Periodic phenomena consistent with the formation of instabilities were observed on one shot, not on others, implying that there may be a way of controlling instabilities in the pinch. Many of the issues involving current initiation may be solvable. Solutions are discussed.

  2. Problems associated with the use of urea-formaldehyde foam for residential insulation. Part II. The effects of temperature and humidity on free formaldehyde, extractable formaldehyde, formaldehyde emission, and physical characteristics of the foam

    SciTech Connect (OSTI)

    Schutte, W.C.; Cole, R.S.; Frank, C.W.; Long, K.R.

    1981-02-01T23:59:59.000Z

    Results of testing with two products of urea-formaldehyde based foams are described. Results of three products have previously been reported. Methods for detection and quantitative determination of formaldehyde, design of the experimental chambers, and the procedures are described. Samples of Product D were monitored for about 29 days and samples of Product E were monitored for 60 days in chambers and results are tabulated for formaldehyde emission. Additional tests performed on the two products are: extractable formaldehyde (high and low temperature conditions); free formaldehyde (high and low temperature conditions); comparison of free formaldehyde concentration; density (high and low temperature conditions); shrinkage (high and low temperature conditions). Control panels were constructed to simulate a wall in a home and observations were made and compared with results of the experimental products.

  3. Drag coefficient for the air-sea exchange in hurricane conditions

    E-Print Network [OSTI]

    Golbraikh, E

    2013-01-01T23:59:59.000Z

    The physical model is proposed for prediction of the non-monotonic drag coefficient variation with the neutral stability 10-m wind speed, U10. The model is based upon measurements of the foam coverage fraction and characteristic size of foam bubbles with U10, and on the drag coefficient approximation by the linearly weighted averaging over alternating foam-free and foam-covered portions of the ocean surface. The obtained drag coefficient is in fair agreement with that obtained by field measurements of the vertical variation of mean wind speed in Powell et al. (Nature, 2003) which discover reduction of the sea-surface drag with U10 rising to hurricane conditions.

  4. CO/sub 2/ foam flooding performance vs. rock wettability

    SciTech Connect (OSTI)

    Lescure, B.M.; Claridge, E.L.

    1986-01-01T23:59:59.000Z

    CO/sub 2/ flooding projects have shown large potential for oil recovery, but in many cases the volumetric sweep efficiency is greatly limited by gravity tonguing and/or viscous fingering. To reduce these effects foam could be used as an alternative to WAG CO/sub 2/ injection. Experiments on the CO/sub 2/ foam process were conducted in a 1/4 5-spot reservoir model in order to investigate the effect of rock wetting state and total CO/sub 2/ slug size on secondary and tertiary extra-oil recovery. Laboratory model results show that the process is more successful in an oil-wet medium than in a water-wet medium due to larger surfactant adsorption in the water-wet medium. Also, requirements for optimal CO/sub 2/ slug size are smaller than in the WAG process, with larger extra oil recovery for both secondary and tertiary floods.

  5. Calibrating the Abaqus Crushable Foam Material Model using UNM Data

    SciTech Connect (OSTI)

    Schembri, Philip E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lewis, Matthew W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-02-27T23:59:59.000Z

    Triaxial test data from the University of New Mexico and uniaxial test data from W-14 is used to calibrate the Abaqus crushable foam material model to represent the syntactic foam comprised of APO-BMI matrix and carbon microballoons used in the W76. The material model is an elasto-plasticity model in which the yield strength depends on pressure. Both the elastic properties and the yield stress are estimated by fitting a line to the elastic region of each test response. The model parameters are fit to the data (in a non-rigorous way) to provide both a conservative and not-conservative material model. The model is verified to perform as intended by comparing the values of pressure and shear stress at yield, as well as the shear and volumetric stress-strain response, to the test data.

  6. Effects of quantum space time foam in the neutrino sector

    E-Print Network [OSTI]

    H. V. Klapdor-Kleingrothaus; H. Päs; U. Sarkar

    2000-07-05T23:59:59.000Z

    We discuss violations of CPT and quantum mechanics due to interactions of neutrinos with space-time quantum foam. Neutrinoless double beta decay and oscillations of neutrinos from astrophysical sources (supernovae, active galactic nuclei) are analysed. It is found that the propagation distance is the crucial quantity entering any bounds on EHNS parameters. Thus, while the bounds from neutrinoless double beta decay are not significant, the data of the supernova 1987a imply a bound being several orders of magnitude more stringent than the ones known from the literature. Even more stringent limits may be obtained from the investigation of neutrino oscillations from active galactic nuclei sources, which have an impressive potential for the search of quantum foam interactions in the neutrino sector.

  7. Equipment compatibility and logistics assessment for containment foam deployment.

    SciTech Connect (OSTI)

    McRoberts, Vincent M.; Martell, Mary-Alena; Jones, Joseph A.

    2005-09-01T23:59:59.000Z

    The deployment of the Joint Technical Operations Team (JTOT) is evolving toward a lean and mobile response team. As a result, opportunities to support more rapid mobilization are being investigated. This study investigates three specific opportunities including: (1) the potential of using standard firefighting equipment to support deployment of the aqueous foam concentrate (AFC-380); (2) determining the feasibility and needs for regional staging of equipment to reduce the inventory currently mobilized during a JTOT response; and (3) determining the feasibility and needs for development of the next generation AFC-380 to reduce the volume of foam concentrate required for a response. This study supports the need to ensure that requirements for alternative deployment schemes are understood and in place to support improved response activities.

  8. Production of High Quality Dust Control Foam to Minimize Moisture Addition to Coal

    E-Print Network [OSTI]

    Termine, F.; Jordan, S. T.

    PRODUCTION OF HIGH QUALITY DUST CONTROL FOAM TO MINIMIZE MOISTURE ADDITION TO COAL Frank Tenni ne Steve T. Jordan BETZ Laboratories, Trevose, PA Inc. ABSTRACT Foam is displacing wet suppression as the method of choice for controlling... fugitive emissions from coal. Coal treated by wet suppression consumes through moisture addition, a heat energy equivalent of 1 ton out of every 500 tons fired. The application of foam requires less than 10% of the moisture usually required for wet...

  9. INDENTATION RESISTANCE OF AN ALUMINIUM FOAM O.B. Olurin, N.A. Fleck

    E-Print Network [OSTI]

    Fleck, Norman A.

    , of relative density 8­15% were tested. Alporas is a closed cell aluminium alloy foam, consisting of 0.4­2 wt completed: the cell walls contain the oxides CaO and CaAl2O4. It is a cast aluminium alloy foam and detailsINDENTATION RESISTANCE OF AN ALUMINIUM FOAM O.B. Olurin, N.A. Fleck and M.F. Ashby Cambridge

  10. Pitch-based carbon foam heat sink with phase change material

    DOE Patents [OSTI]

    Klett, James W. (Knoxville, TN); Burchell, Timothy D. (Oak Ridge, TN)

    2002-01-01T23:59:59.000Z

    A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.

  11. Pitch-based carbon foam heat sink with phase change material

    DOE Patents [OSTI]

    Klett, James W. (Knoxville, TN); Burchell, Timothy D. (Oak Ridge, TN)

    2000-01-01T23:59:59.000Z

    A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.

  12. Synthesis of Mesocellular Silica Foams with Tunable Window and Cell Dimensions

    E-Print Network [OSTI]

    Yang, Peidong

    Polystyrene microspheres coated with cationic surfactants are easily prepared by micro- emulsion templates. These silica foams resemble dense aerogels. Introduction Because of their greatly enhanced pore

  13. Pitch-based carbon foam heat sink with phase change material

    DOE Patents [OSTI]

    Klett, James W.; Burchell, Timothy D.

    2007-01-02T23:59:59.000Z

    A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.

  14. Pitch-based carbon foam heat sink with phase change material

    DOE Patents [OSTI]

    Klett, James W.; Burchell, Timothy D.

    2007-01-23T23:59:59.000Z

    A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.

  15. Pitch-based carbon foam heat sink with phase change material

    DOE Patents [OSTI]

    Klett, James W.; Burchell, Timothy D.

    2004-08-24T23:59:59.000Z

    A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.

  16. Pitch-based carbon foam heat sink with phase change material

    DOE Patents [OSTI]

    Klett, James W.; Burchell, Timothy D.

    2006-03-21T23:59:59.000Z

    A process for producing a carbon foam heat sink is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications. The foam is encased and filled with a phase change material to provide a very efficient heat sink device.

  17. The use of coated micropowders to reduce radiation heat transfer in foam insulation

    E-Print Network [OSTI]

    Marge, Arlene Lanciani

    1991-01-01T23:59:59.000Z

    Polyurethane foam is the most effective insulation currently available for buildings. Chlorofluorocarbon (CFC) blowing agents, which have low thermal conductivities, contribute highly to the effectiveness of this insulation. ...

  18. Explosively driven low-density foams and powders

    DOE Patents [OSTI]

    Viecelli, James A. (Orinda, CA); Wood, Lowell L. (Simi Valley, CA); Ishikawa, Muriel Y. (Livermore, CA); Nuckolls, John H. (Danville, CA); Pagoria, Phillip F. (Livermore, CA)

    2010-05-04T23:59:59.000Z

    Hollow RX-08HD cylindrical charges were loaded with boron and PTFE, in the form of low-bulk density powders or powders dispersed in a rigid foam matrix. Each charge was initiated by a Comp B booster at one end, producing a detonation wave propagating down the length of the cylinder, crushing the foam or bulk powder and collapsing the void spaces. The PdV work done in crushing the material heated it to high temperatures, expelling it in a high velocity fluid jet. In the case of boron particles supported in foam, framing camera photos, temperature measurements, and aluminum witness plates suggest that the boron was completely vaporized by the crush wave and that the boron vapor turbulently mixed with and burned in the surrounding air. In the case of PTFE powder, X-ray photoelectron spectroscopy of residues recovered from fragments of a granite target slab suggest that heating was sufficient to dissociate the PTFE to carbon vapor and molecular fluorine which reacted with the quartz and aluminum silicates in the granite to form aluminum oxide and mineral fluoride compounds.

  19. Shock compression of low-density foams

    SciTech Connect (OSTI)

    Holmes, N.C.

    1993-07-01T23:59:59.000Z

    Shock compression of very low density micro-cellular materials allows entirely new regimes of hot fluid states to be investigated experimentally. Using a two-stage light-gas gun to generate strong shocks, temperatures of several eV are readily achieved at densities of roughly 0.5--1 g/cm{sup 3} in large, uniform volumes. The conditions in these hot, expanded fluids are readily found using the Hugoniot jump conditions. We will briefly describe the basic methodology for sample preparation and experimental measurement of shock velocities. We present data for several materials over a range of initial densities. This paper will explore the applications of these methods for investigations of equations of state and phase diagrams, spectroscopy, and plasma physics. Finally, we discus the need for future work on these and related low-density materials.

  20. Effects of surfactants on the microstructure of porous ceramic scaffolds fabricated by foaming for bone tissue engineering

    SciTech Connect (OSTI)

    Wang Xi, E-mail: nano-sun@hotmail.com [College of Chemistry and Chemical Engineering, Central South University, Lushan Road South, Changsha, Hunan 410083 (China); Ruan Jianming [State Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083 (China); Chen Qiyuan [College of Chemistry and Chemical Engineering, Central South University, Lushan Road South, Changsha, Hunan 410083 (China)

    2009-06-03T23:59:59.000Z

    A porous scaffold comprising a {beta}-tricalcium phosphate matrix and bioactive glass powders was fabricated by foaming method and the effects of surfactants as foaming agent on microstructure of scaffolds were investigated. Foaming capacity and foam stability of different surfactants in water firstly were carried out to evaluate their foam properties. The porous structure and pore size distribution of the scaffolds were systematically characterized by scanning electron microscopy (SEM) and an optical microscopy connected to an image analyzer. The results showed that the foam stability of surfactant has more remarkable influence on their microstructure such as pore shape, size and interconnectivity than the foaming ability of one. Porous scaffolds fabricated using nonionic surfactant Tween 80 with large foam stability exhibited higher open and total porosities, and fully interconnected porous structure with a pore size of 750-850 {mu}m.

  1. Foaming of E-Glass II (Report for G Plus Project for PPG)

    SciTech Connect (OSTI)

    Kim, Dong-Sang; Portch, Matthew P.; Matyas, Josef; Hrma, Pavel R.; Pilon, Laurent

    2005-09-23T23:59:59.000Z

    In a previous study, the effect of the furnace atmosphere on E glass foaming was investigated with the specific goal to understand the impact of increased water content on foaming in oxy-fired furnaces. The present study extended the previous study and focused on the effect of glass batch chemical composition on E-glass foaming. The present study also included reruns of foam tests performed in a previous study, which resulted in the same trend: the foaming extent increased nearly linearly with the heating rate and no foam was produced when CO2 + 55% H2O atmosphere was introduced at 300°C. It was shown that the lack of foaming in the test with CO2 + 55% H2O atmosphere introduced at 300°C was caused by a loss of sulfate at T <1250°C because of higher water content at the early stages of melting. The tests with new batches in the present study showed that replacing quicklime with limestone tend to decrease foaming, possibly caused by increased sulfate loss during early stages of melting in the batch with limestone. The batches where Na2SO4 was replaced with NaNO3, NaNO3 + CeO2, or CeO2, produced only very limited foaming regardless of the replacing components. As expected, the foaming extent increased as the sulfate content in the batch increased. The results of the present study suggest that foaming can be reduced by using limestone over quicklime and by decreasing the sulfate addition to a minimum required for refining.

  2. Control of the specific growth rate of Bacillus subtilis for the production of biosurfactant lipopeptides in bioreactors with foam

    E-Print Network [OSTI]

    Boyer, Edmond

    lipopeptides in bioreactors with foam overflow S. CHENIKHERa , J. S. GUEZb , F. COUTTE b , M. PEKPEa , P

  3. Rigid polyurethane foams in refrigeration. (Latest citations from the Rubber and Plastics Research Association database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    The bibliography contains citations concerning the use of rigid polyurethane as thermal insulation in refrigerators. Production machinery, foam systems such as one-shot prepolymer systems, and properties of rigid polyurethane foams used in refrigerators are among the topics discussed. Curing methods, in-place foaming, and bun foaming are also included. (Contains a minimum of 70 citations and includes a subject term index and title list.)

  4. Polyurethane/polyisocyanurate foam thermal insulation. (Latest citations from the Rubber and Plastics Research Association database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    The bibliography contains citations concerning the use of polyisocyanurate/polyurethane foam for thermal insulation building materials. The topics discussed include flammability and smoke generation characteristics, building frame sheathing materials, fiber reinforcement, laminated insulation foam boards, substitution for controversial formaldehyde foams and aging characteristics. Performance evaluations of existing buildings with installed foam insulation are included. (Contains a minimum of 187 citations and includes a subject term index and title list.)

  5. Polystyrene foams for thermal insulation. (Latest citations from the Rubber and Plastics Research Asociation database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    The bibliography contains citations concerning the use of polystyrene foam as a thermal insulator. References discuss applications in railroad tracks, masonry walls, foundations for shallow buildings, and commercial roofing. Use as a vibration medium is referenced. Topics include designing with foam and self-extinguishing foams. (Contains a minimum of 77 citations and includes a subject term index and title list.)

  6. Use of Disinfectants and Cleaners to Reduce Bacteria on Poultry Transportation Coops with a Compressed Air Foam System 

    E-Print Network [OSTI]

    Hinojosa-Garza, Carolee A.

    2013-05-24T23:59:59.000Z

    and disinfect poultry transport coops. The objective of this study was to evaluate treatments consisting of a low-pressure water rinse (LPWR), a foaming additive alone, foaming cleaner or peroxyacetic acid with a foaming additive to reduce bacteria on broiler...

  7. TOUGHNESS OF ALUMINIUM ALLOY FOAMS K. Y. G. McCULLOUGH, N. A. FLECK and M. F. ASHBY{

    E-Print Network [OSTI]

    Fleck, Norman A.

    TOUGHNESS OF ALUMINIUM ALLOY FOAMS K. Y. G. McCULLOUGH, N. A. FLECK and M. F. ASHBY{ Cambridge Science Ltd. All rights reserved. Keywords: Foams; Aluminium alloys; Fracture toughness; Crack growth 1 of metallic foams made from aluminium alloys, with attractive properties for energy management [5, 6], thermal

  8. Impact Strength of High Relative Density Solid State CO, Blown CPET Microcellular Foams Impact Strength of High Relative Density

    E-Print Network [OSTI]

    Kumar, Vipin

    is an increased glass transition temperature (T,), thus requiring higher foaming temperatures. Baldwin and SuhImpact Strength of High Relative Density Solid State CO, Blown CPET Microcellular Foams ImpactTerephthalate) Microcellular Foams Vipin KurnaW, Richard P Juntunena, and Chris Barlowb University of Washington, Seattle

  9. Modeling of a Foamed Emulsion Bioreactor: I. Model Development and Experimental Validation

    E-Print Network [OSTI]

    ARTICLE Modeling of a Foamed Emulsion Bioreactor: I. Model Development and Experimental Validation, a new type of bioreactor for air pollution control referred to as the foamed emulsion bior- eactor (FEBR Introduction Biofilters and biotrickling filters are the most widely used bioreactors for treating low levels

  10. Effect of Gas Diffusion on Mobility of Foam for Enhanced Oil Recovery Lars E. Nonnekes1

    E-Print Network [OSTI]

    Cox, Simon

    Effect of Gas Diffusion on Mobility of Foam for Enhanced Oil Recovery Lars E. Nonnekes1 Foam can improve the sweep efficiency of gas injected into oil reservoirs for enhanced oil recovery University William Richard Rossen Email: W.R.Rossen@tudelft.nl Abstract Transport of gas across

  11. Polystyrene foam products equation of state as a function of porosity and fill gas

    SciTech Connect (OSTI)

    Mulford, Roberta N [Los Alamos National Laboratory; Swift, Damian C [LLNL

    2009-01-01T23:59:59.000Z

    An accurate EOS for polystyrene foam is necessary for analysis of numerous experiments in shock compression, inertial confinement fusion, and astrophysics. Plastic to gas ratios vary between various samples of foam, according to the density and cell-size of the foam. A matrix of compositions has been investigated, allowing prediction of foam response as a function of the plastic-to-air ratio. The EOS code CHEETAH allows participation of the air in the decomposition reaction of the foam. Differences between air-filled, Ar-blown, and CO{sub 2}-blown foams are investigated, to estimate the importance of allowing air to react with products of polystyrene decomposition. O{sub 2}-blown foams are included in some comparisons, to amplify any consequences of reaction with oxygen in air. He-blown foams are included in some comparisons, to provide an extremum of density. Product pressures are slightly higher for oxygen-containing fill gases than for non-oxygen-containing fill gases. Examination of product species indicates that CO{sub 2} decomposes at high temperatures.

  12. Multiple Percolation in a Carbon-Filled Polymer Composites via Foaming

    E-Print Network [OSTI]

    Thompson, Michael

    . However, there are few publi- cations reporting on the electrical conductivity of foam polymer composites6Multiple Percolation in a Carbon-Filled Polymer Composites via Foaming M. R. Thompson,1 G. H conductivity for a car- bon-filled cyclic olefin copolymer (COC) composite incorpo- rating both chopped carbon

  13. Deformation rate effects on failure modes of open-cell Al foams and textile cellular materials

    E-Print Network [OSTI]

    Barthelat, Francois

    September 2005 Abstract The compressive behavior of open-cell aluminum alloy foam and stainless steel woven: Metallic cellular materials; Dynamic compression; Aluminum foams; Woven textile lattice 0020-7683/$ - see are of attracting interest for a variety of automotive, locomotive, marine, and aerospace applications (Gibson

  14. Foaming of E-Glass (Report for G Plus Project for PPG)

    SciTech Connect (OSTI)

    Kim, Dong-Sang; Hrma, Pavel R.; Pilon, Laurent; Dutton, Bryan C.

    2004-04-19T23:59:59.000Z

    The behavior of foams generated in the crucible melts was investigated to study the effect of furnace atmosphere on E-glass foaming, specifically focused on its water content to understand the effect of oxy-firing. A quartz-crucible furnace equipped with video recording was used to observe the behavior and to evaluate stability of foams generated from the PPG E-glass under various atmospheres. The present study preliminarily concluded that the higher foaming in oxy-fired furnace compared to air-fired is caused by the effect of water on early sulfate decomposition, promoting more efficient refining gas generation from sulfate (known as ''dilution effect''), not by the effect of humidity on foam lamella stability. A plausible explanation for the difference between soda-lime glass and E-glass in the end result of the dilution effect on glass refining and foaming is presented. A preliminary experiment on the effect of heating rate also suggests that thermal history of glass melting can be a major factor in the rate of E-glass foaming. Approaches to develop the methods to reduce foaming in oxy-fired furnace are recommended.

  15. Fracture enhanced in-situ foam remediation. Topical report, July 1995-December 1996

    SciTech Connect (OSTI)

    Chowdiah, P.; Misra, B.R.; Conrad, J.R.; Srivastava, V.J.

    1997-06-01T23:59:59.000Z

    The objective of this project was to determine the technical feasibility of soil fracturing as an enhancement to transportation of foam and foam-assisted site remediation. This project is part of an overall effort by the Gas Research Institute (GRI) to develop technologies for cost-effective, in-situ remediation of soils.

  16. Thermal Transport in Porous Media with Application to Fuel Cell Diffusion Media and Metal Foams

    E-Print Network [OSTI]

    Victoria, University of

    Thermal Transport in Porous Media with Application to Fuel Cell Diffusion Media and Metal Foams to Fuel Cell Diffusion Media and Metal Foams by Ehsan Sadeghi B.Sc., Sharif University of Technology, Iran make them excellent candidates for a variety of thermofluid applications including fuel cells, compact

  17. Thermal degradation of new and aged urethane foam and epon 826 epoxy.

    SciTech Connect (OSTI)

    Kruizenga, Alan Michael; Mills, Bernice E.

    2013-08-01T23:59:59.000Z

    Thermal desorption spectroscopy was used to monitor the decomposition as a function of temperature for the foam and epoxy as a function of temperature in the range of 60C to 170C. Samples were studied with one day holds at each of the studied temperatures. Both new (FoamN and EpoxyN) and aged (FoamP and EpoxyP) samples were studied. During these ~10 day experiments, the foam samples lost 11 to 13% of their weight and the EpoxyN lost 10% of its weight. The amount of weight lost was difficult to quantify for EpoxyP because of its inert filler. The onset of the appearance of organic degradation products from FoamP began at 110C. Similar products did not appear until 120C for FoamN, suggesting some effect of the previous decades of storage for FoamP. In the case of the epoxies, the corresponding temperatures were 120C for EpoxyP and 110C for EpoxyN. Suggestions for why the aged epoxy seems more stable than newer sample include the possibility of incomplete curing or differences in composition. Recommendation to limit use temperature to 90-100C for both epoxy and foam.

  18. JOURNAL OF MATERIALS SCIENCE 34 (1999) 637 644 Cell nucleation in solid-state polymeric foams

    E-Print Network [OSTI]

    Kumar, Vipin

    JOURNAL OF MATERIALS SCIENCE 34 (1999) 637­ 644 Cell nucleation in solid-state polymeric foams-mail: holl@u.washington.edu The mechanism for nucleation phenomenon in solid-state microcellular foams. The nucleation phenomenon is thermally activated at the effective glass transition temperature of the gas

  19. Numerical simulation of the fluid flow and heat transfer processes during scavenging in a two-stroke engine under steady-state conditions

    SciTech Connect (OSTI)

    Castro Gouveia, M. de; Reis Parise, J.A. dos; Nieckele, A.O. (Pontificia Univ. Catolica, Rio de Janeiro (Brazil))

    1992-05-01T23:59:59.000Z

    A numerical simulation of the scavenging process in a two-stroke flat-piston model engine has been developed. Air enters the cylinder circumferentially, inducting a three-dimensional turbulent swirling flow. The problem was modeled as a steady-state axisymmetric flow through a cylinder with uniform wall temperature. The steady-state regime was simulated by assuming the piston head fixed at the bottom dead center. The calculation was performed employing the {kappa}-{epsilon} model of turbulence. A comparison of the results obtained for the flow field with available experimental data showed very good agreement, and a comparison with an available numerical solution revealed superior results. The effects of the Reynolds number, inlet port angles, and engine geometry on the flow and in-cylinder heat transfer characteristics were investigated. The Nusselt number substantially increases with larger Reynolds numbers and a smaller bore-to-stroke ratio. It is shown that the positioning of the exhaust value(s) is the main parameter to control the scavenging process.

  20. Spray Foam Exterior Insulation with Stand-Off Furring

    SciTech Connect (OSTI)

    Herk, A.; Baker, R.; Prahl, D.

    2014-03-01T23:59:59.000Z

    IBACOS, in collaboration with GreenHomes America, was contracted by the New York State Energy Research and Development Authority to research exterior wall insulation solutions. This research investigated cost-effective deep energy retrofit (DER) solutions for improving the building shell exterior while achieving a cost-reduction goal, including reduced labor costs to reach a 50/50 split between material and labor. The strategies included exterior wall insulation plus energy upgrades as needed in the attic, mechanical and ventilation systems, and basement band joist, walls, and floors. The work can be integrated with other home improvements such as siding or window replacement. This strategy minimizes physical connections to existing wall studs, encapsulates existing siding materials (including lead paint) with spray foam, and creates a vented rain screen assembly to promote drying. GreenHomes America applied construction details created by IBACOS to a test home. 2x4 framing members were attached to the wall at band joists and top plates using 'L' clips, with spray foam insulating the wall after framing was installed. Windows were installed simultaneously with the framing, including extension jambs. The use of clips in specific areas provided the best strength potential, and 'picture framing' the spray foam held the 2x4s in place. Short-term testing was performed at this house, with monitoring equipment installed for long-term testing. Testing measurements will be provided in a later report, as well as utility impact (before and after), costs (labor and materials), construction time, standard specifications, and analysis for the exterior wall insulation strategy.

  1. Corrosion-resistant Foamed Cements for Carbon Steels

    SciTech Connect (OSTI)

    Sugama T.; Gill, S.; Pyatina, T., Muraca, A.; Keese, R.; Khan, A.; Bour, D.

    2012-12-01T23:59:59.000Z

    The cementitious material consisting of Secar #80, Class F fly ash, and sodium silicate designed as an alternative thermal-shock resistant cement for the Enhanced Geothermal System (EGS) wells was treated with cocamidopropyl dimethylamine oxide-based compound as foaming agent (FA) to prepare numerous air bubble-dispersed low density cement slurries of and #61603;1.3 g/cm3. Then, the foamed slurry was modified with acrylic emulsion (AE) as corrosion inhibitor. We detailed the positive effects of the acrylic polymer (AP) in this emulsion on the five different properties of the foamed cement: 1) The hydrothermal stability of the AP in 200 and #61616;C-autoclaved cements; 2) the hydrolysis-hydration reactions of the slurry at 85 and #61616;C; 3) the composition of crystalline phases assembled and the microstructure developed in autoclaved cements; 4) the mechanical behaviors of the autoclaved cements; and, 5) the corrosion mitigation of carbon steel (CS) by the polymer. For the first property, the hydrothermal-catalyzed acid-base interactions between the AP and cement resulted in Ca-or Na-complexed carboxylate derivatives, which led to the improvement of thermal stability of the AP. This interaction also stimulated the cement hydration reactions, enhancing the total heat evolved during cement’s curing. Addition of AP did not alter any of the crystalline phase compositions responsible for the strength of the cement. Furthermore, the AP-modified cement developed the porous microstructure with numerous defect-free cavities of disconnected voids. These effects together contributed to the improvement of compressive-strength and –toughness of the cured cement. AP modification of the cement also offered an improved protection of CS against brine-caused corrosion. There were three major factors governing the corrosion protection: 1) Reducing the extents of infiltration and transportation of corrosive electrolytes through the cement layer deposited on the underlying CS surfaces; 2) inhibiting the cathodic reactions at the corrosion site of CS; 3) extending the coverage of cement over CS surfaces; and, 4) improving the adherence of the cement to CS surfaces. Thus, the CS’s corrosion rate of 176 milli inch/per year (mpy) for 1 wt% FA-foamed cement without AP was considerably reduced to 69 mpy by adding only 2 wt% AP. Addition of AP at 10 wt% further reduced this rate to less than 10 mpy.

  2. Improvement of the Lost Foam Casting Process | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement of the Lost Foam Casting Process Improvement of

  3. Materials Science and Engineering A, 2006. 417(1-2): p. 249-258 249 Investigation of Flexural Strength Properties of Rubber and Nanoclay Reinforced Hybrid Syntactic Foams

    E-Print Network [OSTI]

    Gupta, Nikhil

    Strength Properties of Rubber and Nanoclay Reinforced Hybrid Syntactic Foams Rahul Maharsia* , Nikhil Gupta are developed by using rubber and nanoclay particles to modify the matrix microstructure in syntactic foams to fabricate the foam samples. In the rubber hybrid foams, 40 and 75 m size rubber particles are used by 2

  4. Rigid polyurethane foams in refrigeration. January 1973-July 1989 (Citations from the Rubber and Plastics Research Association data base). Report for January 1973-July 1989

    SciTech Connect (OSTI)

    Not Available

    1989-08-01T23:59:59.000Z

    This bibliography contains citations concerning the use of rigid polyurethane as thermal insulation in refrigerators. Production machinery, foam systems such as one-shot prepolymer systems, and properties of rigid polyurethane foams used in refrigerators are among the topics discussed. Curing methods, in-place foaming, and bun foaming are also included. (Contains 74 citations fully indexed and including a title list.)

  5. Applied Composite Materials, 2005. 12(3-4): p. 247-261 247 Enhancement of Energy Absorption in Syntactic Foams by Nanoclay Incorporation for Sandwich

    E-Print Network [OSTI]

    Gupta, Nikhil

    70803 ABSTRACT Syntactic foams are closed pore foams fabricated by the mechanical mixing of hollow glass in Syntactic Foams by Nanoclay Incorporation for Sandwich Core Applications Nikhil Gupta1 and Rahul Maharsia2 foams due to the incorporation of nano-sized clay (nanoclay) particles. A surface modified clay, Nanomer

  6. Adding Complex Terrain and Stable Atmospheric Condition Capability to the Simulator for On/Offshore Wind Farm Applications (SOWFA) (Presentation)

    SciTech Connect (OSTI)

    Churchfield, M. J.

    2013-06-01T23:59:59.000Z

    This presentation describes changes made to NREL's OpenFOAM-based wind plant aerodynamics solver so that it can compute the stably stratified atmospheric boundary layer and flow over terrain. Background about the flow solver, the Simulator for Off/Onshore Wind Farm Applications (SOWFA) is given, followed by details of the stable stratification/complex terrain modifications to SOWFA, along with some preliminary results calculations of a stable atmospheric boundary layer and flow over a simple set of hills.

  7. Method and apparatus for producing a carbon based foam article having a desired thermal-conductivity gradient

    DOE Patents [OSTI]

    Klett, James W. (Knoxville, TN) [Knoxville, TN; Cameron, Christopher Stan (Sanford, NC) [Sanford, NC

    2010-03-02T23:59:59.000Z

    A carbon based foam article is made by heating the surface of a carbon foam block to a temperature above its graphitizing temperature, which is the temperature sufficient to graphitize the carbon foam. In one embodiment, the surface is heated with infrared pulses until heat is transferred from the surface into the core of the foam article such that the graphitizing temperature penetrates into the core to a desired depth below the surface. The graphitizing temperature is maintained for a time sufficient to substantially entirely graphitize the portion of the foam article from the surface to the desired depth below the surface. Thus, the foam article is an integral monolithic material that has a desired conductivity gradient with a relatively high thermal conductivity in the portion of the core that was graphitized and a relatively low thermal conductivity in the remaining portion of the foam article.

  8. Constitutive Model for the Time-Dependent Mechanical Behavior of 430 Stainless Steel and FeCrAlY Foams in Sulfur-Bearing Environments

    SciTech Connect (OSTI)

    Hemrick, James Gordon [ORNL; Lara-Curzio, Edgar [ORNL

    2013-01-01T23:59:59.000Z

    The mechanical behavior of 430 stainless steel and pre-oxidized FeCrAlY open-cell foam materials of various densities was evaluated in compression at temperatures between 450 C and 600 C in an environment containing hydrogen sulfide and water vapor. Both materials showed negligible corrosion due to the gaseous atmosphere for up to 168 hours. The monotonic stress-strain response of these materials was found to be dependent on both the strain rate and their density, and the 430 stainless steel foam materials exhibited less stress relaxation than FeCrAlY for similar experimental conditions. Using the results from multiple hardening-relaxation and monotonic tests, an empirical constitutive equation was derived to predict the stress-strain behavior of FeCrAlY foams as a function of temperature and strain rate. These results are discussed in the context of using these materials in a black liquor gasifier to accommodate the chemical expansion of the refractory liner resulting from its reaction with the soda in the black liquor.

  9. Combined effects of Reynolds number, turbulence intensity and periodic unsteady wake flow conditions on boundary layer development and heat transfer of a low pressure turbine blade

    E-Print Network [OSTI]

    Ozturk, Burak

    2009-05-15T23:59:59.000Z

    .18 (S R =80 mm)........................................103 Figure 11.1. Static pressure distributions at Re=110,000 and reduced frequencies S=0, 1.59, 3.18 (no rod, 160 mm, 80 mm), SS=Separation start, SE= Separation end...................................................110 Figure 11.2. Time-averaged hot-film distributions at Re=110,000 and reduced frequencies S=0, 1.59, 3.18 (no rod, 160 mm, 80 mm)...........................112 Figure 11.3. Ensemble averaged velocity as a function for (a) steady flow case S=0 (S R...

  10. Foam composition for treating asbestos-containing materials and method of using same

    DOE Patents [OSTI]

    Block, J.; Krupkin, N.V.; Kuespert, D.R.; Nishioka, G.M.; Lau, J.W.K.; Palmer, N.I.

    1998-04-28T23:59:59.000Z

    A composition for transforming a chrysotile asbestos-containing material into a non-asbestos material is disclosed. The composition comprises water, at least about 30% by weight of an acid component, at least about 0.1% by weight of a source of fluoride ions, and a stable foam forming amount of a foaming agent system having both cationic and non-ionic functionality. A method of transforming the asbestos-containing material into a non-asbestos material using the present composition in the form of a foam also disclosed.

  11. Heat transfer in sound propagation and attenuation through gas-liquid polyhedral foams

    E-Print Network [OSTI]

    Yuri M. Shtemler; Isaac R. Shreiber

    2007-05-20T23:59:59.000Z

    A cell method is developed, which takes into account the bubble geometry of polyhedral foams, and provides for the generalized Rayleigh-Plesset equation that contains the non-local in time term corresponding to heat relaxation. The Rayleigh-Plesset equation together with the equations of mass and momentum balances for an effective single-phase inviscid fluid yield a model for foam acoustics. The present calculations reconcile observed sound velocity and attenuation with those predicted using the assumption that thermal dissipation is the dominant damping mechanism in a range of foam expansions and sound excitation frequencies.

  12. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Lost Foam Thin Wall - Feasibility of Producing Lost Foam Castings in Aluminum and Magnesium Based Alloys

    SciTech Connect (OSTI)

    Fasoyinu, Yemi [CanmetMATERIALS] [CanmetMATERIALS; Griffin, John A. [University of Alabama - Birmingham] [University of Alabama - Birmingham

    2014-03-31T23:59:59.000Z

    With the increased emphasis on vehicle weight reduction, production of near-net shape components by lost foam casting will make significant inroad into the next-generation of engineering component designs. The lost foam casting process is a cost effective method for producing complex castings using an expandable polystyrene pattern and un-bonded sand. The use of un-bonded molding media in the lost foam process will impose less constraint on the solidifying casting, making hot tearing less prevalent. This is especially true in Al-Mg and Al-Cu alloy systems that are prone to hot tearing when poured in rigid molds partially due to their long freezing range. Some of the unique advantages of using the lost foam casting process are closer dimensional tolerance, higher casting yield, and the elimination of sand cores and binders. Most of the aluminum alloys poured using the lost foam process are based on the Al-Si system. Very limited research work has been performed with Al-Mg and Al-Cu type alloys. With the increased emphasis on vehicle weight reduction, and given the high-strength-to-weight-ratio of magnesium, significant weight savings can be achieved by casting thin-wall (? 3 mm) engineering components from both aluminum- and magnesium-base alloys.

  13. Method for forming a uniformly dense polymer foam body

    DOE Patents [OSTI]

    Whinnery, Jr., Leroy (Danville, CA)

    2002-01-01T23:59:59.000Z

    A method for providing a uniformly dense polymer foam body having a density between about 0.013 .sup.g /.sub.cm.sup..sub.3 to about 0.5 .sup.g /.sub.cm.sup..sub.3 is disclosed. The method utilizes a thermally expandable polymer microballoon material wherein some of the microballoons are unexpanded and some are only partially expanded. It is shown that by mixing the two types of materials in appropriate ratios to achieve the desired bulk final density, filling a mold with this mixture so as to displace all or essentially all of the internal volume of the mold, heating the mold for a predetermined interval at a temperature above about 130.degree. C., and then cooling the mold to a temperature below 80.degree. C. the molded part achieves a bulk density which varies by less then about .+-.6% everywhere throughout the part volume.

  14. Developing & tailoring multi-functional carbon foams for multi-field response

    E-Print Network [OSTI]

    Sarzynski, Melanie Diane

    2009-05-15T23:59:59.000Z

    anisotropy and coatings to provide comprehensive information to guide processing researchers in their pursuit of tailorable performance. Several illustrations are undertaken at multiple scales to explore the response of multi-functional carbon foams under...

  15. Application of Genetic Algorithms and Thermogravimetry to Determine the Kinetics of Polyurethane Foam in Smoldering Combustion 

    E-Print Network [OSTI]

    Rein, Guillermo; Lautenberger, Chris; Fernandez-Pello, Carlos; Torero, Jose L; Urban, David

    In this work, the kinetic parameters governing the thermal and oxidative degradation of flexible polyurethane foam are determined using thermogravimetric data and a genetic algorithm. These kinetic parameters are needed ...

  16. Developing & tailoring multi-functional carbon foams for multi-field response 

    E-Print Network [OSTI]

    Sarzynski, Melanie Diane

    2009-05-15T23:59:59.000Z

    anisotropy and coatings to provide comprehensive information to guide processing researchers in their pursuit of tailorable performance. Several illustrations are undertaken at multiple scales to explore the response of multi-functional carbon foams under...

  17. Effect of microstructure of closed cell foam on strength and effective stiffness

    E-Print Network [OSTI]

    Sue, Ji Woong

    2007-04-25T23:59:59.000Z

    structure of the foam. A low- boiling, inert liquid fluorocarbon is mixed in with the polyol. When the polymerization reaction takes place, the exotherm is sufficient to cause the fluorocarbon to volatilize and act as blowing agent. It should also...

  18. Microsoft Word - NETL-TRS-2-2013_Foamed Cement_20140124.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foamed Cement 1 ABSTRACT NETL researchers have produced the first high-resolution X-ray computed tomography (CT) three-dimensional (3-D) images of atmospheric-generated...

  19. Cellular Foams: A Potential Innovative Solid Breeder Material for Fusion Applications

    SciTech Connect (OSTI)

    Sharafat, S.; Ghoniem, N.; Williams, B.; Babcock, J. [University of California Los Angeles (United States)

    2005-05-15T23:59:59.000Z

    Ceramic foam and cellular materials are being used in a wide variety of industries and are finding ever growing number of applications. Over the past decade advances in manufacturing of cellular materials have resulted in ceramics with highly uniform interconnected porosities ranging in size from a few {mu}m to several mm. These relatively new ceramic foam materials have a unique set of thermo-mechanical properties, such as excellent thermal shock resistance and high surface to volume ratios. Based on new advances in processing ceramic foams, we suggest the development of ceramic foams or cellular ceramics for solid breeders in fusion reactor blankets. A cellular breeder material has a number of thermo-mechanical advantages over pebble beds, which can enhance blanket performance, improve operational stability, and reduce overall blanket costs.

  20. Foaming of E-Glass (Report for G Plus Project for PPG)

    E-Print Network [OSTI]

    Pilon, Laurent

    PNNL-14625 Foaming of E-Glass (Report for G Plus Project for PPG) D. Kim P.. Hrma Pacific Northwest for PPG) Dong-Sang Kim Pavel R. Hrma Pacific Northwest National Laboratory Bryan C. Dutton Laurent Pilon

  1. Foaming of E-Glass II (Report for G Plus Project for PPG)

    E-Print Network [OSTI]

    Pilon, Laurent

    P. R. Hrma Pacific Northwest National Laboratory L. Pilon University of California, Los Angeles Foaming of E-Glass II (Report for G Plus Project for PPG) D.-S. Kim M. Portch J. Matyas P. R. Hrma Pacific

  2. Method of forming a continuous polymeric skin on a cellular foam material

    DOE Patents [OSTI]

    Duchane, David V. (Los Alamos, NM); Barthell, Barry L. (Los Alamos, NM)

    1985-01-01T23:59:59.000Z

    Hydrophobic cellular material is coated with a thin hydrophilic polymer skin which stretches tightly over the outer surface of the foam but which does not fill the cells of the foam, thus resulting in a polymer-coated foam structure having a smoothness which was not possible in the prior art. In particular, when the hydrophobic cellular material is a specially chosen hydrophobic polymer foam and is formed into arbitrarily chosen shapes prior to the coating with hydrophilic polymer, inertial confinement fusion (ICF) targets of arbitrary shapes can be produced by subsequently coating the shapes with metal or with any other suitable material. New articles of manufacture are produced, including improved ICF targets, improved integrated circuits, and improved solar reflectors and solar collectors. In the coating method, the cell size of the hydrophobic cellular material, the viscosity of the polymer solution used to coat, and the surface tensin of the polymer solution used to coat are all very important to the coating.

  3. Novel application of foam for in-situ soil remediation. Topical report, April 1992-September 1993

    SciTech Connect (OSTI)

    Kilbane, J.J.; Liu, B.Y.; Conrad, J.R.; Srivastava, V.J.

    1997-08-01T23:59:59.000Z

    The objective of the task is to evaluate the use of foams to deliver surfactants, bacteria, solvents, and/or nutrients to promote in-situ bioremediation of soils contaminated with polynuclear aromatic hydrocarbons (PAHs) or to evaluate the use of foams to render contaminants available for physical collection and subsequent degradation. This task consists of two subtasks: (1) Literature Survey of Related Technologies and (2) Preliminary Experimental Investigations of Interfacial Phenomenon and the Use of Foams to Remediate Contaminated Sites. An extensive literature review was completed in which abstracts of more than one hundred technical articles were prepared. Laboratory studies to investigate the use of foams to remediate PAH-contaminated soil were performed with several Manufactured Gas Plant (MGP) soils as well as with model experimental systems.

  4. FOAM FORMATION IN THE SALTSTONE PRODUCTION FACILITY: EVALUATION OF SOURCES AND MITIGATION

    SciTech Connect (OSTI)

    Cozzi, A.

    2011-01-18T23:59:59.000Z

    The Saltstone Production Facility receives waste from Tank 50H for treatment. Influents into Tank 50H include the Effluent Treatment Project waste concentrate, H-Canyon low activity waste and General Purpose Evaporator bottoms, Modular Caustic Side Solvent Extraction Unit decontaminated salt solution, and salt solution from the Deliquification, Dissolution and Adjust campaign. Using the Waste Characterization System (WCS), this study tracks the relative amounts of each influent into Tank 50H, as well as the total content of Tank 50H, in an attempt to identify the source of foaming observed in the Saltstone Production Facility hopper. Saltstone has been using antifoam as part of routine processing with the restart of the facility in December 2006. It was determined that the maximum admix usage in the Saltstone Production Facility, both antifoam and set retarder, corresponded with the maximum concentration of H-Canyon low activity waste in Tank 50H. This paper also evaluates archived salt solutions from Waste Acceptance Criteria analysis for propensity to foam and the antifoam dosage required to mitigate foaming. It was determined that Effluent Treatment Project contributed to the expansion factor (foam formation) and General Purpose Evaporator contributed to foaminess (persistence). It was also determined that undissolved solids contribute to foam persistence. It was shown that additions of Dow Corning Q2-1383a antifoam reduced both the expansion factor and foaminess of salt solutions. The evaluation of foaming in the grout hopper during the transition from water to salt solution indicated that higher water-to-premix ratios tended to produce increased foaming. It was also shown that additions of Dow Corning Q2-1383a antifoam reduced foam formation and persistence.

  5. Method and composition for molding low density desiccant syntactic foam articles

    DOE Patents [OSTI]

    Lula, James W. (Bonner Springs, KS); Schicker, James R. (Lee's Summit, MO)

    1984-01-01T23:59:59.000Z

    A method and a composition are provided for molding low density desiccant syntactic foam articles. A low density molded desiccant article may be made as a syntactic foam by blending a thermosetting resin, microspheres and molecular sieve desiccant powder, molding and curing. Such articles have densities of 0.2-0.9 g/cc, moisture capacities of 1-12% by weight, and can serve as light weight structural supports.

  6. Preparation of nanoporous metal foam from high nitrogen transition metal complexes

    DOE Patents [OSTI]

    Tappan, Bryce C.; Huynh, My Hang V.; Hiskey, Michael A.; Son, Steven F.; Oschwald, David M.; Chavez, David E.; Naud, Darren L.

    2006-11-28T23:59:59.000Z

    Nanoporous metal foams are prepared by ignition of high nitrogen transition metal complexes. The ammonium salts of iron(III) tris[bi(tetrazolato)-amine], cobalt(III) tris(bi(tetrazolato)amine), and high nitrogen compounds of copper and silver were prepared as loose powders, pressed into pellets and wafers, and ignited under an inert atmosphere to form nanoporous metal foam monoliths having very high surface area and very low density.

  7. Advanced geothermal foam drilling systems (AFS) -- Phase 1 final report, Part 1

    SciTech Connect (OSTI)

    W. C. Maurer

    1999-06-30T23:59:59.000Z

    An advanced coiled-tubing foam drilling system is being developed where two concentric strings of coiled tubing are used to convey water and air to the hole bottom where they are mixed together to produce foam for underbalanced drilling. This system has the potential to significantly reduce drilling costs by increasing drilling rates (due to the motor being powered by water), and reducing compressor and nitrogen costs (due to lower gas pressures and volumes).

  8. Effects of alternating seawater flow and stagnant layup conditions on the general and localized corrosion resistance of CuNi and NiCu alloys in marine service

    SciTech Connect (OSTI)

    Kain, R.M. [LaQue Corrosion Services, Wrightsville Beach, NC (United States); Weber, B.E. [NAWC-Aircraft Div., Patuxent River, MD (United States)

    1997-12-01T23:59:59.000Z

    From time-to-time seawater handling systems are subjected to lay-up which can produce chemical and biological changes, and conceivably alter the corrosion resistance of metals used in piping and other equipment. In the case of reverse osmosis/membrane technology type desalination equipment, sanitizing agents may be introduced after draining. Simulation tests were conducted to determine any effect of a bisulfite sanitizing treatment when used between periods of normal seawater flow. Corresponding tests were conducted with lay-up comprising non-refreshed seawater which ultimately stagnated. Test results for CuNi alloy C71500 indicted that repeated cycling between seawater exposure and bisulfite treatments was detrimental in reducing that alloy`s resistance to general corrosion, and to a lesser degree its crevice corrosion resistance. The typical pitting and crevice corrosion behavior of NiCu alloy N04400, found upon exposure to slowly moving, aerated seawater was neither diminished or accelerated by cyclic lay-up with either stagnant seawater or the candidate bisulfite-containing solution. However, some increase in general corrosion was observed.

  9. In-situ aging of roof systems containing polyisocyanurate roof insulation foamed with alternative blowing agents

    SciTech Connect (OSTI)

    Desjarlais, A.O.; Christian, J.E.; Graves, R.S.

    1993-10-01T23:59:59.000Z

    Experimental polyisocyanurate (PIR) foam roof insulations with permeable facers were installed in roofing systems and continuously monitored for thermal performance for four years. The foams were produced using a specific formulation that represented current technology in 1989 and were blown with CFC-11, HCFC-123, and HCFC-141b. These foams were installed in roof systems comprised of loosely-laid insulation boards covered by either a loosely-laid single ply white or black membrane. The in-situ testing was carried out on an outdoor test facility, the Roof Thermal Research Apparatus (RTRA). Additional specimens of these foams were aged in the laboratory and periodically evaluated using laboratory measurement equipment. This paper summarizes the in-situ data compiled to date, compares these data with the laboratory results, and examines whether the proposed laboratory procedure for accelerating the aging of foams by the slicing and scaling method accurately predicts the aging characteristics of these materials installed in roof systems. These experiments are part of a joint industry/government project established to evaluate the technical viability of alternative HCFC blowing agents for rigid closed-cell polyisocyanurate foam roof insulations. Members of the project are the US Department of Energy (DOE)/Oak Ridge National Laboratory (ORNL), the US Environmental Protection Agency (EPA), the Society of the Plastics Industry-Polyurethane Division (SPI), the Polyisocyanurate Insulation Manufacturers Association (PIMA), and the National Roofing Contractors Association (NRCA).

  10. Cellular morphology of organic-inorganic hybrid foams based on alkali alumino-silicate matrix

    SciTech Connect (OSTI)

    Verdolotti, Letizia; Capasso, Ilaria; Lavorgna, Marino [Institute of Composite and Biomedical Materials, National Research Council, Naples (Italy); Liguori, Barbara; Caputo, Domenico [Department of Chemical, Materials and Industrial Engineering, University of Naples Federico II, Naples (Italy); Iannace, Salvatore [Institute of Composite and Biomedical Materials, National Research Council, Naples, Italy and IMAST SCRAL, Piazza Bovio 22 Napoli 80133 (Italy)

    2014-05-15T23:59:59.000Z

    Organic-inorganic hybrid foams based on an alkali alumino-silicate matrix were prepared by using different foaming methods. Initially, the synthesis of an inorganic matrix by using aluminosilicate particles, activated through a sodium silicate solution, was performed at room temperature. Subsequently the viscous paste was foamed by using three different methods. In the first method, gaseous hydrogen produced by the oxidization of Si powder in an alkaline media, was used as blowing agent to generate gas bubbles in the paste. In the second method, the porous structure was generated by mixing the paste with a “meringue” type of foam previously prepared by whipping, under vigorous stirring, a water solution containing vegetal proteins as surfactants. In the third method, a combination of these two methods was employed. The foamed systems were consolidated for 24 hours at 40°C and then characterized by FTIR, X-Ray diffraction, scanning electron microscopy (SEM) and compression tests. Low density foams (?500 Kg/m{sup 3}) with good cellular structure and mechanical properties were obtained by combining the “meringue” approach with the use of the chemical blowing agent based on Si.

  11. Running Boundary Condition

    E-Print Network [OSTI]

    Satoshi Ohya; Makoto Sakamoto; Motoi Tachibana

    2013-01-28T23:59:59.000Z

    In this paper we argue that boundary condition may run with energy scale. As an illustrative example, we consider one-dimensional quantum mechanics for a spinless particle that freely propagates in the bulk yet interacts only at the origin. In this setting we find the renormalization group flow of U(2) family of boundary conditions exactly. We show that the well-known scale-independent subfamily of boundary conditions are realized as fixed points. We also discuss the duality between two distinct boundary conditions from the renormalization group point of view. Generalizations to conformal mechanics and quantum graph are also discussed.

  12. Efficient plasma production by intense laser irradiation of low density foam targets

    SciTech Connect (OSTI)

    Tripathi, S.; Chaurasia, S.; Munda, D. S.; Gupta, N. K.; Dhareshwar, L. J. [Laser and Neutron Physics Division, Bhabha Atomic Research Centre, Mumbai 85 (India); Nataliya, B. [Lebedev Physical Institute, Moscow (Russian Federation)

    2010-12-01T23:59:59.000Z

    Experimental investigations conducted on low density structured materials, such as foams have been presented in this paper. These low density foam targets having a density greater than the critical density of the laser produced plasma ({rho}{sub cr{approx_equal}}3 mg{center_dot}cm{sup -3} at laser wavelength 1.06 {mu}m) have been envisaged to have enhanced laser absorption. Experiments were done with an indigenously developed, focused 15 Joule/500 ps Nd: Glass laser at {lambda} = 1064 nm. The focused laser intensity on the target was in the range of I{approx_equal}10{sup 13}-2x10{sup 14} W/cm{sup 2}. Laser absorption was determined by energy balance experiments. Laser energy absorption was observed to be higher than 85%. In another set of experiments, low density carbon foam targets of density 150 mg/cc were compared with the solid carbon targets. The x-ray emission in the soft x-ray region was observed to increase in foam target by about 1.8 times and 2.3 times in carbon foam and Pt doped foam as compared to solid carbon. Further, investigations were also carried out to measure the energy transmitted through the sub-critical density TAC foam targets having a density less than 3 mg/cc. Such targets have been proposed to be used for smoothening of intensity ripples in a high power laser beam profile. Transmission exceeding 1.87% has been observed and consistent with results from other laboratories.

  13. SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL

    SciTech Connect (OSTI)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope; Richard E. Jackson

    2004-07-01T23:59:59.000Z

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactants makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluted to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. A dual-porosity version is demonstrated as a potential scale-up tool for fractured reservoirs.

  14. Elliptic and Hexadecapole flow of charged hadron in viscous hydrodynamics with Glauber and Color Glass Condensate initial conditions for Pb-Pb collision at $\\sqrt{s_{NN}}$=2.76 TeV

    E-Print Network [OSTI]

    Roy, Victor; Chaudhuri, A K

    2012-01-01T23:59:59.000Z

    The experimentally measured elliptic ($v_{2}$) and hexadecapole ($v_{4}$) flow of charged particles as a function of transverse momentum ($p_{T}$) at midrapidity in Pb-Pb collisions at $\\sqrt{s_{\\mathrm NN}}$ = 2.76 TeV are compared with the relativistic viscous hydrodynamic model simulations. The simulations are carried out for two different initial energy density profiles obtained from (i) Glauber model, and (ii) Color Glass Condensate (CGC) model. Comparison to experimental data for 10-20% to 40-50% centrality, shows that a centrality dependent shear viscosity to entropy density ($\\eta/s$) ratio with values ranging between 0.0 to 0.12 are needed to explain the $v_{2}$ data for simulations with the Glauber based initial condition. Whereas for the CGC based initial conditions a slightly higher value of $\\eta/s$ is preferred, around 0.08 to 0.16. From the comparison of the $v_{4}$ simulated results to the corresponding experimental measurements we observe that for the centralities 20-30% to 40-50% the $\\eta/s...

  15. PHYSICAL REVIEW E 89, 023002 (2014) Breaking of non-Newtonian character in flows through a porous medium

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    AND PROCEDURES Our yield stress fluid is a water-in-oil emulsion (81% water, 19% oil) prepared by dispersing, in which a wide range of complex fluids (foams, polymers, emulsions) are used to improve oil recovery [3 stress fluid flow inside a model bead packing with a NMR technique which provides straight- forward

  16. Experimental and Numerical Investigation of Forging Process to Reproduce a 3D Aluminium Foam Complex Shape

    SciTech Connect (OSTI)

    Filice, Luigino; Gagliardi, Francesco; Umbrello, Domenico [Department of Mechanical Engineering, University of Calabria, P. Bucci, 87036 Rende (Serbia and Montenegro) (Italy); Shivpuri, Rajiv [Department of Industrial, Welding and System Engineering, Ohio State University, 1971 Neil Avenue, 210 Baker Systems, Columbus, OH 43210-1217 (United States)

    2007-05-17T23:59:59.000Z

    Metallic foams represent one of the most exciting materials introduced in the manufacturing scenario in the last years. In the study here addressed, the experimental and numerical investigations on the forging process of a simple foam billet shaped into complex sculptured parts were carried out. In particular, the deformation behavior of metallic foams and the development of density gradients were investigated through a series of experimental forging tests in order to produce a selected portion of a hip prosthesis. The human bone replacement was chosen as case study due to its industrial demand and for its particular 3D complex shape. A finite element code (Deform 3D) was utilized for modeling the foam behavior during the forging process and an accurate material rheology description was used based on a porous material model which includes the measured local density. Once the effectiveness of the utilized Finite Element model was verified through the comparison with the experimental evidences, a numerical study of the influence of the foam density was investigated. The obtained numerical results shown as the initial billet density plays an important role on the prediction of the final shape, the optimization of the flash as well as the estimation of the punch load.

  17. Experiments to populate and validate a processing model for polyurethane foam :

    SciTech Connect (OSTI)

    Mondy, Lisa Ann; Rao, Rekha Ranjana; Shelden, Bion; Soehnel, Melissa Marie; O'Hern, Timothy J.; Grillet, Anne; Celina, Mathias Christopher; Wyatt, Nicholas B.; Russick, Edward Mark; Bauer, Stephen J.; Hileman, Michael Bryan; Urquhart, Alexander; Thompson, Kyle Richard; Smith, David Michael

    2014-03-01T23:59:59.000Z

    We are developing computational models to elucidate the expansion and dynamic filling process of a polyurethane foam, PMDI. The polyurethane of interest is chemically blown, where carbon dioxide is produced via the reaction of water, the blowing agent, and isocyanate. The isocyanate also reacts with polyol in a competing reaction, which produces the polymer. Here we detail the experiments needed to populate a processing model and provide parameters for the model based on these experiments. The model entails solving the conservation equations, including the equations of motion, an energy balance, and two rate equations for the polymerization and foaming reactions, following a simplified mathematical formalism that decouples these two reactions. Parameters for the polymerization kinetics model are reported based on infrared spectrophotometry. Parameters describing the gas generating reaction are reported based on measurements of volume, temperature and pressure evolution with time. A foam rheology model is proposed and parameters determined through steady-shear and oscillatory tests. Heat of reaction and heat capacity are determined through differential scanning calorimetry. Thermal conductivity of the foam as a function of density is measured using a transient method based on the theory of the transient plane source technique. Finally, density variations of the resulting solid foam in several simple geometries are directly measured by sectioning and sampling mass, as well as through x-ray computed tomography. These density measurements will be useful for model validation once the complete model is implemented in an engineering code.

  18. Thermo-mechanical characterisation of low density carbon foams and composite materials for the ATLAS upgrade

    E-Print Network [OSTI]

    Isaac, Bonad

    As a result of the need to increase the luminosity of the Large Hadron Collider (LHC) at CERN-Geneva by 2020, the ATLAS detector requires an upgraded inner tracker. Up- grading the ATLAS experiment is essential due to higher radiation levels and high particle occupancies. The design of this improved inner tracker detector involves development of silicon sensors and their support structures. These support structures need to have well un- derstood thermal properties and be dimensionally stable in order to allow efficient cooling of the silicon and accurate track reconstruction. The work presented in this thesis is an in- vestigation which aims to qualitatively characterise the thermal and mechanical properties of the materials involved in the design of the inner tracker of the ATLAS upgrade. These materials are silicon carbide foam (SiC foam), low density carbon foams such as PocoFoam and Allcomp foam, Thermal Pyrolytic Graphite (TPG), carbon/carbon and Carbon Fibre Re- inforced Polymer (CFRP). The work involve...

  19. The impact of microstructure on the permeability of metal foams

    E-Print Network [OSTI]

    Medraj, Mamoun

    a schematic diagram of Darcy's flow. Darcy proposed an empirical equation for estimating the volumetric flow data on widely accepted quadratic model of Hazen-Dupuit- Darcy. Generally, the experimental results and their use in new applications is expected to grow in the near future. CSME 2004 Forum 220 Q Figure 1: Darcy

  20. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect (OSTI)

    Yortsos, Yanis C.

    2002-10-08T23:59:59.000Z

    In this report, the thrust areas include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  1. The high strain rate response of PVC foams and end-grain balsa wood V.L. Tagarielli, V.S. Deshpande, N.A. Fleck *

    E-Print Network [OSTI]

    Fleck, Norman A.

    The high strain rate response of PVC foams and end-grain balsa wood V.L. Tagarielli, V.S. Deshpande are adequately approximated by power-law fits. The compressive yield strength of the H250 PVC foam and balsa wood sĂ?1 . In contrast, the H100 PVC foam displays only a small elevation in uniaxial compressive

  2. International Journal of Crashworthiness, 2012, 17(3): p. 327-336 Mechanical Properties and Failure Mechanisms of Closed-Cell PVC Foams

    E-Print Network [OSTI]

    Gupta, Nikhil

    and Failure Mechanisms of Closed-Cell PVC Foams Michele Colloca, Gleb Dorogokupets, Nikhil Gupta1 , Maurizio chloride (PVC) foams with varying densities is conducted under tension, compression, and impact loading. Experimental results on four classes of high performance PVC foams show that the elastic modulus, strength

  3. Simulation of the Bishop Steam Foam Pilot by T.W. Patzek and N.A. h4yhiil, Shell Development Co.

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    ,.. SEW SPE 18786 Simulation of the Bishop Steam Foam Pilot by T.W. Patzek and N.A. h4yhiil, Shell a simple model of steam foam transport and apply it to the Shell Kern River Bishop pilot. The only an incremental 5.5 percent OOIP recovery due to steam foam and additional 3 percent OOIP due to infill wells

  4. Structural Engineering and Mechanics, Vol. 12, No. 2 (2001) 169-188 169 Mechanical behaviour of a syntactic foam/glass fibre

    E-Print Network [OSTI]

    Corigliano, Alberto

    of a syntactic foam/glass fibre composite sandwich: experimental results* Enrico Papa 1 and Alberto Corigliano 1 interconnecting the skins; the core is filled with a polymer matrix/glass microspheres syntactic foam; additional behaviour of this composite sandwich. Key words: mechanical tests; syntactic foam; glass fibre; composite

  5. FINAL REPORT FOR DE-FG02-03ER46071 ENTITLED, "UNDERSTANDING FOAM RHEOLOGY FROM THE MICROSCOPIC TO THE MACROSCOPIC SCALE"

    SciTech Connect (OSTI)

    Michael Dennin

    2012-01-10T23:59:59.000Z

    This research effort is focused on understanding the mechanical response of foams, and other complex fluids, from the microscopic to the macroscopic level. The research uses a model two-dimensional system: bubble rafts. Bubble rafts are a single layer of gas bubbles with liquid walls that float on a water surface. The work involves studies of the macroscopic response of foam under various conditions of external forcing, mesoscopic studies of bubble motion, and systematic variations of the microscopic details of the system. In addition to characterizing the specific properties of the bubble raft, a second aim of the research is to provide experimental tests of various general theories that have recently been developed to characterize complex fluids. Primarily, the focus is on testing the proposed jamming phase diagram paradigm. This paradigm suggests that a general â??jammedâ?ť state of matter exists and is common to a wide range of systems, including foam, colloids, granular matter, glasses, and emulsions. Therefore,we have extended our research in two directions. First, we have included studies of plastic bead rafts. These are systems of plastic beads floating on the air-water interface. The advantage of plastic beads is that they do not pop, so they can be studied for the much longer periods of time required to measure the slow dynamics associated with the jammed state. Also, they allow us to explore a different density regime than the bubbles. Second, to better understand the role of defects in jamming behavior, we have done a few experiments on the impact of defects on domain growth.

  6. Low density microcellular carbon or catalytically impregnated carbon foams and process for their preparation

    DOE Patents [OSTI]

    Hooper, R.W.; Pekala, R.W.

    1987-04-30T23:59:59.000Z

    Machinable and structurally stable, low density microcellular carbon, and catalytically impregnated carbon, foams, and process for their preparation, are provided. Pulverized sodium chloride is classified to improve particle size uniformity, and the classified particles may be further mixed with a catalyst material. The particles are cold pressed into a compact having internal pores, and then sintered. The sintered compact is immersed and then submerged in a phenolic polymer solution to uniformly fill the pores of the compact with phenolic polymer. The compact is then heated to pyrolyze the phenolic polymer into carbon in the form of a foam. Then the sodium chloride of the compact is leached away with water, and the remaining product is freeze dried to provide the carbon, or catalytically impregnated carbon, foam.

  7. Validation of Heat Transfer Thermal Decomposition and Container Pressurization of Polyurethane Foam.

    SciTech Connect (OSTI)

    Scott, Sarah Nicole; Dodd, Amanda B.; Larsen, Marvin E. [Sandia National Laboratories, Albuquerque, NM; Suo-Anttila, Jill M. [Sandia National Laboratories, Albuquerque, NM; Erickson, Kenneth L

    2014-09-01T23:59:59.000Z

    Polymer foam encapsulants provide mechanical, electrical, and thermal isolation in engineered systems. In fire environments, gas pressure from thermal decomposition of polymers can cause mechanical failure of sealed systems. In this work, a detailed uncertainty quantification study of PMDI-based polyurethane foam is presented to assess the validity of the computational model. Both experimental measurement uncertainty and model prediction uncertainty are examined and compared. Both the mean value method and Latin hypercube sampling approach are used to propagate the uncertainty through the model. In addition to comparing computational and experimental results, the importance of each input parameter on the simulation result is also investigated. These results show that further development in the physics model of the foam and appropriate associated material testing are necessary to improve model accuracy.

  8. Foam Sclerotherapy Using Polidocanol (Aethoxysklerol) for Preoperative Portal Vein Embolization in 16 Patients

    SciTech Connect (OSTI)

    Chung, Sang-Hoon; Lee, Myung-su [University of Yonsei, Department of Radiology and Research Institute of Radiologic Science, Severance Hospital, College of Medicine (Korea, Republic of); Kim, Kyung Sik; Kim, Soon II [University of Yonsei, Department of Surgery, Severance Hospital, College of Medicine (Korea, Republic of); Won, Jong Youn [University of Yonsei, Department of Radiology, Gangnam Severance Hospital, College of Medicine (Korea, Republic of); Lee, Do Yun; Lee, Kwang-Hun, E-mail: doctorlkh@yuhs.ac [University of Yonsei, Department of Radiology and Research Institute of Radiologic Science, Severance Hospital, College of Medicine (Korea, Republic of)

    2011-12-15T23:59:59.000Z

    Purpose: To evaluate the clinical safety and effectiveness of foam sclerotherapy using polidocanol for preoperative portal vein embolization (PVE) before hemihepatectomy of the liver. Materials and Methods: From March 2006 to October 2008, foam sclerotherapy using polidocanol was performed in 16 patients (male-to-female ratio of 12:4, age range 48-75 years [mean 62]) for PVE. Patients were diagnosed with Klatskin tumor (n = 13), gallbladder (GB) cancer (n = 2), or hepatocellular carcinoma (HCC) (n = 1). The foam was composed of a 1:2:1 ratio of 3% polidocanol (Aethoxysklerol; Kreussler Pharma, Wiesbaden, Germany), room air, and contrast media (Xenetix 350; Guerbet, Aulnay-Sous-Bois, France). The total amount of polidocanol used (2 to 8 mL [mean 4.6]) varied according to the volume of the target portal vein. We calculated the volume of future liver remnant (FLR) before and after PVE and evaluated complications associated with the use of polidocanol foam sclerotherapy for PVE. Results: Technical success was achieved in all patients. All patients were comfortable throughout the procedure and did not experience pain during sclerotherapy. No periprocedural morbidity or mortality occurred. Patients underwent a liver dynamic computed tomography (CT) scan 2-4 weeks after PVE. FLR increased significantly after PVE using polidocanol foam from 19.3% (range 16-35%) before PVE to 27.8% (range 23-42%) after PVE (p = 0.001). All patients were operable for hemihepatectomy of the liver and achieved effective resection. Conclusion: Foam sclerotherapy using polidocanol is clinically safe and effective for preoperative PVE.

  9. Application of Spray Foam Insulation Under Plywood and Oriented Strand Board Roof Sheathing

    SciTech Connect (OSTI)

    Grin, A.; Smegal, J.; Lstiburek, J.

    2013-10-01T23:59:59.000Z

    Unvented roof strategies with open cell and closed cell spray polyurethane foam insulation sprayed to the underside of roof sheathing have been used since the mid-1990's to provide durable and efficient building enclosures. However, there have been isolated moisture related incidents reported anecdotally that raise potential concerns about the overall hygrothermal performance of these systems. The incidents related to rainwater leakage and condensation concerns. Condensation concerns have been extensively studied by others and are not further discussed in this report. This project involved hygrothermal modeling of a range of rainwater leakage and field evaluations of in-service residential roofs using spray foam insulation. All of the roof assemblies modeled exhibited drying capacity to handle minor rainwater leakage. All field evaluation locations of in-service residential roofs had moisture contents well within the safe range for wood-based sheathing. Explorations of eleven in-service roof systems were completed. The exploration involved taking a sample of spray foam from the underside of the roof sheathing, exposing the sheathing, then taking a moisture content reading. All locations had moisture contents well within the safe range for wood-based sheathing. One full-roof failure was reviewed, as an industry partner was involved with replacing structurally failed roof sheathing. In this case the manufacturer's investigation report concluded that the spray foam was installed on wet OSB based on the observation that the spray foam did not adhere well to the substrate and the pore structure of the closed cell spray foam at the ccSPF/OSB interface was indicative of a wet substrate.

  10. MHD duct flows under hydrodynamic “slip” condition

    E-Print Network [OSTI]

    Smolentsev, S.

    2009-01-01T23:59:59.000Z

    9. Morley, N.B. , Medina, A. , Abdou, M.A. : Measurements ofSmolentsev, S. , Moreau, R. , Abdou, M. : Characterization

  11. Disordered locality and Lorentz dispersion relations: an explicit model of quantum foam

    E-Print Network [OSTI]

    Francesco Caravelli; Fotini Markopoulou

    2012-07-04T23:59:59.000Z

    Using the framework of Quantum Graphity, we construct an explicit model of a quantum foam, a quantum spacetime with spatial non-local links. The states depend on two parameters: the minimal size of the link and their density with respect to this length. Macroscopic Lorentz invariance requires that the quantum superposition of spacetimes is suppressed by the length of these non-local links. We parametrize this suppression by the distribution of non-local links lengths in the quantum foam. We discuss the general case and then analyze two specific natural distributions. Corrections to the Lorentz dispersion relations are calculated using techniques developed in previous work.

  12. A monochromatic x-ray imaging system for characterizing low-density foams

    SciTech Connect (OSTI)

    Lanier, Nicholas E. [Los Alamos National Laboratory; Taccetti, Jose M. [Los Alamos National Laboratory; Hamilton, Christopher E. [Los Alamos National Laboratory

    2012-05-04T23:59:59.000Z

    In High Energy Density (HED) laser experiments, targets often require small, low-density, foam components. However, their limited size can preclude single component characterization, forcing one to rely solely on less accurate bulk measurements. We have developed a monochromatic imaging a system to characterize both the density and uniformity of single component low-mass foams. This x-ray assembly is capable of determining line-averaged density variations near the 1% level, and provides statistically identical results to those obtained at the Brookhaven's NSLS. This system has the added benefit of providing two-dimensional density data, allowing an assessment of density uniformity.

  13. Combination nickel foam expanded nickel screen electrical connection supports for solid oxide fuel cells

    DOE Patents [OSTI]

    Draper, Robert; Prevish, Thomas; Bronson, Angela; George, Raymond A.

    2007-01-02T23:59:59.000Z

    A solid oxide fuel assembly is made, wherein rows (14, 25) of fuel cells (17, 19, 21, 27, 29, 31), each having an outer interconnection (20) and an outer electrode (32), are disposed next to each other with corrugated, electrically conducting expanded metal mesh member (22) between each row of cells, the corrugated mesh (22) having top crown portions and bottom portions, where the top crown portion (40) have a top bonded open cell nickel foam (51) which contacts outer interconnections (20) of the fuel cells, said mesh and nickel foam electrically connecting each row of fuel cells, and where there are no more metal felt connections between any fuel cells.

  14. Rigid Polyurethane Foam (RPF) Technology for Countermines (Sea) Program Phase II

    SciTech Connect (OSTI)

    WOODFIN,RONALD L.; FAUCETT,DAVID L.; HANCE,BRADLEY G.; LATHAM,AMY E.; SCHMIDT,C.O.

    1999-10-01T23:59:59.000Z

    This Phase II report documents the results of one subtask initiated under the joint Department of Energy (DOE)/Department of Defense (DoD) Memorandum of Understanding (MOU) for Countermine Warfare. The development of Rigid Polyurethane Foams for neutralization of mines and barriers in amphibious assault was the objective of the tasking. This phase of the program concentrated on formation of RPF in water, explosive mine simulations, and development of foam and fabric pontoons. Field experimentation was done primarily at the Energetic Materials Research and Testing Center (EMRTC) of the New Mexico Institute of Mining and Technology, Socorro, NM between February 1996 and September 1998.

  15. The response of clamped sandwich plates with metallic foam cores to simulated blast D.D. Radford, G.J. McShane, V.S. Deshpande and N.A. Fleck

    E-Print Network [OSTI]

    Fleck, Norman A.

    projectiles. The sandwich plates comprise AISI 304 stainless steel face sheets and aluminium alloy metal foam

  16. System Description for the K-25/K-27 D&D Project Polyurethane Foam Delivery System, East Tennessee Technology Park, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Boris, G.

    2008-02-21T23:59:59.000Z

    The Foam Delivery System used in the decontamination and decommissioning (D&D) project for the K-25/K-27 Buildings at the East Tennessee Technology Park (ETTP) is comprised of a trailer-mounted Gusmer{reg_sign} H20/35 Pro-TEC Proportioning Unit and the associated equipment to convey electrical power, air, and foam component material to the unit. This high-pressure, plural-component polyurethane foam pouring system will be used to fill process gas and non-process equipment/piping (PGE/P) within the K-25/K-27 Buildings with polyurethane foam to immobilize contaminants prior to removal. The system creates foam by mixing isocyanate and polyol resin (Resin) component materials. Currently, the project plans to utilize up to six foaming units simultaneously during peak foaming activities. Also included in this system description are the foam component material storage containers that will be used for storage of the component material drums in a staging area outside of the K-25/K-27 Buildings. The Foam Delivery System and foam component material storage enclosures (i.e., Foaming Component Protective Enclosures) used to store polymeric methylene diphenyl diisocyanate (PMDI) component material are identified as Safety Significant (SS) Structures, Systems and Components (SSC) in the Documented Safety Analysis (DSA) for the project, Documented Safety Analysis for the K-25 and K-27 Facilities at the East Tennessee Technology Park, Oak Ridge, Tennessee, DSA-ET-K-25/K-27-0001.

  17. Structural foam-core panels in Northwest HUD-code manufactured housing: A preliminary assessment of opportunities and obstacles

    SciTech Connect (OSTI)

    Durfee, D.L.; Lee, A.D.; Onisko, S.A.

    1993-07-01T23:59:59.000Z

    This investigation of structural foam-core panels (foam panels) in manufactured housing was initiated during the Super Good Cents (SGC) program. The SGC program limited allowable glazing area because of the relatively high thermal losses associated with most windows. Due to their superior thermal performance, foam panels appeared to be a viable option to allow increased glazing area without compromising the thermal integrity of the wall. With the inception of the Manufactured-Housing Acquisition Program (MAP), however, the focus of this study has shifted. MAP permits unlimited glazing area if expensive, super-efficient, vinyl-framed, argon-gas-filled, low-emissivity coated windows are installed. Although MAP permits unlimited glazing area, a foam panel wall could allow the use of less expensive windows, larger window area, or less insulation and still provide the required thermal performance for the building. Bonneville contracted with the Pacific Northwest Laboratory (PNL) to investigate the feasibility of using foam panels in HUD-code manufactured housing. This study presents the results from a product and literature search. The potential barriers and benefits to the use of foam panels are determined from a regional survey of the HUD-code manufacturers and foam panel producers.

  18. Extended LargeQ Potts Model Simulation of Foam Drainage Yi Jiang and James A. Glazier

    E-Print Network [OSTI]

    Kurien, Susan

    as brewing, lubrication, oil recovery, and fire­ fighting. Characterizing their structure and evolution in an unstable in­ terface or in viscous fingering. Instead, the mean­field theory predicts a flat interface­ illary effects and gravity balance. For pulsed drainage, as liquid drains from the top of the foam

  19. CELLULAR FOAMS: A POTENTIAL INNOVATIVE SOLID BREEDER MATERIAL FOR FUSION APPLICATIONS

    E-Print Network [OSTI]

    Ghoniem, Nasr M.

    the development of ceramic foams or cellular ceramics for solid breeders in fusion reactor blankets. A cellular breeder material has a number of thermo-mechanical advantages over pebble beds, which can enhance blanket, and improved breeder-wall contact would result in a reduction of blanket multiplier and structure volume

  20. Squeezing particle-stabilized emulsions into biliquid foams equation of state

    E-Print Network [OSTI]

    Schofield, Andrew

    porous materials,14 and for shelf life.20 Here, we measure the equation of state of water-in-oil (w/o) PR emulsions via centrifugal compression and we interpret our results using a quantitative model adapted fromSqueezing particle-stabilized emulsions into biliquid foams ­ equation of state Louison Maurice

  1. High-expansion foam for LNG vapor mitigation. Topical report, September 1987-December 1989

    SciTech Connect (OSTI)

    Atallah, S.; Shah, J.N.; Peterlinz, M.E.

    1990-05-01T23:59:59.000Z

    One of the purposes of these high expansion foam systems is to reduce the extent of the hazardous vapor cloud generated during an accidental LNG release. Should the LNG ignite, these systems serve the additional function of controlling the LNG fire and minimizing its radiation to the surroundings. Foam generators have been installed along the tops of dike walls surrounding some LNG storage tanks, and around other fenced containment areas where LNG may be accidentally released, such as LNG pump pits and pipe rack trenches. To date there are no technically justifiable guidelines for the design and installation of these systems. Furthermore, there are no models that may be used describe the vapor source so as to be able to predict the reduction in the hazardous vapor cloud zone when high expansion foam is applied to an LNG spill. Information is essential not only for the optimal design of high expansion foam systems, but also for comparing the cost effectiveness of alternative LNG vapor mitigation measures.

  2. Experimental study of SRAT/SME foaming by Illinois Institute of Technology

    SciTech Connect (OSTI)

    Lambert, D.P.; Wasan, D.T.

    1997-11-10T23:59:59.000Z

    This report summarizes the results of experiments performed by IIT in an effort to understand the fundamental science involved in the stable foam formation in the Defense Waste Processing Facility`s (DWPF`s) Chemical Processing Cell (CPC). The results of this testing will be confirmed in an experimental apparatus designed to be prototypic of DWPF CPC processing.

  3. Analysis of Principal Gas Products During Combustion of Polyether Polyurethane Foam at Different Irradiance Levels 

    E-Print Network [OSTI]

    Bustamante Valencia, Lucas; Rogaume, Thomas; Guillaume, Eric; Rein, Guillermo; Torero, Jose L

    2009-01-01T23:59:59.000Z

    This paper studies the release of the principal gas species produced during the combustion of a non-flame-retarded Polyether Polyurethane Foam (PPUF) of density of 20.9 kg/m^3 in the cone calorimeter. Five irradiance levels ...

  4. Society of Petroleum Engineers Simulation of Foam Transport in Porous Media

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    by the Society of Petroleum Engineers and are subject to correction by the author(s). The material, as presented equation along with the traditional reservoir simulation equations allows mechanistic foam simulation. Since fOllin mobility depends heavily upon its texture, the bubble population balance is both useful

  5. SYNTACTIC AND COMPOSITE FOAMS Whispering gallery mode-based micro-optical sensors

    E-Print Network [OSTI]

    Ötügen, Volkan

    SYNTACTIC AND COMPOSITE FOAMS Whispering gallery mode-based micro-optical sensors for structural used in materials include piezoelectric particles, acoustic emission sensors, and optical fibers. Each. Use of fiber-optic sensors is advantageous in composite materials because they can become an integral

  6. Osteoblast proliferation on neat and apatite-like calcium phosphate-coated titanium foam scaffolds

    E-Print Network [OSTI]

    Tas, A. Cuneyt

    Osteoblast proliferation on neat and apatite-like calcium phosphate-coated titanium foam scaffolds-bearing ability of lightweight titanium made it possible to be used as a biomaterial, especially in hip revision and fixation surgery. It was initially shown that sand-blasted or surface-roughened titanium implants had

  7. Reduced fibre breakage in a glass-fibre reinforced thermoplastic through foaming

    E-Print Network [OSTI]

    Thompson, Michael

    Reduced fibre breakage in a glass-fibre reinforced thermoplastic through foaming G. Zhang, M The processing of a glass fibre-reinforced polypropylene in the presence of a chemical blowing agent was found,3], and the fibre orientation [4­6]; all factors determining the surface area available for transmission of stresses

  8. Design and development of a multi-shot foam projectile toy

    E-Print Network [OSTI]

    Skaggs, Alan M. (Alan Michael)

    2007-01-01T23:59:59.000Z

    The goal of this research was to design and develop a working prototype of a new toy for Hasbro®'s Nerfe line of foam projectile toys. Several years ago, Hasbro approached the MIT CADlab about developing a new method for ...

  9. INTERFACIAL AND TRANSPORT PHENOMENA IN CLOSED-CELL FOAMS Submitted to the Faculty

    E-Print Network [OSTI]

    Pilon, Laurent

    INTERFACIAL AND TRANSPORT PHENOMENA IN CLOSED-CELL FOAMS A Thesis Submitted to the Faculty Sylvania, Techneglas, and Owens Corning provided the glass samples as well as help- ful criticisms the Purdue Glass Laboratory for sharing his expertise on glass and for letting me use his laboratory

  10. Microfabrication-Compatible Nanoporous Gold Foams as Biomaterials for Drug Delivery

    E-Print Network [OSTI]

    Seker, Erkin

    Microfabrication-Compatible Nanoporous Gold Foams as Biomaterials for Drug Delivery Erkin Seker different samples: (i) 12 mm-diameter circular plain glass cover slips; (ii) 5 mm-diameter gold spots patterned on the glass cover slips; (iii) 5 mm-diameter np-Au spots patterned on the glass cover slips

  11. A preliminary study of acoustic propagation in thick foam tissue scaffolds composed of poly(lactic-co-glycolic acid)

    E-Print Network [OSTI]

    Parker, N G; Morgan, S P; Povey, M J W

    2010-01-01T23:59:59.000Z

    The exclusive ability of acoustic waves to probe the structural, mechanical and fluidic properties of foams may offer novel approaches to characterise the porous scaffolds employed in tissue engineering. Motivated by this we conduct a preliminary investigation into the acoustic properties of a typical biopolymer and the feasibility of acoustic propagation within a foam scaffold thereof. Focussing on poly(lactic-co-glycolic acid), we use a pulse-echo method to determine the longitudinal speed of sound, whose temperature-dependence reveals the glass transition of the polymer. Finally, we demonstrate the first topographic and tomographic acoustic images of polymer foam tissue scaffolds.

  12. A preliminary study of acoustic propagation in thick foam tissue scaffolds composed of poly(lactic-co-glycolic acid)

    E-Print Network [OSTI]

    N. G. Parker; M. L. Mather; S. P. Morgan; M. J. W. Povey

    2010-02-26T23:59:59.000Z

    The exclusive ability of acoustic waves to probe the structural, mechanical and fluidic properties of foams may offer novel approaches to characterise the porous scaffolds employed in tissue engineering. Motivated by this we conduct a preliminary investigation into the acoustic properties of a typical biopolymer and the feasibility of acoustic propagation within a foam scaffold thereof. Focussing on poly(lactic-co-glycolic acid), we use a pulse-echo method to determine the longitudinal speed of sound, whose temperature-dependence reveals the glass transition of the polymer. Finally, we demonstrate the first topographic and tomographic acoustic images of polymer foam tissue scaffolds.

  13. Brazing open cell reticulated copper foam to stainless steel tubing with vacuum furnace brazed gold/indium alloy plating

    DOE Patents [OSTI]

    Howard, Stanley R. (Windsor, SC); Korinko, Paul S. (Aiken, SC)

    2008-05-27T23:59:59.000Z

    A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.

  14. Modeling the dynamic response of low-density, reticulated, elastomeric foam impregnated with Newtonian and non-Newtonian fluids

    E-Print Network [OSTI]

    Dawson, Matthew A. (Matthew Aaron), 1983-

    2008-01-01T23:59:59.000Z

    Engineering cellular solids, such as honeycombs and foams, are widely used in applications ranging from thermal insulation to energy absorption. Natural cellular materials, such as wood, have been used in structures for ...

  15. Design and development of an automated three axis machine that prints images on top of the foam of certain beverages

    E-Print Network [OSTI]

    Richardson, Jeremy S. H

    2009-01-01T23:59:59.000Z

    The goal of this research was to design and develop a working alpha prototype of the flagship product for a local startup called Onlatte, Inc. OnLatte specializes in automated printing of images on top of the foam of ...

  16. The Dynamic Compressive Response of an Open-Cell Foam Impregnated With a Non-Newtonian Fluid

    E-Print Network [OSTI]

    Dawson, Matthew A.

    The response of a reticulated, elastomeric foam filled with colloidal silica under dynamic compression is studied. Under compression beyond local strain rates on the order of 1 s[superscript ?1], the non-Newtonian, colloidal ...

  17. Multi-Partner Demonstration of Energy-Efficient and Environmentally Improved Methods for the Production of Polyurethane Foam

    SciTech Connect (OSTI)

    Mark L. Listemann

    2006-03-08T23:59:59.000Z

    The work described was focused on commercializing a new energy-efficient, enabling technology silicon surfactants that will allow the flexible foam industry to utilize environmentally benign CO2 as a blowing agent. These new products provide the means for more cost-effective and energy-efficient production of foam in an industry that is under increasing threat from foreign competition and environmental regulation.

  18. Final Report - "Foaming and Antifoaming and Gas Entrainment in Radioactive Waste Pretreatment and Immobilization Processes"

    SciTech Connect (OSTI)

    Wasan, Darsh T.

    2007-10-09T23:59:59.000Z

    The Savannah River Site (SRS) and Hanford site are in the process of stabilizing millions of gallons of radioactive waste slurries remaining from production of nuclear materials for the Department of Energy (DOE). The Defense Waste Processing Facility (DWPF) at SRS is currently vitrifying the waste in borosilicate glass, while the facilities at the Hanford site are in the construction phase. Both processes utilize slurry-fed joule-heated melters to vitrify the waste slurries. The DWPF has experienced difficulty during operations. The cause of the operational problems has been attributed to foaming, gas entrainment and the rheological properties of the process slurries. The rheological properties of the waste slurries limit the total solids content that can be processed by the remote equipment during the pretreatment and meter feed processes. Highly viscous material can lead to air entrainment during agitation and difficulties with pump operations. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. Experimental and theoretical investigations of the surface phenomena, suspension rheology and bubble generation of interactions that lead to foaming and air entrainment problems in the DOE High Level and Low Activity Radioactive Waste separation and immobilization processes were pursued under this project. The first major task accomplished in the grant proposal involved development of a theoretical model of the phenomenon of foaming in a three-phase gas-liquid-solid slurry system. This work was presented in a recently completed Ph.D. thesis (9). The second major task involved the investigation of the inter-particle interaction and microstructure formation in a model slurry by the batch sedimentation method. Both experiments and modeling studies were carried out. The results were presented in a recently completed Ph.D. thesis. The third task involved the use of laser confocal microscopy to study the effectiveness of three slurry rheology modifiers. An effective modifier was identified which resulted in lowering the yield stress of the waste simulant. Therefore, the results of this research have led to the basic understanding of the foaming/antifoaming mechanism in waste slurries as well as identification of a rheology modifier, which enhances the processing throughput, and accelerates the DOE mission. The objectives of this research effort were to develop a fundamental understanding of the physico-chemical mechanisms that produced foaming and air entrainment in the DOE High Level (HLW) and Low Activity (LAW) radioactive waste separation and immobilization processes, and to develop and test advanced antifoam/defoaming/rheology modifier agents. Antifoams/rheology modifiers developed from this research ere tested using non-radioactive simulants of the radioactive wastes obtained from Hanford and the Savannah River Site (SRS).

  19. Dryout droplet distribution and dispersed flow film boiling

    E-Print Network [OSTI]

    Hill, Wayne S.

    1982-01-01T23:59:59.000Z

    Dispersed flow film boiling is characterized by liquid-phase droplets entrained in a continuous vapor-phase flow. In a previous work at MIT, a model of dispersed flow heat transfer was developed, called the Local Conditions ...

  20. Security Conditions

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-07-08T23:59:59.000Z

    This Notice ensures that DOE uniformly meets the requirements of the Homeland Security Advisory System outlined in Homeland Security Presidential Directive-3, Threat Conditions and Associated Protective Measures, dated 3-11-02, and provides responses specified in Presidential Decision Directive 39, U.S. Policy on Counterterrorism (U), dated 6-21-95. It cancels DOE N 473.8, Security Conditions, dated 8-7-02. Extended until 7-7-06 by DOE N 251.64, dated 7-7-05 Cancels DOE N 473.8

  1. Rapid oxidation/stabilization technique for carbon foams, carbon fibers and C/C composites

    DOE Patents [OSTI]

    Tan, Seng; Tan, Cher-Dip

    2004-05-11T23:59:59.000Z

    An enhanced method for the post processing, i.e. oxidation or stabilization, of carbon materials including, but not limited to, carbon foams, carbon fibers, dense carbon-carbon composites, carbon/ceramic and carbon/metal composites, which method requires relatively very short and more effective such processing steps. The introduction of an "oxygen spill over catalyst" into the carbon precursor by blending with the carbon starting material or exposure of the carbon precursor to such a material supplies required oxygen at the atomic level and permits oxidation/stabilization of carbon materials in a fraction of the time and with a fraction of the energy normally required to accomplish such carbon processing steps. Carbon based foams, solids, composites and fiber products made utilizing this method are also described.

  2. Optimization of Design and Manufacturing Process of Metal Foam Filled Anti-Intrusion Bars

    SciTech Connect (OSTI)

    Villa, Andrea; Mussi, Valerio [Laboratorio MUSP-via Turotti 9, 29122 Piacenza (Italy); Strano, Matteo [Politecnico di Milano-Dipartimento di Meccanica, via La Masa 1, 20156, Milan (Italy)

    2011-05-04T23:59:59.000Z

    The role of an anti-intrusion bar for automotive use is to absorb the kinetic energy of the colliding bodies that is partially converted into internal work of the bodies involved in the crash. The aim of this paper is to investigate the performances of a new kind of anti-intrusion bars for automotive use, filled with metallic foams. The reason for using a cellular material as a filler deals with its capacity to absorb energy during plastic deformation, while being lightweight. The study is the evolution of a previous paper presented by the authors at Esaform 2010 and will present new results and findings. It is conducted by evaluating some key technical issues of the manufacturing problem and by conducting experimental and numerical analyses. The evaluation of materials and shapes of the closed sections to be filled is made in the perspective of a car manufacturer (production costs, weight reduction, space availability in a car door, etc.). Experimentally, foams are produced starting from an industrial aluminium precursor with a TiH{sub 2} blowing agent. Bars are tested in three point bending, in order to evaluate their performances in terms of force-displacement response and other specific performance parameters. In order to understand the role of interface between the inner surface of the tube and the external surface of the foam, different kinds of interface are tested.

  3. The Federal manufactured home construction and safety standards -- implications for foam panel construction

    SciTech Connect (OSTI)

    Lee, A.D.; Schrock, D.W.; Flintoft, S.A.

    1997-03-01T23:59:59.000Z

    This report reviews the U.S. Department of Housing and Urban Development construction code for (HUD-code) manufactured homes, Part 3280: Manufactured Home Construction and Safety Standards (the HUD Code), to identify sections that might be relevant in determining if insulated foam core panels (or structural insulated panels, SIPs) meet the requirements of Part 3280 for use in manufactured home construction. The U.S. Department of Energy and other parties are interested in the use of SIPs in residential construction, including HUD-Code manufactured homes, because the foam panels can have a higher effective insulation value than standard stud-framed construction and use less dimensional lumber. Although SIPs have not been used in manufactured housing, they may be well suited to the factory production process used to manufacture HUD-Code homes and the fact that they require less virgin timber may reduce the effect of volatile and increasing timber prices. Part 3280 requirements for fire resistance, wind resistance, structural load strength, ventilation, transportation shock, and thermal protection are reviewed. A brief comparison is made between the HUD Code requirements and data collected from foam panel manufacturers. 8 refs.

  4. Method and composition for molding low-density desiccant syntactic-foam articles

    DOE Patents [OSTI]

    Not Available

    1981-12-07T23:59:59.000Z

    These and other objects of the invention are achieved by a process for molding to size a desiccant syntactic foam article having a density of 0.2 to 0.9 g/cc and a moisture capacity of 1 to 12% by weight, comprising the steps of: charging a mold with a powdery mixture of an activated desiccant, microspheres and a thermosetting resin, the amount of the desiccant being sufficient to provide the required moisture capacity, and the amounts of the microspheres and resin being such that the microspheres/desiccant volume fraction exceeds the packing factor by an amount sufficient to substantially avoid shrinkage without causing excessively high molding pressures; covering the mold and heating the covered mold to a temperature and for an amount of time sufficient to melt the resin; and tightly closing the mold and heating the closed mold to a temperature and for an amount of time sufficient to cure the resin, and removing the resultant desiccant syntactic foam article from the mold. In a composition of matter aspect, the present invention provides desiccant syntactic foam articles, and a composition of matter for use in molding the same.

  5. Measurements of continuous mix evolution in a high energy density shear flow

    SciTech Connect (OSTI)

    Loomis, E., E-mail: loomis@lanl.gov; Doss, F.; Flippo, K.; Fincke, J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-04-15T23:59:59.000Z

    We report on the novel integration of streaked radiography into a counter-flowing High Energy Density (HED) shear environment that continually measures a growing mix layer of Al separating two low-density CH foams. Measurements of the mix width allow us to validate compressible turbulence models and with streaked imaging, make this possible with a minimal number of experiments on large laser facilities. In this paper, we describe how the HED counter-flowing shear layer is created and diagnosed with streaked radiography. We then compare the streaked data to previous two-dimensional, single frame radiography and radiation hydrodynamic simulations of the experiment with inline compressible turbulent mix models.

  6. Deformed bubble growth and coalescence in polymer foam processing

    E-Print Network [OSTI]

    Allaboun, Hussein Raji

    1996-01-01T23:59:59.000Z

    conditions (Table 34 0. 1 Viacoelaatic ? ? ? - - Newtoruan o. os V 2 10 4 10 6 10 8 10 1 10 1. 2 10 Time, 1* Figure 4. 1. The viscous limit of the viscoelastic melt. 35 0. 035 0. 03 0. 025 O. O2 0. 015 O. O1 - ti/90 =o. s ? ti/tl. =o. 75 q/q... q/q q/q, 0. 005 1O' 1O' 102 Time, 1* 10' 104 Figure 4. Effect of viscosity on bubble pressure. An increase in the viscosity resulted in a decrease of the rate of change of gaseous phase pressure ( See Figure 4. 2), and, consequently...

  7. Flow chamber

    DOE Patents [OSTI]

    Morozov, Victor (Manassas, VA)

    2011-01-18T23:59:59.000Z

    A flow chamber having a vacuum chamber and a specimen chamber. The specimen chamber may have an opening through which a fluid may be introduced and an opening through which the fluid may exit. The vacuum chamber may have an opening through which contents of the vacuum chamber may be evacuated. A portion of the flow chamber may be flexible, and a vacuum may be used to hold the components of the flow chamber together.

  8. Geological flows

    E-Print Network [OSTI]

    Yu. N. Bratkov

    2008-11-19T23:59:59.000Z

    In this paper geology and planetology are considered using new conceptual basis of high-speed flow dynamics. Recent photo technics allow to see all details of a flow, 'cause the flow is static during very short time interval. On the other hand, maps and images of many planets are accessible. Identity of geological flows and high-speed gas dynamics is demonstrated. There is another time scale, and no more. All results, as far as the concept, are new and belong to the author. No formulae, pictures only.

  9. JOURNAL OF MATERIALS SCIENCE 2012, IN PRESS DOI: 10.1007/S10853-012-6927-8 Viscoelastic properties of hollow glass particle filled vinyl ester matrix syntactic foams: effect of temperature and loading

    E-Print Network [OSTI]

    Gupta, Nikhil

    properties of hollow glass particle filled vinyl ester matrix syntactic foams: effect of temperature compositions of syntactic foams. Storage modulus, loss modulus, and glass transition temperature (Tg@poly.edu Abstract Viscoelastic properties of hollow particle reinforced composites called syntactic foams

  10. Materials Science and Engineering A, 2006. 427(1-2): p. 331-342 331 Comparison of Compressive Properties of Layered Syntactic Foams having Gradient in Microballoon Volume Fraction and

    E-Print Network [OSTI]

    Gupta, Nikhil

    ]. The microstructure of syntactic foams is shown in Figure 1, where glass microballoons are dispersed in an epoxy resin foam. Glass microballoons are embedded in an epoxy resin matrix. Figure 2. Compressive stress Properties of Layered Syntactic Foams having Gradient in Microballoon Volume Fraction and Wall Thickness

  11. JOM, February 2013, Volume 65, Issue 2, pp 234-245 234 A Review of Thermal Conductivity of Polymer Matrix Syntactic Foams Effect of Hollow Particle Wall

    E-Print Network [OSTI]

    Gupta, Nikhil

    JOM, February 2013, Volume 65, Issue 2, pp 234-245 234 A Review of Thermal Conductivity of Polymer compositions of syntactic foams. Basic understating of the relationship between thermal conductivity Introduction Hollow particle filled polymer matrix composites, called syntactic foams, are used in weight

  12. SPRAY FOAM IN ACCESSIBLE SPACES:BEST PRACTICES AND CASE STUDIES FOR RETROFIT IN MIXED-HUMID CLIMATE

    SciTech Connect (OSTI)

    Christian, Jeffrey E [ORNL; Gant, Kathy [Oak Ridge National Laboratory (ORNL)

    2013-12-01T23:59:59.000Z

    Heating and cooling the house is one of the homeowners major expenses. Reducing these costs, saving energy, and creating a healthier, more comfortable indoor environment are good reasons to consider improving the building thermal envelope. Improvements usually consider increasing the amount of insulation, reducing the infiltration of outside air, and controlling moisture in existing buildings. This report describes the use of spray foam materials to insulate, seal, and control moisture. This discussion is limited to treating areas that are accessible. What is accessible, however, can vary depending on the type of renovation. If the building has been gutted or exterior surfaces removed, there are more options. This report will look at areas to consider for spray foam application and discuss the types of spray foams available and their uses. A number of case studies are presented to show the effectiveness of this retrofit in existing houses based on performance data.

  13. Final Technical Report Quantification and Standardization of Pattern Properties for the Control of the Lost Foam Casting Process

    SciTech Connect (OSTI)

    Ronald Michaels

    2005-09-30T23:59:59.000Z

    This project takes a fresh look at the ''white side'' of the lost foam casting process. We have developed the gel front hypothesis for foam pyrolysis behavior and the magnetic metal pump method for controlling lost foam casting metal fill event. The subject of this report is work done in the improvement of the Lost Foam Casting Process. The original objective of this project was to improve the control of metal fill by understanding the influence of foam pattern and coating properties on the metal fill event. Relevant pattern properties could then be controlled, providing control of the metal fill event. One of the original premises of this project was that the process of metal fill was relatively well understood. Considerable previous work had been done to develop fluid mechanical and heat transfer models of the process. If we could just incorporate measured pattern properties into these models we would be able predict accurately the metal fill event. As we began to study the pyrolysis behavior of EPS during the metal fill event, we discovered that the chemical nature of this event had been completely overlooked in previous research. Styrene is the most prevalent breakdown product of EPS pyrolysis and it is a solvent for polystyrene. Much of the styrene generated by foam pyrolysis diffuses into intact foam, producing a molten gel of mechanically entangled polystyrene molecules. Much of the work of our project has centered on validation of this concept and producing a qualitative model of the behavior of EPS foam undergoing pyrolysis in a confined environment. A conclusion of this report is that styrene dissolution in EPS is a key phenomenon in the pyrolysis process and deserves considerable further study. While it is possible to continue to model the metal fill event parametrically using empirical data, we recommend that work be undertaken by qualified researchers to directly characterize and quantify this phenomenon for the benefit of modelers, researchers, and workers in the field. Another original premise of this project was that foam pattern and coating properties could be used to efficiently control metal fill. After studying the structure of EPS foam in detail for the period of this contract, we have come to the conclusion that EPS foam has an inherent variability at a scale that influences metal fill behavior. This does not allow for the detailed fine control of the process that we originally envisioned. We therefore have sought other methods for the control of the metal fill event. Of those, we now believe that the magnetic metal pump shows the most promise. We have conducted two casting trials using this method and preliminary results are very encouraging. A conclusion of our report is that, while every effort should continue to be made to produce uniform foam and coatings, the use of the magnetic metal pump should be encouraged and closed loop control mechanisms should be developed for this pouring method.

  14. An outflow boundary condition and algorithm for incompressible two ...

    E-Print Network [OSTI]

    S. Dong

    2014-03-05T23:59:59.000Z

    Feb 22, 2014 ... [8] S. Dong, G.E. Karniadakis, C. Chryssostomidis, A robust and accurate outflow boundary condition for incompressible flow simulations on ...

  15. Role of space-time foam in breaking supersymmetry via the Barbero-Immirzi parameter

    SciTech Connect (OSTI)

    Ellis, John; Mavromatos, Nick E. [Theoretical Particle Physics and Cosmology Group, Department of Physics, King's College London, Strand, London WC2R 2LS, UK and Theory Division, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland)

    2011-10-15T23:59:59.000Z

    We discuss how: (i) a dilaton/axion superfield can play the role of a Barbero-Immirzi field in four-dimensional conformal quantum supergravity theories, (ii) a fermionic component of such a dilaton/axion superfield may play the role of a Goldstino in the low-energy effective action obtained from a superstring theory with F-type global supersymmetry breaking, (iii) this global supersymmetry breaking is communicated to the gravitational sector via the supergravity coupling of the Goldstino, and (iv) such a scenario may be realized explicitly in a D-foam model with D-particle defects fluctuating stochastically.

  16. ROLE OF MANGANESE REDUCTION/OXIDATION (REDOX) ON FOAMING AND MELT RATE IN HIGH LEVEL WASTE (HLW) MELTERS (U)

    SciTech Connect (OSTI)

    Jantzen, C; Michael Stone, M

    2007-03-30T23:59:59.000Z

    High-level nuclear waste is being immobilized at the Savannah River Site (SRS) by vitrification into borosilicate glass at the Defense Waste Processing Facility (DWPF). Control of the Reduction/Oxidation (REDOX) equilibrium in the DWPF melter is critical for processing high level liquid wastes. Foaming, cold cap roll-overs, and off-gas surges all have an impact on pouring and melt rate during processing of high-level waste (HLW) glass. All of these phenomena can impact waste throughput and attainment in Joule heated melters such as the DWPF. These phenomena are caused by gas-glass disequilibrium when components in the melter feeds convert to glass and liberate gases such as H{sub 2}O vapor (steam), CO{sub 2}, O{sub 2}, H{sub 2}, NO{sub x}, and/or N{sub 2}. During the feed-to-glass conversion in the DWPF melter, multiple types of reactions occur in the cold cap and in the melt pool that release gaseous products. The various gaseous products can cause foaming at the melt pool surface. Foaming should be avoided as much as possible because an insulative layer of foam on the melt surface retards heat transfer to the cold cap and results in low melt rates. Uncontrolled foaming can also result in a blockage of critical melter or melter off-gas components. Foaming can also increase the potential for melter pressure surges, which would then make it difficult to maintain a constant pressure differential between the DWPF melter and the pour spout. Pressure surges can cause erratic pour streams and possible pluggage of the bellows as well. For these reasons, the DWPF uses a REDOX strategy and controls the melt REDOX between 0.09 {le} Fe{sup 2+}/{summation}Fe {le} 0.33. Controlling the DWPF melter at an equilibrium of Fe{sup +2}/{summation}Fe {le} 0.33 prevents metallic and sulfide rich species from forming nodules that can accumulate on the floor of the melter. Control of foaming, due to deoxygenation of manganic species, is achieved by converting oxidized MnO{sub 2} or Mn{sub 2}O{sub 3} species to MnO during melter preprocessing. At the lower redox limit of Fe{sup +2}/{summation}Fe {approx} 0.09 about 99% of the Mn{sup +4}/Mn{sup +3} is converted to Mn{sup +2}. Therefore, the lower REDOX limits eliminates melter foaming from deoxygenation.

  17. Novel CO2 Foam Concepts and Injection Schemes for Improving CO2 Sweep Efficiency in Sandstone and Carbonate Hydrocarbon Formations

    SciTech Connect (OSTI)

    Nguyen, Quoc; Hirasaki, George; Johnston, Keith

    2014-12-31T23:59:59.000Z

    We explored cationic, nonionic and zwitterionic surfactants to identify candidates that have the potential to satisfy all the key requirements for CO2 foams in EOR. We have examined the formation, texture, rheology and stability of CO2 foams as a function of the surfactant structure and formulation variables including temperature, pressure, water/CO2 ratio, surfactant concentration, salinity and concentration of oil. Furthermore, the partitioning of surfactants between oil and water as well as CO2 and water was examined in conjunction with adsorption measurements on limestone by the Hirasaki lab to develop strategies to optimize the transport of surfactants in reservoirs.

  18. E-Print Network 3.0 - artificial boundary conditions Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    obtained from satellite (above) and GPS mea- surements 1 as boundary conditions. The ice... by Glen's flow law: Boundary conditions are ... Source: Langhorne, Pat - Department...

  19. Comment on “Velocity boundary conditions at a tokamak resistive wall” [Phys. Plasmas 21, 032506 (2014)

    SciTech Connect (OSTI)

    Zakharov, Leonid E. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Li, Xujing [Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing (China)

    2014-09-15T23:59:59.000Z

    The paper gives the derivation of the MHD boundary condition for the plasma flow to the wall during disruptions.

  20. Cooling Flows or Heating Flows?

    E-Print Network [OSTI]

    James Binney

    2003-10-08T23:59:59.000Z

    It is now clear that AGN heat cooling flows, largely by driving winds. The winds may contain a relativistic component that generates powerful synchrotron radiation, but it is not clear that all winds do so. The spatial and temporal stability of the AGN/cooling flow interaction are discussed. Collimation of the winds probably provides spatial stability. Temporal stability may be possible only for black holes with masses above a critical value. Both the failure of cooling flows to have adiabatic cores and the existence of X-ray cavities confirm the importance of collimated outflows. I quantify the scale of the convective flow that the AGN Hydra would need to drive if it balanced radiative inward flow by outward flow parallel to the jets. At least in Virgo any such flow must be confined to r<~20 kpc. Hydrodynamical simulations suggest that AGN outbursts cannot last longer than ~25 Myr. Data for four clusters with well studied X-ray cavities suggests that heating associated with cavity formation approximately balances radiative cooling. The role of cosmic infall and the mechanism of filament formation are briefly touched on.

  1. Application of Spray Foam Insulation Under Plywood and OSB Roof Sheathing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01T23:59:59.000Z

    Spray polyurethane foams (SPFs) have advantages over alternative insulation methods because they provide air sealing in complex assemblies, particularly roofs. Spray foam can provide the thermal, air, and vapor control layers in both new and retrofit construction. Unvented roof strategies with open cell and closed cell SPF insulation sprayed to the underside of roof sheathing have been used since the mid-1990s to provide durable and efficient building enclosures. However, there have been isolated incidents of failures (either sheathing rot or SPF delamination) that raise some general concerns about the hygrothermal performance and durability of these systems. The primary risks for roof systems are rainwater leaks, condensation from diffusion and air leakage, and built-in construction moisture. This project directly investigated rain and indirectly investigated built-in construction moisture and vapor drives. Research involved both hygrothermal modeling of a range of rain water leakage scenarios and field evaluations of in-service residential roofs. Other variables considered were climate zone, orientation, interior relative humidity, and the vapor permeance of the coating applied to the interior face of open cell SPF.

  2. Microstructural characterization of low-density foams. [Silica, resorcinol/formaldehyde, cellulose/acetate

    SciTech Connect (OSTI)

    Price, C.W.

    1988-01-01T23:59:59.000Z

    Low-density foams (of the order 0.1 g/cm/sup 3/) synthesized from silica aerogel, resorcinol/formaldehyde, and cellulose acetate have fine, delicate microstructures that are extremely difficult to characterize. Improved low-voltage resolution of an SEM equipped with a field-emission gun (FESEM) does permit these materials to be examined directly without coating and at sufficient magnification to reveal the microstructures. Light coatings applied by ion-beam deposition can stabilize the specimens to some extent and reduce electron charging without seriously altering the microstructure, but coatings applied by conventional techniques usually obliterate these microstructures. Transmission electron microscopy (TEM) is required to provide unambiguous microstructural interpretations. However, TEM examinations of these materials can be severely restricted by specimen preparation difficulties and electron-beam damage, and considerable care must be taken to ensure that reasonably accurate TEM results have been obtained. This work demonstrates that low-voltage FESEM analyses can be used to characterize microstructures in these foams, but TEM analyses are required to confirm the FESEM analyses and perform quantitative measurements. 19 refs., 11 figs.

  3. Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors

    SciTech Connect (OSTI)

    Wang, Wei [Univ. of California, Riverside, CA (United States); Guo, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lee, I. [Univ. of California, Riverside, CA (United States); Ahmed, K. [Univ. of California, Riverside, CA (United States); Zhong, J. [Univ. of California, Riverside, CA (United States); Favors, Z. [Univ. of California, Riverside, CA (United States); Zaera, F. [Univ. of California, Riverside, CA (United States); Ozkan, M. [Univ. of California, Riverside, CA (United States); Ozkan, C. S [Univ. of California, Riverside, CA (United States)

    2014-03-25T23:59:59.000Z

    In real life applications, supercapacitors (SCs) often can only be used as part of a hybrid system together with other high energy storage devices due to their relatively lower energy density in comparison to other types of energy storage devices such as batteries and fuel cells. Increasing the energy density of SCs will have a huge impact on the development of future energy storage devices by broadening the area of application for SCs. Here, we report a simple and scalable way of preparing a three-dimensional (3D) sub-5 nm hydrous ruthenium oxide (RuO?) anchored graphene and CNT hybrid foam (RGM) architecture for high-performance supercapacitor electrodes. This RGM architecture demonstrates a novel graphene foam conformally covered with hybrid networks of RuO? nanoparticles and anchored CNTs. SCs based on RGM show superior gravimetric and per-area capacitive performance (specific capacitance: 502.78 F g?ą, areal capacitance: 1.11 F cm?˛) which leads to an exceptionally high energy density of 39.28 Wh kg?ą and power density of 128.01 kW kg?ą. The electrochemical stability, excellent capacitive performance, and the ease of preparation suggest this RGM system is promising for future energy storage applications.

  4. An approach to model validation and model-based prediction -- polyurethane foam case study.

    SciTech Connect (OSTI)

    Dowding, Kevin J.; Rutherford, Brian Milne

    2003-07-01T23:59:59.000Z

    Enhanced software methodology and improved computing hardware have advanced the state of simulation technology to a point where large physics-based codes can be a major contributor in many systems analyses. This shift toward the use of computational methods has brought with it new research challenges in a number of areas including characterization of uncertainty, model validation, and the analysis of computer output. It is these challenges that have motivated the work described in this report. Approaches to and methods for model validation and (model-based) prediction have been developed recently in the engineering, mathematics and statistical literatures. In this report we have provided a fairly detailed account of one approach to model validation and prediction applied to an analysis investigating thermal decomposition of polyurethane foam. A model simulates the evolution of the foam in a high temperature environment as it transforms from a solid to a gas phase. The available modeling and experimental results serve as data for a case study focusing our model validation and prediction developmental efforts on this specific thermal application. We discuss several elements of the ''philosophy'' behind the validation and prediction approach: (1) We view the validation process as an activity applying to the use of a specific computational model for a specific application. We do acknowledge, however, that an important part of the overall development of a computational simulation initiative is the feedback provided to model developers and analysts associated with the application. (2) We utilize information obtained for the calibration of model parameters to estimate the parameters and quantify uncertainty in the estimates. We rely, however, on validation data (or data from similar analyses) to measure the variability that contributes to the uncertainty in predictions for specific systems or units (unit-to-unit variability). (3) We perform statistical analyses and hypothesis tests as a part of the validation step to provide feedback to analysts and modelers. Decisions on how to proceed in making model-based predictions are made based on these analyses together with the application requirements. Updating modifying and understanding the boundaries associated with the model are also assisted through this feedback. (4) We include a ''model supplement term'' when model problems are indicated. This term provides a (bias) correction to the model so that it will better match the experimental results and more accurately account for uncertainty. Presumably, as the models continue to develop and are used for future applications, the causes for these apparent biases will be identified and the need for this supplementary modeling will diminish. (5) We use a response-modeling approach for our predictions that allows for general types of prediction and for assessment of prediction uncertainty. This approach is demonstrated through a case study supporting the assessment of a weapons response when subjected to a hydrocarbon fuel fire. The foam decomposition model provides an important element of the response of a weapon system in this abnormal thermal environment. Rigid foam is used to encapsulate critical components in the weapon system providing the needed mechanical support as well as thermal isolation. Because the foam begins to decompose at temperatures above 250 C, modeling the decomposition is critical to assessing a weapons response. In the validation analysis it is indicated that the model tends to ''exaggerate'' the effect of temperature changes when compared to the experimental results. The data, however, are too few and to restricted in terms of experimental design to make confident statements regarding modeling problems. For illustration, we assume these indications are correct and compensate for this apparent bias by constructing a model supplement term for use in the model-based predictions. Several hypothetical prediction problems are created and addressed. Hypothetical problems are used because no guidance was provided concern

  5. Nonclassical Shallow Water Flows Carina M. Edwards1

    E-Print Network [OSTI]

    Howison, Sam

    discontinuities in shallow water flows with large Froude number F. On a horizontal base, the paradigm problem is a small `tube' of fluid bounding the flow. The delta-shock conditions for this flow are derived and solved of the layer impact on a horizontal base. Keywords: delta-shock, jet impact, hypercritical flow 1 Introduction

  6. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect (OSTI)

    Yortsos, Yanis C.

    2001-08-07T23:59:59.000Z

    This project is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  7. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect (OSTI)

    Yortsos, Y.C.

    2001-05-29T23:59:59.000Z

    This report is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  8. Materials Science and Engineering A 420 (2006) 8799 Elastic and electric properties of closed-cell aluminum foams

    E-Print Network [OSTI]

    Sevostianov, Igor

    2006-01-01T23:59:59.000Z

    of closed-cell metal foam are assessed based on the experimental measurements. It is shown conductivity of a material due to pores was determined. A non-trivial finding is that the best prediction to mechanical properties) and honeycomb structures (due to environmental properties). Structure and properties

  9. DESIGN OF FOAM COVERING FOR ROBOTIC ARMS TO ENSURE HUMAN SAFETY Lingqi Zeng and Gary M. Bone

    E-Print Network [OSTI]

    Bone, Gary

    , and robot and human velocities. The impact experiments are performed with an apparatus simulating the humanDESIGN OF FOAM COVERING FOR ROBOTIC ARMS TO ENSURE HUMAN SAFETY Lingqi Zeng and Gary M. Bone@mcmaster.ca ABSTRACT Unintentional physical human-robot contact is becoming more common as robots operate in closer

  10. Z .Current Opinion in Colloid & Interface Science 7 2002 228 234 Slow dynamics in glasses, gels and foams

    E-Print Network [OSTI]

    Weeks, Eric R.

    Z .Current Opinion in Colloid & Interface Science 7 2002 228 234 Slow dynamics in glasses, gels and foams Luca CipellettiU , Laurence Ramos Groupe de Dynamique des Phases Condensees, Uni. Keywords: Aging; Lightscattering; Glass; Gel; Colloids; Rheolgy 1. Introduction Disordered, out

  11. Journal of Power Sources 165 (2007) 4957 Metal foams as flow field and gas diffusion layer in

    E-Print Network [OSTI]

    Prasad, Ajay K.

    2007-01-01T23:59:59.000Z

    for soldier-portable sens- ing equipment and communication devices, next-generation ground vehicles utilizing hybrid power trains, or unmanned aerial vehicles or robotic applications whose current range methanol fuel cell (DMFC) and provide auxiliary power. Corresponding author. Tel.: +1 302 831 8975; fax

  12. Numerical and experimental investigations on the interaction of light wire-array Z-pinches with embedded heavy foam converters

    SciTech Connect (OSTI)

    Xiao, Delong; Ding, Ning; Sun, Shunkai [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)] [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Ye, Fan; Ning, Jiamin; Hu, Qingyuan; Chen, Faxin; Qin, Yi; Xu, Rongkun; Li, Zhenghong [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China)] [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China)

    2014-04-15T23:59:59.000Z

    The interaction of a light tungsten wire-array Z-pinch with an embedded heavy foam converter, whose mass ratio is typically less than 0.16, is numerically analyzed and experimentally investigated on the 1.3 MA “QiangGuang I” facility. Computational results show that this implosion process can be divided into three stages: acceleration of the tungsten wire-array plasma, collision, and stagnation. The tungsten plasma is accelerated to a high speed by the J?×?B force and interacts weakly with the foam plasma in the first stage. Strong energy conversions take place in the second collision stage. When the high speed tungsten plasma impacts on the foam converter, the plasma is thermalized and a radial radiation peak is produced. Meanwhile, a shock wave is generated due to the collision. After the shock rebounds from the axis and meets the W/Foam boundary, the plasma stagnates and the second radial radiation peak appears. The collision and stagnation processes were observed and the two-peak radial radiation pulse was produced in experiments. Increasing the wire-array radius from 4?mm to 6?mm, the kinetic energy of the tungsten plasma is increased, causing a stronger thermalization and generating a higher first radiation peak. Experimental results also showed a higher ratio of the first peak to the second peak in the case of larger wire-array radius. If we add a thin CH film cover onto the surface of the embedded foam converter, the first radiation peak will be hardly changed, because the acceleration of the tungsten plasma is not evidently affected by the film cover. However, the second radiation peak decreases remarkably due to the large load mass and the corresponding weak compression.

  13. Laboratory investigations of effective flow behavior in unsaturated heterogeneous sands

    E-Print Network [OSTI]

    Wildenschild, Dorthe

    Laboratory investigations of effective flow behavior in unsaturated heterogeneous sands D, Lyngby Abstract. Two-dimensional unsaturated flow and transport through heterogeneous sand was investigated under controlled laboratory conditions. The unsaturated hydraulic conductivity of five homogeneous

  14. Interpretation of Array Production Logging Measurements in Horizontal Wells for Flow Profile

    E-Print Network [OSTI]

    Liao, Lulu

    2013-12-12T23:59:59.000Z

    and possible back flow of denser phases result in misinterpretation of the inflow distribution. To assess the downhole flow conditions more accurately, logging tools have been developed to overcome the flow regime related issues. Multiple-sensor array tools...

  15. Three-dimensional jamming and flows of soft glassy materials

    E-Print Network [OSTI]

    Guillaume Ovarlez; Quentin Barral; Philippe Coussot

    2011-05-03T23:59:59.000Z

    Various disordered dense systems such as foams, gels, emulsions and colloidal suspensions, exhibit a jamming transition from a liquid state (they flow) to a solid state below a yield stress. Their structure, thoroughly studied with powerful means of 3D characterization, exhibits some analogy with that of glasses which led to call them soft glassy materials. However, despite its importance for geophysical and industrial applications, their rheological behavior, and its microscopic origin, is still poorly known, in particular because of its nonlinear nature. Here we show from two original experiments that a simple 3D continuum description of the behaviour of soft glassy materials can be built. We first show that when a flow is imposed in some direction there is no yield resistance to a secondary flow: these systems are always unjammed simultaneously in all directions of space. The 3D jamming criterion appears to be the plasticity criterion encountered in most solids. We also find that they behave as simple liquids in the direction orthogonal to that of the main flow; their viscosity is inversely proportional to the main flow shear rate, as a signature of shear-induced structural relaxation, in close similarity with the structural relaxations driven by temperature and density in other glassy systems.

  16. Evaluation of Experimental Parameters in the Accelerated Aging of Closed-Cell Foam Insulation

    SciTech Connect (OSTI)

    Stovall, Therese K [ORNL; Vanderlan, Michael [ORNL; Atchley, Jerald Allen [ORNL

    2012-12-01T23:59:59.000Z

    The thermal conductivity of many closed-cell foam insulation products changes over time as production gases diffuse out of the cell matrix and atmospheric gases diffuse into the cells. Thin slicing has been shown to be an effective means of accelerating this process in such a way as to produce meaningful results. Efforts to produce a more prescriptive version of the ASTM C1303 standard test method led to the ruggedness test described here. This test program included the aging of full size insulation specimens for time periods of five years for direct comparison to the predicted results. Experimental parameters under investigation include: slice thickness, slice origin (at the surface or from the core of the slab), thin slice stack composition, product facings, original product thickness, product density, and product type. The test protocol has been completed and this report provides a detailed evaluation of the impact of the test parameters on the accuracy of the 5-year thermal conductivity prediction.

  17. Measurement of emission diameter as a function of time on foam z- pinch plasmas

    SciTech Connect (OSTI)

    Lazier, S.E.; Barber, T.L. [Ktech Corp., Albuquerque, NM (United States); Derzon, M.S.; Kellogg, J.W.

    1996-05-14T23:59:59.000Z

    We have developed a streaked imaging capability to make time-resolved measurements of the emission size for low density foam z-pinches. By lens coupling visible emission from the z-pinch target to an array of fiber optics we obtained the emission profile in the visible as a function of time with radial resolution of 300 {mu}m. To measure the emission at temperatures greater than {approx}40 eV the source was slit-imaged or pin-hole imaged onto an x-ray filtered scintillator. Non-uniformities in both visible and x-ray emission were observed. We describe the diagnostics, the image unfold process, and results from the instrument for both visible and x-ray measurements.

  18. Synthesis of bulk metallic glass foam by powder extrusion with a fugitive second phase

    SciTech Connect (OSTI)

    Lee, Min Ha; Sordelet, Daniel J. [Materials and Engineering Physics Program, Ames Laboratory, Iowa State University, Ames, Iowa 50011 (United States)

    2006-07-10T23:59:59.000Z

    Bulk metallic glass foams with 12 mm in diameter and 30 mm in length having a density of 4.62 g/cm{sup 3} (approximately 58.3% of theoretical) were fabricated by extruding a powder mixture comprised of 60 vol % Ni{sub 59}Zr{sub 20}Ti{sub 16}Si{sub 2}Sn{sub 3} metallic glass blended with 40 vol % brass followed by dissolution of the fugitive brass in an aqueous HNO{sub 3} solution. The final structure consists of continuously connected, high aspect ratio metallic glass struts surrounded by {approx}40 vol % of homogeneously distributed ellipsoid-shaped pores having nominal diameters between 10 and 50 {mu}m.

  19. REFORMULATION OF COAL-DERIVED TRANSPORTATION FUELS: SELECTIVE OXIDATION OF CARBON MONOXIDE ON METAL FOAM CATALYSTS

    SciTech Connect (OSTI)

    Mr. Paul Chin; Dr. Xiaolei Sun; Professor George W. Roberts; Professor James J. Spivey; Mr. Amornmart Sirijarhuphan; Dr. James G. Goodwin, Jr.; Dr. Richard W. Rice

    2002-12-31T23:59:59.000Z

    Several different catalytic reactions must be carried out in order to convert hydrocarbons (or alcohols) into hydrogen for use as a fuel for polyelectrolyte membrane (PEM) fuel cells. Each reaction in the fuel-processing sequence has a different set of characteristics, which influences the type of catalyst support that should be used for that particular reaction. A wide range of supports are being evaluated for the various reactions in the fuel-processing scheme, including porous and non-porous particles, ceramic and metal straight-channel monoliths, and ceramic and metal monolithic foams. These different types of support have distinctly different transport characteristics. The best choice of support for a given reaction will depend on the design constraints for the system, e.g., allowable pressure drop, and on the characteristics of the reaction for which the catalyst is being designed. Three of the most important reaction characteristics are the intrinsic reaction rate, the exothermicity/endothermicity of the reaction, and the nature of the reaction network, e.g., whether more than one reaction takes place and, in the case of multiple reactions, the configuration of the network. Isotopic transient kinetic analysis was used to study the surface intermediates. The preferential oxidation of low concentrations of carbon monoxide in the presence of high concentrations of hydrogen (PROX) is an important final step in most fuel processor designs. Data on the behavior of straight-channel monoliths and foam monolith supports will be presented to illustrate some of the factors involved in choosing a support for this reaction.

  20. Evaluation of surfactants as steam diverters/mobility control agents in light oil steamfloods: Effect of oil composition, rates and experimental conditions

    SciTech Connect (OSTI)

    Mahmood, S.M.; Olsen, D.K.; Ramzel, E.B.

    1991-12-01T23:59:59.000Z

    A series of experiments was performed to evaluate the effectiveness of commercially available surfactants for steam-foam EOR applications in light oil reservoirs. The experiments were performed in a 3-ft long, 1-1/2 in.-diameter cylindrical sandpack of about 1 darcy permeability. The sandpack and injected fluids were preheated to 430{degree}F at 155 psi. The main objective of these tests was to investigate the effectiveness of several surfactants in providing mobility control under a variety of conditions expected in light-oil steamfloods. Thus, maximum pressure-rise and foam-bank buildup/decay were noted as operating conditions were changed in a test or in various tests. Tests were performed with various oil types, sacrificial salts, injection rates, injection strategies, vapor-to-liquid fractions (VLF), and steam/N{sub 2} ratios (SNR).

  1. Self-Organized Amorphous TiO2 Nanotube Arrays on Porous Ti Foam for Rechargeable Lithium and Sodium Ion Batteries

    SciTech Connect (OSTI)

    Bi, Zhonghe [ORNL; Paranthaman, Mariappan Parans [ORNL; Menchhofer, Paul A [ORNL; Dehoff, Ryan R [ORNL; Bridges, Craig A [ORNL; Chi, Miaofang [ORNL; Guo, Bingkun [ORNL; Sun, Xiao-Guang [ORNL; Dai, Sheng [ORNL

    2013-01-01T23:59:59.000Z

    Self-organized amorphous TiO2 nanotube arrays (NTAs) were successfully fabricated on both Ti foil and porous Ti foam through electrochemical anodization techniques. The starting Ti foams were fabricated using ARCAM s Electron Beam Melting (EBM) technology. The TiO2 NTAs on Ti foam were used as anodes in lithium ion batteries; they exhibited high capacities of 103 Ahcm-2 at 10 Acm-2 and 83 Ahcm-2 at 500 Acm-2, which are two to three times higher than those achieved on the standard Ti foil, which is around 40 Ahcm-2 at 10 Acm-2 and 24 Ahcm-2 at 500 Acm-2, respectively. This improvement is mainly attributed to higher surface area of the Ti foam and higher porosity of the nanotube arrays layer grown on the Ti foam. In addition, a Na-ion half-cell composed of these NTAs anodes and Na metal showed a self-improving specific capacity upon cycling at 10 Acm-2. These results indicate that TiO2 NTAs grown on Ti porous foam are promising electrodes for Li-ion or Na-ion rechargeable batteries.

  2. A carbon foam with a bimodal micro–mesoporous structure prepared from larch sawdust for the gas-phase toluene adsorption

    SciTech Connect (OSTI)

    Liu, Shouxin, E-mail: liushouxin@126.com [Key Laboratory of Bio-Based Material Science and Technology of The Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Huang, Zhanhua; Wang, Rui [Key Laboratory of Bio-Based Material Science and Technology of The Ministry of Education, Northeast Forestry University, Harbin 150040 (China)

    2013-07-15T23:59:59.000Z

    Highlights: ? Network carbon foam containing a bimodal pore distribution was prepared from Larch. ? Liquefaction route was used for the preparation of morphology controllable carbon. ? Pore structure of carbon foam was controlled through KOH activation. - Abstract: A carbon foam with a bimodal micro–mesopore distribution, was prepared by submitting larch sawdust to liquefaction, resinification, foaming, carbonization and KOH activation. The morphology, pore texture and crystal microstructure was characterized by scanning and transmission electron microscopy, nitrogen adsorption analysis and X-ray powder diffraction. A honeycomb structure with adjacent cells was observed for the precursor of carbon foam. After KOH activation, the cell wall of precursor shrunk and broke. This lead to the formation of a well-connected 3D network and developed ligament pore structure (surface area of 554–1918 m{sup 2}/g) containing bimodal pores, 2.1 and 3.9 nm in diameter. The porous carbon foam prepared at 700 °C exhibited a much higher gas-phase toluene removal than commercial activated carbon fiber owing to the 3D network and bimodal pore structure.

  3. Microstructure and Rheology of a Flow-Induced Structured Phase...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    salt concentration. In our work, by introducing external flow conditions via microfluidics, these micellar structures can follow very different trajectories on the phase map...

  4. Novel applications of diffusion-driven flow

    E-Print Network [OSTI]

    Allshouse, Michael R

    2010-01-01T23:59:59.000Z

    Diffusion-driven flow is the result of a conflict between hydrostatic equilibrium in a density stratified fluid and the no-flux boundary condition that must be obeyed on impermeable boundaries that are sloping with respect ...

  5. Treatment of concentrated industrial wastewaters originating from oil shale and the like by electrolysis polyurethane foam interaction

    DOE Patents [OSTI]

    Tiernan, Joan E. (38 Clay Ct., Novato, CA 94947)

    1991-01-01T23:59:59.000Z

    Highly concentrated and toxic petroleum-based and synthetic fuels wastewaters such as oil shale retort water are treated in a unit treatment process by electrolysis in a reactor containing oleophilic, ionized, open-celled polyurethane foams and subjected to mixing and l BACKGROUND OF THE INVENTION The invention described herein arose in the course of, or under, Contract No. DE-AC03-76SF00098 between the U.S. Department of Energy and the University of California.

  6. Comparison of the bubble size distribution in silicate foams using 2-dimensional images and 3-dimensional x-ray microtomography

    SciTech Connect (OSTI)

    Robert, G.; Baker, D.R.; Rivers, M.L.; Allard, E.; Larocque, J. (McGill); (UC)

    2005-02-03T23:59:59.000Z

    Three silicate glasses were hydrated at high pressure and then heated at atmospheric pressure to exsolve the water into bubbles and create foams. The bubble size distribution in these foams was measured by x-ray microtomography on the GSECARS BM-13 beamline at the Advanced Photon Source. The bubble area distributions were measured in two dimensions using the image slices produced from the microtomography and the software ImageJ. The bubble volume distributions were measured from the three-dimensional tomographic images with the BLOB3D software. We found that careful analysis of the microtomography data in both two and three dimensions was necessary to avoid the physically unrealistic, experimental artifact of identifying and counting many small bubbles whose surfaces were not defined by a septum of glass. When this artifact was avoided the foams demonstrated power-law distributions of bubble sizes in both two and three dimensions. Conversion of the power-law exponents for bubble areas measured in two dimensions to exponents for bubble volumes usually agreed with the measured three dimensional volume exponents. Furthermore, the power-law distributions for bubble volumes typically agree with multiple theories of bubble growth, all of which yield an exponent of 1 for the cumulative bubble volume distribution. The measured bubble volume distributions with exponents near 0.3 can be explained by diffusive growth as proposed by other authors, but distributions with exponents near 1.4 remain to be explained and are the subject of continuing research on the effects of water concentration and melt viscosity on foaming behavior.

  7. Flow Measurement with Tangential Paddlewheel Flow Meters: Analysis of Experimental Results and in-situ Diagnostics

    E-Print Network [OSTI]

    Watt, J. B.; Haberl, J. S.

    the premature drop-out of magnetic-type tangential paddlewheel sensors, as well as several in-situ diagnostic measures for ascertaining whether or not a flow meter is experiencing turbulent conditions or if a flow sensor's output signal is suffering a degraded... per second for magnetic-type, and 0.5 to 2 feet per second for non-magnetic-type flow sensors deviated from the actual flow by 20% or more which makes the measurement of flow and thermal energy use in this regime highly suspect. Figure 4 also indicates...

  8. Smokeless Control of Flare Steam Flow Rate

    E-Print Network [OSTI]

    Agar, J.; Balls, B. W.

    1979-01-01T23:59:59.000Z

    the First Industrial Energy Technology Conference Houston, TX, April 22-25, 1979 FLARE GAS FLOW RATE MEASUREMENT "Accurate measurement of the very low flow rates which are normally present is very difficult" 0, p 15-8). "It is generally considered too...-04-91 Proceedings from the First Industrial Energy Technology Conference Houston, TX, April 22-25, 1979 to calibration conditions. Turndown is 40:1 and pressure loss is negligible. APPLICATION FLOW RATE The mass flow meter described has been applied to a wide...

  9. Problem Statement Characterizing the flow of neutral propellant gas

    E-Print Network [OSTI]

    Walker, Mitchell

    at the exit plane of the anode using a premixed mixture of air and propane. C3H8 + 3.76N2 + 5O2 3CO2 + 4H2O. Flow conditions (pressure, flow rate, and fuel-air ratio) that show this exit plane flow are required

  10. AXISYMMETRIC VORTEX BREAKDOWN IN AN ENCLOSED CYLINDER FLOW.

    E-Print Network [OSTI]

    Lopez, John M.

    into the interior flow from the Ekman boundary layer on the rotating endwall is observed, as is the formation,. The boundary conditions are also defined precisely since the flow is confined in a fixed volume. As Re and and the flow remains oscillatory. This oscillatory behavior is mostly confined to the central vortex region. 2

  11. Effective slip boundary conditions for arbitrary periodic surfaces: the surface mobility tensor

    E-Print Network [OSTI]

    Kamrin, Kenneth N.

    In a variety of applications, most notably microfluidics design, slip-based boundary conditions have been sought to characterize fluid flow over patterned surfaces. We focus on laminar shear flows over surfaces with periodic ...

  12. A C. elegans-based foam for rapid on-site detection of residual live virus.

    SciTech Connect (OSTI)

    Negrete, Oscar A.; Branda, Catherine; Hardesty, Jasper O. E. (Sandia National Laboratories, Albuquerque, NM); Tucker, Mark David (Sandia National Laboratories, Albuquerque, NM); Kaiser, Julia N. (Global Product Management, Hilden, Germany); Kozina, Carol L.; Chirica, Gabriela S.

    2012-02-01T23:59:59.000Z

    In the response to and recovery from a critical homeland security event involving deliberate or accidental release of biological agents, initial decontamination efforts are necessarily followed by tests for the presence of residual live virus or bacteria. Such 'clearance sampling' should be rapid and accurate, to inform decision makers as they take appropriate action to ensure the safety of the public and of operational personnel. However, the current protocol for clearance sampling is extremely time-intensive and costly, and requires significant amounts of laboratory space and capacity. Detection of residual live virus is particularly problematic and time-consuming, as it requires evaluation of replication potential within a eukaryotic host such as chicken embryos. The intention of this project was to develop a new method for clearance sampling, by leveraging Sandia's expertise in the biological and material sciences in order to create a C. elegans-based foam that could be applied directly to the entire contaminated area for quick and accurate detection of any and all residual live virus by means of a fluorescent signal. Such a novel technology for rapid, on-site detection of live virus would greatly interest the DHS, DoD, and EPA, and hold broad commercial potential, especially with regard to the transportation industry.

  13. Thermal characterization and model free kinetics of aged epoxies and foams using TGA and DSC methods.

    SciTech Connect (OSTI)

    Cordaro, Joseph Gabriel; Kruizenga, Alan Michael; Nissen, April

    2013-10-01T23:59:59.000Z

    Two classes of materials, poly(methylene diphenyl diisocyanate) or PMDI foam, and cross-linked epoxy resins, were characterized using thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC), to help understand the effects of aging and %E2%80%9Cbake-out%E2%80%9D. The materials were evaluated for mass loss and the onset of decomposition. In some experiments, volatile materials released during heating were analyzed via mass spectroscopy. In all, over twenty materials were evaluated to compare the mass loss and onset temperature for decomposition. Model free kinetic (MFK) measurements, acquired using variable heating rate TGA experiments, were used to calculate the apparent activation energy of thermal decomposition. From these compiled data the effects of aging, bake-out, and sample history on the thermal stability of materials were compared. No significant differences between aged and unaged materials were detected. Bake-out did slightly affect the onset temperature of decomposition but only at the highest bake-out temperatures. Finally, some recommendations for future handling are made.

  14. Exterior Rigid Foam Insulation at the Edge of a Slab Foundation, Fresno, California (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-10-01T23:59:59.000Z

    Exterior rigid foam insulation at the edge of the slab foundation was a unique feature for this low-load, unoccupied test house in a hot-dry climate and may be more appropriate for climates with higher heating loads. U.S. Department of Energy Building America research team IBACOS worked with National Housing Quality Award winner Wathen-Castanos Hybrid Homes, Inc., to assess the performance of this feature in a single-family detached ranch house with three bedrooms and two full bathrooms constructed on a slab-on-grade foundation in Fresno, California. One challenge during installation of the system was the attachment of the butyl flashing to the open framing. To solve this constructability issue, the team added a nailer to the base of the wall to properly attach and lap the flashing. In this strategy, R-7.5, 1.5-in.-thick extruded polystyrene was installed on the exterior of the slab for a modeled savings of 4,500 Btu/h on the heating load.

  15. A survey of air flow models for multizone structures

    SciTech Connect (OSTI)

    Feustel, H.E.; Dieris, J.

    1991-03-01T23:59:59.000Z

    Air flow models are used to simulate the rates of incoming and outgoing air flows for a building with known leakage under given weather and shielding conditions. Additional information about the flow paths and air-mass flows inside the building can only by using multizone air flow models. In order to obtain more information on multizone air flow models, a literature review was performed in 1984. A second literature review and a questionnaire survey performed in 1989, revealed the existence of 50 multizone air flow models, all developed since 1966, two of which are still under development. All these programs use similar flow equations for crack flow but differ in the versatility to describe the full range of flow phenomena and the algorithm provided for solving the set of nonlinear equations. This literature review was found that newer models are able to describe and simulate the ventilation systems and interrelation of mechanical and natural ventilation. 27 refs., 2 figs., 1 tab.

  16. NF-kB activity-dependent P-selectin involved in ox-LDL-induced foam cell formation in U937 cell

    SciTech Connect (OSTI)

    Wang, Yi, E-mail: wangyi2004a@126.com [Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080 (China)] [Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080 (China); Wang, Xiang; Sun, Minghui; Zhang, Zhenyu; Cao, Heng; Chen, Xiaoqing [Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080 (China)] [Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080 (China)

    2011-08-05T23:59:59.000Z

    Highlights: {yields} Ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. {yields} Ox-LDL induced expression of P-selectin through degradation of IkBa and augment of NF-kB activity and protein level during macrophage-derived foam cell formation. {yields} P-selectin and NF-kB may be identified as pivotal regulators of ox-LDL-induced foam cell formation. {yields} Therapy based on the inhibition of P-selectin and NF-kB may complement conventional treatments to prevent atherosclerosis. -- Abstract: Oxidized low-density lipoprotein (ox-LDL) plays a critical role in regulation of atherosclerosis. However, little is known about the role of Nuclear factor kB (NF-kB) activity-dependent P-selectin in ox-LDL-induced foam cell formation during atherosclerosis. In this study, we first investigated ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. Treatment of U937 cells with ox-LDL increased lipid accumulation as well as intracellular cholesterol content. Next, a comparative analysis of gene expression profiling using cDNA microarray and Real-time-PCR indicated that ox-LDL exposure induced, in three treated groups, an extremely marked increase in the mRNA level of P-selectin. Protein levels of P-selectin and its upstream regulators IkBa and NF-kB showed that NF-kB pathway is involved in the ox-LDL-induced foam cell formation. Finally, overexpression of NF-kB significantly accelerated, whereas, inhibition of NF-kB with siRNA remarkably attenuated ox-LDL-induced macrophage-derived foam cell formation. It was concluded that the activity of NF-kB is augmented during macrophage-derived foam cell formation. Activation of NF-kB increased, whereas, inhibition of NF-kB decreased ox-LDL-induced P-selectin expression and lipid accumulation in macrophages, suggesting ox-LDL induced expression of P-selectin through degradation of IkBa and activation of NF-kB in the regulation of foam cell formation.

  17. X-ray micro-tomography investigation of the foaming process in the system of waste glass–silica mud–MnO{sub 2}

    SciTech Connect (OSTI)

    Ducman, V., E-mail: vilma.ducman@zag.si [ZAG Ljubljana, Dimi?eva 12, 1000 Ljubljana (Slovenia); Korat, L.; Legat, A. [ZAG Ljubljana, Dimi?eva 12, 1000 Ljubljana (Slovenia); Mirti?, B. [NTF, Ašker?eva 12, 1000 Ljubljana (Slovenia)

    2013-12-15T23:59:59.000Z

    In case of foamed lightweight aggregates (LWAs), porosity is introduced by the addition of a foaming agent to the glassy matrix, which degasses at an elevated temperature, so that the resulting gases remain trapped inside the glassy structure. The efficiency of action of MnO{sub 2} as a foaming agent in waste glass and waste glass/silica mud systems was studied. Samples were fired at different temperatures and with different dwelling times at a certain temperature, and the development of porosity was investigated by means of X-ray micro-tomography. It was found that, with the prolongation in dwelling times, the number of pores decreased, while, on the other hand, the volume of these pores increased, and that the addition of silica mud increases the foaming temperature and slows down the foaming process. - Highlights: • Preparation of lightweight aggregate from waste glass, silica sludge, and MnO{sub 2} • DTA/TG investigation of MnO{sub 2} • Characterization of pore-forming process by means of X-ray micro-tomography (?cT)

  18. Coupled Generalized Nonlinear Stokes Flow with flow through a Porous Media

    E-Print Network [OSTI]

    Ervin, Vincent J.

    region and the generalized nonlinear Darcy equation in the porous medium. A flow rate is specified along boundary. In [12], the authors use the Darcy equation as a boundary condition for the Stokes problem. Abstract In this article, we analyze the flow of a fluid through a coupled Stokes-Darcy domain. The fluid

  19. Gradual Variation Analysis for Groundwater Flow

    E-Print Network [OSTI]

    Chen, Li

    2010-01-01T23:59:59.000Z

    Groundwater flow in Washington DC greatly influences the surface water quality in urban areas. The current methods of flow estimation, based on Darcy's Law and the groundwater flow equation, can be described by the diffusion equation (the transient flow) and the Laplace equation (the steady-state flow). The Laplace equation is a simplification of the diffusion equation under the condition that the aquifer has a recharging boundary. The practical way of calculation is to use numerical methods to solve these equations. The most popular system is called MODFLOW, which was developed by USGS. MODFLOW is based on the finite-difference method in rectangular Cartesian coordinates. MODFLOW can be viewed as a "quasi 3D" simulation since it only deals with the vertical average (no z-direction derivative). Flow calculations between the 2D horizontal layers use the concept of leakage. In this project, we have established a mathematical model based on gradually varied functions for groundwater data volume reconstruction. T...

  20. Original article Influence of heating conditions in continuous-flow

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , holding and cooling phases. When milk was heated in a continuous microwave heating system, at 90 °C and cooling times. vitamin B1 / vitamin B2 / milk / microwave heating Résumé -- Étude de l'effet des exchange systems on the vitamin B1 and B2 content of milk Isabel SIERRA, Concepción VIDAL

  1. ORIGINAL PAPER Conditional simulations of wateroil flow in heterogeneous porous

    E-Print Network [OSTI]

    Lu, Zhiming

    . The log-transformed intrinsic permeability, soil pore size distribution parameter, and van Genuchten of these processes in order to conduct risk assess- ment and design of cost-efficient remediation (e.g. Abriola 1989 is a complicated mixture of hydrocarbon fluids, brine, porous rock and fractures. The structure of the void space

  2. Modeling of bubbly and slug flow behavior under microgravity conditions

    E-Print Network [OSTI]

    Longeot, Matthieu Jean-Sebastien

    1995-01-01T23:59:59.000Z

    . Finally, I would like to thank my parents Jean Longeot and Nicole Sauvagnac, as well as Antoinette Repetto for their loving supports. TABLE OF CONTENTS ABSTRACT ACKNOWLEDGEMENT S. TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES NOMENCLATURE...

  3. On fluid flow in a heterogeneous medium under nonisothermal conditions

    E-Print Network [OSTI]

    D.W., Vasco

    2011-01-01T23:59:59.000Z

    aver- age of the heat capacity of the liquid and the heatthe volumetric heat capacity of the liquid, and K T = ?K l

  4. annular flow conditions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of most ot' the experiments on the KC-135 was not to respond to a detailed study of the gas-liquid interface but to a more... attention to one configuration described as follows:...

  5. A new relation between pressure and fractional flow in two-phase flow in porous media

    E-Print Network [OSTI]

    Henning Arendt Knudsen; Alex Hansen

    2002-01-30T23:59:59.000Z

    We study average flow properties in porous media using a two-dimensional network simulator. It models the dynamics of two-phase immiscible bulk flow where film flow can be neglected. The boundary conditions are biperiodic which provide a means of studying steady state flow where complex bubble dynamics dominate the flow picture. We find fractional flow curves and corresponding pressure curves for different capillary numbers. In particular, we study the case of the two phases having equal viscosity. In this case we find that the derivative of the fractional flow with respect to saturation is related to the global pressure drop. This result can also be expressed in terms of relative permeabilities or mobilities, resulting in an equation tying together the mobilities of the two phases.

  6. Seal inlet disturbance boundary conditions for rotordynamic models and influence of some off-design conditions on labyrinth rotordynamic instability

    E-Print Network [OSTI]

    Xi, Jinxiang

    2007-04-25T23:59:59.000Z

    Systematic parametric studies were performed to better understand seal-inlet rotordynamics. A CFD-perturbation model was employed to compute the seal-inlet flow disturbance quantities. Seal inlet disturbance boundary condition correlations were...

  7. Problems associated with the use of urea-formaldehyde foam for residential insulation. Part IV. Relevance of materials standards to problems associated with the use of urea-formaldehyde foam insulation

    SciTech Connect (OSTI)

    Long, K.R.; Schutte, W.C.

    1981-02-01T23:59:59.000Z

    The insulation industry is essentially self-regulated; therefore, the question arises as to whether or not increased public regulation would be effective in controlling problems associated with the use of urea-formaldehyde foam as residential insulation. The relevancy of public regulation to controlling problems such as off-gassing of formaldehyde associated with the use of the products through the introduction of materials standards and quality assurance of manufacture and installation is discussed. The use of urea-formaldehyde insulation may be divided into three phases-manufacture, installation, and behavioral phases. The relevance of materials standards and quality assurance for each phase is discussed.

  8. Bacteria in shear flow

    E-Print Network [OSTI]

    Marcos, Ph.D. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    Bacteria are ubiquitous and play a critical role in many contexts. Their environment is nearly always dynamic due to the prevalence of fluid flow: creeping flow in soil, highly sheared flow in bodily conduits, and turbulent ...

  9. Dispersed flow film boiling

    E-Print Network [OSTI]

    Yoder, Graydon L.

    1980-01-01T23:59:59.000Z

    Dispersed flow consists of small liquid droplets entrained in a flowing vapor. This flow regime can occur in cryogenic equipment, in steam generators, and during nuclear reactor loss of coolant accidents. A theoretical ...

  10. Impact of boundaries on velocity profiles in bubble rafts Yuhong Wang, Kapilanjan Krishan, and Michael Dennin

    E-Print Network [OSTI]

    Dennin, Michael

    92697-4575 (Dated: November 7, 2005) Under conditions of sufficiently slow flow, foams, colloids, and an important issue in these systems is the role of the confining boundaries. For foams, three basic systems); and confined bubble rafts (bubbles confined between the surface of water below and a glass plate on top). Often

  11. Microgravity Flow Regime Transition Modeling

    E-Print Network [OSTI]

    Shephard, Adam M.

    2010-07-14T23:59:59.000Z

    by Ghrist (2008) where an existing computer code, RELAP 5-3D, demonstrated the limitations of currently available computational modeling when applied to zero-g conditions. 1.2.2 EXPERIMENTAL APPARATUS All flow regime mapping experiments consist of a... ............................................................... 9 2.3 Dukler et al. 1988/Janicot 1988 ............................................. 9 2.4 Colin et al. 1991 .................................................................... 11 2.5 Huckerby and Rezkallah 1992...

  12. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    SciTech Connect (OSTI)

    Yorstos, Yanis C.

    2002-03-11T23:59:59.000Z

    The emphasis of this work was on investigating the mechanisms and factors that control the recovery of heavy oil with the objective to improve recovery efficiencies. For this purpose the interaction of flow transport and reaction at various scales from the pore network to the field scales were studied. Particular mechanisms to be investigated included the onset of gas flow in foamy oil production and in in-situ steam drive, gravity drainage in steam processes, the development of sustained combustion fronts and the propagation of foams in porous media. Analytical, computational and experimental methods were utilized to advance the state of the art in heavy oil recovery. Successful completion of this research was expected to lead to improvements in the Recovery efficiency of various heavy oil processes.

  13. Radiative Flow in a Luminous Disk II

    E-Print Network [OSTI]

    Jun Fukue

    2006-01-07T23:59:59.000Z

    Radiatively-driven transfer flow perpendicular to a luminous disk is examined in the subrelativistic regime of $(v/c)^1$, taking into account the gravity of the central object. The flow is assumed to be vertical, and the gas pressure is ignored, while internal heating is assumed to be proportional to the gas density. The basic equations were numerically solved as a function of the optical depth, and the flow velocity, the height, the radiative flux, and the radiation pressure were obtained for a given radius, an initial optical depth, and initial conditions at the flow base (disk ``inside''), whereas the mass-loss rate was determined as an eigenvalue of the boundary condition at the flow top (disk ``surface''). For sufficiently luminous cases, the flow resembles the case without gravity. For less-luminous cases, however, the flow velocity decreases, and the flow would be impossible due to the existence of gravity in the case that the radiative flux is sufficiently small. Application to a supercritical accretion disk with mass loss is briefly discussed.

  14. Multiphase flow calculation software

    DOE Patents [OSTI]

    Fincke, James R. (Idaho Falls, ID)

    2003-04-15T23:59:59.000Z

    Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

  15. Measurement Of The Fluid Flow Load On A Globe Valve Stem Under Various Cavitation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Measurement Of The Fluid Flow Load On A Globe Valve Stem Under Various Cavitation Conditions)" #12;Measurement Of The Fluid Flow Load On A Globe Valve Stem Under Various Cavitation Conditions, cavitation, fluid flow load, CFD. Abstract: The evaluation of fluid forces on the stem is important for wear

  16. CX-004082: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gas Well Pressure Drop Prediction Under Foam Flow ConditionsCX(s) Applied: A9, A11, B3.6Date: 09/30/2010Location(s): Tulsa, OklahomaOffice(s): Fossil Energy, National Energy Technology Laboratory

  17. Freshwater Flow Charts - 1995

    SciTech Connect (OSTI)

    Kaiper, G V

    2003-11-21T23:59:59.000Z

    This report covers the following: (1) Explanation of Charts Showing Freshwater Flow in 1995; (2) Estimated U.S. Freshwater Flow in 1995 (chart); (3) Estimated California Freshwater Flow in 1995 (chart); (4) Estimated New Mexico Freshwater Flow in 1995 (chart); and (5) Web locations and credits.

  18. Energy Saving Melting and Revert Reduction Technology (Energy SMARRT): Manufacturing Advanced Engineered Components Using Lost Foam Casting Technology

    SciTech Connect (OSTI)

    Harry Littleton; John Griffin

    2011-07-31T23:59:59.000Z

    This project was a subtask of Energy Saving Melting and Revert Reduction Technology (�¢����Energy SMARRT�¢���) Program. Through this project, technologies, such as computer modeling, pattern quality control, casting quality control and marketing tools, were developed to advance the Lost Foam Casting process application and provide greater energy savings. These technologies have improved (1) production efficiency, (2) mechanical properties, and (3) marketability of lost foam castings. All three reduce energy consumption in the metals casting industry. This report summarizes the work done on all tasks in the period of January 1, 2004 through June 30, 2011. Current (2011) annual energy saving estimates based on commercial introduction in 2011 and a market penetration of 97% by 2020 is 5.02 trillion BTU�¢����s/year and 6.46 trillion BTU�¢����s/year with 100% market penetration by 2023. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.03 Million Metric Tons of Carbon Equivalent (MM TCE).

  19. Flow cytometer jet monitor system

    DOE Patents [OSTI]

    Van den Engh, Ger (Seattle, WA)

    1997-01-01T23:59:59.000Z

    A direct jet monitor illuminates the jet of a flow cytometer in a monitor wavelength band which is substantially separate from the substance wavelength band. When a laser is used to cause fluorescence of the substance, it may be appropriate to use an infrared source to illuminate the jet and thus optically monitor the conditions within the jet through a CCD camera or the like. This optical monitoring may be provided to some type of controller or feedback system which automatically changes either the horizontal location of the jet, the point at which droplet separation occurs, or some other condition within the jet in order to maintain optimum conditions. The direct jet monitor may be operated simultaneously with the substance property sensing and analysis system so that continuous monitoring may be achieved without interfering with the substance data gathering and may be configured so as to allow the front of the analysis or free fall area to be unobstructed during processing.

  20. Development of Next Generation Multiphase Pipe Flow Prediction Tools

    SciTech Connect (OSTI)

    Tulsa Fluid Flow

    2008-08-31T23:59:59.000Z

    The developments of fields in deep waters (5000 ft and more) is a common occurrence. It is inevitable that production systems will operate under multiphase flow conditions (simultaneous flow of gas-oil-and water possibly along with sand, hydrates, and waxes). Multiphase flow prediction tools are essential for every phase of the hydrocarbon recovery from design to operation. The recovery from deep-waters poses special challenges and requires accurate multiphase flow predictive tools for several applications including the design and diagnostics of the production systems, separation of phases in horizontal wells, and multiphase separation (topside, seabed or bottom-hole). It is very crucial to any multiphase separation technique that is employed either at topside, seabed or bottom-hole to know inlet conditions such as the flow rates, flow patterns, and volume fractions of gas, oil and water coming into the separation devices. The overall objective was to develop a unified model for gas-oil-water three-phase flow in wells, flow lines, and pipelines to predict the flow characteristics such as flow patterns, phase distributions, and pressure gradient encountered during petroleum production at different flow conditions (pipe diameter and inclination, fluid properties and flow rates). The project was conducted in two periods. In Period 1 (four years), gas-oil-water flow in pipes were investigated to understand the fundamental physical mechanisms describing the interaction between the gas-oil-water phases under flowing conditions, and a unified model was developed utilizing a novel modeling approach. A gas-oil-water pipe flow database including field and laboratory data was formed in Period 2 (one year). The database was utilized in model performance demonstration. Period 1 primarily consisted of the development of a unified model and software to predict the gas-oil-water flow, and experimental studies of the gas-oil-water project, including flow behavior description and closure relation development for different flow conditions. Modeling studies were performed in two parts, Technology Assessment and Model Development and Enhancement. The results of the Technology assessment study indicated that the performance of the current state of the art two-phase flow models was poor especially for three-phase pipeline flow when compared with the existing data. As part of the model development and enhancement study, a new unified model for gas-oil-water three-phase pipe flow was developed. The new model is based on the dynamics of slug flow, which shares transition boundaries with all the other flow patterns. The equations of slug flow are used not only to calculate the slug characteristics, but also to predict transitions from slug flow to other flow patterns. An experimental program including three-phase gas-oil-water horizontal flow and two-phase horizontal and inclined oil-water flow testing was conducted utilizing a Tulsa University Fluid Flow Projects Three-phase Flow Facility. The experimental results were incorporated into the unified model as they became available, and model results were used to better focus and tailor the experimental study. Finally, during the Period 2, a new three-phase databank has been developed using the data generated during this project and additional data available in the literature. The unified model to predict the gas-oil-water three phase flow characteristics was tested by comparing the prediction results with the data. The results showed good agreements.