National Library of Energy BETA

Sample records for flywheel energy storage

  1. Flywheel energy storage workshop

    SciTech Connect (OSTI)

    O`Kain, D.; Carmack, J.

    1995-12-31

    Since the November 1993 Flywheel Workshop, there has been a major surge of interest in Flywheel Energy Storage. Numerous flywheel programs have been funded by the Advanced Research Projects Agency (ARPA), by the Department of Energy (DOE) through the Hybrid Vehicle Program, and by private investment. Several new prototype systems have been built and are being tested. The operational performance characteristics of flywheel energy storage are being recognized as attractive for a number of potential applications. Programs are underway to develop flywheels for cars, buses, boats, trains, satellites, and for electric utility applications such as power quality, uninterruptible power supplies, and load leveling. With the tremendous amount of flywheel activity during the last two years, this workshop should again provide an excellent opportunity for presentation of new information. This workshop is jointly sponsored by ARPA and DOE to provide a review of the status of current flywheel programs and to provide a forum for presentation of new flywheel technology. Technology areas of interest include flywheel applications, flywheel systems, design, materials, fabrication, assembly, safety & containment, ball bearings, magnetic bearings, motor/generators, power electronics, mounting systems, test procedures, and systems integration. Information from the workshop will help guide ARPA & DOE planning for future flywheel programs. This document is comprised of detailed viewgraphs.

  2. Flywheel energy storage system focus of display

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flywheel Energy Storage System Focus of Display Demonstration to feature advanced, solar-powered replacement for batteries For more information contact: e:mail: Public Affairs ...

  3. Flywheel energy storage advances using HTS bearings.

    SciTech Connect (OSTI)

    Mulcahy, T. M.

    1998-09-11

    High-Temperature-Superconducting (HT) bearings have the potential to reduce idling losses and make flywheel energy storage economical. Demonstration of large, high-speed flywheels is key to market penetration. Toward this goal, a flywheel system has been developed and tested with 5-kg to 15-kg disk-shaped rotors. Rlm speeds exceeded 400 mls and stored energies were >80 W-hr. Test implementation required technological advances in nearly all aspects of the flywheel system. Features and limitations of the design and tests are discussed, especially those related to achieving additional energy storage.

  4. Flywheel Energy Storage technology workshop

    SciTech Connect (OSTI)

    O`Kain, D.; Howell, D.

    1993-12-31

    Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in Flywheel Energy Storage (FES) technologies. FES offers several advantages over conventional electro-chemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.

  5. Flywheel Energy Storage Device for Hybrid and Electric Vehicles...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage Find More Like This Return to Search Flywheel Energy Storage ... added without extra cost and without any system conflict * No special housing is required ...

  6. Reluctance apparatus for flywheel energy storage

    DOE Patents [OSTI]

    Hull, John R.

    2000-01-01

    A motor generator for providing high efficiency, controlled voltage output or storage of energy in a flywheel system. A motor generator includes a stator of a soft ferromagnetic material, a motor coil and a generator coil, and a rotor has at least one embedded soft ferromagnetic piece. Control of voltage output is achieved by use of multiple stator pieces and multiple rotors with controllable gaps between the stator pieces and the soft ferromagnetic piece.

  7. FLYWHEEL ENERGY STORAGE SYSTEMS WITH SUPERCONDUCTING BEARINGS FOR UTILITY APPLICATIONS

    SciTech Connect (OSTI)

    Dr. Michael Strasik; Mr. Arthur Day; Mr. Philip Johnson; Dr. John Hull

    2007-10-26

    This project’s mission was to achieve significant advances in the practical application of bulk high-temperature superconductor (HTS) materials to energy-storage systems. The ultimate product was planned as an operational prototype of a flywheel system on an HTS suspension. While the final prototype flywheel did not complete the final offsite demonstration phase of the program, invaluable lessons learned were captured on the laboratory demonstration units that will lead to the successful deployment of a future HTS-stabilized, composite-flywheel energy-storage system (FESS).

  8. Flywheel Energy Storage -- An Alternative to Batteries for UPS Systems

    SciTech Connect (OSTI)

    Brown, Daryl R.; Chvala, William D.

    2003-11-12

    Direct current (DC) system flywheel energy storage technology can be used as a substitute for batteries for providing backup power to an uninterruptible power supply (UPS) system. Although the initial cost will usually be higher, flywheels offer a much longer life, reduced maintenance, a smaller footprint, and better reliability compared to a battery. The combination of these characteristics will generally result in a lower life-cycle cost for a flywheel compared to a battery. This paper describes the technology, its variations, and installation requirements, as well as provides application advice. One Federal application is highlighted as a “case study,” followed by an illustrative life-cycle cost comparison of batteries and flywheels. A list of manufacturers, with contact information is also provided.

  9. Dynamic voltage compensation on distribution feeders using flywheel energy storage

    SciTech Connect (OSTI)

    Weissbach, R.S.; Karady, G.G.; Farmer, R.G.

    1999-04-01

    Advancements in power electronics bearings and materials have made flywheel energy storage systems a viable alternative to electrochemical batteries. A future application of such a device is as an uninterruptible power supply for critical loads on a distribution feeder. However, the same power electronics and flywheel system could also be used for dynamic voltage compensation. A comparison is made between series and parallel connection of such dynamic compensation techniques used to maintain rated load voltage on distribution feeders when there are momentary dips in the supply voltage. For each case a mathematical model is presented and analyzed. The two cases are compared and the series compensation technique is more effective.

  10. Flywheel energy storage with superconductor magnetic bearings

    DOE Patents [OSTI]

    Weinberger, Bernard R.; Lynds, Jr., Lahmer; Hull, John R.

    1993-01-01

    A flywheel having superconductor bearings has a lower drag to lift ratio that translates to an improvement of a factor of ten in the rotational decay rate. The lower drag results from the lower dissipation of melt-processed YBCO, improved uniformity of the permanent magnet portion of the bearings, operation in a different range of vacuum pressure from that taught by the art, and greater separation distance from the rotating members of conductive materials.

  11. Flywheel Energy Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    K2H 8S1 Product: Focuses on design, fabrication, assembling and distributing flywheel energy storage systems and related components. References: Flywheel Energy Systems Inc1...

  12. AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES

    SciTech Connect (OSTI)

    Hansen, James Gerald

    2012-02-01

    An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

  13. Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems

    SciTech Connect (OSTI)

    Miller, John; Sibley, Lewis, B.; Wohlgemuth, John

    1999-06-01

    This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs.

  14. Flywheels

    SciTech Connect (OSTI)

    Bender, Donald Arthur

    2015-05-01

    In use since ancient times, the flywheel has smoothed the flow of energy in rotating machinery from small, hand held devices to the largest engines. Today, standalone flywheel systems are being developed to store electrical energy. These systems are deployed in applications as diverse as uninterruptible power supplies, gantry cranes, and large research facilities. This chapter presents the technical foundation of flywheel design, a comparison with other energy storage technologies, and a survey of applications where flywheel energy storage systems are currently in service.

  15. THE WIDE-AREA ENERGY STORAGE AND MANAGEMENT SYSTEM PHASE II Final Report - Flywheel Field Tests

    SciTech Connect (OSTI)

    Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.; Rudolph, Frank; Murthy, Shashikala; Arseneaux, Jim; Loutan, Clyde; Chowdhury, S.

    2010-08-31

    This research was conducted by Pacific Northwest National Laboratory (PNNL) operated for the U.S. department of Energy (DOE) by Battelle Memorial Institute for Bonneville Power Administration (BPA), California Institute for Energy and Environment (CIEE) and California Energy Commission (CEC). A wide-area energy management system (WAEMS) is a centralized control system that operates energy storage devices (ESDs) located in different places to provide energy and ancillary services that can be shared among balancing authorities (BAs). The goal of this research is to conduct flywheel field tests, investigate the technical characteristics and economics of combined hydro-flywheel regulation services that can be shared between Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) controlled areas. This report is the second interim technical report for Phase II of the WAEMS project. This report presents: 1) the methodology of sharing regulation service between balancing authorities, 2) the algorithm to allocate the regulation signal between the flywheel and hydro power plant to minimize the wear-and-tear of the hydro power plants, 3) field results of the hydro-flywheel regulation service (conducted by the Beacon Power), and 4) the performance metrics and economic analysis of the combined hydro-flywheel regulation service.

  16. Model and simulation of a flywheel energy storage system at a utility substation using electro-magnetic transients programs

    SciTech Connect (OSTI)

    Weissbach, R.S.; Karady, G.G.; Farmer, R.G.

    1996-11-01

    A flywheel energy storage system for use as an uninterruptible power supply at a utility substation to replace electrochemical batteries has been modeled. The model is developed using the Electro-Magnetic Transients Program (EMTP). Models for the flywheel, permanent magnet (synchronous) motor/generator, rectifiers and inverter have been included. Transient response for loss of power and clearing of a short circuit fault, as well as variation of load voltage due to the flywheel spinning down, is presented.

  17. Flywheel Project Escalates Grid Efficiency | Department of Energy

    Office of Environmental Management (EM)

    a 43 million loan guarantee for Beacon Power Corporation's flywheel energy storage plant. ... Here's how it works: the Beacon Power's Gen 4 flywheel system is designed to perform ...

  18. 'Recycling' Grid Energy with Flywheel Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    'Recycling' Grid Energy with Flywheel Technology 'Recycling' Grid Energy with Flywheel Technology September 30, 2010 - 5:03pm Addthis Seven-foot tall cylinders equipped with flywheel technology (shown above) will make up Beacon Power’s energy storage plant in Stephentown, N.Y. The company received a $43 million loan guarantee from the Energy Department to build the plant. | Photo courtesy of Beacon Power Corporation Seven-foot tall cylinders equipped with flywheel technology (shown above)

  19. Gyrodynamic effects of an energy storage flywheel on the handling of a hybrid-electric vehicle. Master`s thesis

    SciTech Connect (OSTI)

    Greer, J.L.

    1997-01-09

    This research presents the results of numerical simulation of the handling characteristics of a hybrid-electric vehicle which uses a flywheel for temporary energy storage. The work is presented in an effort to understand the potential interaction of the flywheel and the vehicle, and to predict what positive and negative outcomes may result. The vehicle is modeled with four wheels, and the roll, yaw, and sideslip-angle degrees of freedom. The simulation uses an empirical model of the nonlinear interface between the tire and the road. The results are presented graphically, and are analyzed on both quantitative and qualitative bases. The vehicle parameters used to define the baseline vehicle are based on the broad guidelines set forth by the Partnership for a New Generation of Vehicles. The size and speed range of the flywheel is based on a compilation of results presented in the popular literature. Analyses of the results are based on alignment of the angular momentum vector of the flywheel along the three axes of the vehicle. The speed of the flywheel is varied from -100,000 rpm to +100,000 rpm. Negative speeds represent orientation of the angular momentum vector of the flywheel along the negative axes, and positive speeds represent orientation along the positive axes.

  20. Development of long life three phase uninterruptible power supply using flywheel energy storage unit

    SciTech Connect (OSTI)

    Takahashi, Isao; Okita, Yoshihisa; Andoh, Itaru

    1995-12-31

    According to development of computer applications, uninterruptible power supplies (UPS) are indispensable to the industrial field. But the cost for maintaining the conventional UPS is very high, because frequent replacement of parts which have short life time is necessary. This paper describes the research and development of a new UPS which has long life parts for maintenance free. To lengthen the life time, the following techniques are introduced: (1) a flywheel energy storage unit having more than 20 years life time; (2) electrolytic capacitor less inverter and converter. By using these techniques, a three phase UPS rating 5kVA, 200V is developed, and excellent performance is obtained: input power factor is over 99.7%; output voltage distortion is under 1.5%; transformer less UPS achieves light weight system; the UPS have function of automatic output voltage balance using auxiliary diode rectifier; input current harmonic distortion is less than 1.2%, even if the single phase load is connected.

  1. RPM Flywheel Battery | Open Energy Information

    Open Energy Info (EERE)

    RPM Flywheel Battery Jump to: navigation, search Name: RPM Flywheel Battery Place: California Product: Start-up planning to develop, produce, and market flywheel batteries for...

  2. Rimmed and edge thickened Stodola shaped flywheel

    DOE Patents [OSTI]

    Kulkarni, S.V.; Stone, R.G.

    1983-10-11

    A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body composed of essentially planar isotropic high strength material. The flywheel body is enclosed by a rim of circumferentially wound fiber embedded in resin. The rim promotes flywheel safety and survivability. The flywheel has a truncated and edge thickened Stodola shape designed to optimize system mass and energy storage capability. 6 figs.

  3. Sub-Area. 2.5 Demonstration of Promising Energy Storage Technologies Project Type. Flywheel Energy Storage Demonstration Revision: V1.0

    SciTech Connect (OSTI)

    None, None

    2015-12-30

    In this program, Amber Kinetics designed, built, and tested a sub-­scale 5 kWh engineering prototype flywheel system. Applying lessons learned from the engineering prototype, Amber Kinetics then designed, built and tested full-­size, commercial-­scale 25 kWh flywheel systems. The systems underwent basic functional qualification testing before being installed, sequentially, at the company’s outdoor test site in Alameda, CA for full-­speed field-testing. The primary considerations in testing the prototype units were to demonstrate the functionality of the system, verify the frequencies of resonant modes, and quantify spinning losses and motor/generator efficiency.

  4. Rimmed and edge thickened stodola shaped flywheel. [Patent application

    DOE Patents [OSTI]

    Kulkarni, S.V.; Stone, R.G.

    1980-09-24

    A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body composed of essentially planar isotropic high strength material. The flywheel body is enclosed by a rim of circumferentially wound fiber embedded in resin. The rim promotes flywheel safety and survivability. The flywheel has a truncated and edge thickened Stodola shape designed to optimize system mass and energy storage capability.

  5. Energy Storage Systems 2012 Peer Review Presentations - Poster...

    Broader source: Energy.gov (indexed) [DOE]

    2012 Peer Review - Low Cost, High-Energy Density Flywheel Storage Grid Demo - Mike Strasik, Boeing ... Electrochemical Flow Storage System - Mike Perry, UTRC (349.16 KB) ESS ...

  6. Rimmed and edge thickened Stodola shaped flywheel

    DOE Patents [OSTI]

    Kulkarni, Satish V.; Stone, Richard G.

    1983-01-01

    A flywheel (10) is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel (10) has a body (15) composed of essentially planar isotropic high strength material. The flywheel (10) body (15) is enclosed by a rim (50) of circumferentially wound fiber (2) embedded in resin (3). The rim (50) promotes flywheel (10) safety and survivability. The flywheel (10) has a truncated and edge thickened Stodola shape designed to optimize system mass and energy storage capability.

  7. Design & development fo a 20-MW flywheel-based frequency regulation power plant : a study for the DOE Energy Storage Systems program.

    SciTech Connect (OSTI)

    Rounds, Robert; Peek, Georgianne Huff

    2009-01-01

    This report describes the successful efforts of Beacon Power to design and develop a 20-MW frequency regulation power plant based solely on flywheels. Beacon's Smart Matrix (Flywheel) Systems regulation power plant, unlike coal or natural gas generators, will not burn fossil fuel or directly produce particulates or other air emissions and will have the ability to ramp up or down in a matter of seconds. The report describes how data from the scaled Beacon system, deployed in California and New York, proved that the flywheel-based systems provided faster responding regulation services in terms of cost-performance and environmental impact. Included in the report is a description of Beacon's design package for a generic, multi-MW flywheel-based regulation power plant that allows accurate bids from a design/build contractor and Beacon's recommendations for site requirements that would ensure the fastest possible construction. The paper concludes with a statement about Beacon's plans for a lower cost, modular-style substation based on the 20-MW design.

  8. An overview of flywheel energy systems.

    SciTech Connect (OSTI)

    Wolsky, A. M.; Energy Systems

    2002-05-01

    Passive magnetic bearings incorporating permanent magnets and ReBaCuO, together with carbon fibre, offer the possibility of increasing the stored, volumetric energy density of FES and unprecedentedly low idling loss of FES. Its stored energy need only satisfy customers needs for the time it takes to bring on conventional 'back-up'. The FES itself must come up to power quickly enough to avoid any disruption in the customer's operation (e.g., continuous industrial processes involving fragile materials, for example paper forming). Such customers do not care about the price of electricity nearly as much as they care about not ruining their product, damaging their machines or having 'clean ups' that stop or slow output. Firms that engage in electronic commerce and/or telecommunications also value uninterruptible power. Another set of potential customers (construction, electric railroads) may wish to avoid fluctuations in their electrical supply or they may wish to avoid causing harm to others who may hold them liable for poor power quality. Finally, real time prices (e.g., every 15 s) and real time commands, disseminated via internet, and distributed storage might enable reduced system generation costs. Generators and FES makers would have to cooperate to make this feasible. Now, the central techno-economic challenge is to build a high-power, low-loss motor generator that reaches full power in a very short time.

  9. Matched metal die compression molded structural random fiber sheet molding compound flywheel

    DOE Patents [OSTI]

    Kulkarni, Satish V.; Christensen, Richard M.; Toland, Richard H.

    1985-01-01

    A flywheel (10) is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel (10) has a body of essentially planar isotropic high strength structural random fiber sheet molding compound (SMC-R). The flywheel (10) may be economically produced by a matched metal die compression molding process. The flywheel (10) makes energy intensive efficient use of a fiber/resin composite while having a shape designed by theory assuming planar isotropy.

  10. Matched metal die compression molded structural random fiber sheet molding compound flywheel. [Patent application

    DOE Patents [OSTI]

    Kulkarni, S.V.; Christensen, R.M.; Toland, R.H.

    1980-09-24

    A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body of essentially planar isotropic high strength structural random fiber sheet molding compound (SMC-R). The flywheel may be economically produced by a matched metal die compression molding process. The flywheel makes energy intensive efficient use of a fiber/resin composite while having a shape designed by theory assuming planar isotropy.

  11. DOE Global Energy Storage Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOE’s Sandia National Laboratories, and has been operating since January 2012.

  12. DOE Global Energy Storage Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOEs Sandia National Laboratories, and has been operating since January 2012.

  13. Energy storage options for space power

    SciTech Connect (OSTI)

    Hoffman, H.W.; Martin, J.F.; Olszewski, M.

    1985-01-01

    Including energy storage in a space power supply enhances the feasibility of using thermal power cycles (Rankine or Brayton) and providing high-power pulses. Review of storage options (superconducting magnets, capacitors, electrochemical batteries, thermal phase-change materials (PCM), and flywheels) suggests that flywheels and phase-change devices hold the most promise. Latent heat storage using inorganic salts and metallic eutectics offers thermal energy storage densities of 1500 to 2000 kJ/kg at temperatures to 1675/sup 0/K. Innovative techniques allow these media to operate in direct contact with the heat engine working fluid. Enhancing thermal conductivity and/or modifying PCM crystallization habit provide other options. Flywheels of low-strain graphite and Kevlar fibers have achieved mechanical energy storage densities of 300 kJ/kg. With high-strain graphite fibers, storage densities appropriate to space power needs (approx. 550 kJ/kg) seem feasible. Coupling advanced flywheels with emerging high power density homopolar generators and compulsators could result in electric pulse-power storage modules of significantly higher energy density.

  14. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Energy Storage Home/Tag:Energy Storage Energy-Storage-Procurement-Image Permalink Gallery Sandia National Laboratories Develops Guidance Document for Energy Storage Procurement Energy, Energy Storage, News Sandia National Laboratories Develops Guidance Document for Energy Storage Procurement Through a partnership with Clean Energy States Alliance (CESA) and Clean Energy Group, Sandia has created a procurement guideline that offers useful

  15. Improved flywheel materials : characterization of nanofiber modified flywheel test specimen.

    SciTech Connect (OSTI)

    Boyle, Timothy J.; Bell, Nelson Simmons; Ehlen, Mark Andrew; Anderson, Benjamin John; Miller, William Kenneth

    2013-09-01

    As alternative energy generating devices (i.e., solar, wind, etc) are added onto the electrical energy grid (AC grid), irregularities in the available electricity due to natural occurrences (i.e., clouds reducing solar input or wind burst increasing wind powered turbines) will be dramatically increased. Due to their almost instantaneous response, modern flywheel-based energy storage devices can act a mechanical mechanism to regulate the AC grid; however, improved spin speeds will be required to meet the necessary energy levels to balance thesegreen' energy variances. Focusing on composite flywheels, we have investigated methods for improving the spin speeds based on materials needs. The so-called composite flywheels are composed of carbon fiber (C-fiber), glass fiber, and aglue' (resin) to hold them together. For this effort, we have focused on the addition of fillers to the resin in order to improve its properties. Based on the high loads required for standard meso-sized fillers, this project investigated the utility of ceramic nanofillers since they can be added at very low load levels due to their high surface area. The impact that TiO2 nanowires had on the final strength of the flywheel material was determined by athree-point-bend' test. The results of the introduction of nanomaterials demonstrated an increase instrength' of the flywheel's C-fiber-resin moiety, with an upper limit of a 30% increase being reported. An analysis of the economic impact concerning the utilization of the nanowires was undertaken and after accounting for new-technology and additional production costs, return on improved-nanocomposite investment was approximated at 4-6% per year over the 20-year expected service life. Further, it was determined based on the 30% improvement in strength, this change may enable a 20-30% reduction in flywheel energy storage cost (%24/kW-h).

  16. Modular Electromechanical Batteries for Storage of Electrical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage Find More Like This Return to Search Modular ... stabilize the rotating flywheel system, eliminating the need for complicated ...

  17. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy-Storage-Procurement-Image Permalink Gallery Sandia National Laboratories Develops Guidance Document for Energy Storage Procurement Energy, Energy Storage, News Sandia National Laboratories Develops Guidance Document for Energy Storage Procurement Through a partnership with Clean Energy States Alliance (CESA) and Clean Energy Group, Sandia has created a procurement guideline that offers useful information for states, municipalities, project developers, and end users to

  18. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Home/Energy Storage DOE-EERE Deputy Assistant Secretary for Renewable Power, Douglas Hollett. (DOE photo) Permalink Gallery DOE-EERE Deputy Assistant Secretary Hollett Visits Sandia Concentrating Solar Power, Customers & Partners, Cyber, Distribution Grid Integration, Energy, Energy Storage, Energy Storage Systems, Facilities, Global Climate & Energy, Global Climate & Energy, Grid Integration, Highlights - Energy Research, Microgrid, National Solar Thermal Test

  19. Evaluation of Demo 1C composite flywheel rotor burst test and containment design

    SciTech Connect (OSTI)

    Kass, M.D.; McKeever, J.W.; Akerman, M.A.; Goranson, P.L.; Litherland, P.S.; O`Kain, D.U.

    1998-07-01

    Laboratory-Directed funds were provided in FY 1995 for research to develop flywheel containment specifications and to consider concepts that could satisfy these specifications and produce a prototype small, lightweight, inexpensive, mobile flywheel containment. Research activities have included an analytical and pictorial review of the Demo 1C flywheel failure test, which provided significant insight about radial and axial failure modes; calculations of the thickness of ultra-conservative pressure vessel containment; entertainment of advanced containment concepts using lightweight materials and armor literature; consideration of fabrication assembly procedures; and participation in a Flywheel Energy Storage Workshop during which additional flywheel failure experiences were discussed. Based on these activities, calculations, and results, a list of conclusions concerning flywheel containment and its relation to the flywheel are presented followed by recommendations for further research.

  20. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Energy Storage Home/Tag:Energy Storage Energy Storage The contemporary grid limits renewable energy and other distributed energy sources from being economically and reliably integrated into the grid. While a national renewable energy portfolio standard (RPS) has yet to be established, 35 states have forged ahead with their own RPS programs and policies. As this generation becomes a larger portion of a utility's [...] By Tara Camacho-Lopez|

  1. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Home/Energy Storage NM-electric-car-challenge_web Permalink Gallery Electric Car Challenge Sparks Students' STEM Interest Energy, Energy Storage, News, News & Events, Partnership, Transportation Energy Electric Car Challenge Sparks Students' STEM Interest Aspiring automotive engineers from 27 NM middle schools competed in the New Mexico Electric Car Challenge on Saturday, November 22nd at Highland High School in Albuquerque. Forty-six teams participated in a race, a design

  2. Lightweight flywheel containment

    DOE Patents [OSTI]

    Smith, James R.

    2004-06-29

    A lightweight flywheel containment composed of a combination of layers of various material which absorb the energy of a flywheel structural failure. The various layers of material act as a vacuum barrier, momentum spreader, energy absorber, and reaction plate. The flywheel containment structure has been experimentally demonstrated to contain carbon fiber fragments with a velocity of 1,000 m/s and has an aerial density of less than 6.5 g/square centimeters. The flywheel containment, may for example, be composed of an inner high toughness structural layer, and energy absorbing layer, and an outer support layer. Optionally, a layer of impedance matching material may be utilized intermediate the flywheel rotor and the inner high toughness layer.

  3. Lightweight flywheel containment

    DOE Patents [OSTI]

    Smith, James R.

    2001-01-01

    A lightweight flywheel containment composed of a combination of layers of various material which absorb the energy of a flywheel structural failure. The various layers of material act as a vacuum barrier, momentum spreader, energy absorber, and reaction plate. The flywheel containment structure has been experimentally demonstrated to contain carbon fiber fragments with a velocity of 1,000 m/s and has an aerial density of less than 6.5 g/square centimeters. The flywheel containment, may for example, be composed of an inner high toughness structural layer, and energy absorbing layer, and an outer support layer. Optionally, a layer of impedance matching material may be utilized intermediate the flywheel rotor and the inner high toughness layer.

  4. EAC 2012 Storage Report: Progress and Prospects - Recommendations...

    Energy Savers [EERE]

    Energy Storage Activities in the United States Electricity Grid. May 2011 Fact Sheet: Beacon Power 20 MW Flywheel Frequency Regulation Plant (August 2013) 2014 Storage Plan ...

  5. Energy Storage

    ScienceCinema (OSTI)

    Paranthaman, Parans

    2014-06-23

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  6. Energy Storage

    SciTech Connect (OSTI)

    Paranthaman, Parans

    2014-06-03

    ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

  7. Sandia Energy Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Participates in Preparation of New Mexico Renewable Energy Storage Report http:energy.sandia.govsandia-participates-in-preparation-of-new-mexico-renewable-energy-storage-...

  8. FY06 DOE Energy Storage Program PEER Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 DOE Energy Storage Program PEER REVIEW John D. Boyes Sandia National Laboratories ESS Program Makeup ESS Base Program - CEC/DOE Data Acquisition and Project Support - NYSERDA/DOE Data Acquisition and Project Support - Boeing Superconducting Flywheel - ACONF Coast Guard Project - HybSim Hybrid Storage Model Development Congressionally-Directed Programs - University of Missouri-Rolla - Grid Modernization - Iowa Stored Energy Project - EEI - BiPolar Ni-MH Battery Development - Sprint - Storage

  9. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Energy Storage Home/Tag:Energy Storage Northrop-Grumman, GE Partnerships Tap a Wide Range of Sandia Labs Experience Sandia has signed a pair of umbrella cooperative research and development agreements (CRADAs) with Northrop Grumman Information Systems and General Electric Global Research that will broadly add to the Labs' research. "These strategic agreements envision long-term partner-ships," said Brooke Garcia, a Sandia business

  10. Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Energy Storage, Energy Storage Systems, News, News & Events, Partnership, Renewable Energy, Research & Capabilities, Systems Analysis, Water Power Natural Energy ...

  11. Alternative Energy Portfolio Standard

    Broader source: Energy.gov [DOE]

    The “alternative energy generating sources” include combined heat and power (CHP) projects, flywheel energy storage, energy efficient steam technology. and renewable technologies that generate us...

  12. Energy Storage

    SciTech Connect (OSTI)

    Mukundan, Rangachary

    2014-09-30

    Energy storage technology is critical if the U.S. is to achieve more than 25% penetration of renewable electrical energy, given the intermittency of wind and solar. Energy density is a critical parameter in the economic viability of any energy storage system with liquid fuels being 10 to 100 times better than batteries. However, the economical conversion of electricity to fuel still presents significant technical challenges. This project addressed these challenges by focusing on a specific approach: efficient processes to convert electricity, water and nitrogen to ammonia. Ammonia has many attributes that make it the ideal energy storage compound. The feed stocks are plentiful, ammonia is easily liquefied and routinely stored in large volumes in cheap containers, and it has exceptional energy density for grid scale electrical energy storage. Ammonia can be oxidized efficiently in fuel cells or advanced Carnot cycle engines yielding water and nitrogen as end products. Because of the high energy density and low reactivity of ammonia, the capital cost for grid storage will be lower than any other storage application. This project developed the theoretical foundations of N2 catalysis on specific catalysts and provided for the first time experimental evidence for activation of Mo 2N based catalysts. Theory also revealed that the N atom adsorbed in the bridging position between two metal atoms is the critical step for catalysis. Simple electrochemical ammonia production reactors were designed and built in this project using two novel electrolyte systems. The first one demonstrated the use of ionic liquid electrolytes at room temperature and the second the use of pyrophosphate based electrolytes at intermediate temperatures (200 – 300 ºC). The mechanism of high proton conduction in the pyrophosphate materials was found to be associated with a polyphosphate second phase contrary to literature claims and ammonia production rates as high as 5X 10

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy generating sources" include combined heat and power (CHP) projects, flywheel energy storage, energy efficient steam technology. and renewable technologies that...

  14. Microsoft Word - OE_Energy_Storage_Program_Plan_Feburary_2011v3[2].docx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Images-Front cover: 20MW Beacon Power flywheel storage facility; Ameren's 440MW pumped-hydro storage at Taum Sauk, Missouri. Back cover: 8MW SCE / A123 Lithium-ion storage at Tehachapi wind farm; 25MW Primus Power flow battery at Modesto, California; 110MW compressed air energy storage in McIntosh, Alabama. TABLE OF CONTENTS Executive Summary............................................................................................................. 1 1.0 Introduction to the OE Storage Program

  15. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion ...

  16. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion ...

  17. Amber Kinetics | Open Energy Information

    Open Energy Info (EERE)

    search Name: Amber Kinetics Product: Start-up company developing a novel flywheel energy storage system with the Lawrence Livermore National Laboratory. References: Amber...

  18. Vycon Inc | Open Energy Information

    Open Energy Info (EERE)

    Place: Cerritos, California Zip: 90703 Product: Vycon markets and manufactures flywheel energy storage systems for a wide range of applications in the power quality and UPS...

  19. Ashman Technologies | Open Energy Information

    Open Energy Info (EERE)

    has developed various permanent magnet high-speed generators and various flywheel energy storage applications funded by NASA and NASA GRC has extensively tested these...

  20. Department of Energy and Beacon Power Finalize $43 Million Loan...

    Energy Savers [EERE]

    Beacon Power Finalize 43 Million Loan Guarantee for Innovative Energy Storage Project in New ... energy technologies, like the fly-wheel system designed by Beacon Power, that will ...

  1. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sources Energy Sources Renewable Energy Renewable Energy Learn more about energy from solar, wind, water, geothermal and biomass. Read more Nuclear Nuclear Learn more about how we use nuclear energy. Read more Electricity Electricity Learn more about how we use electricity as an energy source. Read more Fossil Fossil Learn more about our fossil energy sources: coal, oil and natural gas. Read more Primary energy sources take many forms, including nuclear energy, fossil energy -- like oil, coal

  2. NREL: Energy Storage - Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Transportation Research Energy Storage Printable Version Awards R&D 100 ... (SAE) Project: Modular Battery Management System for HEVs 2002 TR100 AwardMIT's ...

  3. Arete Power Inc | Open Energy Information

    Open Energy Info (EERE)

    Power Inc Place: Reno, Nevada Product: Developer and manufacturer of advanced flywheel energy storage systems. Coordinates: 32.944065, -97.578279 Show Map Loading map......

  4. Energy Storage/Conservation and Carbon Emissions Reduction Demonstration Project

    SciTech Connect (OSTI)

    Bigelow, Erik

    2013-01-01

    The U.S. Department of Energy (DOE) awarded the Center for Transportation and the Environment (CTE) federal assistance for the management of a project to develop and test a prototype flywheel-based energy recovery and storage system in partnership with Test Devices, Inc. (TDI). TDI specializes in the testing of jet engine and power generation turbines, which uses a great deal of electrical power for long periods of time. In fact, in 2007, the company consumed 3,498,500 kW-­hr of electricity in their operations, which is equivalent to the electricity of 328 households. For this project, CTE and TDI developed and tested a prototype flywheel-based energy recovery and storage system. This technology is being developed at TDI’s facilities to capture and reuse the energy necessary for the company’s core process. The new technology and equipment is expected to save approximately 80% of the energy used in the TDI process, reducing total annual consumption of power by approximately 60%, saving approximately two million kilowatt-hours annually. Additionally, the energy recycling system will allow TDI and other end users to lower their peak power demand and reduce associated utility demand charges. The use of flywheels in this application is novel and requires significant development work from TDI. Flywheels combine low maintenance costs with very high cycle life with little to no degradation over time, resulting in lifetimes measured in decades. All of these features make flywheels a very attractive option compared to other forms of energy storage, including batteries. Development and deployment of this energy recycling technology will reduce energy consumption during jet engine and stationary turbine development. By reengineering the current inefficient testing process, TDI will reduce risk and time to market of efficiency upgrades of gas turbines across the entire spectrum of applications. Once in place the results from this program will also help other US industries

  5. energy storage development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  6. energy storage deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  7. electric energy storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  8. Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Storage Energy storage isn’t just for AA batteries. Thanks to investments from the Energy Department's <a href="http://arpa-e.energy.gov/">Advanced Research Projects Agency-Energy (ARPA-E)</a>, energy storage may soon play a bigger part in our electricity grid, making it possible to generate more renewable electricity. <a href="http://energy.gov/articles/energy-storage-key-reliable-clean-electricity-supply">Learn more</a>. Energy storage

  9. NREL: Energy Storage - Energy Storage Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The lab's performance assessments factor in the design of the thermal management system, the thermal behavior of the cell, battery lifespan, and safety of the energy storage system...

  10. NREL: Energy Storage - Energy Storage Systems Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Systems Evaluation Photo of man standing between two vehicles and plugging the vehicle on the right into a charging station. NREL system evaluation has confirmed ...

  11. NREL: Energy Storage - Energy Storage Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Li-ion) devices used for EDV energy storage never exhibit problems, safety issues ... a fault signal and confining the fault locally in a system are extremely challenging. ...

  12. Materials for Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Energy Storage - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... where stringent system requirements exist for size, performance, and safety. ...

  13. Southern company energy storage study : a study for the DOE energy storage systems program.

    SciTech Connect (OSTI)

    Ellison, James; Bhatnagar, Dhruv; Black, Clifton; Jenkins, Kip

    2013-03-01

    This study evaluates the business case for additional bulk electric energy storage in the Southern Company service territory for the year 2020. The model was used to examine how system operations are likely to change as additional storage is added. The storage resources were allowed to provide energy time shift, regulation reserve, and spinning reserve services. Several storage facilities, including pumped hydroelectric systems, flywheels, and bulk-scale batteries, were considered. These scenarios were tested against a range of sensitivities: three different natural gas price assumptions, a 15% decrease in coal-fired generation capacity, and a high renewable penetration (10% of total generation from wind energy). Only in the elevated natural gas price sensitivities did some of the additional bulk-scale storage projects appear justifiable on the basis of projected production cost savings. Enabling existing peak shaving hydroelectric plants to provide regulation and spinning reserve, however, is likely to provide savings that justify the project cost even at anticipated natural gas price levels. Transmission and distribution applications of storage were not examined in this study. Allowing new storage facilities to serve both bulk grid and transmission/distribution-level needs may provide for increased benefit streams, and thus make a stronger business case for additional storage.

  14. Energy Storage | Open Energy Information

    Open Energy Info (EERE)

    around the clock. Some of the major issues concerning energy storage include cost, efficiency, and size. Benefits Make Renewable Energy Viable Allow for intermittent energy...

  15. Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Safety Strategic Plan Now Available Energy Storage Safety Strategic Plan Now Available December 23, 2014 - 10:25am Addthis The Office of Electricity Delivery and Energy Reliability (OE) has worked with industry and other stakeholders to develop the Energy Storage Safety Strategic Plan, a roadmap for grid energy storage safety that highlights safety validation techniques, incident preparedness, safety codes, standards, and regulations. The Plan, which is now available for downloading,

  16. Materials for Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Energy Storage - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  17. Electric utility applications of hydrogen energy storage systems

    SciTech Connect (OSTI)

    Swaminathan, S.; Sen, R.K.

    1997-10-15

    This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

  18. National Energy Storage Strategy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Grid Energy Storage Strategy Offered by the Energy Storage Subcommittee of the Electricity Advisory Committee Executive Summary Since 2008, there has been substantial progress in the development of electric storage technologies and greater clarity around their role in renewable resource integration, ancillary service markets, time arbitrage, capital deferral as well as other applications and services. These developments, coupled with the increased deployment of storage technologies

  19. Energy Storage Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Program Overview State Energy Advisory Board to EERE (STEAB) Mtg April 8, 2008 Georgianne H. Peek, PE Sandia National Laboratories 505-844-9855, ghpeek@sandia.gov www.sandia.gov/ess Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE AC04-94AL85000. DOE Energy Storage Program Mission: Develop advanced electricity storage and PE

  20. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  1. Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy

  2. Thermal Energy Storage

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Cooperman, Alissa; Bouza, Antonio

    2013-06-05

    The article discusses thermal energy storage technologies. This article addresses benefits of TES at both the building site and the electricity generation source. The energy savings and market potential of thermal energy store are reviewed as well.

  3. Thermochemical Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermochemical Energy Storage Overview on German, and European R&D Programs and the work carried out at the German Aerospace Center DLR Dr. Christian Sattler christian.sattler@dlr.de Dr. Antje Wörner antje.woerner@dlr.de Thermochemical Energy Storage > 8 January 2013 www.DLR.de * Chart 1 Contents - Short Introduction of the DLR - Energy Program - Thermochemical Storage - Strategic basis: Germany and European Union - Processes - CaO/Ca(OH) 2 - Metal oxides (restructure) - Sulfur -

  4. Energy Storage Systems

    SciTech Connect (OSTI)

    Conover, David R.

    2013-12-01

    Energy Storage Systems – An Old Idea Doing New Things with New Technology article for the International Assoication of ELectrical Inspectors

  5. Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  6. Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  7. Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  8. Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Energy Storage One of the distinctive characteristics of the electric power sector is that the amount of electricity that can be generated is relatively fixed over short periods of time, although demand for electricity fluctuates throughout the day. Developing technology to store electrical energy so it can be available to meet demand whenever needed would represent a major breakthrough in electricity distribution. Helping to try and meet this goal, electricity storage devices can

  9. Energy Storage | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Thus, energy storage and power electronics hold substantial promise for transforming the electric power industry. High voltage power electronics, such as switches, inverters, and ...

  10. Energy Storage | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage The challenge of creating new advanced batteries and energy storage ... We develop more robust, safer and higher-energy density lithium-ion batteries, while using ...

  11. Development of regenerable energy storage for space multimegawatt applications

    SciTech Connect (OSTI)

    Olszewski, M.

    1986-01-01

    A program has recently been initiated as a part of the national Strategic Defense Initiative (SDI) to develop energy storage technology for space power applications. This program is jointly conducted by the Department of Energy and the Department of Defense. It is focused on the development of advanced technologies in regenerable energy storage that will be required for generation of multimegawatt levels of sprint power for SDI space missions. Energy storage technology considered in the program relate to devices that have a high specific capacity for energy storage, which can provide high levels of electric power on demand, and which may be recharged with electric power. The devices of principal interest are electrochemical batteries, chemical fuel cells, and electromechanical flywheels (the latter includes the motors and generators used to provide the electrical to mechanical coupling). The intent of the program is to resolve technical feasibility issues associated with an electrically regenerable energy storage system satisfying SDI needs. Specifically, energy storage technology will be developed through the proof-of-concept stage within the next six years that provides a specific power greater than 2.5 kW/kg with an energy storage density of at least 450 kJ/kg.

  12. High speed flywheel

    DOE Patents [OSTI]

    McGrath, Stephen V.

    1991-01-01

    A flywheel for operation at high speeds utilizes two or more ringlike coments arranged in a spaced concentric relationship for rotation about an axis and an expansion device interposed between the components for accommodating radial growth of the components resulting from flywheel operation. The expansion device engages both of the ringlike components, and the structure of the expansion device ensures that it maintains its engagement with the components. In addition to its expansion-accommodating capacity, the expansion device also maintains flywheel stiffness during flywheel operation.

  13. DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee...

    Office of Environmental Management (EM)

    Report DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee Report Energy storage ... More Documents & Publications Value of a Smart Grid System Battery Pack Requirements ...

  14. NREL: Energy Storage - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A complete collection of NREL's transportation and energy storage publications can be found in ... Multi-Node Thermal System Model for Lithium-Ion Battery Packs Paper Preprint Source: ...

  15. Sandia Energy Energy Storage Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feed 0 Bay-Area National Labs Team to Tackle Long-Standing Automotive Hydrogen-Storage Challenge http:energy.sandia.govbay-area-national-labs-team-to-tackle-long-stan...

  16. National Assessment of Energy Storage for Grid Balancing and Arbitrage: Phase 1, WECC

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Balducci, Patrick J.; Colella, Whitney G.; Elizondo, Marcelo A.; Jin, Chunlian; Nguyen, Tony B.; Viswanathan, Vilayanur V.; Zhang, Yu

    2012-06-01

    To examine the role that energy storage could play in mitigating the impacts of the stochastic variability of wind generation on regional grid operation, the Pacific Northwest National Laboratory (PNNL) examined a hypothetical 2020 grid scenario in which additional wind generation capacity is built to meet renewable portfolio standard targets in the Western Interconnection. PNNL developed a stochastic model for estimating the balancing requirements using historical wind statistics and forecasting error, a detailed engineering model to analyze the dispatch of energy storage and fast-ramping generation devices for estimating size requirements of energy storage and generation systems for meeting new balancing requirements, and financial models for estimating the life-cycle cost of storage and generation systems in addressing the future balancing requirements for sub-regions in the Western Interconnection. Evaluated technologies include combustion turbines, sodium sulfur (Na-S) batteries, lithium ion batteries, pumped-hydro energy storage, compressed air energy storage, flywheels, redox flow batteries, and demand response. Distinct power and energy capacity requirements were estimated for each technology option, and battery size was optimized to minimize costs. Modeling results indicate that in a future power grid with high-penetration of renewables, the most cost competitive technologies for meeting balancing requirements include Na-S batteries and flywheels.

  17. Energy storage connection system

    DOE Patents [OSTI]

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  18. Energy Storage Computational Tool | Open Energy Information

    Open Energy Info (EERE)

    Energy Storage Computational Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Storage Computational Tool AgencyCompany Organization: Navigant Consulting...

  19. Solar Thermochemical Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Thermochemical Energy Storage Solar Thermochemical Energy Storage This PowerPoint slide deck accompanied a presentation by Dr. Keith Lovegrove of the IT Power Group at the ...

  20. Inertial energy storage device

    DOE Patents [OSTI]

    Knight, Jr., Charles E.; Kelly, James J.; Pollard, Roy E.

    1978-01-01

    The inertial energy storage device of the present invention comprises a composite ring formed of circumferentially wound resin-impregnated filament material, a flanged hollow metal hub concentrically disposed in the ring, and a plurality of discrete filament bandsets coupling the hub to the ring. Each bandset is formed of a pair of parallel bands affixed to the hub in a spaced apart relationship with the axis of rotation of the hub being disposed between the bands and with each band being in the configuration of a hoop extending about the ring along a chordal plane thereof. The bandsets are disposed in an angular relationship with one another so as to encircle the ring at spaced-apart circumferential locations while being disposed in an overlapping relationship on the flanges of the hub. The energy storage device of the present invention has the capability of substantial energy storage due to the relationship of the filament bands to the ring and the flanged hub.

  1. Reactor coolant pump flywheel

    SciTech Connect (OSTI)

    Finegan, John Raymond; Kreke, Francis Joseph; Casamassa, John Joseph

    2013-11-26

    A flywheel for a pump, and in particular a flywheel having a number of high density segments for use in a nuclear reactor coolant pump. The flywheel includes an inner member and an outer member. A number of high density segments are provided between the inner and outer members. The high density segments may be formed from a tungsten based alloy. A preselected gap is provided between each of the number of high density segments. The gap accommodates thermal expansion of each of the number of segments and resists the hoop stress effect/keystoning of the segments.

  2. Energy Storage Systems 2007 Peer Review - International Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    International Energy Storage Program Presentations Energy Storage Systems 2007 Peer Review - International Energy Storage Program Presentations The U.S. DOE Energy Storage Systems ...

  3. Superconducting magnetic energy storage

    SciTech Connect (OSTI)

    Hassenzahl, W.

    1988-08-01

    Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

  4. NREL: Energy Storage - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webmaster Please enter your name and email address in the boxes provided, then type your message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Energy Storage Home Thermal Management Computer-Aided Battery Engineering Safety Lifespan Systems Evaluation Materials Synthesis Publications News Awards Facilities Working with Us Did

  5. Maui energy storage study.

    SciTech Connect (OSTI)

    Ellison, James; Bhatnagar, Dhruv; Karlson, Benjamin

    2012-12-01

    This report investigates strategies to mitigate anticipated wind energy curtailment on Maui, with a focus on grid-level energy storage technology. The study team developed an hourly production cost model of the Maui Electric Company (MECO) system, with an expected 72 MW of wind generation and 15 MW of distributed photovoltaic (PV) generation in 2015, and used this model to investigate strategies that mitigate wind energy curtailment. It was found that storage projects can reduce both wind curtailment and the annual cost of producing power, and can do so in a cost-effective manner. Most of the savings achieved in these scenarios are not from replacing constant-cost diesel-fired generation with wind generation. Instead, the savings are achieved by the more efficient operation of the conventional units of the system. Using additional storage for spinning reserve enables the system to decrease the amount of spinning reserve provided by single-cycle units. This decreases the amount of generation from these units, which are often operated at their least efficient point (at minimum load). At the same time, the amount of spinning reserve from the efficient combined-cycle units also decreases, allowing these units to operate at higher, more efficient levels.

  6. Sandia Energy - New Mexico Renewable Energy Storage Task Force

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Storage Task Force Home Infrastructure Security Renewable Energy Energy Partnership News News & Events Energy Storage Systems Energy Storage New Mexico Renewable...

  7. Energy Storage & Power Electronics 2008 Peer Review- Energy Storage Systems (ESS) Presentations

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Storage Systems (ESS) Presentations from the 2008 Energy Storage and Power Electronics peer review.

  8. Energy Storage Systems 2007 Peer Review- International Energy Storage Program Presentations

    Office of Energy Efficiency and Renewable Energy (EERE)

    International energy storage program presentations from the 2007 Energy Storage Systems (ESS) peer review.

  9. Rim for rotary inertial energy storage device and method

    DOE Patents [OSTI]

    Knight, Jr., Charles E.; Pollard, Roy E.

    1980-01-01

    The present invention is directed to an improved rim or a high-performance rotary inertial energy storage device (flywheel). The improved rim is fabricated from resin impregnated filamentary material which is circumferentially wound in a side-by-side relationship to form a plurality of discretely and sequentially formed concentric layers of filamentary material that are bound together in a resin matrix. The improved rim is provided by prestressing the filamentary material in each successive layer to a prescribed tension loading in accordance with a predetermined schedule during the winding thereof and then curing the resin in each layer prior to forming the next layer for providing a prestress distribution within the rim to effect a self-equilibrating compressive prestress within the windings which counterbalances the transverse or radial tensile stresses generated during rotation of the rim for inhibiting deleterious delamination problems.

  10. Grid Applications for Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications for Energy Storage Flow Cells for Energy Storage Workshop Washington DC 7-8 March 2012 Joe Eto jheto@lbl.gov (510) 486-7284 Referencing a Recent Sandia Study,* This Talk Will: Describe and illustrate selected grid applications for energy storage Time-of-use energy cost management Demand charge management Load following Area Regulation Renewables energy time shift Renewables capacity firming Compare Sandia's estimates of the economic value of these applications to the Electricity

  11. Hydrogen Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Hydrogen Storage The Fuel Cell Technologies Office (FCTO) is developing onboard automotive hydrogen storage systems that allow for a driving range of more than 300 miles while meeting cost, safety, and performance requirements. Why Study Hydrogen Storage Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell technologies in applications including stationary power, portable power, and transportation. Hydrogen has the highest energy per mass of any

  12. Fact Sheet: Energy Storage Technology Advancement Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Advancement Partnership (October 2012) Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012) The Energy Storage Technology Advancement Partnership ...

  13. Separators for flywheel rotors

    DOE Patents [OSTI]

    Bender, Donald A.; Kuklo, Thomas C.

    1998-01-01

    A separator forms a connection between the rotors of a concentric rotor assembly. This separator allows for the relatively free expansion of outer rotors away from inner rotors while providing a connection between the rotors that is strong enough to prevent disassembly. The rotor assembly includes at least two rotors referred to as inner and outer flywheel rings or rotors. This combination of inner flywheel ring, separator, and outer flywheel ring may be nested to include an arbitrary number of concentric rings. The separator may be a segmented or continuous ring that abuts the ends of the inner rotor and the inner bore of the outer rotor. It is supported against centrifugal loads by the outer rotor and is affixed to the outer rotor. The separator is allowed to slide with respect to the inner rotor. It is made of a material that has a modulus of elasticity that is lower than that of the rotors.

  14. Separators for flywheel rotors

    DOE Patents [OSTI]

    Bender, D.A.; Kuklo, T.C.

    1998-07-07

    A separator forms a connection between the rotors of a concentric rotor assembly. This separator allows for the relatively free expansion of outer rotors away from inner rotors while providing a connection between the rotors that is strong enough to prevent disassembly. The rotor assembly includes at least two rotors referred to as inner and outer flywheel rings or rotors. This combination of inner flywheel ring, separator, and outer flywheel ring may be nested to include an arbitrary number of concentric rings. The separator may be a segmented or continuous ring that abuts the ends of the inner rotor and the inner bore of the outer rotor. It is supported against centrifugal loads by the outer rotor and is affixed to the outer rotor. The separator is allowed to slide with respect to the inner rotor. It is made of a material that has a modulus of elasticity that is lower than that of the rotors. 10 figs.

  15. Beacon Power Corp | Open Energy Information

    Open Energy Info (EERE)

    1879 Sector: Solar Product: US-based developer of solar PV inverters and flywheel-based energy storage systems. References: Beacon Power Corp1 This article is a stub. You can...

  16. Con Edison Energy Storage Activities

    U.S. Energy Information Administration (EIA) Indexed Site

    Con Edison Energy Storage Activities June 15, 2015 EIA Conference Con Edison Energy Storage (ES) 2 Presentation Overview * Introduction to Con Edison * Potential benefits of storage on our system * Unique urban challenges * Con Edison storage related activities * Going forward Con Edison: Overview 3 Customers Infrastructure Service Territory Electric 3.4 million One of the worlds largest underground electric systems All 5 boroughs of NYC and Westchester County Gas 1.1 million 4,333 miles of gas

  17. EnStorage Inc | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: EnStorage Inc Place: Israel Zip: 30900 Product: Israel-based energy storage technology developer, developing a regenerative fuel cell energy storage...

  18. Energy Storage Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

  19. NREL: Energy Storage - Energy Storage Modeling and Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    As battery size increases to meet EDVs' energy storage system demands, macroscopic design factors and highly dynamic environmental conditions significantly influence the ...

  20. DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report: Revision 2 DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee Report: ... More Documents & Publications Battery Pack Requirements and Targets Validation FY 2009 ...

  1. Thermochemical Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermochemical Energy Storage Thermochemical Energy Storage This presentation summarizes the introduction given by Christian Sattler during the Thermochemical Energy Storage Workshop on January 8, 2013. tces_workshop_2013_sattler.pdf (2.76 MB) More Documents & Publications Lessons Learned: Devolping Thermochemical Cycles for Solar Heat Storage Applications Reducing c-Si Module Operating Temperature via PV Packaging Components Baseload CSP Generation Integrated with Sulfur-Based

  2. Article for thermal energy storage

    DOE Patents [OSTI]

    Salyer, Ival O.

    2000-06-27

    A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

  3. EPRI Energy Storage Talking Points

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    generation such as renewables, and reducing the strain on conventional generators. * Energy storage may provide fast ... providing temporary local sources of electricity, augmenting ...

  4. Grid Applications for Energy Storage

    Broader source: Energy.gov [DOE]

    Presentation by Joe Eto, Lawrence Berkeley National Laboratory, at the Flow Cells for Energy Storage Workshop held March 7-8, 2012, in Washington, DC.

  5. Automotive Energy Storage Systems 2015

    Broader source: Energy.gov [DOE]

    Automotive Energy Storage Systems 2015, the ITB Group’s 16th annual technical conference, was held from March 4–5, 2015, in Novi, Michigan.

  6. NREL: Energy Storage - Battery Lifespan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and cost tradeoffs Excess power, energy, and thermal management system requirements Warranty, second ... Complicating matters, storage and cycling patterns can trigger varied ...

  7. Superconducting energy storage

    SciTech Connect (OSTI)

    Giese, R.F.

    1993-10-01

    This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

  8. NV Energy Electricity Storage Valuation

    SciTech Connect (OSTI)

    Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

    2013-06-30

    This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

  9. Energy Storage Components and Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Components and Systems - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  10. Energy Storage Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage » Technology Marketing Summaries Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Marketing Summaries (134) Success Stories (3) Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success

  11. Storage Water Heaters | Department of Energy

    Energy Savers [EERE]

    Storage Water Heaters Storage Water Heaters Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over its lifetime. | Photo courtesy ...

  12. Thermal energy storage apparatus

    SciTech Connect (OSTI)

    Thoma, P.E.

    1980-04-22

    A thermal energy storage apparatus and method employs a container formed of soda lime glass and having a smooth, defectfree inner wall. The container is filled substantially with a material that can be supercooled to a temperature greater than 5* F., such as ethylene carbonate, benzophenone, phenyl sulfoxide, di-2-pyridyl ketone, phenyl ether, diphenylmethane, ethylene trithiocarbonate, diphenyl carbonate, diphenylamine, 2benzoylpyridine, 3-benzoylpyridine, 4-benzoylpyridine, 4methylbenzophenone, 4-bromobenzophenone, phenyl salicylate, diphenylcyclopropenone, benzyl sulfoxide, 4-methoxy-4prmethylbenzophenone, n-benzoylpiperidine, 3,3pr,4,4pr,5 pentamethoxybenzophenone, 4,4'-bis-(Dimethylamino)-benzophenone, diphenylboron bromide, benzalphthalide, benzophenone oxime, azobenzene. A nucleating means such as a seed crystal, a cold finger or pointed member is movable into the supercoolable material. A heating element heats the supercoolable material above the melting temperature to store heat. The material is then allowed to cool to a supercooled temperature below the melting temperature, but above the natural, spontaneous nucleating temperature. The liquid in each container is selectively initiated into nucleation to release the heat of fusion. The heat may be transferred directly or through a heat exchange unit within the material.

  13. Energy Storage | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Leading the charge in energy storage R&D Argonne National Laboratory is a global leader in the development of advanced energy storage technologies and has a portfolio of more than 125 patented advanced cathode, anode, electrolyte and additive components for lithium-ion, llithium-air, lithium-sulfur, sodium-ion, and flow batteries. Employing some of the most respected and cited battery researchers in the world, Argonne is the U.S. Department of Energy's lead laboratory for

  14. Fiber composite flywheel rim

    DOE Patents [OSTI]

    Davis, D.E.; Ingham, K.T.

    1987-04-28

    A flywheel comprising a hub having at least one radially projecting disc, an annular rim secured to said disc and providing a surface circumferential to said hub, a first plurality of resin-impregnated fibers wound about said rim congruent to said surface, and a shell enclosing said first plurality of fibers and formed by a second plurality of resin-impregnated fibers wound about said rim tangentially to said surface. 2 figs.

  15. Fiber composite flywheel rim

    DOE Patents [OSTI]

    Davis, Donald E.; Ingham, Kenneth T.

    1987-01-01

    A flywheel 2 comprising a hub 4 having at least one radially projecting disc 6, an annular rim 14 secured to said disc and providing a surface circumferential to said hub, a first plurality of resin-impregnated fibers 22 wound about said rim congruent to said surface, and a shell 26 enclosing said first plurality of fibers and formed by a second plurality of resin-impregnated fibers wound about said rim tangentially to said surface.

  16. Hazle Spindle, LLC Beacon Power 20 MW Flywheel Frequency Regulation Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hazle Spindle, LLC Beacon Power 20 MW Flywheel Frequency Regulation Plant Project Description Beacon Power will design, build, and operate a utility-scale 20MW flywheel plant at the Humboldt Industrial Park in Hazle Township, Pennsylvania for the plant owner/operator, Hazle Spindle LLC The plant will provide frequency regulation services to grid operator PJM Interconnection. The Beacon Power technology uses flywheels to recycle energy from the grid in response to changes in demand and grid

  17. November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy States Alliance will host a webinar on Duke Energy's battery energy storage systems. This webinar will be introduced by Dr. Imre Gyuk, Energy Storage Program Manager...

  18. Lower-Energy Energy Storage System (LEESS) Component Evaluation...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Lower-Energy Energy Storage System (LEESS) Component Evaluation Citation Details In-Document Search Title: Lower-Energy Energy Storage System (LEESS) Component ...

  19. Energy Storage Program Planning Document (2011) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Energy Storage Program Planning Document (2011) More Documents & Publications Progress in Grid Scale Flow Batteries Energy Storage Systems 2014 Peer Review Presentations - ...

  20. Policy Questions on Energy Storage Technologies | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policy Questions on Energy Storage Technologies Policy Questions on Energy Storage Technologies Memorandum from the Electricity Advisory Committee to Secretary Chu and Assistant ...

  1. Analytic Challenges to Valuing Energy Storage

    SciTech Connect (OSTI)

    Ma, Ookie; O'Malley, Mark; Cheung, Kerry; Larochelle, Philippe; Scheer, Rich

    2011-10-25

    Electric grid energy storage value. System-level asset focus for mechanical and electrochemical energy storage. Analysis questions for power system planning, operations, and customer-side solutions.

  2. NREL: Energy Storage - Facilities and Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    integration of power grids, buildings, vehicles, charging systems, and energy storage systems. ... and energy storage system designs by enhancing performance and extending battery life. ...

  3. Fact Sheet: Energy Storage Database (October 2012)

    Office of Environmental Management (EM)

    Multiple sort options (e.g., state, type, size) to ease navigation Energy storage projects and ... Energy storage can reduce power fluctuations, enhance system flexibility, and enable ...

  4. Lih thermal energy storage device

    DOE Patents [OSTI]

    Olszewski, Mitchell; Morris, David G.

    1994-01-01

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.

  5. NREL: Transportation Research - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Transportation Research Cutaway image of an automobile showing the location of energy storage components (battery and inverter), as well as electric motor, power electronics controller, and heat exchangers. Blowout shows the image of an individual battery pack. NREL research is pointing the way toward affordable, high-performing, long-lasting batteries for the next generation of electric-drive vehicles. Researcher holding cables and standing in front of an open equipment chamber.

  6. Bearing design for flywheel energy storage using high-TC superconductors

    DOE Patents [OSTI]

    Hull, John R.; Mulcahy, Thomas M.

    2000-01-01

    A high temperature superconductor material bearing system (38) This system (38) includes a rotor (50) having a ring permanent magnet (60), a plurality of permanent magnets (16, 20 and 70) for interacting to generate levitation forces for the system (38). This group of magnets are a push/pull bearing (75). A high temperature superconductor structure (30) interacts with the ting permanent magnet (60) to provide stabilizing forces for the system (38).

  7. NAS battery demonstration at American Electric Power:a study for the DOE energy storage program.

    SciTech Connect (OSTI)

    Newmiller, Jeff; Norris, Benjamin L. (Norris Energy Consulting Company, Martinez, CA); Peek, Georgianne Huff

    2006-03-01

    The first U.S. demonstration of the NGK sodium/sulfur battery technology was launched in August 2002 when a prototype system was installed at a commercial office building in Gahanna, Ohio. American Electric Power served as the host utility that provided the office space and technical support throughout the project. The system was used to both reduce demand peaks (peak-shaving operation) and to mitigate grid power disturbances (power quality operation) at the demonstration site. This report documents the results of the demonstration, provides an economic analysis of a commercial sodium/sulfur battery energy storage system at a typical site, and describes a side-by-side demonstration of the capabilities of the sodium/sulfur battery system, a lead-acid battery system, and a flywheel-based energy storage system in a power quality application.

  8. The emerging roles of energy storage in a competitive power market: Summary of a DOE Workshop

    SciTech Connect (OSTI)

    Gordon, S.P.; Falcone, P.K.

    1995-06-01

    This report contains a summary of the workshop, {open_quotes}The Emerging Roles of Energy Storage in a Competitive Power Market,{close_quotes} which was sponsored by the U.S. Department of Energy and Sandia National Laboratories and was held in Pleasanton, California on December 6-7, 1994. More than 70 people attended, representing government agencies, national laboratories, equipment vendors, electric utilities and other energy providers, venture capital interests, and consultants. Many types of energy storage were discussed, including electrical (batteries and superconducting magnets), mechanical (flywheels and pumped hydro), hydrogen, compressed air, and thermal energy storage. The objectives of the workshop were to communicate within the energy storage community regarding the costs, benefits, and technical status of various technology options; to explore and elucidate the evolving roles of energy storage in a more dynamic and competitive power and energy marketplace; and to discuss the optimum federal role in this area. The goals of the workshop were fully realized through knowledgeable and insightful presentations and vigorous discussion, which are summarized.

  9. Grid Storage and the Energy Frontier Research Centers | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid Storage and the Energy Frontier Research Centers Grid Storage and the Energy Frontier Research Centers DOE: Grid Storage and the Energy Frontier Research Centers Grid Storage...

  10. Fact Sheet: Advanced Implementation of Energy Storage Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Technologies - Community Energy Storage for Grid Support (August 2013) Fact Sheet: Advanced Implementation of Energy Storage Technologies - Community Energy Storage for ...

  11. Sandia Energy Carbon Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expansion of DOE-DOT Tight Oil Research Work http:energy.sandia.govexpansion-of-doe-dot-tight-oil-research-work http:energy.sandia.govexpansion-of-doe-dot-tight-oil-research...

  12. Solar Thermochemical Energy Storage | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Keith Lovegrove of the IT Power Group at the 2013 SunShot TCES Workshop. It is focused on solar thermochemical energy storage and presents lessons learned from 40 years of ...

  13. NM Renewable Energy Storage Task Force

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  14. NREL: Energy Storage - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integration NREL recently hosted the V2X Enabled Electric Vehicles expert workshop, one of several meetings organized under the International Energy Agency's ...

  15. The Solar Storage Company | Open Energy Information

    Open Energy Info (EERE)

    Company Place: Palo Alto, California Zip: 1704 Product: US-based start-up developing energy production and storage systems. References: The Solar Storage Company1 This...

  16. National Hydrogen Storage Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Hydrogen Storage Project National Hydrogen Storage Project In July 2003, the Department of Energy (DOE) issued a "Grand Challenge" to the global scientific community for...

  17. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    : Poster Session Energy Storage Systems 2010 Update Conference Presentations - Day 3: ... Electrochemical Flow Storage System - Michael Perry, UTRC.pdf (59.78 KB) ESS ...

  18. Matt Rogers on AES Energy Storage

    Broader source: Energy.gov [DOE]

    The Department of Energy and AES Energy Storage recently agreed to a $17.1M conditional loan guarantee commitment. This project will develop the first battery-based energy storage system to provide...

  19. Post regulation circuit with energy storage

    DOE Patents [OSTI]

    Ball, Don G.; Birx, Daniel L.; Cook, Edward G.

    1992-01-01

    A charge regulation circuit provides regulation of an unregulated voltage supply and provides energy storage. The charge regulation circuit according to the present invention provides energy storage without unnecessary dissipation of energy through a resistor as in prior art approaches.

  20. Storage Water Heaters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Water Heaters Storage Water Heaters June 15, 2012 - 6:00pm Addthis Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over...

  1. Hydrogen Storage Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Fact Sheet Hydrogen Storage Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen storage. Hydrogen Storage (955.88 KB) More Documents & Publications US DRIVE Hydrogen Storage Technical Team Roadmap Hydrogen & Our Energy Future

  2. Energy Storage Success Stories - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Success Stories Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Marketing Summaries (134) Success Stories (3) Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Graphic of a full-grown

  3. Batteries and Energy Storage Technology BEST | Open Energy Information

    Open Energy Info (EERE)

    Batteries and Energy Storage Technology BEST Jump to: navigation, search Name: Batteries and Energy Storage Technology (BEST) Place: United Kingdom Product: International quarterly...

  4. Ridge Energy Storage and Grid Services LP | Open Energy Information

    Open Energy Info (EERE)

    Energy Storage and Grid Services LP Jump to: navigation, search Name: Ridge Energy Storage and Grid Services LP Place: Houston, Texas Zip: 77027 Product: Developer of compressed...

  5. Energy Department Releases Strategic Plan for Energy Storage Safety |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Strategic Plan for Energy Storage Safety Energy Department Releases Strategic Plan for Energy Storage Safety December 23, 2014 - 10:16am Addthis Dr. Imre Gyuk Dr. Imre Gyuk Energy Storage Program Manager, Office of Electricity Delivery and Energy Reliability I am pleased to announce that we have just released the Energy Storage Safety Strategic Plan, a roadmap for grid energy storage safety that addresses the range of grid-scale, utility, community, and residential

  6. Advanced research in solar-energy storage

    SciTech Connect (OSTI)

    Luft, W.

    1983-01-01

    The Solar Energy Storage Program at the Solar Energy Research Institute is reviewed. The program provides research, systems analyses, and economic assessments of thermal and thermochemical energy storage and transport. Current activities include experimental research into very high temperature (above 800/sup 0/C) thermal energy storage and assessment of novel thermochemical energy storage and transport systems. The applications for such high-temperature storage are thermochemical processes, solar thermal-electric power generation, cogeneration of heat and electricity, industrial process heat, and thermally regenerative electrochemical systems. The research results for five high-temperature thermal energy storage technologies and two thermochemical systems are described.

  7. energy storage | OpenEI Community

    Open Energy Info (EERE)

    and Energy Efficiency. Links: Big Clean Data group on linkedin Big Data Concentrated Solar Power DataAnalysis energy efficiency energy storage expert systems machine learning...

  8. Prestressed elastomer for energy storage

    DOE Patents [OSTI]

    Hoppie, Lyle O.; Speranza, Donald

    1982-01-01

    Disclosed is a regenerative braking device for an automotive vehicle. The device includes a power isolating assembly (14), an infinitely variable transmission (20) interconnecting an input shaft (16) with an output shaft (18), and an energy storage assembly (22). The storage assembly includes a plurality of elastomeric rods (44, 46) mounted for rotation and connected in series between the input and output shafts. The elastomeric rods are prestressed along their rotational or longitudinal axes to inhibit buckling of the rods due to torsional stressing of the rods in response to relative rotation of the input and output shafts.

  9. Sandia National Laboratories: Energy storage summit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photography By Lonnie Anderson Thursday, September 01, 2016 N.M. Sen. Martin Heinrich hosts Energy Storage Summit 2016 theme is Storage Strategies for Industry & National Security 2016 theme is Storage Strategies for Industry & National Security THE FUTURE OF ENERGY STORAGE - Industry leaders from across the US came to Albuquerque on Aug. 23 to participate in US Sen. Martin Heinrich's 2016 Energy Summit. Sandia Labs Director Jill Hruby opened the event, themed Storage Strategies for

  10. Panel 3, Electrolysis for Grid Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolysis for Grid Energy Storage DOE-Industry Canada Workshop May 15, 2014 INTRODUCTION HYDROGEN ENERGY SYSTEMS FOR ENERGY STORAGE AND CLEAN FUEL PRODUCTION ITM POWER INC. ITM POWER INC. ENERGY STORAGE | CLEAN FUEL Positioned well...... Energy Storage: * Pioneers of HES / P2G initiative in CA * Board member of CHBC - Title sponsor at Spring summit, 5 th May in Long beach * Committee member CHBC HES * Member of FCHEA, CHFCA, OFCC, Clean Fuel: * Founder member of H 2 USA and H 2 FIRST *

  11. November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 3 ESTAP Webinar: Duke Energy's Energy Storage Projects November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects November 1, 2013 - 5:00pm Addthis On Wednesday, November 13 from 1 - 2 p.m. ET, Clean Energy States Alliance will host a webinar on Duke Energy's battery energy storage systems. This webinar will be introduced by Dr. Imre Gyuk, Energy Storage Program Manager in the Office of Electricity Delivery and Energy Reliability. The webinar will discuss Duke

  12. An Evaluation of the Flywheel Potential for Providing Regulation Service in California

    SciTech Connect (OSTI)

    Lu, Ning; Weimar, Mark R.; Makarov, Yuri V.; Rudolph, Frank; Murthy, Shashikala; Arseneaux, Jim; Loutan, Clyde

    2010-07-26

    Flywheels can provide regulation and frequency response services to the power grids. This study presents the technical characteristics, modeling approach, methodologies, and results for providing regulation services in the California Independent System Operator (CAISO) market. Breakeven cost analyses were developed for two cases: 1) flywheel provides the regulation service alone; and 2) flywheel provides the regulation service together with a hydro power plant. For both cases, we evaluated two payment methods: pay-by-energy and pay-by-capacity. Based on the results of the technical and cost analyses, the opportunities for the flywheel providing regulation services are discussed; field test results for the flywheel’s physical characteristics are presented; and performance metrics of the flywheel to provide the regulation services are suggested.

  13. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 3 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at ...

  14. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Energy Storage Systems 2010 Update Conference Presentations - Day 3, Session 3 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at ...

  15. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Energy Storage Systems 2010 Update Conference Presentations - Day 3, Session 2 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at ...

  16. Electrochemical Energy Storage Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    This U.S. DRIVE electrochemical energy storage roadmap describes ongoing and planned efforts to develop electrochemical energy storage technologies for plug-in electric vehicles (PEVs). The Energy Storage activity comprises a number of research areas (including advanced materials research, cell level research, battery development, and enabling R&D which includes analysis, testing and other activities) for advanced energy storage technologies (batteries and ultra-capacitors).

  17. Energy Storage - Advanced Technology Development Merit Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Technology Development Merit Review Energy Storage - Advanced Technology Development ... Research Program Annual Review Safety System Oversight Staffing Analysis - Blank ...

  18. Carbon Capture and Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Carbon Capture and Storage Through Office of Fossil Energy R&D the United States has become a world leader in carbon capture and storage science and technology. Fossil Energy Research Benefits - Carbon Capture and Storage (723.49 KB) More Documents & Publications Microsoft Word - PSRP Updates 6-25-10_v2 Fossil Energy Today - Second Quarter, 2011 Fossil Energy FY 2013 Budget-in-Brief

  19. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, I.O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

  20. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, Ival O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

  1. Compact magnetic energy storage module

    DOE Patents [OSTI]

    Prueitt, Melvin L.

    1994-01-01

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

  2. Compact magnetic energy storage module

    DOE Patents [OSTI]

    Prueitt, M.L.

    1994-12-20

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

  3. Energy Storage Systems 2014 Peer Review Presentations - Session...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Energy Storage Systems 2014 Peer Review Presentations - Session 11 OE's Energy Storage ... Balducci, PNNL PDF icon Secondary-Use Battery Energy Storage Systems - Michael Starke, ...

  4. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage...

  5. Fact Sheet: Energy Storage Testing and Validation (October 2012)

    Broader source: Energy.gov [DOE]

    At Sandia National Laboratories, the Energy Storage Analysis Laboratory, in conjunction with the Energy Storage Test Pad, provides independent testing and validation of electrical energy storage...

  6. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage Program is ...

  7. Energy Storage Systems 2014 Peer Review Presentations - Session...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 Energy Storage Systems 2014 Peer Review Presentations - Session 9 OE's Energy Storage ... More Documents & Publications Energy Storage System Safety Reports - August 2014 and ...

  8. US DRIVE Electrochemical Energy Storage Technical Team Roadmap...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrochemical Energy Storage Technical Team Roadmap US DRIVE Electrochemical Energy Storage Technical Team Roadmap This U.S. DRIVE electrochemical energy storage roadmap ...

  9. Smart Grid Regional and Energy Storage Demonstration Projects...

    Office of Environmental Management (EM)

    Regional and Energy Storage Demonstration Projects: Awards Smart Grid Regional and Energy Storage Demonstration Projects: Awards List of Smart Grid Regional and Energy Storage ...

  10. Energy storage device with large charge separation

    DOE Patents [OSTI]

    Holme, Timothy P.; Prinz, Friedrich B.; Iancu, Andrei

    2016-04-12

    High density energy storage in semiconductor devices is provided. There are two main aspects of the present approach. The first aspect is to provide high density energy storage in semiconductor devices based on formation of a plasma in the semiconductor. The second aspect is to provide high density energy storage based on charge separation in a p-n junction.

  11. Underground Energy Storage Program. 1983 annual summary

    SciTech Connect (OSTI)

    Kannberg, L.D.

    1984-06-01

    The Underground Energy Storage Program approach, structure, history, and milestones are described. Technical activities and progress in the Seasonal Thermal Energy Storage and Compressed Air Energy Storage components of the program are then summarized, documenting the work performed and progress made toward resolving and eliminating technical and economic barriers associated with those technologies. (LEW)

  12. Thermal energy storage program description

    SciTech Connect (OSTI)

    Reimers, E.

    1989-03-01

    The U.S. Department of Energy (DOE) has sponsored applied research, development, and demonstration of technologies aimed at reducing energy consumption and encouraging replacement of premium fuels (notably oil) with renewable or abundant indigenous fuels. One of the technologies identified as being able to contribute to these goals is thermal energy storage (TES). Based on the potential for TES to contribute to the historic mission of the DOE and to address emerging energy issues related to the environment, a program to develop specific TES technologies for diurnal, industrial, and seasonal applications is underway. Currently, the program is directed toward three major application targets: (1) TES development for efficient off-peak building heating and cooling, (2) development of advanced TES building materials, and (3) TES development to reduce industrial energy consumption.

  13. Storage & Transmission Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage & Transmission Projects Storage & Transmission Projects Storage & Transmission Projects Storage & Transmission Projects Storage & Transmission Projects Storage & ...

  14. NREL: Energy Storage - Battery Materials Synthesis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The greater energy and power requirements and system integration demands of EDVs pose significant challenges to energy storage technologies. Making these materials durable enough ...

  15. Batteries and Energy Storage | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SPOTLIGHT Batteries and Energy Storage Argonne's all- encompassing battery research ... We develop more robust, safer and higher-energy density lithium-ion batteries, while using ...

  16. Charging Graphene for Energy Storage

    SciTech Connect (OSTI)

    Liu, Jun

    2014-10-06

    Since 2004, graphene, including single atomic layer graphite sheet, and chemically derived graphene sheets, has captured the imagination of researchers for energy storage because of the extremely high surface area (2630 m2/g) compared to traditional activated carbon (typically below 1500 m2/g), excellent electrical conductivity, high mechanical strength, and potential for low cost manufacturing. These properties are very desirable for achieving high activity, high capacity and energy density, and fast charge and discharge. Chemically derived graphene sheets are prepared by oxidation and reduction of graphite1 and are more suitable for energy storage because they can be made in large quantities. They still contain multiply stacked graphene sheets, structural defects such as vacancies, and oxygen containing functional groups. In the literature they are also called reduced graphene oxide, or functionalized graphene sheets, but in this article they are all referred to as graphene for easy of discussion. Two important applications, batteries and electrochemical capacitors, have been widely investigated. In a battery material, the redox reaction occurs at a constant potential (voltage) and the energy is stored in the bulk. Therefore, the energy density is high (more than 100 Wh/kg), but it is difficult to rapidly charge or discharge (low power, less than 1 kW/kg)2. In an electrochemical capacitor (also called supercapacitors or ultracapacitor in the literature), the energy is stored as absorbed ionic species at the interface between the high surface area carbon and the electrolyte, and the potential is a continuous function of the state-of-charge. The charge and discharge can happen rapidly (high power, up to 10 kW/kg) but the energy density is low, less than 10 Wh/kg2. A device that can have both high energy and high power would be ideal.

  17. 2010 DOE EERE Vehicle Technologies Program Merit Review - Energy Storage |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Energy Storage 2010 DOE EERE Vehicle Technologies Program Merit Review - Energy Storage Energy storage research and development merit review results 2010_amr_02.pdf (2.63 MB) More Documents & Publications 2011 Annual Merit Review Results Report - Energy Storage Technologies 2012 Annual Merit Review Results Report - Energy Storage Technologies 2012 Annual Merit Review Results Report - Energy Storage Technologies

  18. Utilization of rotor kinetic energy storage for hybrid vehicles

    SciTech Connect (OSTI)

    Hsu, John S.

    2011-05-03

    A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.

  19. On the Use of Energy Storage Technologies for Regulation Services in Electric Power Systems with Significant Penetration of Wind Energy

    SciTech Connect (OSTI)

    Yang, Bo; Makarov, Yuri V.; DeSteese, John G.; Vishwanathan, Vilanyur V.; Nyeng, Preben; McManus, Bart; Pease, John

    2008-05-27

    Energy produced by intermittent renewable resources is sharply increasing in the United States. At high penetration levels, volatility of wind power production could cause additional problems for the power system balancing functions such as regulation. This paper reports some partial results of a project work, recently conducted by the Pacific Northwest National Laboratory (PNNL) for Bonneville Power Administration (BPA). The project proposes to mitigate additional intermittency with the help of Wide Area Energy Management System (WAEMS) that would provide a two-way simultaneous regulation service for the BPA and California ISO systems by using a large energy storage facility. The paper evaluates several utility-scale energy storage technology options for their usage as regulation resources. The regulation service requires a participating resource to quickly vary its power output following the rapidly and frequently changing regulation signal. Several energy storage options have been analyzed based on thirteen selection criteria. The evaluation process resulted in the selection of flywheels, pumped hydro electric power (or conventional hydro electric power) plant and sodium sulfur or nickel cadmium batteries as candidate technologies for the WAEMS project. A cost benefit analysis should be conducted to narrow the choice to one technology.

  20. 2016 New Mexico Regional Energy Storage and Grid Integration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Mexico Regional Energy Storage and Grid Integration Workshop - Sandia Energy Energy ... Secure & Sustainable Energy Future 2016 NM Regional Energy Storage & Grid Integration ...

  1. Pumped Storage Hydropower | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pumped Storage Hydropower Pumped Storage Hydropower In addition to traditional hydropower, pumped-storage hydropower (PSH)-A type of hydropower that works like a battery, pumping water from a lower reservoir to an upper reservoir for storage and later generation-is an important piece of DOE's renewable energy portfolio because it acts as a utility-scale grid storage technology. DOE's Water Power Program plays a supportive role in demonstrating the benefits of PSH and its role in our nation's

  2. Hydrogen for Energy Storage Analysis Overview (Presentation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Hydrogen Storage The Fuel Cell Technologies Office (FCTO) is developing onboard automotive hydrogen storage systems that allow for a driving range of more than 300 miles while meeting cost, safety, and performance requirements. Why Study Hydrogen Storage Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell technologies in applications including stationary power, portable power, and transportation. Hydrogen has the highest energy per mass of any

  3. Hydrogen Energy Storage: Grid and Transportation Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure / 1 02 Hydrogen Energy Storage: Grid and Transportation Services NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. February 2015 Hydrogen Energy Storage: Grid and Transportation Services Proceedings of an Expert Workshop Convened by the U.S. Department of Energy and Industry Canada, Hosted by the National Renewable Energy Laboratory and the California Air Resources

  4. Panel 4, Hydrogen Energy Storage Policy Considerations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Policy Considerations Hydrogen Storage Workshop Jeffrey Reed Southern ... 2 And There's a Fully Built Delivery System N S E W LINE 235 LINE 335 LEGEND NOT TO ...

  5. Charting the Future of Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charting the Future of Energy Storage Charting the Future of Energy Storage August 7, 2013 - 2:53pm Addthis Watch the video above to learn how Urban Electric Power is creating a market for energy storage technology. | Video by Matty Greene, Energy Department. Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs What are the key facts? As we continue to incorporate more renewable energy into the grid, energy storage technologies will be key to

  6. Panel 4, Hydrogen Energy Storage Policy Considerations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Policy Considerations Hydrogen Storage Workshop Jeffrey Reed Southern California Gas Company May 15, 2014 0 Methane is a Great Storage Medium 1 SoCalGas' storage fields are the largest energy storage resource in the region Goleta Playa Del Rey Honor Rancho Aliso Canyon 2 And There's a Fully Built Delivery System N S E W LINE 235 LINE 335 LEGEND NOT TO SCALE RECIPROCATING COMPRESSOR STATION CENTRIFUGAL COMPRESSOR STATION PRESSURE LIMITING STATION STORAGE FIELD 4/00 P AC IF IC GA S

  7. Ultrafine Hydrogen Storage Powders - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Energy Storage Energy Storage Find More Like This Return to Search Ultrafine Hydrogen Storage Powders Ames Laboratory Contact AMES About This Technology Technology Marketing SummaryThis invention provides for composition and method of making extremely fine powders for storing hydrogen.DescriptionThe use of the powders decreases problems that are normally encountered when storage powders repeatedly experience during absorption and then desorption of

  8. Distributed Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Energy Distributed Energy Distributed energy consists of a range of smaller-scale and modular devices designed to provide electricity, and sometimes also thermal energy, in locations close to consumers. They include fossil and renewable energy technologies (e.g., photovoltaic arrays, wind turbines, microturbines, reciprocating engines, fuel cells, combustion turbines, and steam turbines); energy storage devices (e.g., batteries and flywheels); and combined heat and power systems.

  9. Test report : Milspray Scorpion energy storage device.

    SciTech Connect (OSTI)

    Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

    2013-08-01

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors have supplied their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and a subset of these systems were selected for performance evaluation at the BCIL. The technologies tested were electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. MILSPRAY Military Technologies has developed an energy storage system that utilizes lead acid batteries to save fuel on a military microgrid. This report contains the testing results and some limited assessment of the Milspray Scorpion Energy Storage Device.

  10. QER - Comment of Energy Storage Association | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Association QER - Comment of Energy Storage Association From: Katherine Hamilton [katherine@38northsolutions.com] on behalf of Katherine Hamilton [k.hamilton@energystorage.org] Sent: Friday, October 10, 2014 4:37 PM To: QERcomments Subject: Comments from Energy Storage Association Attachment: ESA QER Comments10 10 14FINAL.pdf; ATT00001.htm Attached please find comments from the Energy Storage Association on the Department of Energy's Quadrennial Energy Review. Thank you for the

  11. Battery storage for supplementing renewable energy systems

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The battery storage for renewable energy systems section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  12. Comments by the Energy Storage Association to the Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by the Energy Storage Association to the Department of Energy Electricity Advisory Council - March 13, 2014 Comments by the Energy Storage Association to the Department of Energy ...

  13. Matt Rogers on AES Energy Storage

    ScienceCinema (OSTI)

    Rogers, Matt

    2013-05-29

    The Department of Energy and AES Energy Storage recently agreed to a $17.1M conditional loan guarantee commitment. This project will develop the first battery-based energy storage system to provide a more stable and efficient electrical grid for New York State's high-voltage transmission network. Matt Rogers is the Senior Advisor to the Secretary for Recovery Act Implementation.

  14. Energy Storage for the Power Grid

    SciTech Connect (OSTI)

    Imhoff, Carl; Vaishnav, Dave

    2014-07-01

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid. This technology provides the energy industry and the nation with a reliable, stable, safe, and low-cost storage alternative for a cleaner, efficient energy future.

  15. Battery energy storage market feasibility study

    SciTech Connect (OSTI)

    Kraft, S.; Akhil, A.

    1997-07-01

    Under the sponsorship of the Department of Energy`s Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed energy storage as an important enabling technology to enable increased use of renewable energy and as a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1).

  16. Energy Storage R&D and ARRA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage R&D and ARRA Energy Storage R&D and ARRA 2010 DOE Vehicle ... More Documents & Publications Hybrid Electric Systems Overview of Battery R&D Activities Overview of ...

  17. Energy Storage Systems 2007 Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Systems 2007 Peer Review The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. The agenda and ESS ...

  18. NREL: Energy Storage - Working with Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partnering with industry, government, and universities is key to developing affordable energy storage technology and moving it into the marketplace and the U.S. economy. In ...

  19. Renewable Energy Interconnection and Storage - Technical Aspects...

    Open Energy Info (EERE)

    Interconnection and Storage - Technical Aspects Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Spain Installed Wind Capacity Website Focus Area: Renewable Energy...

  20. Energy Storage for the Power Grid

    SciTech Connect (OSTI)

    Wang, Wei; Imhoff, Carl; Vaishnav, Dave

    2014-04-23

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

  1. Energy Storage for the Power Grid

    ScienceCinema (OSTI)

    Wang, Wei; Imhoff, Carl; Vaishnav, Dave

    2014-06-12

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

  2. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 2 The U.S. ... Municipal Power Vanadium Redox Battery Demonstration Project - Joseph Startari, ...

  3. Demand Response and Energy Storage Integration Study

    Broader source: Energy.gov [DOE]

    Demand response and energy storage resources present potentially important sources of bulk power system services that can aid in integrating variable renewable generation. While renewable...

  4. About - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The mission of JCESR, DOE's Batteries and Energy Storage Hub, is to overcome critical scientific and technical barriers and create transformative battery technology for ...

  5. Emerging Technologies: Energy Storage for PV Power

    SciTech Connect (OSTI)

    Ponoum, Ratcharit; Rutberg, Michael; Bouza, Antonio

    2013-11-30

    The article discusses available technologies for energy storage for photovoltaic power systems, and also addresses the efficiency levels and market potential of these strategies.

  6. Analytic Challenges to Valuing Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    analytical task. Market Conditions - Markets are continually evolving, and the long-term value of energy storage is difficult to capture. Niche markets have emerged, but...

  7. Energy Storage Systems 2010 Update Conference Presentations ...

    Broader source: Energy.gov (indexed) [DOE]

    (1.83 MB) ESS 2010 Update Conference - Value of Storage with Increased Renewable Penetration - Jim Brainard, SNL.pdf (228.18 KB) More Documents & Publications Energy ...

  8. Webinar Presentation: Energy Storage Solutions for Microgrids...

    Office of Environmental Management (EM)

    & Federal Energy Storage Technology Advancement Partnership (ESTAP) Todd Olinsky-Paul ... is needed An Unbuffered, Stressed Complex System is inherently Vulnerable to Collapse The ...

  9. Affiliates - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The program includes nearly one-hundred stakeholder organizations involved in electrical energy storage, ranging from chemical and material manufacturers to battery system ...

  10. Fact Sheet: Energy Storage Technology Advancement Partnership...

    Office of Environmental Management (EM)

    micro pumped hydro, and other forms of energy storage may be able to provide significant ... testing and evaluation once a system is installed Project Partners * Sandia ...

  11. Panel 3, Electrolysis for Grid Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolysis for Grid Energy Storage DOE-Industry Canada Workshop May 15, 2014 INTRODUCTION ... paying for demand management - that the system is a responsive load and can meet ...

  12. Hydrogen for Energy Storage Analysis Overview (Presentation)

    SciTech Connect (OSTI)

    Steward, D. M.; Ramsden, T.; Harrison, K.

    2010-06-01

    Overview of hydrogen for energy storage analysis presented at the National Hydrogen Association Conference & Expo, May 3-6, 2010, Long Beach, CA.

  13. Energy Storage Demonstration Project Locations | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Map of the United States showing the location of Energy Storage Demonstration projects created with funding from the Smart Grid Demonstration Project, funded through the American ...

  14. Fact Sheet: Beacon Power 20 MW Flywheel Frequency Regulation...

    Office of Environmental Management (EM)

    Beacon Power 20 MW Flywheel Frequency Regulation Plant (August 2013) Fact Sheet: Beacon Power 20 MW Flywheel Frequency Regulation Plant (August 2013) Beacon Power will design, ...

  15. Nuclear Hybrid Energy Systems: Molten Salt Energy Storage

    SciTech Connect (OSTI)

    P. Sabharwall; M. Green; S.J. Yoon; S.M. Bragg-Sitton; C. Stoots

    2014-07-01

    With growing concerns in the production of reliable energy sources, the next generation in reliable power generation, hybrid energy systems, are being developed to stabilize these growing energy needs. The hybrid energy system incorporates multiple inputs and multiple outputs. The vitality and efficiency of these systems resides in the energy storage application. Energy storage is necessary for grid stabilizing and storing the overproduction of energy to meet peak demands of energy at the time of need. With high thermal energy production of the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct properties. This paper will discuss the different energy storage options with the criteria for efficient energy storage set forth, and will primarily focus on different molten salt energy storage system options through a thermodynamic analysis

  16. Energy Storage Safety Strategic Plan Now Available | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Safety Strategic Plan Now Available Energy Storage Safety Strategic Plan Now Available December 23, 2014 - 10:25am Addthis The Office of Electricity Delivery and Energy Reliability (OE) has worked with industry and other stakeholders to develop the Energy Storage Safety Strategic Plan, a roadmap for grid energy storage safety that highlights safety validation techniques, incident preparedness, safety codes, standards, and regulations. The Plan, which is now available for downloading,

  17. Battery and Thermal Energy Storage | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery and Thermal Energy Storage Not long ago, the mantra among electric utilities was that "you can't store electricity"-instantaneous power production had to nearly equal demand. But NREL research is changing this belief, demonstrating the high performance of grid-integrated battery and thermal energy storage technologies. Photo of a battery energy storage system NREL examines how best to integrate these energy storage technologies into the electrical grid and potentially into

  18. 2014 Energy Storage Peer Review - Preliminary Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Peer Review - Preliminary Agenda 2014 Energy Storage Peer Review - Preliminary Agenda The 2014 Energy Storage Peer Review will be held September 19-19, 2014, in Washington, DC. The event is free but registration is required by Friday, September 5, 2014. This year's review will include the latest innovations across all spectrums of energy storage, spanning materials research all the way to the safe deployment of systems. OE's Dr. Imre Gyuk will be an opening speaker, providing the

  19. Thermal energy storage apparatus, controllers and thermal energy storage control methods

    DOE Patents [OSTI]

    Hammerstrom, Donald J.

    2016-05-03

    Thermal energy storage apparatus, controllers and thermal energy storage control methods are described. According to one aspect, a thermal energy storage apparatus controller includes processing circuitry configured to access first information which is indicative of surpluses and deficiencies of electrical energy upon an electrical power system at a plurality of moments in time, access second information which is indicative of temperature of a thermal energy storage medium at a plurality of moments in time, and use the first and second information to control an amount of electrical energy which is utilized by a heating element to heat the thermal energy storage medium at a plurality of moments in time.

  20. Flow Cells for Energy Storage Workshop Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview Flow Cells for Energy Storage Workshop Overview Overview presentation by Adam Weber, Lawrence Berkeley National Laboratory, at the Flow Cells for Energy Storage Workshop held March 7-8, 2012, in Washington, DC. flowcells2012_overview.pdf (236.9 KB) More Documents & Publications Meeting Agenda Flow Cells for Energy Storage Workshop Summary Report Flow Batteries: A Historical Perspective

  1. Fact Sheet: Beacon Power 20 MW Flywheel Frequency Regulation Plant (August 2013)

    Broader source: Energy.gov [DOE]

    Beacon Power will design, build, and operate a utility-scale 20MW flywheel plant at the Humboldt Industrial Park in Hazle Township, Pennsylvania for the plant owner/operator, Hazle Spindle LLC. The plant will provide frequency regulation services to grid operator PJM Interconnection. The Beacon Power technology uses flywheels to recycle energy from the grid in response to changes in demand and grid frequency.

  2. Hybrid Radical Energy Storage Device - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage Advanced Materials Advanced Materials Find More Like This Return to Search Hybrid Radical Energy Storage Device National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary In order to provide a cost effective, environmentally benign and efficient means for storing electric energy from renewable sources, breakthroughs are needed in rechargeable battery technology that will substantially increase energy and power densities.

  3. STEPHENTOWN SPINDLE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STEPHENTOWN SPINDLE STEPHENTOWN SPINDLE STEPHENTOWN SPINDLE STEPHENTOWN SPINDLE STEPHENTOWN SPINDLE STEPHENTOWN SPINDLE STEPHENTOWN SPINDLE STEPHENTOWN SPINDLE STEPHENTOWN SPINDLE STEPHENTOWN SPINDLE STEPHENTOWN SPINDLE PROJECT SUMMARY In August 2010, the Department of Energy issued a $43 million loan guarantee to finance Stephentown Spindle, a flywheel energy storage project in Stephentown, New York. The loan guarantee agreement was restructured in March 2012, when Stephentown Spindle, LLC, a

  4. 2011 Annual Merit Review Results Report - Energy Storage Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Energy Storage Technologies 2011 Annual Merit Review Results Report - Energy Storage Technologies Merit review of DOE Vehicle Technologies research activities 2011_amr_02.pdf (15.22 MB) More Documents & Publications 2012 Annual Merit Review Results Report - Energy Storage Technologies 2010 DOE EERE Vehicle Technologies Program Merit Review - Energy Storage 2012 Annual Merit Review Results Report - Energy Storage

  5. 2014 Annual Merit Review Results Report - Energy Storage Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Energy Storage Technologies 2014 Annual Merit Review Results Report - Energy Storage Technologies Merit review of DOE Vehicle Technologies research activities 2014_amr_02.pdf (12.24 MB) More Documents & Publications 2011 Annual Merit Review Results Report - Energy Storage Technologies 2012 Annual Merit Review Results Report - Energy Storage Technologies 2012 Annual Merit Review Results Report - Energy Storage Technologies

  6. Joint Center for Energy Storage Research - Joint Center for Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research 30, 2012, Videos Joint Center for Energy Storage Research The Joint Center for Energy Storage Research (JCESR) is a major research partnership that integrates government, academic, and industrial researchers from many disciplines to overcome critical scientific and technical barriers and create new breakthrough energy storage technology.

  7. Presentations - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Presentations To view notes or play video, please download. JCESR Presentations at the 228th Electrochemical Society Meeting, Phoenix, AZ (10-11-15) The Joint Center for Energy Storage Research (JCESR): A New Paradigm for Energy Storage Research George Crabtree, JCESR Director Overcoming Key Challenges for a Viable Lithium-Sulfur Transportation Battery Kevin Zavadil, JCESR Thrust PI, Chemical Transformation Pathways to Non-aqueous Redox Flow (NRF) Batteries for Grid Storage Fikile Brushett,

  8. Energy Storage Testing and Analysis High Power and High Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing and Analysis High Power and High Energy Development Energy Storage Testing and ... Testing Overview and Progress of the Battery Testing, Analysis, and Design Activity ...

  9. Joint Center for Energy Storage Research

    SciTech Connect (OSTI)

    Eric Isaacs

    2012-11-30

    The Joint Center for Energy Storage Research (JCESR) is a major public-private research partnership that integrates U.S. Department of Energy national laboratories, major research universities and leading industrial companies to overcome critical scientific challenges and technical barriers, leading to the creation of breakthrough energy storage technologies. JCESR, centered at Argonne National Laboratory, outside of Chicago, consolidates decades of basic research experience that forms the foundation of innovative advanced battery technologies. The partnership has access to some of the world's leading battery researchers as well as scientific research facilities that are needed to develop energy storage materials that will revolutionize the way the United States and the world use energy.

  10. New York's Energy Storage System Gets Recharged | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    York's Energy Storage System Gets Recharged New York's Energy Storage System Gets Recharged August 2, 2010 - 1:18pm Addthis Matt Rogers, Senior Advisor to Secretary Chu, explain why grid frequency regulation matters Jonathan Silver Jonathan Silver Executive Director of the Loan Programs Office What does this mean for me? AES Storage in New York got a $17.1M conditional loan guarantee to provide a more stable transmission grid. When thinking of clean technologies, energy storage might not be the