Powered by Deep Web Technologies
Note: This page contains sample records for the topic "flux beam reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

High Flux Beam Reactor | Environmental Restoration Projects | BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Protection Division Environmental Protection Division Home Reactor Projects Celebrating DOE's Cleanup Accomplishments (PDF) Brookhaven Graphite Research Reactor(BGRR) BGRR Overview BGRR Complex Description Decommissioning Decision BGRR Complex Cleanup Actions BGRR Documents BGRR Science & Accomplishments High Flux Beam Reactor (HFBR) HFBR Overview HFBR Complex Description Decommissioning Decision HFBR Complex Cleanup Actions HFBR Documents HFBR Science & Accomplishments Groundwater Protection Group Environmental Protection Division Contact > See also: HFBR Science & Accomplishments High Flux Beam Reactor Under the U.S. Department of Energy (DOE), the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL) underwent stabilization and partial decommissioning to prepare the HFBR confinement for long-term safe

2

High Flux Beam Reactor | Environmental Restoration Projects | BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Why is the High Flux Beam Reactor Being Decommissioned? Why is the High Flux Beam Reactor Being Decommissioned? HFBR The High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL) is being decommissioned because the Department of Energy (DOE) decided in 1999 that it would be permanently closed. The reactor was shut down in 1997 after tritium from a leak in the spent-fuel pool was found in the groundwater. The HFBR, which had operated from 1965 to 1996, was used solely for scientific research, providing neutrons for materials science, chemistry, biology, and physics experiments. The reactor was shut down for routine maintenance in November of 1996. In January 1997, tritium, a radioactive form of hydrogen and a by-product of reactor operations, was found in groundwater monitoring wells immediately south of the HFBR. The tritium

3

Reactor operations Brookhaven medical research reactor, Brookhaven high flux beam reactor informal monthly report  

SciTech Connect

This document is the April 1995 summary report on reactor operations at the Brookhaven Medical Research Reactor and the Brookhaven High Flux Beam Reactor. Ongoing experiments/irradiations in each are listed, and other significant operations functions are also noted. The HFBR surveillance testing schedule is also listed.

Hauptman, H.M.; Petro, J.N.; Jacobi, O. [and others

1995-04-01T23:59:59.000Z

4

High Flux Beam Reactor | Environmental Restoration Projects ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports HFBR Waste Loading Area, Soil Remediation (PDF) - July 2009 HFBR Decommissioning Project, Removal of the Control Rod Blades and Beam Plugs (PDF) - January 2010...

5

Reactor operations: Brookhaven Medical Research Reactor, Brookhaven High Flux Beam Reactor. Informal report, June 1995  

Science Conference Proceedings (OSTI)

Part one of this report gives the operating history of the Brookhaven Medical Research Reactor for the month of June. Also included are the BMRR technical safety surveillance requirements record and the summary of BMRR irradiations for the month. Part two gives the operating histories of the Brookhaven High Flux Beam Reactor and the Cold Neutron Facility at HFBR for June. Also included are the HFBR technical safety surveillance requirements record and the summary of HFBR irradiations for the month.

NONE

1995-06-01T23:59:59.000Z

6

Reactor operations: Brookhaven Medical Research Reactor, Brookhaven High Flux Beam Reactor. Informal report, July 1995  

Science Conference Proceedings (OSTI)

Part one of this report gives the operating history for the Brookhaven Medical Research Reactor for the month of July. Also included are the BMRR technical safety surveillance requirements record and the summary of BMRR irradiations for the month. Part two gives the operating histories for the Brookhaven High Flux Beam Reactor and the Cold Neutron Source Facility for the month of July. Also included are the HFBR technical safety surveillance requirements record and the summary of HFBR irradiations for the month.

NONE

1995-07-01T23:59:59.000Z

7

Decommissioning of the high flux beam reactor at Brookhaven Lab  

Science Conference Proceedings (OSTI)

The high-flux beam reactor (HFBR) at the Brookhaven National Laboratory was a heavy water cooled and moderated reactor that achieved criticality on Oct. 31, 1965. It operated at a power level of 40 megawatts. An equipment upgrade in 1982 allowed operations at 60 megawatts. After a 1989 reactor shutdown to reanalyze safety impact of a hypothetical loss of coolant accident, the reactor was restarted in 1991 at 30 megawatts. The HFBR was shut down in December 1996 for routine maintenance and refueling. At that time, a leak of tritiated water was identified by routine sampling of groundwater from wells located adjacent to the reactor's spent fuel pool. The reactor remained shut down for almost three years for safety and environmental reviews. In November 1999 the United States Dept. of Energy decided to permanently shut down the HFBR. The decontamination and decommissioning of the HFBR complex, consisting of multiple structures and systems to operate and maintain the reactor, were complete in 2009 after removing and shipping off all the control rod blades. The emptied and cleaned HFBR dome, which still contains the irradiated reactor vessel, is presently under 24/7 surveillance for safety. Detailed dosimetry performed for the HFBR decommissioning during 1996-2009 is described in the paper. (authors)

Hu, J.P. [National Synchrotron Light Source, Brookhaven Laboratory, Upton, NY 11973 (United States); Reciniello, R.N. [Radiological Control Div., Brookhaven Laboratory, Upton, NY 11973 (United States); Holden, N.E. [National Nuclear Data Center, Brookhaven Laboratory, Upton, NY 11973 (United States)

2011-07-01T23:59:59.000Z

8

Rebuilding the Brookhaven high flux beam reactor: A feasibility study  

SciTech Connect

After nearly thirty years of operation, Brookhaven`s High Flux Beam Reactor (HFBR) is still one of the world`s premier steady-state neutron sources. A major center for condensed matter studies, it currently supports fifteen separate beamlines conducting research in fields as diverse as crystallography, solid-state, nuclear and surface physics, polymer physics and structural biology and will very likely be able to do so for perhaps another decade. But beyond that point the HFBR will be running on borrowed time. Unless appropriate remedial action is taken, progressive radiation-induced embrittlement problems will eventually shut it down. Recognizing the HFBR`s value as a national scientific resource, members of the Laboratory`s scientific and reactor operations staffs began earlier this year to consider what could be done both to extend its useful life and to assure that it continues to provide state-of-the-art research facilities for the scientific community. This report summarizes the findings of that study. It addresses two basic issues: (i) identification and replacement of lifetime-limiting components and (ii) modifications and additions that could expand and enhance the reactor`s research capabilities.

Brynda, W.J.; Passell, L.; Rorer, D.C.

1995-01-01T23:59:59.000Z

9

Level 1 Tornado PRA for the High Flux Beam Reactor  

Science Conference Proceedings (OSTI)

This report describes a risk analysis primarily directed at providing an estimate for the frequency of tornado induced damage to the core of the High Flux Beam Reactor (HFBR), and thus it constitutes a Level 1 Probabilistic Risk Assessment (PRA) covering tornado induced accident sequences. The basic methodology of the risk analysis was to develop a ``tornado specific`` plant logic model that integrates the internal random hardware failures with failures caused externally by the tornado strike and includes operator errors worsened by the tornado modified environment. The tornado hazard frequency, as well as earlier prepared structural and equipment fragility data, were used as input data to the model. To keep modeling/calculational complexity as simple as reasonable a ``bounding`` type, slightly conservative, approach was applied. By a thorough screening process a single dominant initiating event was selected as a representative initiator, defined as: ``Tornado Induced Loss of Offsite Power.`` The frequency of this initiator was determined to be 6.37E-5/year. The safety response of the HFBR facility resulted in a total Conditional Core Damage Probability of .621. Thus, the point estimate of the HFBR`s Tornado Induced Core Damage Frequency (CDF) was found to be: (CDF){sub Tornado} = 3.96E-5/year. This value represents only 7.8% of the internal CDF and thus is considered to be a small contribution to the overall facility risk expressed in terms of total Core Damage Frequency. In addition to providing the estimate of (CDF){sub Tornado}, the report documents, the relative importance of various tornado induced system, component, and operator failures that contribute most to (CDF){sub Tornado}.

Bozoki, G.E.; Conrad, C.S.

1994-05-01T23:59:59.000Z

10

INDEPENDENT VERIFICATION SURVEY OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT OUTSIDE AREAS BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK  

SciTech Connect

5098-SR-03-0 FINAL REPORT- INDEPENDENT VERIFICATION SURVEY OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT OUTSIDE AREAS, BROOKHAVEN NATIONAL LABORATORY

P.C. Weaver

2010-12-15T23:59:59.000Z

11

LETTER REPORT INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT FAN HOUSE, BUILDING 704 BNL  

Science Conference Proceedings (OSTI)

5098-LR-01-0 -LETTER REPORT INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT FAN HOUSE, BUILDING 704 BROOKHAVEN NATIONAL LABORATORY

P.C. Weaver

2010-10-22T23:59:59.000Z

12

PRELIMINARY HAZARDS SUMMARY REPORT ON THE BROOKHAVEN HIGH FLUX BEAM RESEARCH REACTOR  

SciTech Connect

The High Flux Beam Reactor, HFBR, is cooled, moderated, and reflected by heavy water and designed to produce 40 Mw with a total epithermal flux of ~1.6 X 10/sup 15/cm/sup -2/ sec/sup -1/ and a flector thermal maximum flux of 7 X 10/sup 14/ cm/sup -2/ sec/sup -1/, using a core formed by ETR plate-type fuel elements in a close-packed array. The hazards summary is given in terms of site description, reactor design, building design, plant operation, disposal of radioactive wastes and effluents, and safety analysis. (B.O.G.)

Hendrie, J.M.; Kouts, H.J.C.

1961-05-01T23:59:59.000Z

13

High Flux Beam Reactor | Environmental Restoration Projects | BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Complex Description Complex Description Current HFBR Complex The HFBR complex consists of multiple structures and systems that were necessary to operate and maintain the reactor. The most recognizable features of the complex are the domed reactor confinement building and the distinctive red-and-white stack. Portions of the complex building structures, systems, and components, some of which are underground, were contaminated with radionuclides and chemicals as a result of previous HFBR and Brookhaven Graphite Research Reactor (BGRR) operations. A number of decommissioning and preparation for long-term safe storage actions have been taken including the removal of contaminated structures, hazardous materials, and contaminated equipment and components. The structures and systems, both current and former, are

14

A neutronic feasibility study for LEU conversion of the high flux beam reactor (HFBR).  

SciTech Connect

A neutronic feasibility study for converting the High Flux Beam Reactor at Brookhaven National Laboratory from HEU to LEU fuel was performed at Argonne National Laboratory. The purpose of this study is to determine what LEU fuel density would be needed to provide fuel lifetime and neutron flux performance similar to the current HEU fuel. The results indicate that it is not possible to convert the HFBR to LEU fuel with the current reactor core configuration. To use LEU fuel, either the core needs to be reconfigured to increase the neutron thermalization or a new LEU reactor design needs to be considered. This paper presents results of reactor calculations for a reference 28-assembly HEU-fuel core configuration and for an alternative 18-assembly LEU-fuel core configuration with increased neutron thermalization. Neutronic studies show that similar in-core and ex-core neutron fluxes, and fuel cycle length can be achieved using high-density LEU fuel with about 6.1 gU/cm{sup 3} in an altered reactor core configuration. However, hydraulic and safety analyses of the altered HFBR core configuration needs to be performed in order to establish the feasibility of this concept.

Pond, R. B.

1998-01-16T23:59:59.000Z

15

TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 2 DF WASTE LINE REMOVAL, BNL  

SciTech Connect

5098-SR-02-0 PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 2 DF WASTE LINE REMOVAL, BROOKHAVEN NATIONAL LABORATORY

P.C. Weaver

2010-07-09T23:59:59.000Z

16

Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression  

DOE Patents (OSTI)

The invention is a laser or particle-beam-driven fusion reactor system which takes maximum advantage of both the very short pulsed nature of the energy release of inertial confinement fusion (ICF) and the very small volumes within which the thermonuclear burn takes place. The pulsed nature of ICF permits dynamic direct energy conversion schemes such as magnetohydrodynamic (MHD) generation and magnetic flux compression; the small volumes permit very compact blanket geometries. By fully exploiting these characteristics of ICF, it is possible to design a fusion reactor with exceptionally high power density, high net electric efficiency, and low neutron-induced radioactivity. The invention includes a compact blanket design and method and apparatus for obtaining energy utilizing the compact blanket.

Lasche, G.P.

1983-09-29T23:59:59.000Z

17

PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 5, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK  

Science Conference Proceedings (OSTI)

5098-SR-04-0 PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 5, BROOKHAVEN NATIONAL LABORATORY

P.C. Weaver

2010-11-03T23:59:59.000Z

18

PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 1, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK  

SciTech Connect

5098-SR-05-0 PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 1 BROOKHAVEN NATIONAL LABORATORY

E.M. Harpenau

2010-12-15T23:59:59.000Z

19

Determining Reactor Neutrino Flux  

E-Print Network (OSTI)

Flux is an important source of uncertainties for a reactor neutrino experiment. It is determined from thermal power measurements, reactor core simulation, and knowledge of neutrino spectra of fuel isotopes. Past reactor neutrino experiments have determined the flux to (2-3)% precision. Precision measurements of mixing angle $\\theta_{13}$ by reactor neutrino experiments in the coming years will use near-far detector configurations. Most uncertainties from reactor will be canceled out. Understanding of the correlation of uncertainties is required for $\\theta_{13}$ experiments. Precise determination of reactor neutrino flux will also improve the sensitivity of the non-proliferation monitoring and future reactor experiments. We will discuss the flux calculation and recent progresses.

Cao, Jun

2011-01-01T23:59:59.000Z

20

Determining Reactor Neutrino Flux  

E-Print Network (OSTI)

Flux is an important source of uncertainties for a reactor neutrino experiment. It is determined from thermal power measurements, reactor core simulation, and knowledge of neutrino spectra of fuel isotopes. Past reactor neutrino experiments have determined the flux to (2-3)% precision. Precision measurements of mixing angle $\\theta_{13}$ by reactor neutrino experiments in the coming years will use near-far detector configurations. Most uncertainties from reactor will be canceled out. Understanding of the correlation of uncertainties is required for $\\theta_{13}$ experiments. Precise determination of reactor neutrino flux will also improve the sensitivity of the non-proliferation monitoring and future reactor experiments. We will discuss the flux calculation and recent progresses.

Jun Cao

2011-01-12T23:59:59.000Z

Note: This page contains sample records for the topic "flux beam reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression  

SciTech Connect

A high-power-density laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems.

Lasche, George P. (Arlington, VA)

1988-01-01T23:59:59.000Z

22

Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression  

DOE Patents (OSTI)

A high-power-density-laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems. 25 figs.

Lasche, G.P.

1987-02-20T23:59:59.000Z

23

Temporal behavior of neutral particle fluxes in TFTR (Tokamak Fusion Test Reactor) neutral beam injectors  

SciTech Connect

Data from an E {parallel} B charge exchange neutral analyzer (CENA), which views down the axis of a neutral beamline through an aperture in the target chamber calorimeter of the TFTR neutral beam test facility, exhibit two curious effects. First, there is a turn-on transient lasting tens of milliseconds having a magnitude up to three times that of the steady-state level. Second, there is a 720 Hz, up to 20% peak-to-peak fluctuation persisting the entire pulse duration. The turn-on transient occurs as the neutralizer/ion source system reaches a new pressure equilibrium following the effective ion source gas throughput reduction by particle removal as ion beam. Widths of the transient are a function of the gas throughput into the ion source, decreasing as the gas supply rate is reduced. Heating of the neutalizer gas by the beam is assumed responsible, with gas temperature increasing as gas supply rate is decreased. At low gas supply rates, the transient is primarliy due to dynamic changes in the neutralizer line density and/or beam species composition. Light emission from the drift duct corroborate the CENA data. At high gas supply rates, dynamic changes in component divergence and/or spatial profiles of the source plasma are necessary to explain the observations. The 720 Hz fluctuation is attributed to a 3% peak-to-peak ripple of 720 Hz on the arc power supply amplified by the quadratic relationship between beam divergence and beam current. Tight collimation by CENA apertures cause it to accept a very small part of the ion source's velocity space, producing a signal linearly proportional to beam divergence. Estimated fluctuations in the peak power density delivered to the plasma under these conditions are a modest 3--8% peak to peak. The efffects of both phenomena on the injected neutral beam can be ameliorated by careful operion of the ion sources. 21 refs., 11 figs., 2 tabs.

Kamperschroer, J.H.; Gammel, G.M.; Roquemore, A.L.; Grisham, L.R.; Kugel, H.W.; Medley, S.S.; O' Connor, T.E.; Stevenson, T.N.; von Halle, A.; Williams, M.D.

1989-09-01T23:59:59.000Z

24

High flux reactor  

DOE Patents (OSTI)

A high flux reactor is comprised of a core which is divided into two symetric segments housed in a pressure vessel. The core segments include at least one radial fuel plate. The spacing between the plates functions as a coolant flow channel. The core segments are spaced axially apart such that a coolant mixing plenum is formed between them. A channel is provided such that a portion of the coolant bypasses the first core section and goes directly into the mixing plenum. The outlet coolant from the first core segment is mixed with the bypass coolant resulting in a lower inlet temperature to the lower core segment.

Lake, James A. (Idaho Falls, ID); Heath, Russell L. (Idaho Falls, ID); Liebenthal, John L. (Idaho Falls, ID); DeBoisblanc, Deslonde R. (Summit, NJ); Leyse, Carl F. (Idaho Falls, ID); Parsons, Kent (Idaho Falls, ID); Ryskamp, John M. (Idaho Falls, ID); Wadkins, Robert P. (Idaho Falls, ID); Harker, Yale D. (Idaho Falls, ID); Fillmore, Gary N. (Idaho Falls, ID); Oh, Chang H. (Idaho Falls, ID)

1988-01-01T23:59:59.000Z

25

Final Report Independent Verification Survey of the High Flux Beam Reactor, Building 802 Fan House Brookhaven National Laboratory Upton, New York  

Science Conference Proceedings (OSTI)

On May 9, 2011, ORISE conducted verification survey activities including scans, sampling, and the collection of smears of the remaining soils and off-gas pipe associated with the 802 Fan House within the HFBR (High Flux Beam Reactor) Complex at BNL. ORISE is of the opinion, based on independent scan and sample results obtained during verification activities at the HFBR 802 Fan House, that the FSS (final status survey) unit meets the applicable site cleanup objectives established for as left radiological conditions.

Evan Harpeneau

2011-06-24T23:59:59.000Z

26

SUMMARY AND RESULTS LETTER REPORT – INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PROJECT, PHASE 3: TRENCHES 2, 3, AND 4 BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK  

SciTech Connect

5098-LR-02-0 SUMMARY AND RESULTS LETTER REPORT – INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PROJECT, PHASE 3 TRENCHES 2, 3, AND 4 BROOKHAVEN NATIONAL LABORATORY

E.M. Harpenau

2010-11-15T23:59:59.000Z

27

RELAP5/MOD2. 5 analysis of the HFBR (High Flux Beam Reactor) for a loss of power and coolant accident  

SciTech Connect

A set of postulated accidents were evaluated for the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory. A loss of power accident (LOPA) and a loss of coolant accident (LOCA) were analyzed. This work was performed in response to a DOE review that wanted to update the understanding of the thermal hydraulic behavior of the HFBR during these transients. These calculations were used to determine the margins to fuel damage at the 60 MW power level. The LOPA assumes all the backup power systems fail (although this event is highly unlikely). The reactor scrams, the depressurization valve opens, and the pumps coast down. The HFBR has down flow through the core during normal operation. To avoid fuel damage, the core normally goes through an extended period of forced down flow after a scram before natural circulation is allowed. During a LOPA, the core will go into flow reversal once the buoyancy forces are larger than the friction forces produced during the pump coast down. The flow will stagnate, reverse direction, and establish a buoyancy driven (natural circulation) flow around the core. Fuel damage would probably occur if the critical heat flux (CHF) limit is reached during the flow reversal event. The RELAP5/MOD2.5 code, with an option for heavy water, was used to model the HFBR and perform the LOPA calculation. The code was used to predict the time when the buoyancy forces overcome the friction forces and produce upward directed flow in the core. The Monde CHF correlation and experimental data taken for the HFBR during the design verification phase in 1963 were used to determine the fuel damage margin. 20 refs., 40 figs., 11 tabs.

Slovik, G.C.; Rohatgi, U.S.; Jo, Jae.

1990-05-01T23:59:59.000Z

28

HIGH FLUX ISOTOPE REACTOR PRELIMINARY DESIGN STUDY  

SciTech Connect

A comparison of possible types of research reactors for the production of transplutonium elements and other isotopes indicates that a flux-trap reactor consisting of a beryllium-reflecteds light-water-cooled annular fuel region surrounding a light-water island provides the required thermal neutron fluxes at minimum cost. The preliminary desigu of such a reactor was carried out on the basis of a parametric study of the effect of dimensions of the island and fuel regions heat removal rates, and fuel loading on the achievable thermal neutmn fluxes in the island and reflector. The results indicate that a 12- to 14-cm- diam. island provides the maximum flux for a given power density. This is in good agreement with the US8R critical experiments. Heat removal calculations indicate that average power densities up to 3.9 Mw/liter are achievable with H/ sub 2/O-cooled, platetype fuel elements if the system is pressurized to 650 psi to prevent surface boiling. On this basis, 100 Mw of heat can be removed from a 14-cm-ID x 36-cm-OD x 30.5-cm-long fuel regions resulting in a thermal neutron flux of 3 x 10/sup 15/ in the island after insertion of 100 g of Cm/sup 244/ or equivalent. The resulting production of Cf/sup 252/ amounts to 65 mg for a 1 1/2- year irradiation. Operation of the reactor at the more conservative level of 67 Mw, providing an irradiation flux of 2 x 10/sup 15/ in the islands will result in the production of 35 mg of Cf/sup 252/ per 18 months from 100 g of Cm/sup 244/. A development program is proposed to answer the question of the feasibility of the higher power operation. In addition to the central irradiation facility for heavyelement productions the HFIR contains ten hydraulic rabbit tubes passing through the beryllium reflector for isotope production and four beam holes for basic research, Preliminary estimates indicate that the cost of the facility, designed for an operating power level of 100 Mw, will be approximately 2 million. (auth)

Lane, J.A.; Cheverton, R.D.; Claiborne, G.C.; Cole, T.E.; Gambill, W.R.; Gill, J.P.; Hilvety, N.; McWherther, J.R.; Vroom, D.W.

1959-03-20T23:59:59.000Z

29

HFIR | High Flux Isotope Reactor | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

HFIR Working with HFIR Neutron imaging offers new tools for exploring artifacts and ancient technology Home | User Facilities | HFIR HFIR | High Flux Isotope Reactor SHARE The High...

30

Beam characterization at the Neutron Radiography Reactor  

Science Conference Proceedings (OSTI)

The quality of a neutron-imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam's effective length-to-diameter ratio, neutron flux profile, energy spectrum, potential image quality, and beam divergence, is vital for producing quality radiographic images. This paper provides a characterization of the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam's effective length-to-diameter ratio and potential image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. The NRAD has an effective collimation ratio greater than 125, a beam divergence of 0.3 +_ 0.1 degrees, and a gold foil cadmium ratio of 2.7. The flux profile has been quantified and the facility is an ASTM Category 1 radiographic facility. Based on bare and cadmium covered foil activation results, the neutron energy spectrum used in the current MCNP model of the radiography beamline over-samples the thermal region of the neutron energy spectrum.

Sarah W. Morgan; Jeffrey C. King; Chad L. Pope

2013-12-01T23:59:59.000Z

31

The High Flux Isotope Reactor at Oak Ridge National Laboratory  

NLE Websites -- All DOE Office Websites

The High Flux Isotope Reactor at ORNL The High Flux Isotope Reactor at ORNL Aerial of the High Flux Isotope Reactor Site The High Flux Isotope Reactor site is located on the south side of the ORNL campus and is about a three-minute drive from her sister neutron facility, the Spallation Neutron Source. Operating at 85 MW, HFIR is the highest flux reactor-based source of neutrons for research in the United States, and it provides one of the highest steady-state neutron fluxes of any research reactor in the world. The thermal and cold neutrons produced by HFIR are used to study physics, chemistry, materials science, engineering, and biology. The intense neutron flux, constant power density, and constant-length fuel cycles are used by more than 500 researchers each year for neutron scattering research into

32

High Flux Isotope Reactor (HFIR) | Nuclear Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

High Flux Isotope Reactor High Flux Isotope Reactor May 30, 2013 The High Flux Isotope Reactor (HFIR) first achieved criticality on August 25, 1965, and achieved full power in August 1966. It is a versatile 85-MW isotope production, research, and test reactor with the capability and facilities for performing a wide variety of irradiation experiments and a world-class neutron scattering science program. HFIR is a beryllium-reflected, light water-cooled and moderated flux-trap type swimming pool reactor that uses highly enriched uranium-235 as fuel. HFIR typically operates seven 23-to-27 day cycles per year. Irradiation facility capabilities include Flux trap positions: Peak thermal flux of 2.5X1015 n/cm2/s with similar epithermal and fast fluxes (Highest thermal flux available in the

33

A brief History of Neutron Scattering at the Oak Ridge High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

Neutron scattering at the Oak Ridge National Laboratory dates back to 1945 when Ernest Wollan installed a modified x-ray diffractometer on a beam port of the original graphite reactor. Subsequently, Wollan and Clifford Shull pioneered neutron diffraction and laid the foundation for an active neutron scattering effort that continued through the 1950s, using the Oak Ridge Research reactor after 1958, and, starting in 1966, the High Flux Isotope Reactor, or HFIR.

Nagler, Stephen E [ORNL; Mook Jr, Herbert A [ORNL

2008-01-01T23:59:59.000Z

34

CRAD, Training - Oak Ridge National Laboratory High Flux Isotope Reactor |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Reactor CRAD, Training - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Training Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor. RADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Training - Oak Ridge National Laboratory High Flux Isotope Reactor More Documents & Publications CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Training - Oak Ridge National Laboratory High Flux Isotope Reactor

35

CRAD, Maintenance - Oak Ridge National Laboratory High Flux Isotope Reactor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Reactor CRAD, Maintenance - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Maintenance Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Maintenance - Oak Ridge National Laboratory High Flux Isotope Reactor More Documents & Publications CRAD, Safety Basis - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Maintenance - Oak Ridge National Laboratory High Flux Isotope Reactor

36

CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Engineering - Oak Ridge National Laboratory High Flux Isotope Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Engineering Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor More Documents & Publications CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor

37

RELAP5 model of the high flux isotope reactor with low enriched fuel thermal flux profiles  

Science Conference Proceedings (OSTI)

The High Flux Isotope Reactor (HFIR) currently uses highly enriched uranium (HEU) fabricated into involute-shaped fuel plates. It is desired that HFIR be able to use low enriched uranium (LEU) fuel while preserving the current performance capability for its diverse missions in material irradiation studies, isotope production, and the use of neutron beam lines for basic research. Preliminary neutronics and depletion simulations of HFIR with LEU fuel have arrived to feasible fuel loadings that maintain the neutronics performance of the reactor. This article illustrates preliminary models developed for the analysis of the thermal-hydraulic characteristics of the LEU core to ensure safe operation of the reactor. The beginning of life (BOL) LEU thermal flux profile has been modeled in RELAP5 to facilitate steady state simulation of the core cooling, and of anticipated and unanticipated transients. Steady state results are presented to validate the new thermal power profile inputs. A power ramp, slow depressurization at the outlet, and flow coast down transients are also evaluated. (authors)

Banfield, J.; Mervin, B.; Hart, S.; Ritchie, J.; Walker, S.; Ruggles, A.; Maldonado, G. I. [Dept. of Nuclear Engineering, Univ. of Tennessee Knoxville, Knoxville, TN 37996-2300 (United States)

2012-07-01T23:59:59.000Z

38

High Flux Isotope Reactor cold neutron source reference design concept  

SciTech Connect

In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

Selby, D.L.; Lucas, A.T.; Hyman, C.R. [and others

1998-05-01T23:59:59.000Z

39

CRAD, Management- Oak Ridge National Laboratory High Flux Isotope Reactor |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management- Oak Ridge National Laboratory High Flux Isotope Management- Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Management- Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Management in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Management- Oak Ridge National Laboratory High Flux Isotope Reactor More Documents & Publications CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope

40

CRAD, Maintenance - Oak Ridge National Laboratory High Flux Isotope Reactor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Contractor ORR Reactor Contractor ORR CRAD, Maintenance - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Maintenance Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Maintenance - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR More Documents & Publications CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor

Note: This page contains sample records for the topic "flux beam reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge National Laboratory High Flux Isotope Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Engineering Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory, High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR More Documents & Publications

42

CRAD, Management - Oak Ridge National Laboratory High Flux Isotope Reactor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge National Laboratory High Flux Isotope Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR CRAD, Management - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Management portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Management - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR More Documents & Publications

43

CRAD, Training - Oak Ridge National Laboratory High Flux Isotope Reactor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Contractor ORR Reactor Contractor ORR CRAD, Training - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Training Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Training - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR More Documents & Publications CRAD, Conduct of Operations - Oak Ridge National Laboratory High Flux

44

Decommissioning of the High Flux Beam Reactor  

NLE Websites -- All DOE Office Websites (Extended Search)

After careful planning and input from regulatory agencies and the community, a decommissioning plan for the HFBR has been finalized. A Feasibility Study was completed and a...

45

High Flux Beam Reactor | Environmental Restoration Projects ...  

NLE Websites -- All DOE Office Websites (Extended Search)

been taken to partially decommission and prepare the HFBR for safe storage. Final decommissioning of the HFBR building will be performed at the completion of the decay period. The...

46

Spheromak reactor with poloidal flux-amplifying transformer  

DOE Patents (OSTI)

An inductive transformer in the form of a solenoidal coils aligned along the major axis of a flux core induces poloidal flux along the flux core's axis. The current in the solenoidal coil is then reversed resulting in a poloidal flux swing and the conversion of a portion of the poloidal flux to a toroidal flux in generating a spheromak plasma wherein equilibrium approaches a force-free, minimum Taylor state during plasma formation, independent of the initial conditions or details of the formation. The spheromak plasma is sustained with the Taylor state maintained by oscillating the currents in the poloidal and toroidal field coils within the plasma-forming flux core. The poloidal flux transformer may be used either as an amplifier stage in a moving plasma reactor scenario for initial production of a spheromak plasma or as a method for sustaining a stationary plasma and further heating it. The solenoidal coil embodiment of the poloidal flux transformer can alternately be used in combination with a center conductive cylinder aligned along the length and outside of the solenoidal coil. This poloidal flux-amplifying inductive transformer approach allows for a relaxation of demanding current carrying requirements on the spheromak reactor's flux core, reduces plasma contamination arising from high voltage electrode discharge, and improves the efficiency of poloidal flux injection.

Furth, Harold P. (Princeton, NJ); Janos, Alan C. (East Windsor, NJ); Uyama, Tadao (Osaka, JP); Yamada, Masaaki (Lawrenceville, NJ)

1987-01-01T23:59:59.000Z

47

Spheromak reactor with poloidal flux-amplifying transformer  

DOE Patents (OSTI)

It is an object of the present invention to provide for improved generation and sustainment of an energetic plasma in a spheromak fusion reactor. A large poloidal magnetic flux is inductively induced in a spheromak-shaped plasma utilizing a reduced magnetic field-generating current in a current-carrying flux core.

Furth, H.P.; Janos, A.C.; Uyama, T.; Yamada, M.

1986-05-21T23:59:59.000Z

48

Neutron flux profile monitor for use in a fission reactor  

DOE Patents (OSTI)

A neutron flux monitor is provided which consists of a plurality of fission counters arranged as spaced-apart point detectors along a delay line. As a fission event occurs in any one of the counters, two delayed current pulses are generated at the output of the delay line. The time separation of the pulses identifies the counter in which the particular fission event occured. Neutron flux profiles of reactor cores can be more accurately measured as a result.

Kopp, Manfred K. (Oak Ridge, TN); Valentine, Kenneth H. (Lenoir City, TN)

1983-01-01T23:59:59.000Z

49

Neutron Spectral Brightness of Cold Guide 4 at the High Flux Isotope Reactor  

DOE Green Energy (OSTI)

The High Flux Isotope Reactor resumed operation in June of 2007 with a super-critical hydrogen cold source in horizontal beam tube 4. Cold guide 4 is a guide system designed to deliver neutrons from this source at reasonable flux at wavelengths greater than 4 Å to several instruments, and includes a 15-m, 96-section, 4-channel bender. A time-of-flight spectrum with calibrated detector was recorded at port C of cold guide 4, and compared to McStas simulations, to generate a brightness spectrum.

Winn,B.L.; Robertson, J.L.; Iverson, E.B.; Selby, D.L.

2009-05-03T23:59:59.000Z

50

Neutron beam characterization at the Neutron Radiography Reactor (NRAD)  

Science Conference Proceedings (OSTI)

The Neutron Radiography Reactor (NRAD) is a 250-kW TRIGA Reactor operated by Argonne National Laboratory and is located near Idaho Falls, Idaho. The reactor and its facilities regarding radiography are detailed in another paper at this conference; this paper summarizes neutron flux measurements and calculations that have been performed to better understand and potentially improve the neutronics characteristics of the reactor.

Imel, G.R.; Urbatsch, T.; Pruett, D.P.; Ross, J.R.

1990-01-01T23:59:59.000Z

51

Integral window/photon beam position monitor and beam flux detectors for x-ray beams  

DOE Patents (OSTI)

A monitor/detector assembly in a synchrotron for either monitoring the position of a photon beam or detecting beam flux may additionally function as a vacuum barrier between the front end and downstream segment of the beamline in the synchrotron. A base flange of the monitor/detector assembly is formed of oxygen free copper with a central opening covered by a window foil that is fused thereon. The window foil is made of man-made materials, such as chemical vapor deposition diamond or cubic boron nitrate and in certain configurations includes a central opening through which the beams are transmitted. Sensors of low atomic number materials, such as aluminum or beryllium, are laid on the window foil. The configuration of the sensors on the window foil may be varied depending on the function to be performed. A contact plate of insulating material, such as aluminum oxide, is secured to the base flange and is thereby clamped against the sensor on the window foil. The sensor is coupled to external electronic signal processing devices via a gold or silver lead printed onto the contact plate and a copper post screw or alternatively via a copper screw and a copper spring that can be inserted through the contact plate and coupled to the sensors. In an alternate embodiment of the monitor/detector assembly, the sensors are sandwiched between the window foil of chemical vapor deposition diamond or cubic boron nitrate and a front foil made of similar material.

Shu, Deming (Darien, IL); Kuzay, Tuncer M. (Naperville, IL)

1995-01-01T23:59:59.000Z

52

Neutronics Modeling of the High Flux Isotope Reactor using COMSOL  

Science Conference Proceedings (OSTI)

The High Flux Isotope Reactor located at the Oak Ridge National Laboratory is a versatile 85 MWth research reactor with cold and thermal neutron scattering, materials irradiation, isotope production, and neutron activation analysis capabilities. HFIR staff members are currently in the process of updating the thermal hydraulic and reactor transient modeling methodologies. COMSOL Multiphysics has been adopted for the thermal hydraulic analyses and has proven to be a powerful finite-element-based simulation tool for solving multiple physics-based systems of partial and ordinary differential equations. Modeling reactor transients is a challenging task because of the coupling of neutronics, heat transfer, and hydrodynamics. This paper presents a preliminary COMSOL-based neutronics study performed by creating a two-dimensional, two-group, diffusion neutronics model of HFIR to study the spatially-dependent, beginning-of-cycle fast and thermal neutron fluxes. The 238-group ENDF/B-VII neutron cross section library and NEWT, a two-dimensional, discrete-ordinates neutron transport code within the SCALE 6 code package, were used to calculate the two-group neutron cross sections required to solve the diffusion equations. The two-group diffusion equations were implemented in the COMSOL coefficient form PDE application mode and were solved via eigenvalue analysis using a direct (PARDISO) linear system solver. A COMSOL-provided adaptive mesh refinement algorithm was used to increase the number of elements in areas of largest numerical error to increase the accuracy of the solution. The flux distributions calculated by means of COMSOL/SCALE compare well with those calculated with benchmarked three-dimensional MCNP and KENO models, a necessary first step along the path to implementing two- and three-dimensional models of HFIR in COMSOL for the purpose of studying the spatial dependence of transient-induced behavior in the reactor core.

Chandler, David [ORNL; Primm, Trent [ORNL; Freels, James D [ORNL; Maldonado, G Ivan [ORNL

2011-01-01T23:59:59.000Z

53

Studies of Past Operations at the High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

During the past year, two topics related to past operations of the High Flux Isotope Reactor (HFIR) were reviewed in response to on-going programs at Oak Ridge National Laboratory (ORNL). Currently, studies are being conducted to determine if HFIR can be converted from high enriched uranium (HEU) fuel to low enriched uranium (LEU). While the basis for conversion is the current performance of the reactor, redesign studies revealed an apparent slight degradation in performance of the reactor over its 40 year lifetime. A second program requiring data from HFIR staff is the Integrated Facility Disposition Project (IFDP). The IFDP is a program that integrates environmental cleanup with modernization and site revitalization plans and projects. Before a path of disposal can be established for discharged HFIR beryllium reflector regions, the reflector components must be classified as to type of waste and specifically, determine if they are transuranic waste.

Chandler, David [ORNL; Primm, Trent [ORNL

2009-01-01T23:59:59.000Z

54

Performance and safety parameters for the high flux isotope reactor  

Science Conference Proceedings (OSTI)

A Monte Carlo depletion model for the High Flux Isotope Reactor (HFIR) Cycle 400 and its use in calculating parameters of relevance to the reactor performance and safety during the reactor cycle are presented in this paper. This depletion model was developed to serve as a reference for the design of a low-enriched uranium (LEU) fuel for an ongoing study to convert HFIR from high-enriched uranium (HEU) to LEU fuel; both HEU and LEU depletion models use the same methodology and ENDF/B-VII nuclear data as discussed in this paper. The calculated HFIR Cycle 400 parameters, which are compared with measurement data from critical experiments performed at HFIR, data included in the HFIR Safety Analysis Report (SAR), or data reported by previous calculations, provide a basis for verification or updating of the corresponding SAR data. (authors)

Ilas, G. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6172 (United States); Primm III, T. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6172 (United States); Primm Consulting, LLC, 945 Laurel Hill Road, Knoxville, TN 37923 (United States)

2012-07-01T23:59:59.000Z

55

Performance and Safety Parameters for the High Flux Isotope Reactor  

SciTech Connect

A Monte Carlo depletion model for the High Flux Isotope Reactor (HFIR) Cycle 400 and its use in calculating parameters of relevance to the reactor performance and safety during the reactor cycle are presented in this paper. This depletion model was developed to serve as a reference for the design of a low-enriched uranium (LEU) fuel for an ongoing study to convert HFIR from high-enriched uranium (HEU) to LEU fuel; both HEU and LEU depletion models use the same methodology and ENDV/B-VII nuclear data as discussed in this paper. The calculated HFIR Cycle 400 parameters, which are compared when available with measurement data from critical experiments performed at HFIR, data included in the HFIR Safety Analysis Report (SAR), or data reported by previous calculations, provide a basis for verification or updating of the corresponding SAR data.

Ilas, Germina [ORNL; Primm, Trent [Primm Consulting, LLC

2012-01-01T23:59:59.000Z

56

Scientific Upgrades at the Oak Ridge National Laboratory High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

The United States Department of Energy is sponsoring a number of projects that will provide scientific upgrades to the neutron science facilities associated with the High Flux Isotope Reactor (HFIR) located at Oak Ridge National Laboratory. Funding for the first upgrade project was initiated in 1996 and all presently identified upgrade projects are expected to be completed by the end of 2003. The upgrade projects include: (1) larger beam tubes, (2) a new monochromator drum for the HB-1 beam line, (3) a new HB-2 beam line system that includes one thermal guide and a new monochromator drum, (4) new instruments for the HB-2 beamline, (5) a new monochromator drum for the HB-3 beam line, (6) a supercritical hydrogen cold source system to be retrofitted into the HB-4 beam tube, (7) a 3.5 kW refrigeration system at 20 K to support the cold source and a new building to house it, (8) a new HB-4 beam line system composed of four cold neutron guides with various mirror coatings and associated shielding, (9) a number of new instruments for the cold beams including two new SANS instruments, and (10) construction of support buildings. This paper provides a short summary of these projects including their present status and schedule.

Selby, Douglas L [ORNL; Jones, Amy [ORNL; Crow, Lowell [ORNL

2012-01-01T23:59:59.000Z

57

Application of reactor-pumped lasers to power beaming  

SciTech Connect

Power beaming is the concept of centralized power generation and distribution to remote users via energy beams such as microwaves or laser beams. The power beaming community is presently performing technical evaluations of available lasers as part of the design process for developing terrestrial and space-based power beaming systems. This report describes the suitability of employing a nuclear reactor-pumped laser in a power beaming system. Although there are several technical issues to be resolved, the power beaming community currently believes that the AlGaAs solid-state laser is the primary candidate for power beaming because that laser meets the many design criteria for such a system and integrates well with the GaAs photodiode receiver array. After reviewing the history and physics of reactor-pumped lasers, the advantages of these lasers for power beaming are discussed, along with several technical issues which are currently facing reactor-pumped laser research. The overriding conclusion is that reactor-pumped laser technology is not presently developed to the point of being technially or economically competitive with more mature solid-state technologies for application to power beaming. 58 refs.

Repetti, T.E.

1991-10-01T23:59:59.000Z

58

Calculation of heating values for the high flux isotope reactor  

Science Conference Proceedings (OSTI)

Calculating the amount of energy released by a fission reaction (fission Q value) and the heating rate distribution in a nuclear reactor is an important part of the safety analysis. However, these calculations can become very complex. One of the codes that can be used for this type of analyses is the Monte Carlo transport code MCNP5. Currently it is impossible to calculate the Q value and heating rate disposition for delayed beta and delayed gamma particles directly from MCNP5. The purpose of this paper is to outline a rigorous method for indirectly calculating the Q values and heating rates in the High Flux Isotope Reactor (HFIR), based on previous similar studies carried out for very high-temperature reactor configurations. This method has been applied in this study to calculate heating rates for the beginning of cycle (BOC) and end-of-cycle (EOC) states of HFIR. In addition, the BOC results obtained for HFIR are compared with corresponding results for the Advanced Test Reactor. The fission Q value for HFIR was calculated as 200.2 MeV for the BOC and 201.3 MeV for the EOC. It was also determined that 95.1% and 95.4% of the heat was deposited within the HFIR fuel plates for the BOC and EOC models, respectively. This methodology can also be used for heating rate calculations for HFIR experiments. (authors)

Peterson, J.; Ilas, G. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6172 (United States)

2012-07-01T23:59:59.000Z

59

Calculation of Heating Values for the High Flux Isotope Reactor  

SciTech Connect

Calculating the amount of energy released by a fission reaction (fission Q value) and the heating rate distribution in a nuclear reactor is an important part of the safety analysis. However, these calculations can become very complex. One of the codes that can be used for this type of analyses is the Monte Carlo transport code MCNP5. Currently it is impossible to calculate the Q value and heating rate disposition for delayed beta and delayed gamma particles directly from MCNP5. The purpose of this paper is to outline a rigorous method for indirectly calculating the Q values and heating rates in the High Flux Isotope Reactor (HFIR), based on previous similar studies carried out for very high-temperature reactor configurations. This method has been applied in this study to calculate heating rates for the beginning of cycle (BOC) and end-of-cycle (EOC) states of HFIR. In addition, the BOC results obtained for HFIR are compared with corresponding results for the Advanced Test Reactor. The fission Q value for HFIR was calculated as 200.2 MeV for the BOC and 201.3 MeV for the EOC. It was also determined that 95.1% and 95.4% of the heat was deposited within the HFIR fuel plates for the BOC and EOC models, respectively. This methodology can also be used for heating rate calculations for HFIR experiments.

Peterson, Joshua L [ORNL; Ilas, Germina [ORNL

2012-01-01T23:59:59.000Z

60

Determining Reactor Flux from Xenon-136 and Cesium-135 in Spent Fuel  

E-Print Network (OSTI)

The ability to infer the reactor flux from spent fuel or seized fissile material would enhance the tools of nuclear forensics and nuclear nonproliferation significantly. We show that reactor flux can be inferred from the ratios of xenon-136 to xenon-134 and cesium-135 to cesium-137. If the average flux of a reactor is known, the flux inferred from measurements of spent fuel could help determine whether that spent fuel was loaded as a blanket or close to the mid-plane of the reactor. The cesium ratio also provides information on reactor shutdowns during the irradiation of fuel, which could prove valuable for identifying the reactor in question through comparisons with satellite reactor heat monitoring data. We derive analytic expressions for these correlations and compare them to experimental data and to detailed reactor burn simulations. The enrichment of the original uranium fuel affects the correlations by up to 3 percent, but only at high flux.

Hayes, A C

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flux beam reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Determining Reactor Flux from Xenon-136 and Cesium-135 in Spent Fuel  

E-Print Network (OSTI)

The ability to infer the reactor flux from spent fuel or seized fissile material would enhance the tools of nuclear forensics and nuclear nonproliferation significantly. We show that reactor flux can be inferred from the ratios of xenon-136 to xenon-134 and cesium-135 to cesium-137. If the average flux of a reactor is known, the flux inferred from measurements of spent fuel could help determine whether that spent fuel was loaded as a blanket or close to the mid-plane of the reactor. The cesium ratio also provides information on reactor shutdowns during the irradiation of fuel, which could prove valuable for identifying the reactor in question through comparisons with satellite reactor heat monitoring data. We derive analytic expressions for these correlations and compare them to experimental data and to detailed reactor burn simulations. The enrichment of the original uranium fuel affects the correlations by up to 3 percent, but only at high flux.

A. C. Hayes; Gerard Jungman

2012-05-30T23:59:59.000Z

62

The High Flux Isotope Reactor (HFIR) cold source project at ORNL  

DOE Green Energy (OSTI)

Following the decision to cancel the Advanced Neutron Source (ANS) Project at Oak Ridge National Laboratory (ORNL), it was determined that a hydrogen cold source should be retrofitted into an existing beam tube of the High Flux Isotope Reactor (HFIR) at ORNL> The preliminary design of this system has been completed and an approval in principal of the design has been obtained from the internal ORNL safety review committees and the US Department of Energy (DOE) safety review committee. The cold source concept is basically a closed loop forced flow supercritical hydrogen system. The supercritical approach was chosen because of its enhanced stability in the proposed high heat flux regions. Neutron and gamma physics of the moderator have been analyzed using the 3D Monte Carlo code MCNP. A 3D structural analysis model of the moderator vessel, vacuum tube, and beam tube was completed to evaluate stress loadings and to examine the impact of hydrogen detonations in the beam tube. A detailed ATHENA system model of the hydrogen system has been developed to simulate loop performance under normal and off-normal transient conditions. Semi-prototypic hydrogen loop tests of the system have been performed at the Arnold Engineering Design Center (AEDC) located in Tullahoma, Tennessee to verify the design and benchmark the analytical system model. A 3.5 kW refrigerator system has been ordered and is expected to be delivered to ORNL by the end of this calendar year. The present schedule shows the assembling of the cold source loop on side during the fall of 1999 for final testing before insertion of the moderator plug assembly into the reactor beam tube during the end of the year 2000.

Selby, D.L.; Lucas, A.T.; Chang, S.J.; Freels, J.D.

1998-06-01T23:59:59.000Z

63

Experimental and Computational Study of the Flux Spectrum in Materials Irradiation Facilities of the High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

This report compares the available experimental neutron flux data in the High Flux Isotope Reactor (HFIR) to computational models of the HFIR loosely based on the experimental loading of cycle 400. Over the last several decades, many materials irradiation experiments have included fluence monitors which were subsequently used to reconstruct a coarse-group energy-dependent flux spectrum. Experimental values for thermal and fast neutron flux in the flux trap about the midplane are found to be 1.78 0.27 and 1.05 0:06 1E15 n/cm sec, respectively. The reactor physics code MCNP is used to calculate neutron flux in the HFIR at irradiation locations. The computational results are shown to correspond to closely to experimental data for thermal and fast neutron flux with calculated percent differences ranging from 0:55 13.20%.

McDuffee, Joel Lee [ORNL; Daly, Thomas F [ORNL

2012-01-01T23:59:59.000Z

64

Fabrication of control rods for the High Flux Isotope Reactor  

SciTech Connect

The High Flux Isotope Reactor (HFIR) is a research-type nuclear reactor that was designed and built in the early 1960s and has been in continuous operation since its initial criticality in 1965. Under current plans, the HFIR is expected to continue in operation until 2035. This report updates ORNL/TM-9365, Fabrication Procedure for HFIR Control Plates, which was mainly prepared in the early 1970's but was not issued until 1984, and reflects process changes, lessons learned in the latest control rod fabrication campaign, and suggested process improvements to be considered in future campaigns. Most of the personnel involved with the initial development of the processes and in part campaigns have retired or will retire soon. Because their unlikely availability in future campaigns, emphasis has been placed on providing some explanation of why the processes were selected and some discussions about the importance of controlling critical process parameters. Contained in this report is a description of the function of control rods in the reactor, the brief history of the development of control rod fabrication processes, and a description of procedures used in the fabrication of control rods. A listing of the controlled documents and procedures used in the last fabrication campaigns is referenced in Appendix A.

Sease, J.D.

1998-03-01T23:59:59.000Z

65

Design and optimization of a high thermal flux research reactor via Kriging-based algorithm  

E-Print Network (OSTI)

In response to increasing demands for the services of research reactors, a 5 MW LEU-fueled research reactor core is developed and optimized to provide high thermal flux within specified limits upon thermal hydraulic ...

Kempf, Stephanie Anne

2011-01-01T23:59:59.000Z

66

Fast Flux Test Reactor: Re-evaluation of the Department's Approach...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home Fast Flux Test Reactor: Re-evaluation of the Department's Approach to Deactivation, Decontamination,...

67

Low-Enriched Uranium Fuel Design with Two-Dimensional Grading for the High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

An engineering design study of the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel is ongoing at Oak Ridge National Laboratory. The computational models developed during fiscal year 2010 to search for an LEU fuel design that would meet the requirements for the conversion and the results obtained with these models are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating HEU fuel core. The results obtained indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations under the assumption that the operating power for the reactor fueled with LEU can be increased from the current value of 85 MW to 100 MW.

Ilas, Germina [ORNL; Primm, Trent [ORNL

2011-05-01T23:59:59.000Z

68

Fuel Grading Study on a Low-Enriched Uranium Fuel Design for the High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

An engineering design study that would enable the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium to low-enriched uranium fuel is ongoing at Oak Ridge National Laboratory. The computational models used to search for a low-enriched uranium (LEU) fuel design that would meet the requirements for the conversion study, and the recent results obtained with these models during FY 2009, are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating high-enriched uranium fuel core. These studies indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations.

Ilas, Germina [ORNL; Primm, Trent [ORNL

2009-11-01T23:59:59.000Z

69

Monte Carlo simulation of neutral beam injection into fusion reactors  

SciTech Connect

Motivations and techniques for the Monte Carlo computer simulation of energetic neutral beam injection for fusion reactors are described. The versatility of this approach allows a significantly more sophisticated treatment of charge transfer collision phenomena and consequent effects on engineering design than available from prior work. Exemplary results for a mirror Fusion Engineering Research Facility (FERF) are discussed. (auth)

Miller, R.L.

1975-09-15T23:59:59.000Z

70

High-energy tritium beams as current drivers in tokamak reactors  

Science Conference Proceedings (OSTI)

The effect on neutral-beam design and reactor performance of using high-energy (approx. 3-10 MeV) tritium neutral beams to drive steady-state tokamak reactors is considered. The lower current of such beams leads to several advantages over lower-energy neutral beams. The major disadvantage is the reduction of the reactor output caused by the lower current-drive efficiency of the high-energy beams.

Mikkelsen, D.R.; Grisham, L.R.

1983-04-01T23:59:59.000Z

71

POLOIDAL FLUX LINKAGE REQUIREMENTS FOR THE INTERNATIONAL THERMONUCLEAREXPERIMENTAL REACTOR  

E-Print Network (OSTI)

the poloidal flux linkage requirements for the current ramp-up and for the flat-top phase of the proposed [2] and JSOLVER [3] to calculate the flux linkage requirements during the current ramp-up and steady regarding the plasma ramp-up time, and the amount of flux linkage change that the poloidal field coil system

72

Prediction of the reactor antineutrino flux for the Double Chooz experiment  

E-Print Network (OSTI)

This thesis benchmarks the deterministic lattice code, DRAGON, against data, and then applies this code to make a prediction for the antineutrino flux from the Chooz BI and B2 reactors. Data from the destructive assay of ...

Jones, Christopher LaDon

2012-01-01T23:59:59.000Z

73

Study of a multi-beam accelerator driven thorium reactor  

DOE Green Energy (OSTI)

The primary advantages that accelerator driven systems have over critical reactors are: (1) Greater flexibility regarding the composition and placement of fissile, fertile, or fission product waste within the blanket surrounding the target, and (2) Potentially enhanced safety brought about by operating at a sufficiently low value of the multiplication factor to preclude reactivity induced events. The control of the power production can be achieved by vary the accelerator beam current. Furthermore, once the beam is shut off the system shuts down. The primary difference between the operation of an accelerator driven system and a critical system is the issue of beam interruptions of the accelerator. These beam interruptions impose thermo-mechanical loads on the fuel and mechanical components not found in critical systems. Studies have been performed to estimate an acceptable number of trips, and the value is significantly less stringent than had been previously estimated. The number of acceptable beam interruptions is a function of the length of the interruption and the mission of the system. Thus, for demonstration type systems and interruption durations of 1sec < t < 5mins, and t > 5mins 2500/yr and 50/yr are deemed acceptable. However, for industrial scale power generation without energy storage type systems and interruption durations of t < 1sec., 1sec < t < 10secs., 10secs < t < 5mins, and t > 5mins, the acceptable number of interruptions are 25000, 2500, 250, and 3 respectively. However, it has also been concluded that further development is required to reduce the number of trips. It is with this in mind that the following study was undertaken. The primary focus of this study will be the merit of a multi-beam target system, which allows for multiple spallation sources within the target/blanket assembly. In this manner it is possible to ameliorate the effects of sudden accelerator beam interruption on the surrounding reactor, since the remaining beams will still be supplying source neutrons. The proton beam will be assumed to have an energy of 1 GeV, and the target material will be natural lead, which will also be the coolant for the reactor assembly. Three proton beam arrangements will be considered, first a single beam (the traditional arrangement) with an entry at the assembly center, two more options will consist of three and six entry locations. The reactor fuel assembly parameters will be based on those of the S-PRISM fast reactor proposed by GE, and the fuel composition and type will be based on that proposed by Aker Solutions for use in their accelerator driven thorium reactor. The following table summarizes the parameters to be used in this study. The isotopic composition of the fertile material is 100% Th-232, and the plutonium isotopic distribution corresponds to that characteristic of the discharge from a typical LWR, following five years of decay. Thus, the isotopic distribution for the plutonium is; Pu-238 2.5%, Pu-239 53.3%, Pu-240 25.1%, Pu-241 11.8%, and Pu-242 7.3%.

Ludewig, H.; Aronson, A.

2011-03-01T23:59:59.000Z

74

High Flux Isotopes Reactor (HFIR) Cooling Towers Demolition Waste Management  

SciTech Connect

This paper describes the results of a joint initiative between Oak Ridge National Laboratory, operated by UT-Battelle, and Bechtel Jacobs Company, LLC (BJC) to characterize, package, transport, treat, and dispose of demolition waste from the High Flux Isotope Reactor (HFIR), Cooling Tower. The demolition and removal of waste from the site was the first critical step in the planned HFIR beryllium reflector replacement outage scheduled. The outage was scheduled to last a maximum of six months. Demolition and removal of the waste was critical because a new tower was to be constructed over the old concrete water basin. A detailed sampling and analysis plan was developed to characterize the hazardous and radiological constituents of the components of the Cooling Tower. Analyses were performed for Resource Conservation and Recovery Act (RCRA) heavy metals and semi-volatile constituents as defined by 40 CFR 261 and radiological parameters including gross alpha, gross beta, gross gamma, alpha-emitting isotopes and beta-emitting isotopes. Analysis of metals and semi-volatile constituents indicated no exceedances of regulatory limits. Analysis of radionuclides identified uranium and thorium and associated daughters. In addition 60Co, 99Tc, 226Rm, and 228Rm were identified. Most of the tower materials were determined to be low level radioactive waste. A small quantity was determined not to be radioactive, or could be decontaminated. The tower was dismantled October 2000 to January 2001 using a detailed step-by-step process to aid waste segregation and container loading. The volume of waste as packaged for treatment was approximately 1982 cubic meters (70,000 cubic feet). This volume was comprised of plastic ({approx}47%), wood ({approx}38%) and asbestos transite ({approx}14%). The remaining {approx}1% consisted of the fire protection piping (contaminated with lead-based paint) and incidental metal from conduit, nails and braces/supports, and sludge from the basin. The waste, except for the asbestos, was volume reduced via a private contract mechanism established by BJC. After volume reduction, the waste was packaged for rail shipment. This large waste management project successfully met cost and schedule goals.

Pudelek, R. E.; Gilbert, W. C.

2002-02-26T23:59:59.000Z

75

Energy distribution and flux of fast neutrals and residual ions extracted from a neutral beam source  

E-Print Network (OSTI)

Energy distribution and flux of fast neutrals and residual ions extracted from a neutral beam-4004 Received 21 April 2006; accepted 6 July 2006; published 7 August 2006 The energy distribution and flux into fast neutrals. The neutral energy distribution was always shifted to lower energies compared

Economou, Demetre J.

76

Advanced LWR Fuel Testing Capabilities in the ORNL High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

A new test capability for the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) is being developed that will allow testing of advanced nuclear fuels and cladding materials under prototypic light-water reactor (LWR) operating conditions in less time than it takes in other research reactors. This paper will describe the HFIR testing capabilities, the new advanced fuel/cladding testing facilities, and the initial cooperative irradiation experiments currently planned to start in late 2008.

Ott, Larry J [ORNL; McDuffee, Joel Lee [ORNL; Spellman, Donald J [ORNL

2008-01-01T23:59:59.000Z

77

Homogeneous fast-flux isotope-production reactor  

DOE Patents (OSTI)

A method is described for producing tritium in a liquid metal fast breeder reactor. Lithium target material is dissolved in the liquid metal coolant in order to facilitate the production and removal of tritium.

Cawley, W.E.; Omberg, R.P.

1982-08-19T23:59:59.000Z

78

The HIgh Flux Isotope Reactor: Past, Present, and Future  

Science Conference Proceedings (OSTI)

HFIR construction began in 1965 and completed in 1966. During the first 15 years of operation, the heavy actinide isotope production mission was dominant. HFIR is now positioned as one of the most versataile research reactors in the world.

Beierschmitt, Kelly J [ORNL; Farrar, Mike B [ORNL

2009-01-01T23:59:59.000Z

79

Simulation of the SONGS Reactor Antineutrino Flux Using DRAGON  

E-Print Network (OSTI)

For reactor antineutrino experiments, a thorough understanding of the fuel composition and isotopic evolution is of paramount importance for the extraction of $\\theta_{13}$. To accomplish these goals, we employ the deterministic lattice code DRAGON, and analyze the instantaneous antineutrino rate from the San Onofre Nuclear Generating Station (SONGS) Unit 2 reactor in California. DRAGON's ability to predict the rate for two consecutive fuel cycles is examined.

Jones, C L

2011-01-01T23:59:59.000Z

80

Neutron-flux profile monitor for use in a fission reactor  

DOE Patents (OSTI)

A neutron flux monitor is provided which consists of a plurality of fission counters arranged as spaced-apart point detectors along a delay line. As a fission event occurs in any one of the counters, two delayed current pulses are generated at the output of the delay line. The time separation of the pulses identifies the counter in which the particular fission event occurred. Neutron flux profiles of reactor cores can be more accurately measured as a result.

Kopp, M.K.; Valentine, K.H.

1981-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "flux beam reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Awareness, Preference, Utilization, and Messaging Research for the Spallation Neutron Source and High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world, and the SNS is one of the world's most intense pulsed neutron beams. Management of these two resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD commissioned this survey research to develop baseline information regarding awareness of and perceptions about neutron science. Specific areas of investigative interest include the following: (1) awareness levels among those in the scientific community about the two neutron sources that ORNL offers; (2) the level of understanding members of various scientific communities have regarding benefits that neutron scattering techniques offer; and (3) any perceptions that negatively impact utilization of the facilities. NScD leadership identified users of two light sources in North America - the Advanced Photon Source (APS) at Argonne National Laboratory and the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory - as key publics. Given the type of research in which these scientists engage, they would quite likely benefit from including the neutron techniques available at SNS and HFIR among their scientific investigation tools. The objective of the survey of users of APS, NSLS, SNS, and HFIR was to explore awareness of and perceptions regarding SNS and HFIR among those in selected scientific communities. Perceptions of SNS and FHIR will provide a foundation for strategic communication plan development and for developing key educational messages. The survey was conducted in two phases. The first phase included qualitative methods of (1) key stakeholder meetings; (2) online interviews with user administrators of APS and NSLS; and (3) one-on-one interviews and traditional and online focus groups with scientists. The latter include SNS, HFIR, and APS users as well as scientists at ORNL, some of whom had not yet used HFIR and/or SNS. These approaches informed development of the second phase, a quantitative online survey. The survey consisted of 16 questions and 7 demographic categorizations, 9 open-ended queries, and 153 pre-coded variables and took an average time of 18 minutes to complete. The survey was sent to 589 SNS/HFIR users, 1,819 NSLS users, and 2,587 APS users. A total of 899 individuals provided responses for this study: 240 from NSLS; 136 from SNS/HFIR; and 523 from APS. The overall response rate was 18%.

Bryant, Rebecca [Bryant Research, LLC; Kszos, Lynn A [ORNL

2011-03-01T23:59:59.000Z

82

Dynamics of neutralizing electrons during the focusing of intense heavy ions beams inside a heavy fusion reactor chamber  

E-Print Network (OSTI)

beams inside a heavy ion fusion reactor chamber * Agustin F.of a Heavy Ion Fusion reactor heavily depends on the maximum

Lifschitz, Agustin F.; Maynard, Gilles; Vay, Jean-Luc; Lenglet, Andrian

2006-01-01T23:59:59.000Z

83

Dynamics of neutralizing electrons during the focusing of intense heavy ions beams inside a heavy fusion reactor chamber  

E-Print Network (OSTI)

beams inside a heavy ion fusion reactor chamber * Agustin F.efficiency of a Heavy Ion Fusion reactor heavily depends on

Lifschitz, Agustin F.; Maynard, Gilles; Vay, Jean-Luc; Lenglet, Andrian

2006-01-01T23:59:59.000Z

84

Proposed Program: Reliability-Centered Maintenance (RCM) for the High Flux Isotope Reactor  

E-Print Network (OSTI)

There is a desire to implement a reliability-centered maintenance at the High Flux Isotope Reactor (HFIR) at the Oak-Centered Maintenance (RCM) structure is proposed for implementation at the HFIR. This proposed RCM structure is based on widely used and accepted industry practices. The HFIR primary cleanup system is used to provide specific

85

CONTROL MEANS FOR REACTOR  

DOE Patents (OSTI)

An apparatus for controlling a nuclear reactor includes a tank just below the reactor, tubes extending from the tank into the reactor, and a thermally expansible liquid neutron absorbent material in the tank. The liquid in the tank is exposed to a beam of neutrons from the reactor which heats the liquid causing it to expand into the reactor when the neutron flux in the reactor rises above a predetermincd danger point. Boron triamine may be used for this purpose.

Manley, J.H.

1961-06-27T23:59:59.000Z

86

PRELIMINARY SOLUTION CRITICAL EXPERIMENTS FOR THE HIGH-FLUX ISOTOPE REACTOR  

DOE Green Energy (OSTI)

The design of the High-Flux Isotope Reactor (HFIR) was supported by a series of preliminary experiments performed at the Oak Ridge Critical Experiments Facility in 1960. The experiments yielded results describing directly some of the expected performance characteristics of the reactor and strengthened the calculational methods used in its design. The critical assembly, like the reactor, was of a flux-trap type in which a central 6-in.-dia column of H/sub 2/O was surrounded by an annulus of fissile material and, in turn, by an annular neutron reflector. The fuel region contained a solution of enriched uranyl nitrate in a mixture of H/sub 2/O and D/sub 2/O and the reflector was a composite of two annuli, the inner one of D/sub 2/O surrounded by one of H/sub 2/O. In most experiments the ends of the assembly were reflected by H/sub 2/O. Important results evaluate the absolute thermal-neutron flux to be expected in the design reactor and describe the flux distributions within this type of assembly. It was also observed that the cadmium ratio along the axis of the assembly was about 100, showing that a highly thermal-neutron flux was truly developed in the trap. It was shown that reduction of the hydrogen density in the central water column to about 80% of its normal value increased the reactivity about 6% and that further hydrogen density reduction decreased the reactivity as the effect of the loss of neutron moderation dominated the effect of the increased coupling across the central column. These considerations are of importance to the safety of the reactor. Additional experiments gave values of the usual critical dimensions and explored the effects on both the dimensions and the flux distributions of changing the concentration of the uranyl nitrate solution, of changing the composition of the solvent, and of adding neutron-absorbing materials to the D/ sub 2/O reflector. These changes were made to alter the neutron properties of the fuel solution over a range including those expected in the reactor itself. (auth)

Fox, J.K.; Gilley, L.W.; Magnuson, D.W.

1963-06-12T23:59:59.000Z

87

The ORNL High Flux Isotope Reactor and New Advanced Fuel Testing Capabilities  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy s High Flux Isotope Reactor (HFIR), located at the Oak Ridge National Laboratory (ORNL), was originally designed (in the 1960s) primarily as a part of the overall program to produce transuranic isotopes for use in the heavy-element research program of the United States. Today, the reactor is a highly versatile machine, producing medical and transuranic isotopes and performing materials test experimental irradiations and neutron-scattering experiments. The ability to test advanced fuels and cladding materials in a thermal neutron spectrum in the United States is limited, and a fast-spectrum irradiation facility does not currently exist in this country. The HFIR has a distinct advantage for consideration as a fuel/cladding irradiation facility because of the extremely high neutron fluxes that this reactor provides over the full thermal- to fast-neutron energy range. New test capabilities have been developed that will allow testing of advanced nuclear fuels and cladding materials in the HFIR under prototypic light-water reactor (LWR) and fast-reactor (FR) operating conditions.

Ott, Larry J [ORNL; McDuffee, Joel Lee [ORNL

2011-01-01T23:59:59.000Z

88

Feasibility analyses for HEU to LEU fuel conversion of the LAUE Langivin Institute (ILL) High Flux Reactor (RHF).  

SciTech Connect

The High Flux Reactor (RHF) of the Laue Langevin Institute (ILL) based in Grenoble, France is a research reactor designed primarily for neutron beam experiments for fundamental science. It delivers one of the most intense neutron fluxes worldwide, with an unperturbed thermal neutron flux of 1.5 x 10{sup 15} n/cm{sup 2}/s in its reflector. The reactor has been conceived to operate at a nuclear power of 57 MW but currently operates at 52 MW. The reactor currently uses a Highly Enriched Uranium (HEU) fuel. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context, most worldwide research and test reactors have already started a program of conversion to the use of Low Enriched Uranium (LEU) fuel. A new type of LEU fuel based on a mixture of uranium and molybdenum (UMo) is expected to allow the conversion of compact high performance reactors like the RHF. This report presents the results of reactor design, performance and steady state safety analyses for conversion of the RHF from the use of HEU fuel to the use of UMo LEU fuel. The objective of this work was to show that is feasible, under a set of manufacturing assumptions, to design a new RHF fuel element that could safely replace the HEU element currently used. The new proposed design has been developed to maximize performance, minimize changes and preserve strong safety margins. Neutronics and thermal-hydraulics models of the RHF have been developed and qualified by benchmark against experiments and/or against other codes and models. The models developed were then used to evaluate the RHF performance if LEU UMo were to replace the current HEU fuel 'meat' without any geometric change to the fuel plates. Results of these direct replacement analyses have shown a significant degradation of the RHF performance, in terms of both neutron flux and cycle length. Consequently, ANL and ILL have collaborated to investigate alternative designs. A promising candidate design has been selected and studied, increasing the total amount of fuel without changing the external plate dimensions by relocating the burnable poison. In this way, changes required in the fuel element are reasonably small. With this new design, neutronics analyses have shown that performance could be maintained at a high level: 2 day decrease of cycle length (to 47.5 days at 58.3 MW) and 1-2% decrease of brightness in the cold and hot sources in comparison to the current typical operation. In addition, studies have shown that the thermal-hydraulic and shutdown margins for the proposed LEU design would satisfy technical specifications.

Stevens, J.; Tentner. A.; Bergeron, A.; Nuclear Engineering Division

2010-08-19T23:59:59.000Z

89

Reactor operations informal report, October 1994  

Science Conference Proceedings (OSTI)

This monthly progress report is divided into two parts. Part one covers the Brookhaven Medical Research Reactor and part two covers the Brookhaven High Flux Beam Reactor. Information is given for each reactor covering the following areas: reactor operation; instrumentation; mechanical maintenance; occurrence reports; and reactor safety.

Hauptman, H.M.; Petro, J.N.; Jacobi, O.; Lettieri, V.; Holden, N.; Ports, D.; Petricek, R.

1994-10-01T23:59:59.000Z

90

Review of the Oak Ridge National Laboratory High Flux Isotope Reactor Implementation Verification Review Processes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Oversight Review of the Independent Oversight Review of the Oak Ridge National Laboratory High Flux Isotope Reactor Implementation Verification Review Processes May 2011 January 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U. S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background........................................................................................................................................... 1 3.0 Scope..................................................................................................................................................... 2

91

Review of the Oak Ridge National Laboratory High Flux Isotope Reactor Implementation Verification Review Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

Independent Oversight Review of the Independent Oversight Review of the Oak Ridge National Laboratory High Flux Isotope Reactor Implementation Verification Review Processes May 2011 January 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U. S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background........................................................................................................................................... 1 3.0 Scope..................................................................................................................................................... 2

92

Partial Safety Analysis for a Reduced Uranium Enrichment Core for the High Flux Isotope Reactor  

SciTech Connect

A computational model of the reactor core of the High Flux Isotope Rector (HFIR) was developed in order to analyze non-destructive accidents caused by transients during reactor operation. The reactor model was built for the latest version of the nuclear analysis software package called Program for the Analysis of Reactor Transients (PARET). Analyses performed with the model constructed were compared with previous data obtained with other tools in order to benchmark the code. Finally, the model was used to analyze the behavior of the reactor under transients using a different nuclear fuel with lower enrichment of uranium (LEU) than the fuel currently used, which has a high enrichment of uranium (HEU). The study shows that the presence of fertile isotopes in LEU fuel, which increases the neutron resonance absorption, reduces the impact of transients on the fuel and enhances the negative reactivity feedback, thus, within the limitations of this study, making LEU fuel appear to be a safe alternative fuel for the reactor core.

Primm, Trent [ORNL; Gehin, Jess C [ORNL

2009-04-01T23:59:59.000Z

93

LIBRA-A light ion beam fusion reactor conceptual design  

Science Conference Proceedings (OSTI)

The LIBRA light ion beam fusion commercial reactor study is a self-consistent conceptual design of a 330 MWe power plant with an accompanying economic analysis. Fusion targets are imploded by 4-MJ-shaped pulses of 30 MeV Li ions at a rate of 3 Hz. The target gain is 80, leading to a yield of 320 MJ. The high intensity part of the ion pulse is delivered by 16 diodes through 16 separate z-pinch plasma channels formed in 100 torr of helium with trace amounts of lithium. The blanket is an array of porous flexible silicon carbide tubes with Li/sub 17/Pb/sub 83/ flowing downward through them. These tubes (INPORT units) shield the target chamber wall from both neutron damage and the shock overpressure of the target explosion. The target chamber is a right circular cylinder, 8.7 meters in diameter. The target chamber is ''self-pumped'' by the target explosion generated overpressure into a surge tank partially filled with liquid that surrounds the target chamber. This scheme refreshes the chamber at the desired 3 Hz frequency without excessive pumping demands. The blanket multiplication is 1.2 and the tritium breeding ratio is 1.4. The direct capital cost of LIBRA is estimated to be $2200/kWe. 12 refs., 9 figs., 1 tab.

Moses, G.A.; Kulcinski, G.L.; Bruggink, D.; Engelstad, R.; Lovell, E.; MacFarlane, J.; Musicki, Z.; Peterson, R.; Sawan, M.; Sviatoslavsky, I.

1988-01-01T23:59:59.000Z

94

Recent Studies Related to Past Operations at the High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

During the past year, two topics related to past operations of the High Flux Isotope Reactor (HFIR) were reviewed in response to on-going programs at Oak Ridge National Laboratory (ORNL). Currently, studies are being conducted to determine if HFIR can be converted from high enriched uranium (HEU) fuel to low enriched uranium (LEU). While the basis for conversion is the current performance of the reactor, redesign studies revealed an apparent slight degradation in performance of the reactor over its 40 year lifetime. A second program requiring data from HFIR staff is the Integrated Facility Disposition Project (IFDP). The IFDP is a program that integrates environmental cleanup with modernization and site revitalization plans and projects. Before a path of disposal can be established for discharged HFIR beryllium reflector regions, the reflector components must be classified as to type of waste and specifically, determine if they are transuranic waste.

Chandler, David [ORNL; Primm, Trent [ORNL

2009-01-01T23:59:59.000Z

95

COMSOL Simulations for Steady State Thermal Hydraulics Analyses of ORNL s High Flux Isotope Reactor  

SciTech Connect

Simulation models for steady state thermal hydraulics analyses of Oak Ridge National Laboratory s High Flux Isotope Reactor (HFIR) have been developed using the COMSOL Multiphysics simulation software. A single fuel plate and coolant channel of each type of HFIR fuel element was modeled in three dimensions; coupling to adjacent plates and channels was accounted for by using periodic boundary conditions. The standard k- turbulence model was used in simulating turbulent flow with conjugate heat transfer. The COMSOL models were developed to be fully parameterized to allow assessing impacts of fuel fabrication tolerances and uncertainties related to low enriched uranium (LEU) fuel design and reactor operating parameters. Heat source input for the simulations was obtained from separate Monte Carlo N Particle calculations for the axially non-contoured LEU fuel designs at the beginning of the reactor cycle. Mesh refinement studies have been performed to calibrate the models against the pressure drop measured across the HFIR core.

Khane, Vaibhav B [ORNL; Jain, Prashant K [ORNL; Freels, James D [ORNL

2012-01-01T23:59:59.000Z

96

External event Probabilistic Risk Assessment for the High Flux Isotope Reactor (HFIR)  

SciTech Connect

The High Flux Isotope Reactor (HFIR) is a high performance isotope production and research reactor which has been in operation at Oak Ridge National Laboratory (ORNL) since 1965. In late 1986 the reactor was shut down as a result of discovery of unexpected neutron embrittlement of the reactor vessel. In January of 1988 a level 1 Probabilistic Risk Assessment (PRA) (excluding external events) was published as part of the response to the many reviews that followed the shutdown and for use by ORNL to prioritize action items intended to upgrade the safety of the reactor. A conservative estimate of the core damage frequency initiated by internal events for HFIR was 3.11 {times} 10{sup {minus}4}. In June 1989 a draft external events initiated PRA was published. The dominant contributions from external events came from seismic, wind, and fires. The overall external event contribution to core damage frequency is about 50% of the internal event initiated contribution and is dominated by seismic events.

Flanagan, G.F.; Johnson, D.H.; Buttemer, D.; Perla, H.F.; Chien, S.H. (Oak Ridge National Lab., TN (USA))

1989-01-01T23:59:59.000Z

97

Development of a Scale Model for High Flux Isotope Reactor Cycle 400  

Science Conference Proceedings (OSTI)

The development of a comprehensive SCALE computational model for the High Flux Isotope Reactor (HFIR) is documented and discussed in this report. The SCALE model has equivalent features and functionality as the reference MCNP model for Cycle 400 that has been used extensively for HFIR safety analyses and for HFIR experiment design and analyses. Numerical comparisons of the SCALE and MCNP models for the multiplication constant, power density distribution in the fuel, and neutron fluxes at several locations in HFIR indicate excellent agreement between the results predicted with the two models. The SCALE HFIR model is presented in sufficient detail to provide the users of the model with a tool that can be easily customized for various safety analysis or experiment design requirements.

Ilas, Dan [ORNL

2012-03-01T23:59:59.000Z

98

Preliminary Notice of Violation - High Flux Isotope Reactor, November 18, 2003  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Department of Energy Washington, DC 20585 November 18, 2003 Dr. Jeffrey Wadsworth [ ] UT-Battelle P.O. Box 2008 Oak Ridge, TN 37831-6255 EA 2003-10 Subject: Preliminary Notice of Violation and Proposed Imposition of Civil Penalty $151,250 Dear Dr. Wadsworth: This letter refers to the Department of Energy's Office of Price-Anderson Enforcement (OE) investigation of the facts and circumstances surrounding nuclear safety work control issues at the High Flux Isotope Reactor (HFIR) and the Radiochemical Engineering Development Center (REDC). Our office initiated this investigation in response to a manual reactor shutdown due to a control cylinder maintenance safety deficiency and operation of a radiological [ ] without required containment, as

99

A neutronic feasibility study for LEU conversion of the high flux isotope reactor (HFIR).  

SciTech Connect

A neutronic feasibility study was performed to determine the uranium densities that would be required to convert the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) from HEU (93%) to LEU (<20%)fuel. The LEU core that was studied is the same as the current HEU core, except for potential changes in the design of the fuel plates. The study concludes that conversion of HFIR from HEU to LEU fuel would require an advanced fuel with a uranium density of 6-7 gU/cm{sup 3} in the inner fuel element and 9-10 gU/cm{sup 3} in the outer fuel element to match the cycle length of the HEU core. LEU fuel with uranium density up to 4.8 gU/cm{sup 3} is currently qualified for research reactor use. Modifications in fuel grading and burnable poison distribution are needed to produce an acceptable power distribution.

Mo, S. C.

1998-01-14T23:59:59.000Z

100

Establishing Specifications for Low Enriched Uranium Fuel Operations Conducted Outside the High Flux Isotope Reactor Site  

SciTech Connect

The National Nuclear Security Administration (NNSA) has funded staff at Oak Ridge National Laboratory (ORNL) to study the conversion of the High Flux Isotope Reactor (HFIR) from the current, high enriched uranium fuel to low enriched uranium fuel. The LEU fuel form is a metal alloy that has never been used in HFIR or any HFIR-like reactor. This report provides documentation of a process for the creation of a fuel specification that will meet all applicable regulations and guidelines to which UT-Battelle, LLC (UTB) the operating contractor for ORNL - must adhere. This process will allow UTB to purchase LEU fuel for HFIR and be assured of the quality of the fuel being procured.

Pinkston, Daniel [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "flux beam reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

SELECTED STUDIES OF PAST OPERATIONS AT THE ORNL HIGH FLUX ISOTOPE REACTOR  

Science Conference Proceedings (OSTI)

In response to on-going programs at Oak Ridge National Laboratory, two topics related to past operations of the High Flux Isotope Reactor (HFIR) are being reviewed and include determining whether HFIR fuel can be converted from high enriched uranium (HEU) to low enriched uranium (LEU) and determining whether HFIR beryllium reflectors are discharged as transuranic (TRU) waste. The LEU conversion and TRU waste studies are being performed in accordance with the Reduced Enrichment for Research and Test Reactors program and the Integrated Facility Disposition Project, respectively. While assessing data/analysis needs for LEU conversion such as the fuel cycle length and power needed to maintain the current level of reactor performance, a reduction of about 8% (~200 MWD) in the end-of-cycle exposure for HFIR fuel was observed over the lifetime of the reactor (43 years). The SCALE 6.0 computational system was used to evaluate discharged beryllium reflectors and it was discovered if the reflectors are procured according to the current HFIR standard, discharged reflectors would not be TRU waste, but the removable reflector (closest to core) would become TRU waste approximately 40 years after discharge. However, beryllium reflectors have been fabricated with a greater uranium content than that stipulated in the standard and these reflectors would be discharged as TRU waste.

Chandler, David [ORNL; Primm, Trent [ORNL

2010-01-01T23:59:59.000Z

102

Advanced Fuel/Cladding Testing Capabilities in the ORNL High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

The ability to test advanced fuels and cladding materials under reactor operating conditions in the United States is limited. The Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) and the newly expanded post-irradiation examination (PIE) capability at the ORNL Irradiated Fuels Examination Laboratory provide unique support for this type of advanced fuel/cladding development effort. The wide breadth of ORNL's fuels and materials research divisions provides all the necessary fuel development capabilities in one location. At ORNL, facilities are available from test fuel fabrication, to irradiation in HFIR under either thermal or fast reactor conditions, to a complete suite of PIEs, and to final product disposal. There are very few locations in the world where this full range of capabilities exists. New testing capabilities at HFIR have been developed that allow testing of advanced nuclear fuels and cladding materials under prototypic operating conditions (i.e., for both fast-spectrum conditions and light-water-reactor conditions). This paper will describe the HFIR testing capabilities, the new advanced fuel/cladding testing facilities, and the initial cooperative irradiation experiment that begins this year.

Ott, Larry J [ORNL; Ellis, Ronald James [ORNL; McDuffee, Joel Lee [ORNL; Spellman, Donald J [ORNL; Bevard, Bruce Balkcom [ORNL

2009-01-01T23:59:59.000Z

103

Neutron capture therapy beams at the MIT Research Reactor  

SciTech Connect

Several neutron beams that could be used for neutron capture therapy at MITR-II are dosimetrically characterized and their suitability for the treatment of glioblastoma multiforme and other types of tumors are described. The types of neutron beams studied are: (1) those filtered by various thicknesses of cadmium, D2O, 6Li, and bismuth; and (2) epithermal beams achieved by filtration with aluminum, sulfur, cadmium, 6Li, and bismuth. Measured dose vs. depth data are presented in polyethylene phantom with references to what can be expected in brain. The results indicate that both types of neutron beams are useful for neutron capture therapy. The first type of neutron beams have good therapeutic advantage depths (approximately 5 cm) and excellent in-phantom ratios of therapeutic dose to background dose. Such beams would be useful for treating tumors located at relatively shallow depths in the brain. On the other hand, the second type of neutron beams have superior therapeutic advantage depths (greater than 6 cm) and good in-phantom therapeutic advantage ratios. Such beams, when used along with bilateral irradiation schemes, would be able to treat tumors at any depth in the brain. Numerical examples of what could be achieved with these beams, using RBEs, fractionated-dose delivery, unilateral, and bilateral irradiation are presented in the paper. Finally, additional plans for further neutron beam development at MITR-II are discussed.

Choi, J.R.; Clement, S.D.; Harling, O.K.; Zamenhof, R.G. (Massachusetts Institute of Technology, Cambridge (USA))

1990-01-01T23:59:59.000Z

104

Reactor Physics Studies of Reduced-Tantaulum-Content Control and Safety Elements for the High Flux Isotope Reactor  

DOE Green Energy (OSTI)

Some of the unirradiated High Flux Isotope Reactor (HFIR) control elements discharged during the late 1990s were observed to have cladding damage--local swelling or blistering. The cladding damage was limited to the tantalum/europium interface of the element and is thought to result from interaction of hydrogen and europium to form a compound of lower density than europium oxide, thus leading to a ''blistering'' of the control plate cladding. Reducing the tantalum loading in the control plates should help preclude this phenomena. The impact of the change to the control plates on the operation of the reactor was assessed. Regarding nominal, steady-state reactor operation, the impact of the change in the power distribution in the core due to reduced tantalum content was calculated and found to be insignificant. The magnitude and impact of the change in differential control element worth was calculated, and the differential worths of reduced tantalum elements vs the current elements from equivalent-burnup critical configurations were determined to be unchanged within the accuracy of the computational method and relevant experimental measurements. The location of the critical control elements symmetric positions for reduced tantalum elements was found to be 1/3 in. less withdrawn relative to existing control elements regardless of the value of fuel cycle burnup (time in the fuel cycle). The magnitude and impact of the change in the shutdown margin (integral rod worth) was assessed and found to be unchanged. Differential safety element worth values for the reduced-tantalum-content elements were calculated for postulated accident conditions and were found to be greater than values currently assumed in HFIR safety analyses.

Primm, R.T., III

2003-11-01T23:59:59.000Z

105

Study of the Neutron Flux and Dpa Attenuation in the Reactor Pressure-Vessel Wall  

Science Conference Proceedings (OSTI)

The study of the neutron flux and dpa attenuation in the reactor pressure vessel (PV) wall presented in this work was performed with state-of-the art methods currently used to determine PV fluxes, the BUGLE-96 cross-section library, and the iron displacement cross sections derived from ENDF/B-VI data. The calculations showed that the RG 1.99, Rev. 2, extrapolation formula predicts slower--and therefore conservative--attenuation of the neutron flux (E > 1MeV) in the PV wall. More importantly, the calculations gave slower attenuation of the dpa rate in the PV wall than the attenuation predicted by the formula. The slower dpa rate attenuation was observed for all the cases considered, which included two different PWRs, and several configurations obtained by varying the PV wall thickness and thermal shield thickness. For example, for a PV wall thickness of {approximately}24 cm, the calculated ratio of the dpa rate at 1/4 and 3/4 of the PV wall thickness to the dpa value on the inner PV surface is {approximately}14% and 19% higher, respectively, than predicted by the RG 1.99, Rev. 2, formula.

Remec, I.

1999-06-01T23:59:59.000Z

106

A high-speed data acquisition system to measure low-level current from self-powered flux detectors in CANDU nuclear reactors  

E-Print Network (OSTI)

A high-speed data acquisition system to measure low-level current from self-powered flux detectors in CANDU nuclear reactors

Lawrence, C B

1982-01-01T23:59:59.000Z

107

International Thermonuclear Experimental Reactor (ITER) neutral beam design  

SciTech Connect

This report discusses the following topics on ITER neutral beam design: ion dump; neutralizer and module gas flow analysis; vacuum system; cryogenic system; maintainability; power distribution; and system cost.

Myers, T.J.; Brook, J.W.; Spampinato, P.T.; Mueller, J.P.; Luzzi, T.E.; Sedgley, D.W. (Grumman Corp., Bethpage, NY (USA). Space Systems Div.)

1990-10-01T23:59:59.000Z

108

Dose measurements and calculations in the epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR)  

SciTech Connect

The characteristics of the epithermal neutron beam at BMRR were measured, calculated, and reported. This beam has already been used for animal irradiations. We anticipate that it will be used for clinical trials. Thermal and epithermal neutron flux densities distributions, and dose rate distributions, as a function of depth were measured in a lucite dog-head phantom. Monte Carlo calculations were performed and compared with the measured values. 2 refs., 4 figs., 1 tab.

Fairchild, R.G.; Greenberg, D.; Kamen, Y.; Fiarman, S. (Brookhaven National Lab., Upton, NY (USA). Medical Dept.); Benary, V. (Brookhaven National Lab., Upton, NY (USA). Medical Dept. Tel Aviv Univ. (Israel)); Kalef-Ezra, J. (Brookhaven National Lab., Upton, NY (USA). Medical Dept. Ioannina Univ. (Greece)); Wielopolski, L. (Brookhaven National Lab., Upton, NY (USA). Medical Dept. State Univ. of New

1990-01-01T23:59:59.000Z

109

Validation of KENO V.a Code for High Flux Isotope Reactor (HFIR)  

Science Conference Proceedings (OSTI)

The core of the High Flux Isotope Reactor (HFIR) is composed of two concentric annular elements, inner and outer, each containing highly enriched uranium fuel as a mixture of triuranium octoxide (U3O8) and aluminum encapsulated within aluminum alloy plates. The fuel plates are of involute shape and the fuel within the plates has a distribution across the plate width. Previous KENO code validation efforts have used a relatively simple single region homogeneous fuel model for each of the two annular regions by assuming that the materials in each were homogenized within the total volume of the fueled region. The computed results have tended to be about 2 to 3% greater than experimentally measured results. To improve computed results, a multi-zone fuel model was developed and used to validate the KENO code.

Primm, Trent [ORNL

2009-01-01T23:59:59.000Z

110

Studies of Plutonium-238 Production at the High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

The High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) is a versatile 85 MW{sub th}, pressurized, light water-cooled and -moderated research reactor. The core consists of two fuel elements, an inner fuel element (IFE) and an outer fuel element (OFE), each constructed of involute fuel plates containing high-enriched-uranium (HEU) fuel ({approx}93 wt% {sup 235}U/U) in the form of U{sub 3}O{sub 8} in an Al matrix and encapsulated in Al-6061 clad. An over-moderated flux trap is located in the center of the core, a large beryllium reflector is located on the outside of the core, and two control elements (CE) are located between the fuel and the reflector. The flux trap and reflector house numerous experimental facilities which are used for isotope production, material irradiation, and cold/thermal neutron scattering. Over the past five decades, the US Department of Energy (DOE) and its agencies have been producing radioisotope power systems used by the National Aeronautics and Space Administration (NASA) for unmanned, long-term space exploration missions. Plutonium-238 is used to power Radioisotope Thermoelectric Generators (RTG) because it has a very long half-life (t{sub 1/2} {approx} 89 yr.) and it generates about 0.5 watts/gram when it decays via alpha emission. Due to the recent shortage and uncertainty of future production, the DOE has proposed a plan to the US Congress to produce {sup 238}Pu by irradiating {sup 237}Np as early as in fiscal year 2011. An annual production rate of 1.5 to 2.0 kg of {sup 238}Pu is expected to satisfy these needs and could be produced in existing national nuclear facilities like HFIR and the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). Reactors at the Savannah River Site were used in the past for {sup 238}Pu production but were shut down after the last production in 1988. The nation's {sup 237}Np inventory is currently stored at INL. A plan for producing {sup 238}Pu at US research reactor facilities such as the High Flux Isotope Reactor at ORNL has been initiated by the US DOE and NASA for space exploration needs. Two Monte Carlo-based depletion codes, TRITON (ORNL) and VESTA (IRSN), were used to study the {sup 238}Pu production rates with varying target configurations in a typical HFIR fuel cycle. Preliminary studies have shown that approximately 11 grams and within 15 to 17 grams of {sup 238}Pu could be produced in the first irradiation cycle in one small and one large VXF facility, respectively, when irradiating fresh target arrays as those herein described. Important to note is that in this study we discovered that small differences in assumptions could affect the production rates of Pu-238 observed. The exact flux at a specific target location can have a significant impact upon production, so any differences in how the control elements are modeled as a function of exposure, will also cause differences in production rates. In fact, the surface plot of the large VXF target Pu-238 production shown in Figure 3 illustrates that the pins closest to the core can potentially have production rates as high as 3 times those of pins away from the core, thus implying that a cycle-to-cycle rotation of the targets may be well advised. A methodology for generating spatially-dependent, multi-group self-shielded cross sections and flux files with the KENO and CENTRM codes has been created so that standalone ORIGEN-S inputs can be quickly constructed to perform a variety of {sup 238}Pu production scenarios, i.e. combinations of the number of arrays loaded and the number of irradiation cycles. The studies herein shown with VESTA and TRITON/KENO will be used to benchmark the standalone ORIGEN.

Lastres, Oscar [University of Tennessee, Knoxville (UTK); Chandler, David [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Jarrell, Joshua J [ORNL; Maldonado, G. Ivan [University of Tennessee, Knoxville (UTK)

2011-01-01T23:59:59.000Z

111

Reactivity Accountability Attributed to Reflector Poisons in the High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

The objective of this study is to develop a methodology to predict the reactivity impact as a function of outage time between cycles of 3He, 6Li, and other poisons in the High Flux Isotope Reactor s (HFIR) beryllium reflector. The reactivity worth at startup of the HFIR has been incorrectly predicted in the past after the reactor has been shut-down for long periods of time. The incorrect prediction was postulated to be due to the erroneous calculation of 3He buildup in the beryllium reflector. It is necessary to develop a better estimate of the start-of-cycle symmetric critical control element positions since if the estimated and actual symmetrical critical control element positions differ by more than $1.55 in reactivity (approximately one-half inch in control element startup position), HFIR is to be shutdown and a technical evaluation is performed to resolve the discrepancy prior to restart. 3He is generated and depleted during operation, but during an outage, the depletion of 3He ceases because it is a stable isotope. 3He is born from the radioactive decay of tritium, and thus the concentration of 3He increases during shutdown. SCALE, specifically the TRITON and CSAS5 control modules including the KENO V.A, COUPLE, and ORIGEN functional modules were utilized in this study. An equation relating the down time (td) to the change in symmetric control element position was generated and validated against measurements for approximately 40 HFIR operating cycles. The newly-derived correlation was shown to improve accuracy of predictions for long periods of down time.

Chandler, David [ORNL; Maldonado, G Ivan [ORNL; Primm, Trent [ORNL

2009-12-01T23:59:59.000Z

112

Hydrogen Cylinder Storage Array Explosion Evaluations at the High Flux Isotope Reactor  

DOE Green Energy (OSTI)

The safety analysis for a recently-installed cold neutron source at the High Flux Isotope Reactor (HFIR) involved evaluation of potential explosion consequences from accidental hydrogen jet releases that could occur from an array of hydrogen cylinders. The scope of the safety analysis involved determination of the release rate of hydrogen, the total quantity of hydrogen assumed to be involved in the explosion, the location of an ignition point or center of the explosion from receptors of interest, and the peak overpressure at the receptors. To evaluate the total quantity of hydrogen involved in the explosion, a 2D model was constructed of the jet concentration and a radial-axial integral over the jet cloud from the centerline to the flammability limit of 4% was used to determine the hydrogen mass to be used as a source term. The location of the point source was chosen as the peak of the jet centerline concentration profile. Consequences were assessed using a combination of three methods for estimating local overpressure as a function of explosion source strength and distance: the Baker-Strehlow method, the TNT-equivalence method, and the TNO method. Results from the explosions were assessed using damage estimates in screening tables for buildings and industrial equipment.

Cook, David Howard [ORNL; Griffin, Frederick P [ORNL; Hyman III, Clifton R [ORNL

2010-01-01T23:59:59.000Z

113

Flux  

NLE Websites -- All DOE Office Websites (Extended Search)

5000 5000 6000 7000 8000 Wavelength (Angstroms) Flux (in arbitrary units) SN 1990N SN 1989B SN 1993O SN 1981B SN 1994D SN 1997ap Iron Peak Blends Ca II Si II & Co II Fe II & III Day -7 Day -5 Day -4 Day -2 ± 2 Day 0 Day +2 * -50 0 50 100 150 Observed days from peak Observed I magnitude 27 26 25 24 23 Observed R magnitude 27 26 25 24 Observed I magnitude 27 26 25 24 23 R band Ground-based I band HST I band (b) (c) (a) Pre-SN observation 3.5 4.0 4.5 5.0 5.5 log(cz) 14 16 18 20 22 24 26 effective m B 0.02 0.05 0.1 0.2 0.5 1.0 redshift z Hamuy et al (A.J. 1996) Supernova Cosmology Project 6 8 % 9 0 % 0.5 1.0 1.5 2.0 2.5 3.0 ! M Age < 9.6 Gyr (H = 50 km s -1 Mpc -1 ) No Big Bang 0.0 0.5 1.0 1.5 2.0 2.5 3.0 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 ! " z ~ 0 . 4 z = 0 . 8 3 6 8 % 9 0 % 0.5 1.0 1.5 2.0 2.5 3.0 ! M Age < 9.6 Gyr (H=50 km/s/Mpc)

114

Power beaming to space using a nuclear reactor-pumped laser  

SciTech Connect

The present political and environmental climate may slow the inevitable direct utilization of nuclear power in space. In the meantime, there is another approach for using nuclear energy for space power. That approach is to let nuclear energy generate a laser beam in a ground-based nuclear reactor-pumped laser (RPL), and then beam the optical energy into space. Potential space applications for a ground-based RPL include (1) illuminating geosynchronous communication satellites in the earth`s shadow to extend their lives, (2) beaming power to orbital transfer vehicles, (3) providing power (from earth) to a lunar base during the long lunar night, and (4) removing space debris. FALCON is a high-power, steady-state, nuclear reactor-pumped laser (RPL) concept that is being developed by the Department of Energy with Sandia National Laboratories as the lead laboratory. The FALCON program has experimentally demonstrated reactor-pumped lasing in various mixtures of xenon, argon, neon, and helium at wavelengths of 0.585, 0.703, 0.725, 1.271, 1.733, 1.792, 2.032, 2.63, 2.65, and 3.37 {mu}m with intrinsic efficiency as high as 2.5%. Frequency-doubling the 1.733{minus}{mu}m line would yield a good match for photovoltaic arrays at 0.867 {mu}m. Preliminary designs of an RPL suitable for power beaming have been completed. The MWclass laser is fairly simple in construction, self-powered, closed-cycle (no exhaust gases), and modular. This paper describes the FALCON program accomplishments and power-beaming applications.

Lipinski, R.J.; Monroe, D.K.; Pickard, P.S.

1993-10-01T23:59:59.000Z

115

Neutron flux measurements in the side-core region of Hunterston B advanced gas-cooled reactor  

Science Conference Proceedings (OSTI)

The core restraints of advanced gas-cooled reactors are important structural components that are required to maintain the geometric integrity of the cores. A review of neutron dosimetry for the sister stations Hunterston B and Hinkley Point B identified that earlier conservative assessments predicted high thermal neutron dose rates to key components of the restraint structure (the restraint rod welds), with the implication that some of them may be predicted to fail during a seismic event. A revised assessment was therefore undertaken [Thornton, D. A., Allen, D. A., Tyrrell, R. J., Meese, T. C., Huggon, A.P., Whiley, G. S., and Mossop, J. R., 'A Dosimetry Assessment for the Core Restraint of an Advanced Gas Cooled Reactor,' Proceedings of the 13. International Symposium on Reactor Dosimetry (ISRD-13, May 2008), World Scientific, River Edge, NJ, 2009, W. Voorbraak, L. Debarberis, and P. D'hondt, Eds., pp. 679-687] using a detailed 3D model and a Monte Carlo radiation transport program, MCBEND. This reassessment resulted in more realistic fast and thermal neutron dose recommendations, the latter in particular being much lower than had been thought previously. It is now desirable to improve confidence in these predictions by providing direct validation of the MCBEND model through the use of neutron flux measurements. This paper describes the programme of work being undertaken to deploy two neutron flux measurement 'stringers' within the side-core region of one of the Hunterston B reactors for the purpose of validating the MCBEND model. The design of the stringers and the determination of the preferred deployment locations have been informed by the use of detailed MCBEND flux calculations. These computational studies represent a rare opportunity to design a flux measurement beforehand, with the clear intention of minimising the anticipated uncertainties and obtaining measurements that are known to be representative of the neutron fields to which the vulnerable steel restraint components are exposed. (authors)

Allen, D.A. [Serco, Rutherford House, Quedgeley, Gloucester, GL2 4NF (United Kingdom); Shaw, S.E. [British Energy, Barnett Way, Barnwood, Gloucester, GL4 3RS (United Kingdom); Huggon, A.P.; Steadman, R.J.; Thornton, D.A. [Serco, Rutherford House, Quedgeley, Gloucester, GL2 4NF (United Kingdom); Whiley, G.S. [British Energy, Barnett Way, Barnwood, Gloucester, GL4 3RS (United Kingdom)

2011-07-01T23:59:59.000Z

116

Unsteady momentum fluxes in two-phase flow and the vibration of nuclear reactor components  

E-Print Network (OSTI)

The steady and unsteady components of the momentum flux in a twophase flow have been measured at the exit of a vertical pipe. Measured momentum flux data has been machine processed by standard random vibration techniques ...

Yih, Tien Sieh

1968-01-01T23:59:59.000Z

117

Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual report for FY 2009  

Science Conference Proceedings (OSTI)

This report documents progress made during FY 2009 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Studies are reported of the application of a silicon coating to surrogates for spheres of uranium-molybdenum alloy. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. A description of the progress in developing a finite element thermal hydraulics model of the LEU core is provided.

Chandler, David [ORNL; Freels, James D [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Primm, Trent [ORNL; Sease, John D [ORNL; Guida, Tracey [University of Pittsburgh; Jolly, Brian C [ORNL

2010-02-01T23:59:59.000Z

118

Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2008  

Science Conference Proceedings (OSTI)

This report documents progress made during FY 2008 in studies of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Scoping experiments with various manufacturing methods for forming the LEU alloy profile are presented.

Primm, Trent [ORNL; Chandler, David [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Sease, John D [ORNL; Jolly, Brian C [ORNL

2009-03-01T23:59:59.000Z

119

Inverse Beta Decay in a Nonequilibrium Antineutrino Flux from a Nuclear Reactor  

E-Print Network (OSTI)

The evolution of the reactor antineutrino spectrum toward equilibrium above the inverse beta-decay threshold during the reactor operating period and the decay of residual antineutrino radiation after reactor shutdown are considered. It is found that, under certain conditions, these processes can play a significant role in experiments seeking neutrino oscillations.

V. I. Kopeikin; L. A. Mikaelyan; V. V. Sinev

2001-10-23T23:59:59.000Z

120

1 Inverse Beta Decay in a Nonequilibrium Antineutrino Flux from a Nuclear Reactor  

E-Print Network (OSTI)

The evolution of the reactor antineutrino spectrum toward equilibrium above the inverse beta-decay threshold during the reactor operating period and the decay of residual ¯?e, radiation after reactor shutdown are considered. It is found that, under certain conditions, these processes can play a significant role in experiments seeking neutrino oscillations. 1.

V. I. Kopeikin A; L. A. Mikaelyan A; V. V. Sinev A

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flux beam reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

The use of PRA (Probabilistic Risk Assessment) in the management of safety issues at the High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

The High Flux Isotope reactor (HFIR) is a high performance isotope production and research reactor which has been in operation at Oak Ridge National Laboratory (ORNL) since 1965. In late 1986 the reactor was shut down as a result of discovery of unexpected neutron embrittlement of the reactor vessel. In January of 1988, a level 1 Probabilistic Risk Assessment (PRA) (excluding external events) was published as part of the response to the many reviews that followed the shutdown and for use by ORNL to prioritize action items intended to upgrade the safety of the reactor. A conservative estimate of the core damage frequency initiated by internal events for HFIR was 3.11 {times} 10{sup {minus}4}. In June 1989 a draft external events initiated PRA was published. The dominant contributions from external events came from seismic, wind, and fires. The overall external event contribution to core damage frequency is about 138% of the internal event initiated contribution and is dominated by wind initiators. The PRA has provided a basis for the management of a wide range of safety and operation issues at the HFIR. 3 refs., 4 figs., 2 tabs.

Flanagan, G.F.

1990-01-01T23:59:59.000Z

122

ORNL - Restart of the High Flux Isotope Reactor 2-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

QUALITY ASSURANCE (QA) QUALITY ASSURANCE (QA) OBJECTIVE QA-1: The RRD QA program has been appropriately modified to reflect the CS modification and its reactor interface, and sufficient numbers of qualified QA personnel are provided to ensure services are adequate to support reactor operation. The QA functions, assignments, responsibilities, and reporting relationships are clearly defined, understood, and effectively implemented with line management control of safety. QA personnel exhibit awareness of the applicable requirements pertaining to reactor operation with the CS and the associated hazards. Through their actions, they have demonstrated a high-priority commitment to comply with these requirements. The level of knowledge of QA personnel related to reactor

123

Epithermal beam development at the BMRR (Brookhaven Medical Research Reactor): Dosimetric evaluation  

SciTech Connect

The utilization of an epithermal neutron beam for neutron capture therapy (NCT) is desirable because of the increased tissue penetration relative to a thermal neutron beam. Over the past few years, modifications have been and continue to be made at the Brookhaven Medical Research Reactor (BMRR) by changing its filter components to produce an optimal epithermal beam. An optimal epithermal beam should contain a low fast neutron contamination and no thermal neutrons in the incident beam. Recently a new moderator for the epithermal beam has been installed at the epithermal port of the BMRR and has accomplished this task. This new moderator is a combination of alumina (Al{sub 2}O{sub 3}) bricks and aluminum (Al) plates. A 0.51 mm thick cadmium (Cd) sheet has reduced the thermal neutron intensity drastically. Furthermore, an 11.5 cm thick bismuth (Bi) plate installed at the port surface has reduced the gamma dose component to negligible levels. Foil activation techniques have been employed by using bare gold and cadmium-covered gold foil to determine thermal as well as epithermal neutron fluence. Fast neutron fluence has been determined by indium foil counting. Fast neutron and gamma dose in soft tissue, free in air, is being determined by the paired ionization chamber technique, using tissue equivalent (TE) and graphite chambers. Thermoluminescent dosimeters (TLD-700) have also been used to determine the gamma dose independently. This paper describes the methods involved in the measurements of the above mentioned parameters. Formulations have been developed and the various corrections involved have been detailed. 12 refs.

Saraf, S.K.; Fairchild, R.G.; Kalef-Ezra, J.; Laster, B.H.; Fiarman, S.; Ramsey, E. (Brookhaven National Lab., Upton, NY (USA); Ioannina Univ. (Greece); Brookhaven National Lab., Upton, NY (USA); State Univ. of New York, Stony Brook, NY (USA). Health Science Center)

1989-08-24T23:59:59.000Z

124

DESIGN STUDY FOR A LOW-ENRICHED URANIUM CORE FOR THE HIGH FLUX ISOTOPE REACTOR, ANNUAL REPORT FOR FY 2010  

Science Conference Proceedings (OSTI)

This report documents progress made during FY 2010 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current level. Studies are reported of support to a thermal hydraulic test loop design, the implementation of finite element, thermal hydraulic analysis capability, and infrastructure tasks at HFIR to upgrade the facility for operation at 100 MW. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. Continuing development in the definition of the fuel fabrication process is described.

Cook, David Howard [ORNL; Freels, James D [ORNL; Ilas, Germina [ORNL; Jolly, Brian C [ORNL; Miller, James Henry [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL; Pinkston, Daniel [ORNL

2011-02-01T23:59:59.000Z

125

Design Study for a Low-enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2007  

SciTech Connect

This report documents progress made during fiscal year 2007 in studies of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low enriched uranium fuel (LEU). Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. A high volume fraction U/Mo-in-Al fuel could attain the same neutron flux performance as with the current, HEU fuel but materials considerations appear to preclude production and irradiation of such a fuel. A diffusion barrier would be required if Al is to be retained as the interstitial medium and the additional volume required for this barrier would degrade performance. Attaining the high volume fraction (55 wt. %) of U/Mo assumed in the computational study while maintaining the current fuel plate acceptance level at the fuel manufacturer is unlikely, i.e. no increase in the percentage of plates rejected for non-compliance with the fuel specification. Substitution of a zirconium alloy for Al would significantly increase the weight of the fuel element, the cost of the fuel element, and introduce an as-yet untried manufacturing process. A monolithic U-10Mo foil is the choice of LEU fuel for HFIR. Preliminary calculations indicate that with a modest increase in reactor power, the flux performance of the reactor can be maintained at the current level. A linearly-graded, radial fuel thickness profile is preferred to the arched profile currently used in HEU fuel because the LEU fuel media is a metal alloy foil rather than a powder. Developments in analysis capability and nuclear data processing techniques are underway with the goal of verifying the preliminary calculations of LEU flux performance. A conceptual study of the operational cost of an LEU fuel fabrication facility yielded the conclusion that the annual fuel cost to the HFIR would increase significantly from the current, HEU fuel cycle. Though manufacturing can be accomplished with existing technology, several engineering proof-of-principle tests would be required. The RERTR program is currently conducting a series of generic fuel qualification tests at the Advanced Test Reactor. A review of these tests and a review of the safety basis for the current, HEU fuel cycle led to the identification of a set of HFIR-specific fuel qualification tests. Much additional study is required to formulate a HFIR-specific fuel qualification plan from this set. However, one such test - creating a graded fuel profile across a flat foil - has been initiated with promising results.

Primm, Trent [ORNL; Ellis, Ronald James [ORNL; Gehin, Jess C [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Sease, John D [ORNL

2007-11-01T23:59:59.000Z

126

Establishing a Cost Basis for Converting the High Flux Isotope Reactor from High Enriched to Low Enriched Uranium Fuel  

Science Conference Proceedings (OSTI)

Under the auspices of the Global Threat Reduction Initiative Reduced Enrichment for Research and Test Reactors Program, the National Nuclear Security Administration /Department of Energy (NNSA/DOE) has, as a goal, to convert research reactors worldwide from weapons grade to non-weapons grade uranium. The High Flux Isotope Reactor (HFIR) at Oak Ridge National Lab (ORNL) is one of the candidates for conversion of fuel from high enriched uranium (HEU) to low enriched uranium (LEU). A well documented business model, including tasks, costs, and schedules was developed to plan the conversion of HFIR. Using Microsoft Project, a detailed outline of the conversion program was established and consists of LEU fuel design activities, a fresh fuel shipping cask, improvements to the HFIR reactor building, and spent fuel operations. Current-value costs total $76 million dollars, include over 100 subtasks, and will take over 10 years to complete. The model and schedule follows the path of the fuel from receipt from fuel fabricator to delivery to spent fuel storage and illustrates the duration, start, and completion dates of each subtask to be completed. Assumptions that form the basis of the cost estimate have significant impact on cost and schedule.

Primm, Trent [ORNL; Guida, Tracey [University of Pittsburgh

2010-02-01T23:59:59.000Z

127

ORNL - Restart of the High Flux Isotope Reactor 2-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Training & Qualification Training & Qualification OBJECTIVE TR-1: The selection, training and qualification programs associated with CS modifications, operation, hazards, and reactor operations with the hydrogen- moderated CS have been established, documented, and implemented. The selection process and applicable position-specific training for managers and staff, associated with CS modifications and hazards, and reactor operations with the hydrogen- moderated CS ensures competence commensurate with responsibilities (the training and qualification program encompasses the range of duties required to be performed). (CR - 1, CR - 2, CR - 6) Criteria * The Training program is established, documented, and functioning to support reactor operations with the CS modification. Functions, responsibilities, and

128

ORNL - Restart of the High Flux Isotope Reactor 2-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EMERGENCY PREPAREDNESS (EP) EMERGENCY PREPAREDNESS (EP) OBJECTIVE EP-1: A routine drill program and emergency operations drill program, including program records, have been established and implemented. (Core Requirement 11) Criteria * Reactor operation with the CS has been appropriately incorporated into the emergency preparedness hazards analysis and emergency response procedures. * The implemented routine and emergency operations drill program, including program records, have incorporated the CS SSCs and the CS's operation, hazards, and reactor interface. * Proficiency to appropriately respond to incidents and accidents associated with reactor operation has been demonstrated through the implemented routine and emergency operations drill program. Approach Record Review: Examine ORNL/RRD/INT-114, HFIR Emergency Planning Hazards

129

ORNL - Restart of the High Flux Isotope Reactor 2-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ENGINEERING (ENG) ENGINEERING (ENG) OBJECTIVE ENG-1: The engineering program has been appropriately modified to reflect the CS modification and its reactor interface, sufficient numbers of qualified engineering personnel are provided, and adequate facilities and equipment are available to ensure engineering services are adequate to support reactor and CS operations. The engineering functions, assignments, responsibilities, and reporting relationships are clearly defined, understood, and effectively implemented with line management control of safety. Engineering personnel exhibit awareness of the applicable requirements pertaining to reactor operation with the CS and with CS operations and hazards. Through their actions, they have demonstrated a high-priority commitment

130

Neutronic Analysis of an Advanced Fuel Design Concept for the High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

This study presents the neutronic analysis of an advanced fuel design concept for the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) that could significantly extend the current fuel cycle length under the existing design and safety criteria. A key advantage of the fuel design herein proposed is that it would not require structural changes to the present HFIR core, in other words, maintaining the same rated power and fuel geometry (i.e., fuel plate thickness and coolant channel dimensions). Of particular practical importance, as well, is the fact that the proposed change could be justified within the bounds of the existing nuclear safety basis. The simulations herein reported employed transport theory-based and exposure-dependent eigenvalue characterization to help improve the prediction of key fuel cycle parameters. These parameters were estimated by coupling a benchmarked three-dimensional MCNP5 model of the HFIR core to the depletion code ORIGEN via the MONTEBURNS interface. The design of an advanced HFIR core with an improved fuel loading is an idea that evolved from early studies by R. D. Cheverton, formerly of ORNL. This study contrasts a modified and increased core loading of 12 kg of 235U against the current core loading of 9.4 kg. The simulations performed predict a cycle length of 39 days for the proposed fuel design, which represents a 50% increase in the cycle length in response to a 25% increase in fissile loading, with an average fuel burnup increase of {approx}23%. The results suggest that the excess reactivity can be controlled with the present design and arrangement of control elements throughout the core's life. Also, the new power distribution is comparable or even improved relative to the current power distribution, displaying lower peak to average fission rate densities across the inner fuel element's centerline and bottom cells. In fact, the fission rate density in the outer fuel element also decreased at these key locations for the proposed design. Overall, it is estimated that the advanced core design could increase the availability of the HFIR facility by {approx}50% and generate {approx}33% more neutrons annually, which is expected to yield sizeable savings during the remaining life of HFIR, currently expected to operate through 2014. This study emphasizes the neutronics evaluation of a new fuel design. Although a number of other performance parameters of the proposed design check favorably against the current design, and most of the core design features remain identical to the reference, it is acknowledged that additional evaluations would be required to fully justify the thermal-hydraulic and thermal-mechanical performance of a new fuel design, including checks for cladding corrosion performance as well as for industrial and economic feasibility.

Xoubi, Ned [ORNL; Primm, Trent [ORNL; Maldonado, G. Ivan [University of Tennessee, Knoxville (UTK)

2009-01-01T23:59:59.000Z

131

ORNL - Restart of the High Flux Isotope Reactor 2-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OPERATIONS OPERATIONS OBJECTIVE OP-1: Operations staff and management exhibit awareness of applicable requirements pertaining to CS operation, hazards, and reactor operations with the hydrogen-moderated CS. Through their actions, they have demonstrated a high-priority commitment to comply with these requirements. The level of knowledge of reactor operations and CS system operations managers and staff related to CS operations, hazards, and reactor operations with the hydrogen-moderated CS is adequate based on interviews. Sufficient numbers of qualified reactor operations and CS system operations staff and management are available to conduct and support safe operations with the hydrogen-moderated CS. (CR - 1, CR - 4, CR - 6) Criteria * Minimum staffing requirements have been established for operations and support

132

DESIGN OF A TOKAMAK FUSION REACTOR FIRST WALL ARMOR AGAINST NEUTRAL BEAM IMPINGEMENT  

E-Print Network (OSTI)

Hoffman, et. a1. , "Fusion Reactor First Wall Cooling forTheir Signif- icance in Fusion Reactors," Fifth ConferenceProb- lems in Toroidal Fusion Reactors," Fifth Conference

Myers, Richard Allen

2011-01-01T23:59:59.000Z

133

ORNL - Restart of the High Flux Isotope Reactor 2-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INDUSTRIAL SAFETY AND HYGIENE (IS&H) INDUSTRIAL SAFETY AND HYGIENE (IS&H) OBJECTIVE IS&H-1: The RRD industrial safety and hygiene (IS&H) program has been appropriately modified to reflect the CS modification and its reactor interface, sufficient numbers of qualified IS&H staff and management are provided, and adequate IS&H facilities and equipment are available to ensure services are adequate to support reactor operation with the CS. The IS&H functions, assignments, responsibilities, and reporting relationships are clearly defined, understood, and effectively implemented with line management control of safety. IS&H staff and management exhibit awareness of applicable requirements pertaining to reactor operation with the CS and the associated hazards. Through their actions, they have demonstrated a high-

134

Reference (Axially Graded) Low Enriched Uranium Fuel Design for the High Flux Isotope Reactor (HFIR)  

Science Conference Proceedings (OSTI)

During the past five years, staff at the Oak Ridge National Laboratory (ORNL) have studied the issue of whether the HFIR could be converted to low enriched uranium (LEU) fuel without degrading the performance of the reactor. Using state-of-the-art reactor physics methods and behind-the-state-of-the-art thermal hydraulics methods, the staff have developed fuel plate designs (HFIR uses two types of fuel plates) that are believed to meet physics and thermal hydraulic criteria provided the reactor power is increased from 85 to 100 MW. The paper will present a defense of the results by explaining the design and validation process. A discussion of the requirements for showing applicability of analyses to approval for loading the fuel to HFIR lead test core irradiation currently scheduled for 2016 will be provided. Finally, the potential benefits of upgrading thermal hydraulics methods will be discussed.

Ilas, Germina [ORNL; Primm, Trent [ORNL

2010-01-01T23:59:59.000Z

135

Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011  

SciTech Connect

This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

Renfro, David G [ORNL; Cook, David Howard [ORNL; Freels, James D [ORNL; Griffin, Frederick P [ORNL; Ilas, Germina [ORNL; Sease, John D [ORNL; Chandler, David [ORNL

2012-03-01T23:59:59.000Z

136

ORNL - Restart of the High Flux Isotope Reactor 2-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ENGINEERING ENGINEERING OBJECTIVE ES-1: The engineering program has been appropriately modified to reflect the CS modification and its reactor interface, sufficient numbers of qualified engineering staff and management are provided, and adequate facilities and equipment are available to ensure services are adequate to conduct and support reactor operations with the hydrogen-moderated CS. Functions, assignments, responsibilities, and reporting relationships are clearly defined, understood, and effectively implemented with line management control of safety. (CR-1, CR-2, CR- 6) Criteria * The engineering organization and associated programs are established and functioning to support the RRD operations organization. Functions, responsibilities, and reporting relationships are clearly defined, understood, and

137

ORNL - Restart of the High Flux Isotope Reactor 2-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emergency Preparedness Emergency Preparedness OBJECTIVE EP-1: The emergency preparedness program has been appropriately modified to reflect the CS modification and its reactor interface, sufficient numbers of qualified emergency preparedness staff and management are provided, and adequate facilities and equipment are available to ensure services are adequate to conduct and support reactor operations with the hydrogen-moderated CS. Functions, assignments, responsibilities, and reporting relationships are clearly defined, understood, and effectively implemented with line management control of safety. (CR-1, CR-2, CR-6) Criteria * The emergency preparedness program and organization are established and functioning to support the RRD operations organization. Functions,

138

ORNL - Restart of the High Flux Isotope Reactor 2-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AUTHORIZATION BASIS MANAGEMENT AUTHORIZATION BASIS MANAGEMENT OBJECTIVE AB-1: The nuclear safety program has been appropriately modified to reflect the CS modification and its reactor interface, sufficient numbers of qualified nuclear safety staff and management are provided, and adequate facilities and equipment are available to ensure services are adequate to conduct and support operations with the CS modification. Functions, assignments, responsibilities, and reporting relationships are clearly defined, understood, and effectively implemented with line management control of safety. (CR-1, CR-2, CR-6) Criteria The nuclear safety program and organization are established and functioning to support reactor operations with the CS modification. Functions, responsibilities, and

139

ORNL - Restart of the High Flux Isotope Reactor 2-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CONFIGURATION MANAGEMENT (CM) CONFIGURATION MANAGEMENT (CM) OBJECTIVE CM-1: The facility systems and procedures, as affected by the facility modifications, are consistent with the description of the facility, procedures, and accident analysis included in the safety basis. (Core Requirement 9) Criteria * The CS and reactor systems affected by the CS and facility modifications are consistent with the description and accident analysis included in the DSA. * The reactor and CS procedures (including system drawings, operating procedures, annunciator response procedures, abnormal operating procedures, emergency operating procedures, surveillance test procedures, and other procedures affected by the CS modification) are consistent with the description and accident analysis included in the DSAs.

140

ORNL - Restart of the High Flux Isotope Reactor 2-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FIRE PROTECTION (FP) FIRE PROTECTION (FP) OBJECTIVE FP-1: The fire protection program has been appropriately modified to reflect the CS and its reactor interface, sufficient numbers of qualified fire protection personnel are available to support operations, and adequate facilities and equipment are available to ensure fire protection services are adequate for operations. The fire protection functions, assignments, responsibilities, and reporting relationships, including those between the line operating organization and the fire protection organization, are clearly defined, understood, and effectively implemented with line management responsibility for control of safety. The level of knowledge of fire protection personnel related to reactor operation with the CS and the associated hazards is adequate.

Note: This page contains sample records for the topic "flux beam reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

PREPARING THE HIGH FLUX ISOTOPE REACTOR FOR CONVERSION TO LOW ENRICHED URANIUM FUEL ? EXTENDING CYCLE BURNUP  

Science Conference Proceedings (OSTI)

Reactor performance studies have been completed for conceptual plate designs and show that maintaining reactor performance while converting HFIR from high enriched to low enriched uranium (20 wt % 235U) fuel requires extending the end-of-life burnup value for HFIR fuel from the current nominal value of 2200 MWD to 2600 MWD. The current fuel fabrication procedure is discussed and changes that would be required to this procedure are identified. Design and safety related analyses that are required for the certification of a new fuel are identified. Qualification tests and comments regarding the regulatory approval process are provided along with a conceptual schedule.

Primm, Trent [ORNL; Chandler, David [ORNL

2009-01-01T23:59:59.000Z

142

ORNL - Restart of the High Flux Isotope Reactor 2-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MAINTENANCE MAINTENANCE OBJECTIVE MT-1: The maintenance and test programs have been appropriately modified to reflect the CS modification and its reactor interface, sufficient numbers of qualified maintenance and testing staff and management are provided, and adequate facilities and equipment are available to ensure services are adequate to conduct and support reactor operations with the hydrogen-moderated CS. Functions, assignments, responsibilities, and reporting relationships are clearly defined, understood, and effectively implemented with line management control of safety. (CR - 1, CR - 2, CR - 6) Criteria * The maintenance and test programs and organizations are established and functioning to support the RRD operations organization. Functions,

143

Impact induced response spectrum for the safety evaluation of the high flux isotope reactor  

Science Conference Proceedings (OSTI)

The dynamic impact to the nearby HFIR reactor vessel caused by heavy load drop is analyzed. The impact calculation is carried out by applying the ABAQUS computer code. An impact-induced response spectrum is constructed in order to evaluate whether the HFIR vessel and the shutdown mechanism may be disabled. For the frequency range less than 10 Hz, the maximum spectral velocity of impact is approximately equal to that of the HFIR seismic design-basis spectrum. For the frequency range greater than 10 Hz, the impact-induced response spectrum is shown to cause no effect to the control rod and the shutdown mechanism. An earlier seismic safety assessment for the HFIR control and shutdown mechanism was made by EQE. Based on EQE modal solution that is combined with the impact-induced spectrum, it is concluded that the impact will not cause any damage to the shutdown mechanism, even while the reactor is in operation. The present method suggests a general approach for evaluating the impact induced damage to the reactor by applying the existing finite element modal solution that has been carried out for the seismic evaluation of the reactor.

Chang, S.J.

1997-05-01T23:59:59.000Z

144

Monte Carlo methods of neutron beam design for neutron capture therapy at the MIT Research Reactor (MITR-II)  

Science Conference Proceedings (OSTI)

Monte Carlo methods of coupled neutron/photon transport are being used in the design of filtered beams for Neutron Capture Therapy (NCT). This method of beam analysis provides segregation of each individual dose component, and thereby facilitates beam optimization. The Monte Carlo method is discussed in some detail in relation to NCT epithermal beam design. Ideal neutron beams (i.e., plane-wave monoenergetic neutron beams with no primary gamma-ray contamination) have been modeled both for comparison and to establish target conditions for a practical NCT epithermal beam design. Detailed models of the 5 MWt Massachusetts Institute of Technology Research Reactor (MITR-II) together with a polyethylene head phantom have been used to characterize approximately 100 beam filter and moderator configurations. Using the Monte Carlo methodology of beam design and benchmarking/calibrating our computations with measurements, has resulted in an epithermal beam design which is useful for therapy of deep-seated brain tumors. This beam is predicted to be capable of delivering a dose of 2000 RBE-cGy (cJ/kg) to a therapeutic advantage depth of 5.7 cm in polyethylene assuming 30 micrograms/g 10B in tumor with a ten-to-one tumor-to-blood ratio, and a beam diameter of 18.4 cm. The advantage ratio (AR) is predicted to be 2.2 with a total irradiation time of approximately 80 minutes. Further optimization work on the MITR-II epithermal beams is expected to improve the available beams. 20 references.

Clement, S.D.; Choi, J.R.; Zamenhof, R.G.; Yanch, J.C.; Harling, O.K. (Massachusetts Institute of Technology, Cambridge (USA))

1990-01-01T23:59:59.000Z

145

ORNL - Restart of the High Flux Isotope Reactor 2-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Configuration Management Configuration Management OBJECTIVE CM-1: The CS system and reactor systems affected by the CS modification and associated drawings are consistent with the description and accident analysis included in the DSA and a system to maintain control over their design and modification is established. (CR-9) Criteria * The design requirements have been formally established, documented, and maintained for the CS. * An adequate process has been implemented to ensure that documentation for systems critical to the safety of the facility during operation with the CS exists and is kept current as appropriate for their safety functions, and the documentation is available to the operators. * Cold Source and reactor interface equipment has been included in the

146

Response of aluminum and its alloys to exposure in the high flux isotope reactor  

DOE Green Energy (OSTI)

Pure aluminum and some aluminum alloys were irradiated to very high neutron fluences in the cooling water at 328 K in the high flux region of HFIR. Displacement levels of 270 dpa and transmutation-produced silicon levels of 7.15 wt % were reached. Damage microstructures consisted of dislocations, cavities, and precipitates which caused substantial strengthening and associated loss in ductility. Formation of cavities and related swelling were considerably reduced by alloying elements and by the presence of fine Mg/sub 2/Si precipitate.

Farrell, K.

1983-01-01T23:59:59.000Z

147

ORNL - Restart of the High Flux Isotope Reactor 2-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management Management OBJECTIVE MG-1: Line management has established programs to ensure safe accomplishment of work. Personnel exhibit awareness of public and worker safety, health, and environmental protection requirements, and through their actions, they demonstrate a high-priority commitment to comply with these requirements. (Core Requirements 1 and 2) Criteria * Line management has integrated programs within its existing ISMS and implementing mechanisms that appropriately address the major changes implemented during this outage, notably the CS, in order to continue to assure safe accomplishment of work. * Senior management and RRD management exhibit awareness of the applicable requirements pertaining to reactor operation, with emphasis on the

148

ORNL - Restart of the High Flux Isotope Reactor 2-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RADIOLOGICAL PROTECTION (RP) RADIOLOGICAL PROTECTION (RP) OBJECTIVE RP-1: The RRD radiological protection program has been appropriately modified to reflect the CS modification and its reactor interface, sufficient numbers of qualified radiological protection personnel are provided, and adequate radiological protection facilities and equipment are available to ensure that services are adequate to conduct and support HFIR operation. The radiological protection functions, assignments, responsibilities, and reporting relationships are clearly defined, understood, and effectively implemented with line management control of safety. Radiological protection personnel exhibit awareness of the applicable radiological protection requirements pertaining to HFIR operation and the associated hazards.

149

ORNL - Restart of the High Flux Isotope Reactor 2-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management and Organization Management and Organization OBJECTIVE MG-1: Line management has integrated within its existing ISM system and implementing mechanisms, programs that appropriately address CS operations, hazards, and reactor interface to assure safe accomplishment of work. Safety management programs of particular interest include the following (CR - 1): * maintenance and testing (addressed by MT-1) * conduct of operations (addressed by OP-1and -5) * training/qualification (addressed by TR-1) * nuclear safety (addressed by AB-2) * emergency management (addressed by EP-1and -2) * configuration management (addressed by ES-3) * fire protection (addressed by ESH-4) * industrial safety and hygiene (addressed by ESH-2) * quality assurance (addressed by ESH-6)

150

Flux stability and power control in the Soviet RBMK-1000 reactors  

SciTech Connect

As a result of the Chernobyl accident, the Soviets have studied and implemented various design changes to improve the safety of the RBMK reactors. The safety measurements include modifications of the control rod configuration, fuel enrichment increase from 2.0 to 2.4 weight percent U-235, and installation of additional supplemental absorbers. The purpose of this study is to investigate the effects of increased fuel enrichment, different control rod positions, and supplemental absorber loadings on reactivity control, power distribution within the large RBMK core, and relative stability against power oscillations.

Meriwether, G.H.; McNeece, J.P.

1993-08-01T23:59:59.000Z

151

Plasma focus ion beam fluence and flux-Scaling with stored energy  

Science Conference Proceedings (OSTI)

Measurements on plasma focus ion beams include various advanced techniques producing a variety of data which has yet to produce benchmark numbers [A Bernard et al., J. Mosc. Phys. Soc. 8, 93-170 (1998)]. This present paper uses the Lee Model code [S Lee, http://www.plasmafocus.net (2012)], integrated with experimental measurements to provide the basis for reference numbers and the scaling of deuteron beams versus stored energy E{sub 0}. The ion number fluence (ions m{sup -2}) and energy fluence (J m{sup -2}) computed as 2.4-7.8 Multiplication-Sign 10{sup 20} and 2.2-33 Multiplication-Sign 10{sup 6}, respectively, are found to be independent of E{sub 0} from 0.4 to 486 kJ. Typical inductance machines (33-55 nH) produce 1.2-2 Multiplication-Sign 10{sup 15} ions per kJ carrying 1.3%-4% E{sub 0} at mean ion energy 50-205 keV, dropping to 0.6 Multiplication-Sign 10{sup 15} ions per kJ carrying 0.7% E{sub 0} for the high inductance INTI PF.

Lee, S. [INTI International University, 71800 Nilai (Malaysia); Institute for Plasma Focus Studies, 32 Oakpark Drive, Chadstone 3148 (Australia); Physics Department, University of Malaya, Kuala Lumpur (Malaysia); Saw, S. H. [INTI International University, 71800 Nilai (Malaysia); Institute for Plasma Focus Studies, 32 Oakpark Drive, Chadstone 3148 (Australia)

2012-11-15T23:59:59.000Z

152

Band gap tunability of molecular beam epitaxy grown lateral composition modulated GaInP structures by controlling V/III flux ratio  

Science Conference Proceedings (OSTI)

Lateral composition modulated (LCM) GaInP structures were grown on (001) GaAs substrate by molecular beam epitaxy with different V/III flux ratios. Band gap of LCM structures could be tuned from 1.93 eV to 1.83 eV by decreasing flux ratio while maintaining the same photoluminescence intensity, enhanced light absorption, and widened absorption spectrum. It is shown that for band gap tuning of LCM structures, flux ratio adjustment is a more viable method compared to growth temperature adjustment.

Park, K. W. [School of Information and Communications, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Park, C. Y. [Micro Systems Laboratory, Samsung Advanced Institute of Technology, Yongin 446-712 (Korea, Republic of); Lee, Y. T. [School of Information and Communications, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Department of Photonics and Applied Physics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

2012-07-30T23:59:59.000Z

153

DESIGN OF A TOKAMAK FUSION REACTOR FIRST WALL ARMOR AGAINST NEUTRAL BEAM IMPINGEMENT  

E-Print Network (OSTI)

Hoffman, et. a1. , "Fusion Reactor First Wall Cooling foricance in Fusion Reactors," Fifth Conference Proceedings onfor a Thp.rmonuclear Reactor," Nu'clear Fusion, 26. H.A.B.

Myers, Richard Allen

2011-01-01T23:59:59.000Z

154

DESIGN OF A TOKAMAK FUSION REACTOR FIRST WALL ARMOR AGAINST NEUTRAL BEAM IMPINGEMENT  

E-Print Network (OSTI)

of Niobium," BNES Nuclear Fusion Reactor Conference, CulhamWall Erosion in Fusion Reactors," Nuclear Fusion. g. 31.and Reactors," Fifth Conference Pro- ceedings on Plasma Physics and Controlled Nuclear Fusion

Myers, Richard Allen

2011-01-01T23:59:59.000Z

155

ORNL - Restart of the High Flux Isotope Reactor 2-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NUCLEAR SAFETY (NS) NUCLEAR SAFETY (NS) OBJECTIVE NS-1: The nuclear safety program has been appropriately modified to reflect the CS modification and its reactor interface, sufficient numbers of qualified nuclear safety personnel are provided, and adequate facilities and equipment are available to ensure that nuclear safety services are adequate to support HFIR operation with the CS. The nuclear safety functions, assignments, responsibilities, and reporting relationships are clearly defined, understood, and effectively implemented with line management control of safety. The level of knowledge of nuclear safety personnel with respect to operation of HFIR with the CS is adequate. (Core Requirements 1, 2, 4, and 6) Criteria * The nuclear safety program is established and functioning to support HFIR

156

Characteristics of potential repository wastes: Volume 4, Appendix 4A, Nuclear reactors at educational institutions of the United States; Appendix 4B, Data sheets for nuclear reactors at educational institutions; Appendix 4C, Supplemental data for Fort St. Vrain spent fuel; Appendix 4D, Supplemental data for Peach Bottom 1 spent fuel; Appendix 4E, Supplemental data for Fast Flux Test Facility  

Science Conference Proceedings (OSTI)

Volume 4 contains the following appendices: nuclear reactors at educational institutions in the United States; data sheets for nuclear reactors at educational institutions in the United States(operational reactors and shut-down reactors); supplemental data for Fort St. Vrain spent fuel; supplemental data for Peach Bottom 1 spent fuel; and supplemental data for Fast Flux Test Facility.

Not Available

1992-07-01T23:59:59.000Z

157

Development of CFD models to support LEU Conversion of ORNL s High Flux Isotope Reactor  

SciTech Connect

The US Department of Energy s National Nuclear Security Administration (NNSA) is participating in the Global Threat Reduction Initiative to reduce and protect vulnerable nuclear and radiological materials located at civilian sites worldwide. As an integral part of one of NNSA s subprograms, Reduced Enrichment for Research and Test Reactors, HFIR is being converted from the present HEU core to a low enriched uranium (LEU) core with less than 20% of U-235 by weight. Because of HFIR s importance for condensed matter research in the United States, its conversion to a high-density, U-Mo-based, LEU fuel should not significantly impact its existing performance. Furthermore, cost and availability considerations suggest making only minimal changes to the overall HFIR facility. Therefore, the goal of this conversion program is only to substitute LEU for the fuel type in the existing fuel plate design, retaining the same number of fuel plates, with the same physical dimensions, as in the current HFIR HEU core. Because LEU-specific testing and experiments will be limited, COMSOL Multiphysics was chosen to provide the needed simulation capability to validate against the HEU design data and previous calculations, and predict the performance of the proposed LEU fuel for design and safety analyses. To achieve it, advanced COMSOL-based multiphysics simulations, including computational fluid dynamics (CFD), are being developed to capture the turbulent flows and associated heat transfer in fine detail and to improve predictive accuracy [2].

Khane, Vaibhav B [ORNL; Jain, Prashant K [ORNL; Freels, James D [ORNL

2012-01-01T23:59:59.000Z

158

Conceptual Process for the Manufacture of Low-Enriched Uranium/Molybdenum Fuel for the High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

The U.S. nonproliferation policy 'to minimize, and to the extent possible, eliminate the use of HEU in civil nuclear programs throughout the world' has resulted in the conversion (or scheduled conversion) of many of the U.S. research reactors from high-enriched uranium (HEU) to low-enriched uranium (LEU). A foil fuel appears to offer the best option for using a LEU fuel in the High Flux Isotope Reactor (HFIR) without degrading the performance of the reactor. The purpose of this document is to outline a proposed conceptual fabrication process flow sheet for a new, foil-type, 19.75%-enriched fuel for HFIR. The preparation of the flow sheet allows a better understanding of the costs of infrastructure modifications, operating costs, and implementation schedule issues associated with the fabrication of LEU fuel for HFIR. Preparation of a reference flow sheet is one of the first planning steps needed in the development of a new manufacturing capacity for low enriched fuels for U.S. research and test reactors. The flow sheet can be used to develop a work breakdown structure (WBS), a critical path schedule, and identify development needs. The reference flow sheet presented in this report is specifically for production of LEU foil fuel for the HFIR. The need for an overall reference flow sheet for production of fuel for all High Performance Research Reactors (HPRR) has been identified by the national program office. This report could provide a starting point for the development of such a reference flow sheet for a foil-based fuel for all HPRRs. The reference flow sheet presented is based on processes currently being developed by the national program for the LEU foil fuel when available, processes used historically in the manufacture of other nuclear fuels and materials, and processes used in other manufacturing industries producing a product configuration similar to the form required in manufacturing a foil fuel. The processes in the reference flow sheet are within the bounds of known technology and are adaptable to the high-volume production required to process {approx} 2.5 to 4 tons of U/Mo and produce {approx}16,000 flat plates for U.S. reactors annually ({approx}10,000 of which are needed for HFIR operations). The reference flow sheet is not intended to necessarily represent the best or the most economical way to manufacture a LEU foil fuel for HFIR but simply represents a 'snapshot' in time of technology and is intended to identify the process steps that will likely be required to manufacture a foil fuel. Changes in some of the process steps selected for the reference flow sheet are inevitable; however, no one step or series of steps dominates the overall flow sheet requirements. A result of conceptualizing a reference flow sheet was the identification of the greater number of steps required for a foil process when compared to the dispersion fuel process. Additionally, in most of the foil processing steps, bare uranium must be handled, increasing the complexity of these processing areas relative to current operations. Based on a likely total cost of a few hundred million dollars for a new facility, it is apparent that line item funding will be necessary and could take as much as 8 to 10 years to complete. The infrastructure cost could exceed $100M.

Sease, J.D.; Primm, R.T. III; Miller, J.H.

2007-09-30T23:59:59.000Z

159

Validation of a Monte Carlo based depletion methodology via High Flux Isotope Reactor HEU post-irradiation examination measurements  

Science Conference Proceedings (OSTI)

The purpose of this study is to validate a Monte Carlo based depletion methodology by comparing calculated post-irradiation uranium isotopic compositions in the fuel elements of the High Flux Isotope Reactor (HFIR) core to values measured using uranium mass-spectrographic analysis. Three fuel plates were analyzed: two from the outer fuel element (OFE) and one from the inner fuel element (IFE). Fuel plates O-111-8, O-350-1, and I-417-24 from outer fuel elements 5-O and 21-O and inner fuel element 49-I, respectively, were selected for examination. Fuel elements 5-O, 21-O, and 49-1 were loaded into HFIR during cycles 4, 16, and 35, respectively (mid to late 1960s). Approximately one year after each of these elements were irradiated, they were transferred to the High Radiation Level Examination Laboratory (HRLEL) where samples from these fuel plates were sectioned and examined via uranium mass-spectrographic analysis. The isotopic composition of each of the samples was used to determine the atomic percent of the uranium isotopes. A Monte Carlo based depletion computer program, ALEPH, which couples the MCNP and ORIGEN codes, was utilized to calculate the nuclide inventory at the end-of-cycle (EOC). A current ALEPH/MCNP input for HFIR fuel cycle 400 was modified to replicate cycles 4, 16, and 35. The control element withdrawal curves and flux trap loadings were revised, as well as the radial zone boundaries and nuclide concentrations in the MCNP model. The calculated EOC uranium isotopic compositions for the analyzed plates were found to be in good agreement with measurements, which reveals that ALEPH/MCNP can accurately calculate burn-up dependent uranium isotopic concentrations for the HFIR core. The spatial power distribution in HFIR changes significantly as irradiation time increases due to control element movement. Accurate calculation of the end-of-life uranium isotopic inventory is a good indicator that the power distribution variation as a function of space and time is accurately calculated, i.e. an integral check. Hence, the time dependent heat generation source terms needed for reactor core thermal hydraulic analysis, if derived from this methodology, have been shown to be accurate for highly enriched uranium (HEU) fuel.

Chandler, David [ORNL; Maldonado, G Ivan [ORNL; Primm, Trent [ORNL

2010-01-01T23:59:59.000Z

160

STARTUP REACTIVITY ACCOUNTABILITY ATTRIBUTED TO ISOTOPIC TRANSMUTATIONS IN THE IRRADIATED BERYLLIUM REFLECTOR OF THE HIGH FLUX ISTOTOPE REACTOR  

Science Conference Proceedings (OSTI)

The objective of this study is to develop a methodology to predict the reactivity impact as a function of outage time between cycles of 3He, 6Li, and other poisons in the High Flux Isotope Reactor s (HFIR) beryllium reflector. The reactivity worth at startup of the HFIR has been incorrectly predicted in the past after the reactor has been shut-down for long periods of time. The incorrect prediction was postulated to be due to the erroneous calculation of 3He buildup in the beryllium reflector. It is necessary to develop a better estimate of the start-of-cycle symmetric critical control element positions since if the estimated and actual symmetrical critical control element positions differ by more than $1.55 in reactivity (approximately one-half inch in control element startup position), HFIR is to be shutdown and a technical evaluation is performed to resolve the discrepancy prior to restart. 3He is generated and depleted during operation, but during an outage, the depletion of 3He ceases because it is a stable isotope. 3He is born from the radioactive decay of tritium, and thus the concentration of 3He increases during shutdown. The computer program SCALE, specifically the TRITON and CSAS5 control modules including the KENO V.A, COUPLE, and ORIGEN functional modules were utilized in this study. An equation relating the down time (td) to the change in symmetric control element position was generated and validated against measurements for approximately 40 HFIR operating cycles. The newly-derived correlation was shown to improve accuracy of predictions for long periods of down time.

Chandler, David [ORNL; Maldonado, G Ivan [ORNL; Primm, Trent [ORNL

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flux beam reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

MEASUREMENT OF THE NEUTRON SPECTRUM OF THE HB-4 COLD SOURCE AT THE HIGH FLUX ISOTOPE REACTOR AT OAK RIDGE NATIONAL LABORATORY  

DOE Green Energy (OSTI)

Measurements of the cold neutron spectrum from the super critical hydrogen cold source at the High Flux Isotope Reactor at Oak Ridge National Laboratory were made using time-of-flight spectroscopy. Data were collected at reactor power levels of 8.5MW, 42.5MW and 85MW. The moderator temperature was also varied. Data were collected at 17K and 25K while the reactor power was at 8.5MW, 17K and 25K while at 42.5MW and 18K and 22K while at 85MW. The purpose of these measurements was to characterize the brightness of the cold source and to better understand the relationship between reactor power, moderator temperature, and cold neutron production. The authors will discuss the details of the measurement, the changes observed in the neutron spectrum, and the process for determining the source brightness from the measured neutron intensity.

Robertson, Lee [ORNL; Iverson, Erik B [ORNL

2009-01-01T23:59:59.000Z

162

Cross section generation and physics modeling in a feasibility study of the conversion of the high flux isotope reactor core to use low-enriched uranium fuel  

SciTech Connect

A computational study has been initiated at ORNL to examine the feasibility of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. The current study is limited to steady-state, nominal operation and are focused on the determination of the fuel requirements, primarily density, that are required to maintain the performance of the reactor. Reactor physics analyses are reported for a uranium-molybdenum alloy that would be substituted for the current fuel - U{sub 3}O{sub 8} mixed with aluminum. An LEU core design has been obtained and requires an increase in {sup 235}U loading of a factor of 1.9 over the current HEU fuel. These initial results indicate that the conversion from HEU to LEU results in a reduction of the thermal fluxes in the central flux trap region of approximately 9 % and in the outer beryllium reflector region of approximately 15%. Ongoing work is being performed to improve upon this initial design to further minimize the impact of conversion to LEU fuel. (authors)

Ellis, R. J.; Gehin, J. C.; Primm Iii, R. T. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States)

2006-07-01T23:59:59.000Z

163

Design of a low enrichment, enhanced fast flux core for the Massachusetts Institute of Technology Research Reactor  

E-Print Network (OSTI)

Worldwide, there is limited test reactor capacity to perform the required irradiation experiments on advanced fast reactor materials and fuel designs. This is particularly true in the U.S., which no longer has an operating ...

Ellis, Tyler Shawn

2009-01-01T23:59:59.000Z

164

Multiphysics Simulations of the Complex 3D Geometry of the High Flux Isotope Reactor Fuel Elements Using COMSOL  

Science Conference Proceedings (OSTI)

A research and development project is ongoing to convert the currently operating High Flux Isotope Reactor (HFIR) of Oak Ridge National Laboratory (ORNL) from highly-enriched Uranium (HEU U3O8) fuel to low-enriched Uranium (LEU U-10Mo) fuel. Because LEU HFIR-specific testing and experiments will be limited, COMSOL is chosen to provide the needed multiphysics simulation capability to validate against the HEU design data and calculations, and predict the performance of the LEU fuel for design and safety analyses. The focus of this paper is on the unique issues associated with COMSOL modeling of the 3D geometry, meshing, and solution of the HFIR fuel plate and assembled fuel elements. Two parallel paths of 3D model development are underway. The first path follows the traditional route through examination of all flow and heat transfer details using the Low-Reynolds number k-e turbulence model provided by COMSOL v4.2. The second path simplifies the fluid channel modeling by taking advantage of the wealth of knowledge provided by decades of design and safety analyses, data from experiments and tests, and HFIR operation. By simplifying the fluid channel, a significant level of complexity and computer resource requirements are reduced, while also expanding the level and type of analysis that can be performed with COMSOL. Comparison and confirmation of validity of the first (detailed) and second (simplified) 3D modeling paths with each other, and with available data, will enable an expanded level of analysis. The detailed model will be used to analyze hot-spots and other micro fuel behavior events. The simplified model will be used to analyze events such as routine heat-up and expansion of the entire fuel element, and flow blockage. Preliminary, coarse-mesh model results of the detailed individual fuel plate are presented. Examples of the solution for an entire fuel element consisting of multiple individual fuel plates produced by the simplified model are also presented.

Freels, James D [ORNL; Jain, Prashant K [ORNL

2011-01-01T23:59:59.000Z

165

Assumptions and Criteria for Performing a Feasability Study of the Conversion of the High Flux Isotope Reactor Core to Use Low-Enriched Uranium Fuel  

SciTech Connect

A computational study will be initiated during fiscal year 2006 to examine the feasibility of converting the High Flux Isotope Reactor from highly enriched uranium fuel to low-enriched uranium. The study will be limited to steady-state, nominal operation, reactor physics and thermal-hydraulic analyses of a uranium-molybdenum alloy that would be substituted for the current fuel powder--U{sub 3}O{sub 8} mixed with aluminum. The purposes of this document are to (1) define the scope of studies to be conducted, (2) define the methodologies to be used to conduct the studies, (3) define the assumptions that serve as input to the methodologies, (4) provide an efficient means for communication with the Department of Energy and American research reactor operators, and (5) expedite review and commentary by those parties.

Primm, R.T., III; Ellis, R.J.; Gehin, J.C.; Moses, D.L.; Binder, J.L.; Xoubi, N. (U. of Cincinnati)

2006-02-01T23:59:59.000Z

166

X-ray and pressure conditions on the first wall of a particle beam inertial confinement reactor  

SciTech Connect

Because of the presence of a chamber gas in a particle beam reactor cavity, nonneutron target debris created from thermonuclear burn will be modified or stopped before it reaches the first reactor wall. The resulting modified spectra and pulse lengths of the debris need to be calculated to determine first wall effects. Further, the cavity overpressure created by the momentum and energy exchange between the debris and gas must also be calculated to determine its effect. The purpose of this paper is to present results of the debris-background gas problem obtained with a one fluid, two temperature plasma hydrodynamic computer code model which includes multifrequency radiation transport. Spherical symmetry, ideal gas equation of state, and LTE for each radiation frequency group were assumed. The transport of debris ions was not included and all the debris energy was assumed to be in radiation. The calculated x-ray spectra and pulse lengths and the background overpressure are presented.

Magelssen, G.R.

1979-01-01T23:59:59.000Z

167

Fusion reactivities and neutron source characteristics of beam-driven toroidal reactors with both D and T injection  

SciTech Connect

The reactor performance is considered for intensely beam-driven tokamak plasmas with 50:50 D-T composition maintained by neutral-beam injection of both D and T, together with plasma recycling. The D and T are injected with equal intensity and velocity. This mode of operation is most appropriate for high-duty- factor, high-power-density operation, in the absence of pellet injection. The isotropic velocity distributions of energetic D and T ions (for multi-angle injection) are calculated from a simple slowing-down model, but include a tail above the injection velocity. The neutron source characteristics are determined from fusion reactivities calculated for beam-target, hot-ion, and thermonuclear reactions. For conditions where Q approximates 1, beam-target reactions are dominant, although reactions among the hot ions contribute substantially to P/sub fusion/ when n/sub hot//n /sub e/ greater than or equal to 0.2. (auth)

Jassby, D.L.; Towner, H.H.

1976-01-01T23:59:59.000Z

168

ENERGY DISTRIBUTION OF FAST NEUTRON BEAM  

DOE Green Energy (OSTI)

Experimental techniques are described for the spectral measurement of a collimated fast-neutron beam. A H/sub 2-/ filled cloud chamber, proton-recording nuclear plates, and threshold fission foils were used as neutron detectors in the measurements. As an application of these techniques, the energy distribution and absolute flux of the fast neutron beam emerging from the Los Alamos fast reactor was measured from 0.1 to 18 Mev. (D.E.B.)

Nereson, N.; Allison, E.; Carlson, J.; Norwood, P.; Squires, D.

1951-02-15T23:59:59.000Z

169

Source Terms for HFIR Beam Tube Shielding Analyses, and a Complete Shielding Analysis of the HB-3 Tube  

SciTech Connect

The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory is in the midst of a massive upgrade program to enhance experimental facilities. The reactor presently has four horizontal experimental beam tubes, all of which will be replaced or redesigned. The HB-2 beam tube will be enlarged to support more guide tubes, while the HB-4 beam tube will soon include a cold neutron source.

Bucholz, J.A.

2000-07-01T23:59:59.000Z

170

Intercomparison of the finite difference and nodal discrete ordinates and surface flux transport methods for a LWR pool-reactor benchmark problem in X-Y geometry  

Science Conference Proceedings (OSTI)

The aim of the present work is to compare and discuss the three of the most advanced two dimensional transport methods, the finite difference and nodal discrete ordinates and surface flux method, incorporated into the transport codes TWODANT, TWOTRAN-NODAL, MULTIMEDIUM and SURCU. For intercomparison the eigenvalue and the neutron flux distribution are calculated using these codes in the LWR pool reactor benchmark problem. Additionally the results are compared with some results obtained by French collision probability transport codes MARSYAS and TRIDENT. Because the transport solution of this benchmark problem is close to its diffusion solution some results obtained by the finite element diffusion code FINELM and the finite difference diffusion code DIFF-2D are included.

O'Dell, R.D.; Stepanek, J.; Wagner, M.R.

1983-01-01T23:59:59.000Z

171

Thermal-hydraulic simulation of natural convection decay heat removal in the High Flux Isotope Reactor using RELAP5 and TEMPEST: Part 1, Models and simulation results  

Science Conference Proceedings (OSTI)

A study was conducted to examine decay heat removal requirements in the High Flux Isotope Reactor (HFIR) following shutdown from 85 MW. The objective of the study was to determine when forced flow through the core could be terminated without causing the fuel to melt. This question is particularly relevant when a station blackout caused by an external event is considered. Analysis of natural circulation in the core, vessel upper plenum, and reactor pool indicates that 12 h of forced flow will permit a safe shutdown with some margin. However, uncertainties in the analysis preclude conclusive proof that 12 h is sufficient. As a result of the study, two seismically qualified diesel generators were installed in HFIR. 9 refs., 4 figs.

Morris, D.G.; Wendel, M.W.; Chen, N.C.J.; Ruggles, A.E.; Cook, D.H.

1989-01-01T23:59:59.000Z

172

Commissioning of the Korean High Heat Flux Test Facility by Using Electron Beam System for Plasma Facing Components  

Science Conference Proceedings (OSTI)

Divertor and High-Heat-Flux Components / Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 1), Nashville, Tennessee, August 27-31, 2012

Suk-Kwon Kim; Eo Hwak Lee; Jae-Sung Yoon; Dong Won Lee; Duck-Hoi Kim; Seungyon Cho

173

Assumptions and criteria for performing a feasibility study of the conversion of the high flux isotope reactor core to use low-enriched uranium fuel  

SciTech Connect

This paper provides a preliminary estimate of the operating power for the High Flux Isotope Reactor when fuelled with low enriched uranium (LEU). Uncertainties in the fuel fabrication and inspection processes are reviewed for the current fuel cycle [highly enriched uranium (HEU)] and the impact of these uncertainties on the proposed LEU fuel cycle operating power is discussed. These studies indicate that for the power distribution presented in a companion paper in these proceedings, the operating power for an LEU cycle would be close to the current operating power. (authors)

Primm Iii, R. T. [Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6399 (United States); Ellis, R. J.; Gehin, J. C. [Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6172 (United States); Moses, D. L. [Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6050 (United States); Binder, J. L. [Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6162 (United States); Xoubi, N. [Univ. of Cincinnati, Rhodes Hall, ML 72, PO Box 210072, Cincinnati, OH 45221-0072 (United States)

2006-07-01T23:59:59.000Z

174

Design and Nuclear-Safety Related Simulations of Bare-Pellet Test Irradiations for the Production of Pu-238 in the High Flux Isotope Reactor using COMSOL  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory (ORNL)is developing technology to produce plutonium-238 for the National Aeronautics and Space Administration (NASA) as a power source material for powering vehicles while in deep-space[1]. The High Flux Isotope Reactor (HFIR) of ORNL has been utilized to perform test irradiations of incapsulated neptunium oxide (NpO2) and aluminum powder bare pellets for purposes of understanding the performance of the pellets during irradiation[2]. Post irradiation examinations (PIE) are currently underway to assess the effect of temperature, thermal expansion, swelling due to gas production, fission products, and other phenomena

Freels, James D [ORNL; Jain, Prashant K [ORNL; Hobbs, Randy W [ORNL

2012-01-01T23:59:59.000Z

175

Mixed field dosimetry of epithermal neutron beams for boron neutron capture therapy at the MITR-II research reactor  

SciTech Connect

During the past several years, there has been growing interest in Boron Neutron Capture Therapy (BNCT) using epithermal neutron beams. The dosimetry of these beams is challenging. The incident beam is comprised mostly of epithermal neutrons, but there is some contamination from photons and fast neutrons. Within the patient, the neutron spectrum changes rapidly as the incident epithermal neutrons scatter and thermalize, and a photon field is generated from neutron capture in hydrogen. In this paper, a method to determine the doses from thermal and fast neutrons, photons, and the B-10([ital n],[alpha])Li-7 reaction is presented. The photon and fast neutron doses are measured with ionization chambers, in realistic phantoms, using the dual chamber technique. The thermal neutron flux is measured with gold foils using the cadmium difference technique; the thermal neutron and B-10 doses are determined by the kerma factor method. Representative results are presented for a unilateral irradiation of the head. Sources of error in the method as applied to BNCT dosimetry, and the uncertainties in the calculated doses are discussed.

Rogus, R.D.; Harling, O.K.; Yanch, J.C. (Massachusetts Institute of Technology, Nuclear Reactor Laboratory, Cambridge, Massachusetts 02139 (United States))

1994-10-01T23:59:59.000Z

176

REACTOR  

DOE Patents (OSTI)

A pressurized water reactor in which automatic control is achieved by varying the average density of the liquid moderator-cooiant is patented. Density is controlled by the temperature and power level of the reactor ftself. This control can be effected by the use of either plate, pellet, or tubular fuel elements. The fuel elements are disposed between upper and lower coolant plenum chambers and are designed to permit unrestricted coolant flow. The control chamber has an inlet opening communicating with the lower coolant plenum chamber and a restricted vapor vent communicating with the upper coolant plenum chamber. Thus, a variation in temperature of the fuel elements will cause a variation in the average moderator density in the chamber which directly affects the power level of the reactor.

Roman, W.G.

1961-06-27T23:59:59.000Z

177

Research reactors - an overview  

SciTech Connect

A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs.

West, C.D.

1997-03-01T23:59:59.000Z

178

Potential role of the Fast Flux Test Facility and the advanced test reactor in the U.S. tritium production system  

Science Conference Proceedings (OSTI)

The Deparunent of Energy is currently engaged in a dual-track strategy to develop an accelerator and a conunercial light water reactor (CLWR) as potential sources of tritium supply. New analysis of the production capabilities of the Fast Flux Test Facility (FFTF) at the Hanford Site argues for considering its inclusion in the tritium supply,system. The use of the FFTF (alone or together with the Advanced Test Reactor [ATR] at the Idaho National Engineering Laboratory) as an integral part of,a tritium production system would help (1) ensure supply by 2005, (2) provide additional time to resolve institutional and technical issues associated with the- dual-track strategy, and (3) reduce discounted total life-cycle`costs and near-tenn annual expenditures for accelerator-based systems. The FFRF would also provide a way to get an early start.on dispositioning surplus weapons-usable plutonium as well as provide a source of medical isotopes. Challenges Associated With the Dual-Track Strategy The Departinent`s purchase of either a commercial reactor or reactor irradiation services faces challenging institutional issues associated with converting civilian reactors to defense uses. In addition, while the technical capabilities of the individual components of the accelerator have been proven, the entire system needs to be demonstrated and scaled upward to ensure that the components work toge ther 1548 as a complete production system. These challenges create uncertainty over the ability of the du2a-track strategy to provide an assured tritium supply source by 2005. Because the earliest the accelerator could come on line is 2007, it would have to operate at maximum capacity for the first few years to regenerate the reserves lost through radioactive decay aftei 2005.

Dautel, W.A.

1996-10-01T23:59:59.000Z

179

Near-field characterization of hydrogen and helium operation on the TFTR (Tokamak Fusion Test Reactor) diagnostic neutral beam  

DOE Green Energy (OSTI)

An Optical Multichannel Analyzer has been used to measure beam divergence and composition. This measurement is usually performed near the center of the neutralizer or beyond the magnet. In the past, these locations suffered difficult beam composition analysis and low light intensity, respectively. It has been determined that the light emission is relatively independent of neutralizer line density in the near field, allowing near-field measurements to overcome both difficulties. At optimum perveance, but under conditions of high gas throughput, the helium 1/e-divergence angle was measured to be 1.5{degree}. Further investigation found that the divergence decreased with gas throughput down to 1.25{degree}. Mimimum divergences for the full-, half-, and third-energy hydrogen components were 1.1{degree}, 1.2{degree}, and 1.4{degree}, respectively. Relative neutral hydrogen particle fluxes available for injection into TFTR are a function of perveance. At maximum perveance, the full-, half-, and third-energy atom fractions were 0.25 {plus minus} 0.04, 0.5 {plus minus} 0.04, and 0.25 {plus minus} 0.05, respectively. 10 refs., 5 figs.

Kamperschroer, J.H.; Schilling, G.; Roquemore, A.L.

1990-07-01T23:59:59.000Z

180

Fuel ion ratio measurements in reactor relevant neutral beam heated fusion plasmas  

SciTech Connect

In this paper, we present a method to derive n{sub t}/n{sub d} using the ratio of the thermonuclear neutron emission to the beam-target neutron emission. We apply it to neutron spectroscopy data from the magnetic proton recoil spectrometer taken during the deuterium tritium experiment at JET. n{sub t}/n{sub d}-values obtained using neutron spectroscopy are in qualitative agreement with those from other diagnostics measuring the isotopic composition of the exhaust in the divertor.

Hellesen, C.; Eriksson, J.; Conroy, S.; Ericsson, G.; Skiba, M.; Weiszflog, M. [Department of Physics and Astronomy, Applied Nuclear Physics, Uppsala University, Uppsala (Sweden); Collaboration: JET-EFDA Contributors

2012-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "flux beam reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Type B investigation of the iridium contamination event at the High Flux Isotope Reactor on September 7, 1993  

SciTech Connect

On the title date, at ORNL, area radiation alarms sounded during a routine transfer of a shielding cask (containing 60 Ci{sup 192}Ir) from the HFIR pool side to a transport truck. Small amounts of Ir were released from the cask onto the reactor bay floor. The floor was cleaned, and the cask was shipped to a hot cell at Building 3047 on Oct. 3, 1993. The event was caused by rupture of one of the Ir target rods after it was loaded into the cask for normal transport operations; the rupture was the result of steam generation in the target rod soon after it was placed in the cask (water had entered the target rod through a tiny defect in a weld while it was in the reactor under pressure). While the target rods were in the reactor and reactor pool, there was sufficient cooling to prevent steam generation; when the target rod was loaded into the dry transport cask, the temperature increased enough to result in boiling of the trapped water and produced high enough pressure to result in rupture. The escaping steam ejected some of the Ir pellets. The event was reported as Occurrence Report Number ORO--MMES-X10HFIR-1993-0030, dated Sept. 8, 1993. Analysis indicated that the following conditions were probable causes: less than adequate welding procedures, practices, or techniques, material controls, or inspection methods, or combination thereof, could have led to weld defects, affecting the integrity of target rod IR-75; less than adequate secondary containment in the cask allowed Ir pellets to escape.

Not Available

1994-03-01T23:59:59.000Z

182

Design and characterization of 2.45 GHz electron cyclotron resonance plasma source with magnetron magnetic field configuration for high flux of hyperthermal neutral beam  

Science Conference Proceedings (OSTI)

A 2.45 GHz electron cyclotron resonance (ECR) source with a magnetron magnetic field configuration was developed to meet the demand of a hyperthermal neutral beam (HNB) flux on a substrate of more than 1x10{sup 15} cm{sup -2} s{sup -1} for industrial applications. The parameters of the operating pressure, ion density, electron temperature, and distance between the neutralization plate and the substrate for the HNB source are specified in a theoretical analysis. The electron temperature and the ion density are measured to characterize the ECR HNB source using a Langmuir probe and optical emission spectroscopy. The parameters of the ECR HNB source are in good agreement with the theoretically specified parameters.

Kim, Seong Bong [Department of Physics, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang 790-784 (Korea, Republic of); Convergence Plasma Research Center, National Fusion Research Institute, Gwahangno 113, Yuseong-gu, Daejeon 305-333 (Korea, Republic of); Kim, Dae Chul; Yoo, Suk Jae [Convergence Plasma Research Center, National Fusion Research Institute, Gwahangno 113, Yuseong-gu, Daejeon 305-333 (Korea, Republic of); Namkung, Won; Cho, Moohyun [Department of Physics, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang 790-784 (Korea, Republic of)

2010-08-15T23:59:59.000Z

183

CALCULATION OF EFFECT OF FUEL BURNUP ON FUEL AND POISON DISTRIBUTIONS AND ON FLUX DISTRIBUTION IN THE MARINE REACTOR  

SciTech Connect

The changes in fuel and poison distributions and the changes in flux shape which accompany the consumption of fuel are studied. The technique employed is a perturbation calculation based on a one-velocity group treatment of the neutrons. The geometry is a spherical core surrounded by an infinite reflector. The programming forms for the IBM-650 which performs the computations using the Wolontis interpretative system are included. Two sample calculations were worked out using the code described and the results are plotted. (M.H.R.)

Hinman, G.

1957-01-29T23:59:59.000Z

184

Brookhaven Reactor Experiment Control Facility, a distributed function computer network  

SciTech Connect

A computer network for real-time data acquisition, monitoring and control of a series of experiments at the Brookhaven High Flux Beam Reactor has been developed and has been set into routine operation. This reactor experiment control facility presently services nine neutron spectrometers and one x-ray diffractometer. Several additional experiment connections are in progress. The architecture of the facility is based on a distributed function network concept. A statement of implementation and results is presented. (auth)

Dimmler, D.G.; Greenlaw, N.; Kelley, M.A.; Potter, D.W.; Rankowitz, S.; Stubblefield, F.W.

1975-11-01T23:59:59.000Z

185

Research Reactors Division | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactors Division (RRD) is responsible for operation of the High Flux Isotope Reactor (HFIR). Operating at 85 MW, HFIR is the highest flux reactor-based source of neutrons for...

186

Brookhaven Graphite Research Reactor Workshop | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Site & Facility Restoration » Deactivation & Services » Site & Facility Restoration » Deactivation & Decommissioning (D&D) » D&D Workshops » Brookhaven Graphite Research Reactor Workshop Brookhaven Graphite Research Reactor Workshop The Brookhaven Graphite Research Reactor (BGRR) was the first reactor built in the U.S. for peacetime atomic research following World War II. Construction began in 1947 and the reactor started operating in August 1950. In the next 18 years, an estimated 25,000 scientific experiments were carried out at the BGRR using neutrons produced in the facility's 700-ton graphite core, made up of more than 60,000 individual graphite blocks. The BGRR was placed on standby in 1968 and then permanently shut down as the next-generation reactor, the High Flux Beam Reactor (HFBR), was

187

Proceedings of the Oak Ridge National Laboratory/Brookhaven National Laboratory workshop on neutron scattering instrumentation at high-flux reactors  

SciTech Connect

For the first three decades following World War II, the US, which pioneered the field of neutron scattering research, enjoyed uncontested leadership in the field. By the mid-1970's, other countries, most notably through the West European consortium at Institut Laue-Langevin (ILL) in Grenoble, France, had begun funding neutron scattering on a scale unmatched in this country. By the early 1980's, observers charged with defining US scientific priorities began to stress the need for upgrading and expansion of US research reactor facilities. The conceptual design of the ANS facility is now well under way, and line-item funding for more advanced design is being sought for FY 1992. This should lead to a construction request in FY 1994 and start-up in FY 1999, assuming an optimal funding profile. While it may be too early to finalize designs for instruments whose construction is nearly a decade removed, it is imperative that we begin to develop the necessary concepts to ensure state-of-the-art instrumentation for the ANS. It is in this context that this Instrumentation Workshop was planned. The workshop touched upon many ideas that must be considered for the ANS, and as anticipated, several of the discussions and findings were relevant to the planning of the HFBR Upgrade. In addition, this report recognizes numerous opportunities for further breakthroughs on neutron instrumentation in areas such as improved detection schemes (including better tailored scintillation materials and image plates, and increased speed in both detection and data handling), in-beam monitors, transmission white beam polarizers, multilayers and supermirrors, and more. Each individual report has been cataloged separately.

McBee, M.R. (ed.); Axe, J.D.; Hayter, J.B.

1990-07-01T23:59:59.000Z

188

Use of a cryogenic sampler to measure radioactive gas concentrations in the main off-gas system at a high-flux isotope reactor  

Science Conference Proceedings (OSTI)

A method for measuring gamma-emitting radioactive gases in air has been developed at Oak Ridge National Laboratory (ORNL). This method combines a cryogenic air-sample collector with a high-purity germanium (HPGe) gamma spectroscopy system. This methodology was developed to overcome the inherently difficult collection and detection of radioactive noble gases. The cryogenic air-sampling system and associated HPGe detector has been used to measure the concentration of radioactive gases in the primary coolant main off-gas system at ONRL's High-Flux Isotope Reactor (HFIR). This paper provides: (1) a description of the cryogenic sampler, the radionuclide detection technique, and a discussion of the effectiveness of sampling and detection of gamma-emitting noble gases; (2) a brief description of HFIR and its associated closed high off-gas system; and (3) quantification of gamma-emitting gases present in the off-gas of the HFIR primary core coolant (e.g. radioisotopes of argon, xenon, and krypton).

Berven, B.A.; Perdue, P.T.; Kark, J.B.; Gibson, M.O.

1982-01-01T23:59:59.000Z

189

Influence of V/III growth flux ratio on trap states in m-plane GaN grown by ammonia-based molecular beam epitaxy  

Science Conference Proceedings (OSTI)

Deep level transient spectroscopy (DLTS) and deep level optical spectroscopy (DLOS) were utilized to investigate the behavior of deep states in m-plane, n-type GaN grown by ammonia-based molecular beam epitaxy (NH{sub 3}-MBE) as a function of systematically varied V/III growth flux ratios. Levels were detected at E{sub C} - 0.14 eV, E{sub C} - 0.21 eV, E{sub C} - 0.26 eV, E{sub C} - 0.62 eV, E{sub C} - 0.67 eV, E{sub C} - 2.65 eV, and E{sub C} - 3.31 eV, with the concentrations of several traps exhibiting systematic dependencies on V/III ratio. The DLTS spectra are dominated by traps at E{sub C} - 0.14 eV and E{sub C} - 0.67 eV, whose concentrations decreased monotonically with increasing V/III ratio and decreasing oxygen impurity concentration, and by a trap at E{sub C} - 0.21 eV that revealed no dependence of its concentration on growth conditions, suggestive of different physical origins. Higher concentrations of deeper trap states detected by DLOS with activation energies of E{sub C} - 2.65 eV and E{sub C} - 3.31 eV in each sample did not display measureable sensitivity to the intentionally varied V/III ratio, necessitating further study on reducing these deep traps through growth optimization for maximizing material quality of NH{sub 3}-MBE grown m-plane GaN.

Zhang, Z.; Arehart, A. R. [Department of Electrical and Computer Engineering, Ohio State University, Columbus, Ohio 43210 (United States); Hurni, C. A.; Speck, J. S. [Department of Materials, University of California, Santa Barbara, California 93106-5050 (United States); Ringel, S. A. [Department of Electrical and Computer Engineering, Ohio State University, Columbus, Ohio 43210 (United States); Institute for Materials Research, Ohio State University, Columbus, Ohio 43210 (United States)

2012-10-08T23:59:59.000Z

190

NEUTRON FLUX INTENSITY DETECTION  

DOE Patents (OSTI)

A method of measuring the instantaneous intensity of neutron flux in the core of a nuclear reactor is described. A target gas capable of being transmuted by neutron bombardment to a product having a resonance absorption line nt a particular microwave frequency is passed through the core of the reactor. Frequency-modulated microwave energy is passed through the target gas and the attenuation of the energy due to the formation of the transmuted product is measured. (AEC)

Russell, J.T.

1964-04-21T23:59:59.000Z

191

Beam Characterization at the Neutron Radiography Facility  

SciTech Connect

The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam’s effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam’s effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model’s energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.

Sarah Morgan; Jeffrey King

2013-01-01T23:59:59.000Z

192

NEUTRONIC REACTOR  

DOE Patents (OSTI)

A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

Wigner, E.P.

1958-04-22T23:59:59.000Z

193

Research Reactors Division | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

is responsible for operation of the High Flux Isotope Reactor. Operating at 85 MW, HFIR is the highest flux reactor-based source of neutrons for research in the United States,...

194

Monte-Carlo Modeling of Parameters of a Subcritical Cascade Reactor Based on MSBR and LMFBR Technologies  

E-Print Network (OSTI)

Parameters of a subcritical cascade reactor driven by a proton accelerator and based on a primary lead-bismuth target, main reactor constructed analogously to the molten salt breeder (MSBR) reactor core and a booster-reactor analogous to the core of the BN-350 liquid metal cooled fast breeder reactor (LMFBR). It is shown by means of Monte-Carlo modeling that the reactor under study provides safe operation modes (k_{eff}=0.94-0.98), is apable to transmute effectively radioactive nuclear waste and reduces by an order of magnitude the requirements on the accelerator beam current. Calculations show that the maximal neutron flux in the thermal zone is 10^{14} cm^{12}\\cdot s^_{-1}, in the fast booster zone is 5.12\\cdot10^{15} cm^{12}\\cdot s{-1} at k_{eff}=0.98 and proton beam current I=2.1 mA.

Bznuni, S A; Zhamkochyan, V M; Polanski, A; Sosnin, A N; Khudaverdyan, A H

2001-01-01T23:59:59.000Z

195

Safety and core design of large liquid-metal cooled fast breeder reactors  

E-Print Network (OSTI)

well known from basic reactor theory, the flux distributionof a fast reactor using the perturbation theory”. In: Atomicbeam theory and are not specific to a nuclear reactor core.

Qvist, Staffan Alexander

2013-01-01T23:59:59.000Z

196

Production capabilities in US nuclear reactors for medical radioisotopes  

SciTech Connect

The availability of reactor-produced radioisotopes in the United States for use in medical research and nuclear medicine has traditionally depended on facilities which are an integral part of the US national laboratories and a few reactors at universities. One exception is the reactor in Sterling Forest, New York, originally operated as part of the Cintichem (Union Carbide) system, which is currently in the process of permanent shutdown. Since there are no industry-run reactors in the US, the national laboratories and universities thus play a critical role in providing reactor-produced radioisotopes for medical research and clinical use. The goal of this survey is to provide a comprehensive summary of these production capabilities. With the temporary shutdown of the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) in November 1986, the radioisotopes required for DOE-supported radionuclide generators were made available at the Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR). In March 1988, however, the HFBR was temporarily shut down which forced investigators to look at other reactors for production of the radioisotopes. During this period the Missouri University Research Reactor (MURR) played an important role in providing these services. The HFIR resumed routine operation in July 1990 at 85 MW power, and the HFBR resumed operation in June 1991, at 30 MW power. At the time of the HFBR shutdown, there was no available comprehensive overview which could provide information on status of the reactors operating in the US and their capabilities for radioisotope production. The obvious need for a useful overview was thus the impetus for preparing this survey, which would provide an up-to-date summary of those reactors available in the US at both the DOE-funded national laboratories and at US universities where service irradiations are currently or expected to be conducted.

Mirzadeh, S.; Callahan, A.P.; Knapp, F.F. Jr. [Oak Ridge National Lab., TN (United States); Schenter, R.E. [Westinghouse Hanford Co., Richland, WA (United States)

1992-11-01T23:59:59.000Z

197

Flux lattices reformulated  

E-Print Network (OSTI)

We theoretically explore the optical flux lattices produced for ultra-cold atoms subject to laser fields where both the atom-light coupling and the effective detuning are spatially periodic. We analyze the geometric vector potential and the magnetic flux it generates, as well as the accompanying geometric scalar potential. We show how to understand the gauge-dependent Aharonov-Bohm singularities in the vector potential, and calculate the continuous magnetic flux through the elementary cell in terms of these singularities. The analysis is illustrated with a square optical flux lattice. We conclude with an explicit laser configuration yielding such a lattice using a set of five properly chosen beams with two counterpropagating pairs (one along the x axes and the other y axes), together with a single beam along the z axis. We show that this lattice is not phase-stable, and identify the one phase-difference that affects the magnetic flux. Thus armed with realistic laser setup, we directly compute the Chern number...

Juzeli?nas, G

2012-01-01T23:59:59.000Z

198

Final Report Independent Verification Survey of the High Flux Beam Reactor, Building 802 Fan House Brookhaven National Laboratory Upton, New York  

SciTech Connect

The Separations Process Research Unit (SPRU) complex located on the Knolls Atomic Power Laboratory (KAPL) site in Niskayuna, New York, was constructed in the late 1940s to research the chemical separation of plutonium and uranium (Figure A-1). SPRU operated as a laboratory scale research facility between February 1950 and October 1953. The research activities ceased following the successful development of the reduction oxidation and plutonium/uranium extraction processes. The oxidation and extraction processes were subsequently developed for large scale use by the Hanford and Savannah River sites (aRc 2008a). Decommissioning of the SPRU facilities began in October 1953 and continued through the 1990s.

Evan Harpeneau

2011-06-24T23:59:59.000Z

199

Withdrawal of Notice of Intent To Prepare an Environmental Impact Statement for the High Flux Beam Reactor at the Brookhaven National Laboratory (11/30/99)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

904 904 Federal Register / Vol. 64, No. 229 / Tuesday, November 30, 1999 / Notices Anyone who wishes to comment, provide technical information or data may do so in writing, either in lieu of, or in addition to, making an oral presentation. Documents will be accepted at the meeting or may be sent to the Defense Nuclear Facilities Safety Board's Washington, DC, office. The Board reserves its right to further schedule and otherwise regulate the course of the meeting, to recess, reconvene, postpone or adjourn the meeting, conduct further reviews, and otherwise exercise its power under the Atomic Energy Act of 1954, as amended. Dated: November 26, 1999. A.J. Eggenberger, Vice-Chairman. [FR Doc. 99-31182 Filed 11-26-99; 11:20 am] BILLING CODE 3670-01-P DEPARTMENT OF EDUCATION Submission for OMB Review;

200

NUCLEAR REACTOR FUEL ELEMENT  

DOE Patents (OSTI)

A fuel plate is designed for incorporation into control rods of the type utilized in high-flux test reactors. The fuel plate is designed so that the portion nearest the poison section of the control rod contains about one-half as much fissionable material as in the rest of the plate, thereby eliminating dangerous flux peaking in that portion. (AEC)

Currier, E.L. Jr.; Nicklas, J.H.

1963-06-11T23:59:59.000Z

Note: This page contains sample records for the topic "flux beam reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Ferroelectric Plasma Source for Heavy Ion Beam Charge Neutralization  

E-Print Network (OSTI)

Heavy Ion Beam Driven Fusion Reactor Study”, KfK-3480,a possible heavy ion fusion reactor design [1]. The final

2005-01-01T23:59:59.000Z

202

THERMAL NEUTRONIC REACTOR  

DOE Patents (OSTI)

A novel thermal reactor was designed in which a first reflector formed from a high atomic weight, nonmoderating material is disposed immediately adjacent to the reactor core. A second reflector composed of a moderating material is disposed outwardly of the first reflector. The advantage of this novel reflector arrangement is that the first reflector provides a high slow neutron flux in the second reflector, where irradiation experiments may be conducted with a small effect on reactor reactivity.

Spinrad, B.I.

1960-01-12T23:59:59.000Z

203

The triple axis spectrometer at the new research reactor OPAL ...  

Science Conference Proceedings (OSTI)

... The triple axis spectrometer at the new research reactor OPAL in Australia. ... The TAS will be based on a thermal beam at the reactor face. ...

204

CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Nuclear Safety Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope Reactor More Documents & Publications CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor

205

Fission reactors and materials  

SciTech Connect

The American-designed boiling water reactor and pressurized water reactor dominate the designs currently in use and under construction worldwide. As in all energy systems, materials problems have appeared during service; these include stress-corrosion of stainless steel pipes and heat exchangers and questions regarding crack behavior in pressure vessels. To obtain the maximum potential energy from our limited uranium supplies is is essential to develop the fast breeder reactor. The materials in these reactors are subjected to higher temperatures and neutron fluxes but lower pressures than in the water reactors. The performance required of the fuel elements is more arduous in the breeder than in water reactors. Extensive materials programs are in progress in test reactors and in large test rigs to ensure that materials will be available to meet these conditions.

Frost, B.R.T.

1981-12-01T23:59:59.000Z

206

CRAD, Radiological Controls - Oak Ridge National Laboratory High Flux  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High High Flux Isotope Reactor CRAD, Radiological Controls - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Radiation Protection Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Radiological Controls - Oak Ridge National Laboratory High Flux Isotope Reactor More Documents & Publications CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor

207

Beam History  

NLE Websites -- All DOE Office Websites (Extended Search)

Beam Status Beam History Print Beamline History Request Form To request a beam current histograph from the ALS storage ring beam histograph database, select the year, month, and...

208

ELECTRONUCLEAR REACTOR  

DOE Patents (OSTI)

An electronuclear reactor is described in which a very high-energy particle accelerator is employed with appropriate target structure to produce an artificially produced material in commercial quantities by nuclear transformations. The principal novelty resides in the combination of an accelerator with a target for converting the accelerator beam to copious quantities of low-energy neutrons for absorption in a lattice of fertile material and moderator. The fertile material of the lattice is converted by neutron absorption reactions to an artificially produced material, e.g., plutonium, where depleted uranium is utilized as the fertile material.

Lawrence, E.O.; McMillan, E.M.; Alvarez, L.W.

1960-04-19T23:59:59.000Z

209

Toroidal midplane neutral beam armor and plasma limiter  

DOE Patents (OSTI)

For use in a tokamak fusion reactor having a midplane magnetic coil on the inner wall of an evacuated toriodal chamber within which a neutral beam heated, fusing plasma is magnetically confined, a neutral beam armor shield and plasma limiter is provided on the inner wall of the toroidal chamber to shield the midplane coil from neutral beam shine-thru and plasma deposition. The armor shield/plasma limiter forms a semicircular enclosure around the midplane coil with the outer surface of the armor shield/plasma limiter shaped to match, as closely as practical, the inner limiting magnetic flux surface of the toroidally confined, indented, bean-shaped plasma. The armor shield/plasma limiter includes a plurality of semicircular graphite plates each having a pair of coupled upper and lower sections with each plate positioned in intimate contact with an adjacent plate on each side thereof so as to form a closed, planar structure around the entire outer periphery of the circular midplane coil. The upper and lower plate sections are adapted for coupling to heat sensing thermocouples and to a circulating water conduit system for cooling the armor shield/plasma limiter.The inner center portion of each graphite plate is adapted to receive and enclose a section of a circular diagnostic magnetic flux loop so as to minimize the power from the plasma confinement chamber incident upon the flux loop.

Kugel, Henry W. (Somerset, NJ); Hand, Jr, Samuel W. (Hopewell Township, Mercer County, NJ); Ksayian, Haig (Titusville, NJ)

1986-01-01T23:59:59.000Z

210

CRAD, Safety Basis - Oak Ridge National Laboratory High Flux Isotope  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Contractor ORR Reactor Contractor ORR CRAD, Safety Basis - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Safety Basis portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Safety Basis - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR More Documents & Publications CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor

211

Parametic Study of the current limit within a single driver-scale transport beam line of an induction Linac for Heavy Ion Fusion  

E-Print Network (OSTI)

Physics of Magnetic Fusion Reactors, Rev. of Modern Physicsheavy ion beam driven fusion reactor study, Technical Reporta toroidally shaped fusion reactor (tokamak) such as shown

Prost, Lionel Robert

2007-01-01T23:59:59.000Z

212

Subcritical Fission Reactor Based on Linear Collider  

E-Print Network (OSTI)

The beams of Linear Collider after main collision can be utilized to build an accelerator--driven sub--critical reactor.

I. F. Ginzburg

2005-07-29T23:59:59.000Z

213

High Flux Isotope Reactor | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Facilities HFIR How to Work with HFIR How to Work with HFIR HFIR Workflow Please contact the experiment interface or coordinator for additional information and...

214

Groundwater Protection Group, Brookhaven National Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactor Long Term Surveillance & Maintenance High Flux Beam Reactor Long Term Surveillance & Maintenance The High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL)...

215

Develpoment of a one-meter plasma source for heavy ion beam charge neutralization  

E-Print Network (OSTI)

Heavy Ion Beam Driven Fusion Reactor Study”, KfK-3480,is a possible heavy ion fusion reactor design [1]. The final

2005-01-01T23:59:59.000Z

216

Fusion reactor pumped laser  

DOE Patents (OSTI)

A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

Jassby, Daniel L. (Princeton, NJ)

1988-01-01T23:59:59.000Z

217

Fluxes at experiment facilities in HEU and LEU designs for the FRM-II.  

SciTech Connect

An Alternative LEU Design for the FRM-II proposed by the RERTR Program at Argonne National Laboratory (ANL) has a compact core consisting of a single fuel element that uses LEU silicide fuel with a uranium density of 4.5 g/cm{sup 3} and has a power level of 32 MW. Both the HEU design by the Technical University of Munich (TUM) and the alternative LEU design by ANL have the same fuel lifetime(50 days) and the same neutron flux performance (8 x 10{sup 14} n/cm{sup 2}-s in the reflector). LEU silicide fuel with 4.5 g/cm{sup 3} has been thoroughly tested and is fully-qualified, licensable, and available now for use in a high flux reactor such as the FRM-II. Several issues that were raised by TUM have been addressed in Refs. 1-3. The conclusions of these analyses are summarized below. This paper addresses four additional issues that have been raised in several forums, including Ref 4: heat generation in the cold neutron source (CNS), the gamma and fast neutron fluxes which are components of the reactor noise in neutron scattering experiments in the experiment hall of the reactor, a fuel cycle length difference, and the reactivity worth of the beam tubes and other experiment facilities. The results show that: (a) for the same thermal neutron flux, the neutron and gamma heating in the CNS is smaller in the LEU design than in the HEU design, and cold neutron fluxes as good or better than those of the HEU design can be obtained with the LEU desin; (b) the gamma and fast neutron components of the reactor noise in the experiment hall are about the same in both designs; (c) the fuel cycle length is 50 days for both designs; and (d) the absolute value of the reactivity worth of the beam tubes and other experiment facilities is smaller in the LEU design, allowing its fuel cycle length to be increased to 53 or 54 days. Based on the excellent results for the Alternative LEU Design that were obtained in all analyses, the RERTR Program reiterates its conclusion that there are no major technical issues regarding use of LEU fuel instead of HEU fuel in the FRM-II and that it is definitely feasible to use LEU fuel in the FRM-II without compromising the safety or performance of the facility.

Hanan, N. A.

1998-01-16T23:59:59.000Z

218

CRAD, Emergency Management - Oak Ridge National Laboratory High Flux  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge National Laboratory High Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Emergency Management - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Emergency Management Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Emergency Management - Oak Ridge National Laboratory High Flux Isotope Reactor More Documents & Publications CRAD, Emergency Management - Oak Ridge National Laboratory High Flux

219

CRAD, DOE Oversight - Oak Ridge National Laboratory High Flux Isotope  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge National Laboratory High Flux Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, DOE Oversight - Oak Ridge National Laboratory High Flux Isotope Reactor A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a DOE independent oversight assessment of the Oak Ridge National Laboratory programs for oversight of its contractors. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, DOE Oversight - Oak Ridge National Laboratory High Flux Isotope Reactor More Documents & Publications CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope Reactor

220

CRAD, Conduct of Operations - Oak Ridge National Laboratory High Flux  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Reactor CRAD, Conduct of Operations - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February, 2007 assessment of the Conduct of Operations Program in preparation for restart of the Oak Ridge National Laboratory, High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Conduct of Operations - Oak Ridge National Laboratory High Flux Isotope Reactor More Documents & Publications CRAD, Fire Protection - Oak Ridge National Laboratory High Flux Isotope

Note: This page contains sample records for the topic "flux beam reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

INEEL/EXT-01-01623 MODULAR PEBBLE-BED REACTOR PROJECT  

E-Print Network (OSTI)

in the early 1990s. Fuel compacts were irradiated at the High Flux Isotope Reactor (HFIR) and the Advanced Test

222

Beam History  

NLE Websites -- All DOE Office Websites (Extended Search)

Beam History Print Beamline History Request Form To request a beam current histograph from the ALS storage ring beam histograph database, select the year, month, and day, then...

223

Toroidal midplane neutral beam armor and plasma limiter  

DOE Patents (OSTI)

This invention contemplates an armor shield/plasma limiter positioned upon the inner wall of a toroidal vacuum chamber within which is magnetically confined an energetic plasma in a tokamak nuclear fusion reactor. The armor shield/plasma limiter is thus of a general semi-toroidal shape and is comprised of a plurality of adjacent graphite plates positioned immediately adjacent to each other so as to form a continuous ring upon and around the toroidal chamber's inner wall and the reactor's midplane coil. Each plate has a generally semi-circular outer circumference and a recessed inner portion and is comprised of upper and lower half sections positioned immediately adjacent to one another along the midplane of the plate. With the upper and lower half sections thus joined, a channel or duct is provided within the midplane of the plate in which a magnetic flux loop is positioned. The magnetic flux loop is thus positioned immediately adjacent to the fusing toroidal plasma and serves as a diagnostic sensor with the armor shield/plasma limiter minimizing the amount of power from the energetic plasma as well as from the neutral particle beams heating the plasma incident upon the flux loop.

Kugel, H.W.; Hand, S.W. Jr.; Ksayian, H.

1985-05-31T23:59:59.000Z

224

Beam current sensor  

DOE Patents (OSTI)

A current sensor for measuring the dc component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivities in the nano-ampere range.

Kuchnir, M.; Mills, F.E.

1984-09-28T23:59:59.000Z

225

Beam current sensor  

DOE Patents (OSTI)

A current sensor for measuring the DC component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivites in the nano-ampere range.

Kuchnir, Moyses (Elmhurst, IL); Mills, Frederick E. (Elburn, IL)

1987-01-01T23:59:59.000Z

226

Boiling-Water Reactor internals aging degradation study. Phase 1  

SciTech Connect

This report documents the results of an aging assessment study for boiling water reactor (BWR) internals. Major stressors for BWR internals are related to unsteady hydrodynamic forces generated by the primary coolant flow in the reactor vessel. Welding and cold-working, dissolved oxygen and impurities in the coolant, applied loads and exposures to fast neutron fluxes are other important stressors. Based on results of a component failure information survey, stress corrosion cracking (SCC) and fatigue are identified as the two major aging-related degradation mechanisms for BWR internals. Significant reported failures include SCC in jet-pump holddown beams, in-core neutron flux monitor dry tubes and core spray spargers. Fatigue failures were detected in feedwater spargers. The implementation of a plant Hydrogen Water Chemistry (HWC) program is considered as a promising method for controlling SCC problems in BWR. More operating data are needed to evaluate its effectiveness for internal components. Long-term fast neutron irradiation effects and high-cycle fatigue in a corrosive environment are uncertainty factors in the aging assessment process. BWR internals are examined by visual inspections and the method is access limited. The presence of a large water gap and an absence of ex-core neutron flux monitors may handicap the use of advanced inspection methods, such as neutron noise vibration measurements, for BWR.

Luk, K.H. [Oak Ridge National Lab., TN (United States)

1993-09-01T23:59:59.000Z

227

Neutronic design of a fission converter-based epithermal neutron beam for neutron capture therapy  

SciTech Connect

To meet the needs for neutron capture theory (NCT) irradiations, a high-intensity, high-quality fusion converter-based epithermal neutron beam has been designed for the MITR-II research reactor. This epithermal neutron beam, capable of delivering treatments in a few minutes with negligible background contamination from fast neutrons and photons, will be installed in the present thermal column and hohlraum of the 5-MW MITR-II research reactor. Spent or fresh MITR-II fuel elements will be used to fuel the converter. With a fission converter power of {approximately}80 kW using spent fuel, epithermal fluxes (1 eV < E < 10 keV) in excess of 10{sup 10} n/cm{sup 2} {center_dot} s are achievable at the target position with negligible photon and fast neutron contamination, i.e., <2 {times} 10{sup {minus}11}cGy-cm{sup 2}/n. With the currently available {sup 10}B delivery compound boronophenylalanine-fructose, average therapeutic ratios of {approximately}5 can be achieved using this beam for brain irradiations with deep effective penetration ({approximately}9.5 cm) and high dose rates of up to 400 to 600 RBE cGy/min. If NCT becomes an accepted therapy, fission converter-based beams constructed at existing reactors could meet a large fraction of the projected requirements for intense, low-background epithermal neutron beams at a relatively low cost. The results of an extensive set of neutronic design studies investigating all components of the beam are presented. These detailed studies can be useful as guidance for others who may wish to use the fission converter approach to develop epithermal beams for NCT.

Kiger, W.S. III; Sakamoto, S.; Harling, O.K. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

1999-01-01T23:59:59.000Z

228

Neutron Flux Measurements and Calculations in the Gamma Irradiation Facility Using MCNPX.  

E-Print Network (OSTI)

??The gamma irradiation facility at the High Flux Isotope Reactor (HFIR)is used to deliver a pure gamma dose to any target of interest. in addition… (more)

Giuliano, Dominic Richard

2010-01-01T23:59:59.000Z

229

Continuous Reactors Measure some of the neutrons all of the ...  

Science Conference Proceedings (OSTI)

... reactors use compact cores and highly enriched fuel (over ... U-235) in order to achieve high neutron fluxes ... the use of intermediate enrichment (20-50 ...

2009-11-29T23:59:59.000Z

230

Apparatus for an Inertial Fusion Reactor Inventor Abraham Massry...  

NLE Websites -- All DOE Office Websites (Extended Search)

Apparatus for an Inertial Fusion Reactor Inventor Abraham Massry This invention is comprised of a very large vacuum chamber capable of withstanding a very high neutron flux...

231

CRAD, Environmental Protection - Oak Ridge National Laboratory High Flux  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Protection - Oak Ridge National Laboratory High Environmental Protection - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Environmental Protection - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Environmental Compliance Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Environmental Protection - Oak Ridge National Laboratory High Flux Isotope Reactor More Documents & Publications

232

CRAD, Configuration Management - Oak Ridge National Laboratory High Flux  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Configuration Management - Oak Ridge National Laboratory High Configuration Management - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Configuration Management - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Configuration Management Program in preparation for restart of the Oak Ridge National Laboratory, High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Configuration Management - Oak Ridge National Laboratory High Flux Isotope Reactor More Documents & Publications

233

CRAD, Emergency Management - Oak Ridge National Laboratory High Flux  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge National Laboratory High Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR CRAD, Emergency Management - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Emergency Management Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Emergency Management - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

234

Advanced Test Reactor National Scientific User Facility Partnerships  

SciTech Connect

In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin-Madison; (8) Illinois Institute of Technology (IIT) Materials Research Collaborative Access Team (MRCAT) beamline at Argonne National Laboratory's Advanced Photon Source; and (9) Nanoindenter in the University of California at Berkeley (UCB) Nuclear Engineering laboratory Materials have been analyzed for ATR NSUF users at the Advanced Photon Source at the MRCAT beam, the NIST Center for Neutron Research in Gaithersburg, MD, the Los Alamos Neutron Science Center, and the SHaRE user facility at Oak Ridge National Laboratory (ORNL). Additionally, ORNL has been accepted as a partner facility to enable ATR NSUF users to access the facilities at the High Flux Isotope Reactor and related facilities.

Frances M. Marshall; Todd R. Allen; Jeff B. Benson; James I. Cole; Mary Catherine Thelen

2012-03-01T23:59:59.000Z

235

CRAD, Conduct of Operations - Oak Ridge National Laboratory High Flux  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Contractor ORR Reactor Contractor ORR CRAD, Conduct of Operations - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February, 2007 assessment of the Conduct of Operations Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory, High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Conduct of Operations - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR More Documents & Publications

236

Fast flux locked loop  

DOE Patents (OSTI)

A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

Ganther, Jr., Kenneth R. (Olathe, KS); Snapp, Lowell D. (Independence, MO)

2002-09-10T23:59:59.000Z

237

Power distributions in fresh and depleted LEU and HEU cores of the MITR reactor.  

Science Conference Proceedings (OSTI)

The Massachusetts Institute of Technology Reactor (MITR-II) is a research reactor in Cambridge, Massachusetts designed primarily for experiments using neutron beam and in-core irradiation facilities. It delivers a neutron flux comparable to current LWR power reactors in a compact 6 MW core using Highly Enriched Uranium (HEU) fuel. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context, most research and test reactors both domestic and international have started a program of conversion to the use of Low Enriched Uranium (LEU) fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (UMo) is expected to allow the conversion of U.S. domestic high performance reactors like the MITR-II reactor. Toward this goal, core geometry and power distributions are presented. Distributions of power are calculated for LEU cores depleted with MCODE using an MCNP5 Monte Carlo model. The MCNP5 HEU and LEU MITR models were previously compared to experimental benchmark data for the MITR-II. This same model was used with a finer spatial depletion in order to generate power distributions for the LEU cores. The objective of this work is to generate and characterize a series of fresh and depleted core peak power distributions, and provide a thermal hydraulic evaluation of the geometry which should be considered for subsequent thermal hydraulic safety analyses.

Wilson, E.H.; Horelik, N.E.; Dunn, F.E.; Newton, T.H., Jr.; Hu, L.; Stevens, J.G. (Nuclear Engineering Division); (2MIT Nuclear Reactor Laboratory and Nuclear Science and Engineering Department)

2012-04-04T23:59:59.000Z

238

High-flux neutron source based on a liquid-lithium target  

SciTech Connect

A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the {sup 7}Li(p,n){sup 7}Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.

Halfon, S. [Soreq NRC, Yavne, 81800 (Israel) and Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Feinberg, G. [Soreq NRC, Yavne, 81800 (Israel) and Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I. [Soreq NRC, Yavne, 81800 (Israel)

2013-04-19T23:59:59.000Z

239

Nuclear Reactors  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactors Nuclear reactors created not only large amounts of plutonium needed for the weapons programs, but a variety of other interesting and useful radioisotopes. They produced...

240

Important atomic physics issues for ion beam fusion  

SciTech Connect

This paper suggests several current atomic physics questions important to ion beam fusion. Among the topics discussed are beam transport, beam-target interaction, and reactor design. The major part of the report is discussion concerning areas of research necessary to better understand beam-target interactions. (JDH)

Bangerter, R.O.

1985-03-19T23:59:59.000Z

Note: This page contains sample records for the topic "flux beam reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

CRAD, Configuration Management - Oak Ridge National Laboratory High Flux  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge National Laboratory High Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR CRAD, Configuration Management - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR February 2007, A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Configuration Managment Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory, High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Configuration Management - Oak Ridge National Laboratory High Flux

242

CRAD, Fire Protection - Oak Ridge National Laboratory High Flux Isotope  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fire Protection - Oak Ridge National Laboratory High Flux Fire Protection - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Fire Protection - Oak Ridge National Laboratory High Flux Isotope Reactor February 2006 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Fire Protection program at the Idaho National Laboratory, Idaho Accelerated Retrieval Project Phase II. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Fire Protection - Oak Ridge National Laboratory High Flux Isotope Reactor More Documents & Publications

243

Fusion reactor pumped laser  

DOE Patents (OSTI)

A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.

Jassby, D.L.

1987-09-04T23:59:59.000Z

244

CONTROL SYSTEM FOR NEUTRONIC REACTORS  

DOE Patents (OSTI)

BS>A slow-acting shim rod for control of major variations in reactor neutron flux and a fast-acting control rod to correct minor flux variations are employed to provide a sensitive, accurate control system. The fast-acting rod is responsive to an error signal which is produced by changes in the neutron flux from a predetermined optimum level. When the fast rod is thus actuated in a given direction, means is provided to actuate the slow-moving rod in that direction to return the fast rod to a position near the midpoint of its control range. (AEC)

Crever, F.E.

1962-05-01T23:59:59.000Z

245

Reactor monitoring and safeguards using antineutrino detectors  

E-Print Network (OSTI)

Nuclear reactors have served as the antineutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these very weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Measurements made with antineutrino detectors could therefore offer an alternative means for verifying the power history and fissile inventory of a reactors, as part of International Atomic Energy Agency (IAEA) and other reactor safeguards regimes. Several efforts to develop this monitoring technique are underway across the globe.

N. S. Bowden

2008-09-12T23:59:59.000Z

246

Reactor monitoring and safeguards using antineutrino detectors  

E-Print Network (OSTI)

Nuclear reactors have served as the antineutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these very weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Measurements made with antineutrino detectors could therefore offer an alternative means for verifying the power history and fissile inventory of a reactors, as part of International Atomic Energy Agency (IAEA) and other reactor safeguards regimes. Several efforts to develop this monitoring technique are underway across the globe.

Bowden, N S

2008-01-01T23:59:59.000Z

247

MODERATOR ELEMENTS FOR UNIFORM POWER NUCLEAR REACTOR  

DOE Patents (OSTI)

This patent describes a method of obtaining a flatter flux and more uniform power generation across the core of a nuclear reactor. The method comprises using moderator elements having differing moderating strength. The elements have an increasing amount of the better moderating material as a function of radial and/or axial distance from the reactor core center. (AEC)

Balent, R.

1963-03-12T23:59:59.000Z

248

The relevance of particle flux monitors in accelerator-based activation analysis  

SciTech Connect

One of the most critical parameters in activation analysis is the flux density of the activating radiation, its spatial distribution in particular. The validity of the basic equation for calculating the activity induced to the exposed item depends upon the fulfilment of several conditions, the most relevant of them being equal doses of incident activating radiation received by the unknown sample, the calibration material and the reference material, respectively. This requirement is most problematic if accelerator-produced radiation is used for activation. Whilst nuclear research reactors usually are equipped with exposure positions that provide fairly homogenous activation fields for thermal neutron activation analysis accelerator-generated particle beams (neutrons, photons, charged particles) usually exhibit axial and, in particular, sharp radial flux gradients. Different experimental procedures have been developed to fulfil the condition mentioned above. In this paper, three variants of the application of flux monitors in photon activation analysis are discussed (external monitor, additive and inherent internal monitor). Experiments have indicated that the latter technique yields highest quality of the analytical results.

Segebade, Chr.; Maimaitimin, M.; Sun Zaijing [Idaho Accelerator Centre, Idaho State University, 1500 Alvin Ricken Drive, Pocatello, ID 83201 (United States)

2013-04-19T23:59:59.000Z

249

Heat dissipating nuclear reactor  

DOE Patents (OSTI)

Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extends from the metal base plate downwardly and outwardly into the earth.

Hunsbedt, Anstein (Los Gatos, CA); Lazarus, Jonathan D. (Sunnyvale, CA)

1987-01-01T23:59:59.000Z

250

Heat dissipating nuclear reactor  

DOE Patents (OSTI)

Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extend from the metal base plate downwardly and outwardly into the earth.

Hunsbedt, A.; Lazarus, J.D.

1985-11-21T23:59:59.000Z

251

Solid tags for identifying failed reactor components  

DOE Patents (OSTI)

A solid tag material which generates stable detectable, identifiable, and measurable isotopic gases on exposure to a neutron flux to be placed in a nuclear reactor component, particularly a fuel element, in order to identify the reactor component in event of its failure. Several tag materials consisting of salts which generate a multiplicity of gaseous isotopes in predetermined ratios are used to identify different reactor components.

Bunch, Wilbur L. (Richland, WA); Schenter, Robert E. (Richland, WA)

1987-01-01T23:59:59.000Z

252

Nuclear reactor shield including magnesium oxide  

DOE Patents (OSTI)

An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.

Rouse, Carl A. (Del Mar, CA); Simnad, Massoud T. (La Jolla, CA)

1981-01-01T23:59:59.000Z

253

Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments  

Science Conference Proceedings (OSTI)

Purpose: A rhodium self-powered neutron detector (Rh SPND) has been specifically developed by the Comision Nacional de Energia Atomica (CNEA) of Argentina to measure locally and in real time thermal neutron fluxes in patients treated with boron neutron capture therapy (BNCT). In this work, the thermal and epithermal neutron response of the Rh SPND was evaluated by studying the detector response to two different reactor spectra. In addition, during clinical trials of the BNCT Project of the CNEA, on-line neutron flux measurements using the specially designed detector were assessed. Methods: The first calibration of the detector was done with the well-thermalized neutron spectrum of the CNEA RA-3 reactor thermal column. For this purpose, the reactor spectrum was approximated by a Maxwell-Boltzmann distribution in the thermal energy range. The second calibration was done at different positions along the central axis of a water-filled cylindrical phantom, placed in the mixed thermal-epithermal neutron beam of CNEA RA-6 reactor. In this latter case, the RA-6 neutron spectrum had been well characterized by both calculation and measurement, and it presented some marked differences with the ideal spectrum considered for SPND calibrations at RA-3. In addition, the RA-6 neutron spectrum varied with depth in the water phantom and thus the percentage of the epithermal contribution to the total neutron flux changed at each measurement location. Local (one point-position) and global (several points-positions) and thermal and mixed-field thermal neutron sensitivities were determined from these measurements. Thermal neutron flux was also measured during BNCT clinical trials within the irradiation fields incident on the patients. In order to achieve this, the detector was placed on patient's skin at dosimetric reference points for each one of the fields. System stability was adequate for this kind of measurement. Results: Local mixed-field thermal neutron sensitivities and global thermal and mixed-field thermal neutron sensitivities derived from measurements performed at the RA-6 were compared and no significant differences were found. Global RA-6-based thermal neutron sensitivity showed agreement with pure thermal neutron sensitivity measurements performed in the RA-3 spectrum. Additionally, the detector response proved nearly unchanged by differences in neutron spectra from real (RA-6 BNCT beam) and ideal (considered for calibration calculations at RA-3) neutron source descriptions. The results confirm that the special design of the Rh SPND can be considered as having a pure thermal response for neutron spectra with epithermal-to-thermal flux ratios up to 12%. In addition, the linear response of the detector to thermal flux allows the use of a mixed-field thermal neutron sensitivity of 1.95 {+-} 0.05 x 10{sup -21} A n{sup -1}{center_dot}cm{sup 2}{center_dot}s. This sensitivity can be used in spectra with up to 21% epithermal-to-thermal flux ratio without significant error due to epithermal neutron and gamma induced effects. The values of the measured fluxes in clinical applications had discrepancies with calculated results that were in the range of -25% to +30%, which shows the importance of a local on-line independent measurement as part of a treatment planning quality control system. Conclusions: The usefulness of the CNEA Rh SPND for the on-line local measurement of thermal neutron flux on BNCT patients has been demonstrated based on an appropriate neutron spectra calibration and clinical applications.

Miller, Marcelo E.; Sztejnberg, Manuel L.; Gonzalez, Sara J.; Thorp, Silvia I.; Longhino, Juan M.; Estryk, Guillermo [Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429 (Argentina); Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429, Argentina and CONICET, Av. Rivadavia 1917, Ciudad de Buenos Aires 1033 (Argentina); Comision Nacional de Energia Atomica, Av. del Libertador 8250, Ciudad de Buenos Aires 1429 (Argentina)

2011-12-15T23:59:59.000Z

254

Geometrical vector flux sinks and ideal flux concentrators  

SciTech Connect

The description of ideal flux concentrators as shapes that do not disturb the geometrical vector flux field is extended to all the known types of ideal flux concentrators. This is accomplished, in part, by the introduction of vector flux sinks.

Greenman, P.

1981-06-01T23:59:59.000Z

255

NUCLEAR REACTOR  

DOE Patents (OSTI)

A boiling-water nuclear reactor is described wherein control is effected by varying the moderator-to-fuel ratio in the reactor core. This is accomplished by providing control tubes containing a liquid control moderator in the reactor core and providing means for varying the amount of control moderatcr within the control tubes.

Treshow, M.

1961-09-01T23:59:59.000Z

256

NEUTRONIC REACTOR  

DOE Patents (OSTI)

A reactor in which at least a portion of the moderator is in the form of movable refractory balls is described. In addition to their moderating capacity, these balls may serve as carriers for fissionable material or fertile material, or may serve in a coolant capacity to remove heat from the reactor. A pneumatic system is used to circulate the balls through the reactor.

Daniels, F.

1959-10-27T23:59:59.000Z

257

Thermal-hydraulic simulation of natural convection decay heat removal in the High Flux Isotope Reactor (HFIR) using RELAP5 and TEMPEST: Part 2, Interpretation and validation of results  

SciTech Connect

The RELAP5/MOD2 code was used to predict the thermal-hydraulic behavior of the HFIR core during decay heat removal through boiling natural circulation. The low system pressure and low mass flux values associated with boiling natural circulation are far from conditions for which RELAP5 is well exercised. Therefore, some simple hand calculations are used herein to establish the physics of the results. The interpretation and validation effort is divided between the time average flow conditions and the time varying flow conditions. The time average flow conditions are evaluated using a lumped parameter model and heat balance. The Martinelli-Nelson correlations are used to model the two-phase pressure drop and void fraction vs flow quality relationship within the core region. Systems of parallel channels are susceptible to both density wave oscillations and pressure drop oscillations. Periodic variations in the mass flux and exit flow quality of individual core channels are predicted by RELAP5. These oscillations are consistent with those observed experimentally and are of the density wave type. The impact of the time varying flow properties on local wall superheat is bounded herein. The conditions necessary for Ledinegg flow excursions are identified. These conditions do not fall within the envelope of decay heat levels relevant to HFIR in boiling natural circulation. 14 refs., 5 figs., 1 tab.

Ruggles, A.E.; Morris, D.G.

1989-01-01T23:59:59.000Z

258

CONVECTION REACTOR  

DOE Patents (OSTI)

An homogeneous nuclear power reactor utilizing convection circulation of the liquid fuel is proposed. The reactor has an internal heat exchanger looated in the same pressure vessel as the critical assembly, thereby eliminating necessity for handling the hot liquid fuel outside the reactor pressure vessel during normal operation. The liquid fuel used in this reactor eliminates the necessity for extensive radiolytic gas rocombination apparatus, and the reactor is resiliently pressurized and, without any movable mechanical apparatus, automatically regulates itself to the condition of criticality during moderate variations in temperature snd pressure and shuts itself down as the pressure exceeds a predetermined safe operating value.

Hammond, R.P.; King, L.D.P.

1960-03-22T23:59:59.000Z

259

Toroidal reactor  

DOE Patents (OSTI)

Method for producing fusion power wherein a neutral beam is injected into a toroidal bulk plasma to produce fusion reactions during the time permitted by the slowing down of the particles from the injected beam in the bulk plasma.

Dawson, John M. (Pacific Palisades, CA); Furth, Harold P. (Princeton, NJ); Tenney, Fred H. (Princeton, NJ)

1988-12-06T23:59:59.000Z

260

Precision spectroscopy with reactor anti-neutrinos  

E-Print Network (OSTI)

In this work we present an accurate parameterization of the anti-neutrino flux produced by the isotopes 235U, 239Pu and 241Pu in nuclear reactors. We determine the coefficients of this parameterization, as well as their covariance matrix, by performing a fit to spectra inferred from experimentally measured beta spectra. Subsequently we show that flux shape uncertainties play only a minor role in the KamLAND experiment, however, we find that future reactor neutrino experiments to measure the mixing angle $\\theta_{13}$ are sensitive to the fine details of the reactor neutrino spectra. Finally, we investigate the possibility to determine the isotopic composition in nuclear reactors through an anti-neutrino measurement. We find that with a 3 month exposure of a one ton detector the isotope fractions and the thermal reactor power can be determined at a few percent accuracy, which may open the possibility of an application for safeguard or non-proliferation objectives.

Huber, P; Huber, Patrick; Schwetz, Thomas

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flux beam reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Development of a fuel-rod simulator and small-diameter thermocouples for high-temperature, high-heat-flux tests in the Gas-Cooled Fast Reactor Core Flow Test Loop  

SciTech Connect

The Core Flow Test Loop was constructed to perform many of the safety, core design, and mechanical interaction tests in support of the Gas-Cooled Fast Reactor (GCFR) using electrically heated fuel rod simulators (FRSs). Operation includes many off-normal or postulated accident sequences including transient, high-power, and high-temperature operation. The FRS was developed to survive: (1) hundreds of hours of operation at 200 W/cm/sup 2/, 1000/sup 0/C cladding temperature, and (2) 40 h at 40 W/cm/sup 2/, 1200/sup 0/C cladding temperature. Six 0.5-mm type K sheathed thermocouples were placed inside the FRS cladding to measure steady-state and transient temperatures through clad melting at 1370/sup 0/C.

McCulloch, R.W.; MacPherson, R.E.

1983-03-01T23:59:59.000Z

262

Oceanic Heat Flux Calculation  

Science Conference Proceedings (OSTI)

The authors review the procedure for the direct calculation of oceanic heat flux from hydrographic measurements and set out the full “recipe” that is required.

Sheldon Bacon; Nick Fofonoff

1996-12-01T23:59:59.000Z

263

Advances in reactor physics education: Visualization of reactor parameters  

Science Conference Proceedings (OSTI)

Modern computer codes allow detailed neutron transport calculations. In combination with advanced 3D visualization software capable of treating large amounts of data in real time they form a powerful tool that can be used as a convenient modern educational tool for reactor operators, nuclear engineers, students and specialists involved in reactor operation and design. Visualization is applicable not only in education and training, but also as a tool for fuel management, core analysis and irradiation planning. The paper treats the visualization of neutron transport in different moderators, neutron flux and power distributions in two nuclear reactors (TRIGA type research reactor and a typical PWR). The distributions are calculated with MCNP and CORD-2 computer codes and presented using Amira software. (authors)

Snoj, L.; Kromar, M.; Zerovnik, G. [Josef Stefan Inst., Jamova cesta 39, SI-1000 Ljubljana (Slovenia)

2012-07-01T23:59:59.000Z

264

The Fission Converter-Based Epithermal Neutron Irradiation Facility at the Massachusetts Institute of Technology Reactor  

SciTech Connect

A new type of epithermal neutron irradiation facility for use in neutron capture therapy has been designed, constructed, and put into operation at the Massachusetts Institute of Technology Research Reactor (MITR). A fission converter, using plate-type fuel and driven by the MITR, is used as the source of neutrons. After partial moderation and filtration of the fission neutrons, a high-intensity forward directed beam is available with epithermal neutron flux [approximately equal to]10{sup 10} n/cm{sup 2}.s, 1 eV {<=} E {<=} 10 keV, at the entrance to the medical irradiation room, and epithermal neutron flux = 3 to 5 x 10{sup 9} n/cm{sup 2}.s at the end of the patient collimator. This is currently the highest-intensity epithermal neutron beam. Furthermore, the system is designed and licensed to operate at three times higher power and flux should this be desired. Beam contamination from unwanted fast neutrons and gamma rays in the aluminum, polytetrafluoroethylene, cadmium and lead-filtered beam is negligible with a specific fast neutron and gamma dose, D{sub {gamma}}{sub ,fn}/{phi}{sub epi} [less than or approximately equal] 2 x 10{sup -13} Gy cm{sup 2}/n{sub epi}. With a currently approved neutron capture compound, boronophenylalanine, the therapeutically advantageous depth of penetration is >9 cm for a unilateral beam placement. Single fraction irradiations to tolerance can be completed in 5 to 10 min. An irradiation control system based on beam monitors and redundant, high-reliability programmable logic controllers is used to control the three beam shutters and to ensure that the prescribed neutron fluence is accurately delivered to the patient. A patient collimator with variable beam sizes facilitates patient irradiations in any desired orientation. A shielded medical room with a large window provides direct viewing of the patient, as well as remote viewing by television. Rapid access through a shielded and automatically operated door is provided. The D{sub 2}O cooling system for the fuel has been conservatively designed with excess capacity and is fully instrumented to ensure detection and control of off-normal conditions. A wide range of possible abnormal events or accident scenarios has been analyzed to show that even in the worst cases, there should be no fission product release through fuel damage. This facility has been licensed to operate by the U.S. Nuclear Regulatory Commission, and initial operation commenced in June 2000.

Harling, O.K. [Massachusetts Institute of Technology (United States); Riley, K.J. [Massachusetts Institute of Technology (United States); Newton, T.H. [Massachusetts Institute of Technology (United States); Wilson, B.A. [Massachusetts Institute of Technology (United States); Bernard, J.A. [Massachusetts Institute of Technology (United States); Hu, L-W. [Massachusetts Institute of Technology (United States); Fonteneau, E.J. [Massachusetts Institute of Technology (United States); Menadier, P.T. [Massachusetts Institute of Technology (United States); Ali, S.J. [Massachusetts Institute of Technology (United States); Sutharshan, B. [Massachusetts Institute of Technology (United States); Kohse, G.E. [Massachusetts Institute of Technology (United States); Ostrovsky, Y. [Massachusetts Institute of Technology (United States); Stahle, P.W. [Massachusetts Institute of Technology (United States); Binns, P.J. [Massachusetts Institute of Technology (United States); Kiger, W.S. III [Massachusetts Institute of Technology (United States); Busse, P.M. [Beth-Israel Deaconess Medical Center (Israel)

2002-03-15T23:59:59.000Z

265

NUCLEAR TRAINING REACTOR. Preliminary Report and Hazards Analysis  

SciTech Connect

Complete descriptions of the reactor, building, and site are given. Reactor operation, bazards associated with the reactor, and the maximum credible accident are discussed. The reactor is a BSR swimming pool type with a design power level of 10 kw and a maximum thermal flux in the fuel region of 2.23 x 10/ sup 11/ n/cm/sup 2/-sec. (W.D.M.)

1959-09-01T23:59:59.000Z

266

FUEL ASSAY REACTOR  

DOE Patents (OSTI)

A reactor having maximum sensitivity to perturbations is described comprising a core consisting of a horizontally disposed, rectangular, annular fuel zone containing enriched uranium dioxide dispersed in graphite, the concentration of uranium dioxide increasing from the outside to the inside of the fuel zone, an internal reflector of graphite containing an axial test opening disposed within the fuel zone, an external graphite reflector, means for changing the neutron spectrum in the test opening, and means for measuring perturbations in the neutron flux caused by the introduction of different fuel elements into the test opening. (AEC)

Spinrad, B.I.; Sandmeier, H.A.; Martens, F.H.

1962-12-25T23:59:59.000Z

267

WATER BOILER REACTOR  

DOE Patents (OSTI)

As its name implies, this reactor utilizes an aqueous solution of a fissionable element salt, and is also conventional in that it contains a heat exchanger cooling coil immersed in the fuel. Its novelty lies in the utilization of a cylindrical reactor vessel to provide a critical region having a large and constant interface with a supernatant vapor region, and the use of a hollow sleeve coolant member suspended from the cover assembly in coaxial relation with the reactor vessel. Cool water is circulated inside this hollow coolant member, and a gap between its outer wall and the reactor vessel is used to carry off radiolytic gases for recombination in an external catalyst chamber. The central passage of the coolant member defines a reflux condenser passage into which the externally recombined gases are returned and condensed. The large and constant interface between fuel solution and vapor region prevents the formation of large bubbles and minimizes the amount of fuel salt carried off by water vapor, thus making possible higher flux densities, specific powers and power densities.

King, L.D.P.

1960-11-22T23:59:59.000Z

268

NEUTRONIC REACTOR  

DOE Patents (OSTI)

A neutronic reactor in which neutron moderation is achieved primarily in its reflector is described. The reactor structure consists of a cylindrical central "island" of moderator and a spherical moderating reflector spaced therefrom, thereby providing an annular space. An essentially unmoderated liquid fuel is continuously passed through the annular space and undergoes fission while contained therein. The reactor, because of its small size, is particularly adapted for propulsion uses, including the propulsion of aircraft. (AEC)

Fraas, A.P.; Mills, C.B.

1961-11-21T23:59:59.000Z

269

Concentration with uniform flux  

SciTech Connect

A modification of a parabolic cylinder concentrator is developed to procedure uniform flux. The controlling surface equation is given. A three-dimensional ray-trace technique is used to obtain the shape of the image at the focal plane of a thin slice of the mirror. Also, the concentration distribution for uniform flux is given. 1 references, 7 figures.

Not Available

1986-01-01T23:59:59.000Z

270

REACTOR COOLING  

DOE Patents (OSTI)

A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

Quackenbush, C.F.

1959-09-29T23:59:59.000Z

271

MEASURED AND CALCULATED HEATING AND DOSE RATES FOR THE HFIR HB4 BEAM TUBE AND COLD SOURCE  

SciTech Connect

The High Flux Isotope Reactor at the Oak Ridge National Laboratory was upgraded to install a cold source in horizontal beam tube number 4. Calculations were performed and measurements were made to determine heating within the cold source and dose rates within and outside a shield tunnel surrounding the beam tube. This report briefly describes the calculations and presents comparisons of the measured and calculated results. Some calculated dose rates are in fair to good agreement with the measured results while others, particularly those at the shield interfaces, differ greatly from the measured results. Calculated neutron exposure to the Teflon seals in the hydrogen transfer line is about one fourth of the measured value, underpredicting the lifetime by a factor of four. The calculated cold source heating is in good agreement with the measured heating.

Slater, Charles O [ORNL; Primm, Trent [ORNL; Pinkston, Daniel [ORNL; Cook, David Howard [ORNL; Selby, Douglas L [ORNL; Ferguson, Phillip D [ORNL; Bucholz, James A [ORNL; Popov, Emilian L [ORNL

2009-03-01T23:59:59.000Z

272

Nuclear reactor building  

DOE Patents (OSTI)

A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed there above. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define there between an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin. 4 figures.

Gou, P.F.; Townsend, H.E.; Barbanti, G.

1994-04-05T23:59:59.000Z

273

Nuclear reactor building  

DOE Patents (OSTI)

A reactor building for enclosing a nuclear reactor includes a containment vessel having a wetwell disposed therein. The wetwell includes inner and outer walls, a floor, and a roof defining a wetwell pool and a suppression chamber disposed thereabove. The wetwell and containment vessel define a drywell surrounding the reactor. A plurality of vents are disposed in the wetwell pool in flow communication with the drywell for channeling into the wetwell pool steam released in the drywell from the reactor during a LOCA for example, for condensing the steam. A shell is disposed inside the wetwell and extends into the wetwell pool to define a dry gap devoid of wetwell water and disposed in flow communication with the suppression chamber. In a preferred embodiment, the wetwell roof is in the form of a slab disposed on spaced apart support beams which define therebetween an auxiliary chamber. The dry gap, and additionally the auxiliary chamber, provide increased volume to the suppression chamber for improving pressure margin.

Gou, Perng-Fei (Saratoga, CA); Townsend, Harold E. (Campbell, CA); Barbanti, Giancarlo (Sirtori, IT)

1994-01-01T23:59:59.000Z

274

Computing Solar Absolute Fluxes  

E-Print Network (OSTI)

Computed color indices and spectral shapes for individual stars are routinely compared with observations for essentially all spectral types, but absolute fluxes are rarely tested. We can confront observed irradiances with the predictions from model atmospheres for a few stars with accurate angular diameter measurements, notably the Sun. Previous calculations have been hampered by inconsistencies and the use of outdated atomic data and abundances. I provide here a progress report on our current efforts to compute absolute fluxes for solar model photospheres. Uncertainties in the solar composition constitute a significant source of error in computing solar radiative fluxes.

Prieto, Carlos Allende

2007-01-01T23:59:59.000Z

275

Computing Solar Absolute Fluxes  

E-Print Network (OSTI)

Computed color indices and spectral shapes for individual stars are routinely compared with observations for essentially all spectral types, but absolute fluxes are rarely tested. We can confront observed irradiances with the predictions from model atmospheres for a few stars with accurate angular diameter measurements, notably the Sun. Previous calculations have been hampered by inconsistencies and the use of outdated atomic data and abundances. I provide here a progress report on our current efforts to compute absolute fluxes for solar model photospheres. Uncertainties in the solar composition constitute a significant source of error in computing solar radiative fluxes.

Carlos Allende Prieto

2007-09-14T23:59:59.000Z

276

FY 2005 Technology Administration Budget Highlights  

Science Conference Proceedings (OSTI)

... chemical, biological, radiological, nuclear, or explosive ... and nearly unbreakable communications security. ... Brookhaven High Flux Beam Reactor. ...

2010-10-05T23:59:59.000Z

277

Photovoltaic roof heat flux  

E-Print Network (OSTI)

of ~24°C, indicating that heat conduction was small. T h i sday, indicating large heat conduction a n d storage. Control2.1.3 showed that conduction heat flux through the roof was

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

278

Detection of the Neutrino Fluxes from Several Sources  

E-Print Network (OSTI)

It is considered the detection of neutrinos moving from the opposite directions. The states of the particle of the detector interacting with the neutrinos are connected with the P-transformation. Hence only a half of neutrinos gives contribution into the superposition of the neutrino states. Taking into account the effect of the opposite neutrino directions the total neutrino flux from several sources are in the range 0.5--1 of that without the effect. The neutrino flux from nuclear reactors measured in the KamLAND experiment is $0.611\\pm 0.085 {\\rm (stat)} \\pm 0.041 {\\rm (syst)} $ of the expected flux. Calculations for the conditions of the KamLAND experiment yield the neutrino flux taking into account the effect of the opposite neutrino directions, 0.555, of that without the effect that may account for the neutrino flux observed in the KamLAND experiment.

D. L. Khokhlov

2003-02-19T23:59:59.000Z

279

The nucifer experiment: Non-proliferation with reactor antineutrinos  

Science Conference Proceedings (OSTI)

A survey of the reactor antineutrino flux provides information related to the core content and thermal power. This application arouses the interest of International Atomic Energy Agency (IAEA) in using antineutrino detectors as a potential safeguard tool. Within this context

A. S. Cucoanes; Nucifer Collaboration

2012-01-01T23:59:59.000Z

280

Advanced fuel fusion reactors: towards a zero-waste option  

E-Print Network (OSTI)

Low activation materials are only a partial response to the requirement of a really environmentally sound fusion reactor: another way round to tackle the problem is the reduction of the neutron flux and subsequent material ...

Zucchetti, Massimo

Note: This page contains sample records for the topic "flux beam reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Thermionic switched self-actuating reactor shutdown system  

DOE Patents (OSTI)

A self-actuating reactor shutdown system incorporating a thermionic switched electromagnetic latch arrangement which is responsive to reactor neutron flux changes and to reactor coolant temperature changes. The system is self-actuating in that the sensing thermionic device acts directly to release (scram) the control rod (absorber) without reference or signal from the main reactor plant protective and control systems. To be responsive to both temperature and neutron flux effects, two detectors are used, one responsive to reactor coolant temperatures, and the other responsive to reactor neutron flux increase. The detectors are incorporated into a thermionic diode connected electrically with an electromagnetic mechanism which under normal reactor operating conditions holds the the control rod in its ready position (exterior of the reactor core). Upon reaching either a specified temperature or neutron flux, the thermionic diode functions to short-circuit the electromagnetic mechanism causing same to lose its holding power and release the control rod, which drops into the reactor core region under gravitational force.

Barrus, Donald M. (San Jose, CA); Shires, Charles D. (San Jose, CA); Brummond, William A. (Livermore, CA)

1989-01-01T23:59:59.000Z

282

NUCLEAR REACTOR  

DOE Patents (OSTI)

A heterogeneous, natural uranium fueled, solid moderated, gas cooled reactor is described, in which the fuel elements are in the form of elongated rods and are dlsposed within vertical coolant channels ln the moderator symmetrically arranged as a regular lattice in groups. This reactor employs control rods which operate in vertical channels in the moderator so that each control rod is centered in one of the fuel element groups. The reactor is enclosed in a pressure vessel which ls provided with access holes at the top to facilitate loading and unloadlng of the fuel elements, control rods and control rod driving devices.

Moore, R.V.; Bowen, J.H.; Dent, K.H.

1958-12-01T23:59:59.000Z

283

Heavy-atom neutral beams for tandem-mirror end plugs  

DOE Green Energy (OSTI)

The advantages of neutral beams with Z greater than or equal to 3 formed from negative ions, accelerated to 0.5 to 1.0 MeV/amu, and neutralized with high efficiency, are investigated for use in tandem mirror reactor end plugs. These beams can produce Q's of 20 to 30, and thus can replace the currently proposed 200 to 500 keV neutral proton beams presently planned for tandem mirror reactors. Thus, these Z greater than or equal to 3 neutral beams increase the potential attractiveness of tandem mirror reactors by offering a substitute for difficult high energy neutral hydrogen end plug beams.

Post, D.E.; Grisham, L.R.; Santarius, J.F.; Emmert, G.A.

1981-05-01T23:59:59.000Z

284

Direct evaluation of transient surface temperatures and heat fluxes  

SciTech Connect

Evaluations of transient surface temperatures resulting from the absorption of radiation are required in laser fusion reactor systems studies. A general method for the direct evaluation of transient surface temperatures and heat fluxes on the boundaries of bounded media is developed by constructing fundamental solutions of the scalar Helmholtz equation and performing certain elementary integrations. (auth)

Axford, R.A.

1975-08-01T23:59:59.000Z

285

Reactor Materials  

Energy.gov (U.S. Department of Energy (DOE))

The reactor materials crosscut effort will enable the development of innovative and revolutionary materials and provide broad-based, modern materials science that will benefit all four DOE-NE...

286

NEUTRONIC REACTORS  

DOE Patents (OSTI)

A nuclear reactor is described wherein horizontal rods of thermal- neutron-fissionable material are disposed in a body of heavy water and extend through and are supported by spaced parallel walls of graphite.

Wigner, E.P.

1960-11-22T23:59:59.000Z

287

REACTOR SHIELD  

DOE Patents (OSTI)

Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.

Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.

1959-02-17T23:59:59.000Z

288

NUCLEAR REACTOR  

DOE Patents (OSTI)

A nuclear reactor incorporating seed and blanket assemblies is designed. Means are provided for obtaining samples of the coolant from the blanket assemblies and for varying the flow of coolant through the blanket assemblies. (AEC)

Sherman, J.; Sharbaugh, J.E.; Fauth, W.L. Jr.; Palladino, N.J.; DeHuff, P.G.

1962-10-23T23:59:59.000Z

289

NUCLEAR REACTOR  

DOE Patents (OSTI)

High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

Grebe, J.J.

1959-07-14T23:59:59.000Z

290

Advanced Safeguards Approaches for New Fast Reactors  

SciTech Connect

This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

2007-12-15T23:59:59.000Z

291

On fast reactor kinetics studies  

Science Conference Proceedings (OSTI)

The results and the program of fast reactor core time and space kinetics experiments performed and planned to be performed at the IPPE critical facility is presented. The TIMER code was taken as computation support of the experimental work, which allows transient equations to be solved in 3-D geometry with multi-group diffusion approximation. The number of delayed neutron groups varies from 6 to 8. The code implements the solution of both transient neutron transfer problems: a direct one, where neutron flux density and its derivatives, such as reactor power, etc, are determined at each time step, and an inverse one for the point kinetics equation form, where such a parameter as reactivity is determined with a well-known reactor power time variation function. (authors)

Seleznev, E. F.; Belov, A. A. [Nuclear Safety Inst. of the Russian Academy of Sciences IBRAE (Russian Federation); Matveenko, I. P.; Zhukov, A. M.; Raskach, K. F. [Inst. for Physics and Power Engineering IPPE (Russian Federation)

2012-07-01T23:59:59.000Z

292

NEUTRAL-BEAM INJECTION  

E-Print Network (OSTI)

results in a bonus for fusion reactors if these particlesa thousand amperes for fusion reactors! Moreover, since thisscheme for advanced fuel fusion reactors and has been given

Kunkel, W.B.

2012-01-01T23:59:59.000Z

293

An Account of Oak Ridge National Laboratory's Thirteen Research Reactors  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

Rosenthal, Murray Wilford [ORNL

2009-08-01T23:59:59.000Z

294

Horizontal Beam Tubes - HFIR Technical Parameters | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Horizontal Beam Tubes Horizontal Beam Tubes The reactor has four horizontal beam tubes that supply the neutrons to the neutron scattering instruments. Details for each beam tube and instrument can be found on the HFIR instrument page. Each of the beam tubes that supply these instruments with neutrons is described subsequently. HB-1 and HB-3 The HB-1 and HB-3 thermal neutron beam tube designs are identical except for the length. Both are situated tangential to the reactor core so that the tubes point at reflector material and do not point directly at the fuel. An internal collimator is installed at the outboard end. This collimator is fabricated out of carbon steel and is plated with nickel. The collimator provides a 2.75-in by 5.5-in. rectangular aperture. A rotary shutter is located outboard of each of these beam tubes. The

295

Reactor Simulation for Antineutrino Experiments using DRAGON and MURE  

E-Print Network (OSTI)

Rising interest in nuclear reactors as a source of antineutrinos for experiments motivates validated, fast, and accessible simulations to predict reactor fission rates. Here we present results from the DRAGON and MURE simulation codes and compare them to other industry standards for reactor core modeling. We use published data from the Takahama-3 reactor to evaluate the quality of these simulations against the independently measured fuel isotopic composition. The propagation of the uncertainty in the reactor operating parameters to the resulting antineutrino flux predictions is also discussed.

Jones, C L; Conrad, J M; Djurcic, Z; Fallot, M; Giot, L; Keefer, G; Onillon, A; Winslow, L

2011-01-01T23:59:59.000Z

296

Optical heat flux gauge  

DOE Patents (OSTI)

A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figs.

Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.

1989-06-07T23:59:59.000Z

297

RERTR program reduces use of enriched uranium in research reactors  

NLE Websites -- All DOE Office Websites (Extended Search)

RERTR program reduces use of enriched uranium in research reactors RERTR program reduces use of enriched uranium in research reactors worldwide Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share RERTR program reduces use of enriched uranium in research reactors worldwide The High Flux Reactor in Petten, the Netherlands READY TO CONVERT - The High Flux Reactor in Petten, the Netherlands, has

298

NEUTRONIC REACTOR  

DOE Patents (OSTI)

This patent relates to neutronic reactors of the heterogeneous water cooled type, and in particular to a fuel element charging and discharging means therefor. In the embodiment illustrated the reactor contains horizontal, parallel coolant tubes in which the fuel elements are disposed. A loading cart containing a magnzine for holding a plurality of fuel elements operates along the face of the reactor at the inlet ends of the coolant tubes. The loading cart is equipped with a ram device for feeding fuel elements from the magazine through the inlot ends of the coolant tubes. Operating along the face adjacent the discharge ends of the tubes there is provided another cart means adapted to receive irradiated fuel elements as they are forced out of the discharge ends of the coolant tubes by the incoming new fuel elements. This cart is equipped with a tank coataining a coolant, such as water, into which the fuel elements fall, and a hydraulically operated plunger to hold the end of the fuel element being discharged. This inveation provides an apparatus whereby the fuel elements may be loaded into the reactor, irradiated therein, and unloaded from the reactor without stopping the fiow of the coolant and without danger to the operating personnel.

Ohlinger, L.A.; Wigner, E.P.; Weinberg, A.M.; Young, G.J.

1958-09-01T23:59:59.000Z

299

Brookhaven Medical Research Reactor  

NLE Websites -- All DOE Office Websites (Extended Search)

Medical Research Reactor BMRR The last of the Lab's reactors, the Brookhaven Medical Research Reactor (BMRR), was shut down in December 2000. The BMRR was a three megawatt...

300

Mapping Heat Flux  

Science Conference Proceedings (OSTI)

An infrared camera technique designed for remote sensing of air–water heat flux has been developed. The technique uses the differential absorption of water between 3.817 and 4.514 microns. This difference causes each channel’s radiance to ...

Walt McKeown; Richard Leighton

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flux beam reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Self-actuating reactor shutdown system  

DOE Patents (OSTI)

A control system for the automatic or self-actuated shutdown or "scram" of a nuclear reactor. The system is capable of initiating scram insertion by a signal from the plant protection system or by independent action directly sensing reactor conditions of low-flow or over-power. Self-actuation due to a loss of reactor coolant flow results from a decrease of pressure differential between the upper and lower ends of an absorber element. When the force due to this differential falls below the weight of the element, the element will fall by gravitational force to scram the reactor. Self-actuation due to high neutron flux is accomplished via a valve controlled by an electromagnet and a thermionic diode. In a reactor over-power, the diode will be heated to a change of state causing the electromagnet to be shorted thereby actuating the valve which provides the changed flow and pressure conditions required for scramming the absorber element.

Barrus, Donald M. (San Jose, CA); Brummond, Willian A (Livermore, CA); Peterson, Leslie F. (Danville, CA)

1988-01-01T23:59:59.000Z

302

REACTOR CONTROL  

DOE Patents (OSTI)

A control system employed with a high pressure gas cooled reactor in which a control rod is positioned for upward and downward movement into the neutron field from a position beneath the reactor is described. The control rod is positioned by a coupled piston cylinder releasably coupled to a power drive means and the pressurized coolant is directed against the lower side of the piston. The coolant pressure is offset by a higher fiuid pressure applied to the upper surface of the piston and means are provided for releasing the higher pressure on the upper side of the piston so that the pressure of the coolant drives the piston upwardly, forcing the coupled control rod into the ncutron field of the reactor. (AEC)

Fortescue, P.; Nicoll, D.

1962-04-24T23:59:59.000Z

303

NUCLEAR REACTOR  

DOE Patents (OSTI)

A nuclear reactor of the homogeneous liquid fuel type is described wherein the fissionable isotope is suspended or dissolved in a liquid moderator such as water. The reactor core is comprised essentially of a spherical vessel for containing the reactive composition surrounded by a reflector, preferably of beryllium oxide. The reactive composition may be an ordinary water solution of a soluble salt of uranium, the quantity of fissionable isotope in solution being sufficient to provide a critical mass in the vessel. The liquid fuel is stored in a tank of non-crtttcal geometry below the reactor vessel and outside of the reflector and is passed from the tank to the vessel through a pipe connecting the two by air pressure means. Neutron absorbing control and safety rods are operated within slots in the reflector adjacent to the vessel.

Christy, R.F.

1958-07-15T23:59:59.000Z

304

POWER REACTOR  

DOE Patents (OSTI)

A fast nuclear reactor system ls described for producing power and radioactive isotopes. The reactor core is of the heterogeneous, fluid sealed type comprised of vertically arranged elongated tubular fuel elements having vertical coolant passages. The active portion is surrounded by a neutron reflector and a shield. The system includes pumps and heat exchangers for the primary and secondary coolant circuits. The core, primary coolant pump and primary heat exchanger are disposed within an irapenforate tank which is filled with the primary coolant, in this case a liquid metal such as Na or NaK, to completely submerge these elements. The tank is completely surrounded by a thick walled concrete shield. This reactor system utilizes enriched uranium or plutonium as the fissionable material, uranium or thorium as a diluent and thorium or uranium containing less than 0 7% of the U/sup 235/ isotope as a fertile material.

Zinn, W.H.

1958-07-01T23:59:59.000Z

305

Catalytic reactor  

DOE Patents (OSTI)

A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

Aaron, Timothy Mark (East Amherst, NY); Shah, Minish Mahendra (East Amherst, NY); Jibb, Richard John (Amherst, NY)

2009-03-10T23:59:59.000Z

306

NEUTRONIC REACTORS  

DOE Patents (OSTI)

A method is presented for loading and unloading rod type fuel elements of a neutronic reactor of the heterogeneous, solld moderator, liquid cooled type. In the embodiment illustrated, the fuel rods are disposed in vertical coolant channels in the reactor core. The fuel rods are loaded and unloaded through the upper openings of the channels which are immersed in the coolant liquid, such as water. Unloading is accomplished by means of a coffer dam assembly having an outer sleeve which is placed in sealing relation around the upper opening. A radiation shield sleeve is disposed in and reciprocable through the coffer dam sleeve. A fuel rod engaging member operates through the axial bore in the radiation shield sleeve to withdraw the fuel rod from its position in the reactor coolant channel into the shield, the shield snd rod then being removed. Loading is accomplished in the reverse procedure.

Wigner, E.P.; Young, G.J.

1958-10-14T23:59:59.000Z

307

NUCLEAR REACTOR  

DOE Patents (OSTI)

This patent covers a power-producing nuclear reactor in which fuel rods of slightly enriched U are moderated by heavy water and cooled by liquid metal. The fuel rods arranged parallel to one another in a circle are contained in a large outer closed-end conduit that extends into a tank containing the heavy water. Liquid metal is introduced into the large conduit by a small inner conduit that extends within the circle of fuel rods to a point near the lower closed end of the outer conduit. (AEC) Production Reactors

Young, G.

1963-01-01T23:59:59.000Z

308

NEUTRONIC REACTOR  

DOE Patents (OSTI)

A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.

Wigner, E.P.; Weinberg, A.W.; Young, G.J.

1958-04-15T23:59:59.000Z

309

METHOD AND APPARATUS FOR REACTOR SAFETY CONTROL  

DOE Patents (OSTI)

A self-contained nuclear reactor fuse controlled device tron absorbing material, normally in a compact form but which can be expanded into an extended form presenting a large surface for neutron absorption when triggered by an increase in neutron flux, is described.

Huston, N.E.

1961-06-01T23:59:59.000Z

310

Power Burst Facility (PBF) Reactor Reactor Decommissioning  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactor Decommissioning Click here to view Click here to view Reactor Decommissioning Click on an image to enlarge A crane removes the reactor vessel from the Power Burst Facility...

311

NEUTRONIC REACTOR  

DOE Patents (OSTI)

A reactor is described comprising a plurality of horizontal trays containing a solution of a fissionable material, the trays being sleeved on a vertical tube which contains a vertically-reciprocable control rod, a gas-tight chamber enclosing the trays, and means for conducting vaporized moderator from the chamber and for replacing vaporized moderator in the trays. (AEC)

Wigner, E.P.

1962-12-25T23:59:59.000Z

312

Neutronic reactor  

DOE Patents (OSTI)

A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield.

Wende, Charles W. J. (West Chester, PA)

1976-08-17T23:59:59.000Z

313

NEUTRONIC REACTOR  

DOE Patents (OSTI)

BS>A reactor cooled by water, biphenyl, helium, or other fluid with provision made for replacing the fuel rods with the highest plutonium and fission product content without disassembling the entire core and for promptly cooling the rods after their replacement in order to prevent build-up of heat from fission product activity is described.

Creutz, E.C.; Ohlinger, L.A.; Weinberg, A.M.; Wigner, E.P.; Young, G.J.

1959-10-27T23:59:59.000Z

314

NEUTRONIC REACTORS  

DOE Patents (OSTI)

The design of control rods for nuclear reactors are described. In this design the control rod consists essentially of an elongated member constructed in part of a neutron absorbing material and having tube means extending therethrough for conducting a liquid to cool the rod when in use.

Anderson, H.L.

1958-10-01T23:59:59.000Z

315

NUCLEAR REACTOR  

DOE Patents (OSTI)

A nuclear reactor is described that includes spaced vertical fuel elements centrally disposed in a pressure vessel, a mass of graphite particles in the pressure vessel, means for fluidizing the graphite particles, and coolant tubes in the pressure vessel laterally spaced from the fuel elements. (AEC)

Post, R.G.

1963-05-01T23:59:59.000Z

316

NUCLEAR REACTOR  

DOE Patents (OSTI)

This patent relates to a combination useful in a nuclear reactor and is comprised of a casing, a mass of graphite irapregnated with U compounds in the casing, and at least one coolant tube extending through the casing. The coolant tube is spaced from the mass, and He is irtroduced irto the space between the mass and the coolant tube. (AEC)

Starr, C.

1963-01-01T23:59:59.000Z

317

Preliminary Notice of Violation - High Flux Isotope Reactor,...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

work processes involving HFIR maintenance planning, implementation and post maintenance testing; (2) work processes involving REDC operations; (3) quality improvement and...

318

F i g u r e 1 : In QCD a confining flux tube forms  

E-Print Network (OSTI)

V Upgrade of the CEBAF complex at Jefferson Lab in Newport News, Virginia. Figure 3 shows a conceptual by passing a fine electron beam from the CEBAF accelerator though a wafer-thin diamond crystal: At special polarized photons. With the planned photon fluxes of 10 7 /sec and the continuous CEBAF beam, the experiment

319

Volkov solution for two laser beams and ITER  

E-Print Network (OSTI)

We find the solution of the Dirac equation for two plane waves (laser beams) and we determine the modified Compton formula for the scattering of two photons on an alectron. The practical meaning of the two laser beams is, that two laser beams impinging on a targed which is constituted from material in the form of a foam, can replace 100-200 laser beams impinging on a normal targed. It means that the nuclear fusion with two laser beams is realistic in combination with the nuclear reactor such as ITER.

Miroslav Pardy

2005-07-12T23:59:59.000Z

320

Volkov solution for two laser beams and ITER  

E-Print Network (OSTI)

We find the solution of the Dirac equation for two plane waves (laser beams) and we determine the modified Compton formula for the scattering of two photons on an alectron. The practical meaning of the two laser beams is, that two laser beams impinging on a targed which is constituted from material in the form of a foam, can replace 100-200 laser beams impinging on a normal targed. It means that the nuclear fusion with two laser beams is realistic in combination with the nuclear reactor such as ITER.

Pardy, M

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flux beam reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

BEAM LINE  

NLE Websites -- All DOE Office Websites (Extended Search)

BEAM LINE BEAM LINE 45 W ILHELM ROENTGEN'S INITIAL DISCOVERY of X-radiation in 1895 led immediately to practical applications in medicine. Over the next few decades X rays proved to be an invaluable tool for the investigation of the micro-world of the atom and the development of the quantum theory of matter. Almost a century later, telescopes designed to detect X-radiation are indispensable for understanding the structure and evolution of the macro-world of stars, galaxies, and the Universe as a whole. The X-Ray Universe by WALLACE H. TUCKER X-ray images of the Universe are strikingly different from the usual visible-light images. 46 SUMMER 1995 did not think: I investigated." Undeterred by NASA's rejection of a proposal to search for cosmic X-radiation, Giacconi persuaded the

322

Nuclear Instruments and Methods in Physics Research A 562 (2006) 401406 Generating a multi-line neutron beam using an electron  

E-Print Network (OSTI)

. Glasstone, Nuclear Reactor Theory, Robert E. Krieger Publishing Company (1970). [17] W.E. Lamb, Phys. Rev with the steady-state filtered neutron beams obtained using nuclear reactors [1­4]. The filter materials used in conjuc- tion with nuclear reactors are scandium (producing 2.03 keV neutron beams with a width DE$1:3 ke

Danon, Yaron

323

Accelerator beam profile analyzer  

DOE Patents (OSTI)

A beam profile analyzer employing sector or quadrant plates each servo controlled to outline the edge of a beam.

Godel, Julius B. (Bayport, NY); Guillaume, Marcel (Grivegnee, BE); Lambrecht, Richard M. (East Quogue, NY); Withnell, Ronald (East Setauket, NY)

1976-01-01T23:59:59.000Z

324

Investigation of downward facing critical heat flux with water-based nanofluids for In-Vessel Retention applications  

E-Print Network (OSTI)

In-Vessel Retention ("IVR") is a severe accident management strategy that is power limiting to the Westinghouse AP1000 due to critical heat flux ("CHF") at the outer surface of the reactor vessel. Increasing the CHF level ...

DeWitt, Gregory L

2011-01-01T23:59:59.000Z

325

REACTOR UNLOADING  

DOE Patents (OSTI)

This patent is related to gas cooled reactors wherein the fuel elements are disposed in vertical channels extending through the reactor core, the cooling gas passing through the channels from the bottom to the top of the core. The invention is a means for unloading the fuel elements from the core and comprises dump values in the form of flat cars mounted on wheels at the bottom of the core structure which support vertical stacks of fuel elements. When the flat cars are moved, either manually or automatically, for normal unloading purposes, or due to a rapid rise in the reproduction ratio within the core, the fuel elements are permtted to fall by gravity out of the core structure thereby reducing the reproduction ratio or stopping the reaction as desired.

Leverett, M.C.

1958-02-18T23:59:59.000Z

326

NUCLEAR REACTOR  

DOE Patents (OSTI)

A neuclear reactor is described of the heterogeneous type and employing replaceable tubular fuel elements and heavy water as a coolant and moderator. A pluraltty of fuel tubesa having their axes parallel, extend through a tank type pressure vessel which contatns the liquid moderator. The fuel elements are disposed within the fuel tubes in the reaetive portion of the pressure vessel during normal operation and the fuel tubes have removable plug members at each end to permit charging and discharging of the fuel elements. The fuel elements are cylindrical strands of jacketed fissionable material having helical exterior ribs. A bundle of fuel elements are held within each fuel tube with their longitudinal axes parallel, the ribs serving to space them apart along their lengths. Coolant liquid is circulated through the fuel tubes between the spaced fuel elements. Suitable control rod and monitoring means are provided for controlling the reactor.

Treshow, M.

1958-08-19T23:59:59.000Z

327

Portable radiography system using a relativistic electron beam  

DOE Patents (OSTI)

A portable radiographic generator is provided with an explosive magnetic flux compression generator producing the high voltage necessary to generate a relativistic electron beam. The relativistic electron beam is provided with target materials which generates the desired radiographic pulse. The magnetic flux compression generator may require at least two conventional explosively driven generators in series to obtain a desired output voltage of at least 1 MV. The cathode and anode configuration of the diode are selected to provide a switching action wherein a high impedance load is presented to the magnetic flux compression generator when the high voltage is being generated, and thereafter switching to a low impedance load to generate the relativistic electron beam. Magnetic flux compression generators can be explosively driven and provided in a relatively compact, portable form for use with the relativistic x-ray equipment.

Hoeberling, Robert F. (502 Hamlin Ct., Los Alamos, NM 87544)

1990-01-01T23:59:59.000Z

328

THERMAL PERFORMANCE OF A FAST NEUTRON TEST CONCEPT FOR THE ADVANCED TEST REACTOR  

Science Conference Proceedings (OSTI)

Since 1967, the Advanced Test Reactor (ATR) located at Idaho National Laboratory (INL) has provided state-of-the-art experimental irradiation testing capability. A unique design is investigated herein for the purpose of providing a fast neutron flux test capability in the ATR. This new test capability could be brought on line in approximately 5 or 6 years, much sooner than a new test reactor could be built, to provide an interim fast-flux test capability in the timeframe before a fast-flux research reactor could be built. The proposed cost for this system is approximately $63M, much less than the cost of a new fast-flux test reactor. A concept has been developed to filter out a large portion of the thermal flux component by using a thermally conductive neutron absorber block. The objective of this study is to determine the feasibility of this experiment cooling concept.

Donna Post Guillen

2008-06-01T23:59:59.000Z

329

Neutronic reactor  

DOE Patents (OSTI)

A graphite-moderated, water-cooled nuclear reactor including a plurality of rectangular graphite blocks stacked in abutting relationship in layers, alternate layers having axes which are normal to one another, alternate rows of blocks in alternate layers being provided with a channel extending through the blocks, said channeled blocks being provided with concave sides and having smaller vertical dimensions than adjacent blocks in the same layer, there being nuclear fuel in the channels.

Lewis, Warren R. (Richland, WA)

1978-05-30T23:59:59.000Z

330

NUCLEAR REACTORS  

DOE Patents (OSTI)

An active portion assembly for a fast neutron reactor is described wherein physical distortions resulting in adverse changes in the volume-to-mass ratio are minimized. A radially expandable locking device is disposed within a cylindrical tube within each fuel subassembly within the active portion assembly, and clamping devices expandable toward the center of the active portion assembly are disposed around the periphery thereof. (AEC)

Koch, L.J.; Rice, R.E. Jr.; Denst, A.A.; Rogers, A.J.; Novick, M.

1961-12-01T23:59:59.000Z

331

Subcritical Fission Reactor Based on Linear  

E-Print Network (OSTI)

The beams of Linear Collider after main collision can be utilized to build an accelerator–driven sub–critical reactor. ? The project of Linear Collider (LC) contains one essential element that is not present in other colliders. Here each electron (or positron or photon) bunch will be used only once, and physical collision leave two very dense and strongly collimated beams of high energy electrons or/and photons with precisely known time structure. We consider, for definiteness, electron beam parameters of the TESLA project [1] particle energy Ee = 250 GeV, number of electrons per second Ne = 2.7 · 10 14 /s, mean beam power Pb ? 11 MWt, transverse size and angular spread negligible. (1) In the Photon Collider mode the used beams contain photons, electrons and

I. F. Ginzburg

2005-01-01T23:59:59.000Z

332

REACTOR CONTROL  

DOE Patents (OSTI)

This patent relates to nuclear reactors of the type which utilize elongited rod type fuel elements immersed in a liquid moderator and shows a design whereby control of the chain reaction is obtained by varying the amount of moderator or reflector material. A central tank for containing liquid moderator and fuel elements immersed therein is disposed within a surrounding outer tank providing an annular space between the two tanks. This annular space is filled with liquid moderator which functions as a reflector to reflect neutrons back into the central reactor tank to increase the reproduction ratio. Means are provided for circulating and cooling the moderator material in both tanks and additional means are provided for controlling separately the volume of moderator in each tank, which latter means may be operated automatically by a neutron density monitoring device. The patent also shows an arrangement for controlling the chain reaction by injecting and varying an amount of poisoning material in the moderator used in the reflector portion of the reactor.

Ruano, W.J.

1957-12-10T23:59:59.000Z

333

Light Water Reactors Technology Development - Nuclear Reactors  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Water Reactors Light Water Reactors About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

334

Environmental Cleanup, Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab campus Cleanup Project Details Groundwater Peconic River Surface and Soil Brookhaven Graphite Research Reactor High Flux Beam Reactor Brookhaven Medical Reactor...

335

Kelly Beierschmitt | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

vulnerability analysis at Brookhaven National Laboratory, which included the hot cell facility, old graphite reactor, High Flux Beam Reactor, and Medical Reactor....

336

Electroslag remelting with used fluxes  

Science Conference Proceedings (OSTI)

The Ukranian Scientific-Research Institute of Specialty Steel collaborated with plants engaged in the production of quality metals to introduce a low-waste electroslag remelting (ESR) technology employing used fluxes. It was established that the fluoride (type ANF-1) and fluoride-oxide (type ANF-6) fluxes which are widely used in ESR still have a high content of calcium fluoride and alumina and a low impurity content after 8-10 h of ESR. In the ESR of steels with used fluxes, the content of monitored components in the final slags changes negligibly, while the content of most impurities decreases. The used flux is also characterized by a low concentration of phosphorus and sulfur. It was found that flux can be used 3-5 times when it makes up 50% of the flux mixture in the charge. The savings realized from the use of spent flux in ESR amounts to 4-9 rubles/ton steel.

Yakovlev, N.F.; Sokha, Yu.S.; Oleinik, Yu.S.; Prokhorov, A.N.; Ol'shanskaya, T.V.

1988-05-01T23:59:59.000Z

337

Solar Thermal Reactor Materials Characterization  

DOE Green Energy (OSTI)

Current research into hydrogen production through high temperature metal oxide water splitting cycles has created a need for robust high temperature materials. Such cycles are further enhanced by the use of concentrated solar energy as a power source. However, samples subjected to concentrated solar radiation exhibited lifetimes much shorter than expected. Characterization of the power and flux distributions representative of the High Flux Solar Furnace(HFSF) at the National Renewable Energy Laboratory(NREL) were compared to ray trace modeling of the facility. In addition, samples of candidate reactor materials were thermally cycled at the HFSF and tensile failure testing was performed to quantify material degradation. Thermal cycling tests have been completed on super alloy Haynes 214 samples and results indicate that maximum temperature plays a significant role in reduction of strength. The number of cycles was too small to establish long term failure trends for this material due to the high ductility of the material.

Lichty, P. R.; Scott, A. M.; Perkins, C. M.; Bingham, C.; Weimer, A. W.

2008-03-01T23:59:59.000Z

338

Reanalysis of the Reactor Neutrino Anomaly  

E-Print Network (OSTI)

We reanalyze the reactor neutrino anomaly, wherein it is suggested that only about 94% of the emitted antineutrino flux was detected in short baseline experiments. We find that the form of the corrections that lead to the anomaly are very uncertain for the 30% of the flux that is determined by forbidden beta-decay transitions. This uncertainty was estimated in four ways and is larger than the size of the anomaly, and is unlikely to be reduced without accurate direct measurements of the antineutrino flux. Neutrino physics conclusions based on the original anomaly need to be revisited, as do oscillation analyses that assumed that the antineutrino flux is known to better than ~5%.

A. C. Hayes; J. L. Friar; G. T. Garvey; Guy Jonkmans

2013-09-17T23:59:59.000Z

339

Advanced Test Reactor National Scientific User Facility  

Science Conference Proceedings (OSTI)

The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

2011-08-01T23:59:59.000Z

340

Nuclear reactor and materials science research: Final technical report, May 1, 1985-September 30, 1986. [Academic and research utilization of reactor  

SciTech Connect

Throughout the 17-month period of the grant, May 1, 1985 - September 30, 1986, the MIT Research Reactor (MITR-II) was operated in support of research and academic programs in the physical and life sciences and in related engineering fields. The period encompassed MIT's fiscal year utilization of the reactor during that period may be classified as follows: neutron beam tube research, nuclear materials research and development, radiochemistry and trace analysis, nuclear medicine, radiation health physics, computer control of reactors, dose reduction in nuclear power reactors, reactor irradiations and services for groups outside MIT, and MIT research reactor. This paper provides detailed information on this research academic utilization.

Harling, O.K.

1987-05-11T23:59:59.000Z

Note: This page contains sample records for the topic "flux beam reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Nuclear reactor  

DOE Patents (OSTI)

A nuclear reactor in which the core components, including fuel-rod assemblies, control-rod assemblies, fertile rod-assemblies, and removable shielding assemblies, are supported by a plurality of separate inlet modular units. These units are referred to as inlet module units to distinguish them from the modules of the upper internals of the reactor. The modular units are supported, each removable independently of the others, in liners in the supporting structure for the lower internals of the reactor. The core assemblies are removably supported in integral receptacles or sockets of the modular units. The liners, units, sockets and assmblies have inlet openings for entry of the fluid. The modular units are each removably mounted in the liners with fluid seals interposed between the opening in the liner and inlet module into which the fluid enters and the upper and lower portion of the liner. Each assembly is similarly mounted in a corresponding receptacle with fluid seals interposed between the openings where the fluid enters and the lower portion of the receptacle or fitting closely in these regions. As fluid flows along each core assembly a pressure drop is produced along the fluid so that the fluid which emerges from each core assembly is at a lower pressure than the fluid which enters the core assembly. However because of the seals interposed in the mountings of the units and assemblies the pressures above and below the units and assemblies are balanced and the units are held in the liners and the assemblies are held in the receptacles by their weights as they have a higher specific gravity than the fluid. The low-pressure spaces between each module and its liner and between each core assembly and its module is vented to the low-pressure regions of the vessel to assure that fluid which leaks through the seals does not accumulate and destroy the hydraulic balance.

Pennell, William E. (Greensburg, PA); Rowan, William J. (Monroeville, PA)

1977-01-01T23:59:59.000Z

342

Photocatalytic reactor  

DOE Patents (OSTI)

A photocatalytic reactor for processing selected reactants from a fluid medium comprising at least one permeable photocatalytic membrane having a photocatalytic material. The material forms an area of chemically active sites when illuminated by light at selected wavelengths. When the fluid medium is passed through the illuminated membrane, the reactants are processed at these sites separating the processed fluid from the unprocessed fluid. A light source is provided and a light transmitting means, including an optical fiber, for transmitting light from the light source to the membrane.

Bischoff, Brian L. (Knoxville, TN); Fain, Douglas E. (Oak Ridge, TN); Stockdale, John A. D. (Knoxville, TN)

1999-01-01T23:59:59.000Z

343

Simple beam profile monitor  

Science Conference Proceedings (OSTI)

An inexpensive beam profile monitor is based on the well proven rotating wire method. The monitor can display beam position and shape in real time for particle beams of most energies and beam currents up to 200{mu}A. Beam shape, position cross-section and other parameters are displayed on a computer screen.

Gelbart, W.; Johnson, R. R.; Abeysekera, B. [ASD Inc. Garden Bay, BC (Canada); Best Theratronics Ltd Ottawa Ontario (Canada); PharmaSpect Ltd., Burnaby BC (Canada)

2012-12-19T23:59:59.000Z

344

Advanced Online Flux Mapping of CANDU PHWR by Least-Squares Method  

Science Conference Proceedings (OSTI)

A least-squares method that solves both the core neutronics design equations and the in-core detector response equations on the least-squares principle is presented as a new advanced online flux-mapping method for CANada Deuterium Uranium (CANDU) pressurized heavy water reactors (PHWRs). The effectiveness of the new flux-mapping method is examined in terms of online flux-mapping calculations with numerically simulated true flux distribution and detector signals and those with the actual core-follow data for the Wolsong CANDU PHWRs in Korea. The effects of core neutronics models as well as the detector failures and uncertainties of measured detector signals on the effectiveness of the least-squares flux-mapping calculations are also examined.The following results are obtained. The least-squares method predicts the flux distribution in better agreement with the simulated true flux distribution than the standard core neutronics calculations by the finite difference method (FDM) computer code without using the detector signals. The adoption of the nonlinear nodal method based on the unified nodal method formulation instead of the FDM results in a significant improvement in prediction accuracy of the flux-mapping calculations. The detector signals estimated from the least-squares flux-mapping calculations are much closer to the measured detector signals than those from the flux synthesis method (FSM), the current online flux-mapping method for CANDU reactors. The effect of detector failures is relatively small so that the plant can tolerate up to 25% of detector failures without seriously affecting the plant operation. The detector signal uncertainties aggravate accuracy of the flux-mapping calculations, yet the effects of signal uncertainties of the order of 1% standard deviation can be tolerable without seriously degrading the prediction accuracy of the least-squares method. The least-squares method is disadvantageous because it requires longer CPU time than the existing FSM. Considering ever-increasing computer speed and the improved operational safety margin of CANDU reactors gained by accurate flux-mapping calculations, however, it is concluded that the least-squares method presents an effective alternative to the existing flux-mapping method for CANDU reactors.

Hong, In Seob [Seoul National University (Korea, Republic of); Kim, Chang Hyo [Seoul National University (Korea, Republic of); Suk, Ho Chun [Korea Atomic Energy Research Institute (Korea, Republic of)

2005-07-15T23:59:59.000Z

345

ARM - Measurement - CO2 flux  

NLE Websites -- All DOE Office Websites (Extended Search)

: CO2 flux The rate of flow for carbon dioxide, a heavy, colorless greenhouse gas. Categories Atmospheric Carbon, Surface Properties Instruments The above measurement is...

346

Physics of String Flux Compactifications  

E-Print Network (OSTI)

We provide a qualitative review of flux compactifications of string theory, focusing on broad physical implications and statistical methods of analysis.

Frederik Denef; Michael R. Douglas; Shamit Kachru

2007-01-06T23:59:59.000Z

347

Nuclear Reactor Accidents  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactor Accidents The accidents at the Three Mile Island (TMI) and Chernobyl nuclear reactors have triggered particularly intense concern about radiation hazards. The TMI accident,...

348

Principles of Reactor Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Reactor Physics M A Smith Argonne National Laboratory Nuclear Engineering Division Phone: 630-252-9747, Email: masmith@anl.gov Abstract: Nuclear reactor physics deals with...

349

NEUTRONIC REACTOR  

DOE Patents (OSTI)

A power plant is described comprising a turbine and employing round cylindrical fuel rods formed of BeO and UO/sub 2/ and stacks of hexagonal moderator blocks of BeO provided with passages that loosely receive the fuel rods so that coolant may flow through the passages over the fuels to remove heat. The coolant may be helium or steam and fiows through at least one more heat exchanger for producing vapor from a body of fluid separate from the coolant, which fluid is to drive the turbine for generating electricity. By this arrangement the turbine and directly associated parts are free of particles and radiations emanating from the reactor. (AEC)

Daniels, F.

1962-12-18T23:59:59.000Z

350

STATEMENT OF CONSIDERATIONS Advance Test Reactor Class Waiver  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advance Test Reactor Class Waiver Advance Test Reactor Class Waiver W(C)-2008-004 The Advanced Test Reactor (A TR) is a pressurized water test reactor at the Idaho National Laboratory (INL) that operates at low pressure and temperature. The ATR was originally designed to study the effects of intense radiation on reactor material and fuels . It has a "Four Leaf Clover" design that allows a diverse array of testing locations. The unique design allows for different flux in various locations and specialized systems also allow for certain experiments to be run at their own temperature and pressure. The U.S. Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007. This designation will allow the ATR to

351

Relativistic electron beam generator  

DOE Patents (OSTI)

A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.

Mooney, L.J.; Hyatt, H.M.

1975-11-11T23:59:59.000Z

352

NK Muon Beam  

Science Conference Proceedings (OSTI)

The NK Muon Beam will be a modified version of the existing NT beam line. The decision to employ a modified version of the NT beam line was made based on considerations of cost and availability of the beam line. Preliminary studies considered use of other beam lines, e.g., the NW beam line, and even of moving the bubble chamber with its superconducting coils but were rejected for reasons such as cost, personnel limitations, and potential conflicts with other users.

Koizumi, G.

1988-09-28T23:59:59.000Z

353

Startup of the Fission Converter Epithermal Neutron Irradiation Facility at the MIT Reactor  

Science Conference Proceedings (OSTI)

A new epithermal neutron irradiation facility, based on a fission converter assembly placed in the thermal column outside the reactor core, has been put into operation at the Massachusetts Institute of Technology Research Reactor (MITR). This facility was constructed to provide a high-intensity, forward-directed beam for use in neutron capture therapy with an epithermal flux of [approximately equal to]10{sup 10} n/cm{sup 2}.s at the medical room entrance with negligible fast neutron and gamma-ray contamination. The fission converter assembly consists of 10 or 11 MITR fuel elements placed in an aluminum tank and cooled with D{sub 2}O. Thermal-hydraulic criteria were established based on heat deposition calculations. Various startup tests were performed to verify expected neutronic and thermal-hydraulic behavior. Flow testing showed an almost flat flow distribution across the fuel elements with <5% bypass flow. The total reactivity change caused by operation of the facility was measured at 0.014 {+-} 0.002% {delta}K/K. Thermal power produced by the facility was measured to be 83.1 {+-} 4.2 kW. All of these test results satisfied the thermal-hydraulic safety criteria. In addition, radiation shielding design measurements were made that verified design calculations for the neutronic performance.

Newton, Thomas H. Jr.; Riley, Kent J.; Binns, Peter J.; Kohse, Gordon E.; Hu Linwen; Harling, Otto K. [Massachusetts Institute of Technology (United States)

2002-08-15T23:59:59.000Z

354

Reactor and method of operation  

DOE Patents (OSTI)

A nuclear reactor having a flattened reactor activity curve across the reactor includes fuel extending over a lesser portion of the fuel channels in the central portion of the reactor than in the remainder of the reactor.

Wheeler, John A. (Princeton, NJ)

1976-08-10T23:59:59.000Z

355

ARM - Measurement - Sensible heat flux  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsSensible heat flux govMeasurementsSensible heat flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Sensible heat flux The time rate of flow for the energy transferred from a warm or hot surface to whatever is touching it, typically air. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System EBBR : Energy Balance Bowen Ratio Station

356

ARM - Measurement - Latent heat flux  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsLatent heat flux govMeasurementsLatent heat flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Latent heat flux The time rate of flow for the specific enthalpy difference between two phases of a substance at the same temperature, typically water. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System EBBR : Energy Balance Bowen Ratio Station

357

Solar proton fluxes since 1956  

SciTech Connect

The fluxes of protons emitted during solar flares since 1956 were evaluated. The depth-versus-activity profiles of /sup 56/Co in several lunar rocks are consistent with the solar-proton fluxes detected by experiments on several satellites. Only about 20% of the solar-proton-induced activities of /sup 22/Na and /sup 55/Fe in lunar rocks from early Apollo missions were produced by protons emitted from the sun during solar cycle 20 (1965--1975). The depth-versus-activity data for these radionuclides in several lunar rocks were used to determine the fluxes of protons during solar cycle 19 (1954--1964). The average proton fluxes for cycle 19 are about five times those for both the last million years and for cycle 20. These solar-proton flux variations correlate with changes in sunspot activity.

Reedy, R.C.

1977-04-13T23:59:59.000Z

358

NEUTRAL-BEAM INJECTION  

SciTech Connect

The emphasis in the preceding chapters has been on magnetic confinement of high temperature plasmas. The question of production and heating of such plasmas has been dealt with relatively more briefly. It should not be inferred, however, that these matters must therefore be either trivial or unimportant. A review of the history reveals that in the early days all these aspects of the controlled fusion problem were considered to be on a par, and were tackled simultaneously and with equal vigor. Only the confinement problem turned out to be much more complex than initially anticipated, and richer in challenge to the plasma physicist than the questions of plasma production and heating. On the other hand, the properties of high-temperature plasmas and plasma confinement can only be studied experimentally after the problems of production and of heating to adequate temperatures are solved. It is the purpose of this and the next chapter to supplement the preceding discussions with more detail on two important subjects: neutral-beam injection and radio-frequency heating. These are the major contenders for heating in present and future tokamak and mirror fusion experiments, and even in several proposed reactors. For neutral beams we emphasize here the technology involved, which has undergone a rather remarkable development. The physics of particle and energy deposition in the plasma, and the discussion of the resulting effects on the confined plasma, have been included in previous chapters, and some experimental results are quoted there. Other heating processes of relevance to fusion are mentioned elsewhere in this book, in connection with the experiments where they are used: i.e. ohmic heating, adiabatic compression heating, and alpha-particle heating in Chapter 3 by H.P. Furth; more ohmic heating in Chapter 7, and shock-implosion heating, laser heating, and relativistic-electron beam heating in Chapter 8, both by W. E. Quinn. These methods are relatively straightforward in their physics and their technology, or in any case they are considered to be adequately covered by these other authors.

Kunkel, W.B.

1980-06-01T23:59:59.000Z

359

Search for Neutrino Oscillations at the Palo Verde Nuclear Reactors  

E-Print Network (OSTI)

We report on the initial results from a measurement of the anti-neutrino flux and spectrum at a distance of about 800 m from the three reactors of the Palo Verde Nuclear Generating Station using a segmented gadolinium-loaded scintillation detector. We find that the anti-neutrino flux agrees with that predicted in the absence of oscillations to better than 5%, excluding at 90% CL $\\rm\\bar\

F. Boehm; J. Busenitz; B. Cook; G. Gratta; H. Henrikson; J. Kornis; D. Lawrence; K. B. Lee; K. McKinny; L. Miller; V. Novikov; A. Piepke; B. Ritchie; D. Tracy; P. Vogel; Y-F. Wang; J. Wolf

1999-12-22T23:59:59.000Z

360

Prospects for Tokamak Fusion Reactors  

SciTech Connect

This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant.

Sheffield, J.; Galambos, J.

1995-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "flux beam reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Preserving physics knowledge at the fast flux test facility  

SciTech Connect

One of the goals of the Dept. of Energy's Office of Nuclear Energy, initiated under the Fuel Cycle Research and Development Program (FCRD) and continued under the Advanced Reactor Concepts Program (ARC) is to preserve the knowledge that has been gained in the United States on Liquid Metal Reactors (LMRs) that could support the development of an environmentally and economically sound nuclear fuel cycle. The Fast Flux Test Facility (FFTF) is the most recent LMR to operate in the United States, from 1982 to 1992, and was designed as a fully instrumented test reactor with on-line, real time test control and performance monitoring of components and tests installed in the reactor. The 10 years of operation of the FFTF provided a very useful framework for testing the advances in LMR safety technology based on passive safety features that may be of increased importance to new designs after the events at Fukushima. Knowledge preservation at the FFTF is focused on the areas of design, construction, and startup of the reactor, as well as on preserving information obtained from 10 years of successful operating history and extensive irradiation testing of fuels and materials. In order to ensure protection of information at risk, the program to date has sequestered reports, files, tapes, and drawings to allow for secure retrieval. A disciplined and orderly approach has been developed to respond to client's requests for documents and data in order to minimize the search effort and ensure that future requests for this information can be readily accommodated. (authors)

Wootan, D.; Omberg, R. [Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352 (United States); Makenas, B. J. [Ares Corporation, M/S A3-06, 825 Jadwin Avenue, Richland, WA 99352 (United States); Nielsen, D. L.; Nelson, J. V. [Indian Eyes, LLC, 2815 Saint Andrews Loop, Pasco, WA 99301 (United States); Polzin, D. L. [CH2MHill Plateau Remediation Company, M/S S2-42, P.O. Box 1600, Richland, WA 99352 (United States)

2012-07-01T23:59:59.000Z

362

Reactor safety method  

DOE Patents (OSTI)

This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.

Vachon, Lawrence J. (Clairton, PA)

1980-03-11T23:59:59.000Z

363

NEUTRONIC REACTOR MANIPULATING DEVICE  

DOE Patents (OSTI)

A cable connecting a control rod in a reactor with a motor outside the reactor for moving the rod, and a helical conduit in the reactor wall, through which the cable passes are described. The helical shape of the conduit prevents the escape of certain harmful radiations from the reactor. (AEC)

Ohlinger, L.A.

1962-08-01T23:59:59.000Z

364

NSLS-II Beam Diagnostics Overview  

SciTech Connect

A new 3rd generation light source (NSLS-II) is in the early stages of construction at Brookhaven National Laboratory. The NSLS-II facility will provide ultra high brightness and flux with exceptional beam stability. It presents several challenges for diagnostics and instrumentation, related to the extremely small emittance. In this paper, we present an overview of all planned instrumentation systems, results from research and development activities; and then focus on other challenging aspects.

Singh,O.; Alforque, R.; Bacha, B.; Blednykh, A.; Cameron, P.; Cheng, W.; Dalesio, L. B.; Della Penna, A. J.; doom, L.; Fliller, R. P.; Ganetis, G.; Heese, R.; Hseuh, H-C.; Johnson, E. D.; Kosciuk, b. N.; Kramer, S. L.; Krinsky, S.; Mead, J.; Ozaki, S.; Padrazo, D.; Pinayev, I.; Ravindranath, R. V.; Rose, J.; Shaftan, T.; Sharma, S.; Skaritka, J.; Tanabe, T.; Tian, Y.; Willeke, F. J.; Yu, L-H.

2009-05-04T23:59:59.000Z

365

The boardman regional flux experiment  

SciTech Connect

A field campaign was carried out near Boardman, Oregon, to study the effects of subgrid-scale variability of sensible- and latent-heat fluxes on surface boundary-layer properties. The experiment involved three U.S. Department of Energy laboratories, one National Oceanic and Atmospheric Administration laboratory, and several universities. The experiment was conducted in a region of severe contrasts in adjacent surface types that accentuated the response of the atmosphere to variable surface forcing. Large values of sensible-heat flux and low values of latent-heat flux characterized a sagebrush steppe area; significantly smaller sensible-heat fluxes and much larger latent-heat fluxes were associated with extensive tracts of irrigated farmland to the north, east, and west of the steppe. Data were obtained from an array of surface flux stations, remote-sensing devices, an instrumented aircraft, and soil and vegetation measurements. The data will be used to address the problem of extrapolating from a limited number of local measurements to area-averaged values of fluxes suitable for use in global climate models. 16 refs., 13 figs.

Doran, J.C.; Hubbe, J.M.; Kirkham, R.R.; Shaw, W.J.; Whiteman, C.D. (Pacific Northwest Lab., Richland, WA (United States)); Barnes, F.J.; Cooper, D.; Porch, W. (Los Alamos National Lab., NM (United States)); Coulter, R.L.; Cook, D.R.

1992-11-01T23:59:59.000Z

366

THE ADVANCED TEST REACTOR-ATR FINAL CONCEPTUAL DESIGN  

SciTech Connect

The results of a study are presented which provided additional experimental-loop irradiation space for the AECDRD testing program. It was a premise that the experiments allocated to this reactor were those which could not be accommodated in the MTR, ETR, or in existing commercial test reactors. To accomplish the design objectives called for a reactor producing perturbed neutron fluxes exceeding 1O/sup 15/ thermal n/cm/sup 2/-sec and 1.5 x 1O/sup 15/ epithermal n/cm/sup 2/-sec. To accommodate the experimental samples, the reactor fuel core is four feet long in the direction of experimental loops. This is twice the length of the MTR core and a third longer than the ETR core. The vertical arrangement of reactor and experiments permits the use of loops penetrating the top cap of the reactor vessel running straight and vertically through the reactor core. The design offers a high degree of accessibility of the exterior portions of the experiments and offers very convenient handling and discharge of experiments. Since the loops are to be integrated into the reactor design and the in-pile portions installed before reactor start-up, it is felt that many of the problems encountered in MTR and ETR experience will cease to exist. Installation of the loops prior to startup will have an added advantage in that the flux variations experienced in experiments in ETR every time a new loop is installed will be absent. The Advanced Test Reactor has a core configuration that provides essentially nine flux-trap regions in a geometry that is almost optimum for cylindrical experiments. The geometry is similar to that of a fourleaf clover with one flux trap in each leaf, one at the intersection of the leaves, and one between each pair of leaves. The nominal power level is 250 Mw. The study was carried out in enough detail to permit the establishment of the design parameters and to develop the power requirement which, conservatively rated, will definitely reach the flux specifications. A critical mockup of an arrangement similar to ATR was loaded into the Engineering Test Reactor Critical Facility. (auth)

deBoisblanc, D.R. et al

1960-11-01T23:59:59.000Z

367

An Engineering Test Reactor  

SciTech Connect

A relatively inexpensive reactor for the specific purpose of testing a sub-critical portion of another reactor under conditions that would exist during actual operation is discussed. It is concluded that an engineering tool for reactor development work that bridges the present gap between exponential and criticality experiments and the actual full scale operating reactor is feasible. An example of such a test reactor which would not entail development effort to ut into operation is depicted.

Fahrner, T.; Stoker, R.L.; Thomson, A.S.

1951-03-16T23:59:59.000Z

368

Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research  

SciTech Connect

The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials with Particles and Components Testing (IMPACT) facility and the Pacific Northwest Nuclear Laboratory (PNNL) Radiochemistry Processing Laboratory (RPL) and PIE facilities were added. The ATR NSUF annually hosts a weeklong event called User’s Week in which students and faculty from universities as well as other interested parties from regulatory agencies or industry convene in Idaho Falls, Idaho to see presentations from ATR NSUF staff as well as select researchers from the materials research field. User’s week provides an overview of current materials research topics of interest and an opportunity for young researchers to understand the process of performing work through ATR NSUF. Additionally, to increase the number of researchers engaged in LWR materials issues, a series of workshops are in progress to introduce research staff to stress corrosion cracking, zirconium alloy degradation, and uranium dioxide degradation during in-reactor use.

John Jackson; Todd Allen; Frances Marshall; Jim Cole

2013-03-01T23:59:59.000Z

369

Fast Beam Conditions Monitor BCM1F for the CMS Experiment  

E-Print Network (OSTI)

The CMS Beam Conditions and Radiation Monitoring System, BRM, will support beam tuning, protect the CMS detector from adverse beam conditions, and measure the accumulated dose close to or inside all sub-detectors. It is composed of different sub-systems measuring either the particle flux near the beam pipe with time resolution between nano- and microseconds or the integrated dose over longer time intervals. This paper presents the Fast Beam Conditions Monitor, BCM1F, which is designed for fast flux monitoring measuring both beam halo and collision products. BCM1F is located inside the CMS pixel detector volume close to the beam-pipe. It uses sCVD diamond sensors and radiation hard front-end electronics, along with an analog optical readout of the signals. The commissioning of the system and its successful operation during the first be ams of the LHC are described.

Bell, A; Hall-Wilton, R; Lange, W; Lohmann, W; Macpherson, A; Ohlerich, M; Rodriguez, N; Ryjov, V; Schmidt, R S; Stone, R L

2010-01-01T23:59:59.000Z

370

Reactor Pressure Vessel Task of Light Water Reactor Sustainability...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Pressure Vessel Task of Light Water Reactor Sustainability Program: Milestone Report on Materials and Machining of Specimens for the ATR-2 Experiment Reactor Pressure...

371

ARM - Measurement - Soil moisture flux  

NLE Websites -- All DOE Office Websites (Extended Search)

moisture flux moisture flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil moisture flux A quantity measured according to the formula B = {lambda}(dq/dz), where {lambda} is the conductivity of the soil that the moisture is moving through. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems External Instruments ECMWFDIAG : European Centre for Medium Range Weather Forecasts

372

ARM - Measurement - Soil heat flux  

NLE Websites -- All DOE Office Websites (Extended Search)

heat flux heat flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil heat flux A quantity measured according to the formula B = {lambda}(dT/dz), where {lambda} is the conductivity of the soil that the heat is moving through. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems EBBR : Energy Balance Bowen Ratio Station SEBS : Surface Energy Balance System External Instruments

373

Estimation of Surface Heat Flux  

Science Conference Proceedings (OSTI)

The authors reconsider the problem of estimating the sensible heat transfer at the earth's surface from direct measurements of turbulent fluxes in the atmospheric boundary layer. For simplicity, only horizontally homogeneous conditions are ...

Jielun Sun; Steven K. Esbensen; L. Mahrt

1995-09-01T23:59:59.000Z

374

Flux Measurement with Conditional Sampling  

Science Conference Proceedings (OSTI)

A method is proposed to measure scalar fluxes using conditional sampling. Only the mean concentrations of updraft and downdraft samples, the standard deviation of the vertical velocity, and a coefficient of proportionality, b, need to be known. ...

Joost A. Businger; Steven P. Oncley

1990-04-01T23:59:59.000Z

375

The Solar Wind Energy Flux  

E-Print Network (OSTI)

The solar-wind energy flux measured near the ecliptic is known to be independent of the solar-wind speed. Using plasma data from Helios, Ulysses, and Wind covering a large range of latitudes and time, we show that the solar-wind energy flux is independent of the solar-wind speed and latitude within 10%, and that this quantity varies weakly over the solar cycle. In other words the energy flux appears as a global solar constant. We also show that the very high speed solar-wind (VSW > 700 km/s) has the same mean energy flux as the slower wind (VSW solar-wind speed and density, which formalizes the anti-correlation between these quantities.

Chat, G Le; Meyer-Vernet, N

2012-01-01T23:59:59.000Z

376

Grid-Averaged Surface Fluxes  

Science Conference Proceedings (OSTI)

This study examines the inadequacies of formulations for surface fluxes for use in numerical models of atmospheric flow. The difficulty is that numerical models imply spatial averaging over each grid area. Existing formulations am based on the ...

L. Mahrt

1987-08-01T23:59:59.000Z

377

SUMMARY OF BEAM BEAM OBSERVATIONS DURING STORES IN RHIC.  

Science Conference Proceedings (OSTI)

During stores, the beam-beam interaction has a significant impact on the beam and luminosity lifetimes in RHIC. This was observed in heavy ion, and even more pronounced in proton collisions. Observations include measurements of beam-beam induced tune shifts, lifetime and emittance growth measurements with and without beam-beam interaction, and background rates as a function of tunes. In addition, RHIC is currently the only hadron collider in which strong-strong beam-beam effects can be seen. Coherent beam-beam modes were observed, and suppressed by tune changes. In this article we summarize the most important beam-beam observations made during stores so far.

FISCHER,W.

2003-05-19T23:59:59.000Z

378

Memorandum on Chemical Reactors and Reactor Hazards  

SciTech Connect

Two important problems in the investigation of reactor hazards are the chemical reactivity of various materials employed in reactor construction and the chracteristics of heat transfer under transient conditions, specifically heat transfer when driven by an exponentially increasing heat source (exp t/T). Although these problems are independent of each other, when studied in relation to reactor hazards they may occur in a closely coupled sequence. For example the onset of a dangerous chemical reactor may be due to structural failure of various reactor components under an exponentially rising heat source originating with a runaway nuclear reactor. For this reason, these two problems should eventually be studied together after an exploratory experimental survey has been made in which they are considered separately.

Mills, M.M.; Pearlman, H.; Ruebsamen, W.; Steele, G., Chrisney, J.

1951-07-05T23:59:59.000Z

379

Micro -Thermonuclear AB-Reactors for Aerospace  

E-Print Network (OSTI)

The author offers several innovations that he first suggested publicly early in 1983 for the AB multi-reflex engine, space propulsion, getting energy from plasma, etc. (see: A. Bolonkin, Non-Rocket Space Launch and Flight, Elsevier, London, 2006, Chapters 12, 3A). It is the micro-thermonuclear AB-Reactors. That is new micro-thermonuclear reactor with very small fuel pellet that uses plasma confinement generated by multi-reflection of laser beam or its own magnetic field. The Lawson criterion increases by hundreds of times. The author also suggests a new method of heating the power-making fuel pellet by outer electric current as well as new direct method of transformation of ion kinetic energy into harvestable electricity. These offered innovations dramatically decrease the size, weight and cost of thermonuclear reactor, installation, propulsion system and electric generator. Non-industrial countries can produce these researches and constructions. Currently, the author is researching the efficiency of these innovations for two types of the micro-thermonuclear reactors: multi-reflection reactor (ICF) and self-magnetic reactor (MCF).

Alexander Bolonkin

2007-01-08T23:59:59.000Z

380

Prospects For Precision Measurements with Reactor Antineutrinos at Daya Bay  

E-Print Network (OSTI)

In 2012 the Daya Bay experiment made an unambiguous observation of reactor antineutrino disappearance over kilometer-long baselines and determined that the neutrino mixing angle $\\theta_{13}$ is non-zero. The measurements of Daya Bay have provided the most precise determination of $\\theta_{13}$ to date. This whitepaper outlines the prospects for precision studies of reactor antineutrinos at Daya Bay in the coming years. This includes precision measurements of sin$^2 2\\theta_{13}$ and $\\Delta m^2_{ee}$ to $reactor flux and spectrum, and non-standard physics searches.

The Daya Bay Collaboration

2013-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "flux beam reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Definition: Gas Flux Sampling | Open Energy Information  

Open Energy Info (EERE)

Gas Flux Sampling Jump to: navigation, search Dictionary.png Gas Flux Sampling Gas flux sampling measures the flow of volatile gas emissions from a specific location and compares...

382

Flux Sampling Errors for Aircraft and Towers  

Science Conference Proceedings (OSTI)

Various errors and influences leading to differences between tower- and aircraft-measured fluxes are surveyed. This survey is motivated by reports in the literature that aircraft fluxes are sometimes smaller than tower-measured fluxes. Both tower ...

L. Mahrt

1998-04-01T23:59:59.000Z

383

Tevatron beam-beam compensation project progress  

SciTech Connect

In this paper, we report the progress of the Tevatron Beam-Beam Compensation (BBC) project [1]. Electron beam induced proton and antiproton tuneshifts have been reported in [2], suppression of an antiproton emittance growth has been observed, too [1]. Currently, the first electron lens (TEL1) is in operational use as the Tevatron DC beam cleaner. We have made a lot of the upgrades to improve its stability [3]. The 2nd Tevatron electron lens (TEL2) is under the final phase of development and preparation for installation in the Tevatron.

Shiltsev, V.; Zhang, X.L.; Kuznetsov, G.; Pfeffer, H.; Saewert, G.; /Fermilab; Zimmermann, F.; /CERN; Tiunov, M.; /Novosibirsk, IYF; Bishofberger, K.; /UCLA; Bogdanov, I.; Kashtanov, E.; Kozub, S.; Sytnik, V.; Tkachenko, L.; /Serpukhov, IHEP

2005-05-01T23:59:59.000Z

384

Gas Flux Sampling | Open Energy Information  

Open Energy Info (EERE)

Gas Flux Sampling Gas Flux Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gas Flux Sampling Details Activities (26) Areas (20) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Gas Sampling Information Provided by Technique Lithology: Stratigraphic/Structural: High flux can be indicative of conduits for fluid flow. Hydrological: Thermal: Anomalous flux is associated with active hydrothermal activity. Dictionary.png Gas Flux Sampling: Gas flux sampling measures the flow of volatile gas emissions from a specific location and compares it to average background emissions. Anomalously high gas flux can be an indication of hydrothermal activity.

385

ION BEAM COLLIMATOR  

DOE Patents (OSTI)

A device is described for defining a beam of high energy particles wherein the means for defining the beam in the horizontal and vertical dimension are separately adjustable and the defining members are internally cooled. In general, the device comprises a mounting block having a central opening through which the beam is projected, means for rotatably supporting two pairs of beam- forming members, passages in each member for the flow of coolant; the beam- forming members being insulated from each other and the block, and each having an end projecting into the opening. The beam-forming members are adjustable and may be cooperatively positioned to define the beam passing between the end of the members. To assist in projecting and defining the beam, the member ends have individual means connected thereto for indicating the amount of charge collected thereon due to beam interception.

Langsdorf, A.S. Jr.

1957-11-26T23:59:59.000Z

386

Basic and Applied Science Research Reactors - Reactors designed...  

NLE Websites -- All DOE Office Websites (Extended Search)

BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th...

387

A Brief History i-l Research Reactors  

E-Print Network (OSTI)

stainless steel sam- ples in the High Flux Isotope Reactor (HFIR) at tem- peratures of 380 to 680" with up/cm' to balance the gas pressure were used m their calculation. A comparison of the results with HFIR and the HFIR ex- perimental data is presented in section 5. Applications of the model to various fusion designs

388

A unique method of neutron flux determination from experimental data  

DOE Patents (OSTI)

A method is provided for determining the fission heat flux of a prime specimen inserted into a specimen of a test reactor. A pair of thermocouple test specimens are positioned at the same level in the holder and a determination is made of various experimental data including the temperature of the thermocouple test specimens, the temperature of bulk water channels located in the test holder, the gamma scan count ratios for the thermocouple test specimens and the prime specimen, and the thicknesses of the outer clads, the fuel fillers, and the backclad of the thermocouple test specimen. Using this experimental data, the absolute value of the fission heat flux for the thermocouple test specimens and prime specimen can be calculated.

Paxton, Frank A.

1998-12-01T23:59:59.000Z

389

Method of fission heat flux determination from experimental data  

DOE Patents (OSTI)

A method is provided for determining the fission heat flux of a prime specimen inserted into a specimen of a test reactor. A pair of thermocouple test specimens are positioned at the same level in the holder and a determination is made of various experimental data including the temperature of the thermocouple test specimens, the temperature of bulk water channels located in the test holder, the gamma scan count ratios for the thermocouple test specimens and the prime specimen, and the thicknesses of the outer clads, the fuel fillers, and the backclad of the thermocouple test specimen. Using this experimental data, the absolute value of the fission heat flux for the thermocouple test specimens and prime specimen can be calculated.

Paxton, Frank A. (Schenectady, NY)

1999-01-01T23:59:59.000Z

390

Beam position monitor  

DOE Patents (OSTI)

An apparatus for determining the position of an x-ray beam relative to a desired beam axis where the apparatus is positioned along the beam path so that a thin metal foil target intersects the x-ray beam generating fluorescent radiation. A PIN diode array is positioned so that a portion of the fluorescent radiation is intercepted by the array resulting in a series of electrical signals from the PIN diodes making up the array. The signals are then analyzed and the position of the x-ray beam is determined relative to the desired beam path.

Alkire, Randy W.; Rosenbaum, Gerold; Evans, Gwyndaf

2000-09-21T23:59:59.000Z

391

THE KINETICS AND STABILITY OF FAST REACTORS WITH SPECIAL CONSIDERATIONS OF NONLINEARITIES (thesis)  

SciTech Connect

The dynamic behavior of a fast reactor, when the neutron flux is considered as a function of time, is considered. The kinetics of a fast reactor can be grouped into three distinct areas of interest; the first being the normal operating conditions where all the changes are brought about in a slow manner. and the resulting flux changes being small in comparison with the steady stuff flux. Since the available reactivity and the power density of most large thermal reactors is so small, and the heat capacity is so large, nothing but small deviations from design conditions would occur before the control rods were inserted. Thus reactor kinetics traditionally has meant linear kinetics, which in the mathematical interpretation leads to linearized kinetic equations. The second area is where there is much stronger coupling between reactivity and geometrical changes in the core. A fast reactor has a much higher power density than a thermal reactor and geometrical changes will therefore be more effective on reactivity. A fast reactor needs a greater total amount of U-235 because the fission cross section of U-235 is several hundred times smaller at neutron energies of the order of 0.1 Mev as compared to thermal energies. A fast reactor will always be smaller than a thermal reactor assuming the same power production. Stability and the influence of non linearities are discussed. (A.C.)

Sandmeier, H.A.

1959-06-01T23:59:59.000Z

392

Particle beam fusion  

SciTech Connect

Today, in keeping with Sandia Laboratories` designation by the Department of Energy as the lead laboratory for the pulsed power approach to fusion, its efforts include major research activities and the construction of new facilities at its Albuquerque site. Additionally, in its capacity as lead laboratory, Sandia coordinates DOE-supported pulsed power fusion work at other government operated laboratories, with industrial contractors, and universities. The beginning of Sandia`s involvement in developing fusion power was an outgrowth of its contributions to the nation`s nuclear weapon program. The Laboratories` work in the early 1960`s emphasized the use of pulsed radiation environments to test the resistance of US nuclear weapons to enemy nuclear bursts. A careful study of options for fusion power indicated that Sandia`s expertise in the pulsed power field could provide a powerful match to ignite fusion fuel. Although creating test environments is an achieved goal of Sandia`s overall program, this work and other military tasks protected by appropriate security regulations will continue, making full use of the same pulsed power technology and accelerators as the fusion-for-energy program. Major goals of Sandia`s fusion program including the following: (1) complete a particle accelerator to deliver sufficient beam energy for igniting fusion targets; (2) obtain net energy gain, this goal would provide fusion energy output in excess of energy stored in the accelerator; (3) develop a technology base for the repetitive ignition of pellets in a power reactor. After accomplishing these goals, the technology will be introduced to the nation`s commercial sector.

1980-12-31T23:59:59.000Z

393

Multidisciplinary multi-physics simulation and  

E-Print Network (OSTI)

to accept and process proposals submitted by users for beam time at the High Flux Isotope Reactor (HFIR

394

Attrition reactor system  

DOE Patents (OSTI)

A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur.

Scott, Charles D. (Oak Ridge, TN); Davison, Brian H. (Knoxvile, TN)

1993-01-01T23:59:59.000Z

395

Reactor Sharing Program  

Science Conference Proceedings (OSTI)

Progress achieved at the University of Florida Training Reactor (UFTR) facility through the US Department of Energy's University Reactor Sharing Program is reported for the period of 1991--1992.

Vernetson, W.G.

1993-01-01T23:59:59.000Z

396

Guidebook to nuclear reactors  

SciTech Connect

A general introduction to reactor physics and theory is followed by descriptions of commercial nuclear reactor types. Future directions for nuclear power are also discussed. The technical level of the material is suitable for laymen.

Nero, A.V. Jr.

1976-05-01T23:59:59.000Z

397

Attrition reactor system  

DOE Patents (OSTI)

A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur. 2 figures.

Scott, C.D.; Davison, B.H.

1993-09-28T23:59:59.000Z

398

Knowledge Preservation at the Fast Flux Test Facility  

Science Conference Proceedings (OSTI)

One of the goals of the Department of Energy's Office of Nuclear Energy Fuel Cycle Research and Development Program (FCRD) is to preserve the knowledge that has been gained in the United States on Liquid Metal Reactors (LMRs) that could support the development of an environmentally and economically sound nuclear fuel cycle. The Fast Flux Test Facility (FFTF) is the most recent LMR to operate in the United States, from 1982 to 1992, and was designed as a fully instrumented test reactor with on-line, real time test control and performance monitoring of components and tests installed in the reactor. Knowledge preservation at the FFTF is focused on the areas of design, construction, and startup of the reactor, as well as on preserving information obtained from 10 years of successful operating history and extensive irradiation testing of fuels and materials. In order to ensure protection of information at risk, the program to date has sequestered reports, files, tapes, and drawings to allow for secure retrieval. A disciplined and orderly approach has been developed to respond to client's requests for documents and data in order to minimize the search effort and ensure that future requests for this information can be readily accommodated.

Wootan, David W.; Omberg, Ronald P.

2011-12-30T23:59:59.000Z

399

NEUTRONIC REACTOR POWER PLANT  

DOE Patents (OSTI)

This patent relates to a nuclear reactor power plant incorporating an air-cooled, beryllium oxide-moderated, pebble bed reactor. According to the invention means are provided for circulating a flow of air through tubes in the reactor to a turbine and for directing a sidestream of the circu1ating air through the pebble bed to remove fission products therefrom as well as assist in cooling the reactor. (AEC)

Metcalf, H.E.

1962-12-25T23:59:59.000Z

400

High solids fermentation reactor  

DOE Patents (OSTI)

A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

Wyman, Charles E. (Lakewood, CO); Grohmann, Karel (Littleton, CO); Himmel, Michael E. (Littleton, CO); Richard, Christopher J. (Lakewood, CO)

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flux beam reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Improved vortex reactor system  

DOE Patents (OSTI)

An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

Diebold, James P. (Lakewood, CO); Scahill, John W. (Evergreen, CO)

1995-01-01T23:59:59.000Z

402

FAST NEUTRON REACTOR  

DOE Patents (OSTI)

A reactor comprising fissionable material in concentration sufficiently high so that the average neutron enengy within the reactor is at least 25,000 ev is described. A natural uranium blanket surrounds the reactor, and a moderating reflector surrounds the blanket. The blanket is thick enough to substantially eliminate flow of neutrons from the reflector.

Soodak, H.; Wigner, E.P.

1961-07-25T23:59:59.000Z

403

NUCLEAR REACTOR CONTROL SYSTEM  

DOE Patents (OSTI)

A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

1959-11-01T23:59:59.000Z

404

Neutronic analysis of a fusion hybrid reactor  

SciTech Connect

In a PHYSOR 2010 paper(1) we introduced a fusion hybrid reactor whose fusion component is the gasdynamic mirror (GDM), and whose blanket was made of thorium - 232. The thrust of that study was to demonstrate the performance of such a reactor by establishing the breeding of uranium - 233 in the blanket, and the burning thereof to produce power. In that analysis, we utilized the diffusion equation for one-energy neutron group, namely, those produced by the fusion reactions, to establish the power distribution and density in the system. Those results should be viewed as a first approximation since the high energy neutrons are not effective in inducing fission, but contribute primarily to the production of actinides. In the presence of a coolant, however, such as water, these neutrons tend to thermalize rather quickly, hence a better assessment of the reactor performance would require at least a two group analysis, namely the fast and thermal groups. We follow that approach and write an approximate set of equations for the fluxes of these groups. From these relations we deduce the all-important quantity, k{sub eff}, which we utilize to compute the multiplication factor, and subsequently, the power density in the reactor. We show that k{sub eff} can be made to have a value of 0.99, thus indicating that 100 thermal neutrons are generated per fusion neutron, while allowing the system to function as 'subcritical.' Moreover, we show that such a hybrid reactor can generate hundreds of megawatts of thermal power per cm of length depending on the flux of the fusion neutrons impinging on the blanket. (authors)

Kammash, T. [Univ. of Michigan, NERS, 2355 Bonisteel Blvd., Ann Arbor, MI 48109 (United States)

2012-07-01T23:59:59.000Z

405

Hanging core support system for a nuclear reactor. [LMFBR  

DOE Patents (OSTI)

For holding the reactor core in the confining reactor vessel, a support is disclosed that is structurally independent of the vessel, that is dimensionally accurate and stable, and that comprises tandem tension linkages that act redundantly of one another to maintain stabilized core support even in the unlikely event of the complete failure of one of the linkages. The core support has a mounting platform for the reactor core, and unitary structure including a flange overlying the top edge of the reactor vessels, and a skirt and box beams between the flange and platform for establishing one of the linkages. A plurality of tension rods connect between the deck closing the reactor vessel and the platform for establishing the redundant linkage. Loaded Belleville springs flexibly hold the tension rods at the deck and separable bayonet-type connections hold the tension rods at the platform.

Burelbach, J.P.; Kann, W.J.; Pan, Y.C.; Saiveau, J.G.; Seidensticker, R.W.

1984-04-26T23:59:59.000Z

406

DISCONNECTING OPEN SOLAR MAGNETIC FLUX  

SciTech Connect

Disconnection of open magnetic flux by reconnection is required to balance the injection of open flux by coronal mass ejections and other eruptive events. Making use of recent advances in heliospheric background subtraction, we have imaged many abrupt disconnection events. These events produce dense plasma clouds whose distinctive shape can now be traced from the corona across the inner solar system via heliospheric imaging. The morphology of each initial event is characteristic of magnetic reconnection across a current sheet, and the newly disconnected flux takes the form of a 'U-'shaped loop that moves outward, accreting coronal and solar wind material. We analyzed one such event on 2008 December 18 as it formed and accelerated at 20 m s{sup -2} to 320 km s{sup -1}, thereafter expanding self-similarly until it exited our field of view 1.2 AU from the Sun. From acceleration and photometric mass estimates we derive the coronal magnetic field strength to be 8 {mu}T, 6 R{sub Sun} above the photosphere, and the entrained flux to be 1.6 Multiplication-Sign 10{sup 11} Wb (1.6 Multiplication-Sign 10{sup 19} Mx). We model the feature's propagation by balancing inferred magnetic tension force against accretion drag. This model is consistent with the feature's behavior and accepted solar wind parameters. By counting events over a 36 day window, we estimate a global event rate of 1 day{sup -1} and a global solar minimum unsigned flux disconnection rate of 6 Multiplication-Sign 10{sup 13} Wb yr{sup -1} (6 Multiplication-Sign 10{sup 21} Mx yr{sup -1}) by this mechanism. That rate corresponds to {approx} - 0.2 nT yr{sup -1} change in the radial heliospheric field at 1 AU, indicating that the mechanism is important to the heliospheric flux balance.

DeForest, C. E.; Howard, T. A.; McComas, D. J. [Southwest Research Institute, 1050 Walnut Street Suite 300, Boulder, CO 80302 (United States)

2012-01-20T23:59:59.000Z

407

High flux solar energy transformation  

DOE Patents (OSTI)

Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.

Winston, R.; Gleckman, P.L.; O' Gallagher, J.J.

1991-04-09T23:59:59.000Z

408

High flux solar energy transformation  

DOE Patents (OSTI)

Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.

Winston, Roland (Chicago, IL); Gleckman, Philip L. (Chicago, IL); O' Gallagher, Joseph J. (Flossmoor, IL)

1991-04-09T23:59:59.000Z

409

Beam injection into RHIC  

SciTech Connect

During the RHIC sextant test in January 1997 beam was injected into a sixth of one of the rings for the first time. The authors describe the injection zone and its bottlenecks. They report on the commissioning of the injection system, on beam based measurements of the kickers and the application program to steer the beam.

Fischer, W.; Hahn, H.; MacKay, W.W.; Satogata, T.; Tsoupas, N.; Zhang, W.

1997-07-01T23:59:59.000Z

410

Electron beam device  

DOE Patents (OSTI)

This patent pertains to an electron beam device in which a hollow target is symmetrically irradiated by a high energy, pulsed electron beam about its periphery and wherein the outer portion of the target has a thickness slightly greater than required to absorb the electron beam pulse energy. (auth)

Beckner, E.H.; Clauser, M.J.

1975-08-12T23:59:59.000Z

411

The Measurement, interpretation and use of unsteady momentum fluxes in two-phase flow.  

E-Print Network (OSTI)

The steady and unsteady components of the momentum flux in a two-phase flow have been measured at the exit of a vertical pipe by means of an impulse technique using a turning tee and beam. Different electrical filters have ...

Yih, Tien Sieh

1967-01-01T23:59:59.000Z

412

The Argonaut Reactor - Reactors designed/built by Argonne National  

NLE Websites -- All DOE Office Websites (Extended Search)

Achievements > Achievements > Argonne Reactors > Training Reactors About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy

413

A road map to solar neutrino fluxe, neutrino oscillation parameters, and tests for new physics  

E-Print Network (OSTI)

We analyze all available solar and related reactor neutrino experiments, as well as simulated future ^7Be, p-p, pep, and ^8B solar neutrino experiments. We treat all solar neutrino fluxes as free parameters subject to the condition that the total luminosity represented by the neutrinos equals the observed solar luminosity (the `luminosity constraint'). Existing experiments show that the p-p solar neutrino flux is 1.01 + - 0.02 (1 sigma) times the flux predicted by the BP00 standard solar model; the ^7Be neutrino flux is 0.97^{+0.28}_{-0.54} the predicted flux; and the ^8B flux is 1.01 + - 0.06 the predicted flux. The oscillation parameters are: Delta m^2 = 7.3^{+0.4}_{-0.6} 10^{-5} eV^2 and tan^2 theta_{12} = 0.42^{+0.08}_{-0.06}. We evaluate how accurate future experiments must be to determine more precisely neutrino oscillation parameters and solar neutrino fluxes, and to elucidate the transition from vacuum-dominated to matter-dominated oscillations. A future ^7Be nu-e scattering experiment accurate to + -...

Bahcall, J N; Bahcall, John N.; Peña-Garay, Carlos

2003-01-01T23:59:59.000Z

414

Optical Fiber Technique for In-Reactor Mechanical Properties Measurement  

SciTech Connect

In-reactor measurement of material properties is required for a better understanding of radiation effects on materials. We present an optical fiber based technique for measuring changes in elastic properties which involves exciting and measuring flexural vibrations in a thin cantilever beam. By exciting the beam and measuring the natural frequency, changes in the modulus of elasticity can be monitored. The technique is demonstrated by monitoring the elastic property changes of a beam fabricated from copper, as the copper undergoes recrystallization at elevated temperature.

Robert S. Schley; Zilong Hua; David H. Hurley; Heng Ban

2012-07-01T23:59:59.000Z

415

Nuclear reactor overflow line  

DOE Patents (OSTI)

The overflow line for the reactor vessel of a liquid-metal-cooled nuclear reactor includes means for establishing and maintaining a continuous bleed flow of coolant amounting to 5 to 10% of the total coolant flow through the overflow line to prevent thermal shock to the overflow line when the reactor is restarted following a trip. Preferably a tube is disposed concentrically just inside the overflow line extending from a point just inside the reactor vessel to an overflow tank and a suction line is provided opening into the body of liquid metal in the reactor vessel and into the annulus between the overflow line and the inner tube.

Severson, Wayne J. (Pittsburgh, PA)

1976-01-01T23:59:59.000Z

416

Reactor vessel support system  

DOE Patents (OSTI)

A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

Golden, Martin P. (Trafford, PA); Holley, John C. (McKeesport, PA)

1982-01-01T23:59:59.000Z

417

Manipulating a Neutrino Spectrum to Maximize the Physics Potential from a Low Energy Beta Beam  

E-Print Network (OSTI)

Proposed low energy beta beam facilities would be capable of producing intense beams of neutrinos (anti-neutrinos) with well defined spectra. We present analytic expressions and numerical results which accurately show how the total neutrino flux reaching the detector depends on the geometry of the source and the detector. Several authors have proposed measurements which require using different flux shapes. We show that detectors of different sizes and shapes will receive neutrino fluxes with different spectral shapes, and that the spectral shape will also be different in different regions of the same detector. Our findings also show that for certain measurements systematic uncertainties and run time can be reduced.

Philip S. Amanik; Gail C. McLaughlin

2007-02-20T23:59:59.000Z

418

Modeling the beam characterization system  

DOE Green Energy (OSTI)

The Beam Characterization System (BCS) recently developed for heliostat evaluation at the Central Receiver Test Facility at Sandia Laboratories, measures, digitizes, records, and analyzes a flux-density pattern in a beam of reflected sunlight. Since the BCS collects data with a given set of conditions (geometry, weather, etc.) to determine optical specifications which can predict heliostat behavior under other sets of conditions, it is necessary to use a theoretical model of the system to interpret results. This model serves as an aid to define specifications, analyze measurements, calculate performance, and answer other questions about the heliostat. A statistical method is used to handle stochastic variables such as sun-tracking errors and surface-slope errors. A cone-optics technique is used to incorporate the statistics into a consistent model of the optical behavior of a heliostat. An overview of this model is given. Use of the model is unfolding slope-error distributions and sun-tracking statistics is described for measurements both in and out of the focal plane. The importance of auxiliary input information such as the sunshape (angular distribution of sun rays) to the analysis of BCS measurements is discussed. Finally, the role of the BCS in validating heliostats against acceptance criteria is summarized.

Biggs, F.; Vittitoe, C.N.; King, D.L.

1979-01-01T23:59:59.000Z

419

Spinning fluids reactor  

SciTech Connect

A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

Miller, Jan D; Hupka, Jan; Aranowski, Robert

2012-11-20T23:59:59.000Z

420

Reactor water cleanup system  

DOE Patents (OSTI)

A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

Gluntz, Douglas M. (San Jose, CA); Taft, William E. (Los Gatos, CA)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "flux beam reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Comparison and validation of HEU and LEU modeling results to HEU experimental benchmark data for the Massachusetts Institute of Technology MITR reactor.  

Science Conference Proceedings (OSTI)

The Massachusetts Institute of Technology Reactor (MITR-II) is a research reactor in Cambridge, Massachusetts designed primarily for experiments using neutron beam and in-core irradiation facilities. It delivers a neutron flux comparable to current LWR power reactors in a compact 6 MW core using Highly Enriched Uranium (HEU) fuel. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context, most research and test reactors both domestic and international have started a program of conversion to the use of Low Enriched Uranium (LEU) fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (UMo) is expected to allow the conversion of U.S. domestic high performance reactors like the MITR-II reactor. Towards this goal, comparisons of MCNP5 Monte Carlo neutronic modeling results for HEU and LEU cores have been performed. Validation of the model has been based upon comparison to HEU experimental benchmark data for the MITR-II. The objective of this work was to demonstrate a model which could represent the experimental HEU data, and therefore could provide a basis to demonstrate LEU core performance. This report presents an overview of MITR-II model geometry and material definitions which have been verified, and updated as required during the course of validation to represent the specifications of the MITR-II reactor. Results of calculations are presented for comparisons to historical HEU start-up data from 1975-1976, and to other experimental benchmark data available for the MITR-II Reactor through 2009. This report also presents results of steady state neutronic analysis of an all-fresh LEU fueled core. Where possible, HEU and LEU calculations were performed for conditions equivalent to HEU experiments, which serves as a starting point for safety analyses for conversion of MITR-II from the use of HEU fuel to the use of UMo LEU fuel.

Newton, T. H.; Wilson, E. H; Bergeron, A.; Horelik, N.; Stevens, J. (Nuclear Engineering Division); (MIT Nuclear Reactor Lab.)

2011-03-02T23:59:59.000Z

422

BEAM CONTROL PROBE  

DOE Patents (OSTI)

A probe is described for intercepting a desired portion of a beam of charged particles and for indicating the spatial disposition of the beam. The disclosed probe assembly includes a pair of pivotally mounted vanes moveable into a single plane with adjacent edges joining and a calibrated mechanical arrangement for pivoting the vancs apart. When the probe is disposed in the path of a charged particle beam, the vanes may be adjusted according to the beam current received in each vane to ascertain the dimension of the beam.

Chesterman, A.W.

1959-03-17T23:59:59.000Z

423

Trapped-flux superconducting memory  

Science Conference Proceedings (OSTI)

A memory cell based on trapped flux in superconductors has been built and tested. The cell is constructed entirely by vacuum evaporation of thin films and can be selected by coincident current or by other techniques, with drive-current requirements less ...

J. W. Crowe

1957-10-01T23:59:59.000Z

424

The Boardman Regional Flux Experiment  

Science Conference Proceedings (OSTI)

A field campaign was carried out near Boardman, Oregon, to study the effects of subgrid-scale variability of sensible-and latent-heat fluxes on surface boundary-layer properties. The experiment involved three U.S. Department of Energy ...

J. C. Doran; J. M. Hubbe; R. R. Kirkham; W. J. Shaw; C. D. Whiteman; F. J. Barnes; D. Cooper; W. Porch; R. L. Coutler; D. R. Cook; R. L. Hart; W. Gao; T. J. Martin; J. D. Shannon; T. L. Crawford; D. D. Baldocchi; R. J. Dobosy; T. P. Meyers; L. Balick; W. A. Dugas; R. Hicks; L. Fritschen; L. Hipps; E. Swiatek; K. E. Kunkel

1992-11-01T23:59:59.000Z

425

The Antarctic Zone Flux Experiment  

Science Conference Proceedings (OSTI)

In winter the eastern Weddell Sea in the Atlantic sector of the Southern Ocean hosts some of the most dynamic air-ice-sea interactions found on earth. Sea ice in the region is kept relatively thin by heat flux from below, maintained by upper-...

M. G. McPhee; S. F. Ackley; P. Guest; T. P. Stanton; B. A. Huber; D. G. Martinson; J. H. Morison; R. D. Muench; L. Padman

1996-06-01T23:59:59.000Z

426

Superconducting flux flow digital circuits  

DOE Patents (OSTI)

A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs) are disclosed. Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics. 8 figs.

Hietala, V.M.; Martens, J.S.; Zipperian, T.E.

1995-02-14T23:59:59.000Z

427

Superconducting flux flow digital circuits  

DOE Patents (OSTI)

A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs). Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics.

Hietala, Vincent M. (Placitas, NM); Martens, Jon S. (Sunnyvale, CA); Zipperian, Thomas E. (Albuquerque, NM)

1995-01-01T23:59:59.000Z

428

A road map to solar neutrino fluxes, neutrino oscillation parameters, and tests for new physics  

E-Print Network (OSTI)

We analyze all available solar and related reactor neutrino experiments, as well as simulated future 7Be, p-p, pep, and ^8B solar neutrino experiments. We treat all solar neutrino fluxes as free parameters subject to the condition that the total luminosity represented by the neutrinos equals the observed solar luminosity (the `luminosity constraint'). Existing experiments show that the p-p solar neutrino flux is 1.02 +- 0.02 (1 sigma) times the flux predicted by the BP00 standard solar model; the 7Be neutrino flux is 0.93^{+0.25}_{-0.63} the predicted flux; and the ^8B flux is 1.01 +- 0.04 the predicted flux. The neutrino oscillation parameters are: Delta m^2 = 7.3^{+0.4}_{-0.6}\\times 10^{-5} eV^2 and tan^2 theta_{12} = 0.41 +- 0.04. We evaluate how accurate future experiments must be to determine more precisely neutrino oscillation parameters and solar neutrino fluxes, and to elucidate the transition from vacuum-dominated to matter-dominated oscillations at low energies. A future 7Be nu-e scattering experiment accurate to +- 10 % can reduce the uncertainty in the experimentally determined 7Be neutrino flux by a factor of four and the uncertainty in the p-p neutrino flux by a factor of 2.5 (to +- 0.8 %). A future p-p experiment must be accurate to better than +- 3 % to shrink the uncertainty in tan^2 theta_{12} by more than 15 %. The idea that the Sun shines because of nuclear fusion reactions can be tested accurately by comparing the observed photon luminosity of the Sun with the luminosity inferred from measurements of solar neutrino fluxes. Based upon quantitative analyses of present and simulated future experiments, we answer the question: Why perform low-energy solar neutrino experiments?

John N. Bahcall; Carlos Pena-Garay

2003-05-15T23:59:59.000Z

429

EUROv Super Beam Studies  

Science Conference Proceedings (OSTI)

Neutrino Super Beams use conventional techniques to significantly increase the neutrino beam intensity compared to the present neutrino facilities. An essential part of these facilities is an intense proton driver producing a beam power higher than a MW. The protons hit a target able to accept the high proton beam intensity. The produced charged particles are focused by a system of magnetic horns towards the experiment detectors. The main challenge of these projects is to deal with the high beam intensity for many years. New high power neutrino facilities could be build at CERN profiting from an eventual construction of a high power proton driver. The European FP7 Design Study EUROv, among other neutrino beams, studies this Super Beam possibility. This paper will give the latest developments in this direction.

Dracos, Marcos [IPHC, Universite de Strasbourg, CNRS/IN2P3, F-67037 Strasbourg (France)

2011-10-06T23:59:59.000Z

430

Experimental Parameters for a Reactor Antineutrino Experiment at Very Short Baselines  

E-Print Network (OSTI)

Reactor antineutrinos are used to study neutrino oscillation, search for signatures of non-standard neutrino interactions, and to monitor reactor operation for safeguard applications. The flux and energy spectrum of reactor antineutrinos can be predicted from the decays of the nuclear fission products. A comparison of recent reactor calculations with past measurements at baselines of 10-100m suggests a 5.7% deficit. Precision measurements of reactor antineutrinos at very short baselines O(1-10 m) can be used to probe this anomaly and search for possible oscillations into sterile neutrino species. This paper studies the experimental requirements for a new reactor antineutrino measurement at very short baselines and calculates the sensitivity of various scenarios. We conclude that an experiment at a typical research reactor provides 5{\\sigma} discovery potential for the favored oscillation parameter space with 3 years of data collection.

K. M. Heeger; B. R. Littlejohn; H. P. Mumm; M. N. Tobin

2012-12-10T23:59:59.000Z

431

A Neutral Beam Injector Upgrade for NSTX  

Science Conference Proceedings (OSTI)

The National Spherical Torus Experiment (NSTX) capability with a Neutral Beam Injector (NBI) capable of 80 kiloelectronvolt (keV), 5 Megawatt (MW), 5 second operation. This 5.95 million dollar upgrade reused a previous generation injector and equipment for technical, cost, and schedule reasons to obtain these specifications while retaining a legacy capability of 120 keV neutral particle beam delivery for shorter pulse lengths for possible future NSTX experiments. Concerns with NBI injection included power deposition in the plasma, aiming angles from the fixed NBI fan array, density profiles and beam shine through, orbit losses of beam particles, and protection of the vacuum vessel wall against beam impingement. The upgrade made use of the beamline and cryo panels from the Neutral Beam Test Stand facility, existing power supplies and controls, beamline components and equipment not contaminated by tritium during DT [deuterium-tritium] experiments, and a liquid Helium refrigerator plant to power and cryogenically pump a beamline and three ion sources. All of the Tokamak Fusion Test Reactor (TFTR) ion sources had been contaminated with tritium, so a refurbishment effort was undertaken on selected TFTR sources to rid the three sources destined for the NSTX NBI of as much tritium as possible. An interconnecting duct was fabricated using some spare and some new components to attach the beamline to the NSTX vacuum vessel. Internal vacuum vessel armor using carbon tiles was added to protect the stainless steel vacuum vessel from beam impingement in the absence of plasma and interlock failure. To date, the NBI has operated to 80 keV and 5 MW and has injected requested power levels into NSTX plasmas with good initial results, including high beta and strong heating characteristics at full rated plasma current.

T. Stevenson; B McCormack; G.D. Loesser; M. Kalish; S. Ramakrishnan; L. Grisham; J. Edwards; M. Cropper; G. Rossi; A. von Halle; M. Williams

2002-01-18T23:59:59.000Z

432

An experimental evaluation of the instrumented flux synthesis method for the real-time estimation of reactivity. Final report  

SciTech Connect

One method of determining the flux density is flux synthesis which approximates the flux in the core by linear combinations of precomputed shape functions. In traditional flux synthesis, the unknown mixing coefficients are determined using a weighted residual method of solving the diffusion equation. In the instrumented synthesis method, the mixing coefficients are determined using count rates from neutron detectors in the core. In this way the mixing coefficients are linked to conditions in the reactor. Using the synthesized flux, kinetics parameters, notably reactivity, can be calculated in real time. An experimental evaluation has been performed in the Massachusetts Institute of Technology Reactor, MITR-II. Detector measurements have been collected using fission chambers placed at the periphery of the core. The reactor was put into a number of various conditions, both static and transient, and data were collected using a digital acquisition system for later combination with shape functions. Transients included increasing power, decreasing power, and a reactor scram. The shape functions were generated using Version 3.0 of the QUARTZ code, a quadratic nodal diffusion theory code in triangular-Z geometry. Supernodal analysis algorithms have been added to the original program, along with subroutines to guarantee diagonal dominance of the leakage matrix in the finite difference or quadratic current approximations in the coarse mesh. The agreement between coarse mesh and fine mesh in all cases is excellent, with finite difference coarse mesh solutions generally slightly better. The synthesis method has been shown to accurately reflect the changes from an initial condition by combining representative flux shapes. It can be concluded that, with proper calibration of the measurement system and inclusion of representative flux shapes, the instrumented synthesis method will properly predict the flux in the core under a number of conditions.

Hughes, J.C.; Henry, A.F.; Lanning, D.D.; Bernard, J.A.

1996-01-01T23:59:59.000Z

433

Preserving Physics Knowledge at the Fast Flux Test Facility  

Science Conference Proceedings (OSTI)

One of the goals of the Department of Energy’s Office of Nuclear Energy, initiated under the Fuel Cycle Research and Development Program (FCRD) and continued under the Advanced Reactor Concepts Program (ARC) is to preserve the knowledge that has been gained in the United States on Liquid Metal Reactors (LMRs) that could support the development of an environmentally and economically sound nuclear fuel cycle. The Fast Flux Test Facility (FFTF) is the most recent LMR to operate in the United States, from 1982 to 1992, and was designed as a fully instrumented test reactor with on-line, real time test control and performance monitoring of components and tests installed in the reactor. The 10 years of operation of the FFTF provided a very useful framework for testing the advances in LMR safety technology based on passive safety features that may be of increased importance to new designs after the events at Fukushima. Knowledge preservation at the FFTF is focused on the areas of design, construction, and startup of the reactor, as well as on preserving information obtained from 10 years of successful operating history and extensive irradiation testing of fuels and materials. In order to ensure protection of information at risk, the program to date has sequestered reports, files, tapes, and drawings to allow for secure retrieval. A disciplined and orderly approach has been developed to respond to client’s requests for documents and data in order to minimize the search effort and ensure that future requests for this information can be readily accommodated.

Wootan, David W.; Omberg, Ronald P.; Makenas, Bruce J.; Nielsen, Deborah L.; Nelson, Joseph V.; Polzin, David L.

2011-11-01T23:59:59.000Z

434

Quantum Fusion of Domain Walls with Fluxes  

E-Print Network (OSTI)

We study how fluxes on the domain wall world volume modify quantum fusion of two distant parallel domain walls into a composite wall. The elementary wall fluxes can be separated into parallel and antiparallel components. The parallel component affects neither the binding energy nor the process of quantum merger. The antiparallel fluxes, instead, increase the binding energy and, against naive expectations, suppress quantum fusion. In the small flux limit we explicitly find the bounce solution and the fusion rate as a function of the flux. We argue that at large (antiparallel) fluxes there exists a critical value of the flux (versus the difference in the wall tensions), which switches off quantum fusion altogether. This phenomenon of flux-related wall stabilization is rather peculiar: it is unrelated to any conserved quantity. Our consideration of the flux-related all stabilization is based on substantiated arguments that fall short of complete proof.

S. Bolognesi; M. Shifman; M. B. Voloshin

2009-07-20T23:59:59.000Z

435

Applications for reactor-pumped lasers  

Science Conference Proceedings (OSTI)

Nuclear reactor-pumped lasers (RPLs) have been developed in the US by the Department of Energy for over two decades, with the primary research occurring at Sandia National Laboratories and Idaho National Engineering Laboratory. The US program has experimentally demonstrated reactor-pumped lasing in various mixtures of xenon, argon, neon, and helium at wavelengths of 585, 703, 725, 1,271, 1,733, 1,792, 2,032, 2,630, 2,650, and 3,370 nm with intrinsic efficiency as high as 2.5%. The major strengths of a reactor-pumped laser are continuous high-power operation, modular construction, self-contained power, compact size, and a variety of wavelengths (from visible to infrared). These characteristics suggest numerous applications not easily accessible to other laser types. The continuous high power of an RPL opens many potential manufacturing applications such as deep-penetration welding and cutting of thick structures, wide-area hardening of metal surfaces by heat treatment or cladding application, wide-area vapor deposition of ceramics onto metal surfaces, production of sub-micron sized particles for manufacturing of ceramics, and 3-D ceramic lithography. In addition, a ground-based RPL could beam its power to space for such activities as illuminating geosynchronous communication satellites in the earth`s shadow to extend their lives, beaming power to orbital transfer vehicles, removing space debris, and providing power (from earth) to a lunar base during the long lunar night.

Lipinski, R.J.; McArthur, D.A. [Sandia National Labs., Albuquerque, NM (United States). Nuclear Systems Research

1994-10-01T23:59:59.000Z

436

The Neutrino Mass Hierarchy from Nuclear Reactor Experiments  

E-Print Network (OSTI)

10 years from now reactor neutrino experiments will attempt to determine which neutrino mass eigenstate is the most massive. In this letter we present the results of more than seven million detailed simulations of such experiments, studying the dependence of the probability of successfully determining the mass hierarchy upon the analysis method, the neutrino mass matrix parameters, reactor flux models, geoneutrinos and, in particular, combinations of baselines. We show that a recently reported spurious dependence of the data analysis upon the high energy tail of the reactor spectrum can be removed by using a weighted Fourier transform. We determine the optimal baselines and corresponding detector locations. For most values of the CP-violating, leptonic Dirac phase delta, a degeneracy prevents NOvA and T2K from determining either delta or the hierarchy. We determine the confidence with which a reactor experiment can determine the hierarchy, breaking the degeneracy.

Emilio Ciuffoli; Jarah Evslin; Xinmin Zhang

2013-02-04T23:59:59.000Z

437

Strong-strong beam-beam simulation on parallel computer  

DOE Green Energy (OSTI)

The beam-beam interaction puts a strong limit on the luminosity of the high energy storage ring colliders. At the interaction points, the electromagnetic fields generated by one beam focus or defocus the opposite beam. This can cause beam blowup and a reduction of luminosity. An accurate simulation of the beam-beam interaction is needed to help optimize the luminosity in high energy colliders.

Qiang, Ji

2004-08-02T23:59:59.000Z

438

Generation -IV Reactor Concepts  

NLE Websites -- All DOE Office Websites (Extended Search)

Generation-IV Reactor Concepts Generation-IV Reactor Concepts Thomas H. Fanning Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois 60439, USA The Generation-IV International Forum (GIF) is a multi-national research and development (R&D) collaboration. The GIF pursues the development of advanced, next generation reactor technology with goals to improve: a) sustainability (effective fuel utilization and minimization of waste) b) economics (competitiveness with respect to other energy sources) c) safety and reliability (e.g., no need for offsite emergency response), and d) proliferation resistance and physical protection The GIF Technology Roadmap exercise selected six generic systems for further study: the Gas- cooled Fast Reactor (GFR), the Lead-cooled Fast Reactor (LFR), the Molten Salt Reactor (MSR),

439

HORIZONTAL BOILING REACTOR SYSTEM  

DOE Patents (OSTI)

Reactors of the boiling water type are described wherein water serves both as the moderator and coolant. The reactor system consists essentially of a horizontal pressure vessel divided into two compartments by a weir, a thermal neutronic reactor core having vertical coolant passages and designed to use water as a moderator-coolant posltioned in one compartment, means for removing live steam from the other compartment and means for conveying feed-water and water from the steam compartment to the reactor compartment. The system further includes auxiliary apparatus to utilize the steam for driving a turbine and returning the condensate to the feed-water inlet of the reactor. The entire system is designed so that the reactor is self-regulating and has self-limiting power and self-limiting pressure features.

Treshow, M.

1958-11-18T23:59:59.000Z

440

Solar Glare and Flux Mapping  

NLE Websites -- All DOE Office Websites (Extended Search)

SGFMT Home SGFMT Home Register Glare Analysis Solar Glare Hazard Analysis SGHAT 1.0 (old) Empirical Glare Analysis Analytical Glare Analysis PHLUX Mapping Reflectivity Calculator References Contact Us Solar Glare and Flux Mapping Tools Measurement of reflected solar irradiance is receiving significant attention by industry, military, and government agencies to assess potential impacts of glint and glare from growing numbers of solar power installations around the world. In addition, characterization of the incident solar flux distribution on central receivers for concentrating solar power applications is important to monitor and maintain system performance. This website contains tools to evaluate solar glare and receiver irradiance. Register to access the tools Solar Glare Hazard Analysis Tool

Note: This page contains sample records for the topic "flux beam reactor" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Improved vortex reactor system  

DOE Patents (OSTI)

An improved vortex reactor system is described for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor. 12 figs.

Diebold, J.P.; Scahill, J.W.

1995-05-09T23:59:59.000Z

442

NUCLEAR REACTORS AND EARTHQUAKES  

SciTech Connect

A book is presented which supplies pertinent seismological information to engineers in the nuclear reactor field. Data are presented on the occurrence, intensity, and wave shapes. Techniques are described for evaluating the response of structures to such events. Certain reactor types and their modes of operation are described briefly. Various protection systems are considered. Earthquake experience in industrial and reactor plants is described. (D.L.C.)

1961-01-01T23:59:59.000Z

443

Beam-Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Gas and Thermal Photon Scattering in the NLC Main Linac as a Source of Beam Halo P. Tenenbaum LCC-Note-0051 12-JAN-2001 Abstract Scattering of primary beam electrons off of residual gas molecules or blackbody radiation photons in the NLC main linac has been identified as a potential source of beam haloes which must be collimated in the beam delivery system. We consider the contributions from four scat- tering mechanisms: inelastic thermal-photon scattering, elastic beam-gas (Coulomb) scattering inelastic beam-gas (Bremsstrahlung) scattering, and atomic-electron scattering. In each case we develop the formalism necessary to estimate the backgrounds generated in the main linac, and determine the expected number of off-energy or large-amplitude particles from each process, assuming a main linac injection energy of 8 GeV and extraction energy of 500 GeV. 1 Introduction The

444

Ion Beam Materials Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities » Facilities » Ion Beam Materials Lab Ion Beam Materials Lab A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. April 12, 2012 Ion Beam Danfysik Implanter High Voltage Terminal. Contact Yongqiang Wang (505) 665-1596 Email Devoted to the characterization and modification of surfaces through the use of ion beams The Ion Beam Materials Laboratory (IBML) is a Los Alamos National Laboratory resource devoted to the characterization and modification of surfaces through the use of ion beams. The IBML provides and operates the core facilities, while supporting the design and implementation of specific apparati needed for experiments requested by users of the facility. The result is a facility with