National Library of Energy BETA

Sample records for fluoride hf produced

  1. Process for converting magnesium fluoride to calcium fluoride

    DOE Patents [OSTI]

    Kreuzmann, A.B.; Palmer, D.A.

    1984-12-21

    This invention is a process for the conversion of magnesium fluoride to calcium fluoride whereby magnesium fluoride is decomposed by heating in the presence of calcium carbonate, calcium oxide or calcium hydroxide. Magnesium fluoride is a by-product of the reduction of uranium tetrafluoride to form uranium metal and has no known commercial use, thus its production creates a significant storage problem. The advantage of this invention is that the quality of calcium fluoride produced is sufficient to be used in the industrial manufacture of anhydrous hydrogen fluoride, steel mill flux or ceramic applications.

  2. Method of making porous ceramic fluoride

    DOE Patents [OSTI]

    Reiner, Robert H. (Knoxville, TN); Holcombe, Cressie E. (Farragut, TN)

    1990-01-01

    A process for making a porous ceramic composite where fumed silica particles are coated with a nitrate, preferably aluminum nitrate. Next the nitrate is converted to an oxide and formed into a desired configuration. This configuration is heated to convert the oxide to an oxide silicate which is then react with HF, resulting in the fluoride ceramic, preferably aluminum fluoride.

  3. PRODUCTION OF THORIUM FLUORIDE

    DOE Patents [OSTI]

    Zachariasen, W.H.

    1959-08-11

    A process is presented for producing anhydrous thorium fluoride comprising the step of contacting a saturated aqueous solution of thorium nitrate with an aqueous solution of hydrofluoric acid having a concentration of about 45 to 50% by weight at a temperature above 70 deg C whereby anhydrous thorium fluoride precipitates.

  4. Removal of uranium from aqueous HF solutions

    DOE Patents [OSTI]

    Pulley, Howard; Seltzer, Steven F.

    1980-01-01

    This invention is a simple and effective method for removing uranium from aqueous HF solutions containing trace quantities of the same. The method comprises contacting the solution with particulate calcium fluoride to form uranium-bearing particulates, permitting the particulates to settle, and separting the solution from the settled particulates. The CaF.sub.2 is selected to have a nitrogen surface area in a selected range and is employed in an amount providing a calcium fluoride/uranium weight ratio in a selected range. As applied to dilute HF solutions containing 120 ppm uranium, the method removes at least 92% of the uranium, without introducing contaminants to the product solution.

  5. Hydrolysis of ZrCl4 and HfCl4: The Initial Steps in the High-Temperature Oxidation of Metal Chlorides to Produce ZrO2 and HfO2

    SciTech Connect (OSTI)

    Fang, Zongtang; Dixon, David A.

    2013-03-08

    The gas-phase hydrolysis of MCl4 (M = Zr, Hf) to produce the initial particles on the way to zirconia and hafnia nanoparticles has been studied with electronic structure theory. The potential energy surfaces, the themochemistry of the reaction species, and the reaction paths for the initial steps of MCl4 reacting with H2O have been calculated. The hydrolysis of MCl4 at higher temperatures begins with the formation of oxychlorohydroxides followed by the elimination of HCl instead of the direct production of MOCl2 and HCl or MO2 and HCl due to the substantial endothermicities associated with the formation of gas-phase MO2. The structural properties and heats of formation of the reactants and products are consistent with the available experimental results. A number of metal oxychlorides (oxychlorohydroxides) intermediate clusters have been studied to assess their role in the production of MO2 nanoparticles. The calculated clustering reaction energies of those intermediates are highly exothermic, so they could be readily formed in the hydrolysis process. These intermediate clusters can be formed exothermically from metal oxychlorohydroxides by the elimination of one HCl or H2O molecule. Our calculations show that the mechanisms leading to the formation of MO2 nanoparticles are complicated and are accompanied by the potential production of a wide range of intermediates, as found for the production of TiO2 particles from the high-temperature oxidation of TiCl4.

  6. On the road to HF mitigation

    SciTech Connect (OSTI)

    VanZele, R.L.; Diener, R. )

    1990-06-01

    The hazards of hydrogen fluoride (HF) have long been recognized and industry performance reflects sound operating practices. However, full-scale industry-sponsored HF release test conducted at the U.S. Department of Energy (DOE) test site in 1986 caused concern in view of HF's toxicity. Ambient impacts were greater than anticipated. And diking, a primary mitigation technique, proved ineffective for releases of pressurized superheated HF. In partial response to these new technical data, an ad-hoc three-component Industry Cooperative Hydrogen Fluoride Mitigation Assessment Program (ICHMAP) was begun in late 1987 to study and test techniques for mitigating accidental releases of HF and alkylation unit acid (AUA) and to enhance capabilities to estimate ambient impacts from such releases. AUA is a mixture of HF and hydrocarbons. The program's mitigation components have recently been completed while work on the impact assessment component is nearing completion. This article describes the program and summarizes the objective, scope of work, structure, and conclusions from the program's two mitigation components. In addition, the objectives and scope of work of the impact assessment components are described.

  7. Divalent fluoride doped cerium fluoride scintillator

    DOE Patents [OSTI]

    Anderson, David F.; Sparrow, Robert W.

    1991-01-01

    The use of divalent fluoride dopants in scintillator materials comprising cerium fluoride is disclosed. The preferred divalent fluoride dopants are calcium fluoride, strontium fluoride, and barium fluoride. The preferred amount of divalent fluoride dopant is less than about two percent by weight of the total scintillator. Cerium fluoride scintillator crystals grown with the addition of a divalent fluoride have exhibited better transmissions and higher light outputs than crystals grown without the addition of such dopants. These scintillators are useful in radiation detection and monitoring applications, and are particularly well suited for high-rate applications such as positron emission tomography (PET).

  8. Optical coatings for HF overtone laser

    SciTech Connect (OSTI)

    Xiong, S.; Zhang, Y.

    1996-12-31

    Optical components which highly reflect the hydrogen fluoride (HF) overtone wavelengths (near 1.3{micro}m) and transmit or absorb the HF fundamental wavelengths (2.6 to 3.1{micro}m) can be used to obtain high intensity 1.3{micro}m radiation with HF chemical laser technology. This paper describes the development of the HF overtone laser resonator mirrors. Also presented are the designs of the coatings for laser resonator and the optical performance results for the coatings which includes separated coatings that are highly reflected in 1.3--1.4{micro}m wavelengths and highly transmitted or low reflected in 2.6--3.1{micro}m wavelengths and the double band antireflection coating for 1.3--1.4{micro}m and 2.6--3.1{micro}m.

  9. Fabrication of nanoscale patterns in lithium fluoride crystal using a 13.5 nm Schwarzschild objective and a laser produced plasma source

    SciTech Connect (OSTI)

    Wang Xin; Mu Baozhong; Jiang Li; Zhu Jingtao; Yi Shengzhen; Wang Zhanshan; He Pengfei

    2011-12-15

    Lithium fluoride (LiF) crystal is a radiation sensitive material widely used as EUV and soft x-ray detector. The LiF-based detector has high resolution, in principle limited by the point defect size, large field of view, and wide dynamic range. Using LiF crystal as an imaging detector, a resolution of 900 nm was achieved by a projection imaging of test meshes with a Schwarzschild objective operating at 13.5 nm. In addition, by imaging of a pinhole illuminated by the plasma, an EUV spot of 1.5 {mu}m diameter in the image plane of the objective was generated, which accomplished direct writing of color centers with resolution of 800 nm. In order to avoid sample damage and contamination due to the influence of huge debris flux produced by the plasma source, a spherical normal-incidence condenser was used to collect EUV radiation. Together with a description of experimental results, the development of the Schwarzschild objective, the influence of condenser on energy density and the alignment of the imaging system are also reported.

  10. Improved Growth of High-Temperature Superconductors with HF Pressure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control - Energy Innovation Portal Electricity Transmission Electricity Transmission Find More Like This Return to Search Improved Growth of High-Temperature Superconductors with HF Pressure Control Brookhaven National Laboratory Contact BNL About This Technology Publications: PDF Document Publication A new method of HF control for synthesizing YBCO using the BaF2 ex situ process (83 KB) Graphical representation of the removal of hydrogen fluoride gas by the absorber during growth of

  11. Density and surface tension of melts of zirconium and hafnium fluorides with lithium fluoride

    SciTech Connect (OSTI)

    Katyshev, S.F.; Artemov, V.V.; Desyatnik, V.N.

    1988-06-01

    A study was conducted to determine the temperature dependence of the density and surface tension of melts of LiF-ZrF/sub 4/ and LiF-HfF/sub 4/. Density and surface tension were determined by the method of maximum pressure in an argon bubble. On the basis of experimental data over the entire concentration range the molar volumes and their relative deviations from the additive molar volumes were calculated for 1100/sup 0/K. The positive deviations of the molar volumes from additivity in the LiF-HfF/sub 4/ system (22.45%) were greater than in the LiF-ZrF/sub 4/ system (15.75%). This indicated that the reaction with lithium fluoride is intensified with the switch to the hafnium fluoride. Results also demonstrated that the fluorides are surface-active components in the molten mixtures.

  12. Magnesium fluoride recovery method

    DOE Patents [OSTI]

    Gay, Richard L.; McKenzie, Donald E.

    1989-01-01

    A method of obtaining magnesium fluoride substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is contacted with an acid under certain prescribed conditions to produce a liquid product and a particulate solid product. The particulate solid product is separated from the liquid and treated at least two more times with acid to produce a solid residue consisting essentially of magnesium fluoride substantially free of uranium and having a residual radioactivity level of less than about 1000 pCi/gm. In accordance with a particularly preferred embodiment of the invention a catalyst and an oxidizing agent are used during the acid treatment and preferably the acid is sulfuric acid having a strength of about 1.0 Normal.

  13. Fluorohydrogenate Cluster Ions in the Gas Phase: Electrospray Ionization Mass Spectrometry of the [1-Ethyl-3-methylimidazolium+][F(HF)2.3] Ionic Liquid

    SciTech Connect (OSTI)

    Gary S. Groenewold; James E. Delmore; Michael T. Benson; Tetsuya Tsuda; Rika Hagiwara

    2013-12-01

    Electrospray ionization of the fluorohydrogenate ionic liquid [1-ethyl-3-methylimidazolium][F(HF)2.3] ionic liquid was conducted to understand the nature of the anionic species as they exist in the gas phase. Abundant fluorohydrogenate clusters were produced; however, the dominant anion in the clusters was [FHF-], and not the fluoride-bound HF dimers or trimers that are seen in solution. Density functional theory (DFT) calculations suggest that HF molecules are bound to the clusters by about 30 kcal/mol. The DFT-calculated structures of the [FHF-]-bearing clusters show that the favored interactions of the anions are with the methynic and acetylenic hydrogen atoms on the imidazolium cation, forming planar structures similar to those observed in the solid state. A second series of abundant negative ions was also formed that contained [SiF5-] together with the imidazolium cation and the fluorohydrogenate anions that originate from reaction of the spray solution with silicate surfaces.

  14. Process for the production of lithium fluoride detectors

    SciTech Connect (OSTI)

    Nink, R.

    1980-08-12

    A lithium fluoride detector for thermoluminescence dosimetry is produced by pulling a doped lithium fluoride monocrystal from the melt. Lithium fluoride powder with titanium added to it is used as starting material and oxygen is incorporated into the lithium fluoride crystal lattice during or after production of the crystal. If titanium dioxide is added to the starting material, the oxygen may be incorporated during production of the crystal by eliminating the oxygen from the titanium dioxide.

  15. Hf-irJ

    Office of Legacy Management (LM)

    Hf-irJ jnj,4 States Governmen Department of Energy Inemorandum DOTE: DAY o 1S5a . 7 EPY TO F . O 0 NE-24 SUJEC': Authorization for Remedial Action of Residential Vicinity ...

  16. DECONTAMINATION OF PLUTONIUM FOR FLUORIDE AND CHLORIDE DURING OXALATE PRECIPITATION, FILTRATION AND CALCINATION PROCESSES

    SciTech Connect (OSTI)

    Kyser, E.

    2012-07-25

    Due to analytical limitations for the determination of fluoride (F) and chloride (Cl) in a previous anion exchange study, an additional study of the decontamination of Pu from F and Cl by oxalate precipitation, filtration and calcination was performed. Anion product solution from the previous impurity study was precipitated as an oxalate, filtered, and calcined to produce an oxide for analysis by pyrohydrolysis for total Cl and F. Analysis of samples from this experiment achieved the purity specification for Cl and F for the proposed AFS-2 process. Decontamination factors (DF's) for the overall process (including anion exchange) achieved a DF of {approx}5000 for F and a DF of {approx}100 for Cl. Similar experiments where both HF and HCl were spiked into the anion product solution to a {approx}5000 {micro}g /g Pu concentration showed a DF of 5 for F and a DF of 35 for Cl across the combined precipitation-filtration-calcination process steps.

  17. Methods of controlling hydrogen fluoride pressure during chemical fabrication processes

    DOE Patents [OSTI]

    Solovyov, Vyacheslav; Wiesmann, Harold

    2009-11-24

    The present invention is a method for producing a crystalline end-product. The method comprising exposing a fluoride-containing precursor to a hydrogen fluoride absorber under conditions suitable for the conversion of the precursor into the crystalline end-product.

  18. Production of lithium fluoride for thermoluminescent radiation detectors

    SciTech Connect (OSTI)

    Mironenko, S.N.; Ikrami, D.D.; Nepomnyashchikh, A.I.; Paramzin, A.S.; Rakhimov, M.E.

    1985-08-01

    The authors examine thermostimulated luminescence for lithium fluoride single crystals in relation to the method of producing the initial raw material and the features of the preliminary treatment. They conclude that only especially pure lithium fluoride made via the hydrofluoride, which is then decomposed, can be used without additional treatment to make single crystal thermoluminescent dosimeters having low intensities for lowtemperature peaks.

  19. Nitrogen Trifluoride-Based Fluoride- Volatility Separations Process: Initial Studies

    SciTech Connect (OSTI)

    McNamara, Bruce K.; Scheele, Randall D.; Casella, Andrew M.; Kozelisky, Anne E.

    2011-09-28

    This document describes the results of our investigations on the potential use of nitrogen trifluoride as the fluorinating and oxidizing agent in fluoride volatility-based used nuclear fuel reprocessing. The conceptual process uses differences in reaction temperatures between nitrogen trifluoride and fuel constituents that produce volatile fluorides to achieve separations and recover valuable constituents. We provide results from our thermodynamic evaluations, thermo-analytical experiments, kinetic models, and provide a preliminary process flowsheet. The evaluations found that nitrogen trifluoride can effectively produce volatile fluorides at different temperatures dependent on the fuel constituent.

  20. Fluorination of amorphous thin-film materials with xenon fluoride

    DOE Patents [OSTI]

    Weil, Raoul B. (Haifa, IL)

    1988-01-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  1. Fluorination of amorphous thin-film materials with xenon fluoride

    DOE Patents [OSTI]

    Weil, R.B.

    1987-05-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  2. MOLTEN FLUORIDE NUCLEAR REACTOR FUEL

    DOE Patents [OSTI]

    Barton, C.J.; Grimes, W.R.

    1960-01-01

    Molten-salt reactor fuel compositions consisting of mixtures of fluoride salts are reported. In its broadest form, the composition contains an alkali fluoride such as sodium fluoride, zirconium tetrafluoride, and a uranium fluoride, the latter being the tetrafluoride or trifluoride or a mixture of the two. An outstanding property of these fuel compositions is a high coeffieient of thermal expansion which provides a negative temperature coefficient of reactivity in reactors in which they are used.

  3. Production of sintered porous metal fluoride pellets

    DOE Patents [OSTI]

    Anderson, L.W.; Stephenson, M.J.

    1973-12-25

    Porous pellets characterized by a moderately reactive crust and a softer core of higher reactivity are produced by forming agglomerates containing a metal fluoride powder and a selected amount ofwater. The metal fluoride is selected to be sinterable and essentially non-reactive with gaseous fluorinating agents. The agglomerates are contacted with a gaseous fluorinating agent under controlled conditions whereby the heat generated by localized reaction of the agent and water is limited to values effccting bonding by localized sintering. Porous pellets composed of cryolite (Na/sub 3/AlF/sub 6/) can be used to selectively remove trace quantities of niobium pentafluoride from a feed gas consisting predominantly of uranium hexafluoride. (Official Gazette)

  4. WET FLUORIDE SEPARATION METHOD

    DOE Patents [OSTI]

    Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

    1958-11-25

    The separation of U/sup 233/ from thorium, protactinium, and fission products present in neutron-irradiated thorium is accomplished by dissolving the irradiated materials in aqueous nitric acid, adding either a soluble fluoride, iodate, phosphate, or oxalate to precipltate the thorium, separating the precipltate from the solution, and then precipitating uranlum and protactinium by alkalizing the solution. The uranium and protactinium precipitate is removcd from the solution and dissolved in nitric acid. The uranyl nitrate may then be extracted from the acid solution by means of ether, and the protactinium recovered from the aqueous phase.

  5. Fluorination utilizing thermodynamically unstable fluorides and fluoride salts thereof

    DOE Patents [OSTI]

    Bartlett, Neil; Whalen, J. Marc; Chacon, Lisa

    2000-12-12

    A method for fluorinating a carbon compound or cationic carbon compound utilizes a fluorination agent selected from thermodynamically unstable nickel fluorides and salts thereof in liquid anhydrous hydrogen fluoride. The desired carbon compound or cationic organic compound to undergo fluorination is selected and reacted with the fluorination agent by contacting the selected organic or cationic organic compound and the chosen fluorination agent in a reaction vessel for a desired reaction time period at room temperature or less.

  6. Corrosion of high Ni-Cr alloys and Type 304L stainless steel in HNO/sub 3/-HF

    SciTech Connect (OSTI)

    Ondrejcin, R.S.; McLaughlin, B.D.

    1980-04-01

    Nineteen alloys were evaluated as possible materials of construction for steam heating coils, the dissolver vessel, and the off-gas system of proposed facilities to process thorium and uranium fuels. Commercially available alloys were found that are satisfactory for all applications. With thorium fuel, which requires HNO/sub 3/-HF for dissolution, the best alloy for service at 130/sup 0/C when complexing agents for fluoride are used is Inconel 690; with no complexing agents at 130/sup 0/C, Inconel 671 is best. At 95/sup 0/C, six other alloys tested would be adequate: Haynes 25, Ferralium, Inconel 625, Type 304L stainless steel, Incoloy 825, and Haynes 20 (in order of decreasing preference); based on composition, six untested alloys would also be adequate. The ions most effective in reducing fluoride corrosion were the complexing agents Zr/sup 4 +/ and Th/sup 4 +/; Al/sup 3 +/ was less effective. With uranium fuel, modestly priced Type 304L stainless steel is adequate. Corrosion will be most severe in HNO/sub 3/-HF used occasionally for flushing and in solutions of HNO/sub 3/ and corrosion products (ferric and dichromate ions). HF corrosion can be minimized by complexing the fluoride ion and by passivation of the steel with strong nitric acid. Corrosion caused by corrosion products can be minimized by operating at lower temperatures.

  7. Anhydrous hydrogen fluoride electrolyte battery. [Patent application

    DOE Patents [OSTI]

    Not Available

    1972-06-26

    It is an object of the invention to provide a primary cell or battery using ammonium fluoride--anhydrous hydrogen fluoride electrolyte having improved current and power production capabilities at low temperatures. It is operable at temperatures substantially above the boiling point of hydrogen fluoride. (GRA)

  8. Field desorption of lithium fluoride

    SciTech Connect (OSTI)

    Stintz, A.; Panitz, J.A. )

    1995-03-01

    Layers of lithium fluoride (LiF), [similar to]10 nm thick, were field desorbed from iridium substrates at temperatures between 25 and 600 [degree]C. The electric field was increased until desorption of the salt layer occurred. Combined mass spectroscopy and field desorption microscopy characterized the desorption process. During desorption, ions of the form (LiF)[sub [ital n

  9. The synthesis, characterization and reactivity of high oxidation state nickel fluorides

    SciTech Connect (OSTI)

    Chacon, L.C. |

    1997-12-01

    The research described in this thesis has mainly addressed the challenge of the synthesis of thermodynamically unstable nickel fluorides, which cannot be made by traditional thermal methods. A low-temperature approach towards the synthesis of such transition metal fluorides exploits the greater thermodynamic stability of high oxidation states in anions and involves the use of anhydrous hydrogen fluoride (aHF) as a solvent. The general method consists of combining an aHF soluble starting material (e.g., K{sub 2}NiF{sub 6}) with a Lewis fluoroacid (e.g., BF{sub 3}), which precipitates a neutral polymeric solid state fluoride: 2 K{sup +} + NiF{sub 6}{sup 2{minus}} + BF{sub 3} {r_arrow} NiF{sub 4} + 2 BF{sub 4}{sup {minus}} + 2 K{sup +}. At room temperature, this reaction yields a different structural phase, with composition K{sub x}NiF{sub 3} (x {approx} 0.18). This material has a pseudo-hexagonal tungsten bronze structure (H{sub 0}-K{sub x}NiF{sub 3}), and is an ionic conductor, probably due to K{sup +} ions hosted in the lattice channels. R-NiF{sub 3} is capable of fluorinating a wide range of inorganic and organic substrates. These reactions have probably shed light on the mechanism of the Simons Electrochemical Fluorination (ECF) Process, an important industrial method of fluorinating organic compounds. It has long been speculated that NiF{sub 3} plays a role in the ECF process, which uses nickel electrodes in aHF solvent. K{sub 2}NiF{sub 6} also fluorinates organic compounds in aHF, but interestingly, yields different fluorinated products. The reduction of R-NiF{sub 3} and K{sub 2}NiF{sub 6} during fluorination reactions yields NiF{sub 2}. A method has been developed to regenerate NiF{sub 6}{sup 2{minus}} from NiF{sub 2}.

  10. Separation of High Order Harmonics with Fluoride Windows

    SciTech Connect (OSTI)

    Allison, Tom; van Tilborg, Jeroen; Wright, Travis; Hertlein, Marcus; Falcone, Roger; Belkacem, Ali

    2010-08-02

    The lower orders produced in high order harmonic generation can be effciently temporally separated into monochromatic pulses by propagation in a Fluoride window while still preserving their femtosecond pulse duration. We present calculations for MgF2, CaF2, and LiF windows for the third, fifth, and seventh harmonics of 800 nm. We demonstrate the use of this simple and inexpensive technique in a femtosecond pump/probe experiment using the fifth harmonic.

  11. PREPARATION OF ANHYDROUS F-18 FLUORIDE, T. Tewson. Journal of Labelled Compounds and Radiopharmaceuticals S165; 52, Supplement 1 2009

    SciTech Connect (OSTI)

    Tewson, T.

    2009-07-01

    The original specific aims of the grant where cut back considerably as the study section reduced both the time and the budget for the project. The objective of the grant was to show that fluorine-18 fluoride could be prepared completely anhydrous and thus substantially more reactive than conventionally dried fluoride using the method of Sun and DiMagno. This method involved using conventionally dried fluoride to prepare an aromatic fluoride in which the aromatic ring is substituted with electron withdrawing groups. The aryl fluoride is then dried and purified and the fluoride is displaced with an anhydrous nucleophile. Using fluorine-19 and macroscopic scale reactions the reactions work well and give anhydrous fluoride salts that are both more reactive and more selective in their reactions than conventionally dried fluoride. The original substrate chosen for the reaction was bromopentacyanobenzene (1). This compound proved to be easy to make but very hard to purify. As an alternative hexabromobenzene, which is commercially available in high purity, was tried. This reacted cleanly with conventionally dried F-18 fluoride in acetonitrile to give [{sup 18}F]-fluoropentabromobenzene (2), which could be dried by passage of the solution over alumina, which also removed any unreacted fluoride. The fluorine-18 fluoride could be liberated from (2) by displacement with an anhydrous nucleophilic tetra-alkylammonium salt but the anion had to be chosen with considerable care. The reaction is potentially reversible especially as, on the no carrier added scale, there is inevitably an excess of hexabromobenzene and so the displacing nucleophile is chosen to deactivate the aromatic compound to further nucleophilic displacement reactions. To this end tetrabutylammonium azide and tetrabutylammonium phenolate have been tried. Both work but the phenolate is probably the better choice. The F-18 fluoride produced by this process is substantially more reactive than conventionally dried

  12. PRECIPITATION OF URANIUM PEROXIDE OF LOW FLUORIDE CONTENT FROM SOLUTIONS CONTAINING FLUORIDES

    DOE Patents [OSTI]

    King, E.J.; Clark, H.M.

    1958-08-12

    S>A method is described for the preparation of fluoride free uraniunn peroxide precipitates, even though the solution from which the precipitation is made is contaminated with fluorides. This is accomplished by add ing aluminum ions to the solution, where they complex any fluoride present and prevent its precipitation with the uramum peroxide.

  13. Advantages of liquid fluoride thorium reactor in comparison with...

    Office of Scientific and Technical Information (OSTI)

    comparison with light water reactor Citation Details In-Document Search Title: Advantages of liquid fluoride thorium reactor in comparison with light water reactor Liquid Fluoride ...

  14. Evolution of magnetic properties and microstructure of Hf2Co11B alloys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McGuire, Michael A.; Rios, Orlando

    2015-02-05

    Amorphous Hf2Co11B alloys produced by melt-spinning have been crystallized by annealing at 500-800 °C, and the products have been investigated using magnetization measurements, x-ray diffraction, and scanning electron microscopy. The results reveal the evolution of the phase fractions, microstructure, and magnetic properties with both annealing temperature and time. Crystallization of the phase denoted HfCo7, which is associated with the development of coercivity, occurs slowly at 500 °C. Annealing at intermediate temperatures produces mixed phase samples containing some of the HfCo7 phase with the highest values of remanent magnetization and coercivity. The equilibrium structure at 800 °C contains HfCo3B2, Hf6Co23 andmore » Co, and displays soft ferromagnetism. Maximum values for the remanent magnetization, intrinsic coercivity, and magnetic energy product among the samples are approximately 5.2 kG, 2.0 kOe, and 3.1 MGOe, respectively, which indicates that the significantly higher values observed in crystalline, melt-spun Hf2Co11B ribbons are a consequence of the non-equilibrium solidification during the melt-spinning process. Application of high magnetic fields during annealing is observed to strongly affect the microstructural evolution, which may provide access to higher performance materials in Zr/Hf-Co hard ferromagnets. The crystal structure of HfCo7 and the related Zr analogues is unknown, and without knowledge of atomic positions powder diffraction cannot distinguish among proposed unit cells and symmetries found in the literature.« less

  15. PROCESS OF PREPARING A FLUORIDE OF TETRAVLENT URANIUM

    DOE Patents [OSTI]

    Wheelwright, E.J.

    1959-02-17

    A method is described for producing a fluoride salt pf tetravalent uranium suitable for bomb reduction to metallic uranium. An aqueous solution of uranyl nitrate is treated with acetic acid and a nitrite-suppressor and then contacted with metallic lead whereby uranium is reduced from the hexavalent to the tetravalent state and soluble lead acetate is formed. Sulfate ions are then added to the solution to precipitate and remove the lead values. Hydrofluoric acid and alkali metal ions are then added causing the formation of an alkali metal uranium double-fluoride in which the uranium is in the tetravalent state. After recovery, this precipitate is suitable for using in the limited production of metallic uranium.

  16. Current status of fluoride volatility method development

    SciTech Connect (OSTI)

    Uhlir, J.; Marecek, M.; Skarohlid, J.

    2013-07-01

    The Fluoride Volatility Method is based on a separation process, which comes out from the specific property of uranium, neptunium and plutonium to form volatile hexafluorides whereas most of fission products (mainly lanthanides) and higher transplutonium elements (americium, curium) present in irradiated fuel form nonvolatile tri-fluorides. Fluoride Volatility Method itself is based on direct fluorination of the spent fuel, but before the fluorination step, the removal of cladding material and subsequent transformation of the fuel into a powdered form with a suitable grain size have to be done. The fluorination is made with fluorine gas in a flame fluorination reactor, where the volatile fluorides (mostly UF{sub 6}) are separated from the non-volatile ones (trivalent minor actinides and majority of fission products). The subsequent operations necessary for partitioning of volatile fluorides are the condensation and evaporation of volatile fluorides, the thermal decomposition of PuF{sub 6} and the finally distillation and sorption used for the purification of uranium product. The Fluoride Volatility Method is considered to be a promising advanced pyrochemical reprocessing technology, which can mainly be used for the reprocessing of oxide spent fuels coming from future GEN IV fast reactors.

  17. REDUCTION OF FLUORIDE TO METAL

    DOE Patents [OSTI]

    Carlson, O.N.; Schmidt, F.A.; Spedding, F.H.

    1960-08-30

    A process is given for making yttrium metal by reducing yttrium fluoride with calcium plus magnesium. Calcium is added in an excess of from 10 to 20% and magnesium in a quantity to yield a magnesium--yttrium alloy containing from 12 to 25% magnesium when the reaction mass is heated in an inert atmosphere at from 900 to 1106 deg C, but preferably above the melting point of the alloy. Calcium chloride may be added so as to obtain a less viscous slag containing from 30 to 60% calcium chloride. After removal of the slag the alloy is vacuum-heated at about 1100 deg C for volatilization of the magnesium and calcium.

  18. Shock Induced Birefringence in Lithium Fluoride

    SciTech Connect (OSTI)

    Holmes, N C

    2001-06-01

    We have used an ellipsometer to measure the birefringence of lithium fluoride in shock compression experiments. In previous x-ray diffraction experiments, single crystal [100] LiF has been reported to remain cubic at moderate pressures.

  19. Method for fluorination of actinide fluorides and oxyfluorides using O/sub 2/F/sub 2/

    DOE Patents [OSTI]

    Eller, P.G.; Malm, J.G.; Penneman, R.A.

    1984-08-01

    The present invention relates generally to methods of fluorination and more particularly to the use of O/sub 2/F/sub 2/ for the preparation of actinide hexafluorides, and for the extraction of deposited actinides and fluorides and oxyfluorides thereof from reaction vessels. The experiments set forth hereinabove demonstrate that the room temperature or below use of O/sub 2/F/sub 2/ will be highly beneficial for the preparation of pure actinide hexafluorides from their respective tetrafluorides without traces of HF being present as occurs using other fluorinating agents: and decontamination of equipment previously exposed to actinides: e.g., walls, feed lines, etc.

  20. Anodic oxidation of sulfide ions in molten lithium fluoride

    SciTech Connect (OSTI)

    Lloyd, C.L.; Gilbert, J.B. II . Applied Research Lab.)

    1994-10-01

    The study of sulfur and sulfide oxidation in molten salt systems is of current interest in high energy battery, and metallurgical applications. Cyclic voltammetry experiments have been performed on lithium sulfide in a lithium fluoride electrolyte at 1,161 K using a graphite working electrode and a platinum quasi-reference electrode. Two distinct oxidation mechanisms are observed for the sulfide ions. The first oxidation produces sulfur and at a higher potential a disulfide species is proposed to have formed. Both oxidations appear to be reversible and diffusion controlled.

  1. Ternary ceramic alloys of Zr-Ce-Hf oxides

    DOE Patents [OSTI]

    Becher, P.F.; Funkenbusch, E.F.

    1990-11-20

    A ternary ceramic alloy is described which produces toughening of zirconia and zirconia composites through the stress transformation from tetragonal phase to monoclinic phase. This alloy, having the general formula Ce[sub x]Hf[sub y]Zr[sub 1[minus]x[minus]y]O[sub 2], is produced through the addition of appropriate amounts of ceria and hafnia to the zirconia. Typically, improved toughness is achieved with about 5 to about 15 mol % ceria and up to about 40 mol % hafnia. The preparation of alloys of these compositions are given together with data as to the densities, tetragonal phase content, hardness and fracture toughness. The alloys are useful in preparing zirconia bodies as well as reinforcing ceramic composites. 1 fig.

  2. Ternary ceramic alloys of ZR-CE-HF oxides

    DOE Patents [OSTI]

    Becher, Paul F.; Funkenbusch, Eric F.

    1990-01-01

    A ternary ceramic alloy which produces toughening of zirconia and zirconia composites through the stress transformation from tetragonal phase to monoclinic phase. This alloy, having the general formula Ce.sub.x Hf.sub.y Zn.sub.1-x-y O.sub.2, is produced through the addition of appropriate amounts of ceria and hafnia to the zirconia. Typically, improved toughness is achieved with about 5 to about 15 mol % ceria and up to about 40 mol % hafnia. The preparation of alloys of these compositions are given together with data as to the densities, tetragonal phase content, hardness and fracture toughness. The alloys are useful in preparing zirconia bodies as well as reinforcing ceramic composites.

  3. Rare earth/iron fluoride and methods for making and using same

    DOE Patents [OSTI]

    Schmidt, Frederick A.; Wheelock, John T.; Peterson, David T.

    1991-12-17

    A particulate mixture of Fe.sub.2 O.sub.3 and RE.sub.2 O.sub.3, where RE is a rare earth element, is reacted with an excess of HF acid to form an insoluble fluoride compound (salt) comprising REF.sub.3 and FeF.sub.3 present in solid solution in the REF.sub.3 crystal lattice. The REF.sub.3 /FeF.sub.3 compound is dried to render it usable as a reactant in the thermite reduction process as well as other processes which require an REF.sub.3 /FeF.sub.3 mixture. The dried REF.sub.3 /FeF.sub.3 compound comprises about 5 weight % to about 40 weight % of FeF.sub.3 and the balance REF.sub.3 to this end.

  4. METHOD FOR DISSOLVING LANTHANUM FLUORIDE CARRIER FOR PLUTONIUM

    DOE Patents [OSTI]

    Koshland, D.E. Jr.; Willard, J.E.

    1961-08-01

    A method is described for dissolving lanthanum fluoride precipitates which is applicable to lanthanum fluoride carrier precipitation processes for recovery of plutonium values from aqueous solutions. The lanthanum fluoride precipitate is contacted with an aqueous acidic solution containing dissolved zirconium in the tetravalent oxidation state. The presence of the zirconium increases the lanthanum fluoride dissolved and makes any tetravalent plutonium present more readily oxidizable to the hexavalent state. (AEC)

  5. Method for removing fluoride contamination from nitric acid

    DOE Patents [OSTI]

    Pruett, David J.; Howerton, William B.

    1982-01-01

    Fluoride ions are removed from nitric acid solution by contacting the vaporized solution with alumina or zirconium.

  6. METATHESIS OF PLUTONIUM CARRIER LANTHANUM FLUORIDE PRECIPITATE WITH AN ALKALI

    DOE Patents [OSTI]

    Duffield, R.B.

    1960-04-01

    A plutonium fluoride precipitate is converted to plutonium hydroxide by digesting the precipitate with an aqueous alkali metal hydroxide solution.

  7. COMPLEX FLUORIDES OF PLUTONIUM AND AN ALKALI METAL

    DOE Patents [OSTI]

    Seaborg, G.T.

    1960-08-01

    A method is given for precipitating alkali metal plutonium fluorides. such as KPuF/sub 5/, KPu/sub 2/F/sub 9/, NaPuF/sub 5/, and RbPuF/sub 5/, from an aqueous plutonium(IV) solution by adding hydrogen fluoride and alkali-metal- fluoride.

  8. Infrared study on room-temperature atomic layer deposition of HfO{sub 2} using tetrakis(ethylmethylamino)hafnium and remote plasma-excited oxidizing agents

    SciTech Connect (OSTI)

    Kanomata, Kensaku [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan and Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Ohba, Hisashi; Pungboon Pansila, P.; Ahmmad, Bashir; Kubota, Shigeru; Hirahara, Kazuhiro; Hirose, Fumihiko, E-mail: fhirose@yz.yamagata-u.ac.jp [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan)

    2015-01-01

    Room-temperature atomic layer deposition (ALD) of HfO{sub 2} was examined using tetrakis (ethylmethylamino)hafnium (TEMAH) and remote plasma-excited water and oxygen. A growth rate of 0.26?nm/cycle at room temperature was achieved, and the TEMAH adsorption and its oxidization on HfO{sub 2} were investigated by multiple internal reflection infrared absorption spectroscopy. It was observed that saturated adsorption of TEMAH occurs at exposures of ?1??10{sup 5}?L (1 L?=?1??10{sup ?6} Torr s) at room temperature, and the use of remote plasma-excited water and oxygen vapor is effective in oxidizing the TEMAH molecules on the HfO{sub 2} surface, to produce OH sites. The infrared study suggested that HfOH plays a role as an adsorption site for TEMAH. The reaction mechanism of room temperature HfO{sub 2} ALD is discussed in this paper.

  9. PROCESS FOR THE PRODUCTION OF AMMONIUM URANIUM FLUORIDE

    DOE Patents [OSTI]

    Ellis, A.S.; Mooney, R.B.

    1953-08-25

    This patent relates to the preparation of ammonium uranium fluoride. The process comprises adding a water soluble fluoride to an aqueous solution of a uranous compound containing an ammonium salt, and isolating the resulting precipitate. This patent relates to the manufacture of uranium tetnafluoride from ammonium uranium fluoride, NH/sub 4/UF/sub 5/. Uranium tetrafluoride is prepared by heating the ammonium uranium fluoride to a temperature at which dissociation occurs with liberation of ammonium fluoride. Preferably the process is carried out under reduced pressure, or in a current of an inert gas.

  10. Quantum mechanical force field for hydrogen fluoride with explicit electronic polarization

    SciTech Connect (OSTI)

    Mazack, Michael J. M.; Gao, Jiali

    2014-05-28

    The explicit polarization (X-Pol) theory is a fragment-based quantum chemical method that explicitly models the internal electronic polarization and intermolecular interactions of a chemical system. X-Pol theory provides a framework to construct a quantum mechanical force field, which we have extended to liquid hydrogen fluoride (HF) in this work. The parameterization, called XPHF, is built upon the same formalism introduced for the XP3P model of liquid water, which is based on the polarized molecular orbital (PMO) semiempirical quantum chemistry method and the dipole-preserving polarization consistent point charge model. We introduce a fluorine parameter set for PMO, and find good agreement for various gas-phase results of small HF clusters compared to experiments and ab initio calculations at the M06-2X/MG3S level of theory. In addition, the XPHF model shows reasonable agreement with experiments for a variety of structural and thermodynamic properties in the liquid state, including radial distribution functions, interaction energies, diffusion coefficients, and densities at various state points.

  11. 1800 Engineered Safety Work Planning and Controls and HF Delivery...

    Office of Scientific and Technical Information (OSTI)

    Conference: 1800 Engineered Safety Work Planning and Controls and HF Delivery System. ... Country of Publication: United States Language: English Word Cloud More Like This Full ...

  12. Lithium fluoride ion source experiments on PBFA II

    SciTech Connect (OSTI)

    Bieg, K.W.; Pregenzer, A.L.; Woodworth, J.R.; Lockner, T.R.; Johnson, D.J.; Gerber, R.A.; Bailey, J.E.; Kensek, R.P.; Leeper, R.J.; Maenchen, J.E.

    1989-01-01

    Lithium fluoride, field-enhanced ion source experiments are being performed on PBFA II. The source consists of a thin coating of LiF on a microscopically rough substrate. Diagnostics to measure ion beam energy, purity, and transport include electrical monitors, Faraday cups, nuclear activation, ion pinhole camera, Rutherford magnetic spectrograph, and shadowbox aperture array, With PBFA II operating at three-quarters energy, the source has produced 16 TW of ion power and 550 kJ of ion energy with 70% diode efficiency. Over 26 kJ of lithium beam energy has been focused to the diode center axis with a peak energy density of about 1.3 kJ/cm/sup 2/. PICDIAG simulations of the lithium focus indicate the intrinsic source divergence is about 45 mrad with a 20-..mu..m-grade porous stainless steel substrate. 13 refs., 4 figs.

  13. Lithium fluoride ion source experiments on PBFA II

    SciTech Connect (OSTI)

    Bieg, K.W.; Pregenzer, A.L.; Woodworth, J.R.; Lockner, T.R.; Johnson, D.J.; Gerber, R.A.; Bailey, J.E.; Kensek, R.P.; Leeper, R.J.; Maenchen, J.E.; Mehlhorn, T.A.; Olson, R.E.; Ruiz, C.L.; Stygar, W.A. )

    1990-01-01

    Lithium fluoride, field-enhanced ion source experiments are being performed on PBFA II. The source consists of a thin coating of LiF on a microscopically rough substrate. Diagnostics to measure ion beam energy, purity, and transport include electrical monitors, Faraday cups, nuclear activation, ion pinhole camera, Rutherford magnetic spectrograph, and shadowbox aperture array. With PBFA II operating at three-quarters energy, the source has produced 16 TW of ion power and 550 kJ of ion energy with 70% diode efficiency. Over 26 kJ of lithium beam energy has been focused to the diode center axis with a peak energy density of about 1.3 kJ/cm{sup 2} . PICDIAG simulations of the lithium focus indicate the intrinsic source divergence is about 45 mrad with a 20-{mu}m-grade porous stainless-steel substrate.

  14. Method for decontamination of nickel-fluoride-coated nickel containing actinide-metal fluorides

    DOE Patents [OSTI]

    Windt, Norman F.; Williams, Joe L.

    1983-01-01

    The invention is a process for decontaminating particulate nickel contaminated with actinide-metal fluorides. In one aspect, the invention comprises contacting nickel-fluoride-coated nickel with gaseous ammonia at a temperature effecting nickel-catalyzed dissociation thereof and effecting hydrogen-reduction of the nickel fluoride. The resulting nickel is heated to form a melt and a slag and to effect transfer of actinide metals from the melt into the slag. The melt and slag are then separated. In another aspect, nickel containing nickel oxide and actinide metals is contacted with ammonia at a temperature effecting nickel-catalyzed dissociation to effect conversion of the nickel oxide to the metal. The resulting nickel is then melted and separated as described. In another aspect nickel-fluoride-coated nickel containing actinide-metal fluorides is contacted with both steam and ammonia. The resulting nickel then is melted and separated as described. The invention is characterized by higher nickel recovery, efficient use of ammonia, a substantial decrease in slag formation and fuming, and a valuable increase in the service life of the furnace liners used for melting.

  15. RIngle-crystal lithium fluoride detectors

    SciTech Connect (OSTI)

    Nepomnyashchikh, A.I.; Afonin, G.P.; Mironenko, S.N.; Selyauko, A.I.

    1985-10-01

    The use of lithium fluoride as detectors for thermoluminescence dosimetry is discussed. The principal characteristics of detectors of diameters 3, 8, and 10 mm are discussed, including: lower limit of detectable dose, repeated use of detectors, dependence of the thermally stimulated luminescence yield on the radiation dose, and loss of accumulated light sum during storage of the detectors. The detector preserves its characteristics to within + or - 15% after irradiation with a dose of 5 . 10/sup 4/ cGy.

  16. Dispersion of UO{sub 2}F{sub 2} aerosol and HF vapor in the operating floor during winter ventilation at the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Kim, S.H.; Chen, N.C.J.; Taleyarkhan, R.P.; Keith, K.D.; Schmidt, R.W.; Carter, J.C.

    1996-12-30

    The gaseous diffusion process is currently employed at two plants in the US: the Paducah Gaseous Diffusion Plant and the Portsmouth Gaseous Diffusion Plant. As part of a facility-wide safety evaluation, a postulated design basis accident involving large line-rupture induced releases of uranium hexafluoride (UF{sub 6}) into the process building of a gaseous diffusion plant (GDP) is evaluated. When UF{sub 6} is released into the atmosphere, it undergoes an exothermic chemical reaction with moisture (H{sub 2}O) in the air to form vaporized hydrogen fluoride (HF) and aerosolized uranyl fluoride (UO{sub 2}F{sub 2}). These reactants disperse in the process building and transport through the building ventilation system. The ventilation system draws outside air into the process building, distributes it evenly throughout the building, and discharges it to the atmosphere at an elevated temperature. Since air is recirculated from the cell floor area to the operating floor, issues concerning in-building worker safety and evacuation need to be addressed. Therefore, the objective of this study is to evaluate the transport of HF vapor and UO{sub 2}F{sub 2} aerosols throughout the operating floor area following B-line break accident in the cell floor area.

  17. Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications | Department of Energy Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Download the presentation slides from Arkema at the July 17, 2012, Fuel Cell Technologies Program webinar, "Fuel Cells for Portable Power." Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Webinar Slides (790.15 KB) More Documents & Publications

  18. Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Webinar Slides More Documents & Publications Novel Materials for High Efficiency Direct ...

  19. Examination of Liquid Fluoride Salt Heat Transfer

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L

    2014-01-01

    The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer

  20. MicroPlanet Technology Corp formerly HF Capital Corp | Open Energy...

    Open Energy Info (EERE)

    Technology Corp formerly HF Capital Corp Jump to: navigation, search Name: MicroPlanet Technology Corp (formerly HF Capital Corp) Place: Seattle, Washington Zip: 98104 Sector:...

  1. Method for decontamination of nickel-fluoride-coated nickel containing actinide-metal fluorides

    DOE Patents [OSTI]

    Windt, N.F.; Williams, J.L.

    In one aspect, the invention comprises contacting nickel-fluoride-coated nickel with gaseous ammonia at a temperature effecting nickel-catalyzed dissociation thereof and effecting hydrogen-reduction of the nickel fluoride. The resulting nickel is heated to form a melt and a slag and to effect transfer of actinide metals from the melt into the slag. The melt and slag are then separated. In another aspect, nickel contianing nickel oxide and actinide metals is contacted with ammonia at a temperature effecting nickel-catalyzed dissociation to effect conversion of the nickel oxide to the metal. The resulting nickel is then melted and separated as described. In another aspect nickel-fluoride-coated nickel containing actinide-metal fluorides is contacted with both steam and ammonia. The resulting nickel then is melted and separated as described. The invention is characterized by higher nickel recovery, efficient use of ammonia, a substantial decrease in slag formation and fuming, and a valuable increase in the service life of the furnace liners used for melting.

  2. Rotationally resolved spectroscopy of a librational fundamental band of hydrogen fluoride tetramer

    SciTech Connect (OSTI)

    Blake, Thomas A.; Sharpe, Steven W.; Xantheas, Sotiris S.

    2000-07-08

    The rotationally resolved spectrum of a fundamental band of hydrogen fluoride tetramer has been recorded using a pulsed slit-jet, diode laser spectrometer. The band has a parallel rotational structure and is assigned as the H-F out-of-plane libration fundamental with A{sub u} symmetry. Ninety-five ground state combination differences were fit to a symmetric top Hamiltonian to give the following ground state rotational constants: B{sup ''}=0.132 081(7) cm{sup -1}, D{sub J}{sup ''}=7.1(7)x10{sup -7} cm{sup -1}, D{sub JK}{sup ''}=-9(2)x10{sup -7} cm{sup -1}, H{sub JJJ}{sup ''}=6(2)x10{sup -10} cm{sup -1}, H{sub JJK}{sup ''}=9(7)x10{sup -10} cm{sup -1}, H{sub JKK}{sup ''}=-1.3(8)x10{sup -10} cm{sup -1}. A total of 190 transitions were fit to determine the upper state spectroscopic constants: v{sub 4}=714.7849(1) cm{sup -1}, B{sup '}=0.129 634(5) cm{sup -1}, {delta}(C-B)=0.001 344 cm{sup -1}, D{sub J}{sup '}=6.4(5)x10{sup -7} cm{sup -1}, D{sub JK}{sup '}=-4.5(6)x10{sup -7} cm{sup -1}, {delta}D{sub K}=2.92(8)x10{sup -6} cm{sup -1}, H{sub JJJ}{sup '}=3(1)x10{sup -10} cm{sup -1}, H{sub JKK}{sup '}=-1.55(6)x10{sup -8} cm{sup -1}; {delta}H{sub KKK}=-4.65(6)x10{sup -8} cm{sup -1}. Furthermore, a perpendicular band centered at 752.7 cm{sup -1} was observed. The band has a rotational line spacing that gives an approximate B{sup ''} value of 0.132 cm{sup -1}; it has been assigned as the E{sub u} symmetry, H-F in-plane libration fundamental of the HF tetramer. Finally, a parallel band was observed at 741.0 cm{sup -1} with B{sup ''}=0.076 cm{sup -1} and has been assigned as the A{sup ''} symmetry, H-F out-of-plane libration fundamental of the HF pentamer. Structural parameters and harmonic vibrational frequencies are estimated from first-principles, correlated MP2 and CCSD(T) calculations. These are the largest calculations performed to date for this system with respect to both orbital basis set and level of electron correlation. The CCSD(T) harmonic frequencies are, in particular

  3. Upper atmospheric effects of the hf active auroral research program ionospheric research instrument (HAARP IRI)

    SciTech Connect (OSTI)

    Eccles, V.; Armstrong, R.

    1993-05-01

    The earth's ozone layer occurs in the stratosphere, primarily between 10 and 30 miles altitude. The amount of ozone, O3, present is the result of a balance between production and destruction processes. Experiments have shown that natural processes such as auroras create molecules that destroy O. One family of such molecules is called odd nitrogen of which nitric oxide (NO) is an example. Because the HAARP (HF Active Auroral Research Program) facility is designed to mimic and investigate certain natural processes, a study of possible effects of HAARP on the ozone layer was conducted. The study used a detailed model of the thermal and chemical effects of the high power HF beam, which interacts with free electrons in the upper atmosphere above 50 miles altitude. It was found only a small fraction of the beam energy goes into the production of odd nitrogen molecules, whereas odd nitrogen is efficiently produced by auroras. Since the total energy emitted by HAARP in the year is some 200,000 times less than the energy deposited in the upper atmosphere by auroras, the study demonstrates that HAARP HF beam experiments will cause no measurable depletion of the earth's ozone layer.... Ozone, Ozone depletion, Ozone layer, Odd nitrogen, Nitric oxide, HAARP Emitter characteristics.

  4. Effects of fluoride emissions on enzyme activity in metabolism of agricultural plants

    SciTech Connect (OSTI)

    Moeri, P.B.

    1980-01-01

    The effects of fluoride on the activity of malatedehydrogenase (MDH) in rape seed and rye grass have been investigated. Fluoride, which has been absorbed from the air, seems to act differently from fluoride added to the soil. The action of airborne fluoride compounds resorbed by the plant on the activity of MDH significantly correlated with the distance from an aluminum plant, crop yield, and fluoride content. 5 references, 5 figures, 2 tables.

  5. Morphological studies of lithium fluoride surfaces

    SciTech Connect (OSTI)

    Bullard, J.W.

    1990-09-01

    A reversible rounded/facetted transition has been observed on lithium fluoride surfaces, both for periodic profiles on single crystals and for small particles. For initially facetted profiles, the profile amplitude was observed to round significantly and decay with time at temperatures near 93% of the bulk melting point. When these rounded profiles were slowly cooled they refacetted over a temperature range below 89% of the melting point if the profiles were shallow ({approximately}0.5 {mu}m), but when deeper ({approximately}1.0 {mu}m) the refaceting occurred only if the specimen was held at a lower temperature (90% of the melting point) and then slowly cooled. The rate of decay of the rounded profiles was dependent on the profile dimensions, but the scatter in the data made quantitative analysis of the filling unfeasible. Removal of material from the ridges was hypothetically proposed to be the rate limiting step in the process, and under this hypothesis the erratic decay rate behavior was attributed to a non-uniform dislocation concentration. It was also observed that the morphology exhibited was dependent on atmosphere. When annealed in air, irregularities appeared which increased the surface area. These irregularities did not appear when the profiles were annealed in argon and in vacuum. A possible explanation for the appearance of the irregularities is adsorption of a species, such as O{sub 2} or H{sub 2}O. Initially facetted lithium fluoride particles ({approximately}5.0 {mu}m) were observed to remain facetted when isolated on a graphite chip and heated to 85% of the melting point, but rounded at the same temperature when in bulk powder form. Bulk powder heated to 93% of the melting point exhibited further rounding, but if slowly cooled to room temperature the particles developed facetted ledges, giving confirmation of the rounded/facetted transition. 45 refs., 24 figs., 7 tabs.

  6. Formation of lithium fluoride/metal nanocomposites for energy storage through solid state reduction of metal fluorides

    SciTech Connect (OSTI)

    Amatucci, GG; Pereira, N; Badway, F; Sina, M; Cosandey, F; Ruotolo, M; Cao, C

    2011-12-01

    In order to utilize high energy metal fluoride electrode materials as direct replacement electrode materials for lithium ion batteries in the future, a methodology to prelithiate the cathode or anode must be developed. Herein, we introduce the use of a solid state Li(3)N route to achieve the lithiation and mechanoreduction of metal fluoride based nanocomposites. The resulting prelithiation was found to be effective with the formation of xLiF:Me structures of very fine nanodimensions analogous to what is found by electrochemical lithiation. Physical and electrochemical properties of these nanocomposites for the bismuth and iron lithium fluoride systems are reported. (C) 2011 Elsevier B.V. All rights reserved.

  7. Volatile fluoride process for separating plutonium from other materials

    DOE Patents [OSTI]

    Spedding, F. H.; Newton, A. S.

    1959-04-14

    The separation of plutonium from uranium and/or fission products by formation of the higher fluorides off uranium and/or plutonium is described. Neutronirradiated uranium metal is first converted to the hydride. This hydrided product is then treated with fluorine at about 315 deg C to form and volatilize UF/sub 6/ leaving plutonium behind. Thc plutonium may then be separated by reacting the residue with fluorine at about 5004DEC and collecting the volatile plutonium fluoride thus formed.

  8. VOLATILE FLUORIDE PROCESS FOR SEPARATING PLUTONIUM FROM OTHER MATERIALS

    DOE Patents [OSTI]

    Spedding, F.H.; Newton, A.S.

    1959-04-14

    The separation of plutonium from uranium and/or tission products by formation of the higher fluorides of uranium and/or plutonium is discussed. Neutronirradiated uranium metal is first convcrted to the hydride. This hydrided product is then treatced with fluorine at about 315 deg C to form and volatilize UF/sup 6/ leaving plutonium behind. The plutonium may then be separated by reacting the residue with fluorine at about 500 deg C and collecting the volatile plutonium fluoride thus formed.

  9. An Overview of Liquid Fluoride Salt Heat Transport Technology

    SciTech Connect (OSTI)

    Cetiner, Mustafa Sacit; Holcomb, David Eugene

    2010-01-01

    Liquid fluoride salts are a leading candidate heat transport medium for high-temperature applications. This report provides an overview of the current status of liquid salt heat transport technology. The report includes a high-level, parametric evaluation of liquid fluoride salt heat transport loop performance to allow intercomparisons between heat-transport fluid options as well as providing an overview of the properties and requirements for a representative loop. Much of the information presented here derives from the earlier molten salt reactor program and a significant advantage of fluoride salts, as high temperature heat transport media is their consequent relative technological maturity. The report also includes a compilation of relevant thermophysical properties of useful heat transport fluoride salts. Fluoride salts are both thermally stable and with proper chemistry control can be relatively chemically inert. Fluoride salts can, however, be highly corrosive depending on the container materials selected, the salt chemistry, and the operating procedures used. The report also provides an overview of the state-of-the-art in reduction-oxidation chemistry control methodologies employed to minimize salt corrosion as well as providing a general discussion of heat transfer loop operational issues such as start-up procedures and freeze-up vulnerability.

  10. Shape changes by [100] lithium fluoride ridge-channel arrays and of lithium fluoride particles at sintering temperature

    SciTech Connect (OSTI)

    Bullard, J.; Glaeser, A.M.; Searcy, A.W. . Materials Sciences Division Univ. of California, Berkeley, CA . Dept. of Materials Science and Mineral Engineering)

    1994-09-01

    Lithium fluoride was chosen for experimental study of shape changes by faceted and nonfaceted surface features of a ceramic because Wang et al. have shown that isolated pores in single-crystal LiF can form with either faceted or rounded shapes. Parallel channels of rectangular cross section were etched into an LiF [100] single-crystals surface, by a photolithography technique, to produced ridge-channel arrays of controlled size and shape. The shape changes undergone by these arrays and by LiF isolated particles and plower beds at sintering temperatures were studied by SEM. The ridge-channel arrays and particles developed either faceted or rounded shapes, depending on temperature and atmosphere. Adsorption of an impurity, presumably H[sub 2]O or O[sub 2], although it causes faceting, increases the rate of mass transport from the ridges to channels. The influence of array geometry on mass transport rates is compared to models to show that the rate-limiting mass transfer step is probably a surface step when the surfaces remain faceted and many be a surface step when the surfaces are rounded.

  11. Continuous production of granular or powder Ti, Zr and Hf or their alloy products

    DOE Patents [OSTI]

    White, Jack C.; Oden, Laurance L.

    1993-01-01

    A continuous process for producing a granular metal selected from the group consisting of Ti, Zr or Hf under conditions that provide orderly growth of the metal free of halide inclusions comprising: a) dissolving a reducing metal selected from the group consisting of Na, Mg, Li or K in their respective halide salts to produce a reducing molten salt stream; b) preparing a second molten salt stream containing the halide salt of Ti, Zr or Hf; c) mixing and reacting the two molten streams of steps a) and b) in a continuous stirred tank reactor; d) wherein steps a) through c) are conducted at a temperature range of from about 800.degree. C. to about 1100.degree. C. so that a weight percent of equilibrium solubility of the reducing metal in its respective halide salt varies from about 1.6 weight percent at about 900.degree. C. to about 14.4 weight percent at about 1062.degree. C.; and wherein a range of concentration of the halide salt of Ti, Zn or Hf in molten halides of Na, Mg, Li or K is from about 1 to about 5 times the concentration of Na, Mg, Li or K; e) placing the reacted molten stream from step c) in a solid-liquid separator to recover an impure granular metal product by decantation, centrifugation, or filtration; and f) removing residual halide salt impurity by vacuum evaporator or inert gas sweep at temperatures from about 850.degree. C. to 1000.degree. C. or cooling the impure granular metal product to ambient temperature and water leaching off the residual metal halide salt.

  12. Mode locking and Q switching of a diode laser pumped neodymium-doped yttrium lithium fluoride laser

    SciTech Connect (OSTI)

    Maker, G.T.; Ferguson, A.I.

    1989-01-30

    We have developed a mode-locked, diode pumped, neodymium-doped yttrium lithium fluoride (Nd:YLF) laser operating at 1.053 ..mu..m. The laser produces pulses of 18 ps duration at an average power level of 12 mW. When Q switched the duration of the pulse train was 140 ns, giving rise to peak powers of 15 kW.

  13. High Temperature Fluoride Salt Test Loop

    SciTech Connect (OSTI)

    Aaron, Adam M.; Cunningham, Richard Burns; Fugate, David L.; Holcomb, David Eugene; Kisner, Roger A.; Peretz, Fred J.; Robb, Kevin R.; Wilson, Dane F.; Yoder, Jr, Graydon L.

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels

  14. PRODUCTION OF PLUTONIUM FLUORIDE FROM BISMUTH PHOSPHATE PRECIPITATE CONTAINING PLUTONIUM VALUES

    DOE Patents [OSTI]

    Brown, H.S.; Bohlmann, E.G.

    1961-05-01

    A process is given for separating plutonium from fission products present on a bismuth phosphate carrier. The dried carrier is first treated with hydrogen fluoride at between 500 and 600 deg C whereby some fission product fluorides volatilize away from plutonium tetrafluoride, and nonvolatile fission product fluorides are formed then with anhydrous fluorine at between 400 and 500 deg C. Bismuth and plutonium distill in the form of volatile fluorides away from the nonvolatile fission product fluorides. The bismuth and plutonium fluorides are condensed at below 290 deg C.

  15. PROCESS FOR PRODUCING URANIUM HALIDES

    DOE Patents [OSTI]

    Murphree, E.V.

    1957-10-29

    A process amd associated apparatus for producing UF/sub 4/ from U/sub 3/ O/sub 8/ by a fluidized'' technique are reported. The U/sub 3/O/sub 8/ is first reduced to UO/sub 2/ by reaction with hydrogen, and the lower oxide of uranium is then reacted with gaseous HF to produce UF/sub 4/. In each case the reactant gas is used, alone or in combination with inert gases, to fluidize'' the finely divided reactant solid. The complete setup of the plant equipment including bins, reactor and the associated piping and valving, is described. An auxiliary fluorination reactor allows for the direct production of UF/sub 6/ from UF/sub 4/ and fluorine gas, or if desired, UF/sub 4/ may be collected as the product.

  16. An Overview of Liquid Fluoride Salt Heat Transport Systems

    SciTech Connect (OSTI)

    Holcomb, David Eugene; Cetiner, Sacit M

    2010-09-01

    Heat transport is central to all thermal-based forms of electricity generation. The ever increasing demand for higher thermal efficiency necessitates power generation cycles transitioning to progressively higher temperatures. Similarly, the desire to provide direct thermal coupling between heat sources and higher temperature chemical processes provides the underlying incentive to move toward higher temperature heat transfer loops. As the system temperature rises, the available materials and technology choices become progressively more limited. Superficially, fluoride salts at {approx}700 C resemble water at room temperature being optically transparent and having similar heat capacity, roughly three times the viscosity, and about twice the density. Fluoride salts are a leading candidate heat-transport material at high temperatures. Fluoride salts have been extensively used in specialized industrial processes for decades, yet they have not entered widespread deployment for general heat transport purposes. This report does not provide an exhaustive screening of potential heat transfer media and other high temperature liquids such as alkali metal carbonate eutectics or chloride salts may have economic or technological advantages. A particular advantage of fluoride salts is that the technology for their use is relatively mature as they were extensively studied during the 1940s-1970s as part of the U.S. Atomic Energy Commission's program to develop molten salt reactors (MSRs). However, the instrumentation, components, and practices for use of fluoride salts are not yet developed sufficiently for commercial implementation. This report provides an overview of the current understanding of the technologies involved in liquid salt heat transport (LSHT) along with providing references to the more detailed primary information resources. Much of the information presented here derives from the earlier MSR program. However, technology has evolved over the intervening years, and

  17. Liquid Fluoride Salt Experimentation Using a Small Natural Circulation Cell

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L; Heatherly, Dennis Wayne; Williams, David F; Elkassabgi, Yousri M.; Caja, Joseph; Caja, Mario; Jordan, John; Salinas, Roberto

    2014-04-01

    A small molten fluoride salt experiment has been constructed and tested to develop experimental techniques for application in liquid fluoride salt systems. There were five major objectives in developing this test apparatus: Allow visual observation of the salt during testing (how can lighting be introduced, how can pictures be taken, what can be seen) Determine if IR photography can be used to examine components submerged in the salt Determine if the experimental configuration provides salt velocity sufficient for collection of corrosion data for future experimentation Determine if a laser Doppler velocimeter can be used to quantify salt velocities. Acquire natural circulation heat transfer data in fluoride salt at temperatures up to 700oC All of these objectives were successfully achieved during testing with the exception of the fourth: acquiring velocity data using the laser Doppler velocimeter. This paper describes the experiment and experimental techniques used, and presents data taken during natural circulation testing.

  18. Ion dynamics and mixed mobile ion effect in fluoride glasses

    SciTech Connect (OSTI)

    Ghosh, S.; Ghosh, A.

    2005-06-15

    We report the ionic relaxation and mixed mobile ion effect in 50ZrF{sub 4}-10BaF{sub 2}-10YF{sub 3}-(30-x)LiF-xNaF fluoride glass series, where fluorine anions participate in the diffusion process in addition to alkali cations, unlike mixed alkali oxide glasses and crystals. By analyzing the ion dynamics in the framework of a power-law model as well as modulus formalism we have observed mixed mobile ion effect in the dc conductivity and its activation energy, the crossover frequency and its activation energy, the conductivity relaxation frequency and its activation energy, and also in the decoupling index. We have correlated these phenomena with the fractal dimension of the conduction pathways in the mixed alkali fluoride glasses compared to the single alkali glasses. We have shown that the relaxation dynamics in mixed alkali fluoride glasses is independent of temperature but dependent on glass composition.

  19. Hydrogen desorption from hydrogen fluoride and remote hydrogen plasma cleaned silicon carbide (0001) surfaces

    SciTech Connect (OSTI)

    King, Sean W. Tanaka, Satoru; Davis, Robert F.; Nemanich, Robert J.

    2015-09-15

    Due to the extreme chemical inertness of silicon carbide (SiC), in-situ thermal desorption is commonly utilized as a means to remove surface contamination prior to initiating critical semiconductor processing steps such as epitaxy, gate dielectric formation, and contact metallization. In-situ thermal desorption and silicon sublimation has also recently become a popular method for epitaxial growth of mono and few layer graphene. Accordingly, numerous thermal desorption experiments of various processed silicon carbide surfaces have been performed, but have ignored the presence of hydrogen, which is ubiquitous throughout semiconductor processing. In this regard, the authors have performed a combined temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS) investigation of the desorption of molecular hydrogen (H{sub 2}) and various other oxygen, carbon, and fluorine related species from ex-situ aqueous hydrogen fluoride (HF) and in-situ remote hydrogen plasma cleaned 6H-SiC (0001) surfaces. Using XPS, the authors observed that temperatures on the order of 7001000?C are needed to fully desorb C-H, C-O and Si-O species from these surfaces. However, using TPD, the authors observed H{sub 2} desorption at both lower temperatures (200550?C) as well as higher temperatures (>700?C). The low temperature H{sub 2} desorption was deconvoluted into multiple desorption states that, based on similarities to H{sub 2} desorption from Si (111), were attributed to silicon mono, di, and trihydride surface species as well as hydrogen trapped by subsurface defects, steps, or dopants. The higher temperature H{sub 2} desorption was similarly attributed to H{sub 2} evolved from surface O-H groups at ?750?C as well as the liberation of H{sub 2} during Si-O desorption at temperatures >800?C. These results indicate that while ex-situ aqueous HF processed 6H-SiC (0001) surfaces annealed at <700?C remain terminated by some surface CO and SiO bonding, they may

  20. METHOD OF PRODUCING PLUTONIUM TETRAFLUORIDE

    DOE Patents [OSTI]

    Tolley, W.B.; Smith, R.C.

    1959-12-15

    A process is presented for preparing plutonium tetrafluoride from plutonium(IV) oxalate. The oxalate is dried and decomposed at about 300 deg C to the dioxide, mixed with ammonium bifluoride, and the mixture is heated to between 50 and 150 deg C whereby ammonium plutonium fluoride is formed. The ammonium plutonium fluoride is then heated to about 300 deg C for volatilization of ammonium fluoride. Both heating steps are preferably carried out in an inert atmosphere.

  1. Recovery of protactinium from molten fluoride nuclear fuel compositions

    DOE Patents [OSTI]

    Baes, C.F. Jr.; Bamberger, C.; Ross, R.G.

    1973-12-25

    A method is provided for separating protactinium from a molten fluonlde salt composition consisting essentially of at least one alkali and alkaline earth metal fluoride and at least one soluble fluoride of uranium or thorium which comprises oxidizing the protactinium in said composition to the + 5 oxidation state and contacting said composition with an oxide selected from the group consisting of an alkali metal oxide, an alkaline earth oxide, thorium oxide, and uranium oxide, and thereafter isolating the resultant insoluble protactinium oxide product from said composition. (Official Gazette)

  2. Sol-gel process of fluoride and fluorobromide materials

    SciTech Connect (OSTI)

    Poncelet, O.; Guilment, J.; Paz-Pujalt, G.

    1996-12-31

    The alkoxides M(OR{sub x}){sub n} wherein M is an alkaline-earth or rare-earth and OR{sub X} is a fluoroalkoxo or bromoalkoxo group exhibit the properties to form pure fluoride materials by hydrolysis at room temperature. Using this property, the authors synthesized pure barium and europium fluoride and pure alkaline-earth bromide. The hydrolysis of a heteroleptic species, Ba(OCH{sub 2}CH{sub 2}Br)[OCH(CF{sub 3}){sub 2}] allowed pure and crystalline BaFBr materials to be obtained at room temperature.

  3. Fluoride based cathodes and electrolytes for high energy thermal batteries

    SciTech Connect (OSTI)

    Briscoe, J.D.

    1998-07-01

    A research and development program is being conducted at the Saft Advanced Technologies Division in Hunt Valley, MD to double the energy density of a thermal battery. A study of high voltage cathodes to replace iron disulfide is in progress. Single cells are being studied with a lithium anode and either a copper(II) fluoride, silver(II) fluoride, or iron(III) fluoride cathode. Due to the high reactivity of these cathodes, conventional alkali metal chloride and bromide salt electrolytes must be replaced by alkali metal fluoride electrolytes. Parametric studies using design-of-experiments matrices will be performed so that the best cathode for an improved battery design can be selected. Titanium hardware for the design will provide a higher strength to weight ratio with lower emissivity than conventional stainless steel. The battery will consist of two power sections. The goals are battery activation in less than 0.2 s, 88 Wh/kg, 1,385 W/kg, and 179 Wh/L over an environmental temperature range of {minus}40 C to +70 C.

  4. Structural studies of magnesium nitride fluorides by powder neutron diffraction

    SciTech Connect (OSTI)

    Brogan, Michael A.; Hughes, Robert W.; Smith, Ronald I.; Gregory, Duncan H.

    2012-01-15

    Samples of ternary nitride fluorides, Mg{sub 3}NF{sub 3} and Mg{sub 2}NF have been prepared by solid state reaction of Mg{sub 3}N{sub 2} and MgF{sub 2} at 1323-1423 K and investigated by powder X-ray and powder neutron diffraction techniques. Mg{sub 3}NF{sub 3} is cubic (space group: Pm3m) and has a structure related to rock-salt MgO, but with one cation site vacant. Mg{sub 2}NF is tetragonal (space group: I4{sub 1}/amd) and has an anti-LiFeO{sub 2} related structure. Both compounds are essentially ionic and form structures in which nitride and fluoride anions are crystallographically ordered. The nitride fluorides show temperature independent paramagnetic behaviour between 5 and 300 K. - Graphical abstract: Definitive structures of the ternary magnesium nitride fluorides Mg{sub 3}NF{sub 3} and the lower temperature polymorph of Mg{sub 2}NF have been determined from powder neutron diffraction data. The nitride halides are essentially ionic and exhibit weak temperature independent paramagnetic behaviour. Highlights: Black-Right-Pointing-Pointer Definitive structures of Mg{sub 3}NF{sub 3} and Mg{sub 2}NF were determined by neutron diffraction. Black-Right-Pointing-Pointer Nitride and fluoride anions are crystallographically ordered in both structures. Black-Right-Pointing-Pointer Both compounds exhibit weak, temperature independent paramagnetic behaviour. Black-Right-Pointing-Pointer The compounds are essentially ionic with ionicity increasing with F{sup -} content.

  5. METHOD OF PRODUCING URANIUM METAL BY ELECTROLYSIS

    DOE Patents [OSTI]

    Piper, R.D.

    1962-09-01

    A process is given for making uranium metal from oxidic material by electrolytic deposition on the cathode. The oxidic material admixed with two moles of carbon per one mole of uranium dioxide forms the anode, and the electrolyte is a mixture of from 40 to 75% of calcium fluoride or barium fluoride, 15 to 45% of uranium tetrafluoride, and from 10 to 20% of lithium fluoride or magnesium fluoride; the temperature of the electrolyte is between 1150 and 1175 deg C. (AEC)

  6. Pulsed chemical HF laser with a large discharge gap

    SciTech Connect (OSTI)

    Azarov, M A; Klimuk, Evgenii A; Kutumov, Konstantin A; Troshchinenko, G A; Lacour, Bernard M

    2004-11-30

    The characteristics of the radiation emitted by an electric-discharge pulsed chemical HF laser with a discharge gap of 10 cm are studied. The discharge was stabilised by a semiconducting ferroelectric ceramic layer deposited on plane metal electrodes. The specific energy and technical efficiency were 3 J L{sup -1} and 3.4%, respectively, for a laser operating on a nonchain reaction in SF{sub 6}-H{sub 2} mixture and 25 J L{sup -1} and 26%, respectively, for a laser operating on a chain reaction in F{sub 2}-O{sub 2}-SF{sub 6}-H{sub 2} mixture. (lasers)

  7. Evolution of magnetic properties and microstructure of Hf2Co11B...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Evolution of magnetic properties and microstructure of Hf2Co11B alloys Citation Details In-Document Search Title: Evolution of magnetic properties and ...

  8. Luminescence from Edge Fracture in Shocked Lithium Fluoride Crystals

    SciTech Connect (OSTI)

    Turley, W. D.; Stevens, G. D.; Capelle, G. A.; Grover, M.; Holtkamp, D. B.; LaLone, B. M.; Veeser, L. R.

    2013-01-01

    Light emitted from a [100] lithium fluoride crystal was characterized under shock wave compression to 28GPa followed by complete stress release at the edges. The light was examined using time-gated optical spectrometry and imaging, time-resolved optical emission measurements, and hydrodynamic modeling. The shock arrival at the circumference of the crystal was delayed relative to the center so that the two regions could be studied at different times. The majority of the light emission originated when the shock waves released at the circumference of the crystal. Unlike previously reported results for shocked lithium fluoride, we found that the light spectrum is not strictly broad band, but has spectral lines associated with atomic lithium in addition to a broad band background. Also, the emission spectrum depends strongly on the gas surrounding the sample. Based on our observations, the line emission appears to be related to fracture of the lithium fluoride crystal from the shock wave releasing at the edges. Experimenters frequently utilize lithium fluoride crystals as transparent windows for observing shock compressed samples. Because of the experimental geometries used, the shock wave in such cases often reaches the circumference of the window at nearly the same moment as when it reaches the center of the sample-window interface. Light generated at the circumference could contaminate the measurement at the interface when this light scatters into the observed region. This background light may be reduced or avoided using experimental geometries which delay the arrival of the shock wave at the edges of the crystal.

  9. Metal oxide and metal fluoride nanostructures and methods of making same

    DOE Patents [OSTI]

    Wong, Stanislaus S.; Mao, Yuanbing

    2009-08-18

    The present invention includes pure single-crystalline metal oxide and metal fluoride nanostructures, and methods of making same. These nanostructures include nanorods and nanoarrays.

  10. Grout formulation for disposal of low-level and hazardous waste streams containing fluoride

    DOE Patents [OSTI]

    McDaniel, E.W.; Sams, T.L.; Tallent, O.K.

    1987-06-02

    A composition and related process for disposal of hazardous waste streams containing fluoride in cement-based materials is disclosed. the presence of fluoride in cement-based materials is disclosed. The presence of fluoride in waste materials acts as a set retarder and as a result, prevents cement-based grouts from setting. This problem is overcome by the present invention wherein calcium hydroxide is incorporated into the dry-solid portion of the grout mix. The calcium hydroxide renders the fluoride insoluble, allowing the grout to set up and immobilize all hazardous constituents of concern. 4 tabs.

  11. Photochemical oxygenation of a technetium fluoride using F{sub 2} and O{sub 2}

    SciTech Connect (OSTI)

    Beitz, J.V.; Williams, C.W.

    1996-10-01

    Photochemical conversion of technetium fluorides and oxyfluorides is largely uninvestigated. Because technetium was introduced into U.S. uranium enrichment plants, decommissioning and decontamination of these plants will involve technetium fluorides and oxyfluorides. Photochemical conversion of such compounds may facilitate waste minimization and cost avoidance goals during plant clean-up. Photochemical fluorination using ultraviolet photolysis of a mixture of fluorine and oxygen gases is an effective means of converting solid, nonvolatile fluorides of fight actinides, such as U, Np, and Pu, into volatile hexafluorides thereby removing surface radioactive contamination. Our studies involved the interaction of ultraviolet light, oxygen, and fluorine with technetium fluoride.

  12. Measurement and analysis of muonic x rays of 176,177,178,179,180Hf

    SciTech Connect (OSTI)

    Tanaka, Y.; Steffen, R.M.; Shera, E.B.; Reuter, W.; Hoehn, M.V.; Zumbro, J.D.

    1984-07-01

    Monopole and quadrupole charge distributions of /sup 176/Hf, /sup 177/Hf, /sup 178/Hf, /sup 179/Hf, and /sup 180/Hf were investigated by muonic atom K and L x-ray measurements. The model-independent Barrett charge radii R/sub k/ and the isotope shifts ..delta..R/sub k/ were measured, and values of and ..delta.. were deduced. A weak odd-even staggering of the nuclear charge radii was observed for the series /sup 176 -178/Hf and /sup 178 -180/Hf. A large negative isomer shift was observed in the 2/sup +/ state of the /sup 176/Hf nucleus, a fact that existing theories do not explain. The quadrupole moments of the first excited states of the hafnium nuclei were determined to be Q/sup 176/(2/sup +/) = -2.10(2) e b, Q/sup 177/((9/2)/sup -/) = 1.30(2) e b, Q/sup 178/(2/sup +/) = -2.02(2) e b, Q/sup 179/((11/2)/sup +/) = 1.88(3) e b, and Q/sup 180/(2/sup +/) = -2.00(2) e b. These quadrupole moments and the simultaneously determined B(E2) values for the respective nuclei are in satisfactory agreement with the predictions of the axially symmetric rotor model.

  13. Multifunctional gold coated rare-earth hydroxide fluoride nanotubes for simultaneous wastewater purification and quantitative pollutant determination

    SciTech Connect (OSTI)

    Zhang, Da-Quan; Sun, Tian-Ying; Yu, Xue-Feng; Jia, Yue; Chen, Ming; Wang, Jia-Hong; Huang, Hao; Chu, Paul K.

    2014-04-01

    Highlights: • The morphology and properties of Ce-doped yttrium hydroxide fluoride nanotubes (YHF:Ce NTs) were investigated. • YHF:Ce NTs were conjugated with Au nanoparticles to produce Au-YHF:Ce nanocomposites. • Au-YHF:Ce NTs showed excellent capability and efficiency in removing Congo red from solutions. • Au-YHF:Ce NTs were utilized to determine the concentration of Congo red based on SERS. - Abstract: Ce-doped yttrium hydroxide fluoride nanotubes (YHF:Ce NTs) with large surface area are synthesized and conjugated with Au nanoparticles (NPs) to produce Au-YHF:Ce nanocomposites. The Au-YHF:Ce NTs have a hollow structure, rough surface, polymer coating, and good surface-enhanced Raman spectroscopy (SERS) properties. They are applied to wastewater treatment to remove Congo red as a typical pollutant. The materials not only remove pollutants rapidly from the wastewater, but also detect trace amounts of the pollutants quantitatively. The multifunctional Au-YHF:Ce NTs have commercial potential as nano-absorbents and nano-detectors in water treatment and environmental monitoring.

  14. Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Wensheng He, David Mountz, Tao Zhang, Chris Roger July 17, 2012 2 Outline Background on Arkema's polyvinylidene fluoride (PVDF) blend membrane technology Overview of membrane properties and performance Summary 3 Membrane Technology Polymer Blend * Kynar ® PVDF * Chemical and electrochemical stability * Mechanical strength * Excellent barrier against methanol * Polyelectrolyte * H + conduction and water uptake

  15. Ferroelectric fluoride compositions and methods of making and using same

    DOE Patents [OSTI]

    Halasyamani, P Shiv; Chang, Hong-Young

    2015-04-07

    A method for synthesis of a ferroelectric material characterized by the general formula A.sub.xB.sub.yF.sub.z where A is an alkaline earth metal, B is transition metal or a main group metal, x and y each range from about 1 to about 5, and z ranges from about 1 to about 20 comprising contacting an alkaline earth metal fluoride, a difluorometal compound and a fluoroorganic acid in a medium to form a reaction mixture; and subjecting the reaction mixture to conditions suitable for hydrothermal crystal growth.

  16. Microstructure–property relationships in a high-strength 51Ni–29Ti–20Hf shape memory alloy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Coughlin, D. R.; Casalena, L.; Yang, F.; Noebe, R. D.; Mills, M. J.

    2015-09-18

    NiTiHf alloys exhibit remarkable shape memory and pseudoelastic properties that are of fundamental interest to a growing number of industries. In this study, differential scanning calorimetry and isothermal compression tests have revealed that the 51Ni–29Ti–20Hf alloy has useful shape memory properties that include a wide range of transformation temperatures as well as highly stable pseudoelastic behavior. These properties are governed by short-term aging conditions, which may be tailored to control transformation temperatures while giving rise to exceptionally high austenite yield strengths which aid transformation stability. The yield strength of the austenite phase can reach 2.1 GPa by aging for 3hrsmore » at 500°C, while aging for 3hrs at 700°C produced an alloy with an austenite finish temperature (A f ) of 146°C. High-resolution scanning transmission electron microscopy has revealed a new precipitate phase, H-phase, under the homogenized and extruded condition and the aged 3 hrs at 500°C condition, but only the previously identified H-phase precipitate was observed after aging at temperatures of 600°C and 700°C for 3 hrs. Finally, dislocation analysis indicated that plastic deformation of the austenite phase occurred by <100> type slip, similar to that observed in binary NiTi.« less

  17. Microstructure–property relationships in a high-strength 51Ni–29Ti–20Hf shape memory alloy

    SciTech Connect (OSTI)

    Coughlin, D. R.; Casalena, L.; Yang, F.; Noebe, R. D.; Mills, M. J.

    2015-09-18

    NiTiHf alloys exhibit remarkable shape memory and pseudoelastic properties that are of fundamental interest to a growing number of industries. In this study, differential scanning calorimetry and isothermal compression tests have revealed that the 51Ni–29Ti–20Hf alloy has useful shape memory properties that include a wide range of transformation temperatures as well as highly stable pseudoelastic behavior. These properties are governed by short-term aging conditions, which may be tailored to control transformation temperatures while giving rise to exceptionally high austenite yield strengths which aid transformation stability. The yield strength of the austenite phase can reach 2.1 GPa by aging for 3hrs at 500°C, while aging for 3hrs at 700°C produced an alloy with an austenite finish temperature (A f ) of 146°C. High-resolution scanning transmission electron microscopy has revealed a new precipitate phase, H-phase, under the homogenized and extruded condition and the aged 3 hrs at 500°C condition, but only the previously identified H-phase precipitate was observed after aging at temperatures of 600°C and 700°C for 3 hrs. Finally, dislocation analysis indicated that plastic deformation of the austenite phase occurred by <100> type slip, similar to that observed in binary NiTi.

  18. Radiative cooling test facility and performance evaluation of 4-MIL aluminized polyvinyl fluoride and white-paint surfaces

    SciTech Connect (OSTI)

    Kruskopf, M.S.; Berdahl, P.; Martin, M.; Sakkal, F.; Sobolewski, M.

    1980-11-01

    A test facility designed to measure the amount of radiative cooling a specific material or assembly of materials will produce when exposed to the sky is described. Emphasis is placed upon assemblies which are specifically designed to produce radiative cooling and which therefore offer promise for the reduction of temperatures and/or humidities in occupied spaces. The hardware and software used to operate the facility are documented and the results of the first comprehensive experiments are presented. A microcomputer-based control/data acquisition system was employed to study the performance of two prototype radiator surfaces: 4-mil aluminized polyvinyl fluoride (PVF) and white painted surfaces set below polyethylene windscreens. The cooling rates for materials tested were determined and can be approximated by an equation (given). A computer model developed to simulate the cooling process is presented. (MCW)

  19. Time-dependent water dynamics in hydrated uranyl fluoride

    SciTech Connect (OSTI)

    Miskowiec, Andrew J.; Anderson, Brian B.; Herwig, Kenneth W.; Huq, Ashfia; Mamontov, Eugene; Rondinone, Adam; Trowbridge, Lee D.

    2015-09-15

    In this study, uranyl fluoride is a three-layer, hexagonal structure with significant stacking disorder in the c-direction. It supports a range of unsolved ‘thermodynamic’ hydrates with 0–2.5 water molecules per uranium atom, and perhaps more. However, the relationship between water, hydrate crystal structures, and thermodynamic results, collectively representing the chemical pathway through these hydrate structures, has not been sufficiently elucidated. We used high-resolution quasielastic neutron scattering to study the dynamics of water in partially hydrated uranyl fluoride powder over the course of 4 weeks under closed conditions. The spectra are composed of two quasielastic components: one is associated with translational diffusive motion of water that is approximately five to six times slower than bulk water, and the other is a slow (on the order of 2–300 ps), spatially bounded water motion. The translational component represents water diffusing between the weakly bonded layers in the crystal, while the bounded component may represent water trapped in subnanometre ‘pockets’ formed by the space between uranium-centred polymerisation units. Complementary neutron diffraction measurements do not show any significant structural changes, suggesting that a chemical conversion of the material does not occur in the thermodynamically isolated system on this timescale.

  20. Time-dependent water dynamics in hydrated uranyl fluoride

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miskowiec, Andrew J.; Anderson, Brian B.; Herwig, Kenneth W.; Huq, Ashfia; Mamontov, Eugene; Rondinone, Adam; Trowbridge, Lee D.

    2015-09-15

    In this study, uranyl fluoride is a three-layer, hexagonal structure with significant stacking disorder in the c-direction. It supports a range of unsolved ‘thermodynamic’ hydrates with 0–2.5 water molecules per uranium atom, and perhaps more. However, the relationship between water, hydrate crystal structures, and thermodynamic results, collectively representing the chemical pathway through these hydrate structures, has not been sufficiently elucidated. We used high-resolution quasielastic neutron scattering to study the dynamics of water in partially hydrated uranyl fluoride powder over the course of 4 weeks under closed conditions. The spectra are composed of two quasielastic components: one is associated with translationalmore » diffusive motion of water that is approximately five to six times slower than bulk water, and the other is a slow (on the order of 2–300 ps), spatially bounded water motion. The translational component represents water diffusing between the weakly bonded layers in the crystal, while the bounded component may represent water trapped in subnanometre ‘pockets’ formed by the space between uranium-centred polymerisation units. Complementary neutron diffraction measurements do not show any significant structural changes, suggesting that a chemical conversion of the material does not occur in the thermodynamically isolated system on this timescale.« less

  1. Proximal renal tubular injury in rats sub-chronically exposed to low fluoride concentrations

    SciTech Connect (OSTI)

    Crdenas-Gonzlez, Mariana C.; Del Razo, Luz M.; Barrera-Chimal, Jonatan; Jacobo-Estrada, Tania; Lpez-Bayghen, Esther; and others

    2013-11-01

    Fluoride is usually found in groundwater at a very wide range of concentration between 0.5 and 25 ppm. At present, few studies have assessed the renal effects of fluoride at environmentally relevant concentrations. Furthermore, most of these studies have used insensitive and nonspecific biomarkers of kidney injury. The aim of this study was to use early and sensitive biomarkers to evaluate kidney injury after fluoride exposure to environmentally relevant concentrations. Recently weaned male Wistar rats were exposed to low (15 ppm) and high (50 ppm) fluoride concentrations in drinking water for a period of 40 days. At the end of the exposure period, kidney injury biomarkers were measured in urine and renal mRNA expression levels were assessed by real time RT-PCR. Our results showed that the urinary kidney injury molecule (Kim-1), clusterin (Clu), osteopontin (OPN) and heat shock protein 72 excretion rate significantly increased in the group exposed to the high fluoride concentration. Accordingly, fluoride exposure increased renal Kim-1, Clu and OPN mRNA expression levels. Moreover, there was a significant dose-dependent increase in urinary ?-2-microglobulin and cystatin-C excretion rate. Additionally, a tendency towards a dose dependent increase of tubular damage in the histopathological light microscopy findings confirmed the preferential impact of fluoride on the tubular structure. All of these changes occurred at early stages in which, the renal function was not altered. In conclusion using early and sensitive biomarkers of kidney injury, we were able to found proximal tubular alterations in rats sub-chronically exposed to fluoride. - Highlights: Exposure to low concentrations of fluoride induced proximal tubular injury Increase in urinary Kim-1, Clu, OPN and Hsp72 in 50 ppm fluoride-exposed group Increase in urinary B2M and CysC in 15 and 50 ppm fluoride-exposed groups Fluoride exposure increased renal Kim, Clu and OPN mRNA expression levels. Fluoride

  2. Lithium-fluoride flashover ion source cleaned with a glow discharge and irradiated with vacuum-ultraviolet radiation

    SciTech Connect (OSTI)

    Burns, E.J.T.; Woodworth, J.R.; Bieg, K.W.; Mehlhorn, T.A.; Stygar, W.A.; Sweeney, M.A.

    1988-01-01

    We have studied methods of varying the ion species generated by a lithium-fluoride overcoated anode in a 0.5-MV magnetically insulated ion diode. We found that cleaning the anode surface with a 13.6-MHz rf glow discharge or illuminating the anode with a pulsed soft x-ray, vacuum-ultraviolet (XUV) radiation source just before the accelerator pulse significantly altered the ion species of the ion beam produced by the diode. The glow-discharge plasma removed adsorbates (carbon, hydrogen, and oxygen) from the surface of the LiF flashover source. The ions seen were lithium and hydrogen. Unfortunately, the diode impedance with a lithium-fluoride anode was high and the ion efficiency was low; however, XUV irradiation of the surface dramatically lowered the impedance by desorbing neutrals from the ion source via photon-stimulated desorption. Current densities of ten times the Child--Langmuir space-charge limit were achieved under XUV irradiation. In particular, ion currents increased by over a factor of 3 when 12 mJ/cm/sup 2/ of XUV radiation was used. However, with XUV irradiation the largest fraction of ions were fluorine, oxygen, carbon, and hydrogen, not lithium.

  3. HF-modified piping in hydroprocessing industry: A user`s perspective

    SciTech Connect (OSTI)

    Bagdasarian, A.J.; Singh, A.K.; Gaugler, R.J.

    1995-12-01

    HF-modified austenitic stainless steel cast piping has been in use in hydroprocessing reactor effluent high pressure loop for 35 years. Recent process modifications resulted in replacement of piping in a hydrocracking unit which was in service for 25 years. This paper reports on mechanical and metallurgical investigations of the replaced piping as well as samples removed from newer vintage HF-modified piping. The investigations show susceptibility to sensitization of HF-modified materials when exposed to the hydroprocessing operating temperature range. Loss of room temperature impact properties was also observed. Realistic flow tolerance of the HF-modified material was established by CTOD tests and a relationship is proposed between the CTOD values and Charpy V-notch values. The paper also describes three case histories where the failures resulted from the polythionic acid attack.

  4. Metal-Organic Frameworks Based on Previously Unknown Zr8/Hf Cubic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metal-Organic Frameworks Based on Previously Unknown Zr8Hf Cubic Clusters Previous Next List Dawei Feng, Hai-Long Jiang, Ying-Pin Chen, Zhi-Yuan Gu, Zhangwen Wei, and Hong-Cai...

  5. Pyrochemical recovery of plutonium from calcium fluoride reduction slag

    DOE Patents [OSTI]

    Christensen, D.C.

    A pyrochemical method of recovering finely dispersed plutonium metal from calcium fluoride reduction slag is claimed. The plutonium-bearing slag is crushed and melted in the presence of at least an equimolar amount of calcium chloride and a few percent metallic calcium. The calcium chloride reduces the melting point and thereby decreases the viscosity of the molten mixture. The calcium reduces any oxidized plutonium in the mixture and also causes the dispersed plutonium metal to coalesce and settle out as a separate metallic phase at the bottom of the reaction vessel. Upon cooling the mixture to room temperature, the solid plutonium can be cleanly separated from the overlying solid slag, with an average recovery yield on the order of 96 percent.

  6. Removal of fluoride impurities from UF.sub.6 gas

    DOE Patents [OSTI]

    Beitz, James V.

    1985-01-01

    A method of purifying a UF.sub.6 gas stream containing one or more metal fluoride impurities composed of a transuranic metal, transition metal or mixtures thereof, is carried out by contacting the gas stream with a bed of UF.sub.5 in a reaction vessel under conditions where at least one impurity reacts with the UF.sub.5 to form a nongaseous product and a treated gas stream, and removing the treated gas stream from contact with the bed. The nongaseous products are subsequently removed in a reaction with an active fluorine affording agent to form a gaseous impurity which is removed from the reaction vessel. The bed of UF.sub.5 is formed by the reduction of UF.sub.6 in the presence of UV light. One embodiment of the reaction vessel includes a plurality of UV light sources as tubes on which UF.sub.5 is formed.

  7. Removal of fluoride impurities from UF/sub 6/ gas

    DOE Patents [OSTI]

    Beitz, J.V.

    1984-01-06

    A method of purifying a UF/sub 6/ gas stream containing one or more metal fluoride impurities composed of a transuranic metal, transition metal or mixtures thereof, is carried out by contacting the gas stream with a bed of UF/sub 5/ in a reaction vessel under conditions where at least one impurity reacts with the UF/sub 5/ to form a nongaseous product and a treated gas stream, and removing the treated gas stream from contact with the bed. The nongaseous products are subsequently removed in a reaction with an active fluorine affording agent to form a gaseous impurity which is removed from the reaction vessel. The bed of UF/sub 5/ is formed by the reduction of UF/sub 6/ in the presence of uv light. One embodiment of the reaction vessel includes a plurality of uv light sources as tubes on which UF/sub 5/ is formed. 2 figures.

  8. FLUORIDE VOLATILITY PROCESS FOR THE RECOVERY OF URANIUM

    DOE Patents [OSTI]

    Katz, J.J.; Hyman, H.H.; Sheft, I.

    1958-04-15

    The separation and recovery of uraniunn from contaminants introduced by neutron irradiation by a halogenation and volatilization method are described. The irradiated uranium is dissolved in bromine trifluoride in the liquid phase. The uranium is converted to the BrF/sub 3/ soluble urmium hexafluoride compound whereas the fluorides of certain contaminating elements are insoluble in liquid BrF/sub 3/, and the reaction rate of the BrF/sub 3/ with certain other solid uranium contamirnnts is sufficiently slower than the reaction rate with uranium that substantial portions of these contaminating elements will remain as solids. These solids are then separated from the solution by a distillation, filtration, or centrifugation step. The uranium hexafluoride is then separated from the balance of the impurities and solvent by one or more distillations.

  9. Spatial diagnostics of the laser induced lithium fluoride plasma

    SciTech Connect (OSTI)

    Baig, M. A.; Qamar, Aisha; Fareed, M. A.; Anwar-ul-Haq, M.; Ali, Raheel

    2012-06-15

    We present spatial characteristics of the lithium fluoride plasma generated by the fundamental and second harmonic of a Nd:YAG laser. The plume emission has been recorded spatially using five spectrometers covering the spectral region from 200 nm to 720 nm. The electron density is measured from the Stark broadened line profile of the line at 610.37 nm, whereas the plasma temperature has been determined using the Boltzmann plot method including all the observed spectral lines of lithium. Both the plasma parameters; electron density and plasma temperature decrease with the increase of the distance from the target surface. The thermal conduction towards the target, the radiative cooling of the plasma, and the conversion of thermal energy into kinetic energy are the main mechanisms responsible for the spatially decrease of the plasma parameters.

  10. Void control in the crystallization of lithium fluoride

    SciTech Connect (OSTI)

    Jaworske, D.A. ); Perry, W.D. )

    1991-01-01

    The effect of tungsten-coated graphite fibers on the radiant heat transfer characteristics of salt-fiber composites was studied by measuring the onset of melting as a function of applied furnace power. As the fiber concentration was increased from 0 to 5.40% fiber by weight, the furnace temperature required to melt the lithium fluoride also increased. Upon cooling, each of the crystalline salt-fiber composites were cut open with a diamond saw to expose the void. Optical photographs of the voids revealed a trend in void location and size, with the largest void, and the least change in the outer dimension of the boule upon cooling, occurring in the sample with the most fiber.

  11. Ytterbium-doped borate fluoride laser crystals and lasers

    DOE Patents [OSTI]

    Schaffers, Kathleen I.; DeLoach, Laura D.; Payne, Stephen A.; Keszler, Douglas A.

    1997-01-01

    A new class of solid state laser crystals and lasers are formed from Yb-doped borate fluoride host crystals. The general formula for the host crystals is MM'(BO.sub.3)F, where M, M' are monovalent, divalent aria trivalent metal cations. A particular embodiment of the invention is Yb-doped BaCaBO.sub.3 F (Yb:BCBF). BCBF and some of the related derivative crystals are capable of nonlinear frequency conversion, whereby the fundamental of the laser is converted to a longer or shorter wavelength. In this way, these new crystals can simultaneously serve as self-frequency doubling crystals and laser materials within the laser resonator.

  12. Ytterbium-doped borate fluoride laser crystals and lasers

    DOE Patents [OSTI]

    Schaffers, K.I.; DeLoach, L.D.; Payne, S.A.; Keszler, D.A.

    1997-10-14

    A new class of solid state laser crystals and lasers are formed from Yb-doped borate fluoride host crystals. The general formula for the host crystals is MM{prime}(BO{sub 3})F, where M, M{prime} are monovalent, divalent aria trivalent metal cations. A particular embodiment of the invention is Yb-doped BaCaBO{sub 3}F (Yb:BCBF). BCBF and some of the related derivative crystals are capable of nonlinear frequency conversion, whereby the fundamental of the laser is converted to a longer or shorter wavelength. In this way, these new crystals can simultaneously serve as self-frequency doubling crystals and laser materials within the laser resonator. 6 figs.

  13. Uranium hexafluoride liquid thermal expansion, elusive eutectic with hydrogen fluoride, and very first production using chlorine trifluoride

    SciTech Connect (OSTI)

    Rutledge, G.P.

    1991-12-31

    Three unusual incidents and case histories involving uranium hexafluoride in the enrichment facilities of the USA in the late 1940`s and early 1950`s are presented. The history of the measurements of the thermal expansion of liquids containing fluorine atoms within the molecule is reviewed with special emphasis upon uranium hexafluoride. A comparison is made between fluorinated esters, fluorocarbons, and uranium hexafluoride. The quantitative relationship between the thermal expansion coefficient, a, of liquids and the critical temperature, T{sub c} is presented. Uranium hexafluoride has an a that is very high in a temperature range that is used by laboratory and production workers - much higher than any other liquid measured. This physical property of UF{sub 6} has resulted in accidents involving filling the UF{sub 6} containers too full and then heating with a resulting rupture of the container. Such an incident at a uranium gaseous diffusion plant is presented. Production workers seldom {open_quotes}see{close_quotes} uranium hexafluoride. The movement of UF{sub 6} from one container to another is usually trailed by weight, not sight. Even laboratory scientists seldom {open_quotes}see{close_quotes} solid or liquid UF{sub 6} and this can be a problem at times. This inability to {open_quotes}see{close_quotes} the UF{sub 6}-HF mixtures in the 61.2{degrees}C to 101{degrees}C temperature range caused a delay in the understanding of the phase diagram of UF{sub 6}-HF which has a liquid - liquid immiscible region that made the eutectic composition somewhat elusive. Transparent fluorothene tubes solved the problem both for the UF{sub 6}-HF phase diagram as well as the UF{sub 6}-HF-CIF{sub 3} phase diagram with a miscibility gap starting at 53{degrees}C. The historical background leading to the first use of CIF{sub 3} to produce UF{sub 6} in both the laboratory and plant at K-25 is presented.

  14. Method for converting UF5 to UF4 in a molten fluoride salt

    DOE Patents [OSTI]

    Bennett, Melvin R.; Bamberger, Carlos E.; Kelmers, A. Donald

    1977-01-01

    The reduction of UF.sub.5 to UF.sub.4 in a molten fluoride salt by sparging with hydrogen is catalyzed by metallic platinum. The reaction is also catalyzed by platinum alloyed with gold reaction equipment.

  15. Advantages of liquid fluoride thorium reactor in comparison with light water reactor

    SciTech Connect (OSTI)

    Bahri, Che Nor Aniza Che Zainul Majid, Amran Ab.; Al-Areqi, Wadeeah M.

    2015-04-29

    Liquid Fluoride Thorium Reactor (LFTR) is an innovative design for the thermal breeder reactor that has important potential benefits over the traditional reactor design. LFTR is fluoride based liquid fuel, that use the thorium dissolved in salt mixture of lithium fluoride and beryllium fluoride. Therefore, LFTR technology is fundamentally different from the solid fuel technology currently in use. Although the traditional nuclear reactor technology has been proven, it has perceptual problems with safety and nuclear waste products. The aim of this paper is to discuss the potential advantages of LFTR in three aspects such as safety, fuel efficiency and nuclear waste as an alternative energy generator in the future. Comparisons between LFTR and Light Water Reactor (LWR), on general principles of fuel cycle, resource availability, radiotoxicity and nuclear weapon proliferation shall be elaborated.

  16. Characterization Report on Sand, Slag, and Crucible Residues and on Fluoride Residues

    SciTech Connect (OSTI)

    Murray, A.M.

    1999-02-10

    This paper reports on the chemical characterization of the sand, slag, and crucible (SS and C) residues and the fluoride residues that may be shipped from the Rocky Flats Environmental Technology Site (RFETS) to Savannah River Site (SRS).

  17. Method for removal of plutonium impurity from americium oxides and fluorides

    DOE Patents [OSTI]

    FitzPatrick, John R.; Dunn, Jerry G.; Avens, Larry R.

    1987-01-01

    Method for removal of plutonium impurity from americium oxides and fluorides. AmF.sub.4 is not further oxidized to AmF.sub.6 by the application of O.sub.2 F at room temperature, while plutonium compounds present in the americium sample are fluorinated to volatile PuF.sub.6, which can readily be separated therefrom, leaving the purified americium oxides and/or fluorides as the solid tetrafluoride.

  18. Method for removal of plutonium impurity from americium oxides and fluorides

    DOE Patents [OSTI]

    FitzPatrick, J.R.; Dunn, J.G.; Avens, L.R.

    1987-02-13

    Method for removal of plutonium impurity from americium oxides and fluorides. AmF/sub 4/ is not further oxidized to AmF/sub 6/ by the application of O/sub 2/F at room temperature thereto, while plutonium compounds present in the americium sample are fluorinated to volatile PuF/sub 6/, which can readily be separated therefrom, leaving the purified americium oxides and/or fluorides as the solid tetrafluoride thereof.

  19. Development of fluoride reprocessing technologies devoted to molten-salt reactor systems

    SciTech Connect (OSTI)

    Uhlir, Jan; Marecek, Martin; Tulackova, Radka; Chuchvalcova Bimova, Karolina

    2007-07-01

    Main fuel processing and reprocessing technologies proposed for Molten Salt Reactor fuel cycle are pyrochemical or pyrometallurgical, majority of them are fluoride technologies. It is based on the fact that Molten Salt Reactor fuel is in the chemical form of molten fluorides and the reprocessing technology is needed to be an 'on-line' process. The corresponding pyrochemical separation processes proposed for MSR fuel processing and reprocessing are mainly fluoride volatilization processes, molten salt / liquid metal extraction processes, electrochemical separation processes from the molten salt media and gas extraction from the molten salt medium. Techniques based on fluoride volatilization and on electrochemical separation from fluoride molten salt media are under development in the Czech Republic. Whereas the Fluoride Volatility Method is proposed to be the main 'Front-end' technology of the MSR used as the actinide burner (transmuter), the electro-separation methods should be dedicated to the 'on-line' reprocessing of the circulating MSR fuel and should be used as for MSR incinerating transuranium fuel as for MSR working within the {sup 232}Th - {sup 233}U fuel cycle. (authors)

  20. Excitation functions of the natTa(p,x)178m2Hf and natW(p,x)178m2Hf reactions at energies up to 2600 MeV

    SciTech Connect (OSTI)

    Titarenko, Yu. E.; Batyaev, V. F.; Pavlov, K. V.; Titarenko, A. Yu.; Zhivun, V. M.; Chauzova, M. V.; Ignatyuk, A. V.; Mashnik, Stepan Georgievich; Leray, S.; Boudard, A.; David, J. -C.; Mancusi, D.; Cugnon, J.; Yariv, Y.; Nishihara, K.; Matsuda, N.; Kumawat, H.; Stankovskiy, A. Yu.

    2015-04-29

    Due to potential level of energy intensity 178m2Hf is an extremely interesting isomer. One possible way to produce this isomer is irradiation of natTa or natW samples with high energy protons. Irradiation of natTa or natW samples performed for other purposes provides an opportunity to study the corresponding reactions. This paper presents the 178m2Hf independent production cross sections for both targets measured by the gamma-ray spectrometry method. The reaction excitation functions have been obtained for the proton energies from 40 up to 2600 MeV. The experimental results were compared with calculations by various versions of the intranuclear cascade model in the well-known codes: ISABEL, Bertini, INCL4.5+ABLA07, PHITS, CASCADE07 and CEM03.02. The isomer ratio for the natTa(p,x) 178m2Hf reaction is evaluated on the basis of the available data.

  1. Thermally-driven H interaction with HfO{sub 2} films deposited on Ge(100) and Si(100)

    SciTech Connect (OSTI)

    Soares, G. V. Feij, T. O.; Baumvol, I. J. R.; Aguzzoli, C.; Krug, C.; Radtke, C.

    2014-01-27

    In the present work, we investigated the thermally-driven H incorporation in HfO{sub 2} films deposited on Si and Ge substrates. Two regimes for deuterium (D) uptake were identified, attributed to D bonded near the HfO{sub 2}/substrate interface region (at 300?C) and through the whole HfO{sub 2} layer (400600?C). Films deposited on Si presented higher D amounts for all investigated temperatures, as well as, a higher resistance for D desorption. Moreover, HfO{sub 2} films underwent structural changes during annealings, influencing D incorporation. The semiconductor substrate plays a key role in this process.

  2. Transformation of amorphous TiO2 to a hydronium oxofluorotitanate and applications as an HF sensor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Appelhans, Leah N.; Finnegan, Patrick S.; Massey, Lee T.; Luk, Ting S.; Rodriguez, Mark A.; Brumbach, Michael T.; McKenzie, Bonnie; Craven, Julia M.

    2015-12-24

    We examined amorphous titania thin films for use as the active material in a polarimetry based HF sensor. The amorphous titania films were found to be sensitive to vapor phase HF and the reaction product was identified as a hydronium oxofluorotitanate phase, which has previously only been synthesized in aqueous solution. The extent of reaction varied both with vapor phase HF concentration, relative humidity, and the exposure time. HF concentrations as low as 1 ppm could be detected for exposure times of 120 h.

  3. Transformation of amorphous TiO2 to a hydronium oxofluorotitanate and applications as an HF sensor

    SciTech Connect (OSTI)

    Appelhans, Leah N.; Finnegan, Patrick S.; Massey, Lee T.; Luk, Ting S.; Rodriguez, Mark A.; Brumbach, Michael T.; McKenzie, Bonnie; Craven, Julia M.

    2015-12-24

    We examined amorphous titania thin films for use as the active material in a polarimetry based HF sensor. The amorphous titania films were found to be sensitive to vapor phase HF and the reaction product was identified as a hydronium oxofluorotitanate phase, which has previously only been synthesized in aqueous solution. The extent of reaction varied both with vapor phase HF concentration, relative humidity, and the exposure time. HF concentrations as low as 1 ppm could be detected for exposure times of 120 h.

  4. On stability of self-sustained volume discharge in working mixtures of non-chain electrochemical HF laser

    SciTech Connect (OSTI)

    Belevtsev, A A; Kazantsev, S Yu; Konov, I G; Lebedev, A A; Podlesnykh, S V; Firsov, K N

    2011-08-31

    Burning voltage of a self-sustained volume discharge (SSVD) is studied as a function of the specific energy deposition in SF{sub 5} with C{sub 2}-H{sub 6} and H{sub 2} mixtures, which are working media of a non-chain electrochemical HF laser. It is established that the voltage rises linearly with increasing the specific energy deposition, the relative voltage rise in the SF{sub 6}-C{sub 2}H{sub 6} mixtures being noticeably higher than in pure SF{sub 6} and SF{sub 6}-H{sub 2} mixtures. An assumption is suggested and substantiated on determining the role of molecule dissociation by the electron impact leading to the observed voltage rise. From experimental data we have found approximate energy expenditures of producing dissociation fragments including atomic fluorine in a discharge in pure SF{sub 6}: E-tilde {sub d}(F)= 5{+-}1 eV. The values of E{sub d} well agree with literature data obtained by other experimental methods. A conclusion is drawn that the dissociation process is the main mechanism limiting the current density, which implies SSVD realisation without preliminary gas ionisation in working mixtures of a non-chain HF laser and determines a higher stability of the volume discharge in mixtures of SF{sub 6} with hydrocarbons (deuterocarbons) as compared to mixtures with hydrogen (deuterium). A method is suggested and substantiated for numerical estimation of the limitation effect of the current density and its influence on the SSVD stability. (control of radiation parameters)

  5. Lifetime measurements of yrast states in {sup 162}Yb and {sup 166}Hf

    SciTech Connect (OSTI)

    McCutchan, E.A.; Casten, R.F.; Ai, H.; Amro, H.; Heinz, A.; Meyer, D.A.; Plettner, C.; Qian, J.; Ressler, J.J.; Werner, V.; Williams, E.; Winkler, R.; Zamfir, N.V.; Babilon, M.; Brenner, D.S.; Guerdal, G.; Hughes, R.O.; Thomas, N.J.

    2006-03-15

    Lifetime measurements of yrast levels in {sup 162}Yb and {sup 166}Hf were performed using the recoil distance Doppler-shift method in coincidence mode. Excited states in {sup 162}Yb and {sup 166}Hf were populated via the reactions {sup 116}Cd({sup 50}Ti, 4n) and {sup 122}Sn({sup 48}Ti, 4n), respectively. The resulting B(E2) values are compared with the X(5) critical point model predictions and interacting boson approximation (IBA) model calculations. The X(5) model provides a reasonable description of the yrast B(E2) values in {sup 166}Hf, whereas the IBA fails to reproduce the transition strengths from the higher spin levels. In {sup 162}Yb, some transitions agree with the X(5) predictions while others are more consistent with the predictions of the IBA or a deformed symmetric rotor.

  6. Radiation and phase change of lithium fluoride in an annulus

    SciTech Connect (OSTI)

    Lund, K.O. )

    1993-10-01

    A one-dimensional thermal model is developed to evaluate the effect of radiation on the phase change of lithium-fluoride (LiF) in an annular canister under gravitational and microgravitational conditions. Specified heat flux at the outer wall of the canister models focused solar flux; adiabatic and convective conditions are considered for the inner wall. A two-band radiation model is used for the combined-mode heat transfer within the canister, and LiF optical properties relate metal surface properties in vacuum to those in LiF. For axial gravitational conditions, the liquid LiF remains in contact with the two bounding walls, whereas a void gap is used at the outer wall to model possible microgravitational conditions. For the adiabatic cases, exact integrals are obtained for the time required for complete melting of the LiF. Melting was found to occur primarily from the outer wall in the 1-g model, whereas it occurred primarily from the inner wall in the mu-g model. For the convective cases, partially melted steady-state conditions and fully melted conditions are determined to depend on the source flux level, with radiation extending the melting times. 25 refs.

  7. Mechanism of relaxation polarization in lithium fluoride single crystals

    SciTech Connect (OSTI)

    Annenkov, Yu.M.; Boev, S.G.; Kozhemyakin, V.A.; Fursa, T.V.

    1988-12-01

    The authors have compared the thermally stimulated currents and the pulsed electromagnetic radiation of thermoelectrets and mechanoelectrets made from lithium fluoride single crystals grown without specially introduced impurities. The samples with platinum electrodes applied to the surface by cathodic sputtering were deformed along the largest face up to relative strain /var epsilon/ equal to 1.4%. Then the thermally stimulated currents were registered upon heating the samples at the rate of 3-4 deg/min. In other experiments, after deformation of the samples under analogous conditions they registered the pulsed electromagnetic signals for the samples upon nonisothermal annealing. Plane-parallel samples were polarized at the temperature 473 K and electric field intensity 5 kV/cm for 10-15 min. Since thermally stimulated currents and pulsed electromagnetic signals at 363-383 K decreased substantially over the course of several hours after polarization or deformation of the samples and were practically unregistered after one day, while the volume charge in LiF can be retained over the course of many months, they may conclude that the first relaxation maximum is not connected with disruption of the volume charge. It is possible due to localization of cationic vacancies on individual dislocations, while the second maximum may be due to such dislocation pile-ups.

  8. Triaxial strongly deformed bands in {sup 164}Hf and the effect of elevated yrast line

    SciTech Connect (OSTI)

    Ma Wenchao

    2012-10-20

    Two exotic rotational bands have been identified in {sup 164}Hf and linked to known states. They are interpreted as being associated with the calculated triaxial strongly deformed (TSD) potential energy minimum. The bands are substantially stronger and are located at much lower spins than the previously discovered TSD bands in {sup 168}Hf. In addition to the proton and neutron shell gaps at large trixiality, it was proposed that the relative excitation energy of TSD bands above the yrast line plays an important role in the population of TSD bands.

  9. A survey of plant practices and experience in HF alkylation units

    SciTech Connect (OSTI)

    Dobis, J.D.; Clarida, D.R.; Richert, J.P.

    1994-12-31

    The T-8-20 Task Group conducted a survey of plant practices and of the performance of materials of construction in HF alkylation units. A primary goal of the survey was to expand the limited body of information on alternative alloy performance in HF alkylation units and to better define the susceptibility of steel to hydrogen induced cracking. Survey results indicate that although the incidence of cracking is reported to be low, hydrogen blistering is commonly found in pressure vessels. Few applications of alternative alloys were reported, but several areas of vulnerability or high corrosion rates are identified. Common design and maintenance practices are reviewed.

  10. Long-range corrected density functional theory with linearly-scaled HF exchange

    SciTech Connect (OSTI)

    Song, Jong-Won; Hirao, Kimihiko

    2015-12-31

    Long-range corrected density functional theory (LC-DFT) attracts many chemists’ attentions as a quantum chemical method to be applied to large molecular system and its property calculations. However, the expensive time cost to evaluate the long-range HF exchange is a big obstacle to be overcome to be applied to the large molecular systems and the solid state materials. Upon this problem, we propose a linear-scaling method of the HF exchange integration, in particular, for the LC-DFT hybrid functional.

  11. Fluoride-elicited developmental testicular toxicity in rats: Roles of endoplasmic reticulum stress and inflammatory response

    SciTech Connect (OSTI)

    Zhang, Shun; Jiang, Chunyang; Liu, Hongliang; Guan, Zhizhong; Zeng, Qiang; Zhang, Cheng; Lei, Rongrong; Xia, Tao; Gao, Hui; Yang, Lu; Chen, Yihu; Wu, Xue; Zhang, Xiaofei; Cui, Yushan; Yu, Linyu; Wang, Zhenglun; Wang, Aiguo

    2013-09-01

    Long-term excessive fluoride intake is known to be toxic and can damage a variety of organs and tissues in the human body. However, the molecular mechanisms underlying fluoride-induced male reproductive toxicity are not well understood. In this study, we used a rat model to simulate the situations of human exposure and aimed to evaluate the roles of endoplasmic reticulum (ER) stress and inflammatory response in fluoride-induced testicular injury. SpragueDawley rats were administered with sodium fluoride (NaF) at 25, 50 and 100 mg/L via drinking water from pre-pregnancy to gestation, birth and finally to post-puberty. And then the testes of male offspring were studied at 8 weeks of age. Our results demonstrated that fluoride treatment increased MDA accumulation, decreased SOD activity, and enhanced germ cell apoptosis. In addition, fluoride elevated mRNA and protein levels of glucose-regulated protein 78 (GRP78), inositol requiring ER-to-nucleus signal kinase 1 (IRE1), and C/EBP homologous protein (CHOP), indicating activation of ER stress signaling. Furthermore, fluoride also induced testicular inflammation, as manifested by gene up-regulation of tumor necrosis factor-? (TNF-?), interleukin-1? (IL-1?), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in a nuclear factor-?B (NF-?B)-dependent manner. These were associated with marked histopathological lesions including injury of spermatogonia, decrease of spermatocytes and absence of elongated spermatids, as well as severe ultrastructural abnormalities in testes. Taken together, our results provide compelling evidence that ER stress and inflammation would be novel and significant mechanisms responsible for fluoride-induced disturbance of spermatogenesis and germ cell loss in addition to oxidative stress. - Highlights: We used a rat model to simulate the situations of human fluoride (F) exposure. Developmental F exposure induces testicular damage related with oxidative stress. Endoplasmic

  12. On the possibility of simultaneous emission of an autonomous cw HF-DF chemical laser in two spectral ranges

    SciTech Connect (OSTI)

    Bashkin, A S; Gurov, L V; Katorgin, B I; Petrova, S N; Polinovsky, D V

    2008-05-31

    The efficiencies of different fuel compositions used in the combustion chamber of an autonomous cw chemical HF-DF laser for obtaining high specific energy parameters during simultaneous lasing in HF and DF molecules in two spectral ranges are theoretically analysed. It is shown that mirrors with the reflectance above 99% in these spectral ranges can be manufactured in principle. (lasers)

  13. Chemistry control and corrosion mitigation of heat transfer salts for the fluoride salt reactor (FHR)

    SciTech Connect (OSTI)

    Kelleher, B. C.; Sellers, S. R.; Anderson, M. H.; Sridharan, K.; Scheele, R. D.

    2012-07-01

    The Molten Salt Reactor Experiment (MSRE) was a prototype nuclear reactor which operated from 1965 to 1969 at Oak Ridge National Laboratory. The MSRE used liquid fluoride salts as a heat transfer fluid and solvent for fluoride based {sup 235}U and {sup 233}U fuel. Extensive research was performed in order to optimize the removal of oxide and metal impurities from the reactor's heat transfer salt, 2LiF-BeF{sub 2} (FLiBe). This was done by sparging a mixture of anhydrous hydrofluoric acid and hydrogen gas through the FLiBe at elevated temperatures. The hydrofluoric acid reacted with oxides and hydroxides, fluorinating them while simultaneously releasing water vapor. Metal impurities such as iron and chromium were reduced by hydrogen gas and filtered out of the salt. By removing these impurities, the corrosion of reactor components was minimized. The Univ. of Wisconsin - Madison is currently researching a new chemical purification process for fluoride salts that make use of a less dangerous cleaning gas, nitrogen trifluoride. Nitrogen trifluoride has been predicted as a superior fluorinating agent for fluoride salts. These purified salts will subsequently be used for static and loop corrosion tests on a variety of reactor materials to ensure materials compatibility for the new FHR designs. Demonstration of chemistry control methodologies along with potential reduction in corrosion is essential for the use of a fluoride salts in a next generator nuclear reactor system. (authors)

  14. Hot filament technique for measuring the thermal conductivity of molten lithium fluoride

    SciTech Connect (OSTI)

    Jaworske, D.A.; Perry, W.D.

    1990-01-01

    Molten salts, such as lithium fluoride, are attractive candidates for thermal energy storage in solar dynamic space power systems because of their high latent heat of fusion. However, these same salts have poor thermal conductivities which inhibit the transfer of heat into the solid phase and out of the liquid phase. One concept for improving the thermal conductivity of the thermal energy storage system is to add a conductive filler material to the molten salt. High thermal conductivity pitch-based graphite fibers are being considered for this application. Although there is some information available on the thermal conductivity of lithium fluoride solid, there is very little information on lithium fluoride liquid, and no information on molten salt graphite fiber composites. This paper describes a hot filament technique for determining the thermal conductivity of molten salts. The hot filament technique was used to find the thermal conductivity of molten lithium fluoride at 930 C, and the thermal conductivity values ranged from 1.2 to 1.6 W/mK. These values are comparable to the slightly larger value of 5.0 W/mK for lithium fluoride solid. In addition, two molten salt graphite fiber composites were characterized with the hot filament technique and these results are also presented.

  15. Effect of temperature on the complexation of Uranium(VI) with fluoride in aqueous solutions

    SciTech Connect (OSTI)

    Tian, Guoxin; Rao, Linfeng

    2009-05-18

    Complexation of U(VI) with fluoride at elevated temperatures in aqueous solutions was studied by spectrophotometry. Four successive complexes, UO{sub 2}F{sup +}, UO{sub 2}F{sub 2}(aq), UO{sub 2}F{sub 3}{sup -}, and UO{sub 2}F{sub 4}{sup 2-}, were identified, and the stability constants at 25, 40, 55, and 70 C were calculated. The stability of the complexes increased as the temperature was elevated. The enthalpies of complexation at 25 C were determined by microcalorimetry. Thermodynamic parameters indicate that the complexation of U(VI) with fluoride in aqueous solutions at 25 to 70 C is slightly endothermic and entropy-driven. The Specific Ion Interaction (SIT) approach was used to obtain the thermodynamic parameters of complexation at infinite dilution. Structural information on the U(VI)/fluoride complexes was obtained by extended X-ray absorption fine structure spectroscopy.

  16. Measurement of diffusion potentials at porous diaphragms separating chloride and chloride-fluoride melts

    SciTech Connect (OSTI)

    Mitysev, V.S.; Komarov, V.E.

    1985-09-01

    An attempt was made in this work to measure the potential drops across diaphragms separating chloride and chloride-fluoride melts. These values can then be taken into account when analyzing the results of emf measurements made with the galvanic cell expressed here, and will help to make them more reliable, according to the authors. To check whether the activities of the alkali metal in alloys of the two half cells remained equal throughout the entire experiment, an experimental cell was used where alloy M-Bi was placed into a crucible of metallic molybdenum (d = 10 mm, h = 10 mm), which was immersed in turns into the chloride melt and into the chloride-fluoride melt while keeping the setup closed. The emf values increase with increasing temperature and alkali-metal fluoride concentration. They decrease with increasing cation radius in the salt medium.

  17. Numerical investigation of mid-infrared Raman soliton source generation in endless single mode fluoride fibers

    SciTech Connect (OSTI)

    Liu, Lai; Qin, Guan-Shi Tian, Qi-jun; Zhao, Dan; Qin, Wei-Ping

    2014-04-28

    We numerically investigate Raman soliton generation in a fluoride photonic crystal fiber (PCF) pumped by 1.93 μm femtosecond fiber lasers in order to get widely tunable laser source in the mid-infrared region. The simulated results show that a continuously tunable range (1.93 ∼ 3.95 μm) over 2000 nm is achieved in 1-m-long fluoride PCF pumped by a 1.93 μm femtosecond fiber laser with a pulse width of 200 fs. The power conversion efficiency is also calculated and the maximum efficiency can be up to 84.27%.

  18. Method of producing hydrogen

    DOE Patents [OSTI]

    Bingham, Dennis N.; Klingler, Kerry M.; Wilding, Bruce M.; Zollinger, William T.

    2006-12-26

    A method of producing hydrogen is disclosed and which includes providing a first composition; providing a second composition; reacting the first and second compositions together to produce a chemical hydride; providing a liquid and reacting the chemical hydride with the liquid in a manner to produce a high pressure hydrogen gas and a byproduct which includes the first composition; and reusing the first composition formed as a byproduct in a subsequent chemical reaction to form additional chemical hydride.

  19. Method for producing nanostructured metal-oxides

    DOE Patents [OSTI]

    Tillotson, Thomas M.; Simpson, Randall L.; Hrubesh, Lawrence W.; Gash, Alexander

    2006-01-17

    A synthetic route for producing nanostructure metal-oxide-based materials using sol-gel processing. This procedure employs the use of stable and inexpensive hydrated-metal inorganic salts and environmentally friendly solvents such as water and ethanol. The synthesis involves the dissolution of the metal salt in a solvent followed by the addition of a proton scavenger, which induces gel formation in a timely manner. Both critical point (supercritical extraction) and atmospheric (low temperature evaporation) drying may be employed to produce monolithic aerogels and xerogels, respectively. Using this method synthesis of metal-oxide nanostructured materials have been carried out using inorganic salts, such as of Fe.sup.3+, Cr.sup.3+, Al.sup.3+, Ga.sup.3+, In.sup.3+, Hf.sup.4+, Sn.sup.4+, Zr.sup.4+, Nb.sup.5+, W.sup.6+, Pr.sup.3+, Er.sup.3+, Nd.sup.3+, Ce.sup.3+, U.sup.3+ and Y.sup.3+. The process is general and nanostructured metal-oxides from the following elements of the periodic table can be made: Groups 2 through 13, part of Group 14 (germanium, tin, lead), part of Group 15 (antimony, bismuth), part of Group 16 (polonium), and the lanthanides and actinides. The sol-gel processing allows for the addition of insoluble materials (e.g., metals or polymers) to the viscous sol, just before gelation, to produce a uniformly distributed nanocomposites upon gelation. As an example, energetic nanocomposites of Fe.sub.xO.sub.y gel with distributed Al metal are readily made. The compositions are stable, safe, and can be readily ignited to thermitic reaction.

  20. Radiolytic Effects on Fluoride Impurities in a U{sub 3}O{sub 8} Matrix

    SciTech Connect (OSTI)

    Icenhour, A.S.

    2000-05-01

    The safe handling and storage of radioactive materials require an understanding of the effects of radiolysis on those materials. Radiolysis may result in the production of gases (e.g., corrosives) or pressures that are deleterious to storage containers. A study has been performed to address these concerns as they relate to the radiolysis of residual fluoride compounds in uranium oxides.

  1. PILOT-SCALE REMOVAL OF FLUORIDE FROM LEGACY PLUTONIUM MATERIALS USING VACUUM SALT DISTILLATION

    SciTech Connect (OSTI)

    Pierce, R. A.; Pak, D. J.

    2012-09-11

    Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. In 2011, SRNL adapted the technology for the removal of fluoride from fluoride-bearing salts. The method involved an in situ reaction between potassium hydroxide (KOH) and the fluoride salt to yield potassium fluoride (KF) and the corresponding oxide. The KF and excess KOH can be distilled below 1000{deg}C using vacuum salt distillation (VSD). The apparatus for vacuum distillation contains a zone heated by a furnace and a zone actively cooled using either recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attaned, heating begins. Volatile salts distill from the heated zone to the cooled zone where they condense, leaving behind the non-volatile material in the feed boat. Studies discussed in this report were performed involving the use of non-radioactive simulants in small-scale and pilot-scale systems as well as radioactive testing of a small-scale system with plutonium-bearing materials. Aspects of interest include removable liner design considerations, boat materials, in-line moisture absorption, and salt deposition.

  2. Formation, dynamics, and implication of solid electrolyte interphase in high voltage reversible conversion fluoride nanocomposites

    SciTech Connect (OSTI)

    Gmitter, Andrew J.; Badway, Fadwa; Rangan, Sylvie; Bartynski, Robert A.; Halajko, Anna; Pereira, Nathalie; Amatucci, Glenn G.

    2010-01-01

    Metal fluoride nanocomposites are uniquely suited as an alternative pathway to provide very high energy density cathodes for lithium batteries. Contrasted with modern intercalation compounds, they undergo conversion upon discharge into nanodomains of lithium fluoride and highly active metal. The nanosized metal formed during the discharge process along with the dynamic nature of the crystal structure may have considerable impact on the stability of any solid state interphase formed through reaction with the electrolyte. This is in contrast to the more macrocrystalline and stable crystal structure of traditional intercalation compounds. It has been found that the cyclic carbonates are susceptible to decomposition on the nanometal surfaces at potentials as high as 2.00 V vs. Li, and the products have been identified with Field Emission Scanning Electron Microscopy (FESEM), Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), and X-ray Photoelectron Spectroscopy (XPS) as lithium carbonate species. Of greater importance is the impact of these decomposition products on the reversible cycling of the metal fluoride. Through a series of potentiodynamic and galvanostatic cycling trials, a clear relationship has been developed for the bismuth fluoride nanocomposites, the decomposition of the electrolyte solvent, and the cycle life. Acyclic organic carbonate solvents have been found to have minimal interaction and exhibited better long-term cycling performance than cyclic solvents.

  3. Nuclear quantum effects in water exchange around lithium and fluoride ions

    SciTech Connect (OSTI)

    Wilkins, David M.; Manolopoulos, David E.; Dang, Liem X.

    2015-02-14

    We employ classical and ring polymer molecular dynamics simulations to study the effect of nuclear quantum fluctuations on the structure and the water exchange dynamics of aqueous solutions of lithium and fluoride ions. While we obtain reasonably good agreement with experimental data for solutions of lithium by augmenting the Coulombic interactions between the ion and the water molecules with a standard Lennard-Jones ion-oxygen potential, the same is not true for solutions of fluoride, for which we find that a potential with a softer repulsive wall gives much better agreement. A small degree of destabilization of the first hydration shell is found in quantum simulations of both ions when compared with classical simulations, with the shell becoming less sharply defined and the mean residence time of the water molecules in the shell decreasing. In line with these modest differences, we find that the mechanisms of the exchange processes are unaffected by quantization, so a classical description of these reactions gives qualitatively correct and quantitatively reasonable results. We also find that the quantum effects in solutions of lithium are larger than in solutions of fluoride. This is partly due to the stronger interaction of lithium with water molecules, partly due to the lighter mass of lithium and partly due to competing quantum effects in the hydration of fluoride, which are absent in the hydration of lithium.

  4. Nuclear quantum effects in water exchange around lithium and fluoride ions

    SciTech Connect (OSTI)

    Wilkins, David M.; Manolopoulos, David; Dang, Liem X.

    2015-02-14

    We employ classical and ring polymer molecular dynamics simulations to study the effect of nuclear quantum fluctuations on the structure and the water exchange dynamics of aqueous solutions of lithium and fluoride ions. While we obtain reasonably good agreement with experimental data for solutions of lithium by augmenting the Coulombic interactions between the ion and the water molecules with a standard Lennard-Jones ion-oxygen potential, the same is not true for solutions of fluoride, for which we find that a potential with a softer repulsive wall gives much better agreement. A small degree of destabilization of the first hydration shell is found in quantum simulations of both ions when compared with classical simulations, with the shell becoming less sharply defined and the mean residence time of the water molecules in the shell decreasing. In line with these modest differences, we find that the mechanisms of the water exchange reactions are unaffected by quantization, so a classical description of these reactions gives qualitatively correct and quantitatively reasonable results. We also find that the quantum effects in solutions of lithium are larger than in solutions of fluoride. This is partly due to the stronger interaction of lithium with water molecules, partly due to the lighter mass of lithium, and partly due to competing quantum effects in the hydration of fluoride, which are absent in the hydration of lithium. LXD was supported by US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.

  5. Dissolution of HTGR TRISO beads by the alkali fluoride fusion method

    SciTech Connect (OSTI)

    Byster, S.E.

    1980-07-01

    The alkali fluoride fusion method for the dissolution of HTGR TRISO fuel beads offers significant time advantage over other commonly used fusion procedures when applied to samples weighing less than three grams. The method is straightforward, utilizes standard analytical laboratory equipment, and yields solutions which may be utilized by customary procedures.

  6. An Experimental Test Facility to Support Development of the Fluoride Salt Cooled High Temperature Reactor

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L; Aaron, Adam M; Cunningham, Richard Burns; Fugate, David L; Holcomb, David Eugene; Kisner, Roger A; Peretz, Fred J; Robb, Kevin R; Wilgen, John B; Wilson, Dane F

    2014-01-01

    The need for high-temperature (greater than 600 C) energy exchange and delivery systems is significantly increasing as the world strives to improve energy efficiency and develop alternatives to petroleum-based fuels. Liquid fluoride salts are one of the few energy transport fluids that have the capability of operating at high temperatures in combination with low system pressures. The Fluoride Salt-Cooled High-Temperature Reactor design uses fluoride salt to remove core heat and interface with a power conversion system. Although a significant amount of experimentation has been performed with these salts, specific aspects of this reactor concept will require experimental confirmation during the development process. The experimental facility described here has been constructed to support the development of the Fluoride Salt Cooled High Temperature Reactor concept. The facility is capable of operating at up to 700 C and incorporates a centrifugal pump to circulate FLiNaK salt through a removable test section. A unique inductive heating technique is used to apply heat to the test section, allowing heat transfer testing to be performed. An air-cooled heat exchanger removes added heat. Supporting loop infrastructure includes a pressure control system; trace heating system; and a complement of instrumentation to measure salt flow, temperatures, and pressures around the loop. The initial experiment is aimed at measuring fluoride salt heat transfer inside a heated pebble bed similar to that used for the core of the pebble bed advanced high-temperature reactor. This document describes the details of the loop design, auxiliary systems used to support the facility, the inductive heating system, and facility capabilities.

  7. g factor of the 2{sub 1}{sup +} state of {sup 172}Hf

    SciTech Connect (OSTI)

    Berant, Z.; Wolf, A.; Oster, E.; Casperson, R. J.; Werner, V.; Heinz, A.; Casten, R. F.; Terry, J. R.; Winkler, R.; Williams, E.; Qian, J.; Schmidt, A.; Smith, M. K.; Ahn, T.; Gurdal, G.; McCutchan, E. A.; Brenner, D. S.; Beausang, C. W.; Regan, P. H.; Ross, T.

    2009-11-15

    The g factor of the 2{sub 1}{sup +} state of {sup 172}Hf was measured using the perturbed angular correlation technique in a static external magnetic field. The result, g(2{sub 1}{sup +})=0.25(5), is discussed in relation to the systematics of the previously reported g factors in the Hf isotopes and compared with the predictions of several models. An interesting outcome of the analysis presented in this paper is the agreement between the calculated g factors within the interacting boson approximation (IBA) and the results of a large-scale shell model calculation. This agreement supports the emphasis in the IBA on the valence space. The undershooting of the empirical g factors near midshell in both models suggests that they underestimate the role of the saturation of collectivity, which is explicitly incorporated into a phenomenological model that agrees better with the data.

  8. g-factor of the 2{sup+}{sub{1} state of {sup179}Hf.

    SciTech Connect (OSTI)

    Berant, Z.; Oster, E.; Wolf, A.; Casperson, R. J.; Werner, V.; McCutchan, E. A.

    2009-01-01

    The g factor of the 2{sub 1}{sup +} state of {sup 172}Hf was measured using the perturbed angular correlation technique in a static external magnetic field. The result, g(2{sub 1}{sup +}) = 0.25(5), is discussed in relation to the systematics of the previously reported g factors in the Hf isotopes and compared with the predictions of several models. An interesting outcome of the analysis presented in this paper is the agreement between the calculated g factors within the interacting boson approximation (IBA) and the results of a large-scale shell model calculation. This agreement supports the emphasis in the IBA on the valence space. The undershooting of the empirical g factors near midshell in both models suggests that they underestimate the role of the saturation of collectivity, which is explicitly incorporated into a phenomenological model that agrees better with the data.

  9. Mode specificity in the HF + OH → F + H{sub 2}O reaction

    SciTech Connect (OSTI)

    Song, Hongwei; Li, Jun; Guo, Hua

    2014-10-28

    Full-dimensional quantum dynamics and quasi-classical trajectory calculations are reported for the title reaction on a recently constructed ab initio based global potential energy surface. Strong mode specificity was found, consistent with the prediction of the sudden vector projection model. Specifically, the HF vibration strongly promotes the reaction while the OH vibration has little effect. Rotational excitations of both reactants slightly enhance the reaction.

  10. Electronic properties of InP (001)/HfO{sub 2} (001) interface: Band offsets and oxygen dependence

    SciTech Connect (OSTI)

    KC, Santosh; Dong, Hong; Longo, Roberto C.; Xiong, Ka; Wang, Weichao; Wallace, Robert M.; Cho, Kyeongjae

    2014-01-14

    Using ab-initio methods, atomic structures and electronic properties of InP (001)/HfO{sub 2} (001) interface are studied within the framework of density functional theory. We examine the InP/HfO{sub 2} model interface electronic structures under varying oxidation conditions. The effects of indium and phosphorous concentrations on interfacial bonding, defect states, band offsets, and the thermodynamic stability at the interface are also investigated. The origin of interfacial gap states in InP (001)/HfO{sub 2} (001) interface are proposed, mainly from the P-rich oxides, which is validated by our experimental work. This highlights the importance of surface passivation prior to high-κ deposition based on the in situ spectroscopic results of atomic layer deposition of HfO{sub 2} on InP.

  11. In situ study of e-beam Al and Hf metal deposition on native oxide InP (100)

    SciTech Connect (OSTI)

    Dong, H.; KC, Santosh; Azcatl, A.; Cabrera, W.; Qin, X.; Brennan, B.; Cho, K.; Wallace, R. M.; Zhernokletov, D.

    2013-11-28

    The interfacial chemistry of thin Al (∼3 nm) and Hf (∼2 nm) metal films deposited by electron beam (e-beam) evaporation on native oxide InP (100) samples at room temperature and after annealing has been studied by in situ angle resolved X-ray photoelectron spectroscopy and low energy ion scattering spectroscopy. The In-oxides are completely scavenged forming In-In/In-(Al/Hf) bonding after Al and Hf metal deposition. The P-oxide concentration is significantly decreased, and the P-oxide chemical states have been changed to more P-rich oxides upon metal deposition. Indium diffusion through these metals before and after annealing at 250 °C has also been characterized. First principles calculation shows that In has lower surface formation energy compared with Al and Hf metals, which is consistent with the observed indium diffusion behavior.

  12. Coal markets squeeze producers

    SciTech Connect (OSTI)

    Ryan, M.

    2005-12-01

    Supply/demand fundamentals seem poised to keep prices of competing fossil fuels high, which could cushion coal prices, but increased mining and transportation costs may squeeze producer profits. Are markets ready for more volatility?

  13. Supporting Data-Producing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supporting Data-Producing Facilities and Instruments Co-Chairs: David Skinner & Stuart Campbell 1 Contributors * Kaki Kelly, LANL * David Smith, LLNL * Jeff Cunningham, LBNL * Yao Zhang, ANL * John Harney, ORNL * Stuart Campbell, ORNL * Ilana Stern, NCAR * David Skinner, NERSC * Craig Ulmer, Sandia * Dino Pavlakos, Sandia * Rudy Garcia, Sandia * Jack Deslippe, NERSC 2 Some Questions ? * How does a Data-Producing Facility or Instrument plug in to HPC facilities ? * Do we support facilities

  14. PROCESS FOR PRODUCING URANIUM HEXAFLUORIDE

    DOE Patents [OSTI]

    Fowler, R.D.

    1957-10-22

    A process for the production of uranium hexafluoride from the oxides of uranium is reported. In accordance with the method the higher oxides of uranium may be reduced to uranium dioxide (UO/sub 2/), the latter converted into uranium tetrafluoride by reaction with hydrogen fluoride, and the UF/sub 4/ convented to UF/sub 6/ by reaction with a fluorinating agent. The UO/sub 3/ or U/sub 3/O/sub 8/ is placed in a reaction chamber in a copper boat or tray enclosed in a copper oven, and heated to 500 to 650 deg C while hydrogen gas is passed through the oven. The oven is then swept clean of hydrogen and the water vapor formed by means of nitrogen and then while continuing to maintain the temperature between 400 and 600 deg C, anhydrous hydrogen fluoride is passed through. After completion of the conversion to uranium tetrafluoride, the temperature of the reaction chamber is lowered to ahout 400 deg C, and elemental fluorine is used as the fluorinating agent for the conversion of UF/sub 4/ into UF/sub 6/. The fluorine gas is passed into the chamber, and the UF/sub 6/ formed passes out and is delivered to a condenser.

  15. APPLICATION OF VACUUM SALT DISTILLATION TECHNOLOGY FOR THE REMOVAL OF FLUORIDE

    SciTech Connect (OSTI)

    Pierce, R.; Pak, D.

    2011-08-10

    Vacuum distillation of chloride salts from plutonium oxide (PuO{sub 2}) and simulant PuO{sub 2} has been previously demonstrated at Department of Energy (DOE) sites using kilogram quantities of chloride salt. The apparatus for vacuum distillation contains a zone heated using a furnace and a zone actively cooled using either recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attained, heating begins. Volatile salts distill from the heated zone to the cooled zone where they condense, leaving behind the non-volatile materials in the feed boat. The application of vacuum salt distillation (VSD) is of interest to the HB-Line Facility and the MOX Fuel Fabrication Facility (MFFF) at the Savannah River Site (SRS). Both facilities are involved in efforts to disposition excess fissile materials. Many of these materials contain chloride and fluoride salt concentrations which make them unsuitable for dissolution without prior removal of the chloride and fluoride salts. Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. Subsequent efforts are attempting to adapt the technology for the removal of fluoride. Fluoride salts of interest are less-volatile than the corresponding chloride salts. Consequently, an alternate approach is required for the removal of fluoride without significantly increasing the operating temperature. HB-Line Engineering requested SRNL to evaluate and demonstrate the feasibility of an alternate approach using both non-radioactive simulants and plutonium-bearing materials. Whereas the earlier developments targeted the removal of sodium chloride (NaCl) and potassium chloride (KCl), the current

  16. Variable dimensionality in the uranium fluoride/2-methyl-piperazine system: Synthesis and structures of UFO-5, -6, and -7; Zero-, one-, and two-dimensional materials with unprecedented topologies

    SciTech Connect (OSTI)

    Francis, R.J.; Halasyamani, P.S.; Bee, J.S.; O'Hare, D.

    1999-02-24

    Recently, low temperature (T < 300 C) hydrothermal reactions of inorganic precursors in the presence of organic cations have proven highly productive for the synthesis of novel solid-state materials. Interest in these materials is driven by the astonishingly diverse range of structures produced, as well as by their many potential materials chemistry applications. This report describes the high yield, phase pure hydrothermal syntheses of three new uranium fluoride phases with unprecedented structure types. Through the systematic control of the synthesis conditions the authors have successfully controlled the architecture and dimensionality of the phase formed and selectively synthesized novel zero-, one-, and two-dimensional materials.

  17. Influence of defects on positron transmission and annihilation in the lithium fluoride crystal

    SciTech Connect (OSTI)

    Varisov, A.Z.; Kozlov, V.G.

    1984-05-01

    The positron implantation profile and the angular distribution of annihilation ..gamma.. quanta were determined for a lithium fluoride crystal under ..beta../sup +/ and ..gamma.. irradiation (/sup 22/Na source). The positron absorption coefficient of the irradiated crystal was ..cap alpha.. = 76.2 +- 1.5 cm/sup -1/. The angular distribution had a strong narrow component. After thermal bleaching of the crystal, ..cap alpha.. = 91.9 +- 1.5 cm/sup -1/, the narrow component made a smaller contribution to the angular distribution, and its half-width increased. The positron mobility was found to be ..mu.. = 18 +- 8 cm/sup 2/ x V/sup -1/ x sec/sup -1/. It is suggested that defects influence in two ways the fate of positrons in the lithium fluoride crystal: free positrons may be trapped by some defects (cationic vacancies) or annihilated in collisions with others (F centers). The defect concentration is estimated.

  18. Performance enhancement of GaN metalsemiconductormetal ultraviolet photodetectors by insertion of ultrathin interfacial HfO{sub 2} layer

    SciTech Connect (OSTI)

    Kumar, Manoj E-mail: aokyay@ee.bilkent.edu.tr; Tekcan, Burak; Okyay, Ali Kemal E-mail: aokyay@ee.bilkent.edu.tr

    2015-03-15

    The authors demonstrate improved device performance of GaN metalsemiconductormetal ultraviolet (UV) photodetectors (PDs) by ultrathin HfO{sub 2} (UT-HfO{sub 2}) layer on GaN. The UT-HfO{sub 2} interfacial layer is grown by atomic layer deposition. The dark current of the PDs with UT-HfO{sub 2} is significantly reduced by more than two orders of magnitude compared to those without HfO{sub 2} insertion. The photoresponsivity at 360?nm is as high as 1.42 A/W biased at 5 V. An excellent improvement in the performance of the devices is ascribed to allowed electron injection through UT-HfO{sub 2} on GaN interface under UV illumination, resulting in the photocurrent gain with fast response time.

  19. pH effect on the separation of uranium fluoride effluents by the reverse osmosis process

    SciTech Connect (OSTI)

    Yun Chen ); Min-Lin Chu; Mu-Chang Shieh , Lung-tan, )

    1992-04-01

    Ammonium fluoride solutions and uranium fluoride effluents (UFE) with solute concentrations from 0.101 to 7,920 kg/m{sup 3}, at pH 2.80 to 9.60, have been treated with a continuous feedback reverse osmosis (RO) process. The solute rejections of NH{sub 4}{sup +}, F{sup {minus}}, and U{sup 6+} depend heavily on the feed pH value. For ammonium fluoride solutions, the rejection ratio of NH{sub 4}{sup +} decreases sharply from ca. 90 to 44.2% with the feed pH increased from 3.30 to 9.60, while that of F{sup {minus}} increases abruptly from 44.8 to 99.9% at the same pH change. For UFE solutions, the rejection ratio of U{sup 6+} remains greater than 90% at pH 2.80-7.13, while that of F{sup {minus}} decreases steadily from 96.4 to 18.8% with decreasing feed pH. Accordingly, the fluoride ions can be separated from UFE solutions under acidic conditions. The changes of solute rejection with feed pH can be explained by the different solubilities of the solutes in the membrane at different pH values. The UFE solutions with {alpha} and {beta} activities at 20.4-53.7 and 8.99-21.3 ({times} 10{sup 5} Baq/m{sup 3}) can be reduced to a level lower than 2.41 and 3.37 ({times}10{sup 5} Baq/m{sup 3}), respectively, by the current RO process.

  20. Efficient holmium:yttrium lithium fluoride laser longitudinally pumped by a semiconductor laser array

    SciTech Connect (OSTI)

    Hemmati, H.

    1987-08-24

    Optical pumping of a holmium:yttrium lithium fluoride (Ho:YLF) crystal with a 790-nm continuous-wave diode-laser array has generated 56 mW of 2.1 ..mu..m laser radiation with an optical-to-optical conversion slope efficiency of 33% while the crystal temperature is held at 77 K. The lasing threshold occurs at 7 mW of input power, and laser operation continues up to a crystal temperature of 124 K.

  1. 06-09-2010 NNSA-B-10-0111

    National Nuclear Security Administration (NNSA)

    (a remote sensing technique) to detect Hydrogen Fluoride (HF) gas in the troposphere. ... Sandia Site Office Hydrogen Fluoride Remote Sensing Sandia National Laboratories - New ...

  2. Considerations of Alloy N for Fluoride Salt-Cooled High-Temperature Reactor Applications

    SciTech Connect (OSTI)

    Ren, Weiju; Muralidharan, Govindarajan; Wilson, Dane F; Holcomb, David Eugene

    2011-01-01

    Fluoride Salt-Cooled High-Temperature Reactors (FHRs) are a promising new class of thermal-spectrum nuclear reactors. The reactor structural materials must possess high-temperature strength and chemical compatibility with the liquid fluoride salt as well as with a power cycle fluid such as supercritical water while remaining resistant to residual air within the containment. Alloy N was developed for use with liquid fluoride salts and it possesses adequate strength and chemical compatibility up to about 700 C. A distinctive property of FHRs is that their maximum allowable coolant temperature is restricted by their structural alloy maximum service temperature. As the reactor thermal efficiency directly increases with the maximum coolant temperature, higher temperature resistant alloys are strongly desired. This paper reviews the current status of Alloy N and its relevance to FHRs including its design principles, development history, high temperature strength, environmental resistance, metallurgical stability, component manufacturability, ASME codification status, and reactor service requirements. The review will identify issues and provide guidance for improving the alloy properties or implementing engineering solutions.

  3. Ternary metal fluorides as high-energy cathodes with low cycling hysteresis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Feng; Kim, Sung -Wook; Seo, Dong -Hwa; Kang, Kisuk; Wang, Liping; Su, Dong; Vajo, John J.; Wang, John; Gratez, Jason

    2015-03-26

    In this study, transition metal fluorides are an appealing alternative to conventional intercalation compounds for use as cathodes in next-generation lithium batteries due to their extremely high capacity (3–4 times greater than the current state-of-the-art). However, issues related to reversibility, energy efficiency and kinetics prevent their practical application. Here we report on the synthesis, structural and electrochemical properties of ternary metal fluorides (M1yM21-yFx: M1, M2 = Fe, Cu), which may overcome these issues. By substituting Cu into the Fe lattice, forming the solid–solution CuyFe1-yF2, reversible Cu and Fe redox reactions are achieved with surprisingly small hysteresis (<150 mV). This findingmore » indicates that cation substitution may provide a new avenue for tailoring key electrochemical properties of conversion electrodes. In conclusion, although the reversible capacity of Cu conversion fades rapidly, likely due to Cu+ dissolution, the low hysteresis and high energy suggest that a Cu-based fluoride cathode remains an intriguing candidate for rechargeable lithium batteries.« less

  4. Ternary metal fluorides as high-energy cathodes with low cycling hysteresis

    SciTech Connect (OSTI)

    Wang, Feng; Kim, Sung -Wook; Seo, Dong -Hwa; Kang, Kisuk; Wang, Liping; Su, Dong; Vajo, John J.; Wang, John; Gratez, Jason

    2015-03-26

    In this study, transition metal fluorides are an appealing alternative to conventional intercalation compounds for use as cathodes in next-generation lithium batteries due to their extremely high capacity (3–4 times greater than the current state-of-the-art). However, issues related to reversibility, energy efficiency and kinetics prevent their practical application. Here we report on the synthesis, structural and electrochemical properties of ternary metal fluorides (M1yM21-yFx: M1, M2 = Fe, Cu), which may overcome these issues. By substituting Cu into the Fe lattice, forming the solid–solution CuyFe1-yF2, reversible Cu and Fe redox reactions are achieved with surprisingly small hysteresis (<150 mV). This finding indicates that cation substitution may provide a new avenue for tailoring key electrochemical properties of conversion electrodes. In conclusion, although the reversible capacity of Cu conversion fades rapidly, likely due to Cu+ dissolution, the low hysteresis and high energy suggest that a Cu-based fluoride cathode remains an intriguing candidate for rechargeable lithium batteries.

  5. Low-load indentation behavior of HfN thin films deposited by reactive rf sputtering

    SciTech Connect (OSTI)

    Nowak, R.; Li, C.L.; Maruno, S.

    1997-01-01

    Deformation of HfN thin films deposited by reactive sputtering method on silicon and alumina substrates has been investigated using depth-sensing indentation. The experiments performed in a low load range (2{endash}50 mN) revealed that the even extremely shallow indentations were affected by elastic/plastic response of the substrate. The analysis of the shape of the indentation load-depth hysteresis loops and of conventional hardness data was supplemented by considerations based on the recently proposed energy principle of indentation. {copyright} {ital 1997 Materials Research Society.}

  6. HF-based etching processes for improving laser damage resistance of fused silica optical surfaces

    SciTech Connect (OSTI)

    Suratwala, T I; Miller, P E; Bude, J D; Steele, R A; Shen, N; Monticelli, M V; Feit, M D; Laurence, T A; Norton, M A; Carr, C W; Wong, L L

    2010-02-23

    The effect of various HF-based etching processes on the laser damage resistance of scratched fused silica surfaces has been investigated. Conventionally polished and subsequently scratched fused silica plates were treated by submerging in various HF-based etchants (HF or NH{sub 4}F:HF at various ratios and concentrations) under different process conditions (e.g., agitation frequencies, etch times, rinse conditions, and environmental cleanliness). Subsequently, the laser damage resistance (at 351 or 355 nm) of the treated surface was measured. The laser damage resistance was found to be strongly process dependent and scaled inversely with scratch width. The etching process was optimized to remove or prevent the presence of identified precursors (chemical impurities, fracture surfaces, and silica-based redeposit) known to lead to laser damage initiation. The redeposit precursor was reduced (and hence the damage threshold was increased) by: (1) increasing the SiF{sub 6}{sup 2-} solubility through reduction in the NH4F concentration and impurity cation impurities, and (2) improving the mass transport of reaction product (SiF{sub 6}{sup 2-}) (using high frequency ultrasonic agitation and excessive spray rinsing) away from the etched surface. A 2D finite element crack-etching and rinsing mass transport model (incorporating diffusion and advection) was used to predict reaction product concentration. The predictions are consistent with the experimentally observed process trends. The laser damage thresholds also increased with etched amount (up to {approx}30 {micro}m), which has been attributed to: (1) etching through lateral cracks where there is poor acid penetration, and (2) increasing the crack opening resulting in increased mass transport rates. With the optimized etch process, laser damage resistance increased dramatically; the average threshold fluence for damage initiation for 30 {micro}m wide scratches increased from 7 to 41 J/cm{sup 2}, and the statistical

  7. METHOD OF PRODUCING NEUTRONS

    DOE Patents [OSTI]

    Imhoff, D.H.; Harker, W.H.

    1964-02-01

    A method for producing neutrons is described in which there is employed a confinement zone defined between longitudinally spaced localized gradient regions of an elongated magnetic field. Changed particles and neutralizing electrons, more specifically deuterons and tritons and neutralizng electrons, are injected into the confinement field from ion sources located outside the field. The rotational energy of the parrticles is increased at the gradients by imposing an oscillating transverse electrical field thereacross. The imposition of such oscillating transverse electrical fields improves the reflection capability of such gradient fielda so that the reactive particles are retained more effectively within the zone. With the attainment of appropriate densities of plasma particles and provided that such particles are at a sufficiently high temperature, neutron-producing reactions ensue and large quantities of neutrons emerge from the containment zone. (AEC)

  8. Effect of the annealing temperature and ion-beam bombardment on the properties of solution-derived HfYGaO films as liquid crystal alignment layers

    SciTech Connect (OSTI)

    Park, Hong-Gyu; Lee, Yun-Gun; Jang, Sang Bok; Lee, Ju Hwan; Jeong, Hae-Chang; Seo, Dae-Shik; Oh, Byeong-Yun

    2015-11-15

    Hafnium yttrium gallium oxide (HfYGaO) films were applied to liquid crystal displays (LCDs) as liquid crystal (LC) alignment layers, replacing conventional polyimide (PI) layers. The HfYGaO alignment layers were prepared by fabricating solution-processed HfYGaO films, annealing them, and treating them with ion-beam (IB) irradiation. The authors studied the effects of annealing temperature and IB irradiation of the solution-derived HfYGaO films on the orientation of LC molecules. The LC molecules on the solution-derived HfYGaO films were homogeneously and uniformly aligned by IB irradiation, irrespective of the annealing temperature. Atomic force microscopy analyses revealed that the surface reformation of the HfYGaO films induced by IB irradiation strengthened the van der Waals force between the LC molecules and the HfYGaO films, leading to uniform LC alignment. Enhanced electro-optical characteristics were observed in the twisted-nematic (TN) LCDs based on IB-irradiated HfYGaO films compared with those of TN-LCDs based on PI layers, demonstrating the high application potential of the proposed solution-derived HfYGaO films as LC alignment layers.

  9. Process for producing silicon

    DOE Patents [OSTI]

    Olson, Jerry M. (Lakewood, CO); Carleton, Karen L. (Boulder, CO)

    1984-01-01

    A process for producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.

  10. Method of producing imines

    DOE Patents [OSTI]

    Sithambaram, Shanthakumar; Son, Young-Chan; Suib, Steven L.

    2008-04-08

    A method for forming an imine comprises reacting a first reactant comprising a hydroxyl functionality, a carbonyl functionality, or both a hydroxyl functionality and a carbonyl functionality with a second reactant having an amine functionality in the presence of ordered porous manganese-based octahedral molecular sieves and an oxygen containing gas at a temperature and for a time sufficient for the imine to be produced.

  11. Process for producing silicon

    DOE Patents [OSTI]

    Olson, J.M.; Carleton, K.L.

    1982-06-10

    A process of producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.

  12. Current-induced spin-orbit torque switching of perpendicularly magnetized Hf|CoFeB|MgO and Hf|CoFeB|TaO{sub x} structures

    SciTech Connect (OSTI)

    Akyol, Mustafa; Yu, Guoqiang; Alzate, Juan G.; Upadhyaya, Pramey; Li, Xiang; Wong, Kin L.; Khalili Amiri, Pedram; Wang, Kang L.; Ekicibil, Ahmet

    2015-04-20

    We study the effect of the oxide layer on current-induced perpendicular magnetization switching properties in Hf|CoFeB|MgO and Hf|CoFeB|TaO{sub x} tri-layers. The studied structures exhibit broken in-plane inversion symmetry due to a wedged CoFeB layer, resulting in a field-like spin-orbit torque (SOT), which can be quantified by a perpendicular (out-of-plane) effective magnetic field. A clear difference in the magnitude of this effective magnetic field (H{sub z}{sup FL}) was observed between these two structures. In particular, while the current-driven deterministic perpendicular magnetic switching was observed at zero magnetic bias field in Hf|CoFeB|MgO, an external magnetic field is necessary to switch the CoFeB layer deterministically in Hf|CoFeB|TaO{sub x}. Based on the experimental results, the SOT magnitude (H{sub z}{sup FL} per current density) in Hf|CoFeB|MgO (?14.12?Oe/10{sup 7} A cm{sup ?2}) was found to be almost 13 larger than that in Hf|CoFeB|TaO{sub x} (?1.05?Oe/10{sup 7} A cm{sup ?2}). The CoFeB thickness dependence of the magnetic switching behavior, and the resulting ?H{sub z}{sup FL} generated by in-plane currents are also investigated in this work.

  13. THORIUM-BERYLLIUM ALLOYS AND METHOD OF PRODUCING SAME

    DOE Patents [OSTI]

    Spedding, F.H.; Wilhelm, H.A.; Keller, W.H.

    1959-09-01

    >The preparation is described of thorium-berylium alloys from halides of the metals by stmultaneously reducing thorium fluoride and beryllium fluoride with calcium at approximately 650 deg C and maintaining the temperature until the thorium-beryhltum alloy separates from the slag.

  14. Local elastic modulus of RF sputtered HfO{sub 2} thin film by atomic force acoustic microscopy

    SciTech Connect (OSTI)

    Jena, S. Tokas, R. B. Sarkar, P. Thakur, S.; Sahoo, N. K.; Misal, J. S.; Rao, K. D.

    2014-04-24

    Atomic force acoustic microscopy (AFAM) is a useful nondestructive technique for measurement of local elastic modulus of materials at nano-scale spatial resolution by measuring the contact resonance spectra for higher order modes of the AFM cantilever. The elastic modulus of RF sputtered HfO{sub 2} thin film has been measured quantitatively, using reference approach in which measurements are performed on the test and reference samples. Using AFAM, the measured elastic modulus of the HfO{sub 2} thin film is 223±27 GPa, which is in agreement with the literature value of 220±40 GPa for atomic layer deposited HfO{sub 2} thin film using nanoindentation technique.

  15. Accident prevention and Clean Air Act Amendments of 1990 with particular reference to anhydrous hydrogen fluoride

    SciTech Connect (OSTI)

    Kaiser, G.D. (Science Applications International Corp., McLean, VA (United States))

    1993-07-01

    The sections of the Clean Air Act Amendments (CAAA) of 1990 that refer to accident prevention are to be found in Title III. Two significant requirements of the CAAA in this respect relate to the responsibilities of the Occupational Safety and Health Administration (OSHA), which has promulgated a new Process Safety Management (PSM) standard and the Environmental Protection Agency (EPA), which at the time of writing, is developing Risk Management Program (RMP) regulations. The focus of this paper is on how the requirements of the CAAA may affect the reasons for performing a Quantitative Risk Assessment (QRA) or may affect the results of QRA. In order to limit the discussion, this paper focuses on HF. First, the CAAA requires that the EPA assess the hazards associated with HF; the EPA's current draft report is discussed. Second, a generic assessment of the risks associated with the use of HF is given, with emphasis on alkylation units in refineries. The principal contributors to risk are listed. Finally, an assessment of OSHA's PSM standard 29 CFR 1910.119, the related requirements of state laws such as California's Risk Management and Prevention Program and the potential requirement of EPA's Risk Management Program are given, including an assessment of how these requirements may influence quantitative estimates of risk. 13 refs., 1 fig.

  16. Structural Phase Transitions and Water Dynamics in Uranyl Fluoride Hydrates

    SciTech Connect (OSTI)

    Miskowiec, Andrew J.; Kirkegaard, Marie C.; Huq, Ashfia; Mamontov, Eugene; Herwig, Kenneth W.; Trowbridge, Lee D.; Rondinone, Adam Justin; Anderson, Brian B.

    2015-11-17

    We report a novel production method for uranium oxy uoride [(UO2)7F14(H2O)7] 4H2O, referred to as structure D. Structure D is produced as a product of hydrating anhydrous uranyl uoride, UO2F2, through the gas phase at ambient temperatures fol- lowed by desiccation by equilibration with a dry environment. We follow the structure of [(UO2)7F14(H2O)7] 4H2O through an intermediate, liquid-like phase, wherein the coordination number of the uranyl ion is reduced to 5 (from 6 in the anhydrous struc- ture), and a water molecule binds as an equatorial ligand to the uranyl ion. Quasielas- tic neutron scattering results compare well with previous measurements of mineral hydrates. The two groups of structurally distinct water molecules in D perform re- stricted motion on a length scale commensurate with the O{H bond (r = 0.92 A). The more tightly bound equatorial ligand waters rotate slower (Dr = 2.2 ps-1) than their hydrogen-bonded partners (Dr = 28.7 ps-1).

  17. Structural Phase Transitions and Water Dynamics in Uranyl Fluoride Hydrates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miskowiec, Andrew J.; Kirkegaard, Marie C.; Huq, Ashfia; Mamontov, Eugene; Herwig, Kenneth W.; Trowbridge, Lee D.; Rondinone, Adam Justin; Anderson, Brian B.

    2015-11-17

    We report a novel production method for uranium oxy uoride [(UO2)7F14(H2O)7] 4H2O, referred to as structure D. Structure D is produced as a product of hydrating anhydrous uranyl uoride, UO2F2, through the gas phase at ambient temperatures fol- lowed by desiccation by equilibration with a dry environment. We follow the structure of [(UO2)7F14(H2O)7] 4H2O through an intermediate, liquid-like phase, wherein the coordination number of the uranyl ion is reduced to 5 (from 6 in the anhydrous struc- ture), and a water molecule binds as an equatorial ligand to the uranyl ion. Quasielas- tic neutron scattering results compare well with previousmore » measurements of mineral hydrates. The two groups of structurally distinct water molecules in D perform re- stricted motion on a length scale commensurate with the O{H bond (r = 0.92 A). The more tightly bound equatorial ligand waters rotate slower (Dr = 2.2 ps-1) than their hydrogen-bonded partners (Dr = 28.7 ps-1).« less

  18. APPARATUS FOR PRODUCING SHADOWGRAPHS

    DOE Patents [OSTI]

    Wilson, R.R.

    1959-08-11

    An apparatus is presented for obtaining shadowgraphs or radiographs of an object exposed to x rays or the like. The device includes the combination of a cloud chamber having the interior illuminated and a portion thereof transparent to light rays and x'rays, a controlled source of x rays spaced therefrom, photographic recording disposed laterally of the linear path intermediate the source and the chamber portion in oblique angularity in aspect to the path. The object to be studied is disposed intermediate the x-ray source and chamber in the linear path to provide an x-ray transmission barrier therebetween. The shadowgraph is produced in the cloud chamber in response to initiation of the x- ray source and recorded photographically.

  19. Coal-Producing Region

    U.S. Energy Information Administration (EIA) Indexed Site

    . Coal Production by State (thousand short tons) Year to Date Coal-Producing Region and State January - March 2016 October - December 2015 January - March 2015 2016 2015 Percent Change Alabama 2,446 2,298 4,022 2,446 4,022 -39.2 Alaska 310 328 265 310 265 16.7 Arizona 1,335 1,376 1,755 1,335 1,755 -23.9 Arkansas 11 18 21 11 21 -48.0 Colorado 2,482 3,258 5,263 2,482 5,263 -52.8 Illinois 11,312 11,886 16,779 11,312 16,779 -32.6 Indiana 7,224 7,264 9,463 7,224 9,463 -23.7 Kansas 27 55 53 27 53

  20. Produce diesel from gas

    SciTech Connect (OSTI)

    Singleton, A.H.; Regier, S.

    1983-05-01

    The Gulf Badger process converts natural gas directly to hydrocarbon liquids by a catalytic chemical route. Fischer-Tropsch process--which is a carbon monoxide polymerization/ hydrogenation process--is used. Because the process is exothermal, heat removal by either tubular fixed bed, fluidized bed, or slurry are considered. A wax build up of high molecular weight material is removed by hydro-stripping two-bed system. The demonstration plant flow diagram shows the process to be: natural gas is compressed, recycled with CO/sub 2/, sulfur is removed in a zinc oxide drum, CO is removed in amine scrubbers, H/sub 2//CO ratio is adjusted to produce a hydrogen rich stream, and stabilization and distribution follow. A monitoring system using computers is part of the demonstration unit.

  1. Process for thermochemically producing hydrogen

    DOE Patents [OSTI]

    Bamberger, Carlos E.; Richardson, Donald M.

    1976-01-01

    Hydrogen is produced by the reaction of water with chromium sesquioxide and strontium oxide. The hydrogen producing reaction is combined with other reactions to produce a closed chemical cycle for the thermal decomposition of water.

  2. Reactions of aluminum with uranium fluorides and oxyfluorides

    SciTech Connect (OSTI)

    Leitnaker, J.M.; Nichols, R.W.; Lankford, B.S.

    1991-12-31

    Every 30 to 40 million operating hours a destructive reaction is observed in one of the {approximately}4000 large compressors that move UF{sub 6} through the gaseous diffusion plants. Despite its infrequency, such a reaction can be costly in terms of equipment and time. Laboratory experiments reveal that the presence of moderate pressures of UF{sub 6} actually cools heated aluminum, although thermodynamic calculations indicate the potential for a 3000-4000{degrees}C temperature rise. Within a narrow and rather low (<100 torr; 1 torr = 133.322 Pa) pressure range, however, the aluminum is seen to react with sufficient heat release to soften an alumina boat. Three things must occur in order for aluminum to react vigorously with either UF{sub 6} or UO{sub 2}F{sub 2}. 1. An initiating source of heat must be provided. In the compressors, this source can be friction, permitted by disruption of the balance of the large rotating part or by creep of the aluminum during a high-temperature treatment. In the absence of this heat source, compressors have operated for 40 years in UF{sub 6} without significant reaction. 2. The film protecting the aluminum must be breached. Melting (of UF{sub 5} at 620 K or aluminum at 930 K) can cause such a breach in laboratory experiments. In contrast, holding Al samples in UF{sub 6} at 870 K for several hours produces only moderate reaction. Rubbing in the cascade can undoubtedly breach the protective film. 3. Reaction products must not build up and smother the reaction. While uranium products tend to dissolve or dissipate in molten aluminum, AIF{sub 3} shows a remarkable tendency to surround and hence protect even molten aluminum. Hence the initial temperature rise must be rapid and sufficient to move reactants into a temperature region in which products are removed from the reaction site.

  3. Interplay between gadolinium dopants and oxygen vacancies in HfO{sub 2}: A density functional theory plus Hubbard U investigation

    SciTech Connect (OSTI)

    Zhang, Wei; Hou, Z. F.

    2014-03-28

    The influence of gadolinium (Gd) doping on the oxygen vacancy (V{sub O}) in monoclinic HfO{sub 2} have been studied by the first-principles calculations within the spin-polarized generalized gradient approximation plus Hubbard U approach. It is found that the Gd dopant and V{sub O} show strong attractive interaction, resulting in a cooperative effect that the substitution of Gd for Hf (Gd{sub Hf}) would increase the probability of oxygen vacancies generation and vice versa. The Gd{sub Hf} is more energetically favorable to be next to the vacancy site of a three-coordinated oxygen (O3), forming a complex defect Gd{sub Hf} + V{sub O}. A single Gd{sub Hf} acts a hole donor and passivates the defect states of V{sub O}. Our results suggest that the decrease of the V{sub O}-related defect states observed in the photoluminescence spectra of Gd-HfO{sub 2} is because Gd doping passivates the defect states of V{sub O}, rather than caused by decrease of V{sub O} concentration. Our findings would clarify the debate about the influence of Gd doping on the oxygen vacancies in HfO{sub 2}.

  4. System for treating produced water

    DOE Patents [OSTI]

    Sullivan, Enid J.; Katz, Lynn; Kinney, Kerry; Bowman, Robert S.; Kwon, Soondong

    2010-08-03

    A system and method were used to treat produced water. Field-testing demonstrated the removal of contaminants from produced water from oil and gas wells.

  5. Fluoride adsorption on goethite in relation to different types of surface sites

    SciTech Connect (OSTI)

    Hiemstra, T.; Van Riemsdijk, W.H.

    2000-05-01

    Metal (hydr)oxides have different types of surface groups. Fluoride ions have been used as a probe to assess the number of surface sites. The authors have studied the F{sup {minus}} adsorption on goethite by measuring the F{sup {minus}} and H{sup +} interaction and F{sup {minus}} adsorption isotherms. Fluoride ions exchange against singly coordinated surface hydroxyls at low F{sup {minus}} concentrations. At higher concentrations also the doubly coordinated OH groups are involved. The replacement of a surface OH{sup {minus}} by F{sup {minus}} suggests that all F charge ({minus}1) is located at the surface in contrast to oxyanions which have a charge distribution in the interface due to the binding structure in which the anion only partially coordinates with the surface. Analysis of their F{sup {minus}} data with the CD-MUSIC approach shows that the formation of the fluoride surface complex is accompanied by a redistribution of charge. This is supposed to be due to a net switch in the H bonding as a result of the change of the type of surface complex from donating (FeOH, FeOH{sub 2}) to proton accepting (FeF). The modeled redistribution of charge is approximately equivalent with the change of a donating H bond into an accepting H bond. At high F{sup {minus}} concentrations precipitation of F{sup {minus}}, as for instance FeF{sub 3}(s), may occur. The rate of formation is catalyzed by the presence of high electrolyte concentrations.

  6. Surface nanostructuring and optical activation of lithium fluoride crystals by ion beam irradiation

    SciTech Connect (OSTI)

    Mussi, V.; Granone, F.; Boragno, C.; Buatier de Mongeot, F.; Valbusa, U.; Marolo, T.; Montereali, R.M.

    2006-03-06

    We present results on simultaneous nanostructuring and optical activation of lithium fluoride crystals by 800 eV off-normal Ar{sup +} sputtering at different ion doses. The samples were studied by atomic force microscopy and optical spectroscopy. After ion irradiation smoothening of the initial random roughness is achieved and well-defined self-organized ripple structures appear, having a mean periodicity of 30 nm and a mean height of 3 nm. The simultaneous optical activation of the irradiated samples is due to the stable formation of electronic defects with intense photoluminescence in the visible spectral range.

  7. Electrostatic removal of lithium fluoride from field-emitter tips at elevated temperatures

    SciTech Connect (OSTI)

    Panitz, J.A. )

    1994-09-01

    The electrostatic removal of lithium fluoride (LiF) from field-emitter tips has been visualized at elevated temperatures in the transmission electron microscope (TEM). The apex of a field-emitter tip coated with [similar to]1500 A of LiF provides a unique substrate for observing the removal process in the TEM in real time, and its curvature generates the required electrostatic field strength. The influence of the imaging electron beam on coating morphology has been visually assessed. A LiF coating can tolerate an electron dose of [similar to]2000 [ital e][sup [minus

  8. Anodic activation of niobium and tantalum in phosphate-fluoride solutions

    SciTech Connect (OSTI)

    Bairachnyi, B.I.; Stepanova, I.I.

    1988-01-10

    An analysis of the polarization curves for the anodic dissolution of niobium and tantalum in the coordinates showed they are described by Fafel's equation with a slop of the linear sections of -0.125 for niobium and -0.123 for tantalum. In solutions that contained hydrofluoric acid the anodic-anionic polarization of niobium and tantalum was accompanied by the destruction of the oxide film by the fluoride ions and dissolution of the metal phase. Effects of polishing and glossing of the surface of the investigated metals were observed at certain conditions.

  9. Methods of using ionic liquids having a fluoride anion as solvents

    DOE Patents [OSTI]

    Pagoria, Philip; Maiti, Amitesh; Gash, Alexander; Han, Thomas Yong; Orme, Christine; Fried, Laurence

    2011-12-06

    A method in one embodiment includes contacting a strongly hydrogen bonded organic material with an ionic liquid having a fluoride anion for solubilizing the strongly hydrogen bonded organic material; and maintaining the ionic liquid at a temperature of about 90.degree. C. or less during the contacting. A method in another embodiment includes contacting a strongly hydrogen bonded organic material with an ionic liquid having an acetate or formate anion for solubilizing the strongly hydrogen bonded organic material; and maintaining the ionic liquid at a temperature of less than about 90.degree. C. during the contacting.

  10. DANCE : a 4[pi] barium fluoride detector for measuring neutron capture on unstable nuclei /.

    SciTech Connect (OSTI)

    Ullmann, J. L.; Haight, Robert C.; Hunt, L. F.; Reifarth, R.; Rundberg, R. S.; Bredeweg, T. A.; Fowler, Malcolm M.; Miller, G. G.; Heil, M.; Käppeler, F.; Chamberlin, E. P.

    2002-01-01

    Measurements of neutron capture on unstable nuclei are important for studies of s-process nucleosynthesis, nuclear waste transmutation, and stewardship science. A 160-element, 4{pi} barium fluoride detector array, and associated neutron flight path, is being constructed to make capture measurements at the moderated neutron spallation source at LANSCE. Measurements can be made on as little as 1 mg of sample material over energies from near thermal to near 100 keV. The design of the DANCE array is described and neutron flux measurements from flight path commissioning are shown. The array is expected to be complete by the end of 2002.

  11. Numerical prediction of the thermodynamic properties of ternary Al-Ni-Hf alloys

    SciTech Connect (OSTI)

    Romanowska, Jolanta; Kotowski, S?awomir; Zagula-Yavorska, Maryana

    2014-10-06

    Thermodynamic properties of ternary Al-Hf-Ni system, such as {sup ex}G, ?{sub Al}, ?{sub Ni} and ?{sub Zr} at 1373K were predicted on the basis of thermodynamic properties of binary systems included in the investigated ternary system. The idea of predicting {sup ex}G values was regarded as the calculation of excess Gibbs energy values inside a certain area (a Gibbs triangle) unless all boundary conditions, that is values of {sup ex}G on all legs of the triangle are known. {sup ex}G and L{sub ijk} ternary interaction parameters in the Muggianu extension of the Redlich-Kister formalism are calculated numerically using Wolfram Mathematica 9 software.

  12. Computational investigation of the phase stability and the electronic properties for Gd-doped HfO{sub 2}

    SciTech Connect (OSTI)

    Wang, L. G.; Xiong, Y.; Xiao, W.; Cheng, L.; Du, J.; Tu, H.; Walle, A. van de

    2014-05-19

    Rare earth doping is an important approach to improve the desired properties of high-k gate dielectric oxides. We have carried out a comprehensive theoretical investigation on the phase stability, band gap, formation of oxygen vacancies, and dielectric properties for the Gd-doped HfO{sub 2}. Our calculated results indicate that the tetragonal phase is more stable than the monoclinic phase when the Gd doping concentration is greater than 15.5%, which is in a good agreement with the experimental observations. The dopant's geometric effect is mainly responsible for the phase stability. The Gd doping enlarges the band gap of the material. The dielectric constant for the Gd-doped HfO{sub 2} is in the range of 20–30 that is suitable for high-k dielectric applications. The neutral oxygen vacancy formation energy is 3.2 eV lower in the doped material than in pure HfO{sub 2}. We explain the experimental observation on the decrease of photoluminescence intensities in the Gd-doped HfO{sub 2} according to forming the dopant-oxygen vacancy complexes.

  13. Decontamination of soils and materials containing medium-fired PuO{sub 2} using inhibited fluorides with polymer filtration technology

    SciTech Connect (OSTI)

    Temer, D.J.; Villarreal, R.; Smith, B.F.

    1997-10-01

    The decontamination of soils and/or materials from medium-fired plutonium oxide (PuO{sub 2}) with an effective and efficient decontamination agent that will not significantly dissolve the matrix requires a new and innovative technology. After testing several decontamination agents and solutions for dissolution of medium-fired PuO{sub 2}, the most successful decontamination solutions were fluoride compounds, which were effective in breaking the Pu-oxide bond but would not extensively dissolve soil constituents and other materials. The fluoride compounds, tetra fluoboric acid (HBF{sub 4}) and hydrofluorosilicic acid (H{sub 2}F{sub 6}Si), were effective in dissolving medium-fired PuO{sub 2}, and did not seem to have the potential to dissolve the matrix. In both compounds, the fluoride atom is attached to a boron or silicon atom that inhibits the reactivity of the fluoride towards other compounds or materials containing atoms less attracted to the fluoride atom in an acid solution. Because of this inhibition of the reactivity of the fluoride ion, these compounds are termed inhibited fluoride compounds or agents. Both inhibited fluorides studied effectively dissolved medium-fired PuO{sub 2} but exhibited a tendency to not attack stainless steel or soil. The basis for selecting inhibited fluorides was confirmed during leaching tests of medium-fired PuO{sub 2} spiked into soil taken from the Idaho National Engineering Laboratory (INEL). When dissolved in dilute HNO{sub 3}, HCl, or HBr, both inhibited fluoride compounds were effective at solubilizing the medium-fired PuO{sub 2} from spiked INEL soil.

  14. Methods for producing complex films, and films produced thereby

    SciTech Connect (OSTI)

    Duty, Chad E.; Bennett, Charlee J. C.; Moon, Ji -Won; Phelps, Tommy J.; Blue, Craig A.; Dai, Quanqin; Hu, Michael Z.; Ivanov, Ilia N.; Jellison, Jr., Gerald E.; Love, Lonnie J.; Ott, Ronald D.; Parish, Chad M.; Walker, Steven

    2015-11-24

    A method for producing a film, the method comprising melting a layer of precursor particles on a substrate until at least a portion of the melted particles are planarized and merged to produce the film. The invention is also directed to a method for producing a photovoltaic film, the method comprising depositing particles having a photovoltaic or other property onto a substrate, and affixing the particles to the substrate, wherein the particles may or may not be subsequently melted. Also described herein are films produced by these methods, methods for producing a patterned film on a substrate, and methods for producing a multilayer structure.

  15. Hydrogen desorption kinetics for aqueous hydrogen fluoride and remote hydrogen plasma processed silicon (001) surfaces

    SciTech Connect (OSTI)

    King, Sean W. Davis, Robert F.; Carter, Richard J.; Schneider, Thomas P.; Nemanich, Robert J.

    2015-09-15

    The desorption kinetics of molecular hydrogen (H{sub 2}) from silicon (001) surfaces exposed to aqueous hydrogen fluoride and remote hydrogen plasmas were examined using temperature programmed desorption. Multiple H{sub 2} desorption states were observed and attributed to surface monohydride (SiH), di/trihydride (SiH{sub 2/3}), and hydroxide (SiOH) species, subsurface hydrogen trapped at defects, and hydrogen evolved during the desorption of surface oxides. The observed surface hydride species were dependent on the surface temperature during hydrogen plasma exposure with mono, di, and trihydride species being observed after low temperature exposure (150 °C), while predominantly monohydride species were observed after higher temperature exposure (450 °C). The ratio of surface versus subsurface H{sub 2} desorption was also found to be dependent on the substrate temperature with 150 °C remote hydrogen plasma exposure generally leading to more H{sub 2} evolved from subsurface states and 450 °C exposure leading to more H{sub 2} desorption from surface SiH{sub x} species. Additional surface desorption states were observed, which were attributed to H{sub 2} desorption from Si (111) facets formed as a result of surface etching by the remote hydrogen plasma or aqueous hydrogen fluoride treatment. The kinetics of surface H{sub 2} desorption were found to be in excellent agreement with prior investigations of silicon surfaces exposed to thermally generated atomic hydrogen.

  16. Measurement of the Melting Point Temperature of Several Lithium-Sodium-Beryllium Fluoride Salt (Flinabe) Mixtures

    SciTech Connect (OSTI)

    McDonald, J.M; Nygren, R.E.; Lutz, T.J.; Tanaka, T.J; Ulrickson, M.A.; Boyle, T.J.; Troncosa, K.P.

    2005-04-15

    The molten salt Flibe, a combination of lithium and beryllium fluorides studied for molten salt fission reactors, has been proposed as a breeder and coolant for fusion applications. The melting points of 2LiF-BeF{sub 2} and LiF-BeF{sub 2} are 460 deg. C and 363 deg. C, but LiF-BeF{sub 2} is rather viscous and has less lithium for breeding. In the Advanced Power Extraction (APEX) Program, concepts with a free flowing liquid for the first wall and blanket were investigated. Flinabe (a mixture of LiF, BeF{sub 2} and NaF) was selected for a molten salt design because a melting temperature below 350 deg. C appeared possible and this provided an attractive operating temperature window for a reactor. To confirm that a ternary salt with a low melting temperature existed, several combinations of the fluoride salts, LiF, NaF and BeF{sub 2}, were melted in a stainless steel crucible under vacuum. One had an apparent melting temperature of 305 deg. C. The test system, preparation of the mixtures, melting procedures and temperature curves for the melting and cooling are presented along with the apparent melting points. Thermal modeling of the salt pool and crucible is reported in an accompanying paper.

  17. Effect of Phosphate, Fluoride, and Nitrate on Gibbsite Dissolution Rate and Solubility

    SciTech Connect (OSTI)

    Herting, Daniel L.

    2014-01-29

    Laboratory tests have been completed with simulated tank waste samples to investigate the effects of phosphate, fluoride, and nitrate on the dissolution rate and equilibrium solubility of gibbsite in sodium hydroxide solution at 22 and 40{degrees}C. Results are compared to relevant literature data and to computer model predictions. The presence of sodium nitrate (3 M) caused a reduction in the rate of gibbsite dissolution in NaOH, but a modest increase in the equilibrium solubility of aluminum. The increase in solubility was not as large, though, as the increase predicted by the computer model. The presence of phosphate, either as sodium phosphate or sodium fluoride phosphate, had a negligible effect on the rate of gibbsite dissolution, but caused a slight increase in aluminum solubility. The magnitude of the increased solubility, relative to the increase caused by sodium nitrate, suggests that the increase is due to ionic strength (or water activity) effects, rather than being associated with the specific ion involved. The computer model predicted that phosphate would cause a slight decrease in aluminum solubility, suggesting some Al-PO4 interaction. No evidence was found of such an interaction.

  18. Method and apparatus for producing laser radiation following two-photon excitation of a gaseous medium

    DOE Patents [OSTI]

    Bischel, William K. [Menlo Park, CA; Jacobs, Ralph R. [Livermore, CA; Prosnitz, Donald [Hamden, CT; Rhodes, Charles K. [Palo Alto, CA; Kelly, Patrick J. [Fort Lewis, WA

    1979-02-20

    Method and apparatus for producing laser radiation by two-photon optical pumping of an atomic or molecular gaseous medium and subsequent lasing action. A population inversion is created as a result of two-photon absorption of the gaseous species. Stark tuning is utilized, if necessary, in order to tune the two-photon transition into exact resonance. In particular, gaseous ammonia (NH.sub.3) or methyl fluoride (CH.sub.3 F) is optically pumped by a pair of CO.sub.2 lasers to create a population inversion resulting from simultaneous two-photon excitation of a high-lying vibrational state, and laser radiation is produced by stimulated emission of coherent radiation from the inverted level.

  19. Method and apparatus for producing laser radiation following two-photon excitation of a gaseous medium

    DOE Patents [OSTI]

    Bischel, W.K.; Jacobs, R.R.; Prosnitz, D.P.; Rhodes, C.K.; Kelly, P.J.

    1979-02-20

    Method and apparatus are disclosed for producing laser radiation by two-photon optical pumping of an atomic or molecular gaseous medium and subsequent lasing action. A population inversion is created as a result of two-photon absorption of the gaseous species. Stark tuning is utilized, if necessary, in order to tune the two-photon transition into exact resonance. In particular, gaseous ammonia (NH[sub 3]) or methyl fluoride (CH[sub 3]F) is optically pumped by a pair of CO[sub 2] lasers to create a population inversion resulting from simultaneous two-photon excitation of a high-lying vibrational state, and laser radiation is produced by stimulated emission of coherent radiation from the inverted level. 3 figs.

  20. Luminescence and electrical properties of solution-processed ZnO thin films by adding fluorides and annealing atmosphere

    SciTech Connect (OSTI)

    Choi, Sungho; Park, Byung-Yoon; Jung, Ha-Kyun

    2011-06-15

    Highlights: {yields} Systematic study of the fluorides doped solution-processed ZnO thin films via the luminescence and electrical behaviors. {yields} Defect-related visible emission bands are affected by annealing ambient and fluoride addition. {yields} Adding lithium fluoride followed by annealing in oxygen ambient leads to a controlled defect density with proper TFT performance. -- Abstract: To develop an efficient channel layer for thin film transistors (TFTs), understanding the defect-related luminescence and electrical property is crucial for solution-processed ZnO thin films. Film growth with the fluorides addition, especially using LiF, followed by the oxygen ambient post-annealing leads to decreased defect-related emission as well as enhanced switching property. The saturation mobility and current on/off ratio are 0.31 cm{sup 2} V{sup -1} s{sup -1} and 1.04 x 10{sup 3}. Consequently, we can visualize an optimized process condition and characterization method for solution-processed TFT based on the fluorine-doped ZnO film channel layer by considering the overall emission behavior.

  1. Enhancement of perpendicular magnetic anisotropy and transmission of spin-Hall-effect-induced spin currents by a Hf spacer layer in W/Hf/CoFeB/MgO layer structures

    SciTech Connect (OSTI)

    Pai, Chi-Feng; Nguyen, Minh-Hai; Vilela-Leão, Luis Henrique; Buhrman, R. A.; Belvin, Carina; Ralph, D. C.

    2014-02-24

    We report that strong perpendicular magnetic anisotropy of the ferromagnetic layer in a W/CoFeB/MgO multilayer structure can be established by inserting a Hf layer as thin as 0.25 nm between the W and CoFeB layers. The Hf spacer also allows transmission of spin currents generated by an in-plane charge current in the W layer to apply strong spin torque on the CoFeB, thereby enabling current-driven magnetic switching. The antidamping-like and field-like components of the spin torque exerted on a 1 nm CoFeB layer are of comparable magnitudes in this geometry. Both components originate from the spin Hall effect in the underlying W layer.

  2. AN EXPERIMENT TO STUDY PEBBLE BED LIQUID-FLUORIDE-SALT HEAT TRANSFER

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L; Aaron, Adam M; Heatherly, Dennis Wayne; Holcomb, David Eugene; Kisner, Roger A; McCarthy, Mike; Peretz, Fred J; Wilgen, John B; Wilson, Dane F

    2011-01-01

    A forced-convection liquid-fluoride-salt loop is being constructed at Oak Ridge National Laboratory (ORNL). This loop was designed as a versatile experimental facility capable of supporting general thermal/fluid/corrosion testing of liquid fluoride salts. The initial test configuration is designed to support the Pebble Bed Advanced High-Temperature Reactor and incorporates a test section designed to examine the heat transfer behavior of FLiNaK salt in a heated pebble bed. The loop is constructed of Inconel 600 and is capable of operating at up to 700oC. It contains a total of 72 kg of FLiNaK salt and uses an overhung impeller centrifugal sump pump that can provide FLiNaK flow at 4.5 kg/s with a head of 0.125 MPa. The test section is made of silicon carbide (SiC) and contains approximately 600 graphite spheres, 3 cm in diameter. The pebble bed is heated using a unique inductive technique. A forced induction air cooler removes the heat added to the pebble bed. The salt level within the loop is maintained by controlling an argon cover gas pressure. Salt purification is performed in batch mode by transferring the salt from the loop into a specially made nickel crucible system designed to remove oxygen, moisture and other salt impurities. Materials selection for the loop and test section material was informed by 3 months of Inconel 600 and SiC corrosion testing as well as tests examining subcomponent performance in the salt. Several SiC-to-Inconel 600 mechanical joint designs were considered before final salt and gas seals were chosen. Structural calculations of the SiC test section were performed to arrive at a satisfactory test section configuration. Several pump vendors provided potential loop pump designs; however, because of cost, the pump was designed and fabricated in-house. The pump includes a commercial rotating dry gas shaft seal to maintain loop cover gas inventory. The primary instrumentation on the loop includes temperature, pressure, and loop flow rate

  3. Effect of the oxide layer on current-induced spin-orbit torques in Hf|CoFeB|MgO and Hf|CoFeB|TaO{sub x} structures

    SciTech Connect (OSTI)

    Akyol, Mustafa; Alzate, Juan G.; Yu, Guoqiang; Upadhyaya, Pramey; Wong, Kin L.; Khalili Amiri, Pedram; Wang, Kang L.; Ekicibil, Ahmet

    2015-01-19

    We study the effect of the oxide layer on the current-induced spin-orbit torques (SOTs) in perpendicularly magnetized Hf|CoFeB|MgO (MgO-capped) or Hf|CoFeB|TaO{sub x} (TaO{sub x}-capped) structures. The effective fields corresponding to both the field-like and damping-like current-induced SOTs are characterized using electric transport measurements. Both torques are found to be significantly stronger in MgO-capped structures than those in TaO{sub x}-capped structures. The difference in field-like and damping-like SOTs in the different structures may be attributed to the different Rashba-like Hamiltonian, arising from the difference in the electric potential profiles across the oxide|ferromagnet interfaces in the two cases, as well as possible structural and oxidation differences in the underlying CoFeB and Hf layers. Our results show that the oxide layer in heavy-metal|ferromagnet|oxide trilayer structures has a very significant effect on the generated SOTs for manipulation of ferromagnetic layers. These findings could potentially be used to engineer SOT devices with enhanced current-induced switching efficiency.

  4. Morphology and chemical termination of HF-etched Si{sub 3}N{sub 4} surfaces

    SciTech Connect (OSTI)

    Liu, Li-Hong; Debenedetti, William J. I.; Peixoto, Tatiana; Gokalp, Sumeyra; Shafiq, Natis; Veyan, Jean-François; Chabal, Yves J.; Michalak, David J.; Hourani, Rami

    2014-12-29

    Several reports on the chemical termination of silicon nitride films after HF etching, an important process in the microelectronics industry, are inconsistent claiming N-H{sub x}, Si-H, or fluorine termination. An investigation combining infrared and x-ray photoelectron spectroscopies with atomic force and scanning electron microscopy imaging reveals that under some processing conditions, salt microcrystals are formed and stabilized on the surface, resulting from products of Si{sub 3}N{sub 4} etching. Rinsing in deionized water immediately after HF etching for at least 30 s avoids such deposition and yields a smooth surface without evidence of Si-H termination. Instead, fluorine and oxygen are found to terminate a sizeable fraction of the surface in the form of Si-F and possibly Si-OH bonds. The relatively unique fluorine termination is remarkably stable in both air and water and could lead to further chemical functionalization pathways.

  5. Fluoride Salt-Cooled High-Temperature Reactor Technology Development and Demonstration Roadmap

    SciTech Connect (OSTI)

    Holcomb, David Eugene; Flanagan, George F; Mays, Gary T; Pointer, William David; Robb, Kevin R; Yoder Jr, Graydon L

    2013-11-01

    Fluoride salt-cooled High-temperature Reactors (FHRs) are an emerging reactor class with potentially advantageous performance characteristics, and fully passive safety. This roadmap describes the principal remaining FHR technology challenges and the development path needed to address the challenges. This roadmap also provides an integrated overview of the current status of the broad set of technologies necessary to design, evaluate, license, construct, operate, and maintain FHRs. First-generation FHRs will not require any technology breakthroughs, but do require significant concept development, system integration, and technology maturation. FHRs are currently entering early phase engineering development. As such, this roadmap is not as technically detailed or specific as would be the case for a more mature reactor class. The higher cost of fuel and coolant, the lack of an approved licensing framework, the lack of qualified, salt-compatible structural materials, and the potential for tritium release into the environment are the most obvious issues that remain to be resolved.

  6. Relation between the overpotentials and structures of graphite fluoride electrode in nonaqueous lithium cell

    SciTech Connect (OSTI)

    Watanabe, N.; Hagiwara, R.; Nakajima, T.

    1984-09-01

    A study was made of the relation between the cathode overpotentials and structures of two kinds of graphite fluorides, (CF)n and (C2F)n in a nonaqueous lithium battery. The overpotential of (CF)n electrode decreased with increasing interlayer spacing and decreasing thickness of the crystallite along the C axis. However, it was found that the overpotential of (C2F)n electrode primarily depended on the amount of the defects which would be present in the form of polynuclear aromatic carbon rings in (C2F)n. The defects in (C2F)n would give the short circuiting paths for the transfer of a lithium ion in diffusion layer. The higher discharge potential of (C2F)n than that of (CF)n was mainly attributed to the effect of the defects contained in (C2F)n. 17 references.

  7. Detailed optical characterization of a near diffraction limited xenon fluoride laser

    SciTech Connect (OSTI)

    Londono, C. ); Smith, M.J.; Trainor, D.W.; Itzkan, I. ); Berggren, R. ); Fulghum, S.F. )

    1988-12-01

    A 1 m gain length, electron beam pumped xenon fluoride laser (lambda = 353, 351 nm) utilizing two laser mixtures of lean and rich NF/sub 3/, with Xe and balance Ne, was operated with a confocal unstable resonator with magnification of 2.24. The resultant beam quality was diagnosed with both shearing interferometry to measure near-field phase and far-field focal spot evaluation techniques. These measurements resulted in a beam quality of <1.15 times the diffraction limit with no evidence of the wide angle energy loss. This laser device was fully characterized with regard to electron beam deposition uniformity, transient refractive index effects, and optical quality of the resonator and diagnostic components.

  8. Temperature requirements and corrosion rates in combustion driven hydrogen fluoride supersonic diffusion lasers

    SciTech Connect (OSTI)

    Nordine, P.C.

    1983-08-01

    A maximum F-atom yield from F2 occurs in a combustion driven hydrogen fluoride supersonic diffusion laser (HFSDL) because the amount of fluorine reacted with hydrogen (or deuterium) continues to increase with temperature after most of the unreacted fluorine has been thermally dissociated. A small decease from the maximum combustor F-atom yield allows a significant decease in the required temperature and in the corrosion rates that uncooled laser nozzles would display. The temperatures that give F-atom yields equal to 95 percent of the maximum values were calculated for typical HFSDL combustor pressures and F-atom mole fractions and the corrosion rates of uncooled nozzles were evaluated at these temperatures. The corrosion rates of materials resistant to fluorine attack at the highest temperatures would allow HFSDL applications or test experiments up to several hours duration.

  9. Experiments and theory on parametric instabilities excited in HF heating experiments at HAARP

    SciTech Connect (OSTI)

    Kuo, Spencer; Snyder, Arnold; Lee, M. C.

    2014-06-15

    Parametric instabilities excited by O-mode HF heater and the induced ionospheric modification were explored via HAARP digisonde operated in a fast mode. The impact of excited Langmuir waves and upper hybrid waves on the ionosphere are manifested by bumps in the virtual spread, which expand the ionogram echoes upward as much as 140 km and the downward range spread of the sounding echoes, which exceeds 50 km over a significant frequency range. The theory of parametric instabilities is presented. The theory identifies the ionogram bump located between the 3.2 MHz heater frequency and the upper hybrid resonance frequency and the bump below the upper hybrid resonance frequency to be associated with the Langmuir and upper hybrid instabilities, respectively. The Langmuir bump is located close to the upper hybrid resonance frequency, rather than to the heater frequency, consistent with the theory. Each bump in the virtual height spread of the ionogram is similar to the cusp occurring in daytime ionograms at the E-F2 layer transition, indicating that there is a small ledge in the density profile similar to E-F2 layer transitions. The experimental results also show that the strong impact of the upper hybrid instability on the ionosphere can suppress the Langmuir instability.

  10. Stabilization of Th{sup 3+} ions into mixed-valence thorium fluoride

    SciTech Connect (OSTI)

    Dubois, Marc; Dieudonne, Belto; Mesbah, Adel; Bonnet, Pierre; El-Ghozzi, Malika; Renaudin, Guillaume; Avignant, Daniel

    2011-01-15

    The unusual oxidation state +3 of the thorium has been stabilized into a lithium containing non-stoichiometric mixed-valence (III/IV) thorium fluorinated phase with formula Li{sub 2+x}Th{sub 12}F{sub 50} (0fluoride. The electrochemical insertion of Li{sup +} ions into the open channels of the host matrix has been carried out at 60 {sup o}C, using an alkylcarbonate PC-LiClO{sub 4} 1 M electrolyte. The Li{sup +} and Th{sup 3+} contents, both in the starting composition and the Li{sup +} inserted ones, were investigated by high resolution solid state {sup 7}Li NMR and EPR, respectively. -- Graphical abstract: Electrochemical insertion of Li{sup +} ions into mixed-valence III/IV thorium fluoride and EPR spectra for the raw and inserted compounds. Display Omitted

  11. Features of the band structure and conduction mechanisms in the n-HfNiSn semiconductor heavily doped with Ru

    SciTech Connect (OSTI)

    Romaka, V. A.; Rogl, P.; Romaka, V. V.; Stadnyk, Yu. V.; Korzh, R. O.; Krayovskyy, V. Ya.; Horyn, A. M.

    2014-12-15

    The crystal and electronic structure and energy and kinetic properties of the n-HfNiSn semiconductor heavily doped with a Ru acceptor impurity are investigated in the temperature and Ru concentration ranges T = 80400 K and N{sub A}{sup Ru} ? 9.5 10{sup 19}?5.7 10{sup 20} cm{sup ?3} (x = 00.03), respectively. The mechanism of structural-defect generation is established, which changes the band gap and degree of compensation of the semiconductor and consists in the simultaneous concentration reduction and elimination of donor structural defects by means of the displacement of ?1% of Ni atoms from the Hf (4a) positions, the generation of acceptor structural defects upon the substitution of Ru atoms for Ni atoms in the 4c positions, and the generation of donor defects in the form of vacancies in the Sn (4b) positions. The calculated electronic structure of HfNi{sub 1?x}Ru{sub x}Sn is consistent with the experiment. The results obtained are discussed within the Shklovsky-Efros model for a heavily doped and compensated semiconductor.

  12. Method of producing submicron size particles and product produced thereby

    DOE Patents [OSTI]

    Bourne, R.S.; Eichman, C.C.; Welbon, W.W.

    1988-05-11

    Submicron size particles are produced by using a sputtering process to deposit particles into a liquid. The liquid is processed to recover the particles therefrom, and the particles have sizes in the range of twenty to two hundred Angstroms. Either metallic or non-metallic particles can be produced, and the metallic particles can be used in ''metallic inks.'' 4 figs.

  13. Role of HfO2/SiO2 thin-film interfaces in near-ultraviolet absorption and pulsed laser damage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Papernov, Semyon; Kozlov, Alexei A.; Oliver, James B.; Smith, Chris; Jensen, Lars; Guenster, Stefan; Maedebach, Heinrich; Ristau, Detlev

    2016-07-15

    Here, the role of thin-film interfaces in the near-ultraviolet (near-UV) absorption and pulsed laser-induced damage was studied for ion-beam-sputtered and electron-beam-evaporated coatings comprised from HfO2 and SiO2 thin-film pairs. To separate contributions from the bulk of the film and from interfacial areas, absorption and damage threshold measurements were performed for a one-wave (355-nm wavelength) thick, HfO2 single-layer film and for a film containing seven narrow HfO2 layers separated by SiO2 layers. The seven-layer film was designed to have a total optical thickness of HfO2 layers, equal to one wave at 355 nm and an E-field peak and average intensity similarmore » to a single-layer HfO2 film. Absorption in both types of films was measured using laser calorimetry and photothermal heterodyne imaging. The results showed a small contribution to total absorption from thin-film interfaces as compared to HfO2 film material. The relevance of obtained absorption data to coating near-UV, nanosecond-pulse laser damage was verified by measuring the damage threshold and characterizing damage morphology. The results of this study revealed a higher damage resistance in the seven-layer coating as compared to the single-layer HfO2 film in both sputtered and evaporated coatings. The results are explained through the similarity of interfacial film structure with structure formed during the codeposition of HfO2 and SiO2 materials.« less

  14. Assessment of the Use of Nitrogen Trifluoride for Purifying Coolant and Heat Transfer Salts in the Fluoride Salt-Cooled High-Temperature Reactor

    SciTech Connect (OSTI)

    Scheele, Randall D.; Casella, Andrew M.

    2010-09-28

    This report provides an assessment of the use of nitrogen trifluoride for removing oxide and water-caused contaminants in the fluoride salts that will be used as coolants in a molten salt cooled reactor.

  15. Method for producing a borohydride

    DOE Patents [OSTI]

    Kong, Peter C.

    2010-06-22

    A method for producing a borohydride is described that includes the steps of providing a source of borate; providing a material that chemically reduces the source of the borate to produce a borohydride; and reacting the source of the borate and the material by supplying heat at a temperature that substantially effects the production of the borohydride.

  16. Method for producing a borohydride

    DOE Patents [OSTI]

    Kong, Peter C.

    2008-09-02

    A method for producing a borohydride is described and which includes the steps of providing a source of borate; providing a material which chemically reduces the source of the borate to produce a borohydride; and reacting the source of borate and the material by supplying heat at a temperature which substantially effects the production of the borohydride.

  17. Method of producing molybdenum-99

    DOE Patents [OSTI]

    Pitcher, Eric John

    2013-05-28

    Method of producing molybdenum-99, comprising accelerating ions by means of an accelerator; directing the ions onto a metal target so as to generate neutrons having an energy of greater than 10 MeV; directing the neutrons through a converter material comprising techentium-99 to produce a mixture comprising molybdenum-99; and, chemically extracting the molybdenum-99 from the mixture.

  18. Methods for producing complex films, and films produced thereby...

    Office of Scientific and Technical Information (OSTI)

    This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and ... A method for producing a film, the method comprising melting a layer of precursor ...

  19. The integration of Human Factors (HF) in the SAR process training course text

    SciTech Connect (OSTI)

    Ryan, T.G.

    1995-03-01

    This text provides the technical basis for a two-day course on human factors (HF), as applied to the Safety Analysis Report (SAR) process. The overall objective of this text and course is to: provide the participant with a working knowledge of human factors-related requirements, suggestions for doing a human safety analysis applying a graded approach, and an ability to demonstrate using the results of the human safety analysis, that human factors elements as defined by DOE (human factors engineering, procedures, training, oversight, staffing, qualifications), can support wherever necessary, nuclear safety commitments in the SAR. More specifically, the objectives of the text and course are: (1) To provide the SAR preparer with general guidelines for doing HE within the context of a graded approach for the SAR; (2) To sensitize DOE facility managers and staff, safety analysts and SAR preparers, independent reviewers, and DOE reviewers and regulators, to DOE Order 5480.23 requirements for HE in the SAR; (3) To provide managers, analysts, reviewers and regulators with a working knowledge of HE concepts and techniques within the context of a graded approach for the SAR, and (4) To provide SAR managers and DOE reviewers and regulators with general guidelines for monitoring and coordinating the work of preparers of HE inputs throughout the SAR process, and for making decisions regarding the safety relevance of HE inputs to the SAR. As a ready reference for implementing the human factors requirements of DOE Order 5480.22 and DOE Standard 3009-94, this course text and accompanying two-day course are intended for all persons who are involved in the SAR.

  20. Carbide Coatings for Nickel Alloys, Graphite and Carbon/Carbon Composites to be used in Fluoride Salt Valves

    SciTech Connect (OSTI)

    Nagle, Denis; Zhang, Dajie

    2015-10-22

    The focus of this research was concerned with developing materials technology that supports the evolution of Generation IV Advanced High Temperature Reactor (AHTR) concepts. Specifically, we investigate refractory carbide coatings for 1) nickel alloys, and 2) commercial carbon-carbon composites (CCCs). Numerous compelling reasons have driven us to focus on carbon and carbide materials. First, unlike metals, the strength and modulus of CCCs increase with rising temperature. Secondly, graphite and carbon composites have been proven effective for resisting highly corrosive fluoride melts such as molten cryolite [Na₃AlF₆] at ~1000°C in aluminum reduction cells. Thirdly, graphite and carbide materials exhibit extraordinary radiation damage tolerance and stability up to 2000°C. Finally, carbides are thermodynamically more stable in liquid fluoride salt than the corresponding metals (i.e. Cr and Zr) found in nickel based alloys.

  1. Time dependence of desorbed ground-state lithium atoms following pulsed-electron-beam irradiation of lithium fluoride

    SciTech Connect (OSTI)

    Green, T.A.; Loubriel, G.M.; Richards, P.M.; Tolk, N.H.; Haglund R.F. Jr.

    1987-01-15

    Recent experiments have shown that during the irradiation of lithium fluoride crystals by a chopped electron beam the signal of desorbed ground-state lithium atoms continues for times up to seconds in the beam-off period. A quantitative model is presented which connects the desorption of lithium atoms with the diffusion of lithium fluoride F centers to the surface. The model thus introduces a new source of time delay (F-center diffusion) in the desorption of ground-state metal atoms from alkali halides. Formerly it has been supposed that the delay occurred entirely during the surface desorption step. The model fits the experimental data very well, and should be applicable to other similar systems. For the cases considered here, F-center diffusion turns out to be the primary source of delay in the Li-atom signal. The model suggests some new directions for investigation.

  2. Methods of producing cesium-131

    DOE Patents [OSTI]

    Meikrantz, David H; Snyder, John R

    2012-09-18

    Methods of producing cesium-131. The method comprises dissolving at least one non-irradiated barium source in water or a nitric acid solution to produce a barium target solution. The barium target solution is irradiated with neutron radiation to produce cesium-131, which is removed from the barium target solution. The cesium-131 is complexed with a calixarene compound to separate the cesium-131 from the barium target solution. A liquid:liquid extraction device or extraction column is used to separate the cesium-131 from the barium target solution.

  3. Cellulase producing microorganism ATCC 55702

    DOE Patents [OSTI]

    Dees, H.C.

    1997-12-30

    Bacteria which produce large amounts of cellulase--containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualifies for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques. 5 figs.

  4. Cellulase producing microorganism ATCC 55702

    DOE Patents [OSTI]

    Dees, H. Craig

    1997-01-01

    Bacteria which produce large amounts of cellulase--containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualifies for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  5. Microorganisms for producing organic acids

    SciTech Connect (OSTI)

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-09-30

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  6. Methods of producing transportation fuel

    DOE Patents [OSTI]

    Nair, Vijay; Roes, Augustinus Wilhelmus Maria; Cherrillo, Ralph Anthony; Bauldreay, Joanna M.

    2011-12-27

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing transportation fuel is described herein. The method for producing transportation fuel may include providing formation fluid having a boiling range distribution between -5.degree. C. and 350.degree. C. from a subsurface in situ heat treatment process to a subsurface treatment facility. A liquid stream may be separated from the formation fluid. The separated liquid stream may be hydrotreated and then distilled to produce a distilled stream having a boiling range distribution between 150.degree. C. and 350.degree. C. The distilled liquid stream may be combined with one or more additives to produce transportation fuel.

  7. Conversion Reaction Mechanisms in Lithium Ion Batteries: Study of the Binary Metal Fluoride Electrodes

    SciTech Connect (OSTI)

    Wang, Feng; Robert, Rosa; Chernova, Natasha A.; Pereira, Nathalie; Omenya, Fredrick; Badway, Fadwa; Hua, Xiao; Ruotolo, Michael; Zhang, Ruigang; Wu, Lijun; Volkov, Vyacheslav; Su, Dong; Key, Baris; Whittingham, M. Stanley; Grey, Clare P.; Amatucci, Glenn G.; Zhu, Yimei; Graetz, Jason

    2015-10-15

    Materials that undergo a conversion reaction with lithium (e.g., metal fluorides MF{sub 2}: M = Fe, Cu, ...) often accommodate more than one Li atom per transition-metal cation, and are promising candidates for high-capacity cathodes for lithium ion batteries. However, little is known about the mechanisms involved in the conversion process, the origins of the large polarization during electrochemical cycling, and why some materials are reversible (e.g., FeF{sub 2}) while others are not (e.g., CuF{sub 2}). In this study, we investigated the conversion reaction of binary metal fluorides, FeF{sub 2} and CuF{sub 2}, using a series of local and bulk probes to better understand the mechanisms underlying their contrasting electrochemical behavior. X-ray pair-distribution-function and magnetization measurements were used to determine changes in short-range ordering, particle size and microstructure, while high-resolution transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS) were used to measure the atomic-level structure of individual particles and map the phase distribution in the initial and fully lithiated electrodes. Both FeF{sub 2} and CuF{sub 2} react with lithium via a direct conversion process with no intercalation step, but there are differences in the conversion process and final phase distribution. During the reaction of Li{sup +} with FeF{sub 2}, small metallic iron nanoparticles (<5 nm in diameter) nucleate in close proximity to the converted LiF phase, as a result of the low diffusivity of iron. The iron nanoparticles are interconnected and form a bicontinuous network, which provides a pathway for local electron transport through the insulating LiF phase. In addition, the massive interface formed between nanoscale solid phases provides a pathway for ionic transport during the conversion process. These results offer the first experimental evidence explaining the origins of the high lithium reversibility in FeF{sub 2}. In contrast

  8. TRANSURANIC ELEMENT, COMPOSITION THEREOF, AND METHODS FOR PRODUCING SEPARATING AND PURIFYING SAME

    DOE Patents [OSTI]

    Wahl, A.C.

    1961-09-19

    A process of separating plutonium from fission products contained in an aqueous solution is described. Plutonium, in the tri- or tetravalent state, and the fission products are coprecipitated on lanthanum fluoride, lanthanum oxalate, cerous fluoride, cerous phosphate, ceric iodate, zirconyl phosphate, thorium iodate, or thorium fluoride. The precipitate is dissolved in acid, and the plutonium is oxidized to the hexavalent state. The fission products are selectively precipitated on a carrier of the above group but different from that used for the coprecipitation. The plutonium in the solution, after removal of the fission product precipitate, is reduced to at least the tetravalent state and precipitated on lanthanum fluoride, lanthanum phosphate, lanthanum oxalate, lanthanum hydroxide, cerous fluoride, cerous phosphate, cerous oxalate, cerous hydroxide, ceric iodate, zirconyl phosphate, zirconyl iodate, zirconium hydroxide, thorium fluoride, thorium oxalate, thorium iodate, thorium peroxide, uranium iodate, uranium oxalate, or uranium peroxide, again using a different carrier than that used for the precipitation of the fission products.

  9. Superacid Catalyzed Depolymerization and Conversion of Coals. Final Technical Report. [HF:BF{sub 2}/H{sub 2}

    DOE R&D Accomplishments [OSTI]

    Olah, G.

    1980-01-01

    We were interested in applying superacid catalyzed cleavage-depolymerization and ionic hydrogenation low temperature conversion of coal to liquid hydrocarbon, as well as obtaining information about the reactions involved and the structure of intermediates of the coal liquefaction process. In order to show the feasibility of our proposed research we have carried out preliminary investigation in these areas. Preceding our work there was no practical application of a superacid system to coal liquefaction. We carried out an extensive study of the potential of the HF:BF{sub 3}/H{sub 2} system for coal hydroliquefaction. Under varying conditions of reactant ratio, reaction time and temperature, we were able to obtain over 95% pyridine extractible product by treating coal in HF:BF{sub 3}:H{sub 2} system at approx. 100 degrees C for 4 hours. The coal to acid ratio was 1:5 and FB{sub 3} at 900 psi and H{sub 2} at 500 psi were used. These are extremely encouraging results in that the conditions used are drastically milder than those used in any known process, such as Exxon donor solvent and related processes. The cyclohexane extractibility of the treated coal was as high as 27% and the yield of liquid distillate at 400 degrees C/5 x 10{sup -3}/sup torr/ was approx. 30%. The infrared spectrum of product coal, extracts and distillates were distinctly different from the starting coal and show a significant increase in the amount of saturates. The {sup 1}H NMR spectrum of cyclohexane extract of the treated coal shows essentially all aliphatic photons. The spectra of other treated coal extracts show increased amounts and types of aliphatic protons as well as significant amounts of protons bound to unsaturated sites. This again indicates that the HF-BF{sub 3} system is depolymerizing the coal to small fragments which are soluble in non-polar solvents.

  10. Room temperature strain rate sensitivity in precursor derived HfO{sub 2}/Si-C-N(O) ceramic nanocomposites

    SciTech Connect (OSTI)

    Sujith, Ravindran; Kumar, Ravi

    2014-01-15

    Investigation on the room temperature strain rate sensitivity using depth sensing nanoindentation is carried out on precursor derived HfO{sub 2}/Si-C-N(O) ceramic nanocomposite sintered using pulsed electric current sintering. Using constant load method the strain rate sensitivity values are estimated. Lower strain rate sensitivity of ? 3.7 10{sup ?3} is observed and the limited strain rate sensitivity of these ceramic nanocomposites is explained in terms of cluster model. It is concluded that presence of amorphous Si-C-N(O) clusters are responsible for the limited flowability in these ceramics.

  11. Thickness independent reduced forming voltage in oxygen engineered HfO{sub 2} based resistive switching memories

    SciTech Connect (OSTI)

    Sharath, S. U. Kurian, J.; Komissinskiy, P.; Hildebrandt, E.; Alff, L.; Bertaud, T.; Walczyk, C.; Calka, P.; Schroeder, T.

    2014-08-18

    The conducting filament forming voltage of stoichiometric hafnium oxide based resistive switching layers increases linearly with layer thickness. Using strongly reduced oxygen deficient hafnium oxide thin films grown on polycrystalline TiN/Si(001) substrates, the thickness dependence of the forming voltage is strongly suppressed. Instead, an almost constant forming voltage of about 3?V is observed up to 200?nm layer thickness. This effect suggests that filament formation and switching occurs for all samples in an oxidized HfO{sub 2} surface layer of a few nanometer thickness while the highly oxygen deficient thin film itself merely serves as a oxygen vacancy reservoir.

  12. Compatibility of strontium-90 fluoride with containment materials at elevated temperatures

    SciTech Connect (OSTI)

    Fullam, H.T.

    1981-08-01

    The use of /sup 90/SrF/sub 2/ as a heat-source fuel requires that the /sup 90/Sr be adequately contained during heat-source service. A program for determining the compatibility of /sup 90/SrF/sub 2/ with containment materials at heat-source operating temperatures is described. These compatibility studies included: initial and supplemental screening tests; WESF /sup 90/SrF/sub 2/ capsule demonstration tests; thermal gradient test; and long-term tests. TZM, Haynes Alloy 25, and Hastelloy C-276 were the three materitals selected for evaluation at 600/sup 0/, 800/sup 0/ and 1000/sup 0/C for periods up to 30,000 h. Results showed that all three alloys suffered substantial attack when exposed to the /sup 90/SrF/sub 2/, although the TZM was more resistant to attack than the Hastelloy C-276 and Haynes Alloy 25. The latter two alloys appeared to provide about equal resistance to fluoride attack for exposures longer than about 12,000 h. Attack of the alloys tested by the /sup 90/SrF/sub 2/ was due primarily to impurities.

  13. On the relation between the overpotentials and structures of graphite fluoride electrode in nonaqueous lithium cell

    SciTech Connect (OSTI)

    Watanabe, N.; Hayiwara, R.; Nakajima, T.

    1984-09-01

    A study was made of the relation between the cathode overpotentials and structures of two kinds of graphite fluorides, (CF)/SUB n/ and (C/sub 2/F)/SUB n/ in nonaqueous lithium battery. The overpotential of (CF)/SUB n/ electrode decreased with increasing interlayer spacing and decreasing thickness of the crystallite along the C axis. However, it was found that the overpotential of (C/sub 2/F)/SUB n/ electrode primarily depended on the amount of the defects which would be present in the form of polynuclear aromatic carbon rings in (C/sub 2/F)/SUB n/. The defects in (C/sub 2/F)/SUB n/ would give the short circuiting paths for the transfer of a lithium ion in diffusion layer. The higher discharge potential of (C/sub 2/F)/SUB n/ than that of (CF)/SUB n/ was mainly attributed to the effect of the defects contained in (C/sub 2/F)/SUB n/.

  14. Optical absorption and stimulated emission of neodymium in yttrium lithium fluoride

    SciTech Connect (OSTI)

    Ryan, J.R.; Beach, R. )

    1992-10-01

    A spectroscopic investigation of Nd{sup 3+} in yttrium lithium fluoride was performed. Spectrally and orientationally resolved cross sections for the {sup 4}{ital F}{sub 3/2}--{sup 4}{ital I}{sub 11/2} and {sup 4}{ital F}{sub 3/2}--{sup 4}{ital I}{sub 9/2} transitions are presented. We applied the Judd--Ofelt theory to measured absorption spectra to determine the orientation-averaged intensity parameters {Omega}{sub 2}=0.362{times}10{sup {minus}20} cm{sup 2}, {Omega}{sub 4}=4.02{times}10{sup {minus}20} cm{sup 2}, and {Omega}{sub 6}=4.84{times}10{sup {minus}20} cm{sup 2}. Using these intensity parameters, we predicted the radiative lifetime of the metastable {sup 4}{ital F}{sub 3/2} state to be 525 {mu}s, in excellent agreement with measured {sup 4}{ital F}{sub 3/2} decay signatures. Finally, absorption cross-section data are presented that will be of interest to the laser designer.

  15. Problems associated with large scale personnel monitoring of photons using lithium-fluoride TLD-100

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    The dosimetric properties of a large batch of lithium fluoride TLD-100 dosimeters when exposed to photons for total absorbed doses in the region from 0.1-10 mGy (10-100 mr) have been examined in this work. This region is of particular importance because in many operational health physics situations the majority (>90%) of all recorded absorbed doses to personnel lie in this region. With the possibility that occupational radiation dose limits may be reduced in the future accurate monitoring of individuals in this region will be of prime importance. The purpose of this thesis was to point out several effects which could compromise accurate dosimetric measurements in this region and to suggest some methods to minimize them. These effects include the effect of TLD batch composition, overresponse of the dosimeter to low energy photons, dose rate effects, the effects of storing the dosimeter before readout, and possible interference from ultraviolet and radiofrequency radiation. Each of these items can cause errors which can range up to 70%, depending on the total absorbed dose and the particulars of the radiation exposure. One effect which is of extreme interest is the induction of a thermoluminescent signal by radiofrequency radiation. Although this effect can cause gross errors in estimating the ionizing dose, it opens the possibility that LiF or another phosphor may have an application as a non-ionizing radiation dosimeter.

  16. Understanding Polymorphism Formation in Electrospun Fibers of Immiscible Poly(vinylidene fluoride) Blends

    SciTech Connect (OSTI)

    G Zhong; L Zhang; R Su; K Wang; H Fong; L Zhu

    2011-12-31

    Effects of electric poling, mechanical stretching, and dipolar interaction on the formation of ferroelectric ({beta} and/or {gamma}) phases in poly(vinylidene fluoride) (PVDF) have been studied in electrospun fibers of PVDF/polyacrylonitrile (PAN) and PVDF/polysulfone (PSF) blends with PVDF as the minor component, using wide-angle X-ray diffraction and Fourier transform infrared techniques. Experimental results of as-electrospun neat PVDF fibers (beaded vs. bead-free) showed that mechanical stretching during electrospinning, rather than electric poling, was effective to induce ferroelectric phases. For as-electrospun PVDF blend fibers with the non-polar PSF matrix, mechanical stretching during electrospinning again was capable of inducing some ferroelectric phases in addition to the major paraelectric ({alpha}) phase. However, after removing the mechanical stretching in a confined melt-recrystallization process, only the paraelectric phase was obtained. For as-electrospun PVDF blend fibers with the polar (or ferroelectric) PAN matrix, strong intermolecular interactions between polar PAN and PVDF played an important role in the ferroelectric phase formation in addition to the mechanical stretching effect during electrospinning. Even after the removal of mechanical stretching through the confined melt-recrystallization process, a significant amount of ferroelectric phases persisted. Comparing the ferroelectric phase formation between PVDF/PSF and PVDF/PAN blend fibers, we concluded that the local electric field-dipole interactions were the determining factor for the nucleation and growth of polar PVDF phases.

  17. Energy-Efficient, High-Color-Rendering LED Lamps Using Oxyfluoride and Fluoride Phosphors

    SciTech Connect (OSTI)

    Setlur, A.; Radkov, E; Henderson, C; Her, J; Srivastava, A; Karkada, N; Kishore, M; Kumar, N; Aesram, D; et al.

    2010-01-01

    LED lamps using phosphor downconversion can be designed to replace incandescent or halogen sources with a 'warm-white' correlated color temperature (CCT) of 2700-3200 K and a color rendering index (CRI) greater than 90. However, these lamps have efficacies of {approx}70% of standard 'cool-white' LED packages (CCT = 4500-6000 K; CRI = 75-80). In this report, we describe structural and luminescence properties of fluoride and oxyfluoride phosphors, specifically a (Sr,Ca){sub 3}(Al,Si)O{sub 4}(F,O):Ce{sup 3+} yellow-green phosphor and a K{sub 2}TiF{sub 6}:Mn{sup 4+} red phosphor, that can reduce this gap and therefore meet the spectral and efficiency requirements for high-efficacy LED lighting. LED lamps with a warm-white color temperature (3088 K), high CRI (90), and an efficacy of {approx}82 lm/W are demonstrated using these phosphors. This efficacy is {approx}85% of comparable cool-white lamps using typical Y{sub 3}Al{sub 5}O{sub 12}:Ce{sup 3+}-based phosphors, significantly reducing the efficacy gap between warm-white and cool-white LED lamps that use phosphor downconversion.

  18. An Analysis of Testing Requirements for Fluoride Salt Cooled High Temperature Reactor Components

    SciTech Connect (OSTI)

    Holcomb, David Eugene; Cetiner, Sacit M; Flanagan, George F; Peretz, Fred J; Yoder Jr, Graydon L

    2009-11-01

    This report provides guidance on the component testing necessary during the next phase of fluoride salt-cooled high temperature reactor (FHR) development. In particular, the report identifies and describes the reactor component performance and reliability requirements, provides an overview of what information is necessary to provide assurance that components will adequately achieve the requirements, and then provides guidance on how the required performance information can efficiently be obtained. The report includes a system description of a representative test scale FHR reactor. The reactor parameters presented in this report should only be considered as placeholder values until an FHR test scale reactor design is completed. The report focus is bounded at the interface between and the reactor primary coolant salt and the fuel and the gas supply and return to the Brayton cycle power conversion system. The analysis is limited to component level testing and does not address system level testing issues. Further, the report is oriented as a bottom-up testing requirements analysis as opposed to a having a top-down facility description focus.

  19. Preliminary Demonstration Reactor Point Design for the Fluoride Salt-Cooled High-Temperature Reactor

    SciTech Connect (OSTI)

    Qualls, A. L.; Betzler, Benjamin R.; Brown, Nicholas R.; Carbajo, Juan; Greenwood, Michael Scott; Hale, Richard Edward; Harrison, Thomas J.; Powers, Jeffrey J.; Robb, Kevin R.; Terrell, Jerry W.

    2015-12-01

    Development of the Fluoride Salt-Cooled High-Temperature Reactor (FHR) Demonstration Reactor (DR) is a necessary intermediate step to enable commercial FHR deployment through disruptive and rapid technology development and demonstration. The FHR DR will utilize known, mature technology to close remaining gaps to commercial viability. Lower risk technologies are included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated within an acceptable budget and schedule. These technologies include tristructural-isotropic (TRISO) particle fuel, replaceable core structural material, the use of that same material for the primary and intermediate loops, and tube-and-shell heat exchangers. This report provides an update on the development of the FHR DR. At this writing, the core neutronics and thermal hydraulics have been developed and analyzed. The mechanical design details are still under development and are described to their current level of fidelity. It is anticipated that the FHR DR can be operational within 10 years because of the use of low-risk, near-term technology options.

  20. Thermal-Hydraulic Design of a Fluoride High-Temperature Demonstration Reactor

    SciTech Connect (OSTI)

    Carbajo, Juan J; Qualls, A L

    2016-01-01

    INTRODUCTION The Fluoride High-Temperature Reactor (FHR) named the Demonstration Reactor (DR) is a novel reactor concept using molten salt coolant and TRIstructural ISOtropic (TRISO) fuel that is being developed at Oak Ridge National Laboratory (ORNL). The objective of the FHR DR is to advance the technology readiness level of FHRs. The FHR DR will demonstrate technologies needed to close remaining gaps to commercial viability. The FHR DR has a thermal power of 100 MWt, very similar to the SmAHTR, another FHR ORNL concept (Refs. 1 and 2) with a power of 125 MWt. The FHR DR is also a small version of the Advanced High Temperature Reactor (AHTR), with a power of 3400 MWt, cooled by a molten salt and also being developed at ORNL (Ref. 3). The FHR DR combines three existing technologies: (1) high-temperature, low-pressure molten salt coolant, (2) high-temperature coated-particle TRISO fuel, (3) and passive decay heat cooling systems by using Direct Reactor Auxiliary Cooling Systems (DRACS). This paper presents FHR DR thermal-hydraulic design calculations.

  1. Photo-induced tunneling currents in MOS structures with various HfO{sub 2}/SiO{sub 2} stacking dielectrics

    SciTech Connect (OSTI)

    Pang, Chin-Sheng; Hwu, Jenn-Gwo

    2014-04-15

    In this study, the current conduction mechanisms of structures with tandem high-k dielectric in illumination are discussed. Samples of Al/SiO{sub 2}/Si (S), Al/HfO{sub 2}/SiO{sub 2}/Si (H), and Al/3HfO{sub 2}/SiO{sub 2}/Si (3H) were examined. The significant observation of electron traps of sample H compares to sample S is found under the double bias capacitance-voltage (C-V) measurements in illumination. Moreover, the photo absorption sensitivity of sample H is higher than S due to the formation of HfO{sub 2} dielectric layer, which leads to larger numbers of carriers crowded through the sweep of V{sub G} before the domination of tunneling current. Additionally, the HfO{sub 2} dielectric layer would block the electrons passing through oxide from valance band, which would result in less electron-hole (e{sup −}-h{sup +}) pairs recombination effect. Also, it was found that both of the samples S and H show perimeter dependency of positive bias currents due to strong fringing field effect in dark and illumination; while sample 3H shows area dependency of positive bias currents in strong illumination. The non-uniform tunneling current through thin dielectric and through HfO{sub 2} stacking layers are importance to MOS(p) tunneling photo diodes.

  2. Characterizing HfXZr1-XO2 by EXAFS: Relationship Between Bulk and Surface Composition, and Impact on Catalytic Selectivity for Alcohol Conversion

    SciTech Connect (OSTI)

    Jacobs, G.; Milling, M; Ji, Y; Patterson, P; Sparks, D; Davis, B

    2009-01-01

    A series of mixed Hf{sub X}Zr{sub 1-X}O{sub 2} oxide catalysts was prepared according to a recipe that yields the monoclinic structure. The samples were examined by EXAFS spectroscopy at the Zr K and Hf L{sub III} edges. A fitting model was used that simultaneously fits data from both edges, and makes use of an interdependent mixing parameter X mix to take into account substitution of the complementary atom in the nearest metal-metal shell. For XPS analysis, Scofield factors were applied to estimate the relative atomic surface concentrations of Zr and Hf. EXAFS results suggested that a solid bulk solution was formed over a wide range of X for Hf{sub X}Zr{sub 1-X}O{sub 2} binary oxides, and that the relative ratio was retained in the surface shell (i.e., including some subsurface layers by XPS) and the surface (e.g., by ISS). The increase in selectivity for the 1-alkene from dehydration of alcohols at high Zr content does not correlate smoothly with the tuned relative atomic concentration of Hf to Zr. The step change at high Zr content appears to be due to other indirect factors (e.g., surface defects, oxygen vacancies).

  3. Impact of cyclic plasma treatment on oxygen vacancy defects in TiN/HfZrO/SiON/Si gate stacks

    SciTech Connect (OSTI)

    Bhuyian, Md Nasir Uddin Misra, D.; Poddar, S.; Tapily, K.; Clark, R. D.; Consiglio, S.; Wajda, C. S.; Nakamura, G.; Leusink, G. J.

    2015-05-11

    This work evaluates the defects in HfZrO as a function of Zr addition into HfO{sub 2} and when the dielectric was subjected to a slot-plane-antenna (SPA) plasma treatment in a cyclic process to form TiN/HfZrO/SiON/Si gate stacks. The defect energy levels, estimated by temperature-dependent current-voltage measurements, suggest that Zr addition in HfO{sub 2} modifies the charge state of the oxygen vacancy formation, V{sup +}. The influence of electron affinity variation of Hf and Zr ions on the charged oxygen vacancy levels seems to have contributed to the increase in defect activation energy, E{sub a}, from 0.32 eV to 0.4 eV. The cyclic SPA plasma exposure further reduces the oxygen vacancy formation because of the film densification. When the dielectric was subjected to a constant voltage stress, the charge state oxygen vacancy formation changes to V{sup 2+} and improvement was eliminated. The trap assisted tunneling behavior, as observed by the stress induced leakage current characteristics, further supports the oxygen vacancy formation model.

  4. The influence of surface preparation on low temperature HfO{sub 2} ALD on InGaAs (001) and (110) surfaces

    SciTech Connect (OSTI)

    Kent, Tyler; Edmonds, Mary; Kummel, Andrew C.; Tang, Kechao; Negara, Muhammad Adi; McIntyre, Paul; Chobpattana, Varistha; Mitchell, William; Sahu, Bhagawan; Galatage, Rohit; Droopad, Ravi

    2015-10-28

    Current logic devices rely on 3D architectures, such as the tri-gate field effect transistor (finFET), which utilize the (001) and (110) crystal faces simultaneously thus requiring passivation methods for the (110) face in order to ensure a pristine 3D surface prior to further processing. Scanning tunneling microscopy (STM), x-ray photoelectron spectroscopy (XPS), and correlated electrical measurement on MOSCAPs were utilized to compare the effects of a previously developed in situ pre-atomic layer deposition (ALD) surface clean on the InGaAs (001) and (110) surfaces. Ex situ wet cleans are very effective on the (001) surface but not the (110) surface. Capacitance voltage indicated the (001) surface with no buffered oxide etch had a higher C{sub max} hypothesized to be a result of poor nucleation of HfO{sub 2} on the native oxide. An in situ pre-ALD surface clean employing both atomic H and trimethylaluminum (TMA) pre-pulsing, developed by Chobpattana et al. and Carter et al. for the (001) surface, was demonstrated to be effective on the (110) surface for producing low D{sub it} high C{sub ox} MOSCAPs. Including TMA in the pre-ALD surface clean resulted in reduction of the magnitude of the interface state capacitance. The XPS studies show the role of atomic H pre-pulsing is to remove both carbon and oxygen while STM shows the role of TMA pre-pulsing is to eliminate H induced etching. Devices fabricated at 120 °C and 300 °C were compared.

  5. Apparatus for producing laser targets

    DOE Patents [OSTI]

    Jarboe, T.R.; Baker, W.R.

    1975-09-23

    This patent relates to an apparatus and method for producing deuterium targets or pellets of 25u to 75u diameter. The pellets are sliced from a continuously spun solid deuterium thread at a rate of up to 10 pellets/second. The pellets after being sliced from the continuous thread of deuterium are collimated and directed to a point of use, such as a laser activated combustion or explosion chamber wherein the pellets are imploded by laser energy or laser produced target plasmas for neutral beam injection. (auth)

  6. Method for producing laser targets

    DOE Patents [OSTI]

    Jarboe, Thomas R.; Baker, William R.

    1977-01-01

    An apparatus and method for producing deuterium targets or pellets of 25.mu. to 75.mu. diameter. The pellets are sliced from a continuously spun solid deuterium thread at a rate of up to 10 pellets/second. The pellets after being sliced from the continuous thread of deuterium are collimated and directed to a point of use, such as a laser activated combustion or explosion chamber wherein the pellets are imploded by laser energy or laser produced target plasmas for neutral beam injection.

  7. Midwest Biodiesel Producers LLC | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Producers LLC Jump to: navigation, search Name: Midwest Biodiesel Producers LLC Place: Alexandria, South Dakota Zip: 57311 Product: South Dakota-based biodiesel producer....

  8. METHOD FOR PRODUCING DIBORON TETRACHLORIDE

    DOE Patents [OSTI]

    Frazer, J.W.; Holzmann, R.T.

    1961-08-01

    A method of producing diboron tetrachloride from boron trichloride is described. Gaseous boron trichloride is passed through a cavity resonating at a microwave frequency whereby a portion of the boron trichloride is converted into diboron tetrachloride. The diboron tetrachloride may then be separated from the boron trichloride by conventional means. (AEC)

  9. Process for producing chalcogenide semiconductors

    DOE Patents [OSTI]

    Noufi, Rommel; Chen, Yih-Wen

    1987-01-01

    A process for producing chalcogenide semiconductor material is disclosed. The process includes forming a base metal layer and then contacting this layer with a solution having a low pH and containing ions from at least one chalcogen to chalcogenize the layer and form the chalcogenide semiconductor material.

  10. Process for producing chalcogenide semiconductors

    DOE Patents [OSTI]

    Noufi, R.; Chen, Y.W.

    1985-04-30

    A process for producing chalcogenide semiconductor material is disclosed. The process includes forming a base metal layer and then contacting this layer with a solution having a low pH and containing ions from at least one chalcogen to chalcogenize the layer and form the chalcogenide semiconductor material.