Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fluorescent light bulb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

DOE Withdraws the Energy Star Label from 34 Compact Fluorescent Light Bulbs  

Broader source: Energy.gov (indexed) [DOE]

the Energy Star Label from 34 Compact Fluorescent the Energy Star Label from 34 Compact Fluorescent Light Bulbs DOE Withdraws the Energy Star Label from 34 Compact Fluorescent Light Bulbs January 26, 2010 - 11:41am Addthis Washington, DC - On January 25th, the General Counsel notified 25 manufacturers that the Department of Energy has withdrawn their right to use the Energy Star label on 34 different models of compact fluorescent light bulbs (CFLs). The Department took this action after its off-the-shelf testing revealed that the affected models do not last as long in regular use as Energy Star certification would require. As a result, these manufacturers have been informed that they can no longer ship or sell any of the 34 models of CFLs bearing the Energy Star label on the bulb or its packaging. All compact fluorescent light bulbs use about 75 percent less energy and

2

Mercury Lamps Recycling Fluorescent light-tubes, compact fluorescent bulbs, mercury and sodium vapor lamps, ultraviolet and  

E-Print Network [OSTI]

Mercury Lamps Recycling Fluorescent light-tubes, compact fluorescent bulbs, mercury and sodium vapor lamps, ultraviolet and HID (high-intensity discharge) lamps and all other mercury containing labeled for shipment to a recycling plant for mercury, glass and aluminum recovery. The beneficial re

Baker, Chris I.

3

Frequently Asked Questions Information on Compact Fluorescent Light Bulbs (CFLs) and Mercury  

E-Print Network [OSTI]

Frequently Asked Questions Information on Compact Fluorescent Light Bulbs (CFLs) and Mercury emissions equivalent to those of more than 800,000 cars. Do CFLs contain mercury? CFLs contain a very small amount of mercury sealed within the glass tubing ­ an average of 5 milligrams ­ about the amount

Jia, Songtao

4

Potential Environmental Impacts from the Metals in Incandescent, Compact Fluorescent Lamp (CFL), and Light-Emitting Diode (LED) Bulbs  

Science Journals Connector (OSTI)

Artificial lighting systems are transitioning from incandescent to compact fluorescent lamp (CFL) and light-emitting diode (LED) bulbs in response to the U.S. Energy Independence and Security Act and the EU Ecodesign Directive, which leads to energy savings and reduced greenhouse gas emissions. ... The CFLs and LEDs have higher resource depletion and toxicity potentials than the incandescent bulb due primarily to their high aluminum, copper, gold, lead, silver, and zinc. ... mercury pollution; redn. in electricity demand from the substitution of incandescent bulbs with fluorescents leads to reduced mercury emissions during the use of the bulb. ...

Seong-Rin Lim; Daniel Kang; Oladele A. Ogunseitan; Julie M. Schoenung

2012-12-13T23:59:59.000Z

5

Comparing Light Bulbs  

Broader source: Energy.gov (indexed) [DOE]

Comparing Light Bulbs Grades: K-4, 5-8 Topic: Energy Efficiency and Conservation Owner: U.S. Environmental Protection Agency This educational material is brought to you by the U.S....

6

The History of the Light Bulb | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

The History of the Light Bulb The History of the Light Bulb The History of the Light Bulb November 22, 2013 - 1:00pm Addthis History of the Light Bulb Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Daniel Wood Daniel Wood Data Integration Specialist What are the key facts? Like all great inventions, the light bulb can't be credited to one inventor. It was a series of small improvements on the ideas of previous inventors that have led to the light bulbs we use in our homes today. Learn more about the history of the incandescent light bulb. Explore the history of fluorescent lights, from the Geissler tube to CFLs. Read about the advancements in LED lights. More than 150 years ago, inventors began working on a bright idea that would have a dramatic impact on how we use energy in our homes and offices.

7

The History of the Light Bulb | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

The History of the Light Bulb The History of the Light Bulb The History of the Light Bulb November 22, 2013 - 1:00pm Addthis History of the Light Bulb Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Daniel Wood Daniel Wood Data Integration Specialist What are the key facts? Like all great inventions, the light bulb can't be credited to one inventor. It was a series of small improvements on the ideas of previous inventors that have led to the light bulbs we use in our homes today. Learn more about the history of the incandescent light bulb. Explore the history of fluorescent lights, from the Geissler tube to CFLs. Read about the advancements in LED lights. More than 150 years ago, inventors began working on a bright idea that would have a dramatic impact on how we use energy in our homes and offices.

8

How Energy-Efficient Light Bulbs Compare with Traditional Incandescents |  

Broader source: Energy.gov (indexed) [DOE]

Energy-Efficient Light Bulbs Compare with Traditional Energy-Efficient Light Bulbs Compare with Traditional Incandescents How Energy-Efficient Light Bulbs Compare with Traditional Incandescents July 29, 2012 - 6:25pm Addthis Energy-efficient light bulbs are available today and could save you about $50 per year in energy costs when you replace 15 traditional incandescent bulbs in your home. Energy-efficient light bulbs are available today and could save you about $50 per year in energy costs when you replace 15 traditional incandescent bulbs in your home. Compared to traditional incandescents, energy-efficient lightbulbs such as energy-saving incandescents, compact fluorescent lamps (CFLs), and light emitting diodes (LEDs) have the following advantages: Typically use about 25%-80% less energy, saving you money

9

The European Commission's light bulb decree: Another costly regulation?  

Science Journals Connector (OSTI)

Since September 2009, Regulation 244/2009 of the European Commission enforces the gradual phase-out of incandescent light bulbs. As of September 2012, only energy-efficient lighting sources will be allowed for sale. Among these are halogen light bulbs, light-emitting diodes (LED), or compact fluorescent light bulbsoften referred to as energy-saving light bulbs. The Commission's justification for the phase-out of conventional light bulbs maintains that a reduction in the electricity consumed will not only lead to lower energy cost for private households and industrial consumers, but at the same time lead to a decrease in greenhouse gas emissions. This article discusses possible reasons for the slow market diffusion of energy-saving light bulbs and shows that the investment in energy-efficient light bulbs does not necessarily lead to significant cost reductions. Drawing on some illustrative examples, we demonstrate that the use of cheaper incandescent bulbs instead of energy-saving light bulbs can be economically rational in cases of rather low usage times, in which the higher initial purchasing price might only pay off after very long time spans. Furthermore, due to the coexistence with the European Emissions Trading Scheme (ETS), this regulation attains no additional emission reductions beyond those achieved by the ETS alone. We thus conclude that the general ban of incandescent light bulbs is inappropriate and should be abolished by the Commission.

Manuel Frondel; Steffen Lohmann

2011-01-01T23:59:59.000Z

10

Comparing Light Bulbs  

Broader source: Energy.gov [DOE]

In this exercise, students will use a light to demonstrate the difference between being energy-efficient and energy-wasteful, and learn what energy efficiency means.

11

Sleep, mood, and circadian responses to bright green light during sleep  

E-Print Network [OSTI]

white light from fluorescent bulbs, as point sources mightthan incandescent bulbs. Also, fluorescent light is easier

Grandner, Michael Andrew

2007-01-01T23:59:59.000Z

12

How Energy-Efficient Light Bulbs Compare with Traditional Incandescent...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How Energy-Efficient Light Bulbs Compare with Traditional Incandescents How Energy-Efficient Light Bulbs Compare with Traditional Incandescents July 28, 2014 - 11:39pm Addthis...

13

The Green Lab: Power Consumption by Commercial Light Bulbs  

Science Journals Connector (OSTI)

Going green is a slogan that is very contemporary both with industry and in the political arena. Choosing more energy-efficient devices is one way homeowners can go green. A simple method is to change home lighting from hot incandescent bulbs to compact fluorescent lights (CFLs). But do they really save energy? How do their illuminations compare? Even if the CFLs are more energy efficient they still add to our pollution problem because of the mercury inside them. Light-emitting diodes(LEDs) could be the answer but they are not available at our local stores. Can LEDs be made to screw right into a standard socket? How expensive are they? What are the power consumptions of so-called 60-W and 100-W CFL and LED light bulbs? These are the questions that are answered during this lab activity. Students measure the voltage and current for each of the three types of bulbs and then calculate the electrical power required by each. An optional experiment is to set the light outputs of each bulb so they are equal in intensity and then determine the power consumed. While not practical in the home this experiment gives students an understanding of value for their buck.

James A. Einsporn; Andrew F. Zhou

2011-01-01T23:59:59.000Z

14

Zinc Oxide and Nitride Nanowire Based Light Emitting Diodes  

E-Print Network [OSTI]

of incandescent light bulb, fluorescent lamp, and blue lightof incandescent light bulb, fluorescent lamp, and blue lightincandescent bulb and is on the same order as fluorescent

Lai, Elaine Michelle

2009-01-01T23:59:59.000Z

15

Physicists change the light bulb  

Science Journals Connector (OSTI)

...came in such colors as red and green. They were used as indicator lights...which has enabled bright and energy-saving white light sources...and waste most of the input energy. With 20% of the world's...people who are not connected to energy grids. The usefulness of this...

Dennis Normile

2014-10-10T23:59:59.000Z

16

Westinghouse Pays $50,000 Civil Penalty to Resolve Light Bulb Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Westinghouse Pays $50,000 Civil Penalty to Resolve Light Bulb Westinghouse Pays $50,000 Civil Penalty to Resolve Light Bulb Efficiency Violations Westinghouse Pays $50,000 Civil Penalty to Resolve Light Bulb Efficiency Violations December 13, 2010 - 2:12pm Addthis The Department of Energy has successfully resolved the enforcement case against Westinghouse Lighting Corporation for failure to certify its light bulbs as compliant with DOE's federal efficiency requirements and for the sale of at least 29,000 general service fluorescent and medium base compact fluorescent lamps that used more energy than permitted by law. This case reflects DOE's renewed commitment to enforce the federal efficiency requirements systematically and fairly to level the competitive playing field and to ensure that American consumers are buying products that

17

Consumer Light Bulb Changes: Briefing and Resources for Media and Retailers  

Broader source: Energy.gov (indexed) [DOE]

Briefing for Media and Retailers - Lighting eere.energy.gov Briefing for Media and Retailers - Lighting eere.energy.gov 1 Consumer Light Bulb Changes: Briefing and Resources for Media and Retailers Briefing for Media and Retailers - Lighting eere.energy.gov 2 * Briefing: - To schedule interviews, please contact DOE Public Affairs at 202-586-4940 * Terms: - Lumens: Commonly a measure of brightness (technically "luminous flux") - CFL: Compact Fluorescent Lamp: The curly fluorescent bulbs - LED: Light Emitting Diode: more recently emerging technology, also called "solid state lighting" as it is light produced by a solid-state (chip) device - General Service Incandescent Lamp: The most common residential light bulb in use, with a medium screw base, and a lumen range of 310 to 2,600 lumens

18

DOE Requires Westinghouse to Cease Sales of Two Light Bulb Models and  

Broader source: Energy.gov (indexed) [DOE]

Requires Westinghouse to Cease Sales of Two Light Bulb Models Requires Westinghouse to Cease Sales of Two Light Bulb Models and Allows Sale of Another DOE Requires Westinghouse to Cease Sales of Two Light Bulb Models and Allows Sale of Another October 18, 2010 - 10:27am Addthis As a part of DOE's continuing enforcement action against Westinghouse Lighting Corporation, the company must cease sales of two light bulb models - medium based CFL basic model 15GLOBE/65/2 (Westinghouse product code 3800400) and general service fluorescent lamp model F40T12/CWE (Westinghouse product code 07521000) - because they do not meet DOE's energy efficiency standards. Based on test data provided by Westinghouse for basic model 15GLOBE/65/2, DOE has issued a Notice of Non-Compliance Determination to Westinghouse Lighting Corporation, requiring Westinghouse to halt sales and notify all

19

DOE Requires Westinghouse to Cease Sales of Two Light Bulb Models and  

Broader source: Energy.gov (indexed) [DOE]

Requires Westinghouse to Cease Sales of Two Light Bulb Models Requires Westinghouse to Cease Sales of Two Light Bulb Models and Allows Sale of Another DOE Requires Westinghouse to Cease Sales of Two Light Bulb Models and Allows Sale of Another October 18, 2010 - 10:27am Addthis As a part of DOE's continuing enforcement action against Westinghouse Lighting Corporation, the company must cease sales of two light bulb models - medium based CFL basic model 15GLOBE/65/2 (Westinghouse product code 3800400) and general service fluorescent lamp model F40T12/CWE (Westinghouse product code 07521000) - because they do not meet DOE's energy efficiency standards. Based on test data provided by Westinghouse for basic model 15GLOBE/65/2, DOE has issued a Notice of Non-Compliance Determination to Westinghouse Lighting Corporation, requiring Westinghouse to halt sales and notify all

20

Spatial assessment of net mercury emissions from the use of fluorescent bulbs  

SciTech Connect (OSTI)

While fluorescent lighting is an important technology for reducing electrical energy demand, mercury used in the bulbs is an ongoing concern. Using state and country level data, net emissions of mercury from the marginal use of fluorescent lightbulbs are examined for a base year of 2004 for each of the 50 United States and 130 countries. Combustion of coal for electric power generation is generally the largest source of atmospheric mercury pollution; reduction in electricity demand from the substitution of incandescent bulbs with fluorescents leads to reduced mercury emissions during the use of the bulb. This analysis considers the local mix of power sources, coal quality, thermal conversion efficiencies, distribution losses, and any mercury control technologies that might be in place. Emissions of mercury from production and end-of-life treatment of the bulbs are also considered, providing a life-cycle perspective. Net reductions in mercury over the entire life cycle range from -1.2 to 97 mg per bulb depending on the country. The consequences for atmospheric mercury emissions of several policy scenarios are also discussed. 46 refs., 4 figs., 3 tabs.

Matthew J. Eckelman; Paul T. Anastas; Julie B. Zimmerman [Yale University, New Haven, CT (United States). Department of Chemical Engineering

2008-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "fluorescent light bulb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Solid-State Lighting: L Prize(tm): The Race for Super Efficient Light Bulbs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

L Prize(tm): The Race for Super L Prize(tm): The Race for Super Efficient Light Bulbs to someone by E-mail Share Solid-State Lighting: L Prize(tm): The Race for Super Efficient Light Bulbs on Facebook Tweet about Solid-State Lighting: L Prize(tm): The Race for Super Efficient Light Bulbs on Twitter Bookmark Solid-State Lighting: L Prize(tm): The Race for Super Efficient Light Bulbs on Google Bookmark Solid-State Lighting: L Prize(tm): The Race for Super Efficient Light Bulbs on Delicious Rank Solid-State Lighting: L Prize(tm): The Race for Super Efficient Light Bulbs on Digg Find More places to share Solid-State Lighting: L Prize(tm): The Race for Super Efficient Light Bulbs on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools L Prize(tm): The Race for Super Efficient Light Bulbs

22

Changing How You Choose Light Bulbs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Changing How You Choose Light Bulbs Changing How You Choose Light Bulbs Changing How You Choose Light Bulbs July 12, 2010 - 7:30am Addthis Elizabeth Spencer Communicator, National Renewable Energy Laboratory Last month, the Federal Trade Commission announced that light bulbs will have a brand new style of packaging, starting in 2011. This is super exciting news! Well, all right, maybe "exciting" is a bit of a stretch, but it's certainly useful if you're thinking in terms of saving money and energy. Which is, I hope, one of the reasons people come to this blog. Example of the Lighting Facts label. The new form is based on a simple idea: There's an absolute ton of different kinds of lighting out there, but for most lights, the only information on the package is the wattage-the amount of power it draws.

23

Changing How You Choose Light Bulbs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Changing How You Choose Light Bulbs Changing How You Choose Light Bulbs Changing How You Choose Light Bulbs July 12, 2010 - 7:30am Addthis Elizabeth Spencer Communicator, National Renewable Energy Laboratory Last month, the Federal Trade Commission announced that light bulbs will have a brand new style of packaging, starting in 2011. This is super exciting news! Well, all right, maybe "exciting" is a bit of a stretch, but it's certainly useful if you're thinking in terms of saving money and energy. Which is, I hope, one of the reasons people come to this blog. Example of the Lighting Facts label. The new form is based on a simple idea: There's an absolute ton of different kinds of lighting out there, but for most lights, the only information on the package is the wattage-the amount of power it draws.

24

Westinghouse and Fuzhou Permitted to Restart Distribution of Light Bulb  

Broader source: Energy.gov (indexed) [DOE]

Westinghouse and Fuzhou Permitted to Restart Distribution of Light Westinghouse and Fuzhou Permitted to Restart Distribution of Light Bulb Products Westinghouse and Fuzhou Permitted to Restart Distribution of Light Bulb Products August 6, 2010 - 4:26pm Addthis The Department has issued Notices of Allowance to Westinghouse Lighting Corporation and Fuzhou Sunlight Lighting Electrical Appliance Company determining, based on corrected test data provided by Westinghouse, that the incandescent reflector lamps listed below are compliant with the federal energy conservation standard and may be sold in the United States. These 11 Westinghouse brand lamps, usually used in recessed light fixtures, correspond to 7 basic models, which are manufactured in China by Fuzhou. DOE had previously issued Notices requiring Fuzhou and Westinghouse to

25

Free Energy Efficiency Kit includes CFL light bulbs,  

E-Print Network [OSTI]

Free Energy Efficiency Kit Kit includes CFL light bulbs, spray foam, low-flow shower head, and more! Building Science 101 Presentation BPI Certified Building Professionals will present home energy efficiency for discounted energy assessments. FREE HOME ENERGY EFFICIENCY SEMINAR N e w R i ver L i g ht & Pow e r a n d W

Rose, Annkatrin

26

Text-Alternative Version: L Prize: The Race for Super Efficient Light Bulbs  

Broader source: Energy.gov [DOE]

Below is the text-alternative version of the L Prize: The Race for Super Efficient Light Bulbs webcast.

27

Lighting the Way with Compact Fluorescent Lighting | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Lighting the Way with Compact Fluorescent Lighting Lighting the Way with Compact Fluorescent Lighting Lighting the Way with Compact Fluorescent Lighting April 28, 2009 - 5:00am Addthis John Lippert There is a major push today to get homeowners to adopt compact fluorescent lamp (CFL) light bulbs. They have been on the market for nearly three decades, and many homeowners still do not use them widely. But the tide is definitely turning. Their availability and the percentage of homeowners familiar with the technology and purchasing them for their homes have been steadily rising. The products have improved considerably compared to early products, and their prices have plummeted. The ENERGY STAR® Change a Light, Change the World Campaign has been running now for more than half a dozen years. This campaign is designed to

28

Lighting the Way with Compact Fluorescent Lighting | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Lighting the Way with Compact Fluorescent Lighting Lighting the Way with Compact Fluorescent Lighting Lighting the Way with Compact Fluorescent Lighting April 28, 2009 - 5:00am Addthis John Lippert There is a major push today to get homeowners to adopt compact fluorescent lamp (CFL) light bulbs. They have been on the market for nearly three decades, and many homeowners still do not use them widely. But the tide is definitely turning. Their availability and the percentage of homeowners familiar with the technology and purchasing them for their homes have been steadily rising. The products have improved considerably compared to early products, and their prices have plummeted. The ENERGY STAR® Change a Light, Change the World Campaign has been running now for more than half a dozen years. This campaign is designed to

29

What Light Bulbs Do You Use in Your Home? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

What Light Bulbs Do You Use in Your Home? What Light Bulbs Do You Use in Your Home? What Light Bulbs Do You Use in Your Home? June 1, 2012 - 2:28pm Addthis Earlier this week, Eric Barendsen posted about the differences in costs between traditional and energy efficient light bulbs. Several people already chimed in on the original post. (Thanks a bunch for sharing!) But for today's question of the week, we're wondering: What light bulbs do you use in your own home? You have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles Are You Prepared for a Blackout? Lighting Choices Save You Money. Energy-efficient light bulbs are available in a wide variety of sizes and shapes.

30

Fluorescent Lighting | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fluorescent Lighting Fluorescent Lighting Fluorescent Lighting October 17, 2013 - 5:44pm Addthis Fluorescent Lighting Fluorescent Lighting Fluorescent lamps use 25%-35% of the energy used by incandescent products to provide a similar amount of light. They also last about 10 times longer (7,000-24,000 hours). The two general types of fluorescent lamps are: Compact fluorescent lamps (CFLs) -- commonly found with integral ballasts and screw bases, these are popular lamps often used in household fixtures Fluorescent tube and circline lamps -- typically used for task lighting such as garages and under cabinet fixtures, and for lighting large areas in commercial buildings. CFLs CFLs combine the energy efficiency of fluorescent lighting with the convenience and popularity of incandescent fixtures. CFLs fit most fixtures

31

What Light Bulbs Do You Use in Your Home? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Light Bulbs Do You Use in Your Home? Light Bulbs Do You Use in Your Home? What Light Bulbs Do You Use in Your Home? June 1, 2012 - 2:28pm Addthis Earlier this week, Eric Barendsen posted about the differences in costs between traditional and energy efficient light bulbs. Several people already chimed in on the original post. (Thanks a bunch for sharing!) But for today's question of the week, we're wondering: What light bulbs do you use in your own home? You have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles Are You Prepared for a Blackout? Do You Have Windows That Need Replacing? By taking simple steps to improve your home's energy efficiency, you can save up to 30 percent on your energy bill. | Infographic by Sarah Gerrity.

32

Zinc Oxide and Nitride Nanowire Based Light Emitting Diodes  

E-Print Network [OSTI]

only be able to find incandescent lightbulbs and fluorescent10: Output spectra of incandescent light bulb, fluorescentemission spectra. The incandescent light bulb for example

Lai, Elaine Michelle

2009-01-01T23:59:59.000Z

33

Arrays and Cascades of Fluorescent Liquid-Liquid Waveguides: Broadband Light Sources for  

E-Print Network [OSTI]

Arrays and Cascades of Fluorescent Liquid-Liquid Waveguides: Broadband Light Sources) microchannel waveguides with liquid cores containing fluorescent dyes, excited by incident light from an external halogen bulb. Simultaneous use of multiple fluorophores in a common solution, in a single L2 light

Prentiss, Mara

34

600 New Lights Bulbs to Improve Energy Efficiency at DOE | Department of  

Broader source: Energy.gov (indexed) [DOE]

600 New Lights Bulbs to Improve Energy Efficiency at DOE 600 New Lights Bulbs to Improve Energy Efficiency at DOE 600 New Lights Bulbs to Improve Energy Efficiency at DOE November 18, 2010 - 10:30am Addthis Ingrid Kolb Director of the Office of Management Starting in September, the Department of Energy has been steadily replacing all 600 light fixtures under our Washington, D.C., Forrestal North Building canopy with state of the art Light Emitting Diode (LED) fixtures. Every new bulb now uses just 23 watts instead of 205 watts. That translates into almost half a million kilowatts hours saved every year. and will cut annual energy consumption at the Department of Energy Headquarters by about 1%. The final new LED fixture under the canopy was installed on October 28, but these lights are just part of a full program to reduce energy consumption

35

A Winning Light Bulb With the Potential to Save the Nation Billions |  

Broader source: Energy.gov (indexed) [DOE]

A Winning Light Bulb With the Potential to Save the Nation Billions A Winning Light Bulb With the Potential to Save the Nation Billions A Winning Light Bulb With the Potential to Save the Nation Billions August 4, 2011 - 3:09pm Addthis This 10-watt alternative LED bulb (which glows white when turned on) could save the nation about 35 terawatt-hours of electricity or $3.9 billion in one year and avoid 20 million metric tons of carbon emissions if every 60-watt incandescent bulb in the U.S. was replaced with the L Prize winner. | Photo Courtesy of Philips Lighting North America This 10-watt alternative LED bulb (which glows white when turned on) could save the nation about 35 terawatt-hours of electricity or $3.9 billion in one year and avoid 20 million metric tons of carbon emissions if every 60-watt incandescent bulb in the U.S. was replaced with the L Prize winner.

36

How to upgrade your incandescent light bulbs Many people are choosing replacements for their standard incandescent light bulbs to save money or energy, because they've heard of new LED  

E-Print Network [OSTI]

for their standard incandescent light bulbs to save money or energy, because they've heard of new LED options to choose replacement light bulbs. You can save energy and money by replacing any standard incandescent from The Lighting Pattern Book for Homes, LRC 1993. Lighting Energy Use by Room BR · Note the type

Bystroff, Chris

37

Krypton-filled light bulbs enter consumer market  

Science Journals Connector (OSTI)

Duro-Test Corp., North Bergen, N.J., this month began marketing a krypton-filled bulb and Westinghouse Electric will enter the market this fall. ... Its lower heat conductivity reduces energy loss from the filament, allowing the filament to run hotter and the glass jacket to run cooler. ...

1968-06-24T23:59:59.000Z

38

Labeling energy cost on light bulbs lowers implicit discount rates Jihoon Min a  

E-Print Network [OSTI]

Analysis Labeling energy cost on light bulbs lowers implicit discount rates Jihoon Min a , Inês L 2013 Accepted 24 October 2013 Available online xxxx Keywords: Energy efficient lighting Implicit lighting technology and for low energy consumption. Greater willingness to pay for lower energy consumption

Michalek, Jeremy J.

39

Information Resources: L Prize(tm): The Race for Super Efficient Light Bulbs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

L Prize(tm): The Race for Super Efficient Light Bulbs L Prize(tm): The Race for Super Efficient Light Bulbs This September 23, 2008 webcast provided an overview of the Bright Tomorrow Lighting Prize (L Prize) technology competition. The L Prize calls for super-efficient SSL products to replace two of the most common light bulbs used today: the 60-watt incandescent and the PAR-38 halogen reflector. Kelly Gordon, Pacific Northwest National Laboratory, kicked off the webcast with an overview of the competition requirements, evaluation process, and opportunities for promotion of the winning products. Mary Matteson Bryan, Pacific Gas & Electric, and Liesel Whitney-Schulte, Wisconsin Focus on Energy, followed with a look at the role of L Prize partners and plans for their organizations to support the winning products through demonstrations, education, promotions, and other collaborative efforts.

40

Why Did the LED Light Bulb Cross the Road? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Why Did the LED Light Bulb Cross the Road? Why Did the LED Light Bulb Cross the Road? Why Did the LED Light Bulb Cross the Road? January 24, 2012 - 1:31pm Addthis Big Bill and Little Bill are here to talk with you about energy efficiency on behalf of Energy Impact Illinois. Roland Risser Roland Risser Program Director, Building Technologies Office How can I participate? You can view all of Big Bill and Little Bill's videos on the Energy Bill's YouTube channel. Everyone knows that laughter is good for you. Studies suggest it can buffer stress and increase your resistance to disease. Also, it just feels great to laugh. Advertisers have long used the allure of laughter to sell their products, and many Americans tune in to the Super Bowl just to chuckle at the funny commercials. However, when it comes to selling people on smart

Note: This page contains sample records for the topic "fluorescent light bulb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Why Did the LED Light Bulb Cross the Road? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Why Did the LED Light Bulb Cross the Road? Why Did the LED Light Bulb Cross the Road? Why Did the LED Light Bulb Cross the Road? January 24, 2012 - 1:31pm Addthis Big Bill and Little Bill are here to talk with you about energy efficiency on behalf of Energy Impact Illinois. Roland Risser Roland Risser Program Director, Building Technologies Office How can I participate? You can view all of Big Bill and Little Bill's videos on the Energy Bill's YouTube channel. Everyone knows that laughter is good for you. Studies suggest it can buffer stress and increase your resistance to disease. Also, it just feels great to laugh. Advertisers have long used the allure of laughter to sell their products, and many Americans tune in to the Super Bowl just to chuckle at the funny commercials. However, when it comes to selling people on smart

42

Electrical and Optical Enhancement in Internally Nanopatterned Organic Light-Emitting Diodes  

E-Print Network [OSTI]

incandescent bulbs and fluorescent bulbs). Solid-stateindex (CRI) than fluorescent bulbs. Common examples where

Fina, Michael Dane

2012-01-01T23:59:59.000Z

43

A living light bulb, ultrasensitive biodetection made easy  

Science Journals Connector (OSTI)

A team of scientists led by Professor DW Pang at Wuhan University have developed a new class of fluorescence probes based on bacterial cells. These microbial factories manufacture semiconductor nanocrystals in...

Jing Shang; Xiaohu Gao

2014-06-01T23:59:59.000Z

44

L Prize: The Race for Super Efficient Light Bulbs  

Broader source: Energy.gov [DOE]

This September 23, 2008 webcast provided an overview of the Bright Tomorrow Lighting Prize (L Prize) technology competition. The L Prize calls for super-efficient SSL products to replace two of the...

45

Visualization of nitric oxide production in the mouse main olfactory bulb by a cell-trappable copper(II) fluorescent probe  

E-Print Network [OSTI]

We report the visualization of NO production using fluorescence in tissue slices of the mouse main olfactory bulb. This discovery was possible through the use of a novel, cell-trappable probe for intracellular nitric oxide ...

McQuade, Lindsey E.

46

Solid State Lighting ECE 198 Lab Manual  

E-Print Network [OSTI]

commonly available light bulbs: halogen, incandescent, compact fluorescent, and light-emitting diode (LED will look at the spectrum of the light emitted from the each light bulb, using the spectrometers you). Over the course of the lab, you will perform variety of tests on each of the light bulbs in order

Wasserman, Daniel M.

47

Fluorescent Lighting Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fluorescent Lighting Basics Fluorescent Lighting Basics Fluorescent Lighting Basics October 17, 2013 - 5:39pm Addthis Light from a fluorescent lamp is first created by an electric current conducted through an inert gas producing ultraviolet light that is invisible to the human eye. The ultraviolet light in turn interacts with special blends of phosphors coating the interior surface of the fluorescent lamp tube that efficiently converts the invisible light into useful white light. Fluorescent lamps require a special power supply called a ballast that is needed to regulate lamp operating current and provide a compatible start-up voltage. Electronic ballasts perform the same function as a magnetic ballast but outperform the outdated magnetic products by operating at a very high frequency that eliminates flicker and noise while

48

Effects of low-dose heavy ions on embryonic development in mice and on melanocyte differentiation in the epidermis and hair bulb  

Science Journals Connector (OSTI)

......melanocytes and hair bulb melanocytes in the dorsal...relative humidity and 12 h of fluorescent light/day. Female mice...melanocytes and ventral hair bulb melanocytes did not necessarily...irradiation; 0.1 Gy led to a significant frequency...melanocytes and hair bulb melanocytes, and these......

Tomohisa Hirobe; Kiyomi Eguchi-Kasai; Kimihiko Sugaya; Masahiro Murakami

2013-05-01T23:59:59.000Z

49

Replacing Fluorescent Lightbulbs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Replacing Fluorescent Lightbulbs Replacing Fluorescent Lightbulbs Replacing Fluorescent Lightbulbs July 29, 2012 - 6:37pm Addthis Although fluorescent lightbulbs are generally energy efficient, you can replace them with new, even more efficient bulbs that use better electrodes and coatings than older ones. | Photo courtesy of ©iStockphoto.com/JoLin. Although fluorescent lightbulbs are generally energy efficient, you can replace them with new, even more efficient bulbs that use better electrodes and coatings than older ones. | Photo courtesy of ©iStockphoto.com/JoLin. What does this mean for me? Today's fluorescent light fixtures and bulbs are far more efficient than older ones. You can replace fluorescent bulbs and ballasts with more efficient ones to save money and energy. All fluorescent bulbs contain a very small amount of mercury:

50

The Influence of Photoperiod History on Circadian Response to Light  

E-Print Network [OSTI]

fluorescent bulbs (F4T5) (105 W/cm 2 ) for the photophase and narrowband light-emitting diodes (LEDs)fluorescent bulbs (F4T5) (105 W/cm2) while dark phases (scotophases) were dimly illuminated by narrowband light-emitting diodes (LEDs)fluorescent bulbs (F4T5) (105 W/cm2) while dark phases (scotophases) were dimly illuminated by narrowband light-emitting diodes (LEDs)

Glickman, Gena Lynne

51

Another Side of Light - D  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

D. Three quantum phenomena D. Three quantum phenomena In fluorescence, matter absorbs light waves of a high frequency and then emits light of the same or lower frequency. This process was studied and named by George Gabriel Stokes in the mid-19th century. Today, fluorescence is familiar to us from fluorescent light bulbs. A fluorescent bulb's filament produces ultraviolet light, which is absorbed by the bulb's inner coating, which then emits lower-frequency visible light-more visible light than an incandescent bulb produces with the same wattage. According to the hypothesis of light quanta, during fluorescence an atom absorbs a quantum of light whose energy is proportional to the light wave's frequency. If the atom doesn't supply any extra energy of its own, the light quantum emitted should either have the same energy or less energy

52

Cold Fluorescent Light as Major Inducer of Lipid Oxidation in Soybean Oil Stored at Household Conditions for Eight Weeks  

Science Journals Connector (OSTI)

Soybean oil stored in the dark for 56 days showed an increase of the peroxide value by 124 0.62% (p = 0.006), whereas exposure of the oil to light in a cycle of 12 h light alternating with 12 h darkness for 56 days led to a rise of the peroxide value by 1473 1.79% (p ? 0.001). ... Photosensitized oxidation and autoxidation of vegetable oils lead to the formation of a broad range of oxidation products. ... To investigate the influence of cold fluorescent light, bulbs were chosen that emit electromagnetic irradiation in the cold fluorescent range thereby mimicking the storage condition in a typical household. ...

Marc Pignitter; Klaus Stolze; Stephanie Gartner; Bettina Dumhart; Christiane Stoll; Georg Steiger; Klaus Kraemer; Veronika Somoza

2014-02-18T23:59:59.000Z

53

Article #11, May 23, 2006 AJ's Technical Tips: Technologies for Lighting in Rural Africa  

E-Print Network [OSTI]

/a 30 lumens 0.1 Incandescent Bulb 15 W 225 lumens 15 Fluorescent Tube Lamp 10 W 500 lumens 50 White LED Lamp 1 W 30 lumens 30 The data in Table 1 show that incandescent bulbs and fluorescent tubes generate incandescent bulbs are about 150 times more efficient. In other words, electric lights are not only brighter

Jacobson, Arne

54

Solid State Lighting Semiconductor Spectroscopy & Devices  

E-Print Network [OSTI]

than a light bulb, but they contain traces of toxic materials. LEDs utilise the movement of electrons information: jochen.bruckbauer@strath.ac.uk Overview Conventional light sources, like the light bulb and fluorescent lamps, are very inefficient in transforming energy into light. Due to upcoming problems in energy

Strathclyde, University of

55

New and Underutilized Technology: Efficient High Bay Fluorescent Lighting |  

Broader source: Energy.gov (indexed) [DOE]

Efficient High Bay Fluorescent Efficient High Bay Fluorescent Lighting New and Underutilized Technology: Efficient High Bay Fluorescent Lighting October 7, 2013 - 8:54am Addthis The following information outlines key deployment considerations for efficient high bay fluorescent lighting within the Federal sector. Benefits Efficient high bay fluorescent lighting can include either T5 or T8 fluorescent lighting systems for high-bay applications currently using metal halide fixtures. Fluorescent fixtures offer better light distribution, better light maintenance over the life of the lamp, improved color quality, and on-off control (re-strike time) with lower energy consumption. Application Efficient high bay fluorescent lighting is applicable for facilities containing high bay areas. Key Factors for Deployment

56

A Bright Idea: New Efficiency Standards for Incandescent and Fluorescent  

Broader source: Energy.gov (indexed) [DOE]

A Bright Idea: New Efficiency Standards for Incandescent and A Bright Idea: New Efficiency Standards for Incandescent and Fluorescent Lights A Bright Idea: New Efficiency Standards for Incandescent and Fluorescent Lights July 21, 2009 - 5:18pm Addthis John Lippert Pretty soon, lighting is going to get a lot more efficient. New standards for incandescent reflector bulbs, general purpose fluorescent bulbs, and regular incandescent bulbs are going into effect beginning in approximately three years. You may be curious about how these standards will affect the most popular types of incandescent bulbs we've all used for so long: the common non-reflector 40-watt, 60-watt, 75-watt, and 100-watt bulbs. The Energy Independence and Security Act of 2007 (also known as EISA) requires that these incandescent bulbs use 30% less energy than today's

57

NEXT GENERATION ENERGY EFFICIENT FLUORESCENT LIGHTING PRODUCT  

SciTech Connect (OSTI)

This is the Final Report of the Next-Generation Energy Efficient Fluorescent Lighting Products program, Department of Energy (DOE). The overall goal of this three-year program was to develop novel phosphors to improve the color rendition and efficiency of compact and linear fluorescent lamps. The prime technical approach was the development of quantum-splitting phosphor (QSP) to further increase the efficiency of conventional linear fluorescent lamps and the development of new high color rendering phosphor blends for compact fluorescent lamps (CFLs) as potential replacements for the energy-hungry and short-lived incandescent lamps in market segments that demand high color rendering light sources. We determined early in the project that the previously developed oxide QSP, SrAl{sub 12}O{sub 19}:Pr{sup 3+}, did not exhibit an quantum efficiency higher than unity under excitation by 185 nm radiation, and we therefore worked to determine the physical reasons for this observation. From our investigations we concluded that the achievement of quantum efficiency exceeding unity in SrAl{sub 12}O{sub 19}:Pr{sup 3+} was not possible due to interaction of the Pr{sup 3+} 5d level with the conduction band of the solid. The interaction which gives rise to an additional nonradiative decay path for the excitation energy is responsible for the low quantum efficiency of the phosphor. Our work has led to the development of a novel spectroscopic method for determining photoionzation threshold of luminescent centers in solids. This has resulted in further quantification of the requirements for host phosphor lattice materials to optimize quantum efficiency. Because of the low quantum efficiency of the QSP, we were unable to demonstrate a linear fluorescent lamp with overall performance exceeding that of existing mercury-based fluorescent lamps. Our work on the high color rendering CFLs has been very successful. We have demonstrated CFLs that satisfies the EnergyStar requirement with color rendering index (CRI) greater than 90; the CRI of current commercial CFLs are in the low 80s. In this report we summarize the technical work completed under the Program, summarize our findings about the performance limits of the various technologies we investigated, and outline promising paths for future work.

Alok Srivastava; Anant Setlur

2003-04-01T23:59:59.000Z

58

Product Standards for Fluorescent Lighting (Japan) | Open Energy  

Open Energy Info (EERE)

Product Standards for Fluorescent Lighting (Japan) Product Standards for Fluorescent Lighting (Japan) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Product Standards for Fluorescent Lighting (Japan) Focus Area: Appliances & Equipment Topics: Policy Impacts Website: www.eccj.or.jp/top_runner/pdf/tr_fluorescent_lights_jul.2009.pdf Equivalent URI: cleanenergysolutions.org/content/product-standards-fluorescent-lightin Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Industry Codes & Standards Regulations: Appliance & Equipment Standards and Required Labeling This Energy Conservation Center Japan (ECCJ) document was created as a

59

Sustainable LED Fluorescent Light Replacement Technology  

SciTech Connect (OSTI)

Ilumisys and the National Center for Manufacturing Sciences (NCMS) partnered on a three-year project awarded by the United States (U.S.) Department of Energy (DOE), to quantify the impacts of LED lamps, incandescent lamps and fluorescent benchmark lamps over a product lifecycle i.e. to develop a sustainable design and manufacturing strategy that addresses product manufacturing, use, recycling and disposal scenarios for LED-based lighting. Based on the knowledge gained from extensive product tear-down studies of fluorescent and screw-in lighting products, lifecycle assessment tools, and accelerated lifecycle testing protocols, an interactive Sustainable LED Design Guide has been developed to aid architectural and lighting designers and engineers in making design decisions that consider three important environmental impacts (greenhouse gas emissions, energy use and mercury emission) across all phases of the life of an LED lighting product. Critical information developed for the lifecycle analysis and product feature comparisons is the useful life of the lighting product as well as its performance. The Design Guide is available at www.ncms.org, and was developed based on operational and durability testing of a variety of lighting products including power consumption, light output, and useful life of a lamp in order to allow a more realistic comparison of lamp designs. This report describes the main project tasks, results and innovative features of the lifecycle assessment (LCA)-based design tools, and the key considerations driving the sustainable design of LED lighting systems. The Design Guide incorporates the following three novel features for efficiently evaluating LED lighting features in value-chains: Bill-of-Materials (BOM) Builder Designers may import process data for each component and supply functional data for the product, including power, consumption, lumen output and expected useful life. Environmental Impact Review Designs are comparable across lifecycle phases, subsystems, and environmental impact category, and can be normalized to a userdefined functional unit. Drill-down Review These provide an indepth look at individual lamp designs with the ability to review across subsystem or lifecycle phase.

None

2011-06-30T23:59:59.000Z

60

Shelf life of five meat products displayed under light emitting diode or fluorescent lighting.  

E-Print Network [OSTI]

??Light emitting diode (LED) and fluorescent (FLS) lighting effects on enhanced pork loin chops, beef longissimus dorsi and semimembranosus steaks, ground beef, and ground turkey (more)

Steele, Kyle Stover

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fluorescent light bulb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

LIGHT-INDUCED CHANGES IN THE FLUORESCENCE YIELD OF  

E-Print Network [OSTI]

LIGHT-INDUCED CHANGES IN THE FLUORESCENCE YIELD OF CHLOROPHYLL a IN VIVO II. CHLORELLA PYRENOIDOSA in Chlorella pyrenoidosa consists of a fast rise of the fluorescence yield from the level S (of the first wave photophosphorylation. INTRODUCTION The long-term fluorescence induction in Chlorella pyrenoidosa (second wave

Govindjee

62

Smart Lighting: A Second Wave in Solid State Lighting?  

E-Print Network [OSTI]

is Smart Lighting? · A Second Wave? #12;Bulbs transition to..... Bulbs! 3 · Sockets exist, so why not use them? (faster revenue, energy savings) · LED sources are mostly lower brightness · LED idiosyncrasies make broad incandescent and fluorescent replacement difficult ­ new fixtures coming First Wave #12

Salama, Khaled

63

Green Fluorescent Protein Is Lighting Up Fungal Biology  

Science Journals Connector (OSTI)

...MINIREVIEW Green Fluorescent Protein Is Lighting Up Fungal Biology J. M. Lorang R...naturally occur, in a lab or a contained greenhouse, will present other challenges. However...host. . Green fluorescent protein is lighting up fungal biology. | Department of Botany...

J. M. Lorang; R. P. Tuori; J. P. Martinez; T. L. Sawyer; R. S. Redman; J. A. Rollins; T. J. Wolpert; K. B. Johnson; R. J. Rodriguez; M. B. Dickman; L. M. Ciuffetti

2001-05-01T23:59:59.000Z

64

GREEN LIVING Replace incandencent and halogen light bulbs with LED and CLFs  

E-Print Network [OSTI]

GREEN LIVING GUIDE ENERGY TRAVEL FOOD sustain yosef WATER Replace incandencent and halogen light POWER STRIPS! for you electronics, and turn them off when not in use Adjust your thermostat UP IN SUMMER Bicycle Initiative http://boonebikeinitiative.org LEAVE YOUR CAR AT HOME - save $ on a parking pass

Thaxton, Christopher S.

65

Energy 101: Lighting Choices | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

101: Lighting Choices 101: Lighting Choices Energy 101: Lighting Choices August 13, 2013 - 2:38pm Addthis Learn about energy-efficient light bulbs that can light your home for less money. For many years, researchers have been working on new lighting options that produce the same light with less energy. Many of those designs are now on the market. This edition of Energy 101 features newer energy-saving light bulbs that provide the choices in colors and light levels you've come to expect, but with higher efficiencies-so they save you money. Upgrading 15 of the inefficient incandescent light bulbs in your home to energy-saving incandescent, compact fluorescent lamp (CFL), or light emitting diode (LED) bulbs could save you about $50 per year. For more information on lighting choices from the Office of Energy

66

Energy 101: Lighting Choices | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy 101: Lighting Choices Energy 101: Lighting Choices Energy 101: Lighting Choices August 13, 2013 - 2:38pm Addthis Learn about energy-efficient light bulbs that can light your home for less money. For many years, researchers have been working on new lighting options that produce the same light with less energy. Many of those designs are now on the market. This edition of Energy 101 features newer energy-saving light bulbs that provide the choices in colors and light levels you've come to expect, but with higher efficiencies-so they save you money. Upgrading 15 of the inefficient incandescent light bulbs in your home to energy-saving incandescent, compact fluorescent lamp (CFL), or light emitting diode (LED) bulbs could save you about $50 per year. For more information on lighting choices from the Office of Energy

67

How Many CASTLE Bulbs Would You Need To Match the Brightness of the Sun?  

E-Print Network [OSTI]

;Suppose that you have two household incandescent bulbs: one is labeled "60W," the other "100W." If you try incandescent bulb and a 9W fluorescent bulb. Which one makes your room brighter? It's not what you might expect... in fact, they look about the same! The incandescent bulb emits a broad spectrum of visible and infrared

Collar, Juan I.

68

High Hats, Swiss Cheese, and Fluorescent Lighting?  

SciTech Connect (OSTI)

For DOE, PNNL is conducting a competitive procurement to promote market introduction of new residential recessed downlights (also known as ''recessed cans'' or ''high hats'') that are airtight, rated for insulated ceilings, and hard-wired for CFLs. This paper discusses the potential energy savings of new high-efficiency downlights, and the results of product testing to date. Recessed downlights are the most popular residential lighting fixtures in the United States, with 21.7 million fixtures sold in 2000. An estimated 350 million are currently installed in American homes. Recessed cans are relatively inexpensive, and provide an unobtrusive, directed source of light for kitchens, hallways, and living rooms. Recessed cans are energy-intensive in three ways. First, virtually all recessed cans currently installed in the residential sector use incandescent light sources, typically reflector-type lamps drawing 65-150 watts. Second, heat from incandescent lamps adds to air-conditioning loads. Third, most installed recessed cans are not airtight, so they allow conditioned air to escape from the living area into unconditioned spaces such as attics. Addressing both lighting energy use and air leakage in recessed cans has proven challenging. Lighting energy efficiency is greatly improved by using CFLs. Air leakage can be addressed by making fixtures airtight. But when CFLs are used in an airtight recessed can, heat generated by the lamp and ballast is trapped within the fixture. Excessive heat causes reduced light output and shorter lifespan of the CFL. The procurement was designed to overcome these technical challenges and make new products available in the marketplace.

McCullough, Jeffrey J.; Gordon, Kelly L.

2002-08-30T23:59:59.000Z

69

Mercury Vapor Release from Broken Compact Fluorescent Lamps and In Situ Capture by New Nanomaterial Sorbents  

Science Journals Connector (OSTI)

There is one report of Hg poisoning (acrodynia) in a child exposed to broken tube-type fluorescents in a detailed case study presented by Tunnessen et al. (6). ... Similar release patterns but lower amounts were seen for spent bulbs (example result 90 ?g in 24 h) or from the fracture site of a new bulb after glass removal to simulate cleanup. ... Artificial lighting systems are transitioning from incandescent to compact fluorescent lamp (CFL) and light-emitting diode (LED) bulbs in response to the U.S. Energy Independence and Security Act and the EU Ecodesign Directive, which leads to energy ... ...

Natalie C. Johnson; Shawn Manchester; Love Sarin; Yuming Gao; Indrek Kulaots; Robert H. Hurt

2008-06-27T23:59:59.000Z

70

The Influence of Photoperiod History on Circadian Response to Light  

E-Print Network [OSTI]

by broad spectrum white fluorescent bulbs (F4T5) (105 by broad spectrum white fluorescent bulbs (F4T5) (105 used broad spectrum white fluorescent bulbs (F4T5) (105 W/

Glickman, Gena Lynne

71

Recessed light fixtures: Infiltration energy loss  

SciTech Connect (OSTI)

This article reports that a recent study revealed that fluorescent bulbs can reduce convective energy losses by 15--65% as compared to incandescent bulbs. Recessed light fixtures are commonly installed in offices and homes. However, a problem arises in homes when the fixtures are set in the ceiling such that the top of the light fixture is exposed to the unconditioned air in the attic. Because some air flow is necessary around the light to avoid overheating, the manufacturers do not make all the fixtures leak tight, only those that are rated for lower wattage bulbs. The need for cooling the fixture may conflict with some building efficiency codes.

Bennett, S.M.; Perez-Blanco, H. (Pennsylvania State Univ., University Park, PA (United States))

1994-06-01T23:59:59.000Z

72

Brief Communications Nocturnal Light Exposure Impairs Affective Responses in a  

E-Print Network [OSTI]

conditions have led to excessive exposure to light at night (LAN), and particularly to blue wavelength lights include television and computer screens, light pollution, shift work, compact fluorescent light (CFL) bulbs, and trans- meridian travel. ipRGCs are maximally sensitive to blue light ( 480 nm) and minimally

Nelson, Randy J.

73

Effect of Combining Far-Red Light with Shorter Wave Light on the Excitation of Fluorescence  

E-Print Network [OSTI]

of Fluorescence in Chlorella Recent experiments on the rate of photosyn- thesis in far-red light alone that the quantum yield of Auo- rescence in Chlorella drops when excitation is achieved by light above 680 ml* (10- teen experiments of this type are summarized in Table I. Chlorella pyrenoidosa Strain 3 were used

Govindjee

74

Remediation plan for fluorescent light fixtures containing polychlorinated biphenyls (PCBs)  

SciTech Connect (OSTI)

This report describes the remedial action to achieve compliance with 29 CFR 1910 Occupational Safety and Health Administration (OSHA) requirements of fluorescent light fixtures containing PCBs at K-25 site. This remedial action is called the Remediation Plan for Fluorescent Light Fixtures Containing PCBs at the K-25 Site (The Plan). The Plan specifically discusses (1) conditions of non-compliance, (2) alternative solutions, (3) recommended solution, (4) remediation plan costs, (5) corrective action, (6) disposal of PCB waste, (7) training, and (8) plan conclusions. The results from inspections by Energy Systems personnel in 2 buildings at K-25 site and statistical extension of this data to 91 selected buildings at the K-25 site indicates that there are approximately 28,000 fluorescent light fixtures containing 47,036 ballasts. Approximately 38,531 contain PCBs and 2,799 of the 38,531 ballasts are leaking PCBs. Review of reportable occurrences at K-25 for the 12 month period of September 1990 through August 1991 shows that Energy Systems personnel reported 69 ballasts leaking PCBs. Each leaking ballast is in non-compliance with 29 CFR 1910 - Table Z-1-A. The age of the K-25 facilities indicate a continued and potential increase in ballasts leaking PCBs. This report considers 4 alternative solutions for dealing with the ballasts leaking PCBs. The advantages and disadvantages of each alternative solution are discussed and ranked using cost of remediation, reduction of health risks, and compliance with OSHA as criteria.

NONE

1992-04-30T23:59:59.000Z

75

EK101 Engineering Light Project: Evaluate Residential Lighting  

E-Print Network [OSTI]

for residential lighting (LED, Compact Fluorescent, Incandescent). Develop a plan of experiments to be conducted, CF, and Incandescent bulbs for the past ten years. (try the wayback time machine if other sources fail). Discuss the key challenges associated with a transition from incandescent lighting

Bifano, Thomas

76

Lighting in Residential and Commercial Buildings (1993 and 1995 Data)  

U.S. Energy Information Administration (EIA) Indexed Site

Types > 1995 CBECS Lighting Equipment Types > 1995 CBECS Lighting Equipment 1995 CBECS Lighting Equipment Profile Lighting Equipment - Type and Characteristics of Equipment Emits Found In Incandescent Incandescent Light Bulb Produces light by electrically heating a tungsten filament Includes energy-efficient incandescent bulbs, such as Reflector or R-Lamps (accent and task lighting), Parabolic Aluminized Reflector (PAR) lamps (flood and spot lighting), and Ellipsoidal Reflector (ER) lamps (recessed lighting) Highly inefficient because much of the energy is lost as heat 14-18 Lumens Per Watt (LPW) 14% of Lit Commercial Floorspace Standard Fluorescent Lighting with Magnetic Ballast Standard Fluorescent with Magnetic Ballast Produces light by passing electricity through mercury vapor, causing the fluorescent coating to glow or fluoresce

77

Abstract 4138: Fluorescence laparoscopy with an LED light source enables fluorescence-guided resection of pancreatic cancer, labeled with fluorophore-conjugated antibodies, in mouse models.  

Science Journals Connector (OSTI)

...4138: Fluorescence laparoscopy with an LED light source enables fluorescence-guided...495-nm emission filter and a Stryker L9000 LED light source 24 hours after tail vein injection...Bouvet. Fluorescence laparoscopy with an LED light source enables fluorescence-guided...

Cristina A. Metildi; Sharmeela Kaushal; George A. Luiken; Mark A. Talamini; Robert M. Hoffman; Michael Bouvet

2013-04-15T23:59:59.000Z

78

Blue fluorescent organic light emitting diodes with multilayered graphene anode  

SciTech Connect (OSTI)

As an innovative anode for organic light emitting devices (OLEDs), we have investigated graphene films. Graphene has importance due to its huge potential in flexible OLED applications. In this work, graphene films have been catalytically grown and transferred to the glass substrate for OLED fabrications. We have successfully fabricated 2 mm 2 mm device area blue fluorescent OLEDs with graphene anodes which showed 2.1% of external quantum efficiency at 1000 cd/m{sup 2}. This is the highest value reported among fluorescent OLEDs using graphene anodes. Oxygen plasma treatment on graphene has been found to improve hole injections in low voltage regime, which has been interpreted as oxygen plasma induced work function modification. However, plasma treatment also increases the sheet resistance of graphene, limiting the maximum luminance. In summary, our works demonstrate the practical possibility of graphene as an anode material for OLEDs and suggest a processing route which can be applied to various graphene related devices.

Hwang, Joohyun [OLED Lighting Research Team, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of)] [OLED Lighting Research Team, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of); Choi, Hong Kyw [Graphene Electronics Creative Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of)] [Graphene Electronics Creative Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of); Moon, Jaehyun; Shin, Jin-Wook; Joo, Chul Woong; Han, Jun-Han; Cho, Doo-Hee; Huh, Jin Woo [OLED Lighting Research Team, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of)] [OLED Lighting Research Team, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of); Choi, Sung-Yool [Graphene Electronics Creative Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of)] [Graphene Electronics Creative Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of); Lee, Jeong-Ik, E-mail: jiklee@etri.re.kr [OLED Lighting Research Team, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of)] [OLED Lighting Research Team, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of); Chu, Hye Yong [OLED Lighting Research Team, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of)] [OLED Lighting Research Team, Electronics and Telecommunications Research Institute (ETRI), Daejeon 305-700 (Korea, Republic of)

2012-10-15T23:59:59.000Z

79

Dynamics of Vacuoles and H+-Pyrophosphatase Visualized by Monomeric Green Fluorescent Protein in Arabidopsis: Artifactual Bulbs and Native Intravacuolar Spherical Structures  

Science Journals Connector (OSTI)

...an artifactual fluorescence resonance energy transfer reaction on membranes (Zacharias...reported. In a fluorescence resonance energy transfer assay for membrane proteins...1507-1523. Espiau, B. , Lemercier, G., Ambit, A., Bringaud, F., Merlin, G...

Shoji Segami; Sachi Makino; Ai Miyake; Mariko Asaoka; Masayoshi Maeshima

2014-08-12T23:59:59.000Z

80

Comparison of the Electromagnetic Spectra of Common Light Sources: A General Chemistry Laboratory Exercise  

Science Journals Connector (OSTI)

Compact fluorescent light (CFL); light emitting diode (LED). ... White LED light can be produced by mixing light from red, green, and blue LEDs. ... Students observe that the white light from a six LED flashlight array (Figure 5) arises from two major peaks and that the spectrum is less continuous than those of incandescent bulbs, but more continuous than those of CFLs. ...

Edward Maslowsky, Jr.

2013-10-03T23:59:59.000Z

Note: This page contains sample records for the topic "fluorescent light bulb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

White organic light-emitting diodes with an ultra-thin premixed emitting layer  

E-Print Network [OSTI]

and even competitors of well-established fluorescent tubes and inorganic LEDs thanks to their unique to outperform incandescent light bulbs and even fluorescent tubes in terms of luminous efficiencies[4]. A good triphenylamine molecule. ABSTRACT: We described an approach to achieve fine color control of fluorescent White

Paris-Sud XI, Université de

82

FLUORESCENCE CHANGES IN PORPHYRIDIUM EXPOSED TO GREEN LIGHT OF DIFFERENT INTENSITY: A NEW EMISSION  

E-Print Network [OSTI]

FLUORESCENCE CHANGES IN PORPHYRIDIUM EXPOSED TO GREEN LIGHT OF DIFFERENT INTENSITY: A NEW EMISSION supposed to require two light reactions for the transfer of one hydrogen atom from water to carbon dioxide the existence of this second trap. With increase in intensity of green light, I,, the differential fluorescence

Govindjee

83

Coldwater Board of Public Utilities - Commercial and Industrial Lighting  

Broader source: Energy.gov (indexed) [DOE]

Coldwater Board of Public Utilities - Commercial and Industrial Coldwater Board of Public Utilities - Commercial and Industrial Lighting Rebate Program Coldwater Board of Public Utilities - Commercial and Industrial Lighting Rebate Program < Back Eligibility Commercial Industrial Local Government Multi-Family Residential Nonprofit Savings Category Other Appliances & Electronics Commercial Lighting Lighting Manufacturing Heating & Cooling Commercial Heating & Cooling Cooling Buying & Making Electricity Maximum Rebate 50% of Project Cost Cannot exceed 100% of a single energy efficient measure's cost. Program Info State Michigan Program Type Utility Rebate Program Rebate Amount Custom: Not Specified Lighting Fluorescent Lighting: $2 - $50/fixture HID Lighting: $20 - $25/fixture Induction Bulb: $10 Metal Halide PAR Bulb: $20

84

A light diet for a giant appetite: An assessment of China's proposed fluorescent lamp standard  

SciTech Connect (OSTI)

Lighting has been one of the fastest growing electric end-uses in China over the last twenty years, with an average annual growth rate of 14%. Fluorescent lighting provides a significant portion of China's lighting need. In 1998, China produced 680 million fluorescent lamps, of which 420 million were linear fluorescent lamps of various diameters (T8 to T12). There are substantial variations both in energy efficiency and lighting performance among locally produced fluorescent lamps. Such variations present a perfect opportunity for policy intervention through efficiency standards to promote the adoption of more efficient fluorescent lamps in China. This paper analyzes China's proposed minimum efficiency standard for fluorescent lamps and presents an assessment of its likely impacts on China's lighting energy consumption and GHG emissions.

Lin, Jiang

2002-04-11T23:59:59.000Z

85

Asynchronous indoor positioning system based on visible light  

E-Print Network [OSTI]

employ fluorescent lamps and light-emitting diodes (LEDs). VLC-based techniques have the advantage of light-emitting diode bulbs. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10. Most of the VLC-based techniques use LEDs as the light source, since they can be modulated more easily

Kavehrad, Mohsen

86

System Architecture Directions for a Software-Defined Lighting Infrastructure  

E-Print Network [OSTI]

spectrum of an outdoor environment and a typical fluorescent tube-lit office space. Indoor spectrum to incandescent and fluorescent lights. Unfortunately, the remarkable march of semiconductor technology a renaissance. The staple of illumi- nation for one and a half centuries, the incandescent bulb, is being phased

Dutta, Prabal

87

Assessing the residential lighting efficiency opportunities in Guadalajara and Monterrey, Mexico  

SciTech Connect (OSTI)

Lighting, primarily with incandescent bulbs, is the major end use of electricity in Mexican homes. The introduction of compact fluorescent lamps (CFLs) could significantly reduce electricity use in lighting. We describe a survey of lighting use in homes of Guadalajara and Monterrey, Mexico, that was conducted to provide information to determine the potential for CDLs. The results show that 1/6 of the incandescent bulbs can be replaced with CFLs if only those bulbs used more than 4 hours per day are targeted. We also provide insights on conducting similar surveys in other developing countries.

Friedmann,R.; DeBuen,O; Sathaye,J.; Gadgil,A.; Saucedo,R.; Rodriguez,G.

1995-02-02T23:59:59.000Z

88

Red-emitting fluorescent Organic Light emitting Diodes with low sensitivity to self-quenching  

E-Print Network [OSTI]

Red-emitting fluorescent Organic Light emitting Diodes with low sensitivity to self-quenching S, France *E-mail : sebastien.forget@univ-paris13.fr Keywords: OLED, quenching, doping, red-emitting organic. We herein report on Organic Light-Emitting Diodes (OLEDs) based on a fluorescent amorphous red

Paris-Sud XI, Université de

89

ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY  

E-Print Network [OSTI]

firms currently producing fluorescent bulbs. Phantom tubea per- centage of fluorescent light bulbs from the installed

Authors, Various

2010-01-01T23:59:59.000Z

90

Perceptions of compact fluorescent lamps in the residential market  

SciTech Connect (OSTI)

Compact fluorescent lamps offer significant energy savings over other forms of residential lighting and last up to 10 times longer than conventional incandescent bulbs. In order to better understand existing barriers to acceptance and future opportunities for growth of compact fluorescent lighting in the residential retrofit sector, a three stage research project was designed and conducted by MACRO Consulting, Inc. Assessment of whether or not the benefits of compact fluorescent lamps are sufficient to overcome price resistance was one of the major purposes of this project. Residential customers were interviewed in focus group sessions to help determine key issues and motivating forces in the lighting/energy saving/cost saving equation. Residential customers in 5 major market areas were contacted by telephone, and data about their awareness, knowledge and use of compact fluorescent lighting were collected. These customers also participated in an attribute rating exercise in which compact fluorescent lamps were compared with fluorescent tubes and incandescent bulbs on a series of product attributes. A price elasticity exercise was also conducted. Teleconferences with retailers of compact fluorescent lamps were conducted in order to explore their knowledge of and attitudes towards compact fluorescent lamps. Customers agree that energy savings and longer life are both positive attributes for residential lighting products, but they are not yet ready to make the switch away from inexpensive, versatile and readily available incandescent bulbs to compact fluorescent lamps. Compact fluorescent lamps are rated poorly (even by satisfied'' users) on each of seven positive attributes of home lighting. Major barriers to increased use of compact fluorescent lamps include price, convenience, and performance. Prices above $10 are considered outrageous''. Product improvements are needed for appearance, light output and versatility.

Weiner, J.; Campbell, C.J. (Macro Consulting, Inc., Mountain View, CA (United States))

1992-07-01T23:59:59.000Z

91

LIGHT-INDUCED CHANGES IN THE FLUORESCENCE YIELD OF  

E-Print Network [OSTI]

OF PREILLUMINATION ON THE FLUORESCENCE TRANSIENT OF Chlorella pyrenoidosa JOHN C. MUNDAY, JR., and GOVINDJEE From Mexico 88330. ABSTRACT The fluorescence transient of Chlorella pyrenoidosa, excited by saturat- ing blue Chlorella pyrenoidosa the fluorescence transient exhibits a base level 0, a hump I at 50 msec. (at 1.5 X 104

Govindjee

92

DOE Launches Change a Light, Change the World Campaign | Department of  

Broader source: Energy.gov (indexed) [DOE]

Change a Light, Change the World Campaign Change a Light, Change the World Campaign DOE Launches Change a Light, Change the World Campaign October 3, 2007 - 2:50pm Addthis Encourages Americans to Pledge to Change One Light to an Efficient Compact Fluorescent Lightbulb WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today launched the 2007 Change a Light, Change the World campaign encouraging every American to change at least one light at home to an ENERGY STAR® Compact Fluorescent Light bulb (CFL). These bulbs are estimated to use 75 percent less energy than standard bulbs and last up to ten times longer, resulting in fewer greenhouse gas emissions and substantial energy savings. This national call to action encourages all Americans to help change the world, one light - one energy-saving step - at

93

Bringing climate change down to earth : science and participation in Canadian and Australian climate change campaigns  

E-Print Network [OSTI]

bulbs with compact fluorescent bulbs. This led to a fair bitsuch as compact fluorescent bulbs, low-flow showerheads, andtechnologies: compact fluorescent light bulbs, energy saving

Padolsky, Miriam Elana

2006-01-01T23:59:59.000Z

94

Confocal microphotoluminescence of InGaN-based light-emitting diodes Koichi Okamoto,a  

E-Print Network [OSTI]

for conventional incandescent and fluorescent light bulbs.5 However, luminous efficacies of commercial white LEDs spectrum region, the external quantum efficiency ext of the LED has achieved 20% at room temperature 25 lm/W have been still lower than that of fluorescent tubes 75 lm/W . Thus, the most important re

Okamoto, Koichi

95

Organic light-emitting device with a phosphor-sensitized fluorescent emission layer  

DOE Patents [OSTI]

The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters. The emissive region of the devices of the present invention comprise at least one phosphor-sensitized layer which has a combined emission from a phosphorescent emitter and a fluorescent emitter. In preferred embodiments, the invention relates to white-emitting OLEDS (WOLEDs).

Forrest, Stephen (Ann Arbor, MI); Kanno, Hiroshi (Osaka, JP)

2009-08-25T23:59:59.000Z

96

LIGHT-INDUCED CHANGES IN THE FLUORESCENCE YIELD OF  

E-Print Network [OSTI]

a in system II, the system which sensitizes the oxygen-evolving reaction (7-14). The factor controlling fluorescence intensity is the redox state of Q, the electron acceptor in the system It reaction center (9). Fig

Govindjee

97

Essays in Public Economics and Development  

E-Print Network [OSTI]

adopt compact fluorescent light bulbs (CFLs), and possibleof compact fluorescent light bulbs (CFLs) from PROCEL, andAdoption of compact fluorescent light bulbs In the PROCEL

Gerard, Francois

2013-01-01T23:59:59.000Z

98

Delivering Energy Efficiency to Middle Income Single Family Households  

E-Print Network [OSTI]

system CFL Compact Fluorescent Light Bulb IAQ Indoor Airdiscount compact fluorescent light bulbs (CFLs) or providediscount compact fluorescent light bulbs (CFLs) or provide

Zimring, Mark

2012-01-01T23:59:59.000Z

99

Protocol for Maximizing Energy Savings and Indoor Environmental Quality Improvements when Retrofitting Apartments  

E-Print Network [OSTI]

bulbswithcompactfluorescentbulbs. Inaddition,thea?lightbulbswith fluorescentlightbulbsthatuselesslight bulbs with compact fluorescentlights Replace

Noris, Federico

2014-01-01T23:59:59.000Z

100

Impact of Varying Atmospheric Profiles on Extensive Air Shower Observation: Fluorescence Light Emission and Energy Reconstruction  

E-Print Network [OSTI]

Several experiments measure the fluorescence light produced by extensive air showers in the atmosphere. This light is converted into a longitudinal shower profile from which information on the primary energy and composition is derived. The fluorescence yield, as the conversion factor between light profile measured by EAS experiments and physical interpretation of showers, has been measured in several laboratory experiments. The results, however, differ considerably. In this article, a model calculation of the fluorescence emission from relevant band systems of nitrogen in dependence on wavelength and atmospheric conditions is presented. Different calculations are compared to each other in combination with varying input parameters. The predictions are compared with measurements and the altitude-dependence of the fluorescence yield is discussed in detail.

B. Keilhauer; J. Bluemer; R. Engel; H. O. Klages

2005-11-05T23:59:59.000Z

Note: This page contains sample records for the topic "fluorescent light bulb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Growth and pigment content of Gracilaria tikvahiae McLachlan under fluorescent and LED lighting  

Science Journals Connector (OSTI)

Abstract Light emitting diode (LED) technology has significant potential advantages over other light sources in algal aquaculture. This study investigated \\{LEDs\\} as light sources for the culture of Gracilaria tikvahiae. We cultured a wild-type and a green mutant strain of G. tikvahiae, comparing growth rate and tissue chlorophyll a, total carotenoids, and phycobiliprotein concentrations under high output cool white fluorescent, pure primary color LED, and mixed LED lighting. Under monochromatic light, the growth rates under high output cool white fluorescent lighting were significantly higher than rates under pure LED light (all three colors for wild strain and green and blue for green mutant). However, when pure color LED lighting was mixed (50%/50%), the red+green (wild-type strain and green mutant) and the green+blue LED combinations (wild-type only) showed growth rates similar to those under high output cool white fluorescent lighting. In the trichromatic experiment, growth of the wild-type strain under mixed three-color (40%/40%/20%) LED light was indistinguishable from those of the fluorescent control lighting. Chlorophyll a and carotenoid concentrations of Gracilaria grown in the dichromatic light experiment were 55% and 74% higher, respectively, under red+blue LED lighting than under the other light treatments. The wild-type strain of G. tikvahiae possessed significantly greater concentrations of chlorophyll a, and phycoerythrin than did the green mutant, while green mutant thalli had higher phycocyanin levels. With rising LED efficiency and energy savings, \\{LEDs\\} will be an increasingly better choice for indoor seaweed cultivation, especially if control of pigment production and morphogenesis by selective use of particular wavelengths is desirable.

Jang K. Kim; Yunxiang Mao; George Kraemer; Charles Yarish

2015-01-01T23:59:59.000Z

102

Spotlights on Recent JACS Publications FLUORESCENT PROBES LIGHT UP AMYLOID  

E-Print Network [OSTI]

the conductance, or transport, of ions across the membrane. Researchers have exploited the efficient transport investigated the mechanism of ion transport through several structural variants of fluorescent oligoester: the channel's ion transport activity slowly decreased over time. The researchers used steady-state and time

Theodorakis, Emmanuel

103

Induction Lighting: An Old Lighting Technology Made New Again | Department  

Broader source: Energy.gov (indexed) [DOE]

Induction Lighting: An Old Lighting Technology Made New Again Induction Lighting: An Old Lighting Technology Made New Again Induction Lighting: An Old Lighting Technology Made New Again July 27, 2009 - 5:00am Addthis John Lippert Induction lighting is one of the best kept secrets in energy-efficient lighting. Simply stated, induction lighting is essentially a fluorescent light without electrodes or filaments, the items that frequently cause other bulbs to burn out quickly. Thus, many induction lighting units have an extremely long life of up to 100,000 hours. To put this in perspective, an induction lighting system lasting 100,000 hours will last more than 11 years in continuous 24/7 operation, and 25 years if operated 10 hours a day. The technology, however, is far from new. Nikola Tesla demonstrated induction lighting in the late 1890s around the same time that his rival,

104

LED bulbs technical specification and testing procedure for solar home systems  

Science Journals Connector (OSTI)

Abstract The definition of technical specifications and the corresponding laboratory procedures are necessary steps in order to assure the quality of the devices prior to be installed in Solar Home Systems (SHS). To clarify and unify criteria a European project supported the development of the Universal Technical Standard for Solar Home Systems (UTSfSHS). Its principles were to generate simple and affordable technical requirements to be optimized in order to facilitate the implementation of tests with basic and simple laboratory tools even on the same SHS electrification program countries. These requirements cover the main aspects of this type of installations and its lighting chapter was developed based on the most used technology at that time: fluorescent tubes and CFLs. However, with the consolidation of the new LED solid state lighting devices, particular attention is being given to this matter and new procedures are required. In this work we develop a complete set of technical specifications and test procedures that have been designed within the frame of the UTSfSHS, based on an intense review of the scientific and technical publications related to LED lighting and their practical application. They apply to lamp reliability, performance and safety under normal, extreme and abnormal operating conditions as a simple but complete quality meter tool for any LED bulb. These tests have been applied to a group of 14 low-cost direct current LED bulbs and the accomplishment of the proposed requirements is analyzed.

Alfonso Gago Caldern; Luis Narvarte Fernndez; Luis Miguel Carrasco Moreno; Javier Sern Barba

2015-01-01T23:59:59.000Z

105

Household transitions to energy efficient lighting  

Science Journals Connector (OSTI)

Abstract New energy efficient lighting technologies can significantly reduce household electricity consumption, but adoption has been slow. A unique dataset of German households is used in this paper to examine the factors associated with the replacement of old incandescent lamps (ILs) with new energy efficient compact fluorescent lamps (CFLs) and light emitting diodes (LEDs). The rebound effect of increased lamp luminosity in the transition to energy efficient bulbs is analyzed jointly with the replacement decision to account for household self-selection in bulb-type choice. Results indicate that the EU ban on \\{ILs\\} accelerated the pace of transition to \\{CFLs\\} and LEDs, while storage of bulbs significantly dampened the speed of the transition. Higher lighting needs and bulb attributes like energy efficiency, environmental friendliness, and durability spur IL replacement with \\{CFLs\\} or LEDs. Electricity gains from new energy efficient lighting are mitigated by 23% and 47% increases in luminosity for CFL and LED replacements, respectively. Model results suggest that taking the replacement bulb from storage and higher levels of education dampen the magnitude of these luminosity rebounds in IL to CFL transitions.

Bradford Mills; Joachim Schleich

2014-01-01T23:59:59.000Z

106

The Influence of Photoperiod History on Circadian Response to Light  

E-Print Network [OSTI]

broad spectrum white fluorescent bulbs (F4T5) (105 W/cm2)broad spectrum white fluorescent bulbs (F4T5) (105 W/cm2)broad spectrum white fluorescent bulbs (F4T5) (105 W/cm 2 )

Glickman, Gena Lynne

107

March 10, 2011 Let There Be More Efficient Light  

E-Print Network [OSTI]

standards for light bulbs, which include a phasing out of incandescent bulbs in favor of more energy lyrically with two colleagues about "the incandescent bulb that has been turning back the night ever since

Colorado at Boulder, University of

108

Cornell University Electric Lighting Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Lighting Quality Electric Lighting Quality The CUSD lighting design team utilized energy efficient products that meshed well with our daylighting scheme. We chose to use fluorescent tubes or compact fluorescent bulbs with an energy consumption of between 15 and 30 Watts throughout the house. The ballasts for all lamps dim to a 1% light output, so the interior and exterior lights can be adjusted as the level of available daylight fluctuates. Light sensors have been placed in front of our two largest apertures, allowing us to control how much artificial light is supplied to each space. The control of our ballasts is intricate, but refined and tested to avoid dysfunctional dimming or switching. While automatic controls are included, manual user overrides are provided in case the occupant prefers

109

Max Tech and Beyond: Maximizing Appliance and Equipment Efficiency by Design  

E-Print Network [OSTI]

for the motor (30 W). Fluorescent bulbs gain 75% efficiencyreplaced with compact fluorescent bulbs, with LEDs being aCommission compact fluorescent light bulb cubic feet per

Desroches, Louis-Benoit

2012-01-01T23:59:59.000Z

110

A world of cruelty in Titus Andronicus /  

E-Print Network [OSTI]

were the flickering fluorescent bulbs, a single scream andmade mostly for the fluorescent bulbs. Kristin Hayes, thecold light of a fluorescent bulb exposes and illuminates

Brody, Joshua Kahan

2013-01-01T23:59:59.000Z

111

DSM Electricity Savings Potential in the Buildings Sector in APP Countries  

E-Print Network [OSTI]

150 million compact fluorescent light bulbs in 2010. (ChinaCleaners Incandescent Bulbs Fluorescent Lamps Ballasts forincandescent bulbs with compact fluorescent lamps. Consumers

McNeil, MIchael

2011-01-01T23:59:59.000Z

112

Behavioral Perspectives on Home Energy Audits: The Role of Auditors, Labels, Reports, and Audit Tools on Homeowner Decision Making  

E-Print Network [OSTI]

and dishwasher, all fluorescent bulbs Changed about on. I use more fluorescent bulbs now. Increased Furnace Installed fluorescent light bulbs Insulate

Ingle, Aaron

2013-01-01T23:59:59.000Z

113

Capacitive sensing with a fluorescent lamp  

E-Print Network [OSTI]

This work presents a modified fluorescent lamp that can be used as a capacitive sensing system. The lamp sensor measures changes in the electric fields emitted from the fluorescent bulbs in order to deduce the presence and ...

Cooley, John Jacob

2007-01-01T23:59:59.000Z

114

Energy 101: Lighting Choices | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Lighting Choices Lighting Choices Energy 101: Lighting Choices Addthis Below is the text version for the Energy 101: Lighting Choices video: The video opens with "Energy 101: Lighting Choices." This is followed by shots of a variety of lamps being turned on. We're all used to lighting up dark spaces with the flip of a switch. In fact, people have been doing so since Thomas Edison invented the incandescent light bulb about 130 years ago...and we've used that same old bulb ever since. The video shows a store aisle with a diverse light bulb selection, then moves to close-ups of the packaging labels on various bulbs. Today you'll see more light bulb options in stores. These bulbs will give you the light you want while saving you energy...and money. A hand screws in a light bulb and flips the switch. The bulb is shown in

115

Fabrication of color tunable organic light-emitting diodes by an alignment free mask patterning method  

E-Print Network [OSTI]

that of the incandescent bulb and comparable with that of the fluorescent tube. OLEDs are a true sur- face/area lighting as that of a point source like LEDs. OLEDs are mercury free thus environmentally friendly. More impor- tantly, OLEDs electrochemical doping to make the two color polymer LEDs, in which two colors can be obtained by changing

116

Improved fluorescence-enhanced optical imaging and tomography by enhanced excitation light rejection  

E-Print Network [OSTI]

) .................................................................88 xvi NOMENCLATURE Abbreviations 2-D Two-dimension 3-D Three-dimension ACR Amplitude ratio AOI Angle of incidence CCD Charge coupled device CT Computed tomography CW... molecular markers of disease at pico-molar to nano-molar concentrations. Light in the UV-visible range does not enable deep 7 penetration for fluorescence imaging mainly because of autofluorescence and a high level of endogenous absorbers...

Hwang, Kil Dong

2009-05-15T23:59:59.000Z

117

Spatial responses to light in mice with severe retinal degeneration N. Mrosovsky*, Robert R. Hampton  

E-Print Network [OSTI]

the left or the right side to be illuminated. Illumination was provided by a 57 cm long fluorescent bulb

Hampton, Robert

118

Catalog of DC Appliances and Power Systems  

E-Print Network [OSTI]

loss for the compact fluorescent bulb replacement. For mosta light bulb or tube, a compact fluorescent lamp typically

Garbesi, Karina

2012-01-01T23:59:59.000Z

119

Compact Fluorescent Lighting in America: Lessons Learned on the Way to Market  

SciTech Connect (OSTI)

This report describes the history of compact fluorescent lamps (CFLs) in America. CFLs were introduced in the 1970s; however, it has taken more than 20 years for them to gain widespread recognition in the U.S. residential lighting market. This report reviews the development of CFLs, efforts to increase market acceptance of them, and barriers to that acceptance. Lessons to be learned from this study of CFLs are identified in hopes of assisting future market introduction efforts for other promising energy-efficient technologies. This report was prepared by the Pacific Northwest National Laboratory for the U.S. Department of Energys Office of Building Technologies, Emerging Technologies Program.

Sandahl, Linda J.; Gilbride, Theresa L.; Ledbetter, Marc R.; Steward, Heidi E.; Calwell, Chris

2006-05-22T23:59:59.000Z

120

Lighting a building with a single bulb : toward a system for illumination in the 21st c.; or, A centralized illumination system for the efficient decoupling and recovery of lighting related heat  

E-Print Network [OSTI]

Piping light represents the first tenable method for recovery and reutilization of lighting related heat. It can do this by preserving the energy generated at the lamp as radiative, departing from precedent and avoiding ...

Levens, Kurt Antony, 1961-

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fluorescent light bulb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Energy Conversion: Solid-State Lighting  

E-Print Network [OSTI]

and global climate change. Historically, electric light bulbs have been of the incandescent type. Although this technology was developed more than 100 years ago, it is still in use today. Incandescent light bulbs operate, which allows the bulb to operate at a higher temperature. However, the efficiency of incandescent light

122

Tips: Lighting | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Lighting Lighting Tips: Lighting May 4, 2012 - 3:16pm Addthis Lighting Choices Save You Money. Energy-efficient light bulbs are available in a wide variety of sizes and shapes. Lighting Choices Save You Money. Energy-efficient light bulbs are available in a wide variety of sizes and shapes. What does this mean for me? Replacing 15 inefficient incandescent bulbs in your home with energy-saving bulbs could save you about $50 per year. For the greatest savings, replace your old incandescent bulbs with ENERGY STAR-qualified bulbs. An average household dedicates about 10% of its energy budget to lighting. Switching to energy-efficient lighting is one of the fastest ways to cut your energy bills. Timers and motion sensors save you even more money by reducing the amount of time lights are on but not being used.

123

Ceramic Mugs & Dishes Incandescent Light Bulbs  

E-Print Network [OSTI]

502-6808 · Campus Recycling Service 476-2021 · sustainability.ucsf.edu/stay_informed/recycling_resources Binders Plastic Bags & Wrap Pretzel & Chip Bags Rubber bands Styrofoam Tyvek RECYCLE Aluminum foil & cans Reuse Recycle Compost receptacles can be found at campus cafes; Individual office composting is starting

Yamamoto, Keith

124

Covered Product Category: Compact Fluorescent Lamps | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

per watt performance. Buyer Tips CFLs installed in enclosed fixtures designed for incandescent bulbs may overheat. This can significantly reduce both light output and lifetime....

125

Lighting in Residential and Commercial Buildings (1993 and 1995 Data) --  

U.S. Energy Information Administration (EIA) Indexed Site

Commercial Buildings Home > Special Topics and Data Reports > Types of Lights Commercial Buildings Home > Special Topics and Data Reports > Types of Lights Picture of a light bulb At Home and At Work: What Types of Lights Are We Using? Two national EIA surveys report that . . . Of residential households, 98 percent use incandescent, 42 percent use fluorescent. Of commercial buildings, 59 percent use incandescent, 92 percent use fluorescent. At a glance, we might conclude that substantial energy savings could occur in both the residential and commercial sectors if they replaced their incandescent lights with fluorescent lights, given that fluorescent lights consume approximately 75-85 percent less electricity than incandescent lights. In the residential sector, this is true. However, in the commercial sector, where approximately 92 percent of the buildings already use fluorescent lights, increasing energy savings will require upgrading existing lights and lighting systems. To maximize energy savings, analysis must also consider the hours the lights are used and the amount of floorspace lit by that lighting type. Figures 1 and 2 show the types of lights used by the percent of households and by the percent of floorspace lit for the residential and the commercial sectors, respectively.

126

A light diet for a giant appetite: An assessment of China's proposed fluorescent lamp standard  

E-Print Network [OSTI]

standard for linear fluorescent lamps Length (mm) Minimum efficacy (lm/W) Efficacy for energy conservation

Lin, Jiang

2002-01-01T23:59:59.000Z

127

A Rising Star: Solid-State Lighting | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

A Rising Star: Solid-State Lighting A Rising Star: Solid-State Lighting A Rising Star: Solid-State Lighting June 16, 2009 - 5:00am Addthis John Lippert Just when consumers started getting familiar with the spiral ice-cream cone-shaped and prong-shaped compact fluorescents (CFLs), along comes LED lighting, a solid-state lighting (SSL) solution. Some experts are predicting that solid-state lighting is set to turn the current lighting industry on its head, and perhaps in the not-too-distant future make the century-old incandescent light bulb go the way of the dinosaur. Many consumers have been saving money and helping the environment for years by using LED lights during the holidays. These light strings use 75% less energy than conventional (i.e., incandescent) light strings. ENERGY STAR decorative light strings are independently tested to meet strict lifetime

128

A Rising Star: Solid-State Lighting | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

A Rising Star: Solid-State Lighting A Rising Star: Solid-State Lighting A Rising Star: Solid-State Lighting June 16, 2009 - 5:00am Addthis John Lippert Just when consumers started getting familiar with the spiral ice-cream cone-shaped and prong-shaped compact fluorescents (CFLs), along comes LED lighting, a solid-state lighting (SSL) solution. Some experts are predicting that solid-state lighting is set to turn the current lighting industry on its head, and perhaps in the not-too-distant future make the century-old incandescent light bulb go the way of the dinosaur. Many consumers have been saving money and helping the environment for years by using LED lights during the holidays. These light strings use 75% less energy than conventional (i.e., incandescent) light strings. ENERGY STAR decorative light strings are independently tested to meet strict lifetime

129

Solid-State LightingL Prize Competition  

Broader source: Energy.gov [DOE]

The L Prize competition spurs the development of new, ultra-efficient lighting products to replace common light sources, including the 60-watt (W) incandescent bulb and the PAR38 reflector bulb.

130

Ligand-Passivated Eu:Y2O3 Nanocrystals as a Phosphor for White Light Emitting Diodes  

Science Journals Connector (OSTI)

As a comparison, incandescent bulbs have a CCT of 2800 K, cool white fluorescent bulbs have a CCT of 6000 K, and daylight is 4500 K. ... We review the history of lighting, discuss the benefits and challenges of the solid-state lighting technologies, and compare two approaches for generating white light from solid-state sources based on phosphor LEDs (which could be considered as solid-state replacement of fluorescent tubes) and multichip LED lamps, which offer many advantages, such as chromaticity control, better light quality, and higher efficiency. ... In addn., several water channels (putative proton pathways) leading from the QB pocket to the surface of the RC were delineated, one of which leads directly to the membrane surface. ...

Qilin Dai; Megan E. Foley; Christopher J. Breshike; Adrian Lita; Geoffrey F. Strouse

2011-08-24T23:59:59.000Z

131

Lighting | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to installing LEDs in existing fixtures. Tips and Advice Tips: Lighting Lighting choices save you money. Energy-efficient light bulbs are available in a wide variety of sizes...

132

New Lighting Facts Label: Takes the Guess Work Out of Shopping for Light  

Broader source: Energy.gov (indexed) [DOE]

Lighting Facts Label: Takes the Guess Work Out of Shopping for Lighting Facts Label: Takes the Guess Work Out of Shopping for Light Bulbs New Lighting Facts Label: Takes the Guess Work Out of Shopping for Light Bulbs January 25, 2012 - 5:52am Addthis Chris Stewart Senior Communicator at DOE's National Renewable Energy Laboratory If you're like me, it sometimes feels overwhelming standing at the store and staring at a big wall of light bulbs, trying to understand all the lighting choices. With new lighting standards taking effect this year, now's a great time switch to energy-saving incandescent, CFL, and LED light bulbs, which are available in most hardware and home improvement retailers. They all are more energy-efficient than traditional incandescent bulbs, and upgrading 15 of the inefficient incandescent light bulbs in your home could

133

Comparison of Test Procedures and Energy Efficiency Criteria in Selected International Standards and Labeling Programs for Clothes Washers, Water Dispensers, Vending Machines and CFLs  

E-Print Network [OSTI]

top_runner//tr_fluorescent_light_bulb_jul.2009.pdf NiskinSubcommittee Final Report (bulb type fluorescent lamp). Fluorescent Lamps (CFLs) are an efficient lighting alternative to traditional incandescent light bulbs

Fridley, David

2010-01-01T23:59:59.000Z

134

Lighting | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Lighting Lighting Lighting When you're shopping for lightbulbs, compare lumens and use the Lighting Facts label to be sure you're getting the amount of light, or level of brightness, you want. You can save money and energy while lighting your home and still maintaining good light quantity and quality. Consider energy-efficient lighting options to use the same amount of light for less money. Learn strategies for comparing and buying lighting products and using them efficiently. Featured Lighting Choices to Save You Money Light your home for less money while using the same amount of light. How Energy-Efficient Light Bulbs Compare with Traditional Incandescents Energy-efficient light bulbs are available today and could save you about $50 per year in energy costs when you replace 15 traditional incandescent bulbs in your home.

135

Light-induced polarization effects in atoms with partially resolved hyperfine structure and applications to absorption, fluorescence, and nonlinear magneto-optical rotation  

E-Print Network [OSTI]

Light-induced polarization effects in atoms with partially resolved hyperfine structure and applications to absorption, fluorescence, and nonlinear magneto-optical rotation M. Auzinsh* Department 9 November 2009 The creation and detection of atomic polarization is examined theoretically through

Auzinsh, Marcis

136

Comparative study of energy saving light sources  

Science Journals Connector (OSTI)

Techno-economic performance comparison of compact fluorescent lamps (CFL) with light emitting diodes (LED), electrode less fluorescent lamps (EEFL), fluorescent tubes, incandescent bulbs, photovoltaic (PV) and fiber optic lighting systems was carried out in view of worsening power and energy crisis in Pakistan. Literature survey showed 23W CFL, 21W EEFL, 18W fluorescent tube or 15W LED lamps emit almost same quantity of luminous flux (lumens) as a standard 100W incandescent lamp. All inclusive, operational costs of LED lamps were found 1.21, 1.62. 1.69, 6.46, 19.90 and 21.04 times lesser than fluorescent tubes, CFL, EEFL, incandescent bulbs, fiber optic solar lighting and PV systems, respectively. However, tubes, LED, CFL and EEFL lamps worsen electric power quality of low voltage networks due to high current harmonic distortions (THD) and poor power factors (PF). Fluorescent lamps emit UV and pollute environment by mercury and phosphors when broken or at end of their life cycle. Energy consumption, bio-effects, and environmental concerns prefer LED lamps over phosphor based lamps but power quality considerations prefer EEFL. CFL and EEFL manufacturers claim operating temperatures in range of ?20CLED lamps may be five to ten times higher that high THD and low PF lamps. Choice of a lamp depends upon its current THD, PF, life span, energy consumption, efficiency, efficacy, color rendering index (CRI) and associated physical effects. This work proposes manufacturing and user level innovations to get rid of low PF problems. Keeping in view downside of phosphor based lamps our research concludes widespread adoption of LED lamps. Government and commercial buildings may consider full spectrum hybrid thermal photovoltaic and solar fiber optic illumination systems.

N. Khan; N. Abas

2011-01-01T23:59:59.000Z

137

Lumens and the Lighting Facts Label | Department of Energy  

Office of Environmental Management (EM)

of the lights in your home may vary widely, so here's a rule of thumb: To replace a 100 watt (W) incandescent bulb, look for a bulb that gives you about 1600 lumens. If you want...

138

CoServ Electric Cooperative - Commercial Energy Efficient Lighting Rebate  

Broader source: Energy.gov (indexed) [DOE]

CoServ Electric Cooperative - Commercial Energy Efficient Lighting CoServ Electric Cooperative - Commercial Energy Efficient Lighting Rebate Program CoServ Electric Cooperative - Commercial Energy Efficient Lighting Rebate Program < Back Eligibility Commercial Industrial Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info Funding Source Via partnership with whole sale provider Brazos Electric Power, Inc. and escheat funds Start Date 09/01/2009 State Texas Program Type Utility Rebate Program Rebate Amount Custom Lighting Upgrade: 0.30/watt saved per fixture T8 Fluorescent Upgrade: 1.50 - 2.25/bulb per fixture Provider CoServ Electric Cooperative CoServ Electric Cooperative provides rebates for commercial and industrial customers who upgrade to high efficiency lighting for the workplace. A rebate of $0.30/watt saved is available on custom lighting upgrades and a

139

Structural Characterization of and Plutonium Sorption on Mesoporous and Nanoparticulate Ferrihydrite  

E-Print Network [OSTI]

Emission spectrum of the fluorescent light bulbs used in theEmission spectrum of the fluorescent light bulbs used in the

Brogan, Luna Kestrel Schwaiger

2012-01-01T23:59:59.000Z

140

Reconstruction of Longitudinal Profiles of Ultra-High Energy Cosmic Ray Showers from Fluorescence and Cherenkov Light Measurements  

E-Print Network [OSTI]

We present a new method for the reconstruction of the longitudinal profile of extensive air showers induced by ultra-high energy cosmic rays. In contrast to the typically considered shower size profile, this method employs directly the ionization energy deposit of the shower particles in the atmosphere. Due to universality of the energy spectra of electrons and positrons, both fluorescence and Cherenkov light can be used simultaneously as signal to infer the shower profile from the detected light. The method is based on an analytic least-square solution for the estimation of the shower profile from the observed light signal. Furthermore, the extrapolation of the observed part of the profile with a Gaisser-Hillas function is discussed and the total statistical uncertainty of shower parameters like total energy and shower maximum is calculated.

M. Unger; B. R. Dawson; R. Engel; F. Schssler; R. Ulrich

2008-01-28T23:59:59.000Z

Note: This page contains sample records for the topic "fluorescent light bulb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

A Review of the Reflector Compact Fluorescent Lights Technology Procurement Program: Conclusions and Results  

SciTech Connect (OSTI)

This report describes a project sponsored by the U.S. Department of Energy (DOE) and implemented by the Pacific Northwest National Laboratory (PNNL), from 2000 to 2007 to improve the performance of reflector type (R-lamp) compact fluorescent lamps (CFLs) and increase their availability throughout the United States by means of a technology development and procurement strategy. In 2000, at the request of the U.S. Department of Energys Emerging Technologies Program and its predecessors, the Pacific Northwest National Laboratory undertook a technology procurement seeking R-CFLs that were specifically designed for use in ICAT recessed can fixtures and that met other minimum performance criteria including minimum light output and size restrictions (to ensure they fit in standard residential recessed cans). The technology procurement included two phases. In Phase I, requests for proposals (RFPs) were issued in October 2002 and five manufacturers responded with 12 lamp models. Eight of these models met the minimum requirements and passed the 6-hour short-term test in a simulated ICAT environment. These eight models were subjected to long-term tests of 6,000 or more hours in a simulated ICAT environment. Three of these models passed the short- and long-term tests and were promoted through the program website (www.pnl.gov/rlamps), press releases, and fliers. To increase the number of qualifying models, a second RFP was issued in June 2005. In April 2007, DOE announced that 16 reflector CFL (R-CFL) models by four manufacturers had met all the minimum requirements of Phase 2 of the R-CFL Technology Innovation Competition. PNNL developed both the criteria and the test apparatus design for Elevated Temperature Life Testing (ETLT), which has been included by DOE in its draft ENERGY STAR specifications for the reflector category of CFLs. PNNL promoted the winning lamps through a program website, press releases, and fliers as well as through program partners. PNNL also helped engage distributors including Costco, the Home Depot, Bonneville Power Administration, and utility organizations.

Sandahl, Linda J.; Gilbride, Theresa L.; Ledbetter, Marc R.; McCullough, Jeffrey J.

2008-05-19T23:59:59.000Z

142

Funding Sustainable Initiatives: Should Williams Implement a Revolving Loan Fund?  

E-Print Network [OSTI]

to replace its incandescent light bulbs with more efficient compact fluorescent (CFL) light bulbs. These light bulbs use 2/3 less energy than #12;Terra 4 standard incandescent bulbs, but they are more

Aalberts, Daniel P.

143

Department of Energy Announces Philips Lighting North America...  

Energy Savers [EERE]

Product Delivers on Department's Challenge to Replace Common Light Bulb with Energy-Saving Lighting Alternative Washington, D.C. - The U.S. Department of Energy today...

144

Side-by-Side Testing of Commercial Office Lighting Systems: Two-lamp Fluorescent Fixtures  

E-Print Network [OSTI]

. Guide to Performance Evaluation of Efficient Lighting Products, Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY. IES, 1987. IES Lighting Handbook: 1987 Ap~lications Volume, Illuminating Engineering Society of North America, New... Transactions on Industrv A~plications, No. 5, pp. 1189-1 197. Verderber, R.R. and Rubinstein, F.M. and Ward, G., 1989. Photoelectric Control of Daylight Following Lighting Systems, CU- 6243, Electric Power Research Institute, Palo Alto, CA. Rubinstein, F...

Parker, D. S.; Schrum, L.; Sonne, J. K.; Stedman, T. C.

1996-01-01T23:59:59.000Z

145

THELUMINAPROJECT http://light.lbl.gov  

E-Print Network [OSTI]

source of portable lighting in Kenya, outpacing incandescent flashlights (Johnstone et al., 2009). LED technology has the potential to provide efficiency and performance benefits relative to incandescent bulbs

Jacobson, Arne

146

Magnetic fluorescent lamp  

DOE Patents [OSTI]

The radiant emission of a mercury-argon discharge in a fluorescent lamp assembly is enhanced by providing means for establishing a magnetic field with lines of force along the path of electron flow through the bulb of the lamp assembly, to provide Zeeman splitting of the ultraviolet spectral line. Optimum results are obtained when the magnetic field strength causes a Zeeman splitting of approximately 1.7 times the thermal line width.

Berman, S.M.; Richardson R.W.

1983-12-29T23:59:59.000Z

147

Energy Transfer and Light Tolerance Studies in a Fluorescent Tandem Phycobiliprotein Conjugate  

Science Journals Connector (OSTI)

Light harvesting and energy transfer between allophycocyanin (APC) and a tandem conjugate dye was investigated using single-molecule recrossings in the probe volume. By comparing...

Tian, Yu; Pappas, Dimitri

2011-01-01T23:59:59.000Z

148

Fluorescence Visualization in Oral Neoplasia: Shedding Light on an Old Problem  

Science Journals Connector (OSTI)

...Westra, The Johns Hopkins Medical Institutions, 401 North Broadway...Surgery, The Johns Hopkins Medical Institutions, Baltimore...driven at the genomic level with lighting techniques and dyes such as...permission from John Hopkins Medical Institutions F 2006...

William H. Westra and David Sidransky

2006-11-15T23:59:59.000Z

149

Effect of fluorescent lighting on the color of liquid-crystal displays  

Science Journals Connector (OSTI)

Liquid-crystal displays (LCDs) are used for displaying medical images under various illuminance conditions and with ambient-lighting colors. Our purpose in this study was ... of the chromaticity in LCDs under dif...

Yudai Yano; Junji Morishita; Hiroshi Akamine

2014-07-01T23:59:59.000Z

150

Residential and Transport Energy Use in India: Past Trend and Future Outlook  

E-Print Network [OSTI]

type of lighting bulb (incandescent, fluorescent), number ofof incandescent bulbs and fluorescent tubes per household,incandescent bulbs of 60W and 2.1 fluorescent tubes of 40W

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

151

ENERGY & ENVIRONMENT DIVISION. ANNUAL REPORT FY 1980  

E-Print Network [OSTI]

lights 100 W bulb to fluorescent (1) Storm windows Centraldamper 100 W bulb to fluorescent (2) R-11 insulationin walls 3-way bulb to fluorescent Caulking Gas range Window

Authors, Various

2010-01-01T23:59:59.000Z

152

Lipopolysaccharide-QD Micelles Induce Marked Induction of TLR2 and Lipid Droplet Accumulation in Olfactory Bulb Microglia  

Science Journals Connector (OSTI)

Quantum dots (QD) were selected because they are among the most studied fluorescent nanoparticles for in vivo imaging,(18-20) but their effects on microglia have not been extensively explored. ... The fluorescence spectroscopy was observed on a fluorescence reader from Varian Cary Eclipse after an excitation at 365 nm with a window of emission between 500 and 700 nm. ... In the initial experiments using primary neural cultures from olfactory bulb, the exposure to LPS (100 ng/mL to 10 ?g/mL), QDs (1?5 nM) or LPS and QDs in combination for 24 h led to the formation of lipid droplets (LD). ...

Me?lanie Lalancette-He?bert; Alexandre Moquin; Angela O. Choi; Jasna Kriz; Dusica Maysinger

2010-05-11T23:59:59.000Z

153

Activity: How Much Does it Cost to Light Your School? | Department...  

Broader source: Energy.gov (indexed) [DOE]

Activity: How Much Does It Cost to Light Your School? More Documents & Publications Comparing Light Bulbs Energy Efficiency Ambassadors (5-8) Energy Efficiency Ambassadors (9-12)...

154

Cationic and ThiolEne Photopolymerization upon Red Lights Using Anthraquinone Derivatives as Photoinitiators  

Science Journals Connector (OSTI)

One of them (Oil Blue N) that is particularly efficient for cationic, IPN, and thiolene polymerization upon red lights (laser diode at 635 nm or household red LED bulb at 630 nm) belongs to the very few systems available at this long wavelength in such experimental conditions (low light intensity in the 10100 mW/cm2 range). ... The photochemical mechanisms are studied by steady state photolysis, fluorescence, cyclic voltammetry, and electron spin resonance spin trapping techniques. ... Copper Complexes in Radical Photoinitiating Systems: Applications to Free Radical and Cationic Polymerization upon Visible LEDs ...

Pu Xiao; Frdric Dumur; Bernadette Graff; Jean Pierre Fouassier; Didier Gigmes; Jacques Laleve

2013-08-22T23:59:59.000Z

155

Modified Atmosphere Packaged Cheddar Cheese Shreds:? Influence of Fluorescent Light Exposure and Gas Type on Color and Production of Volatile Compounds  

Science Journals Connector (OSTI)

Modified Atmosphere Packaged Cheddar Cheese Shreds:? Influence of Fluorescent Light Exposure and Gas Type on Color and Production of Volatile Compounds ... The cheese block was shredded with a hand shredder. ... Aldehydes were the major constituent of the volatile fraction of shredded Cheddar cheese packaged under CO2. ...

Llori M. Colchin; Sandra L. Owens; Galina Lyubachevskaya; Elizabeth Boyle-Roden; Estelle Russek-Cohen; Scott A. Rankin

2001-04-13T23:59:59.000Z

156

Microsoft Word - How Much Does It Cost to Light Your School.doc  

Broader source: Energy.gov (indexed) [DOE]

How Much Does It Cost to Light Your School? 1 How Much Does It Cost to Light Your School? 1 Activity: How Much Does It Cost to Light Your School? (Information courtesy of the American Coal Foundation) Overview: Students compute the cost of electricity used to light their classroom and their school for various lengths of time. They then compute the amount of coal needed to produce the electricity used for one hour of light in their classroom. Objectives: Students will: * calculate the cost of providing electricity to light their classroom and school, * compute the amount of coal needed for one hour of light in their classroom, and * gain an appreciation for how much coal is needed to generate electricity. Materials: Paper and pencil Classroom and school lit by fluorescent bulbs

157

Synthesis of Fluorescent C2-Bridged Teraryls and Quateraryls for Blue, Sky-Blue, and Green Color Light-Emitting Devices  

Science Journals Connector (OSTI)

Synthesis of Fluorescent C2-Bridged Teraryls and Quateraryls for Blue, Sky-Blue, and Green Color Light-Emitting Devices ... UVvis, fluorescence spectra, and cyclic voltammograms of 6ae and 9ac; atom coordinates and absolute energies and TGA plots of 6a, and 9a,b; X-ray data of 6b; NMR spectra of 3c,e, 4ac, 4e, 6ae, and 9ac. ...

Atul Goel; Ashutosh Sharma; Madhu Rawat; R. S. Anand; Ruchir Kant

2014-10-23T23:59:59.000Z

158

New Lighting Fixtures: Combining Creativity and Style with Energy Efficiency  

SciTech Connect (OSTI)

This article for a building trade magazine describes a national design competition for energy efficient lighting sponsored by the U.S. Department of Energy, the American Lighting Association, and the Consortium for Energy Efficiency, with winners announced at ALA's Annual Conference May 14, 2004, in Tucson. The Lighting for Tomorrow competition was the first national lighting fixture design competition focusing on energy-efficient residential lighting. The competition invited fixture manufacturers and designers to come up with beautiful, functional lighting fixtures that also happen to be energy efficient. Fixtures were required to use a ''dedicated'' energy-efficient light source, such as a pin-based fluorescent lamp that cannot be replaced with a screw-in incandescent bulb. Fixtures also had to meet a minimum energy efficiency level that eliminated use of incandescent and halogen lamps, leaving the door open only to fluorescent sources and LEDs. More than 150 paper designs were submitted in the first phase of the competition, in 2003. Of those, 24 finalists were invited to submit working prototypes in 2004, and the winners were announced in May. The Grand Prize of $10,000 went to American Fluorescent of Waukegan, Illinois, for its ''Salem'' chandelier. Some winning fixtures are already available through Lowe's Home Improvement Centers.

Gordon, Kelly L.; Foster, Rebecca; McGowan, Terry

2004-10-01T23:59:59.000Z

159

Sandia National Laboratories: Solid-State Lighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(LEDs), has the potential to be 10 times more energy efficient than traditional incandescent light bulbs. Currently, 20% of U.S. energy use powers lighting. SSL technology can...

160

Which Bulb Is Right for You? (High-Resolution JPG Billboard)...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Which Bulb Is Right for You? (High-Resolution EPS Billboard) Which Bulb Is Right for You? (Low-Resolution JPG Billboard) Goodbye, Watts....

Note: This page contains sample records for the topic "fluorescent light bulb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

XAP5 CIRCADIAN TIMEKEEPER Coordinates Light Signals for Proper Timing of Photomorphogenesis and the Circadian Clock in Arabidopsis  

Science Journals Connector (OSTI)

...in the human 5 UTR has led to the suggestion that...provided by cool white fluorescent bulbs (Sylvania). Images...provided by cool white fluorescent bulbs (Sylvania and Phillips...for use of red and blue LED chambers; B. Liu for...

Ellen L. Martin-Tryon; Stacey L. Harmer

2008-05-30T23:59:59.000Z

162

Hazard analysis of long term viewing of visible laser light off of fluorescent diffuse reflective surfaces (post-it).  

SciTech Connect (OSTI)

A laser hazard analysis is performed to evaluate if the use of fluorescent diffuse reflectors to view incident laser beams (Coherent Verdi 10W) present a hazard based on the ANSI Standard Z136.1-2000, American National Standard for the Safe Use of Lasers. The use of fluorescent diffuse reflectors in the alignment process does not pose an increased hazard because of the fluorescence at a different wavelength than that of the incident laser.

Augustoni, Arnold L.

2006-10-01T23:59:59.000Z

163

Recessed Lighting in the Limelight  

SciTech Connect (OSTI)

Recessed downlights are among the most popular installed lighting fixtures for new and remodeled homes. DOE estimates there are at least 350 million currently installed in US homes, and around 20 million are sold each year. A recent California study showed only 0.4 percent of recessed cans used compact fluorescent lamps. Annual reported sales of fluorescent residential recessed downlights nationwide make up no more than three percent of total residential recessed downlight sales. Standard recessed downlights waste energy by leaking conditioned air to unconditioned attic space, and using less efficient, high-heat incandescent bulbs. 33 states have adopted building codes that require recessed cans installed in the building shell to be airtight. To encourage lighting fixture manufacturers to bring to market high-efficiency air-tight recessed cans, DOE is sponsoring the recessed downlights project. PNNL solicited bids for energy efficient recessed downlights meeting the following specifications: They must use pin-based CFLs, have an airtight housing, be IC-rated, use electronic ballasts, and have a light output minimum of 900 initial lumens. PNNL did short- and long-term testing of the submitted lamps and negotiated lower prices for consumer purchase of qualifying models.

Gordon, Kelly L.; McCullough, Jeffrey J.

2003-02-01T23:59:59.000Z

164

LED lamp or bulb with remote phosphor and diffuser configuration with enhanced scattering properties  

DOE Patents [OSTI]

An LED lamp or bulb is disclosed that comprises a light source, a heat sink structure and an optical cavity. The optical cavity comprises a phosphor carrier having a conversions material and arranged over an opening to the cavity. The phosphor carrier comprises a thermally conductive transparent material and is thermally coupled to the heat sink structure. An LED based light source is mounted in the optical cavity remote to the phosphor carrier with light from the light source passing through the phosphor carrier. A diffuser dome is included that is mounted over the optical cavity, with light from the optical cavity passing through the diffuser dome. The properties of the diffuser, such as geometry, scattering properties of the scattering layer, surface roughness or smoothness, and spatial distribution of the scattering layer properties may be used to control various lamp properties such as color uniformity and light intensity distribution as a function of viewing angle.

Tong, Tao; Le Toquin, Ronan; Keller, Bernd; Tarsa, Eric; Youmans, Mark; Lowes, Theodore; Medendorp, Jr., Nicholas W; Van De Ven, Antony; Negley, Gerald

2014-11-11T23:59:59.000Z

165

Fluorescent filtered electrophosphorescence  

DOE Patents [OSTI]

The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters for the efficient utilization of all of the electrically generated excitons.

Forrest, Stephen (Ann Arbor, MI); Sun, Yiru (Princeton, NJ); Giebink, Noel (Ann Arbor, MI); Thompson, Mark E. (Anaheim Hills, CA)

2010-08-03T23:59:59.000Z

166

Fluorescent filtered electrophosphorescence  

DOE Patents [OSTI]

The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters for the efficient utilization of all of the electrically generated excitons.

Forrest, Stephen R. (Princeton, NJ); Sun, Yiru (Princeton, NJ); Giebink, Noel (Princeton, NJ); Thompson, Mark E. (Anaheim Hills, CA)

2009-01-06T23:59:59.000Z

167

Blue Light Sensitive Dyes for Various Photopolymerization Reactions: Naphthalimide and Naphthalic Anhydride Derivatives.  

Science Journals Connector (OSTI)

Novel naphthalimide derivatives (or naphthalic anhydride derivatives) have been prepared and combined with an iodonium salt, N-vinylcarbazole, amines or 2,4,6-tris(trichloromethyl)-1,3,5-triazine to produce radicals and cations upon exposure to low intensity blue lights (e.g., a household blue LED bulb). ... The photochemical mechanisms are studied by electron spin resonance spin trapping, fluorescence, cyclic voltammetry, laser flash photolysis, and steady state photolysis techniques. ... Design of Novel Photoinitiators for Radical and Cationic Photopolymerizations under Near UV and Visible LEDs (385, 395, and 405 nm). ...

Pu Xiao; Frdric Dumur; Bernadette Graff; Didier Gigmes; Jean Pierre Fouassier; Jacques Laleve

2014-01-09T23:59:59.000Z

168

A cheap simple ammeter for batteries-and-bulbs activities  

Science Journals Connector (OSTI)

The use of batteries and bulbs to teach the fundamentals of circuit analysis has been with us for many years. Even recent innovations in pedagogy seem to rely on batteries and bulbs. In addition the California Science Content Standards for fourth grade require that students know how to design and build simple series and parallel circuits using components such as wires batteries and bulbs. These standards go on to indicate that students should be able to use a compass to detect magnetic fields and know that electric currents produce magnetic fields.

David T. Kagan

2000-01-01T23:59:59.000Z

169

Analysis of Minimum Efficiency Performance Standards for Residential General Service Lighting in Chile  

E-Print Network [OSTI]

phasing out the use of incandescent lamps. Following majorproposed phase out of incandescent bulbs in Chile. 2 Lifeless energy: here incandescent lights (IL) are evaluated

Letschert, Virginie E.

2012-01-01T23:59:59.000Z

170

Metacapacitors for LED Lighting: Metacapacitors  

SciTech Connect (OSTI)

ADEPT Project: The CUNY Energy Institute is developing less expensive, more efficient, smaller, and longer-lasting power converters for energy-efficient LED lights. LEDs produce light more efficiently than incandescent lights and last significantly longer than compact fluorescent bulbs, but they require more sophisticated power converter technology, which increases their cost. LEDs need more sophisticated converters because they require a different type of power (low voltage direct current, or DC) than what's generally supplied by power outlets. The CUNY Energy Institute is developing sophisticated power converters for LEDs that contain capacitors made from new, nanoscale materials. Capacitors are electrical components that are used to store energy. CUNY's unique capacitors are configured with advanced power circuits to more efficiently control and convert power to the LED lighting source. They also eliminate the need for large magnetic components, instead relying on networks of capacitors that can be easily printed on plastic substrate. CUNY's prototype LED power converter already meets DOE's 2020 projections for the energy efficiency of LED power converters.

None

2010-09-02T23:59:59.000Z

171

THE 2009 CUT FLOWER TRIALS H.C. Wien, Department of Horticulture, Cornell University, Ithaca, NY 14853  

E-Print Network [OSTI]

a solarpowered landscape light with 6 LED's, or a 9 watt fluorescent bulb powered by the electric grid. Light

Pawlowski, Wojtek

172

4024 Inorg. Chem. 1987, 26, 4024-4029 Contribution from the Departments of Chemistry, Colgate University, Hamilton, New York 13346,  

E-Print Network [OSTI]

and laboratory fluorescent light and during nights to light from a 150-W incandescent bulb 20 cm from the pair

Herbert, Bruce

173

Demand for Environmentally-Friendly Durables  

E-Print Network [OSTI]

fluorescent energy efficient light bulbs (CFLs), quality includes features like the color of the light (CFLs use a different spectrum),

Martin, Leslie Aimee

2012-01-01T23:59:59.000Z

174

Highly energy-efficient agricultural lighting by B+R \\{LEDs\\} with beam shaping using micro-lens diffuser  

Science Journals Connector (OSTI)

This paper presents a high-performance LED agricultural luminaire that uses a beam-shaping diffuser to achieve high optical efficiency and energy saving. The agricultural luminaire performs an optical efficiency as high as 84.2%. The beam shaping effect also obtains irradiance uniformity of 1/2.56 and excellent spatial color uniformity. The enhancement ratio of optical utilization factor in the proposed agricultural luminaire is 360% in comparison with traditional lighting. Under the designed case, the total utilization factor, including optical utilization factor and spectral utilization factor, of the B+R LED lamp can save 86.1% of power consumption in comparison with compact fluorescent bulbs.

Xuan-Hao Lee; Yu-Yu Chang; Ching-Cherng Sun

2013-01-01T23:59:59.000Z

175

LED Lighting | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

LED Lighting LED Lighting LED Lighting July 29, 2012 - 4:43pm Addthis LED Lighting What are the key facts? Quality LED products can last 25 times longer than an incandescent bulb and use 75% less energy. LEDs are directional, focusing light in ways that are useful in homes and commercial settings. The light-emitting diode (LED) is one of today's most energy-efficient and rapidly-developing lighting technologies. Quality LED light bulbs last longer, are more durable, and offer comparable or better light quality than other types of lighting. Check out the top 8 things about LEDs to learn more. Energy Savings LED is a highly energy efficient lighting technology, and has the potential to fundamentally change the future of lighting in the United States. Residential LEDs -- especially ENERGY STAR rated products -- use at least

176

Eck Industries, Inc. Realizes Savings Through Smarter Lighting...  

Broader source: Energy.gov (indexed) [DOE]

lighting efficiency improvements proved to be a huge success-the new bulbs reduced the energy intensity of the facility's lighting by 46%, the project paid for itself in...

177

HYDROPONIC VEGETABLE GARDENING Marcy Stanton, Master Gardener  

E-Print Network [OSTI]

and a water source. Lighting: A simple 2-bulb 4-foot fluorescent fixture with standard COOL WHITE bulbs is adequate for most leafy vegetables. Do not buy any of the fancy fluorescent grow bulbs; you are wasting your money on these expensive bulbs. When we set up a fluorescent light system to grow vegetables, what

New Hampshire, University of

178

Table Set-up with Materials near Lamp Stand (below) Target Audience: Parents of elementary school students (grades 3-6) and Middle and High School Students  

E-Print Network [OSTI]

spectrum with different light sources; compact fluorescent, LED, incandescent. 5. Discuss light bulb. Observe difference of color spectrum with different light sources; compact fluorescent, LED, incandescent type of bulb at different horizontal level. Electromagnetic Spectrum handouts that includes spectrum

Linhardt, Robert J.

179

Sustainability constraints in techno-economic analysis of general lighting retrofits  

Science Journals Connector (OSTI)

Abstract Several governmental programs seek the adoption of measures to promote energy efficiency through the substitution of old incadescent light bulbs by \\{CFLs\\} (compact fluorescent lamps). However, fluorescent lamps emit UV, pollute the environment with mercury and rare earths if disposed recklessly. These also present higher performance degradation levels, lower efficiency and shorter lifespans if compared to \\{LEDs\\} (light emitting diodes), which require higher initial investment. We advocate that retrofits shall have a broader scope, pursuing beyond the achievement of short term efficiency and profitability, but the long term sustainability. Thus, selecting which technology to use in a retrofit requires thorough feasibility study comparing alternatives. We propose a framework using equivalent annual costs (EAC) as a metric for comparing substitute technologies in lighting retrofits, considering sustainability constraints as reverse logistics, waste management, performance degradation, lifespan, luminous efficiency and energy prices. The results of a simulated general lighting retrofit comparing LED tubes, \\{CFLs\\} and fluorescent tubulars demonstrate CFL as the highest annual cost and toxic waste disposal in most scenarios, fluorescent tubular as the most economic alternative, but if their lifespans shorten, LED prices drop or achieve higher efficiency LED becomes the most sustainable and economically attractive alternative.

Fabrcio P. Vahl; Lucila M.S. Campos; Nelson Casarotto Filho

2013-01-01T23:59:59.000Z

180

Top 5 Things You Didn't Know About Holiday Lights | Department...  

Office of Environmental Management (EM)

product used in outdoor street and parking lot lighting. While small, this chip is the heart of the light and as of June 2012 was brighter than a 60-watt light bulb. | Photo...

Note: This page contains sample records for the topic "fluorescent light bulb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Estimate of federal relighting potential and demand for efficient lighting products  

SciTech Connect (OSTI)

The increasing level of electric utility rebates for energy-efficient lighting retrofits has recently prompted concern over the adequacy of the market supply of energy-efficient lighting products (Energy User News 1991). In support of the U.S. Department of Energy`s Federal Energy Management Program, Pacific Northwest Laboratory (PNL) has developed an estimate of the total potential for energy-efficient lighting retrofits in federally owned buildings. This estimate can be used to address the issue of the impact of federal relighting projects on the supply of energy-efficient lighting products. The estimate was developed in 1992, using 1991 data. Any investments in energy-efficient lighting products that occurred in 1992 will reduce the potential estimated here. This analysis proceeds by estimating the existing stock of lighting fixtures in federally owned buildings. The lighting technology screening matrix is then used to determine the minimum life-cycle cost retrofit for each type of existing lighting fixture. Estimates of the existing stock are developed for (1) four types of fluorescent lighting fixtures (2-, 3-, and 4-lamp, F40 4-foot fixtures, and 2-lamp, F96 8-foot fixtures, all with standard magnetic ballasts); (2) one type of incandescent fixture (a 75-watt single bulb fixture); and (3) one type of exit sign (containing two 20-watt incandescent bulbs). Estimates of the existing stock of lighting fixtures in federally owned buildings, estimates of the total potential demand for energy-efficient lighting products if all cost-effective retrofits were undertaken immediately, and total potential annual energy savings (in MWh and dollars), the total investment required to obtain the energy savings and the present value of the efficiency investment, are presented.

Shankle, S.A.; Dirks, J.A.; Elliott, D.B.; Richman, E.E.; Grover, S.E.

1993-11-01T23:59:59.000Z

182

Covered Product Category: Fluorescent Ballasts | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

can achieve large energy savings by moderating the timing and light output of lighting systems. Fluorescent lamp ballasts should have a ballast factor between 85% and 105% in...

183

High efficiency incandescent lighting  

DOE Patents [OSTI]

Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

2014-09-02T23:59:59.000Z

184

Which Bulb Is Right for You? (High-Resolution EPS Billboard)...  

Broader source: Energy.gov (indexed) [DOE]

EPS Billboard) Which Bulb Is Right for You? (High-Resolution EPS Billboard) High-resolution EPS of billboard reading, 'Which bulb is right for you? Save energy, save money....

185

Thermally activated delayed fluorescence from {sup 3}n?* to {sup 1}n?* up-conversion and its application to organic light-emitting diodes  

SciTech Connect (OSTI)

Intense n?* fluorescence from a nitrogen-rich heterocyclic compound, 2,5,8-tris(4-fluoro-3-methylphenyl)-1,3,4,6,7,9,9b-heptaazaphenalene (HAP-3MF), is demonstrated. The overlap-forbidden nature of the n?* transition and the higher energy of the {sup 3}??* state than the {sup 3}n?* one lead to a small energy difference between the lowest singlet (S{sub 1}) and triplet (T{sub 1}) excited states of HAP-3MF. Green-emitting HAP-3MF has a moderate photoluminescence quantum yield of 0.26 in both toluene and doped film. However, an organic light-emitting diode containing HAP-3MF achieved a high external quantum efficiency of 6.0%, indicating that HAP-3MF harvests singlet excitons through a thermally activated T{sub 1} ? S{sub 1} pathway in the electroluminescent process.

Li, Jie; Zhang, Qisheng; Nomura, Hiroko [Department of Chemistry and Biochemistry, and Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Miyazaki, Hiroshi [Department of Chemistry and Biochemistry, and Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Functional Materials Laboratory, Nippon Steel and Sumikin Chemical Co., Ltd, 4680 Nakabaru, Sakinohama, Tobata, Kitakyushu, Fukuoka 8048503 (Japan); Adachi, Chihaya, E-mail: adachi@cstf.kyushu-u.ac.jp [Department of Chemistry and Biochemistry, and Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan)

2014-07-07T23:59:59.000Z

186

Residential and Transport Energy Use in India: Past Trend and Future Outlook  

E-Print Network [OSTI]

type of lighting bulb (incandescent, fluorescent), number ofhouseholds possessed 3.2 incandescent bulbs of 60W and 2.1areas versus only 2.1 incandescent bulbs of 60W and 1.5

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

187

Lighting  

SciTech Connect (OSTI)

The lighting section of ASHRAE standard 90.1 is discussed. It applies to all new buildings except low-rise residential, while excluding specialty lighting applications such as signage, art exhibits, theatrical productions, medical and dental tasks, and others. In addition, lighting for indoor plant growth is excluded if designed to operate only between 10 p.m. and 6 a.m. Lighting allowances for the interior of a building are determined by the use of the system performance path unless the space functions are not fully known, such as during the initial stages of design or for speculative buildings. In such cases, the prescriptive path is available. Lighting allowances for the exterior of all buildings are determined by a table of unit power allowances. A new addition the exterior lighting procedure is the inclusion of facade lighting. However, it is no longer possible to trade-off power allotted for the exterior with the interior of a building or vice versa. A significant change is the new emphasis on lighting controls.

McKay, H.N. (Hayden McKay Lighting Design, New York, NY (US))

1990-02-01T23:59:59.000Z

188

A Bit About Bulbs Night temperatures are cool, the air is almost crisp. The vegetable harvest is tapering  

E-Print Network [OSTI]

work their way down and stems go up where they belong. Purchase from reliable dealers to assure quality is the general rule to follow. If you are dealing with a strangely shaped bulb species that doesn't seem to have of moisture. A quality bulb is a large bulb; it will produce larger flowers and more of them. The bulb should

New Hampshire, University of

189

Print this article Close This Window Toy-Based Robots Walk More Efficiently -Report  

E-Print Network [OSTI]

fluorescent light bulb, allows an element of control for the walker to make more than a few steps and adjust

Ruina, Andy L.

190

Tips: Shopping for Lighting | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tips: Shopping for Lighting Tips: Shopping for Lighting Tips: Shopping for Lighting July 29, 2012 - 7:27pm Addthis With an array of lighting options, use the Lighting Facts label to determine the right lightbulb for you. | Photo courtesy of Michelle Vigen, Clean Energy Resource Teams. With an array of lighting options, use the Lighting Facts label to determine the right lightbulb for you. | Photo courtesy of Michelle Vigen, Clean Energy Resource Teams. When shopping for lighting, you can now use the Lighting Facts label and lumens to compare bulbs and purchase a bulb with the amount of brightness you want. The Lighting Facts Label Lighting facts per bulb label. The label is an example showing the brightness at 800 lumens, estimated yearly energy cost at $1.57, based on 3 hours per day and 11 cents per kWh. Cost depends on rates and use. The life is 9 years and is based on 3 hours per day. Light appearance is warm at 2700 K. Energy used is 13 watts, and the bulb is ENERGY STAR rated.

191

GREEN FLUORESCENT PROTEIN The green revolution  

E-Print Network [OSTI]

GREEN FLUORESCENT PROTEIN The green revolution Green fluorescent protein allows gene expression a fluorescent product when expressed. Just such a molecule, green fluorescent protein (GFP), has recently green light when disturbed (often seen when riding in a boat at night). In Aequorea, the green

Stearns, Tim

192

EnergyUnited- Commercial Energy Efficient Lighting Rebate Program  

Broader source: Energy.gov [DOE]

Commercial and industrial members who upgrade to energy-efficient light bulbs which meet EnergyUnited's standards are eligible for a prescriptive, "per unit" rebate. The cooperative will provide a...

193

Fluorescence analyzer for lignin  

DOE Patents [OSTI]

A method and apparatus for measuring lignin concentration in a sample of wood pulp or black liquor comprises a light emitting arrangement for emitting an excitation light through optical fiber bundles into a probe which has an undiluted sensing end facing the sample. The excitation light causes the lignin concentration to produce fluorescent emission light which is then conveyed through the probe to analyzing equipment which measures the intensity of the emission light. Measures a This invention was made with Government support under Contract Number DOE: DE-FC05-90CE40905 awarded by the Department of Energy (DOE). The Government has certain rights in this invention.

Berthold, John W. (Salem, OH); Malito, Michael L. (Hubbard, OH); Jeffers, Larry (Alliance, OH)

1993-01-01T23:59:59.000Z

194

Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Cheyenne Light, Fuel and Power (Electric) - Residential Energy Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency Rebate Program Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Home Energy Audit: Contact Cheyenne Light, Fuel and Power CFL Bulbs: Up to 10 CFL bulbs at reduced cost Water Heater: $75 Refrigerator Recycling: $30 Cheyenne Light, Fuel and Power offers incentives to electric customers who wish to install energy efficient equipment in participating homes. Incentives are available for home energy audits, CFL light bulbs, tank water heaters and refrigerator recycling. Water heater purchases and

195

Wavelength-stable rare earth-free green light-emitting diodes for energy efficiency  

Science Journals Connector (OSTI)

Solid state lighting seeks to replace both, incandescent and fluorescent lighting by energy efficient light-emitting diodes (LEDs). Just like compact fluorescent tubes, current white...

Wetzel, Christian; Detchprohm, Theeradetch

2011-01-01T23:59:59.000Z

196

Design and Predictive Control of a Net Zero Energy Home  

E-Print Network [OSTI]

the same amount of light as traditional incandescent bulbs with less energy. Incandescent bulbs are inherently inefficient as most of the energy they consume goes towards heat generation. Compact fluorescent (CFL) and light emitting diode (LED) bulbs... as heat [1]. Compact fluorescent lamps (CFLs) and Light Emitting Diodes (LEDs) were analyzed in comparison with incandescent lamps. To determine the most energy efficient bulb, energy consumption for each type of bulb is needed. To do this, the amount...

Morelli, F.; Abbarno, N.; Boese, E.; Bullock, J.; Carter, B.; Edwards, R.; Lapite, O.; Mann, D.; Mulvihill, C.; Purcell, E.; Stein, M. IV; Rasmussen, B. P.

2013-01-01T23:59:59.000Z

197

2011 Rutgers Faraday Children's Lecture Crew ReichertJon  

E-Print Network [OSTI]

;Continuous "black body spectrum" from incandescent light bulb hydrogen fluorescent light What they saw. ROY G. Disk jumps out of changing magnetic field region. Induced current lights bulb. #12;Prof. Chuck Keeton

Glashausser, Charles

198

Bright prospects for lighting retrofits  

SciTech Connect (OSTI)

Great potential for energy savings can be found in the alleys, hallways and stairwells of multifamily buildings, but this potential is not always easy to realize. This article discusses the solution to common problems, retrofitting mistakes, retrofitting for savings, replacements for incandescent bulbs, better exit lights. 1 fig., 1 tab.

Hasterok, L. [Wisconsin Energy Conservation Corp., Madison, WI (United States)

1995-09-01T23:59:59.000Z

199

Light  

Science Journals Connector (OSTI)

Sunlight contains energy which can be directly converted into electricity in solar cells of various types. This is an example of what is called 'direct conversion', involving no moving parts or heat conversion processes. This chapter looks at photovoltaic and photoelectric devices and also at other ideas for using light energy, some of which operate in the infrared part of the spectrum. Solar electric power is a rapidly developing field, opening up many opportunities for novel applications, as well as requirements, including for storage, with one idea being solar-powered hydrogen production and then direct conversion to electricity in fuel cells. Direct conversion is not always efficient, and this chapter introduces the concept of 'energy return on energy invested'. In speculative mood this chapter also looks at the idea of a global grid, allowing daytime solar generation to be used on the night side of the planet.

David Elliott ? Pages 4-1 to 4-20

200

PHYSICS DIVISION ESH BULLETIN 2004-01 1/5/04 OFFICES, SAFETY GUIDELINES  

E-Print Network [OSTI]

to these lamps. Energy Star® labeled torchiere floor lamps use compact fluorescent bulbs that burn much cooler fluorescent bulb which give the same amount of light as a 200 watt halogen bulb. Incidental Soldering. Most torchiere floor lamps use halogen bulbs that burn at temperatures exceeding 1,200 degrees F, hot

Note: This page contains sample records for the topic "fluorescent light bulb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Quantitative determination of collateral anterior olfactory nucleus projections using a fluorescent tracer with an algebraic solution to the problem of double retrograde labeling  

Science Journals Connector (OSTI)

The bilateral projections of the rat anterior olfactory nucleus (AON) were evaluated using retrograde fluorescent tracers. Competitive effects of these tracers led to severe underestimation of bilaterally projecting neurons, when double-labeled cells were counted. The underestimate was corrected using a numerical approach, which is of general utility for problems in double labeling and requires only a single tracer. With this method we estimated that approximately 63% of AON neurons project bilaterally to the olfactory bulbs, except for the external part which projects exclusively to the contralateral olfactory bulb. No other AON neurons project only to the contralateral bulb.

George F. Alheid; Jrn Carlsen; Jose de Olmos; Lennart Heimer

1984-01-01T23:59:59.000Z

202

Energy saving controller for fluorescent lamps.  

E-Print Network [OSTI]

??Although fluorescent lamp is a very efficient lighting device in daily life, still the high harmonic distortion and low power factor cause unnecessary energy consumption. (more)

Cheong, Zhi Xiong

2010-01-01T23:59:59.000Z

203

LED Replacements for Linear Fluorescent Lamps Webcast  

Broader source: Energy.gov [DOE]

In this June 20, 2011 webcast on LED products marketed as replacements for linear fluorescent lamps, Jason Tuenge of the Pacific Northwest National Laboratory (PNNL) discussed current Lighting...

204

Magnetic fluorescent lamp having reduced ultraviolet self-absorption  

DOE Patents [OSTI]

The radiant emission of a mercury-argon discharge in a fluorescent lamp assembly (10) is enhanced by providing means (30) for establishing a magnetic field with lines of force along the path of electron flow through the bulb (12) of the lamp assembly, to provide Zeeman splitting of the ultraviolet spectral line. Optimum results are obtained when the magnetic field strength causes a Zeeman splitting of approximately 1.7 times the thermal line width.

Berman, Samuel M. (San Francisco, CA); Richardson, Robert W. (Pelham, NY)

1985-01-01T23:59:59.000Z

205

Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?  

E-Print Network [OSTI]

2000: Lighting Type Incandescent Fluorescent CFL Percentagescenario, we assume that incandescent bulbs are graduallyW 60W 15W Fluorescent Lamps Incandescent Lamps CFL We then

Letschert, Virginie

2010-01-01T23:59:59.000Z

206

Department of Energy Announces Philips Lighting North America as Winner of  

Broader source: Energy.gov (indexed) [DOE]

Philips Lighting North America as Philips Lighting North America as Winner of L Prize Competition Department of Energy Announces Philips Lighting North America as Winner of L Prize Competition August 3, 2011 - 5:59pm Addthis August 3, 2011 Department of Energy Announces Philips Lighting North America as Winner of L Prize CompetitionPhilips Product Delivers on Department's Challenge to Replace Common Light Bulb with Energy-Saving Lighting Alternative Washington, D.C. - The U.S. Department of Energy today announced that Philips Lighting North America has won the 60-watt replacement bulb category of the Bright Tomorrow Lighting Prize (L Prize) competition. The Department of Energy's L Prize challenged the lighting industry to develop high performance, energy-saving replacements for conventional light bulbs

207

Fluorescent Nanohybrids Based on Quantum DotChitosanAntibody as Potential Cancer Biomarkers  

Science Journals Connector (OSTI)

Photoluminescence (PL) characterization of the CdS/polysaccharides conjugates and intermediates systems was performed based on spectra acquired using the Nanodrop 3300 fluorospectrometer (Thermo Scientific, blue LED with ?excitation = 470 10 nm). ... All photoluminescence spectra were collected at room temperature, and measurements of fluorescence intensities were reported in relative fluorescent units (RFU). ... Additionally, QD colloidal media were placed inside a darkroom chamber where they were illuminated by a UV radiation emission bulb (?excitation = 254 and 365 nm, 6 W, Boitton Instruments). ...

Alexandra A. P. Mansur; Herman S. Mansur; Amanda Soriano-Arajo; Zlia I. P. Lobato

2014-06-23T23:59:59.000Z

208

Supplementary Material for: Application of Synchrotron Radiation for Measurement of Iron Red-ox  

E-Print Network [OSTI]

@engr.wisc.edu #12;Incandescent Light Bulb Spectrum Figure 1 Visible Light Fluorescent Light Bulb Spectrum #12;Figure 2 Visible Light Incandescent Light Bulb Spectrum #12;Figure 3 Unmodified XANES Spectrum February 14 of the incandescent lights used for aging the atmospheric aerosols. The units are in m / S / m2 / nm. Figure 3

Meskhidze, Nicholas

209

GREEN PURCHASING GUIDE THE FOLLOWING PRODUCTS CAN BE FOUND ON W.B. MASON'S GREEN PRODUCTS PAGE AND HAVE BEEN SELECTED BY THE CAMPUS  

E-Print Network [OSTI]

COMPOSTABLE COMPOSTABLE COMPOSTABLE HYPERLINK LIGHT BULBS **ALL COMPACT FLUORESCENT (CFL) AND LED LIGHT BULBS OF BULBS PROPERLY. THE LED BULBS FROM WB MASON ARE SIGNIFICANTLY (5-6X) MORE EXPENSIVE THAN THOSE FOUND AT HARDWARE STORES** INCANDESCENT WATTAGE CFL EQUIVALENT LED EQUIVALENT 40 W 9-13 W 6-8 W60 W 13-15 W 75 W 18

Massachusetts at Amherst, University of

210

VISIBILITY ALGORITHMS 8.1. INTRODUCTION  

E-Print Network [OSTI]

from e if it would be entirely illuminated by a fluorescent light bulb whose extent matched e. Avis(x) is called the point visibility polygon for x; it may be imagined as the region illuminated by a light bulb

O'Rourke, Joseph

211

User-guided White Balance for Mixed Lighting Conditions Ivaylo Boyadzhiev  

E-Print Network [OSTI]

(daylight + neon un- der the cabinets + low-energy bulbs on ceiling) ex- hibits unsightly color casts a solution to the ill-posed mixed light white balance problem, based on user guidance. Users scribble

Bala, Kavita

212

Solar lighting | Open Energy Information  

Open Energy Info (EERE)

lighting lighting Jump to: navigation, search Introductory Facts About Solar Lights It is not just a normal light bulb.The solar light consists of a LED or Light Emitting Diode, which draw little power. Coupled with constantly recharging batteries, you will never run out of light! They will save the customer money. By Replacing all outdoor lighting with solar lights there is no need to plug in to the electrical system. The lights will automatically turn on at dusk and will be charged during the day. They help out the environment.Not only does not plugging in to the power system save money but also energy, therefore protecting the Earth. Easy to Install No wires necessary, just pop in the battery. They come in all designs Just because they are solar lights doesn't

213

High-Efficiency White Organic Light-Emitting Devices Based on a Highly Amorphous Iridium(III) Orange Phosphor  

E-Print Network [OSTI]

- didates as future illumination sources over the conventional incandescent bulbs and fluorescent lamps of the electroluminescence spectrum is observed, with the blue color intensity increasing relative to the orange component been prepared using this stacked concept with both fluorescent12,13 and phosphorescent emitters.14

214

Relationships of Light Transmission, Stratification and Fluorescence in the Hypoxic Region of the Texas-Louisiana Shelf in Spring/Summer 2009  

E-Print Network [OSTI]

The growth of phytoplankton in hypoxic waters requires nutrients and light. In river plumes of the coastal ocean, river borne surface nutrient concentrations decrease with distance from the river mouth. Light availability at the surface also changes...

Towns, Jenny L

2012-07-11T23:59:59.000Z

215

Single molecule fluorescence (the basics)  

E-Print Network [OSTI]

Single molecule fluorescence (the basics) #12;light time light time No averaging, no need;knrkr S0 S1 Iph . . Iexc #12;Single molecule emitters #12;K. Brejc et.al., PNAS 94 (1997) 2306 1 nm glass, notch holographic, multidielectric,... #12;Optical schemes to detect single molecules Excitation

Ritort, Felix

216

Fiber optical assembly for fluorescence spectrometry  

DOE Patents [OSTI]

A system for analyzing a sample for the presence of an analyte in a sample. The system includes a sample holder for containing the sample; an excitation source, such as a laser, and at least one linear array radially disposed about the sample holder. Radiation from the excitation source is directed to the sample, and the radiation induces fluorescent light in the sample. Each linear array includes a plurality of fused silica optical fibers that receive the fluorescent light and transmits a fluorescent light signal from the first end to an optical end port of the linear array. An end port assembly having a photo-detector is optically coupled to the optical end port. The photo-detector detects the fluorescent light signal and converts the fluorescent light signal into an electrical signal.

Carpenter, II, Robert W. (Pagosa Springs, CO); Rubenstein, Richard (Staten Island, NY); Piltch, Martin (Los Alamos, NM); Gray, Perry (Los Alamos, NM)

2010-12-07T23:59:59.000Z

217

Synthesis and luminescence properties of rare earth activated phosphors for near UV-emitting LEDs for efficacious generation of white light  

E-Print Network [OSTI]

lighting using incandescent lights and fluorescent lamps, asenergy used for the incandescent lamp is wasted as infraredsource to replace incandescent and fluorescent lighting [2].

Han, Jinkyu

2013-01-01T23:59:59.000Z

218

E-Print Network 3.0 - accessory olfactory bulb Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

search results for: accessory olfactory bulb Page: << < 1 2 3 4 5 > >> 1 Dcculopmentul Brain Rescurch. 70 (1W2) 279-22 O 1992 Elsevier Science Publishers B.V.All rights reserved...

219

A critical period for activity-dependent synaptic development during olfactory bulb adult neurogenesis  

E-Print Network [OSTI]

New neurons integrate in large numbers into the mature olfactory bulb circuit throughout life. The factors controlling the synaptic development of adult-born neurons and their connectivity remain essentially unknown. We ...

Kelsch, Wolfgang

220

Odor discrimination of "IP 3-" and cAMP-increasing odorants in the turtle olfactory bulb  

Science Journals Connector (OSTI)

The ability of the turtle olfactory system to discriminate between various odorants...P 3) in the olfactory bulb was examined by the cross-adaptation technique and analyzed by multidimensional sca...

Makoto Kashiwayanagi; Fumiko Nagasawa; Kouhei Inamura; Kenzo Kurihara

1996-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "fluorescent light bulb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

The environmental regulation of maturation in goldfish, Carassius auratus: Effects of various LED light spectra  

Science Journals Connector (OSTI)

Abstract While there have been a number of studies on the effects of photoperiod and duration of light and dark exposure, much less information is available on the importance of light intensity. This study investigated the effects of exposure of goldfish, Carassius auratus exposed to white fluorescent bulbs, and red (peak at 630nm), and green (530nm) light emitting diodes (LEDs) at approximately 0.9W/m2 (12-h light:12-h dark) for four months on a number of hormones of the hypothalamuspituitarygonad (HPG) axis, in vivo and in vitro. We investigated the effects of native GnRH molecules (gonadotropin-releasing hormones; salmon GnRH, sGnRH; and chicken GnRH-II, cGnRH-II), gonadotropin hormones (GTH?; follicle-stimulating hormone, FSH-?; luteinizing hormone, LH-?2), kisspeptin 1 (Kiss1) and G protein-coupled receptor 54 (GPR54) mRNA levels. Furthermore, we measured LH and 17?-hydroxypregnenolone levels in plasma and we performed gonad histological observations. GnRHs, Kiss1, GPR54 and GTH mRNA and plasma LH and 17?-hydroxypregnenolone levels in the in vivo and in vitro groups exposed to green \\{LEDs\\} were significantly higher than the other groups. Histological analysis revealed the presence of oocytes in the yolk stage in fish exposed to green light. These results suggest that green wavelengths regulate the HPG axis and enhance sexual maturation in goldfish.

Hyun Suk Shin; Hamid R. Habibi; Cheol Young Choi

2014-01-01T23:59:59.000Z

222

Interrelationships between air velocity and natural wet-bulb thermometer response  

E-Print Network [OSTI]

INTERRELATIONSHIPS BETWEEN AIR VFLOCITY ANO NATURAL WET-BULB THERMOMETER RESPONSE A Thesis by NATHAN GLENN JONES Submitted to the Graduate Colleqe of Texas ASM University i n partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE AUGUST 1983 Major Subject: Industrial Hygiene INTERRELATIONSHIPS BETWEEN AIR VELOCITY AND NATURAL WET-BULB THERMOMETER RESPONSE A Thesis by NATHAN GLENN JONES Approved as to style an content by: airman o ommittee er Member ~~' A~ Member...

Jones, Nathan Glenn

1983-01-01T23:59:59.000Z

223

3302 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 31, NO. 20, OCTOBER 15, 2013 Position Accuracy of Time-of-Arrival Based Ranging  

E-Print Network [OSTI]

emitting diodes are rapidly replacing conventional fluorescent and incandes- cent lights. Unlike system is potentially almost as "simple as changing a light bulb." The advantages of po- sitioning

Sekercioglu, Y. Ahmet

224

Energy Department Provides $7 Million for Solid-State Lighting...  

Energy Savers [EERE]

incandescent and fluorescent lamps, solid-state lighting creates light without producing heat. A semi-conducting material converts electricity directly into light, which maximizes...

225

Energy Savings Potential for Street Lighting in India  

E-Print Network [OSTI]

savings, as less light (and less energy) can provide theconfigurations and light levels, LEDs did save energy, up toScenario Energy Use Savings (GWh) Compact fluorescent Light

Johnson, Alissa K.

2014-01-01T23:59:59.000Z

226

Cell-Trappable Fluorescent Probes for Nitric Oxide Visualization in Living Cells  

Science Journals Connector (OSTI)

(2) More recently, NO has been implicated to modulate synaptic activity in the CNS, where it may play a role in signal transduction in the olfactory bulb. ... Using the copper stoichiometry determined by titration, exposure of solutions of the probes generated in situ to excess NO under anaerobic conditions led to an immediate fluorescence enhancement with a concomitant bathochromic shift of the emission maxima (Figure 2 and Table 1). ... To test this presumption, fluorescent protein chimeras were expressed in RAW 264.7 macrophages, and time-lapse ratiometric fluorescence microscopy was used to measure the maturation dynamics of individual phagosomes contg. ...

Michael D. Pluth; Lindsey E. McQuade; Stephen J. Lippard

2010-04-20T23:59:59.000Z

227

Photodynamic Toxicity of Polycyclic Aromatic Hydrocarbons in Tissue Culture  

Science Journals Connector (OSTI)

...fixture containing two fluorescent light bulbs, GE daylight-type...conventional, commercial fluorescent light. All experiments...as, for example, fluorescent dyes, which can elicit...substances has previously led to the postulation...

Yoshiyuki Morimura; Paul Kotin; and Hans L. Falk

1964-08-01T23:59:59.000Z

228

Quantitative Imaging of Infiltration, Root Growth, and Root Water Uptake via Neutron Radiography  

Science Journals Connector (OSTI)

...photoperiod of 16 h, fluorescent lighting of 9,000-10...groups of four below a fluorescent light bulb, and again, a daily...because previous wetting led to a higher initial...Fluhler. 2002. Imaging fluorescent dye concentrations on...

Sascha E. Oswald; Manoj Menon; Andrea Carminati; Peter Vontobel; Eberhard Lehmann; Rainer Schulin

229

Lumens: The new way to shop for light  

Energy Savers [EERE]

r a d i t i o n a l I n c a n d e s c e n t W a t t s L u m e n s ( B r i g h t n e s s ) LUMENS: THE NEW WAY TO SHOP FOR LIGHT Choose Your Next Light Bulb for the Brightness You...

230

Lighting Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Lighting Basics Lighting Basics Lighting Basics August 15, 2013 - 5:12pm Addthis Text Version There are many different types of artificial lights, all of which have different applications and uses. Types of lighting include: Fluorescent Lighting High-intensity Discharge Lighting Incandescent Lighting LED Lighting Low-pressure Sodium Lighting. Which type is best depends on the application. See the chart below for a comparison of lighting types. Lighting Comparison Chart Lighting Type Efficacy (lumens/watt) Lifetime (hours) Color Rendition Index (CRI) Color Temperature (K) Indoors/Outdoors Fluorescent Straight Tube 30-110 7000-24,000 50-90 (fair to good) 2700-6500 (warm to cold) Indoors/outdoors Compact Fluorescent 50-70 10,000 65-88 (good) 2700-6500 (warm to cold) Indoors/outdoors

231

Guide to Energy Efficient Lighting  

Broader source: Energy.gov (indexed) [DOE]

Today's CFLs Today's CFLs Although CFLs have been available for residential use since the 1980s, they have made significant strides in quality and popularity in recent years. Today, CFLs are the most cost-effective, energy-efficient choice readily available on the market. A CFL produces the same amount of light as a comparable incan- descent, but uses 75% less energy, produces 75% less heat, and lasts up to 10 times longer than an incandescent bulb.

232

When asked to envision a typical workspace, most of us imagine neutral colors, generic cubicles, and fluorescent lights. The work done in  

E-Print Network [OSTI]

I NG & SCIENCE WINTER 2013 #12;The cleanroom at the Kavli Nanoscience Institute in the cleanroom to produce plasmonic chips--devices that increase the intensity of light--for use in the precise

233

Chromosome characterization using single fluorescent dye  

DOE Patents [OSTI]

Chromosomes are characterized by fluorescent emissions from a single fluorescent dye that is excited over two different wavelengths. A mixture containing chromosomes is stained with a single dye selected from the group consisting of TOTO and YOYO and the stained chromosomes are placed in a flow cytometer. The fluorescent dye is excited sequentially by a first light having a wavelength in the ultraviolet range to excite the TOTO or YOYO to fluoresce at a first intensity and by a second light having a wavelength effective to excite the TOTO or YOYO dye to fluoresce at a second intensity. Specific chromosomes may be identified and sorted by intensity relationships between the first and second fluorescence emissions.

Crissman, Harry A. (Los Alamos, NM); Hirons, Gregory T. (Irvine, CA)

1995-01-01T23:59:59.000Z

234

DOE Science Showcase - Light-emitting Diode (LED) Lighting Research | OSTI,  

Office of Scientific and Technical Information (OSTI)

Science Showcase - Light-emitting Diode (LED) Lighting Research Science Showcase - Light-emitting Diode (LED) Lighting Research Light-emitting diode (LED) lighting is a type of solid-state lighting that uses a semiconductor to convert electricity to light. LED lighting products are beginning to appear in a wide variety of home, business, and industrial products such as holiday lighting, replacement bulbs for incandescent lamps, street lighting, outdoor area lighting and indoor ambient lighting. Over the past decade, LED technology research and development supported by the U.S. Department of Energy (DOE) has yielded impressive improvements in the cost, color performance, light output, efficacy, reliability, lifetime, and manufacturability of LED products and this upward trend is expected to continue. Read about the latest DOE research, the technology behind LEDs,

235

NREL: News Feature - NREL Finds a Way to Give LEDs the Green...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

diodes - are the promise of the future because unlike tungsten bulbs or compact fluorescent bulbs, they deliver most of their energy as light, rather than heat. An extra plus...

236

The Preuss School UCSD Daily Bulletin A Day  

E-Print Network [OSTI]

in the United State replaced one regular light bulb with one of those new compact fluorescent bulbs E103 and return it to Ms. Garcia by Fri, May 5. Journalism is a student-led class with lots

Russell, Lynn

237

UC Davis Picnic Day, 2006 Excerpt from an article published in The Davis Enterprise, April 23rd  

E-Print Network [OSTI]

up a long fluorescent bulb from a foot or two away. After the show, Tilson said she was impressed, just physics," Cherney said. Felde attempted to turn an ordinary pickle into a light bulb. He ran

Liu, Kai

238

Saving Energy | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the use of technology that requires less energy to perform the same function. A compact fluorescent light bulb that uses less energy than an incandescent bulb to produce the same...

239

Untitled  

U.S. Energy Information Administration (EIA) Indexed Site

9. Number of Lights by Type of Bulb by Hours Used, 1993 Bulb Type Incandescent Fluorescent Other Hours Used Total Low Medium High Unknown Short Long Compact Halogen Other Unknown...

240

Assessing the Performance of 5mm White LED Light Sources for Developing-Country Applications  

E-Print Network [OSTI]

performance variations. Incandescent and fluorescent lightbetter than the common incandescent lamp. Off-grid lighting

Mills, Evan

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fluorescent light bulb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Efficiency Maine Residential Lighting Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Lighting Program Lighting Program Efficiency Maine Residential Lighting Program < Back Eligibility Residential Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info Funding Source Maine's System Benefit Charge, Regional Greenhouse Gas Initiative, Forward Capacity Market and Maine Power Reliability Program State Maine Program Type State Rebate Program Rebate Amount Typically $1.25/bulb Efficiency Maine's Residential Lighting Program works directly with retailers and manufacturers to encourage residential customers to purchase energy-efficient lighting. Rebate amounts average $1.25/bulb and are available at the point of sale at participating retailers. Participating retailers will deduct the rebate amount at the cash register. (See the program web site for a list of participating retailers and additional

242

GLK Transcription Factors Coordinate Expression of the Photosynthetic Apparatus in Arabidopsis  

Science Journals Connector (OSTI)

...plastid damage. While NF and L led to much lower transcript levels...light (85 mumol quanta21) from fluorescent bulbs. Light and Plastid Inhibitor Treatments...white light was supplied by fluorescent tubes at 40 mumol quanta21. Tissue...

Mark T. Waters; Peng Wang; Muris Korkaric; Richard G. Capper; Nigel J. Saunders; Jane A. Langdale

2009-04-17T23:59:59.000Z

243

StefanBoltzmann law for the tungsten filament of a light bulb: Revisiting the experiment  

Science Journals Connector (OSTI)

A classical laboratory experiment to verify the Stefan-Boltzmann radiation law with the tungsten filaments of commercial incandescent lamps has been fully revisited collecting a fairly large amount of data with a computer-controlled four-channel power supply. In many cases the total power dissipated by the lamp is well described by a sum of two power-law terms with one exponent very close to 4 as predicted by the radiation law and the other very close to 1 as for simple heat conduction. This result was true even for filament surfaces with a shiny metallic appearance whose emissivity should vary with temperature.

2013-01-01T23:59:59.000Z

244

Fluorescent temperature sensor  

DOE Patents [OSTI]

The present invention is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

Baker, Gary A [Los Alamos, NM; Baker, Sheila N [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM

2009-03-03T23:59:59.000Z

245

Electrochemically Controlled Surface Plasmon Enhanced Fluorescence Response of Surface Immobilized CdZnSe Quantum Dots  

Science Journals Connector (OSTI)

The application of negative potentials (versus Ag/AgCl) led to a decrease in the surface plasmon enhanced fluorescence signal, the fluorescence signal recovered if the cell potential was returned to 0 V or open circuit. ... UV?vis spectroscopy was carried out on a Perkin-Elmer Lambda 9 UV/vis/NIR spectrophotometer and fluorescence spectroscopy on a J&M TIDAS fluorescence spectrometer with illumination from a 100 W xenon bulb. ... In the research described in this paper, we show that such electrode potential control of QD fluorescence can also be achieved in an aqueous environment by close control of coupling conditions and QD chemistry leading to the possibility of using such structures for enhanced detection of biological and biorelated molecules. ...

Petra J. Cameron; Xinhua Zhong; Wolfgang Knoll

2009-03-23T23:59:59.000Z

246

Thermal Issues Associated with the Lighting Systems, Electronics Racks, and Pre-Amplifier Modules in the National Ignition System  

SciTech Connect (OSTI)

This report summarizes an investigation of the thermal issues related to the National Ignition Facility. The influence of heat sources such as lighting fixtures, electronics racks, and pre-amplifier modules (PAMs) on the operational performance of the laser guide beam tubes and optical alignment hardware in the NE laser bays were investigated with experiments and numerical models. In particular, empirical heat transfer data was used to establish representative and meaningful boundary conditions and also serve as bench marks for computational fluid dynamics (CFD) models. Numerical models, constructed with a commercial CFD code, were developed to investigate the extent of thermal plumes and radiation heat transfer from the heat sources. From these studies, several design modifications were recommended including reducing the size of all fluorescent lights in the NIF laser bays to single 32 W bulb fixtures, maintaining minimum separation distances between light fixtures/electronics racks and beam transport hardware, adding motion sensors in areas of the laser bay to control light fixture operation during maintenance procedures, properly cooling all electronics racks with air-water heat exchangers with heat losses greater than 25 W/rack to the M1 laser bay, ensuring that the electronics racks are not overcooked and thus maintain their surface temperatures to within a few degrees centigrade of the mean air temperature, and insulating the electronic bays and optical support structures on the PAMs.

A. C. Owen; J. D. Bernardin; K. L. Lam

1998-08-01T23:59:59.000Z

247

Concord Municipal Light Plant - Residential Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Concord Municipal Light Plant - Residential Energy Efficiency Concord Municipal Light Plant - Residential Energy Efficiency Rebate Program Concord Municipal Light Plant - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Sealing Your Home Ventilation Commercial Lighting Lighting Maximum Rebate Electric Heat Weatherization: $1,000 Central Air Conditioners: $1,500 CFLs/LEDs/Exit Signs: 30 bulbs or signs Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Electric Heat Weatherization: $1,000 Central Air Conditioners: $1,500 CFLs/LEDs/Exit Signs: 30 bulbs or signs Provider Customer Service Concord Municipal Light Plant (CMLP) offers its residential customers

248

Volunteer Potato Density Influences Critical Time of Weed Removal in Bulb Onion  

E-Print Network [OSTI]

Volunteer Potato Density Influences Critical Time of Weed Removal in Bulb Onion Martin M. Williams II, Corey V. Ransom, and W. Mack Thompson* Volunteer potato is highly competitive with onion and few control tactics are effective for removing this weed from an onion crop. Both volunteer potato density

Sims, Gerald K.

249

38  

Science Journals Connector (OSTI)

conditions has led to the construction of de-. Acknowledgments. We thank T. .... white fluorescent bulbs on a 14 : 10 L/D cycle. (lights on at 0700 hours)...

1999-12-22T23:59:59.000Z

250

Hoegh-Guldberg, Ove, Maoz Fine, William Skirving, Ron Johnstone ...  

Science Journals Connector (OSTI)

13.3C; wet bulb temperature ... Exposing symbionts to light, however, led to greater quench- .... a fluorescent microscope (Olympus BX5) and a digital cam- era.

2004-12-14T23:59:59.000Z

251

Global Potential of Energy Efficiency Standards and Labeling Programs  

E-Print Network [OSTI]

lighting (replacement of incandescent lamps with CFLs) withof each type of lamp: incandescent; fluorescent tubes; andless consumptive than incandescent bulbs. Second, it impacts

McNeil, Michael A

2008-01-01T23:59:59.000Z

252

CX-000136: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

retrofits for bathrooms of 42 residences. These retrofits would involve upgrading incandescent light fixtures to those that will accommodate compact fluorescent bulbs. It is...

253

--No Title--  

Broader source: Energy.gov (indexed) [DOE]

retrofits for bathrooms of 42 residences. These retrofits would involve upgrading incandescent light fixtures to those that will accommodate compact fluorescent bulbs. It is...

254

A Fast and Selective Near-Infrared Fluorescent Sensor for Multicolor Imaging of Biological Nitroxyl (HNO)  

Science Journals Connector (OSTI)

A Fast and Selective Near-Infrared Fluorescent Sensor for Multicolor Imaging of Biological Nitroxyl (HNO) ... Nitric oxide was passed through an Ascarite column and a 6 ft coil containing silica gel at ?78 C to remove impurities and then collected and stored under nitrogen in a gas storage bulb. ... Treatment of these cells with 3 mM Angelis salt led to an increase in fluorescence in both the NIR channel and the green channel (Figure 6C,E,H). ...

Alexandra T. Wrobel; Timothy C. Johnstone; Alexandria Deliz Liang; Stephen J. Lippard; Pablo Rivera-Fuentes

2014-02-24T23:59:59.000Z

255

Fluorescent microthermographic imaging  

SciTech Connect (OSTI)

In the early days of microelectronics, design rules and feature sizes were large enough that sub-micron spatial resolution was not needed. Infrared or IR thermal techniques were available that calculated the object`s temperature from infrared emission. There is a fundamental spatial resolution limitation dependent on the wavelengths of light being used in the image formation process. As the integrated circuit feature sizes began to shrink toward the one micron level, the limitations imposed on IR thermal systems became more pronounced. Something else was needed to overcome this limitation. Liquid crystals have been used with great success, but they lack the temperature measurement capabilities of other techniques. The fluorescent microthermographic imaging technique (FMI) was developed to meet this need. This technique offers better than 0.01{degrees}C temperature resolution and is diffraction limited to 0.3 {mu}m spatial resolution. While the temperature resolution is comparable to that available on IR systems, the spatial resolution is much better. The FMI technique provides better spatial resolution by using a temperature dependent fluorescent film that emits light at 612 nm instead of the 1.5 {mu}m to 12 {mu}m range used by IR techniques. This tutorial starts with a review of blackbody radiation physics, the process by which all heated objects emit radiation to their surroundings, in order to understand the sources of information that are available to characterize an object`s surface temperature. The processes used in infrared thermal imaging are then detailed to point out the limitations of the technique but also to contrast it with the FMI process. The FMI technique is then described in detail, starting with the fluorescent film physics and ending with a series of examples of past applications of FMI.

Barton, D.L.

1993-09-01T23:59:59.000Z

256

Tunable Organophotocatalysts for Polymerization Reactions Under Visible Lights.  

Science Journals Connector (OSTI)

Upon household LED bulb or Xe lamp exposure, the oxidative three-component system is able to promote the ring-opening polymerization ROP of an epoxide whereas the reductive three-component system is very efficient to initiate the free radical photopolymerization FRP of an acrylate. ... Fluorescence quenching and SternVolmer treatments for the OPC/Ph2I+ interaction. ... Copper Complexes in Radical Photoinitiating Systems: Applications to Free Radical and Cationic Polymerization upon Visible LEDs ...

Mohamad-Ali Tehfe; Jacques Laleve; Fabrice Morlet-Savary; Bernadette Graff; Nicolas Blanchard; Jean-Pierre Fouassier

2012-02-09T23:59:59.000Z

257

Choosing Energy-Saving Lighting Products Saves You Money | Department of  

Broader source: Energy.gov (indexed) [DOE]

Choosing Energy-Saving Lighting Products Saves You Money Choosing Energy-Saving Lighting Products Saves You Money Choosing Energy-Saving Lighting Products Saves You Money May 30, 2012 - 11:58am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy If you've been to a home improvement store lately, you've probably noticed more and more energy-saving light bulbs available on the shelves. Traditional incandescent light bulbs give off about 90% of the energy they use in the form of heat, and only 10% as light, making them a major money-waster compared to better lighting options that are currently available. Lighting homes and businesses with more efficient products is one of the easiest ways to reduce America's reliance on fossil fuels and save money. Those savings can really add up: You may be paying $6 each year to light a

258

Choosing Energy-Saving Lighting Products Saves You Money | Department of  

Broader source: Energy.gov (indexed) [DOE]

Choosing Energy-Saving Lighting Products Saves You Money Choosing Energy-Saving Lighting Products Saves You Money Choosing Energy-Saving Lighting Products Saves You Money May 30, 2012 - 11:58am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy If you've been to a home improvement store lately, you've probably noticed more and more energy-saving light bulbs available on the shelves. Traditional incandescent light bulbs give off about 90% of the energy they use in the form of heat, and only 10% as light, making them a major money-waster compared to better lighting options that are currently available. Lighting homes and businesses with more efficient products is one of the easiest ways to reduce America's reliance on fossil fuels and save money. Those savings can really add up: You may be paying $6 each year to light a

259

New Lighting Standards Begin in 2012 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

New Lighting Standards Begin in 2012 New Lighting Standards Begin in 2012 New Lighting Standards Begin in 2012 July 29, 2012 - 7:58pm Addthis New Lighting Standards Begin in 2012 What does this mean for me? Starting in 2012, lightbulbs are required to use 25% less energy. You have several energy-efficient options to choose from, which are already available in stores. The new lighting standards could save U.S. households nearly $6 billion dollars in 2015 alone. Beginning in 2012, common lightbulbs sold in the United States will typically use about 25%-80% less energy. Many bulbs meet these new standards, including energy-saving incandescents, CFLs, and LEDs, and are already available for purchase. The newer bulbs provide a wide range of choices in color and brightness, and many of them last much longer than

260

New Lighting Standards Begin in 2012 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

New Lighting Standards Begin in 2012 New Lighting Standards Begin in 2012 New Lighting Standards Begin in 2012 July 29, 2012 - 7:58pm Addthis New Lighting Standards Begin in 2012 What does this mean for me? Starting in 2012, lightbulbs are required to use 25% less energy. You have several energy-efficient options to choose from, which are already available in stores. The new lighting standards could save U.S. households nearly $6 billion dollars in 2015 alone. Beginning in 2012, common lightbulbs sold in the United States will typically use about 25%-80% less energy. Many bulbs meet these new standards, including energy-saving incandescents, CFLs, and LEDs, and are already available for purchase. The newer bulbs provide a wide range of choices in color and brightness, and many of them last much longer than

Note: This page contains sample records for the topic "fluorescent light bulb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Thermally efficient compact fluorescent fixture systems  

SciTech Connect (OSTI)

Compact fluorescent lamps that can be inserted into conventional light fixtures are rapidly gaining acceptance as both a viable retrofit and new design approach to reducing lighting loads. Ideally, the compact fluorescent lamp should have the same light output as the incandescent lamp it replaces, but overheating inside typically small enclosed fixtures can reduce lumen output and hence lighting fixture efficiency by 15 to 20 percent. Fortunately, simple fixture modifications can erase this efficiency penalty, so that the full efficiency benefit of replacing incandescent lamps with fluorescent lamps can be realized. The paper describes such modifications and presents experimental data documenting the potential efficiency enhancement associated with thermal control systems. 4 refs., 7 figs.

Siminovitch, M.J.; Rubinstein, F.M.; Packer, M.

1991-04-01T23:59:59.000Z

262

Covered Product Category: Fluorescent Luminaires | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fluorescent Luminaires Fluorescent Luminaires Covered Product Category: Fluorescent Luminaires October 7, 2013 - 10:52am Addthis Did You Know? Lighting Can Help You Accomplish Other Facility Upgrades and Efficiency Improvements Facilities with significant potential savings in lighting may be able to bundle lighting upgrades with heating, ventilation, air conditioning, and other energy conservation measures into a Utility Energy Service Contract (UESC) or Energy Savings Performance Contract (ESPC). Because of the substantial cost and energy savings potential, replacing lighting can be a key component in financing facility retrofits. The funding portion of the FEMP website offers more information on these and other funding opportunities. FEMP provides acquisition guidance and Federal efficiency requirements

263

Controls for Solid-State Lighting  

E-Print Network [OSTI]

very high would replace incandescent and halogen A modernmotion sensor, the incandescent lamp switches on providing awork with fluorescent and incandescent lighting as well as

Rubinstein, Francis

2007-01-01T23:59:59.000Z

264

PowerChoice Residential Customer Response to TOU Rates  

E-Print Network [OSTI]

or pin based compact fluorescent bulbs. If asked, count both15. How many compact fluorescent bulbs have you installedregular fixtures with fluorescent bulbs? Installing timers

Peters, Jane S.

2010-01-01T23:59:59.000Z

265

Taking Charge of Electricity at Home  

Science Journals Connector (OSTI)

Now, right on the heels of compact fluorescent bulbs, an exciting new lighting technology is making inroads in the global market: LED (light-emitting diode) lights. Semiconductors in LED lights glow when an elect...

Seth Shulman; Jeff Deyette; Brenda Ekwurzel; David Friedman

2012-01-01T23:59:59.000Z

266

Who Do I Call? --Environmental Health Safety or Facilities Management  

E-Print Network [OSTI]

Lighting: *Light bulb replacement X *Light surveys (lighting levels) X Microbial or mold growth X Odors * Universal waste (batteries, fluorescent lamps) X * Employee accident/injury reporting Managed by Workers

Rose, Michael R.

267

A Brief Introduction To Laser Principles Rashed S. Al-Rogaibah  

E-Print Network [OSTI]

beam. Instead of many colors of randomly directed light, like the light emitted from a light bulb, to a lower energy state, Q0, in an atom or ion as occurs in a fluorescent light. This also happens from

Masoudi, Husain M.

268

Frequently Asked Questions: Lighting Choices to Save You Money | Department  

Broader source: Energy.gov (indexed) [DOE]

Frequently Asked Questions: Lighting Choices to Save You Money Frequently Asked Questions: Lighting Choices to Save You Money Frequently Asked Questions: Lighting Choices to Save You Money August 9, 2012 - 9:20am Addthis Frequently Asked Questions: Lighting Choices to Save You Money Below are some of the most frequently asked questions and answers about the new lighting efficiency standards. Learn more about your lighting choices and find out how to shop for lights by lumens, not watts. Download our Lighting Myths and Facts fact sheet to learn more about your lighting choices and the new lighting standards. Why are my lighting choices changing? What is the Energy Independence and Security Act of 2007 (EISA 2007)? When will the new bulbs be phased in? What will the lighting standards mandated by EISA 2007 mean to consumers?

269

Lighting and Daylighting Products and Services | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Lighting and Daylighting Products and Services Lighting and Daylighting Products and Services Lighting and Daylighting Products and Services July 29, 2012 - 5:06pm Addthis Lighting and Daylighting Products and Services Use the following links to get product information and locate professional services for lighting and daylighting. Product Information Advanced Lighting Package ENERGY STAR® Information on the ENERGY STAR Advanced Lighting Project, which allows homeowners to upgrade their light fixtures to more energy efficient products. Energy-efficient Lights ENERGY STAR® Information on the benefits of ENERGY STAR qualified light bulbs. Fixtures Guide ENERGY STAR® Examples and pictures of ENERGY STAR qualified light fixtures. How to Select Residential LED Under-cabinet Lighting (PDF) Alliance for Solid-State Illumination Systems and Technologies

270

Lighting and Daylighting Products and Services | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Lighting and Daylighting Products and Services Lighting and Daylighting Products and Services Lighting and Daylighting Products and Services July 29, 2012 - 5:06pm Addthis Lighting and Daylighting Products and Services Use the following links to get product information and locate professional services for lighting and daylighting. Product Information Advanced Lighting Package ENERGY STAR® Information on the ENERGY STAR Advanced Lighting Project, which allows homeowners to upgrade their light fixtures to more energy efficient products. Energy-efficient Lights ENERGY STAR® Information on the benefits of ENERGY STAR qualified light bulbs. Fixtures Guide ENERGY STAR® Examples and pictures of ENERGY STAR qualified light fixtures. How to Select Residential LED Under-cabinet Lighting (PDF) Alliance for Solid-State Illumination Systems and Technologies

271

Frequently Asked Questions: Lighting Choices to Save You Money | Department  

Broader source: Energy.gov (indexed) [DOE]

Frequently Asked Questions: Lighting Choices to Save You Money Frequently Asked Questions: Lighting Choices to Save You Money Frequently Asked Questions: Lighting Choices to Save You Money August 9, 2012 - 9:20am Addthis Frequently Asked Questions: Lighting Choices to Save You Money Below are some of the most frequently asked questions and answers about the new lighting efficiency standards. Learn more about your lighting choices and find out how to shop for lights by lumens, not watts. Download our Lighting Myths and Facts fact sheet to learn more about your lighting choices and the new lighting standards. Why are my lighting choices changing? What is the Energy Independence and Security Act of 2007 (EISA 2007)? When will the new bulbs be phased in? What will the lighting standards mandated by EISA 2007 mean to consumers?

272

Outdoor Solar Lighting | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Outdoor Solar Lighting Outdoor Solar Lighting Outdoor Solar Lighting July 29, 2012 - 6:34pm Addthis Outdoor solar lights use solar cells, which convert sunlight into electricity, and are easy to install and virtually maintenance free. | Photo courtesy of ©iStockphoto.com/ndejan Outdoor solar lights use solar cells, which convert sunlight into electricity, and are easy to install and virtually maintenance free. | Photo courtesy of ©iStockphoto.com/ndejan What does this mean for me? Outdoor solar lights are easy to install and virtually maintenance free They work in most areas of the United States Find out if replacement bulbs or batteries are available before you buy them Outdoor solar lights are easy to install and virtually maintenance free. Best of all, using them won't increase your electric bill. Popular home

273

Incandescent Lighting Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Incandescent Lighting Basics Incandescent Lighting Basics Incandescent Lighting Basics August 16, 2013 - 10:00am Addthis Incandescent lamps operate simply by heating a metal filament inside a bulb filled with inert gas. Because they operate directly on variety of common power types including common household alternating current or direct current such as batteries or automobiles, they do not require a special power supply or ballast. They turn on up instantly, providing a warm light with excellent color rendition because the light is produced in much the same way as the light from the sun. They can also be easily dimmed using inexpensive controls and are available in a staggering variety of shapes and sizes. However, incandescent lamps have a low efficacy (10-17 lumens per watt) compared with other lighting options and a short average

274

Incandescent Lighting Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Incandescent Lighting Basics Incandescent Lighting Basics Incandescent Lighting Basics August 16, 2013 - 10:00am Addthis Incandescent lamps operate simply by heating a metal filament inside a bulb filled with inert gas. Because they operate directly on variety of common power types including common household alternating current or direct current such as batteries or automobiles, they do not require a special power supply or ballast. They turn on up instantly, providing a warm light with excellent color rendition because the light is produced in much the same way as the light from the sun. They can also be easily dimmed using inexpensive controls and are available in a staggering variety of shapes and sizes. However, incandescent lamps have a low efficacy (10-17 lumens per watt) compared with other lighting options and a short average

275

Outdoor Solar Lighting | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Outdoor Solar Lighting Outdoor Solar Lighting Outdoor Solar Lighting July 29, 2012 - 6:34pm Addthis Outdoor solar lights use solar cells, which convert sunlight into electricity, and are easy to install and virtually maintenance free. | Photo courtesy of ©iStockphoto.com/ndejan Outdoor solar lights use solar cells, which convert sunlight into electricity, and are easy to install and virtually maintenance free. | Photo courtesy of ©iStockphoto.com/ndejan What does this mean for me? Outdoor solar lights are easy to install and virtually maintenance free They work in most areas of the United States Find out if replacement bulbs or batteries are available before you buy them Outdoor solar lights are easy to install and virtually maintenance free. Best of all, using them won't increase your electric bill. Popular home

276

Dayton Power and Light - Residential Energy Efficiency Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Dayton Power and Light - Residential Energy Efficiency Rebate Dayton Power and Light - Residential Energy Efficiency Rebate Program Dayton Power and Light - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Refrigerator Recycling: $25 Freezer Recycling: $25 HVAC Tune-Up: $25 credit CFL's: $1.40 average off of each bulb purchased at participating stores Air Conditioning: $100 - $300, varies by efficiency and equipment application Air Source Heat Pump: $200 - $600, varies by efficiency and equipment application Geothermal Heat Pump: $200 - $600, varies by efficiency and equipment

277

Light Shines on Better Budget for Glendale, Arizona | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Light Shines on Better Budget for Glendale, Arizona Light Shines on Better Budget for Glendale, Arizona Light Shines on Better Budget for Glendale, Arizona July 20, 2010 - 10:00am Addthis A LED light bulb is installed in one of Glendale, Ariz.'s traffic signals. | Photo courtesy of Glendale A LED light bulb is installed in one of Glendale, Ariz.'s traffic signals. | Photo courtesy of Glendale Glendale, Ariz., like many other cities, was facing several problems: a tight budget and aging buildings using outdated lighting - making repairs difficult and expensive. The city installed energy-efficient LED lights in 190 signalized street intersections, at racquet ball and tennis courts at 11 city parks and in the Glendale Main Library. Glendale used part of its $2.3 million Energy Efficiency and Conservation Block Grant (EECBG) - funded by the American

278

Office of Environmental Health and Safety The University of Texas at Austin  

E-Print Network [OSTI]

202 Austin, Texas 78712 (512) 471-3511; Fax: (512) 471-6918 INFO SHEET Fluorescent Light Bulb Disposal such as small lamps, mercury vapor lamps, and other odd shaped fluorescent tubes. In the case of smaller bulbs Used Fluorescent, high intensity discharge (HID), and UV germicidal lamps are considered a hazardous

279

When to Turn Off Your Lights | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

When to Turn Off Your Lights When to Turn Off Your Lights When to Turn Off Your Lights August 30, 2012 - 7:53pm Addthis The cost effectiveness of when to turn off lights depends on the type of lights and the price of electricity. | Photo courtesy of ©iStockphoto.com/kyoshino. The cost effectiveness of when to turn off lights depends on the type of lights and the price of electricity. | Photo courtesy of ©iStockphoto.com/kyoshino. What does this mean for me? The type of lights and the price of electricity determine whether it's best to turn lights off when you leave a room. Consider using sensors, timers, and other automatic lighting controls. The cost effectiveness of when to turn off lights depends on the type of bulb and the cost of electricity. The type of lightbulb you use is

280

When to Turn Off Your Lights | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

When to Turn Off Your Lights When to Turn Off Your Lights When to Turn Off Your Lights August 30, 2012 - 7:53pm Addthis The cost effectiveness of when to turn off lights depends on the type of lights and the price of electricity. | Photo courtesy of ©iStockphoto.com/kyoshino. The cost effectiveness of when to turn off lights depends on the type of lights and the price of electricity. | Photo courtesy of ©iStockphoto.com/kyoshino. What does this mean for me? The type of lights and the price of electricity determine whether it's best to turn lights off when you leave a room. Consider using sensors, timers, and other automatic lighting controls. The cost effectiveness of when to turn off lights depends on the type of bulb and the cost of electricity. The type of lightbulb you use is

Note: This page contains sample records for the topic "fluorescent light bulb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Bio-light for optical sensing  

Science Journals Connector (OSTI)

Laser and fluorescence-based sensing is promising for medical applications. Here, we present new approaches to enable efficient light delivery into the body and to generate light from...

Yun, Seok-Hyun A

282

Ultrabright fluorescent OLEDS using triplet sinks  

DOE Patents [OSTI]

A first device is provided. The first device further comprises an organic light emitting device. The organic light emitting device further comprises an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer further comprises an organic host compound, an organic emitting compound capable of fluorescent emission at room temperature, and an organic dopant compound. The triplet energy of the dopant compound is lower than the triplet energy of the host compound. The dopant compound does not strongly absorb the fluorescent emission of the emitting compound.

Zhang, Yifan; Forrest, Stephen R; Thompson, Mark

2013-06-04T23:59:59.000Z

283

Assessing the Performance of LED-Based Flashlights Available in the Kenyan Off-Grid Lighting Market  

E-Print Network [OSTI]

have largely displaced incandescent flashlights in retailinvolving the use of incandescent lighting, unless there areFluorescent Flashlight C Incandescent SPX 50 Fluorescent y x

Tracy, Jennifer

2010-01-01T23:59:59.000Z

284

Table Set-up with equipment Target Audience: Parents of elementary school students (grades 3-6), Middle and High School Students  

E-Print Network [OSTI]

on significantly different technology (e.g. incandescent, CFL, LED) as an example of information on light bulbs://sites.google.com/a/mobilestudioproject.com/www/ Approx. $150.00 each LED Bulb 40 Lumen equivalent (Sylvania) Lowe's or Home Depot Approx. $22.00 each Compact Fluorescent Bulb 40 Lumen equivalent (GE) Lowe's or Home Depot Approx. $6.50 each Incandescent

Linhardt, Robert J.

285

Synthesis Of Fluorescent Metal Nanoclusters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Synthesis Of Fluorescent Metal Nanoclusters Synthesis Of Fluorescent Metal Nanoclusters Fluorescent metal nanoclusters were prepared. Available for thumbnail of Feynman Center...

286

The energy should always work twice  

Science Journals Connector (OSTI)

... an industrialist who has been preaching against this kind of energy waste for 30 years. Consumers around the world have embraced personal energy conservation in compact fluorescent light bulbs, home ... energy conservation in compact fluorescent light bulbs, home insulation and hybrid vehicles. But the industrial sector including much of the electric power industry itself continues to waste energy ...

David Lindley

2009-03-11T23:59:59.000Z

287

Explosive laser light initiation of propellants  

DOE Patents [OSTI]

A improved initiator for artillery shell using an explosively generated laser light to uniformly initiate the propellent. A small quantity of a high explosive, when detonated, creates a high pressure and temperature, causing the surrounding noble gas to fluoresce. This fluorescence is directed into a lasing material, which lases, and directs laser light into a cavity in the propellant, uniformly initiating the propellant.

Piltch, M.S.

1993-05-18T23:59:59.000Z

288

Structural basis for reversible photobleaching of a green fluorescent protein homologue  

SciTech Connect (OSTI)

Fluorescent protein (FP) variants that can be reversibly converted between fluorescent and nonfluorescent states have proven to be a catalyst for innovation in the field of fluorescence microscopy. However, the structural basis of the process remains poorly understood. High-resolution structures of a FP derived from Clavularia in both the fluorescent and the light-induced nonfluorescent states reveal that the rapid and complete loss of fluorescence observed upon illumination with 450-nm light results from cis-trans isomerization of the chromophore. The photoinduced change in configuration from the well ordered cis isomer to the highly nonplanar and disordered trans isomer is accompanied by a dramatic rearrangement of internal side chains. Taken together, the structures provide an explanation for the loss of fluorescence upon illumination, the slow light-independent recovery, and the rapid light-induced recovery of fluorescence. The fundamental mechanism appears to be common to all of the photoactivatable and reversibly photoswitchable FPs reported to date.

Henderson, J. Nathan; Ai, Hui-wang; Campbell, Robert E.; Remington, S. James (Alberta); (Oregon)

2008-09-03T23:59:59.000Z

289

Plastic lab-on-a-chip for fluorescence excitation with integrated organic semiconductor lasers  

Science Journals Connector (OSTI)

Laser light excitation of fluorescent markers offers highly sensitive and specific analysis for bio-medical or chemical analysis. To profit from these advantages for applications in...

Vannahme, Christoph; Klinkhammer, Snke; Lemmer, Uli; Mappes, Timo

2011-01-01T23:59:59.000Z

290

Fisheries Science National Marine  

E-Print Network [OSTI]

of 500 per liter), full spectrum fluorescent light bulbs, and clear, acrylic tank covers used to reduce examined the influence of light spectrum (amount of ultraviolet (UV) light), temperature, prey type

291

Lesson Summary In this lesson, students will find and calculate the angle  

E-Print Network [OSTI]

white light source (incandescent light bulb, not fluorescent) · Copies of Astronomy Today or Sky of electromagnetic spectrum · Understanding of light and prisms · Experience with angle measurements · Experience

Mojzsis, Stephen J.

292

Types of Lighting in Commercial Buildings - Lighting Types  

U.S. Energy Information Administration (EIA) Indexed Site

Lighting Types Lighting Types The following are the most widely used types of lighting equipment used in commercial buildings. Characteristics such as energy efficiency, light quality, and lifetime vary by lamp type. Standard Fluorescent A fluorescent lamp consists of a sealed gas-filled tube. The gas in the tube consists of a mixture of low pressure mercury vapor and an inert gas such as argon. The inner surface of the tube has a coating of phosphor powder. When an electrical current is applied to electrodes in the tube, the mercury vapor emits ultraviolet radiation which then causes the phosphor coating to emit visible light (the process is termed fluorescence). A ballast is required to regulate and control the current and voltage. Two types of ballasts are used, magnetic and electronic. Electronic ballasts

293

cis-Regulatory Elements and Chromatin State Coordinately Control Temporal and Spatial Expression of FLOWERING LOCUS T in Arabidopsis  

Science Journals Connector (OSTI)

...that ectopic CO expression led to ubiquitous GUS signal...the vasculature, as green fluorescent protein (GFP) signal was...d. Light was provided by fluorescent tubes complemented by incandescent bulbs to increase the proportion...

Jessika Adrian; Sara Farrona; Julia J. Reimer; Maria C. Albani; George Coupland; Franziska Turck

2010-05-14T23:59:59.000Z

294

--No Title--  

U.S. Energy Information Administration (EIA) Indexed Site

EEBLBP3 91- 93 F-2b Percent standard incandescent bulb STBLBP3 95- 97 F-2c Percent energy efficient fluorescent EEFLRP3 99- 101 F-2d Percent standard fluorescent light...

295

FINAL PROJECT REPORT LOAD MODELING TRANSMISSION RESEARCH  

E-Print Network [OSTI]

to be the compact fluorescent bulbs (CFBs) that the engineerbulbs with compact fluorescent bulbs (CFBs) continues to

Lesieutre, Bernard

2013-01-01T23:59:59.000Z

296

Energy Consumption, Efficiency, Conservation, and Greenhouse Gas Mitigation in Japan's Building Sector  

E-Print Network [OSTI]

and a washroom with bulb-type fluorescent lamps, (5) closingusing incandescent bulbs to fluorescent lamps. This switch

2006-01-01T23:59:59.000Z

297

Effects of trace metals on diatom export products from the euphotic zone and significance for biogeochemical cycles  

E-Print Network [OSTI]

was provided by 3 cool white fluorescent bulbs and oneplant growth fluorescent bulb at ?4300 lux. All cultures

Richter, Daniel J.

298

Lighting the Way to Serious Savings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Lighting the Way to Serious Savings Lighting the Way to Serious Savings Lighting the Way to Serious Savings April 1, 2013 - 6:02pm Addthis Smart lighting choices can save you money. Smart lighting choices can save you money. Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Make educated choices when buying light bulbs to save energy and money. Pretty much everybody these days uses electric lighting to keep their households and businesses running during the day and night. Most of us take our electric lights - which make our offices more productive and our homes more comfortable and useful - for granted, and we only really only notice how integral to our lives they are when power goes out. But all of those lights consume energy. Lots of it, in fact.

299

Lighting the Way to Serious Savings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Lighting the Way to Serious Savings Lighting the Way to Serious Savings Lighting the Way to Serious Savings April 1, 2013 - 6:02pm Addthis Smart lighting choices can save you money. Smart lighting choices can save you money. Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Make educated choices when buying light bulbs to save energy and money. Pretty much everybody these days uses electric lighting to keep their households and businesses running during the day and night. Most of us take our electric lights - which make our offices more productive and our homes more comfortable and useful - for granted, and we only really only notice how integral to our lives they are when power goes out. But all of those lights consume energy. Lots of it, in fact.

300

Visible Light-Promoted Metal-Free sp3 -CH Fluorination  

E-Print Network [OSTI]

Figure S5. The UV-vis spectrum of cyclopentenone (27) in 2-propanol (50 mM). #12;S6 Figure S6. The UV of the 9 W violet LED bulb used. #12;S12 Figure S12. The emission spectra of the RPR lamps used in Table 1 and visualized by quenching of UV fluorescence (max 254 nm), or by staining ceric ammonium molybdate. 1 H and 13

Chen, Chuo

Note: This page contains sample records for the topic "fluorescent light bulb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

DNA complexes with dyes designed for energy transfer as fluorescent markers  

DOE Patents [OSTI]

Heteromultimeric fluorophores are provided for binding to DNA, which allow for the detection of DNA in electrical separations and preparation of probes having high-fluorescent efficiencies and large Stokes shifts. In addition, by appropriate choice of fluorescent molecules, one can use a single narrow wavelength band excitation light source, while obtaining fluorescent emissions having sufficient separation to be readily discriminated.

Glazer, Alexander M. (Orinda, CA); Benson, Scott C. (Albany, CA)

1999-01-01T23:59:59.000Z

302

Application of a ratiometric laser induced fluorescence (LIF) thermometry for micro-scale temperature measurement for natural convection flows  

E-Print Network [OSTI]

A ratiometric laser induced fluorescence (LIF) thermometry applied to micro-scale temperature measurement for natural convection flows. To eliminate incident light non-uniformity and imperfection of recording device, two fluorescence dyes are used...

Lee, Heon Ju

2004-11-15T23:59:59.000Z

303

South River EMC - Business Energy Efficient Lighting Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

River EMC - Business Energy Efficient Lighting Rebate Program River EMC - Business Energy Efficient Lighting Rebate Program South River EMC - Business Energy Efficient Lighting Rebate Program < Back Eligibility Agricultural Commercial Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount Complete Lighting Retrofit: $0.30/watt saved Incandescent to CFL or LED: $1/bulb Provider South River EMC South River EMC (SREMC) offers a rebate to eligible business customers who wish to upgrade the energy efficiency of lighting systems. The business must upgrade from an older, less efficient system to a high-efficiency system. An incentive of $0.30 per watt saved is available to eligible lighting projects. For commercial customers switching fron incandescent

304

Lumens and the Lighting Facts Label | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Lumens and the Lighting Facts Label Lumens and the Lighting Facts Label Lumens and the Lighting Facts Label July 29, 2012 - 7:44pm Addthis Energy 101 Lumens: The new way to shop for light What does this mean for me? Buy your next lightbulb by comparing lumens, not watts. Use the Lighting Facts label to compare the brightness of lightbulbs. When you're shopping for lightbulbs, compare lumens to be sure you're getting the amount of light, or level of brightness, you want. The Lighting Facts Label will help. This new label will make it easy to compare bulb brightness, color, life, and estimated operating cost for the year. Buy Lumens, Not Watts We typically buy things based on how much of it we get, right? When buying milk, we buy it by volume (gallons). So, why should light be any different? For decades, we have been buying lightbulbs based on how much energy they

305

EMSL - fluorescence spectrometer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fluorescence-spectrometer en Structures and Stabilities of (MgO)n Nanoclusters. http:www.emsl.pnl.govemslwebpublicationsstructures-and-stabilities-mgon-nanoclusters

306

Hagerstown Light Department | Open Energy Information  

Open Energy Info (EERE)

Hagerstown Light Department Hagerstown Light Department Jump to: navigation, search Name Hagerstown Light Department Place Maryland Utility Id 7908 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GENERAL AND COMMERCIAL SERVICE Commercial LIGHT AND POWER SERVICE (HIGH LOAD FACTOR) Industrial LIGHT AND POWER SERVICE (Low Load Factor) Commercial OUTDOOR LIGHTING SERVICE (200 Watts)Fluorescent luminaire Lighting OUTDOOR LIGHTING SERVICE(100 Watts)Fluorescent luminaire Lighting OUTDOOR LIGHTING SERVICE(175 Watts MV)) Lighting

307

Single-molecule Fluorescence Spectroelectrochemistry of Cresyl...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

molecule Fluorescence Spectroelectrochemistry of Cresyl Violet. Single-molecule Fluorescence Spectroelectrochemistry of Cresyl Violet. Abstract: We coupled scanning fluorescence...

308

Tapetosomes in Brassica Tapetum Accumulate Endoplasmic Reticulum??Derived Flavonoids and Alkanes for Delivery to the Pollen Surface  

Science Journals Connector (OSTI)

...tt19) in the Arabidopsis tapetum led to a deficiency of flavonoids on...dim light (0.43 muW/cm, from fluorescent light bulbs; Sylvania Ocgtron 3500) alone...supplement, a UV lamp (FS40T12 UV-B bulb; Light Sources) covered with a...

Kai Hsieh; Anthony H.C. Huang

2007-02-16T23:59:59.000Z

309

FOUNDATIONS OF SPECTROSCOPY The contents of this module were developed under grant award # P116B-001338 from the Fund for the Improve-  

E-Print Network [OSTI]

STALEY Diffraction Grating RetinaRetina Virtual Spectrum Incandescent Bulb Real SpectrumReal Spectrum Eye Fluorescent Lights 14 Continuous Emission 15 The Origins Of Band Spectra 16 Origins Of band Spectra 17 a region of the elec- tromagnetic spectrum. A rainbow and light from a light bulb are examples

Hardy, Darel

310

Fluorescent Tube Lamps  

Broader source: Energy.gov [DOE]

FEMP temporarily suspended its energy efficiency requirements for fluorescent tube lamps as it evaluates the market impact of the pending 2012 minimum efficiency standards for fluorescent lamps. The program will issue updated energy efficiency requirements when the market distribution of this product category stabilizes and when doing so has the potential to result in significant Federal energy savings.

311

Randolph EMC - Agricultural Efficient Lighting Rebate Program (North  

Broader source: Energy.gov (indexed) [DOE]

Randolph EMC - Agricultural Efficient Lighting Rebate Program Randolph EMC - Agricultural Efficient Lighting Rebate Program (North Carolina) Randolph EMC - Agricultural Efficient Lighting Rebate Program (North Carolina) < Back Eligibility Agricultural Savings Category Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Contact Randolph EMC Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount 25% of upgrade cost Provider Randolph Electric Membership Corporation Agricultural members of Randolph EMC (REMC) who upgrade to energy-efficient CFL bulbs in agricultural facilities are eligible for an incentive to help cover the initial cost of installation. The cooperative will cover 25% of the cost of the lighting upgrade. The program targets the adoption of CFL lighting technology specifically. Contact REMC for questions regarding

312

Download Full-text PDF  

Science Journals Connector (OSTI)

Light was provided by cool white fluorescent bulbs set on a 14:10 light:dark cycle. Irradiance was .... rotundata led to 1019% loss of what the copepod removed.

2006-12-01T23:59:59.000Z

313

Philips' LED Luminaires Brighten the Rensselaer Engineering Fabrication & Prototyping Facility (also known as the Machine Shop)  

E-Print Network [OSTI]

of existing power distribution in the ceiling to minimize installation costs and replaced existing fluorescent with the Smart Lighting ERC and RPI Facilities to implement both bulb replacement and lighting redesign across

Linhardt, Robert J.

314

One person can make a difference. Taking small action steps will help reduce your carbon footprint on the earth. If every-  

E-Print Network [OSTI]

all took "One small step for man." Change a light. Replacing a regular light bulb with a compact fluorescent one saves 150 pounds of carbon dioxide each year. Drive less. Walk, bike, carpool, or take mass

315

Graduate Student Lounge Andleeb Mazhar and Dr. Kristi Gaines  

E-Print Network [OSTI]

and 38 ballast types , Full Spectrum and Fluorescent lighting can bring the desired affect in our-candles are recommended. Based on the cost-effective Retrofitting Analysis lighting system from 17 distinct bulb types

Rock, Chris

316

The Problem Conventional office lighting typically consists of bright fluo-  

E-Print Network [OSTI]

and undercabinet lights combined with incandescent or fluorescent task lights. This approach is not very energy ) of space; traditional system with incandescent task lamp. Table 1: Traditional versus integrated office

317

The Colorful Journey of Green Fluorescent Protein  

Science Journals Connector (OSTI)

Though the story of GFP began millions of years ago when the jellyfish Aequorea aequorea (also commonly referred to as Aequorea victoria and Aequorea forskalea) successfully evolved a fluorescent protein species with the uncanny ability to convert the excited blue energy of the bioluminescent protein aequorin into the green light observed in nature, its journey to Natures Scientific Contributors Hall of Fame started much more recently, in 1961. ... This observation, which represents the initial discovery of GFP, was included as a footnote in a paper by Shimomura and Johnson (1) describing the purification and characterization of aequorin: A protein giving solutions that look slightly greenish in sunlight though only yellowish under tungsten lights, and exhibiting a very bright, greenish fluorescence in the ultraviolet of a Mineralite, has also been isolated from the squeezates. ... In fact, during my time there, he still tried to find time to carry out chemical syntheses, which usually happened during Christmas. ...

Jin Zhang

2009-02-20T23:59:59.000Z

318

Illuminating the Pecking Order in Off-Grid Lighting: A Demonstration of LED Lighting for Saving Energy in the Poultry Sector  

E-Print Network [OSTI]

powered by a solar-wind hybrid system, the kerosene house,a 520-watt solar-wind hybrid system to power fluorescentLighting System Kerosene Solar-Wind Hybrid Fluorescent Solar

Tracy, Jennifer

2012-01-01T23:59:59.000Z

319

Invisible-fluorescent identification tags for materials  

DOE Patents [OSTI]

A taggant composition including a taggant material that is invisible in light of the visible spectrum and fluoresces under a non-visible excitation energy, a binder, and a solvent in which the taggant material and the binder are dissolved. The taggant composition can be printed or otherwise applied to a material such as fabric to provide a detectable and identifiable indicium. A method and apparatus for detecting and decoding the taggant indicium are also provided.

Lewis, Linda A.; Allgood, Glenn O.; Smithwick, III, Robert W.

2013-03-26T23:59:59.000Z

320

Collecting Fluorescent Minerals  

Science Journals Connector (OSTI)

Good fluorescent mineral collections are the result of constant study and diligent search for superior material. As in the development of mineral collections generally, purchase and trade provide rewarding ave...

Manuel Robbins

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fluorescent light bulb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Untitled  

U.S. Energy Information Administration (EIA) Indexed Site

Footnotes Footnotes Residential Lighting: Use and Potential Savings 1. Among light bulbs used 4 or more hours per day, the average length of use is 6.7 hours. 2. Table 5.4 of Energy Information Administration, Household Energy Consumption and Expenditures 1993, DOE/EIA-0321(93). (Washington, DC, October 1995), p. 46. 3. This is according to The Lighting Pattern Book for Homes, 1993, Lighting Research Center, Rensselaer Polytechnic Institute. There is some uncertainty about this point. The lighting industry states that compact fluorescent bulbs need only one-fourth the wattage of incandescent bulbs. EIA compared the savings of both 26-watt, 22-dollar compact fluorescent bulbs and 20-watt, 20-dollar compact fluorescent bulbs. There is very little difference in overall savings between these two types

322

Fluorescence cross section measurements of biological agent simulants  

SciTech Connect (OSTI)

Fluorescence is a powerful technique that has potential uses in detection and characterization of biological aerosols both in the battlefield and in civilian environments. Fluorescence techniques can be used with ultraviolet (UV) light detection and ranging (LIDAR) equipment to detect biological aerosol clouds at a distance, to provide early warning of a biological attack, and to track an potentially noxious cloud. Fluorescence can also be used for detection in a point sensor to monitor biological materials and to distinguish agents from benign aerosols. This work is part of a continuing program by the Army`s Chemical and Biological Defense Command to characterized the optical properties of biological agents. Reported here are ultraviolet fluorescence measurements of Bacillus megaterium and Bacillus Globigii aerosols suspended in an electrodynamic particle trap. Fluorescence spectra of a common atmospheric aerosol, pine pollen, are also presented.

Stephens, J.R.

1996-11-01T23:59:59.000Z

323

Playing Around with Lighting Efficiency | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Playing Around with Lighting Efficiency Playing Around with Lighting Efficiency Playing Around with Lighting Efficiency June 28, 2010 - 6:03pm Addthis The city of Brea, California, had a problem: The lighting in its Brea Junior High Park was becoming obsolete. The park, one of the busiest maintained by this northern Orange County city, needed the lighting for nighttime use of its sports fields and courts. The existing system was not only extremely inefficient, but scheduled to be phased out of production. That meant the city would soon be unable to buy replacement bulbs. But due to the budget problems plaguing municipalities across California and the country, Brea had trouble finding the money to pay for a complete retrofit -- especially because the savings to the city from more efficient lights would not be large enough to repay the investment quickly.

324

Playing Around with Lighting Efficiency | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Playing Around with Lighting Efficiency Playing Around with Lighting Efficiency Playing Around with Lighting Efficiency June 28, 2010 - 6:03pm Addthis The city of Brea, California, had a problem: The lighting in its Brea Junior High Park was becoming obsolete. The park, one of the busiest maintained by this northern Orange County city, needed the lighting for nighttime use of its sports fields and courts. The existing system was not only extremely inefficient, but scheduled to be phased out of production. That meant the city would soon be unable to buy replacement bulbs. But due to the budget problems plaguing municipalities across California and the country, Brea had trouble finding the money to pay for a complete retrofit -- especially because the savings to the city from more efficient lights would not be large enough to repay the investment quickly.

325

LED Lighting on the National Mall | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

LED Lighting on the National Mall LED Lighting on the National Mall LED Lighting on the National Mall Addthis 1 of 8 Facing East toward the Capitol Building, LED retrofitted lights line the interior paths of the mall while preserving the architectural integrity of the original fixtures. Image: Energy Department Image | Photo by Quentin Kruger (Contractor) | Public Domain Date taken: 2012-01-30 06:00 2 of 8 Energy Secretary Steven Chu discusses the 65% savings on electric bills and lowered maintenance costs the National Parks Service is experiencing by switching to energy efficient LED lights. "Using energy-efficient LED light bulbs is an important way Americans can save money by saving energy," said Secretary Chu. "Investing in an American economy that is built to last includes taking advantage of all of America's energy resources while

326

Information for Media on Lighting Choices | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Media on Lighting Choices Media on Lighting Choices Information for Media on Lighting Choices July 30, 2012 - 8:25am Addthis Information for Media on Lighting Choices These videos, presentation, and images are available for use by media organizations. The materials are copyright-free, and you are welcome to cite the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy as the source. Public Service Announcements These PSAs educate consumers about saving money on their electric bill with new lighting choices and looking for "lumens," a new way to shop for light bulbs. Two :30 and two :60 audio PSAs are available for your download below. Download Windows Media Player or iTunes. PSA Format Length File Size A New Generation .MP3 0:30 483 KB A New Generation .MP3 1:00

327

TOMORROW: Department of Energy to Announce Philips Lighting North America  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy to Announce Philips Lighting North Department of Energy to Announce Philips Lighting North America Wins L Prize Competition TOMORROW: Department of Energy to Announce Philips Lighting North America Wins L Prize Competition August 2, 2011 - 10:03am Addthis Washington, D.C. - On Wednesday, August 3, 2011, Arun Majumdar, Senior Advisor to the Secretary and Director of Advanced Research Projects Agency-Energy (ARPA-E) at the U.S. Department of Energy, will announce Philips Lighting North America has won the 60-watt replacement bulb category of the Bright Tomorrow Lighting Prize (L Prize) competition at an event hosted by U.S. Senators Jeff Bingaman and Lisa Murkowski in the U.S. Senate Committee on Energy & Natural Resources hearing room. The Department of Energy's L Prize challenged the lighting industry to strive to develop

328

FAQ of Overview of Solid-State Lighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FREQUENTLY ASKED QUESTIONS 3 Leds FREQUENTLY ASKED QUESTIONS 3 Leds 1. What is solid-state lighting? 2. What is a semiconductor? 3. What is a semiconductor LED (light emitting diode)? 4. What is an organic LED (OLED)? 5. Where can I see LED lighting today? 6. How do you produce white light using LEDs? 7. How does solid-state lighting differ from conventional lighting? 8. What is the energy efficiency of solid-state lighting today? How does the energy efficiency compare with incandescent and fluorescent lamps? 9. What is the cost of solid-state lighting today? How does the cost compare with incandescent and fluorescent lamps? 10. What is the quality of the white light using solid-state lighting today? How does it compare with incandescent and fluorescent lamps?

329

2013-04-25 1:56 PMMississauga Page 1 of 2http://www.mississauga.com/print/1590944  

E-Print Network [OSTI]

, or LED, bulbs. The 18-year-old argued that LEDs are more energy efficient. "LED lights use 20 per cent. Her team proposed that UTM should make the change from fluorescent lights to Light-emitting diode for heat and 80 per cent for actual light energy, where fluorescent and incandescent lights use the total

Prodiæ, Aleksandar

330

Sustainable UMass Green Office Program: Certification Checklist Office: Eco Leader  

E-Print Network [OSTI]

and computers at night E6 In our desk lamps we use CFLs (Compact Fluorescent Light bulbs) or LED (Light-Emitting Diode) bulbs E7 We use power strips as central turn-off points in our work stations and switch them off

Massachusetts at Amherst, University of

331

AS102 -Day Laboratory: Spectroscopy Page 1 Spring 2011  

E-Print Network [OSTI]

, variable power source, colored pencils. Methods: Observe how the spectrum from a light bulb changes for different power levels of the bulb. Observe spectra of fluorescent lights using spectrometer Observe there is to know about a star (or a nebula or galaxy) from studying its spectrum. Its temperature, pressure

Opher, Merav

332

Denoising fluorescence endoscopy: a motion compensated temporal recursive video filter with an optimal minimum mean square error parameterization  

Science Journals Connector (OSTI)

Fluorescence endoscopy is an emerging technique for the detection of bladder cancer. A marker substance is brought into the patient's bladder which accumulates at cancer tissue. If a suitable narrow band light source is used for illumination, a red fluorescence ... Keywords: bladder, endoscopy, fluorescence, noise filtering, optimal filter, photo dynamic diagnostics

Thomas Stehle; Jonas Wulff; Alexander Behrens; Sebastian Gross; Til Aach

2009-06-01T23:59:59.000Z

333

Types of Lighting in Commercial Buildings - Changes  

U.S. Energy Information Administration (EIA) Indexed Site

Changes in Lighting Changes in Lighting The percentage of commercial buildings with lighting was unchanged between 1995 and 2003; however, three lighting types did show change in usage. Compact fluorescent lamps and halogen lamps showed a significant increase between 1995 and 2003 while the use of incandescent lights declined. The lighting questions in the 1995, 1999, and 2003 CBECS questionnaires were virtually identical which facilitates comparison across survey years. The use of compact fluorescent lamps more than doubled, from just under 10 percent of lit buildings to more than 20 percent (Figure 17 and Table 5). The use of halogen lamps nearly doubled, from 7 percent to 13 percent of lit buildings. Use of incandescent lights was the only lighting type to decline; their use dropped from 59 percent to just over one-half of lit buildings.

334

Portable lamp with dynamically controlled lighting distribution  

DOE Patents [OSTI]

A double lamp table or floor lamp lighting system has a pair of compact fluorescent lamps (CFLs) arranged vertically with a reflective septum in between. By selectively turning on one or both of the CFLs, down lighting, up lighting, or both up and down lighting is produced. The control system can also vary the light intensity from each CFL. The reflective septum insures that almost all the light produced by each lamp will be directed into the desired light distribution pattern which is selected and easily changed by the user. Planar compact fluorescent lamps, e.g. circular CFLs, particularly oriented horizontally, are preferable. CFLs provide energy efficiency. The lighting system may be designed for the home, hospitality, office or other environments.

Siminovitch, Michael J. (Pinole, CA); Page, Erik R. (Berkeley, CA)

2001-01-01T23:59:59.000Z

335

Laser Sheet Light Flow Visualization For Evaluating Room Air Flows From  

E-Print Network [OSTI]

LBNL-56483 Laser Sheet Light Flow Visualization For Evaluating Room Air Flows From Registers Iain S using a Planar Laser-Induced Fluorescence (PLIF) measurement technique. Water marked with fluorescent

336

Contouring Variability of the Penile Bulb on CT Images: Quantitative Assessment Using a Generalized Concordance Index  

SciTech Connect (OSTI)

Purpose: Within a multicenter study (DUE-01) focused on the search of predictors of erectile dysfunction and urinary toxicity after radiotherapy for prostate cancer, a dummy run exercise on penile bulb (PB) contouring on computed tomography (CT) images was carried out. The aim of this study was to quantitatively assess interobserver contouring variability by the application of the generalized DICE index. Methods and Materials: Fifteen physicians from different Institutes drew the PB on CT images of 10 patients. The spread of DICE values was used to objectively select those observers who significantly disagreed with the others. The analyses were performed with a dedicated module in the VODCA software package. Results: DICE values were found to significantly change among observers and patients. The mean DICE value was 0.67, ranging between 0.43 and 0.80. The statistics of DICE coefficients identified 4 of 15 observers who systematically showed a value below the average (p value range, 0.013 - 0.059): Mean DICE values were 0.62 for the 4 'bad' observers compared to 0.69 of the 11 'good' observers. For all bad observers, the main cause of the disagreement was identified. Average DICE values were significantly worse from the average in 2 of 10 patients (0.60 vs. 0.70, p < 0.05) because of the limited visibility of the PB. Excluding the bad observers and the 'bad' patients,' the mean DICE value increased from 0.67 to 0.70; interobserver variability, expressed in terms of standard deviation of DICE spread, was also reduced. Conclusions: The obtained values of DICE around 0.7 shows an acceptable agreement, considered the small dimension of the PB. Additional strategies to improve this agreement are under consideration and include an additional tutorial of the so-called bad observers with a recontouring procedure, or the recontouring by a single observer of the PB for all patients included in the DUE-01 study.

Carillo, Viviana [Department of Medical Physics, San Raffaele Scientific Institute, Milano (Italy)] [Department of Medical Physics, San Raffaele Scientific Institute, Milano (Italy); Cozzarini, Cesare [Department of Radiotherapy, San Raffaele Scientific Institute, Milano (Italy)] [Department of Radiotherapy, San Raffaele Scientific Institute, Milano (Italy); Perna, Lucia; Calandra, Mauro [Department of Medical Physics, San Raffaele Scientific Institute, Milano (Italy)] [Department of Medical Physics, San Raffaele Scientific Institute, Milano (Italy); Gianolini, Stefano [Medical Software Solutions GmbH, Hagendorn (Switzerland)] [Medical Software Solutions GmbH, Hagendorn (Switzerland); Rancati, Tiziana [Prostate Cancer Program, IRCCS National Institute of Cancer, Milano (Italy)] [Prostate Cancer Program, IRCCS National Institute of Cancer, Milano (Italy); Spinelli, Antonello Enrico [Department of Medical Physics, San Raffaele Scientific Institute, Milano (Italy)] [Department of Medical Physics, San Raffaele Scientific Institute, Milano (Italy); Vavassori, Vittorio [Department of Radiotherapy, Cliniche Gavazzeni Humanitas, Bergamo (Italy)] [Department of Radiotherapy, Cliniche Gavazzeni Humanitas, Bergamo (Italy); Villa, Sergio [Department of Radiotherapy 1, IRCCS National Institute of Cancer, Milano (Italy)] [Department of Radiotherapy 1, IRCCS National Institute of Cancer, Milano (Italy); Valdagni, Riccardo [Prostate Cancer Program, IRCCS National Institute of Cancer, Milano (Italy) [Prostate Cancer Program, IRCCS National Institute of Cancer, Milano (Italy); Department of Radiotherapy 1, IRCCS National Institute of Cancer, Milano (Italy); Fiorino, Claudio, E-mail: fiorino.claudio@hsr.it [Department of Medical Physics, San Raffaele Scientific Institute, Milano (Italy)] [Department of Medical Physics, San Raffaele Scientific Institute, Milano (Italy)

2012-11-01T23:59:59.000Z

337

Alternative approaches of SiC & related wide bandgap materials in light emitting & solar cell applications  

Science Journals Connector (OSTI)

Materials for optoelectronics give a fascinating variety of issues to consider. Increasingly important are white light emitting diode (LED) and solar cell materials. Profound energy savings can be done by addressing new materials. White light emitting diodes are becoming common in our lighting scene. There is a great energy saving in the transition from the light bulb to white light emitting diodes via a transition of fluorescent light tubes. However, the white LEDs still suffer from a variety of challenges in order to be in our daily use. Therefore there is a great interest in alternative lighting solutions that could be part of our daily life. All materials create challenges in fabrication. Defects reduce the efficiency of optical transitions involved in the light emitting diode materials. The donor-acceptor co-doped SiC is a potential light converter for a novel monolithic all-semiconductor white LED. In spite of considerable research, the internal quantum efficiency is far less than theoretically predicted and is likely a fascinating scientific field for studying materials growth, defects and optical transitions. Still, efficient Si-based light source represents an ongoing research field in photonics that requires high efficiency at room temperature, wavelength tuning in a wide wavelength range, and easy integration in silicon photonic devices. In some of these devices, rare earth doped materials is considered as a potential way to provide luminescence spanning in a wide wavelength range. Divalent and trivalent oxidation states of Eu provide emitting centers in the visible region. In consideration, the use of Eu in photonics requires Eu doped thin films that are compatible with CMOS technology but for example faces material science issues like a low Eu solid solubility in silica. Therefore approaches aim to obtain efficient light emission from silicon oxycarbide which has a luminescence in the visible range and can be a host material for rare earth ions. The silicon oxycarbide material can provide potential applications of the Eu luminescent materials to challenging conditions like high temperatures or aggressive environments where the silica has weaknesses. In some approaches, silicon rich silicon oxide that contain silicon nanoclusters emit red to near infrared luminescence due to quantum confinement effects while luminescence at shorter wavelength is difficult due to the interplay of defects and quantum confinement effects. In addition it is applicable as low-k dielectric, etch-stop and passivation layers. It also has an optical band-gap that is smaller than that of SiO2 which may facilitate carrier injection at lower voltages that is suitable for optoelectronics. From materials perspective of emerging materials, it seems distant to consider system related issues. The future demands on communication and lighting devices require higher information flows in modernized optical devices, for example by replacing electrical interconnects with their optical counterparts and tunable backgrounds filters for integrated optics or photonics applications. However, there are materials issues related to such device performance, for example by a non-linearity, that provide the possibility for selective removal or addition of wavelengths using hetero structures in which one side of the structure enhances the light-to-dark sensitivity of long and medium wavelength channels and diminish others, and an opposite behavior in other face of the structure. Certainly materials may be applied in various innovative ways to provide new performances in devices and systems. In any materials and device evaluation, reliability issues in passivation and packaging of semiconductor device structures provide a base knowledge that may be used to evaluate new concepts. Fundamental aspects of dielectric constant, bandgap and band offsets between the valence and conduction band edges between the passivation layer and the semiconductor create a foundation for understanding the device performance. In relation to these, the surface pre-treatment and deposit

Peter Wellmann; Mikael Syv?j?rvi; Haiyan Ou

2014-01-01T23:59:59.000Z

338

Lighting Science Group | Open Energy Information  

Open Energy Info (EERE)

Science Group Science Group Jump to: navigation, search Name Lighting Science Group Place Dallas, Texas Zip 75201 Product LED design company, with multiple patents pending in power management, bulb design and manufacturing processes which it collectively refers to as ODL (Optimized Digital Lighting) technology. Coordinates 32.778155°, -96.795404° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.778155,"lon":-96.795404,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

339

Science Education | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

November 22, 2013 November 22, 2013 WHO SAID IT: Tesla or Edison? Test your knowledge of energy inventors Thomas Edison and Nikola Tesla with our downloadable quote quiz cards. November 22, 2013 History of the Light Bulb The History of the Light Bulb From incandescent bulbs to fluorescents to LEDs, we're exploring the long history of the light bulb. November 20, 2013 Education and Professional Development To pursue a clean energy career, you may need general as well as specialized training. A number of colleges and universities now offer specializations in various clean energy fields, or even full degree

340

Untitled  

U.S. Energy Information Administration (EIA) Indexed Site

Executive Summary Executive Summary Potential Savings The overwhelming majority of lights in residential households are incandescent--the least energy efficient of all light types (Figure ES1.). If households replaced the most intensively used bulbs with compact fluorescent bulbs, they would see a sizable savings in their electric bills. The total U.S. household energy that would be saved by replacing all incandescent bulbs used 4 or more hours per day would be 31.7 billion kilowatthours (kWh) annually, or 35 percent of all electricity used for residential lighting. The amount of time it takes for households to see a simple payback from compact fluorescent bulbs depends on the price of electricity. Assuming a 26-watt compact fluorescent bulb that costs 22 dollars, an average sized

Note: This page contains sample records for the topic "fluorescent light bulb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Estimate of Technical Potential for Minimum Efficiency Performance Standards in 13 Major World Economies  

E-Print Network [OSTI]

for typical wattage of incandescent bulbs and hours of usagefor which we assume that incandescent bulbs gradually getsimilar to that of incandescent or fluorescent bulbs. These

Letschert, Virginie

2013-01-01T23:59:59.000Z

342

Secretary Chu Announces More than $37 Million for Next Generation Lighting  

Broader source: Energy.gov (indexed) [DOE]

than $37 Million for Next Generation than $37 Million for Next Generation Lighting Secretary Chu Announces More than $37 Million for Next Generation Lighting January 15, 2010 - 12:00am Addthis WASHINGTON, DC - Energy Secretary Steven Chu today announced more than $37 million in funding from the American Recovery and Reinvestment Act to support high-efficiency solid-state lighting projects. Solid-state lighting, which uses light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) instead of incandescent bulbs, has the potential to be ten times more energy-efficient than traditional incandescent lighting. Lighting accounts for approximately 24 percent of the total electricity generated in the United States today - by 2030, the development and widespread deployment of cost-effective solid-state

343

An Engineering-Economic Analysis of White Light-Emitting Diodes for General  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Engineering-Economic Analysis of White Light-Emitting Diodes for General An Engineering-Economic Analysis of White Light-Emitting Diodes for General Illumination for the U.S. Residential and Commercial Sectors Speaker(s): Inês Magarida Lima de Azevedo Date: February 15, 2008 - 12:00pm Location: 90-3122 Because lighting constitutes more than 20% of total US electricity consumption, and many current lighting technologies are highly inefficient, improved technologies for lighting hold great potential for energy savings and for reducing associated greenhouse gas emissions. Solid-state lighting is a technology that shows great promise as a source of efficient, affordable, color-balanced white light in the near future. Indeed, under a pure engineering-economic analysis, solid-state lighting already performs better than incandescent bulbs and is expected to surpass the most

344

Sensors and Actuators B 111112 (2005) 230241 Improvements in LED-based fluorescence analysis systems  

E-Print Network [OSTI]

Sensors and Actuators B 111­112 (2005) 230­241 Improvements in LED-based fluorescence analysis the stability, power output, and spectral flexibility of light emitting diode (LED)-based systems used to excite fluorescence or other forms of luminescence. LEDs are an attractive alternative to conventional white

Wilson, Denise

345

Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna  

E-Print Network [OSTI]

Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna Anika Kinkhabwala1 mismatch between light and nanoscale objects such as single molecules, it is important to be able-contrast selection of single nanoemitters. A single fluorescent molecule (SM) with transition dipole m acts

Fan, Shanhui

346

Information Resources: LED Replacements for Linear Fluorescent Lamps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Replacements for Linear Fluorescent Lamps Webcast Replacements for Linear Fluorescent Lamps Webcast In this June 20, 2011 webcast on LED products marketed as replacements for linear fluorescent lamps, Jason Tuenge of the Pacific Northwest National Laboratory (PNNL) discussed current Lighting Facts-listed products as well as products evaluated in the latest CALiPER reports. Eric Richman, also of PNNL, reported on a recently completed GATEWAY demonstration project, in which LED and fluorescent lamps were installed in a variety of recessed troffer luminaires for comparison in an office environment. The presentation concluded with a discussion of specifications listed in a newly updated technology fact sheet. View presentation slides View the text-alternative version View the webcast (WMV 16 MB) Download Windows Media Player

347

Renewable Surface Fluorescence Sandwich Immunoassay Biosensor...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Renewable Surface Fluorescence Sandwich Immunoassay Biosensor for Rapid Sensitive Botulinum Toxin Detection in an Automated Renewable Surface Fluorescence Sandwich Immunoassay...

348

Efficiency and concentration ratio measurements of fluorescent solar concentrators using a xenon measurement system  

Science Journals Connector (OSTI)

An indoor test stand for fluorescent planar concentratorcollectors (FPC) with a 1.6-kW xenon light source, irradiating a rectangular triangle (active area 400 cm2) with 82...

Heidler, K

1981-01-01T23:59:59.000Z

349

On the origin of a slowly reversible fluorescence decay component in the Arabidopsis npq4 mutant  

Science Journals Connector (OSTI)

...regulation of photosynthetic energy conversion. Plant Cell 10, 1121-1134...photon absorption, excess energy dissipation and zeaxanthin...fluorescence. In Light as an energy source and information carrier in plant physiology (ed...

2014-01-01T23:59:59.000Z

350

Experimental study on the fluorescence lifetime of ethanol-water mixtures  

Science Journals Connector (OSTI)

The ethanol-water mixtures can emit fluorescence when excited by the ultraviolet (UV) light, which is different from pure ethanol and water. There are three emission bands of the...

Liu, Ying; Li, Rongqing; Lan, Xiufeng; Shen, Zhonghua; Lu, Jian; Ni, Xiaowu

2005-01-01T23:59:59.000Z

351

Laser-induced differential normalized fluorescence method for cancer diagnosis  

DOE Patents [OSTI]

An apparatus and method for cancer diagnosis are disclosed. The diagnostic method includes the steps of irradiating a tissue sample with monochromatic excitation light, producing a laser-induced fluorescence spectrum from emission radiation generated by interaction of the excitation light with the tissue sample, and dividing the intensity at each wavelength of the laser-induced fluorescence spectrum by the integrated area under the laser-induced fluorescence spectrum to produce a normalized spectrum. A mathematical difference between the normalized spectrum and an average value of a reference set of normalized spectra which correspond to normal tissues is calculated, which provides for amplifying small changes in weak signals from malignant tissues for improved analysis. The calculated differential normalized spectrum is correlated to a specific condition of a tissue sample. 5 figs.

Vo-Dinh, T.; Panjehpour, M.; Overholt, B.F.

1996-12-03T23:59:59.000Z

352

Laser-induced differential normalized fluorescence method for cancer diagnosis  

DOE Patents [OSTI]

An apparatus and method for cancer diagnosis are disclosed. The diagnostic method includes the steps of irradiating a tissue sample with monochromatic excitation light, producing a laser-induced fluorescence spectrum from emission radiation generated by interaction of the excitation light with the tissue sample, and dividing the intensity at each wavelength of the laser-induced fluorescence spectrum by the integrated area under the laser-induced fluorescence spectrum to produce a normalized spectrum. A mathematical difference between the normalized spectrum and an average value of a reference set of normalized spectra which correspond to normal tissues is calculated, which provides for amplifying small changes in weak signals from malignant tissues for improved analysis. The calculated differential normalized spectrum is correlated to a specific condition of a tissue sample.

Vo-Dinh, Tuan (Knoxville, TN); Panjehpour, Masoud (Knoxville, TN); Overholt, Bergein F. (Knoxville, TN)

1996-01-01T23:59:59.000Z

353

Cost effective lighting  

SciTech Connect (OSTI)

Long-life replacement lamps for the incandescent lamp have been evaluated with regard to their cost effectiveness. The replacements include the use of energy buttons that extend lamp life as well as an adaptive fluorescent circline lamp that will fit into existing incandescent lamp sockets. The initial, operating, and replacement costs for one million lumen-hours are determined for each lamp system. We find the most important lighting cost component is the operating cost. Using lamps that are less efficient or devices that cause lamps to operate less efficiently are not cost-effective. The adaptive fluorescent circline lamp, even at an initial cost of $15.00, is the most cost effective source of illumination compared to the incandescent lamp and lamp systems examined. 3 refs., 6 tabs.

Morse, O.; Verderber, R.

1987-07-01T23:59:59.000Z

354

Spectrally programmable light engine for in vitro or in vivo molecular imaging and spectroscopy  

Science Journals Connector (OSTI)

A spectrally and temporally programmable light engine can create any spectral profile for hyperspectral, fluorescence, or principal-component imaging or with medical photonics devices...

MacKinnon, Nicholas; Stange, Ulrich; Lane, Pierre; MacAulay, Calum; Quatrevalet, Mathieu

2005-01-01T23:59:59.000Z

355

Simple structured illumination microscope setup with high acquisition speed by using a spatial light modulator  

Science Journals Connector (OSTI)

We describe a two-beam interference structured illumination fluorescence microscope. The novelty of the presented system lies in its simplicity. A programmable spatial light modulator...

Frster, Ronny; Lu-Walther, Hui-Wen; Jost, Aurlie; Kielhorn, Martin; Wicker, Kai; Heintzmann, Rainer

2014-01-01T23:59:59.000Z

356

Mercury (Hg) mineral evolution: A mineralogical record of supercontinent assembly, changing ocean geochemistry, and the emerging terrestrial biosphere  

Science Journals Connector (OSTI)

...Almaden district (primary mineralization 427-380 Ma) led to at least one additional pulse of hydrothermal Hg...chlor-alkali industry; and a new generation of compact fluorescent light bulbs. Burning of Hg-enriched coal and petroleum adds...

Robert M. Hazen; Joshua Golden; Robert T. Downs; Grethe Hystad; Edward S. Grew; David Azzolini; Dimitri A. Sverjensky

357

Vol 442|6 July 2006 RESEARCH HIGHLIGHTS  

E-Print Network [OSTI]

like light bulbs under a fluorescence microscope, allowing the researchers to track each protein a traumatic brain injury. Researchers led by Henning Voss of the Citigroup Biomedical Imaging Center and Weill

Robock, Alan

358

The Dreaded Volume 9, Issue 1  

E-Print Network [OSTI]

chargers, etc. Opt for devices with built-in energy-saving features. Switch to compact fluorescent bulbs or LED lighting. If possible, hang just- washed clothes to dry; fewer items in the dryer shorten drying

Liskiewicz, Maciej

359

Irrational decision-making in an amoeboid organism: transitivity and context-dependent preferences  

Science Journals Connector (OSTI)

...exposing the food patch to ambient laboratory light from fluorescent bulbs mounted approximately 5 m above the laboratory bench...current research. Recent work on rationality in ants has led to the suggestion that organisms using collective decision-making...

2011-01-01T23:59:59.000Z

360

PROJECT 2.A I590/I400/H400 SPRING 2010 VERSION 1.0 SECTIONS 29264/29263/29262 Digital Imagery in HumanComputer Interaction Design  

E-Print Network [OSTI]

are mainly related to music. A planter with real dried flowers parallels a compact fluorescent light bulb in the shape of a flower--another comparison between the real and virtual worlds, while

Blevis, Eli

Note: This page contains sample records for the topic "fluorescent light bulb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Plant Physiol. (1983) 73, 4504510 0032-0889/83/73/0450/02/$00.50/0  

E-Print Network [OSTI]

wrapped around 20-w cool white fluorescent tubes. For far-red light (730 nm peak, 15 nm half band width-w incandescent bulb was filtered through No. 2025 Plexiglas (Rohm and Hass, Inc.). Irradiance levels

Decoteau, Dennis R.

362

Enantioselective r-Trifluoromethylation of Aldehydes via Photoredox Organocatalysis  

E-Print Network [OSTI]

(such as a household fluorescent bulb) to populate the *Ir(ppy)2(dtb-bpy)+ 7 excited state. Given its as a photosynthesis mimic, should readily accept a photon from a variety of light sources within the visible spectrum

MacMillan, David W. C.

363

2 Masers and Lasers January 31, 2008  

E-Print Network [OSTI]

, a candle, an incandescent bulb, or a fluorescent source, is the result of incoherent emission of light from of Radiation) that extended the existence of coherent sources right into the ultraviolet spectrum

Thouless, David

364

When viewing augmented reality (AR) through an optical see-through head-mounted display (oHMD), the colors of AR ele-  

E-Print Network [OSTI]

- sure houses two fluorescent lights that reproduce the daylight whitepoint D65; our bulbs are rated at 95 CRI, which indicates that they accurately reproduce the entire daylight spectrum. The enclosure

Swan II, J. Edward

365

Types of Lighting | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Types of Lighting Types of Lighting Types of Lighting October 17, 2013 - 5:36pm Addthis When it comes to lighting options, you have a number of choices. | Photo courtesy of Clean Energy Resource Teams. When it comes to lighting options, you have a number of choices. | Photo courtesy of Clean Energy Resource Teams. You have several options to consider when selecting what type of lighting you should use in your home. When selecting energy-efficient lighting, it's a good idea to understand basic lighting terms and principles. Also, it helps to explore your lighting design options if you haven't already. This will help narrow your selection. Types of lighting include: Fluorescent

366

Compact fluorescent lamp applications in luxury hotels  

SciTech Connect (OSTI)

Over the past several years, consumers, lighting designers, and energy conservationists have paid increasing attention to the special characteristics of compact fluorescent lamps (CFLs). CFLs can typically be used to replace incandescent lamps of three to four times their own wattage, and their color rendering indices (CRIs)-80 to 85-make them virtually indistinguishable from incandescents. The typical 10,0000-hour life of a CFL often makes savings in labor its most desirable feature when compared to a shorter-lived incandescent lamp.

Gilleskie, R.J.

1996-01-01T23:59:59.000Z

367

Variations on the Benzophenone Skeleton: Novel High Performance Blue Light Sensitive Photoinitiating Systems  

Science Journals Connector (OSTI)

One of them (BPD5) is particularly efficient for the cationic and radical photopolymerization of an epoxide/acrylate blend in a one-step hybrid cure and leads to the formation of an interpenetrated polymer network IPN upon the house hold blue LED bulb exposure (1 min for getting tack free coatings). ... The photochemical mechanisms are studied by molecular orbital calculations, fluorescence, cyclic voltammetry, laser flash photolysis, electron spin resonance spin trapping, and steady state photolysis techniques. ... Copper Complexes in Radical Photoinitiating Systems: Applications to Free Radical and Cationic Polymerization upon Visible LEDs ...

Pu Xiao; Frdric Dumur; Bernadette Graff; Didier Gigmes; Jean Pierre Fouassier; Jacques Laleve

2013-09-24T23:59:59.000Z

368

A highly color-stability white organic light-emitting diode by color conversion within hole injection layer  

Science Journals Connector (OSTI)

We demonstrated a novel-structure white organic light-emitting devices (WOLEDs) composed of a greenish blue fluorescent emitting layer and a red fluorescent dye-doped hole injection...

Li, C; Ichikawa, M; Wei, B; Taniguchi, Y; Kimura, H; Kawaguchi, K; Sakurai, K

2007-01-01T23:59:59.000Z

369

Working Paper Sustainability and Innovation No. S 3/2014  

E-Print Network [OSTI]

efficient compact fluorescent lamps (CFLs) or light emitting diodes (LEDs) using a large nationally rebound effects associated with the switch from incandescent lamps (ILs) or halogen bulbs to more energy is decomposed into changes in lamp luminosity and burn time. On average, more efficient replace- ment bulbs

Paris-Sud XI, Université de

370

\\ms\\fahmeed\\ryota-et-al-2007-r2008 in Dynamic Brain Imaging, ed by F. Hyder, in Methods in Molecular Medicine, Humana  

E-Print Network [OSTI]

terminals of these cells in the olfactory bulb glomeruli. There the population signals can be used as a measure of the input from the nose to the bulb. Three kinds of noise in measuring light intensity. Most of these efforts center around fluorescent protein sensors of activity because transgenic methods

Paris-Sud XI, Université de

371

How Do You Choose the Right Lights for Your Home? | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Choose the Right Lights for Your Home? Choose the Right Lights for Your Home? How Do You Choose the Right Lights for Your Home? July 15, 2010 - 7:30am Addthis On Monday, Elizabeth told you about new labels for light bulbs that the Federal Trade Commission will be rolling out in 2011. The labels are based on the familiar nutrition labels you see on food packaging and are designed to help you choose the right lighting for your home. Until the labels reach the shelves in 2011, you obviously still need to light your home. So tell us: How do you choose the right lights for your home? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. Addthis

372

ENERGY STAR Certified Homes Maintenance Guide and Tips to Ensure Top Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WHAT TO DO AFTER MOVING IN WHAT TO DO AFTER MOVING IN LIGHTING AND LIGHT BULBS Use ENERGY STAR certified light bulbs, such as Compact Fluorescent Light bulbs (CFL) or Light Emitting Diodes (LED) to provide bright, warm light while using 75% less energy, and lasting up to 10 times longer than traditional incan- descent bulbs. This means more money in your pocket. Homes that use incandescent bulbs waste $400 a year on utility bills when compared to homes that install ENERGY STAR lighting throughout. OUTLETS AND ELECTRONICS Did you know that in the average U.S. home, 25 percent of electricity used by home electronics occurs while the products are off? In the United States alone, "vampire power" costs con- sumers more than $3 billion a year. Reduce unnecessary costs on your utility bill by unplugging electronics such as cell phone

373

High sensitivity fluorescent single particle and single molecule detection apparatus and method  

DOE Patents [OSTI]

Apparatus is described for ultrasensitive detection of single fluorescent particles down to the single fluorescent molecule limit in a fluid or on a substrate comprising means for illuminating a predetermined volume of the fluid or area of the substrate whereby to emit light including background light from the fluid and burst of photons from particles residing in the area. The photon burst is detected in real time to generate output representative signal. The signal is received and the burst of energy from the fluorescent particles is distinguished from the background energy to provide an indication of the number, location or concentration of the particles or molecules.

Mathies, Richard A. (Contra Costa County, CA); Peck, Konan (Contra Costa County, CA); Stryer, Lubert (Santa Clara County, CA)

1990-01-01T23:59:59.000Z

374

Instructions for Corning Model 220 pH Meter The electrode tip is a fragile glass bulb. Be careful or you will break it with a  

E-Print Network [OSTI]

Instructions for Corning Model 220 pH Meter The electrode tip is a fragile glass bulb. Be careful. Two Point Calibration Routine · The pH meter should be turned "ON". · Your buffers should from your sample, rinse with distilled water, and BLOT with a kimwipe. 4. Turn pH meter OFF and store

Cross, George

375

Development of a fluorescent cryocooler  

SciTech Connect (OSTI)

Recent work at Los Alamos National Laboratory has demonstrated the physical principles for a new type of solid-state cryocooler based on anti-Stokes fluorescence. Design studies indicate that a vibration-free, low-mass ``fluorescent cryocooler`` could operate for years with efficiencies and cooling powers comparable to current commercial systems. This paper presents concepts for a fluorescent cryocooler, design considerations and expected performance.

Edwards, B.C.; Buchwald, M.I.; Epstein, R.I.; Gosnell, T.R.; Mungan, C.E.

1995-10-01T23:59:59.000Z

376

Environmental gamma dosimetry with OSL of -Al2O3:C for in situ sediment measurements  

Science Journals Connector (OSTI)

......coating T8/58W/865 fluorescent tubes), fluorescent tube light (T8/58W...light, standard light bulbs and energy saving lamps...unfocused Luxeon blue LED V (12 V, 5 W, heat...array of 18 Luxeon I blue LED (12/110/230V, 1......

D. Richter; H. Dombrowski; S. Neumaier; P. Guibert; A. C. Zink

2010-09-01T23:59:59.000Z

377

Theory of delayed thermal fluorescence  

Science Journals Connector (OSTI)

A theory of nonradiative thermal activation involved in delayed thermal fluorescence has been developed from the viewpoint of the breakdown of the Born-Oppenheimer adiabatic approximation.

S. H. Lin

1971-01-01T23:59:59.000Z

378

X-ray fluorescence mapping  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

biololgical cells, over the measurement of impurities in solar cells, to the rare earth content of geological materials. A somewhat 'typical' layout for a X-ray fluorescence...

379

Micro- and Sub-nanosecond Lifetime Measurements Using a UV Light-Emitting Diode  

Science Journals Connector (OSTI)

The authors describe the use of an ultraviolet light-emitting diode (UV LED), Nichia NSHU590E, as a 373 nm excitation light source for fluorescence lifetime measurements. A...

Szmacinski, Henryk; Chang, Qing

2000-01-01T23:59:59.000Z

380

Laboratory Ventilation SafetyLaboratory Ventilation Safety J. Scott WardJ. Scott Ward  

E-Print Network [OSTI]

the incandescent light bulb in 1879.incandescent light bulb in 1879. #12;First Labconco Hood 1936First Labconco

Farritor, Shane

Note: This page contains sample records for the topic "fluorescent light bulb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Systems-Level Analysis of Nitrogen Starvation??Induced Modifications of Carbon Metabolism in a Chlamydomonas reinhardtii Starchless Mutant  

Science Journals Connector (OSTI)

...Several observations led to the discovery that...s1, six cool white fluorescent bulbs at 4100K and three warm white fluorescent bulbs at 3000K per incubator...by eight cool white fluorescent bulbs). Metabolite profiles...

Ian K. Blaby; Anne G. Glaesener; Tabea Mettler; Sorel T. Fitz-Gibbon; Sean D. Gallaher; Bensheng Liu; Nanette R. Boyle; Janette Kropat; Mark Stitt; Shannon Johnson; Christoph Benning; Matteo Pellegrini; David Casero; Sabeeha S. Merchant

2013-11-26T23:59:59.000Z

382

Summary of Information and Resources Related to Energy Use in Healthcare Facilities - Version 1  

E-Print Network [OSTI]

57- 57 $YESNO. - FLUOR8 Fluorescent bulbs 59- 59 $YESNO. -CFLR8 Compact fluorescent bulbs 61- 61 $YESNO. - HID8 Highof bulbs 67- 67 $YESNO. - FLUORP8 Percent lit by fluorescent

Singer, Brett C.

2010-01-01T23:59:59.000Z

383

Slideshow: Flipping the Switch on LED Lighting for the National Mall |  

Broader source: Energy.gov (indexed) [DOE]

Slideshow: Flipping the Switch on LED Lighting for the National Slideshow: Flipping the Switch on LED Lighting for the National Mall Slideshow: Flipping the Switch on LED Lighting for the National Mall January 31, 2012 - 3:05pm Addthis 1 of 8 Facing East toward the Capitol Building, LED retrofitted lights line the interior paths of the mall while preserving the architectural integrity of the original fixtures. Image: Energy Department Image | Photo by Quentin Kruger (Contractor) | Public Domain Date taken: 2012-01-30 06:00 2 of 8 Energy Secretary Steven Chu discusses the 65% savings on electric bills and lowered maintenance costs the National Parks Service is experiencing by switching to energy efficient LED lights. "Using energy-efficient LED light bulbs is an important way Americans can save money by saving energy," said

384

Slideshow: Flipping the Switch on LED Lighting for the National Mall |  

Broader source: Energy.gov (indexed) [DOE]

Slideshow: Flipping the Switch on LED Lighting for the National Slideshow: Flipping the Switch on LED Lighting for the National Mall Slideshow: Flipping the Switch on LED Lighting for the National Mall January 31, 2012 - 3:05pm Addthis 1 of 8 Facing East toward the Capitol Building, LED retrofitted lights line the interior paths of the mall while preserving the architectural integrity of the original fixtures. Image: Energy Department Image | Photo by Quentin Kruger (Contractor) | Public Domain Date taken: 2012-01-30 06:00 2 of 8 Energy Secretary Steven Chu discusses the 65% savings on electric bills and lowered maintenance costs the National Parks Service is experiencing by switching to energy efficient LED lights. "Using energy-efficient LED light bulbs is an important way Americans can save money by saving energy," said

385

Solid-State Lighting: Market Challenges  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Market Challenges to someone by Market Challenges to someone by E-mail Share Solid-State Lighting: Market Challenges on Facebook Tweet about Solid-State Lighting: Market Challenges on Twitter Bookmark Solid-State Lighting: Market Challenges on Google Bookmark Solid-State Lighting: Market Challenges on Delicious Rank Solid-State Lighting: Market Challenges on Digg Find More places to share Solid-State Lighting: Market Challenges on AddThis.com... Why SSL LED Basics OLED Basics Using LEDs R&D Challenges Market Challenges Market Challenges Resources Compact Fluorescent Lighting in America PDF Guiding Market Introduction of SSL Products PDF LED Directional Lamps PDF LED MR16 Lamps Recessed LED Downlights PDF General Service LED Lamps PDF What to Ask - A Checklist for Buyers of LED Lighting Products PDF

386

SMB, X-ray Fluorescence Imaging  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fluorescence Imaging X-ray Fluorescence Imaging X-ray fluorescence imaging utilizes the high brightness of SPEAR3 and focused beam generated by the uses of K-B optics, capillaries...

387

Light Portal  

Science Journals Connector (OSTI)

The Light Portal was designed to organize and mark the pedestrian paths that circumnavigate the rectangle of the...

2006-01-01T23:59:59.000Z

388

Nuclear Resonance Fluorescence for Materials Assay  

E-Print Network [OSTI]

clandestine material with nuclear resonance fluorescence.E. Norman, UC Berkeley Dept. of Nuclear Engineering, privatepp. 349. G. Warren et al. Nuclear Resonance Fluorescence of

Quiter, Brian

2010-01-01T23:59:59.000Z

389

Fluorescence, Super Resolution STORM Microscope | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fluorescence imaging of the intact cell with nanometer resolution. It incorporates single-molecule fluorescence techniques to reconstruct super-resolution images using...

390

Light's twist  

Science Journals Connector (OSTI)

...equal to the optical power divided by the speed of light, and hence go unnoticed in our everyday lives...approaching object equal to the power in the light beam (P) divided by the speed of light. The movement of the approaching object does...

2014-01-01T23:59:59.000Z

391

Light Properties Light travels at the speed of light `c'  

E-Print Network [OSTI]

LIGHT!! #12;Light Properties Light travels at the speed of light `c' C = 3 x 108 m/s Or 190.nasa.gov #12;The speed of light The speed of light `c' is equal to the frequency ` times the wavelength,000 miles/second!! Light could travel around the world about 8 times in one second #12;What is light?? Light

Mojzsis, Stephen J.

392

Tillamook County PUD - Dairy Lighting Retrofit Rebate Program | Department  

Broader source: Energy.gov (indexed) [DOE]

Tillamook County PUD - Dairy Lighting Retrofit Rebate Program Tillamook County PUD - Dairy Lighting Retrofit Rebate Program Tillamook County PUD - Dairy Lighting Retrofit Rebate Program < Back Eligibility Agricultural Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info State Oregon Program Type Utility Rebate Program Provider Tillamook County PUD Tillamook PUD offers the Dairy Lighting Retrofit Program for its agricultural members to save energy on lighting in eligible barns/facilities. Tillamook PUD completes a lighting audit of the facility to calculate the energy savings and rebate amount. Incentives are provided for the replacement of existing mercury vapor, incandescent, and T12 fluorescent fixtures with new ORION AG9000 3-lamp T8 fluorescent fixtures. This rebate is available for retrofits only, new construction is not

393

Energy Efficiency Wins Top Prize at EPA App Contest | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Efficiency Wins Top Prize at EPA App Contest Efficiency Wins Top Prize at EPA App Contest Energy Efficiency Wins Top Prize at EPA App Contest November 23, 2011 - 11:11am Addthis The winner of best overall app at the Environmental Protection Agency's (EPA) Apps for the Environment. | Video courtesy of Light Bulb Finder. Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this mean for me? Light Bulb Finder, a free smartphone app, can help save money on home lighting. Quick, if I want to replace a 60-watt incandescent light bulb with an energy efficient fluorescent or LED bulb, what wattage should I choose to keep the same level of illumination? If you don't know, there's now an app for that. The winner of best overall app at the Environmental Protection Agency's (EPA) Apps for the Environment is called Light Bulb

394

Energy Efficiency Wins Top Prize at EPA App Contest | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wins Top Prize at EPA App Contest Wins Top Prize at EPA App Contest Energy Efficiency Wins Top Prize at EPA App Contest November 23, 2011 - 11:11am Addthis The winner of best overall app at the Environmental Protection Agency's (EPA) Apps for the Environment. | Video courtesy of Light Bulb Finder. Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this mean for me? Light Bulb Finder, a free smartphone app, can help save money on home lighting. Quick, if I want to replace a 60-watt incandescent light bulb with an energy efficient fluorescent or LED bulb, what wattage should I choose to keep the same level of illumination? If you don't know, there's now an app for that. The winner of best overall app at the Environmental Protection Agency's (EPA) Apps for the Environment is called Light Bulb

395

THE HISTORY AND TECHNICAL EVOLUTION OF HIGH FREQUENCY FLUORESCENT LIGHTING  

E-Print Network [OSTI]

B L U E , G R E E N , INCANDESCENT FORM OF LAMPS OF VARIOUSTHE E F F I C I E N C Y INCANDESCENT A P P L I C A T I O N SI M E S , DEPENDING THE THE INCANDESCENT GENERAL LAMPS. THE

Campbell, John H.

2011-01-01T23:59:59.000Z

396

Lighting Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Purple LED lamp Purple LED lamp Lighting Systems Lighting research is aimed at improving the energy efficiency of lighting systems in buildings and homes across the nation. The goal is to reduce lighting energy consumption by 50% over twenty years by improving the efficiency of light sources, and controlling and delivering illumination so that it is available, where and when needed, and at the required intensity. Research falls into four main areas: Sources and Ballasts, Light Distribution Systems, Controls and Communications, and Human Factors. Contacts Francis Rubinstein FMRubinstein@lbl.gov (510) 486-4096 Links Lighting Research Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends

397

New and Underutilized Technology: Interior LED/Solid State Lighting |  

Broader source: Energy.gov (indexed) [DOE]

Interior LED/Solid State Lighting Interior LED/Solid State Lighting New and Underutilized Technology: Interior LED/Solid State Lighting October 4, 2013 - 4:53pm Addthis The following information outlines key deployment considerations for interior LED/solid state lighting within the Federal sector. Benefits Interior LED retrofits are currently viable for down lights, track lighting, sconces, and both line and low voltage task lighting. Replacements for incandescent A-lamps have also been improving rapidly. Replacements for fluorescent tube lighting may be viable for high-cost maintenance areas. Application Interior LED/solid state lighting is a rapidly improving technology currently most applicable for down lights, track lights, task lighting, accenting, high ceiling, and high cost maintenance areas.

398

Characterization of EER4 and SAR1 in Relation to Their Role in Ethylene Signaling and Dampening Responses  

E-Print Network [OSTI]

Sylvania Cool White fluorescent bulbs, Danvers, MA) at 20 oSylvania Gro-Lite fluorescent bulbs, Danvers, MA) at 21 o C

Robles, Linda

2010-01-01T23:59:59.000Z

399

"Table HC11.13 Lighting Usage Indicators by Northeast Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Lighting Usage Indicators by Northeast Census Region, 2005" 3 Lighting Usage Indicators by Northeast Census Region, 2005" " Million U.S. Housing Units" ,,"Northeast Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Northeast" "Lighting Usage Indicators",,,"Middle Atlantic","New England" "Total U.S. Housing Units",111.1,20.6,15.1,5.5 "Indoor Lights Turned On During Summer" "Number of Lights Turned On" "Between 1 and 4 Hours per Day",91.8,16.8,12.2,4.6 "1.",28.6,5,3.5,1.5 "2.",29.5,6.2,4.8,1.4 "3.",14.7,2.5,1.7,0.8 "4.",9.3,1.5,1.1,0.4 "5 or More",9.7,1.6,1.1,0.5 "Energy-Efficient Bulbs Used",31.1,5.2,3.6,1.6

400

"Table HC14.13 Lighting Usage Indicators by West Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Lighting Usage Indicators by West Census Region, 2005" 3 Lighting Usage Indicators by West Census Region, 2005" " Million U.S. Housing Units" ,,"West Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total West" "Lighting Usage Indicators",,,"Mountain","Pacific" "Total U.S. Housing Units",111.1,24.2,7.6,16.6 "Indoor Lights Turned On During Summer" "Number of Lights Turned On" "Between 1 and 4 Hours per Day",91.8,19.5,6.1,13.4 "1.",28.6,6.1,1.7,4.4 "2.",29.5,6.3,1.8,4.5 "3.",14.7,3.1,1.1,2 "4.",9.3,1.9,0.6,1.3 "5 or More",9.7,2,0.8,1.2 "Energy-Efficient Bulbs Used",31.1,8.6,2.3,6.3 "1.",14.6,3.6,1,2.6

Note: This page contains sample records for the topic "fluorescent light bulb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Single Nanoparticle Surface Enhanced Fluorescence  

Science Journals Connector (OSTI)

It is well established that when in close proximity to gold nanoparticles the optical properties of local fluorescent molecules are dramatically altered. When the localised surface plasmon resonance (LSPR), tuned...

Linden R. Webster; K. Suhling; D. Richards

2013-01-01T23:59:59.000Z

402

Maintaining optimum fluorescent lamp performance under elevated temperature conditions  

SciTech Connect (OSTI)

This paper describes a new technique for optimizing fluorescent lamp performance under elevated temperature conditions. This approach uses a thermo-electric Peltier device to produce a localized cold spot temperature of approximately 40/sup 0/C, allowing the lamps to maintain maximum light output and efficacy independent of prevailing ambient temperatures inside a luminaire. Experimental data show that a 20% increase in light output and a 10% increase in efficacy over typical lamp performance in a warm fixture environment can be obtained using this device. Only 0.25 watts must be supplied to the Peltier device to produce these results.

Siminovitch, M.J.; Rubinstein, F.M.; Clark, T.A.; Verderber, R.R.

1986-04-01T23:59:59.000Z

403

A Leaf-Derived Signal Is a Quantitative Determinant of Floral Form in Impatiens  

Science Journals Connector (OSTI)

...signal was deduced to be limiting led to prolonged phases of petal initiation...light provided by tungsten and fluorescent bulbs at 271 to 309 mumol m2 sec1, followed...conditions were 8 hr of tungsten and fluorescent light (as above) followed by...

Fiona Tooke; Nick H. Battey

404

The Raman effect and Krishnan's diary  

Science Journals Connector (OSTI)

...of the quest that ultimately led to this discovery. We reproduce...fact the polarisation of the fluorescent light seems in general 75...e. the polarisation of the fluorescent light is greater the smaller...came into the room, I had a bulb of pentane in the tank blue...

2000-01-01T23:59:59.000Z

405

Hypersensitivity of Skin Fibroblasts from Basal Cell Nevus Syndrome Patients to Killing by Ultraviolet B but not by Ultraviolet C Radiation  

Science Journals Connector (OSTI)

...fibromas (5- 11) has led to the hypothesis that...individuals have, however, led to contradic tory results...20 cm (from the light bulb to the bottom of the...hood and overhead room fluorescent lights off. Pyrimidine...Alkaline lability of fluorescent photoproducts produced...

Lee A. Applegate; Leonard H. Goldberg; Ronald D. Ley; and Honnavara N. Ananthaswamy

1990-02-01T23:59:59.000Z

406

Power Minimization in a Backlit TFT-LCD Display by Concurrent Brightness and Contrast Scaling  

E-Print Network [OSTI]

Brightness and Contrast Scaling (CBCS) technique for a cold cathode fluorescent lamp (CCFL) backlit TFT out that the cold cathode fluorescent lamp (CCFL) backlight of an LCD display dominates the energy be used to characterize the optical power emitted from a spot light source, such as a light bulb

Pedram, Massoud

407

Power Minimization in a Backlit TFT-LCD Display by Concurrent Brightness and Contrast Scaling  

E-Print Network [OSTI]

Brightness and Contrast Scaling (CBCS) technique for a cold cathode fluorescent lamp (CCFL) backlit TFT fluorescent lamp (CCFL) backlight of an LCD display dominates the energy consumption of the whole system [1 be used to characterize the optical power emitted from a spot light source, such as a light bulb

Pedram, Massoud

408

Nuclear Resonance Fluorescence for Nuclear Materials Assay  

E-Print Network [OSTI]

Potential of Nuclear Resonance Fluorescence . . . . . . . .2.9.1 Nuclear ThomsonSections . . . . . . . . . . . . . . . Nuclear Resonance

Quiter, Brian Joseph

2010-01-01T23:59:59.000Z

409

Lighting Renovations  

Broader source: Energy.gov [DOE]

When undertaking a lighting renovation in a Federal building, daylighting is the primary renewable energy opportunity. Photovoltaics (PV) also present an excellent opportunity. While this guide...

410

Cerenkov Light  

ScienceCinema (OSTI)

The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

Slifer, Karl

2014-05-22T23:59:59.000Z

411

On-line measurement of lignin in wood pulp by color shift of fluorescence  

DOE Patents [OSTI]

Lignin concentrations from wood pulp samples are measured by applying an excitation light at a selected wavelength to the samples in order to cause the lignin to emit fluorescence. A spectral distribution of the fluorescence emission is then determined. The lignin concentration is then calculated based on the spectral distribution signal. The spectral distribution is quantified by either a wavelength centroid method or a band ratio method. 6 figs.

Jeffers, L.A.; Malito, M.L.

1996-01-23T23:59:59.000Z

412

Recent News from the National Labs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

22, 2013 22, 2013 History of the Light Bulb The History of the Light Bulb From incandescent bulbs to fluorescents to LEDs, we're exploring the long history of the light bulb. November 21, 2013 This week, the Energy Department's digital team has been focusing on the rivalry between two of history's most important energy-related engineers: Thomas Edison and Nikola Tesla. Edison and Tesla's developments in electric power generation and distribution made possible many later breakthroughs. This 1951 photo shows a simple string of four 100-watt light bulbs powered by the first useful electricity ever produced by nuclear power, generated on December 20, 1951, by Argonne's Experimental Breeder Reactor 1. | Photo courtesy of Argonne National Laboratory.

413

Detroit Public Lighting Department - Residential Energy Wise Program |  

Broader source: Energy.gov (indexed) [DOE]

Detroit Public Lighting Department - Residential Energy Wise Detroit Public Lighting Department - Residential Energy Wise Program Detroit Public Lighting Department - Residential Energy Wise Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Program Info State Michigan Program Type Utility Rebate Program Rebate Amount CFLs: $2-$10 LED Task Light: $10.00 LED Night light: $1.25 Energy Star Ceiling Fan: $10 Provider Detroit Public Lighting Department The Detroit Public Lighting Department (PLD) offers residential customers rebates for energy efficient lights. In addition, low-income residential customers may qualify for free compact fluorescent lights (CFLs). Specific rebate amounts, equipment requirements, and applications are available on

414

Transforming the Lighting Sector with Semiconductor Lighting Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

17-TED-000924-9/27 SR#2000-2333C 17-TED-000924-9/27 SR#2000-2333C Transforming the Lighting Sector With Semiconductor Lighting Technologies Thomas Drennen Sandia National Laboratories Roland Haitz Agilent Technologies Jeffrey Tsao E20 Communications Sandia National Laboratories USAEE/IAEE Annual Meetings Philadelphia, PA September 24-27, 2000 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000 2 6217-TED-000924-9/27 SR#2000-2333C Overview * Introduction * U.S. Lighting Demand * Evolution of LEDs * The LED Simulation Model (LEDSim) * Results 3 6217-TED-000924-9/27 SR#2000-2333C Introduction 0 50 100 150 200 1970 1980 1990 2000 2010 2020 Efficiency (lm/W) Year Incandescent Halogen Fluorescent Semi- conductor

415

The effects of supply harmonics on the performance of compact fluorescent lamps  

SciTech Connect (OSTI)

This paper describes a performance evaluation of ten compact fluorescent lighting systems operated with sinusoidal and distorted voltage waveform conditions. The lamps were either provided with an electronic ballast, a magnetic core ballast or a magnetic core ballast with a power factor correction circuit. The test results show that the electrical performance of the compact fluorescent lamps for both sinusoidal and distorted voltage waveform operation is related to the different types of ballast used. The cost of operation of these compact fluorescent lamps was calculated and compared to the cost of a conventional 60 W incandescent lamp.

Arseneau, R.; Ouellette, M.

1993-04-01T23:59:59.000Z

416

Optimized Magnetic Components Improve Efficiency of Compact Fluorescent Lamps  

E-Print Network [OSTI]

xtures (designed for incandescent bulbs) has allowed residential and small commercial electric customers of incandescent lamps and last 10 times longer [1]. High-frequency electronic ballasts are used to power CFLs

417

Buildings Energy Data Book: 5.6 Lighting  

Buildings Energy Data Book [EERE]

9 9 Typical Efficacies and Lifetimes of Lamps (1) Current Technology CRI (2) Incandescent 10 - 19 97 Halogen 14 - 20 99 Fluorescent - T5 25 - 55 52 - 75 Fluorescent - T8 35 - 87 7,500 - 20,000 52 - 90 Fluorescent - T12 35 - 92 7,500 - 20,000 50 - 92 Compact Fluorescent 40 - 70 82 Mercury Vapor 25 - 50 15 - 50 Metal Halide 65 - 70 High-Pressure Sodium 22 Low-Pressure Sodium 0 Solid State Lighting 33-97 Note(s): Source(s): 18 - 180 18,000 20 - 100 15,000 - 50,000 1) Theoretical maximum luminous efficacy of white light is 220 lumens/Watt. 2) CRI = Color Rendering Index, which indicates a lamp's ability to show natural colors. 3) The DOE Solid State Lighting program has set an efficacy goal twice that of fluorescent lights (160 lumen per Watt). DOE, EERE, Building Technology Program/Navigant Consulting, U.S. Lighting Market Characterization, Volume I: National Lighting Inventory and Energy

418

Northern Lights  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Northern Lights Northern Lights Nature Bulletin No. 178-A February 6, 1965 Forest Preserve District of Cook County Seymour Simon, President Roland F. Eisenbeis, Supt. of Conservation NORTHERN LIGHTS To a person seeing the Aurora Borealis or "northern lights" for the first time, it is an uncanny awe-inspiring spectacle. Sometimes it begins as a glow of red on the northern horizon, ominously suggesting a great fire, gradually changing to a curtain of violet-white, or greenish-yellow light extending from east to west. Some times this may be transformed to appear as fold upon fold of luminous draperies that march majestically across the sky; sometimes as a vast multitude of gigantic flaming swords furiously slashing at the heavens; sometimes as a flowing crown with long undulating colored streamers fanning downward and outward.

419

The 33rd Annual Conference ofthe IEEE Industrial Electronics Society (IECON) Nov. 5-8, 2007, Taipei, Taiwan  

E-Print Network [OSTI]

Polytechnic University, Hong Kong Abstract-The efficiency of LED lights is approaching that of fluorescent lamps. LED light sources are finding more applica- tions than conventional light bulbs due, Taiwan Color Control System for RGB LED Light Sources Using Junction Temperature Measurement Xiaohui Qu

Tse, Chi K. "Michael"

420

The Texas Tech University College of Engineering  

E-Print Network [OSTI]

-based technologies, has led to products that we now depend on everyday: DVD players, garage door openers, television. Nanophotonic research will transform lighting for homes and businesses. Light bulbs, both incandescent and fluorescent, will soon be replaced with new solid-state lighting. These solid-state lights can be smaller

Gelfond, Michael

Note: This page contains sample records for the topic "fluorescent light bulb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Physics of Human and SuperhumanVision  

E-Print Network [OSTI]

.physics.upenn.edu/~pcn Cartoon Larry Gonick 1 #12;Sunshine Compact fluorescent light bulb How can two such different kinds was that our eyes discard a lot of information about the spectrum of light: Perceptually, Y seems just as "pure? Direct Experience Color Light Quanta 8 #12;9 #12;Light spectrum, or color content curve Sunlight Colored

Nelson, Philip

422

Image by Andy J Fischer. 50 m Evolutionthe  

E-Print Network [OSTI]

't even tell spectral yellow from red+green? 2 #12;Sunshine Compact fluorescent light bulb How can two our eyes manage that?] 4 #12;Light spectrum, or color content curve Sunlight Colored light 5 #12 spectral positions can also be drawn as a graph. Unlike the light spectrum, which tells "how much

Nelson, Philip

423

Solid-state lighting technology perspective.  

SciTech Connect (OSTI)

Solid-State Lighting (SSL) uses inorganic light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) to convert electricity into light for illumination. SSL has the potential for enormous energy savings and accompanying environmental benefits if its promise of 50% (or greater) energy efficiencies can be achieved. This report provides a broad summary of the technologies that underlie SSL. The applications for SSL and potential impact on U.S. and world-wide energy consumption, and impact on the human visual experience are discussed. The properties of visible light and different technical metrics to characterize its properties are summarized. The many factors contributing to the capital and operating costs for SSL and traditional lighting sources (incandescent, fluorescent, and high-intensity discharge lamps) are discussed, with extrapolations for future SSL goals. The technologies underlying LEDs and OLEDs are also described, including current and possible alternative future technologies and some of the present limitations.

Tsao, Jeffrey Yeenien; Coltrin, Michael Elliott

2006-08-01T23:59:59.000Z

424

OLEDS FOR GENERAL LIGHTING  

SciTech Connect (OSTI)

The goal of this program was to reduce the long term technical risks that were keeping the lighting industry from embracing and developing organic light-emitting diode (OLED) technology for general illumination. The specific goal was to develop OLEDs for lighting to the point where it was possible to demonstrate a large area white light panel with brightness and light quality comparable to a fluorescence source and with an efficacy comparable to that of an incandescent source. it was recognized that achieving this would require significant advances in three area: (1) the improvement of white light quality for illumination, (2) the improvement of OLED energy efficiency at high brightness, and (3) the development of cost-effective large area fabrication techniques. The program was organized such that, each year, a ''deliverable'' device would be fabricated which demonstrated progress in one or more of the three critical research areas. In the first year (2001), effort concentrated on developing an OLED capable of generating high illumination-quality white light. Ultimately, a down-conversion method where a blue OLED was coupled with various down-conversion layers was chosen. Various color and scattering models were developed to aid in material development and device optimization. The first year utilized this approach to deliver a 1 inch x 1 inch OLED with higher illumination-quality than available fluorescent sources. A picture of this device is shown and performance metrics are listed. To their knowledge, this was the first demonstration of true illumination-quality light from an OLED. During the second year, effort concentrated on developing a scalable approach to large area devices. A novel device architecture consisting of dividing the device area into smaller elements that are monolithically connected in series was developed. In the course of this development, it was realized that, in addition to being scalable, this approach made the device tolerant to the most common OLED defect--electrical shorts. This architecture enabled the fabrication of a 6 inch x 6 inch OLED deliverable for 2002. A picture of this deliverable is shown and the performance metrics are listed. At the time, this was the highest efficiency, highest lumen output illumination-quality OLED in existence. The third year effort concentrated on improving the fabrication yield of the 6 inch x 6 inch devices and improving the underlying blue device efficiency. An efficiency breakthrough was achieved through the invention of a new device structure such that now 15 lumen per watt devices could be fabricated. A 2 feet x 2 feet OLED panel consisting of sixteen 6 inch x 6 inch high efficiency devices tiled together was then fabricated. Pictures of this panel are shown with performance metrics listed. This panel met all project objectives and was the final deliverable for the project. It is now the highest efficiency, highest lumen output, illumination-quality OLED in existence.

Anil Duggal; Don Foust; Chris Heller; Bill Nealon; Larry Turner; Joe Shiang; Nick Baynes; Tim Butler; Nalin Patel

2004-02-29T23:59:59.000Z

425

60 Years Since Nuclear Turned on the Lights | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

60 Years Since Nuclear Turned on the Lights 60 Years Since Nuclear Turned on the Lights 60 Years Since Nuclear Turned on the Lights December 20, 2011 - 10:50am Addthis Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs "We have moved far to tame for peaceful uses the mighty forces unloosed when the atom was split." President Johnson, 1966 At 1:23pm on December 20, 1951, Argonne National Laboratory director Walter Zinn scribbled into his log book, "Electricity flows from atomic energy. Rough estimate indicates 45 kw." At that moment, scientists from Argonne and the National Reactor Testing Station, the forerunner to today's Idaho National Laboratory, watched four light bulbs glow, powered by the world's first nuclear reactor to generate electricity. Fifteen years later, in Arco, Idaho, President Johnson stood at this same

426

JY Tsao Evolution of Solid-State Lighting: Market Pull and Technology Push Xiamen 2005 Apr 13 Evolution of Solid-State Lighting  

E-Print Network [OSTI]

and Technology Push · Xiamen · 2005 Apr 13 0 20 40 60 80 100 0.1 1.0 10.0 100.0 Incandescent (12%) Fluorescent Fluorescent Standard Incandescent · So let's start with traditional lighting. · Here, I've plotted the 26 and Eugene Hong of Navigant Consulting. The lamps fall into three overall families: incandescent, in green

427

Solid-State Lighting: LED Lighting Facts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Market-Based Programs Printable Version Share this resource Send a link to Solid-State Lighting: LED Lighting Facts to someone by E-mail Share Solid-State Lighting: LED Lighting Facts on Facebook Tweet about Solid-State Lighting: LED Lighting Facts on Twitter Bookmark Solid-State Lighting: LED Lighting Facts on Google Bookmark Solid-State Lighting: LED Lighting Facts on Delicious Rank Solid-State Lighting: LED Lighting Facts on Digg Find More places to share Solid-State Lighting: LED Lighting Facts on AddThis.com... LED Lighting Facts CALiPER Program Standards Development Technical Information Network Gateway Demonstrations Municipal Consortium Design Competitions LED Lighting Facts LED lighting facts - A Program of the U.S. DOE DOE's LED Lighting Facts® program showcases LED products for general

428

Covered Product Category: Fluorescent Luminaires  

Broader source: Energy.gov [DOE]

FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including fluorescent luminaires. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

429

Covered Product Category: Fluorescent Ballasts  

Broader source: Energy.gov [DOE]

FEMP provides acquisition guidance and Federal efficiency requirements across a variety of product categories, including fluorescent ballasts, which are a FEMP-designated product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

430

Statistics of Molecular Ensemble Blinking Fluorescence  

Science Journals Connector (OSTI)

Statistics of Molecular Ensemble Blinking Fluorescence ... Theoretical expressions suitable for statistical analysis of fluorescence of M molecules are derived. ... Therefore the probability of finding two photons at the same time equals zero. ...

I. S. Osadko; A. L. Shchukina

2010-05-19T23:59:59.000Z

431

Microarray Immunoassay for Phenoxybenzoic Acid Using Polymer Encapsulated Eu:Gd2O3 Nanoparticles as Fluorescent Labels  

Science Journals Connector (OSTI)

Lanthanide oxides are commonly used as fluorescent materials in the lighting industry. ... PBA is a generic biomarker of human exposure to pyrethroids, a group of highly potent insecticides widely used in agriculture, forestry, horticulture, animal and public health, and households. ... Particle size distributions were measured on a Nanotrac particle size analyzer, model NPA150 from Microtrac Inc. (Montgomeryville, PA), by dynamic light scattering technology. ...

Mikaela Nichkova; Dosi Dosev; Shirley J. Gee; Bruce D. Hammock; Ian M. Kennedy

2005-09-23T23:59:59.000Z

432

NYSEG (Electric) - Small Business Lighting Retrofit Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

NYSEG (Electric) - Small Business Lighting Retrofit Program NYSEG (Electric) - Small Business Lighting Retrofit Program NYSEG (Electric) - Small Business Lighting Retrofit Program < Back Eligibility Commercial Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info Funding Source System Benefits Charge State New York Program Type Utility Rebate Program Rebate Amount Energy Assessment: Free Lighting Retrofit: 70% of cost Provider RG&E and NYSEG NYSEG offers a lighting incentive program designed to serve small business customers with a demand of 100 kilowatts (kW) or less. These small business customers may schedule a free energy assessment and then receive a 70% discount on the installed cost of recommended lighting measures. Eligible lighting measures include the retrofitting of fluorescent fixtures,

433

,,,"Incandescent","Standard Fluorescent","Compact Fluorescent","High-Intensity Discharge","Halogen"  

U.S. Energy Information Administration (EIA) Indexed Site

B39. Lighting Equipment, Floorspace, 1999" B39. Lighting Equipment, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Lit Buildings","Lighting Equipment (more than one may apply)" ,,,"Incandescent","Standard Fluorescent","Compact Fluorescent","High-Intensity Discharge","Halogen" "All Buildings ................",67338,64321,38156,60344,20666,19223,17926 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5859,2946,5154,738,245,600 "5,001 to 10,000 ..............",8238,7464,4047,6722,1108,663,991 "10,001 to 25,000 .............",11153,10393,6055,9815,1759,1701,1996 "25,001 to 50,000 .............",9311,9053,5004,8344,2296,2224,1611

434

Clay Nanoparticle-Supported Single-Molecule FluorescenceSpectroelectr...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clay Nanoparticle-Supported Single-Molecule Fluorescence Spectroelectrochemistry. Clay Nanoparticle-Supported Single-Molecule Fluorescence Spectroelectrochemistry. Abstract: We...

435

Measurements of the Ultraviolet Fluorescence Cross Sections and Spectra of Bacillus Anthracis Simulants  

SciTech Connect (OSTI)

Measurements of the ultraviolet autofluorescence spectra and absolute cross sections of the Bacillus anthracis (Ba) simulants Bacillus globigii (Bg), Bacillus megaterium (Bm), Bacillus subtilis (Bs), and Bacillus cereus (Bc) were measured. Fluorescence spectra and cross sections of pine pollen (Pina echinata) were measured for comparison. Both dried vegetative cells and spores separated from the sporulated vegetative material were studied. The spectra were obtained by suspending a small number (<10) of particles in air in our Single Particle Spectroscopy Apparatus (SPSA), illuminating the particles with light from a spectrally filtered arc lamp, and measuring the fluorescence spectra of the particles. The illumination was 280 nm (20 nm FWHM) and the fluorescence spectra was measured between 300 and 450 nm. The fluorescence cross section of vegetative Bg peaks at 320 nm with a maximum cross section of 5 X 10{sup -14} cm{sup 2}/sr-nm-particle while the Bg spore fluorescence peaks at 310 nm with peak fluorescence of 8 X 10{sup -15} cm{sup 2}/sr-nm-particle. Pine pollen particles showed a higher fluorescence peaking at 355 nm with a cross section of 1.7 X 10{sup -13} cm{sup 2}/sr-nm-particle. Integrated cross sections ranged from 3.0 X 10{sup -13} for the Bg spores through 2.25 X 10{sup -12} (cm{sup 2}/sr-particle) for the vegetative cells.

Stephens, J.R.

1998-09-01T23:59:59.000Z

436

L&E - high efficiency lighting for parking structure | The Better Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

structure structure Activities Technology Solutions Teams Lighting & Electrical Space Conditioning Plug & Process Loads Food Service Refrigeration Laboratories Energy Management & Information Systems Public Sector Teams Market Solutions Teams Adopt high-efficiency lighting for your parking structure Parking structures and garages are typically lighted by older HID lighting technology without any energy-saving controls. The latest high-efficiency alternatives with energy-saving controls-including light-emitting diode (LED), induction, and fluorescent technology options-can save building owners over 40% on their parking lot lighting bills while delivering additional benefits such as better-lighted spaces. The Lighting & Electrical team developed a performance specification that

437

Energy Savings Estimates of Light Emitting Diodes in Niche Lighting Applications  

Broader source: Energy.gov (indexed) [DOE]

Savings Estimates of Light Emitting Diodes Savings Estimates of Light Emitting Diodes in Niche Lighting Applications Prepared for: Building Technologies Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by: Navigant Consulting Inc. 1801 K Street, NW Suite 500 Washington DC, 20006 September 2008 * Department of Energy Washington, DC 20585 Energy Savings Estimates of Light Emitting Diodes in Niche Lighting Applications Released: September 2008 Revised: October 2008 This DOE report presents research findings for twelve different niche markets where LEDs are competing or poised to compete with traditional light sources (e.g., incandescent and fluorescent). Estimates of the energy saved due to current levels of LED market penetration as well as estimates of potential energy savings if these markets switched completely to LEDs

438

Light's twist  

Science Journals Connector (OSTI)

...Glasgow G12 8QQ, UK An invited Perspective to mark the election of Miles Padgett to the fellowship of the Royal Society in 2014. That...energy and momentum flow within light beams can twist to form vortices such as eddies in a stream. These...

2014-01-01T23:59:59.000Z

439

Initial Score: # of workers  

E-Print Network [OSTI]

Awarded Points Possible My lab recycles batteries, light bulbs, toner cartridges and other electronics My lab has replaced incandescent lamps with Compact Fluorescent Lamps (CFLs) or Light Emitting Diodes (LED) in all available lighting fixtures. 3 3 My lab has installed the Big Fix on computers

Yamamoto, Keith

440

Ameren Illinois - Lighting Rebates for Businesses | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

- Lighting Rebates for Businesses - Lighting Rebates for Businesses Ameren Illinois - Lighting Rebates for Businesses < Back Eligibility Commercial Fed. Government Industrial Local Government Multi-Family Residential Nonprofit State Government Savings Category Other Appliances & Electronics Commercial Lighting Lighting Maximum Rebate $600,000/year/facility Incentives $1-$200,000: paid at 100% Incentives $200,000- $600,000: paid at 50% Program Info Funding Source Illinois Energy Efficiency Portfolio Standard (EEPS) surcharge Expiration Date 5/31/2013 State Illinois Program Type Utility Rebate Program Rebate Amount Fluorescent U-Bend Relamp and Reballast: $0.25/watt reduced T12 to T8 Relamp and Reballast: $0.25/watt reduced T12 to T5 Fluorescent Fixture: $0.25/watt reduced T8 to reduced wattage T8 or T5 Relamp and Reballast: $0.40/watt reduced

Note: This page contains sample records for the topic "fluorescent light bulb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Compact fluorescent lamp using horizontal and vertical insulating septums and convective venting geometry  

DOE Patents [OSTI]

A novel design is described for a compact fluorescent lamp, including a lamp geometry which will increase light output and efficacy of the lamp in a base down operating position by providing horizontal and vertical insulating septums positioned in the ballast compartment of the lamp to provide a cooler coldspot. Selective convective venting provides additional cooling of the ballast compartment. 9 figs.

Siminovitch, M.

1998-02-10T23:59:59.000Z

442

A portable time-domain LED fluorimeter for nanosecond fluorescence lifetime measurements  

SciTech Connect (OSTI)

Fluorescence lifetime measurements are becoming increasingly important in chemical and biological research. Time-domain lifetime measurements offer fluorescence multiplexing and improved handling of interferers compared with the frequency-domain technique. In this paper, an all solid-state, filterless, and highly portable light-emitting-diode based time-domain fluorimeter (LED TDF) is reported for the measurement of nanosecond fluorescence lifetimes. LED based excitation provides more wavelengths options compared to laser diode based excitation, but the excitation is less effective due to the uncollimated beam, less optical power, and longer latency in state transition. Pulse triggering and pre-bias techniques were implemented in our LED TDF to improve the peak optical power to over 100 mW. The proposed pulsing circuit achieved an excitation light fall time of less than 2 ns. Electrical resetting technique realized a time-gated photo-detector to remove the interference of the excitation light with fluorescence. These techniques allow the LED fluorimeter to accurately measure the fluorescence lifetime of fluorescein down to concentration of 0.5 ?M. In addition, all filters required in traditional instruments are eliminated for the non-attenuated excitation/emission light power. These achievements make the reported device attractive to biochemical laboratories seeking for highly portable lifetime detection devices for developing sensors based on fluorescence lifetime changes. The device was initially validated by measuring the lifetimes of three commercial fluorophores and comparing them with reported lifetime data. It was subsequently used to characterize a ZnSe quantum dot based DNA sensor.

Wang, Hongtao; Salthouse, Christopher D., E-mail: salthouse@ecs.umass.edu [Electrical and Computer Engineering Department, University of Massachusetts, Amherst, Massachusetts 01003 (United States); Center for Personalized Health Monitoring, University of Massachusetts, Amherst, Massachusetts 01003 (United States); Qi, Ying; Mountziaris, T. J. [Center for Personalized Health Monitoring, University of Massachusetts, Amherst, Massachusetts 01003 (United States) [Center for Personalized Health Monitoring, University of Massachusetts, Amherst, Massachusetts 01003 (United States); Chemical Engineering Department, University of Massachusetts, Amherst, Massachusetts 01003 (United States)

2014-05-15T23:59:59.000Z

443

Energy Engineering Analysis Program (EEAP), Fort Bliss headquarters building, lighting retrofit, Fort Bliss, El Paso, Texas  

SciTech Connect (OSTI)

The purpose of this study is to analyze the use of high efficiency fluorescent lighting with energy efficient lamps and electronic ballast for the Headquarters Building (Bldg. number 2) at Fort Bliss.

NONE

1993-02-01T23:59:59.000Z

444

Texas Electric Lighting Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electric lighting electric lighting The SNAP House's lighting design aims for elegant simplicity in concept, use, and maintenance. Throughout the house, soft, ambient light is juxtaposed with bright, direct task lighting. All ambient and most task lighting is integrated directly into the architectural design of the house. An accent light wall between the bedroom and bathroom provides a glowing light for nighttime navigation.

445

Infection Structure??Specific Expression of β-1,3-Glucan Synthase Is Essential for Pathogenicity of Colletotrichum graminicola and Evasion of β-Glucan??Triggered Immunity in Maize  

Science Journals Connector (OSTI)

...that forced expression of GLS1 led to reduction of hyphal diameters...grown at 23C under continuous fluorescent light (Climas Control CIR...onion (Allium cepa cv Grano) bulbs were used to assess virulence...and ToxB promoter-driven fluorescent protein expression vectors...

Ely Oliveira-Garcia; Holger B. Deising

2013-06-28T23:59:59.000Z

446

Rare Earth Elements:  

Science Journals Connector (OSTI)

...Energy-efficient compact fluorescent lamps (CFLs) use phosphor...LEDs), and compact fluorescent lamps (CFLs) all utilize...conventional incandescent light bulbs with CFLs in numerous...rare earth industry and led to significant price...previous year. This led to significant price...

Gareth P. Hatch

447

UV Radiation??Sensitive Norin 1 Rice Contains Defective Cyclobutane Pyrimidine Dimer Photolyase  

Science Journals Connector (OSTI)

...min under these conditions led to loss of function, perhaps...supplemental radiation from six UVB bulbs (model FL20SE Toshiba, Tokyo...was provided by cool white fluorescent lamps (Sylvania/GTE, Danvers...exposure to light from two blue fluorescent lamps (model 15T8/B North...

Jun Hidema; Tadashi Kumagai; Betsy M. Sutherland

448

Arabidopsis Membrane Steroid Binding Protein 1 Is Involved in Inhibition of Cell Elongation  

Science Journals Connector (OSTI)

...indicated that overexpression of MSBP1 led to reduced growth, and suppression...resulting in the expression of green fluorescent protein (GFP) fused to the C...light was provided by eight 40-W fluorescent bulbs and filtered through one layer...

Xiao-Hua Yang; Zhi-Hong Xu; Hong-Wei Xue

2004-12-17T23:59:59.000Z

449

The Transcription Factor WIN1/SHN1 Regulates Cutin Biosynthesis in Arabidopsis thaliana  

Science Journals Connector (OSTI)

...WIN1 activity was induced by DEX led to the identification of putative...white light (50 to 70 muE21) from fluorescent bulbs. Cutin and Wax Analysis Cuticular...cloning and expression of tagged fluorescent protein in plant cells. Trends...

Rubini Kannangara; Caroline Branigan; Yan Liu; Teresa Penfield; Vijaya Rao; Grégory Mouille; Herman Höfte; Markus Pauly; José Luis Riechmann; Pierre Broun

2007-04-20T23:59:59.000Z

450

theropod dinosaurs. The absence of respiratory turbinates in  

E-Print Network [OSTI]

incandescent bulb (350 to 400 nm)], the dark blue­indigo fluorescence of the liver in Scipionyx is distinct. With, Bile Pigments (Academic Press, New York, 1968)]. Fluorescence of biliverdin includes a primary light emission peak at about 470 nm, which corresponds to the blue region of the spectrum of visible

451

Energy Data Sourcebook for the U.S. Residential Sector  

E-Print Network [OSTI]

and Compact Fluorescent Bulbs Style Lamp Wattage Approximatebulbs is 112 TWh. If the PG&E survey's estimate of fluorescent (

Wenzel, T.P.

2010-01-01T23:59:59.000Z

452

New and Underutilized Technology: High Bay LED Lighting | Department of  

Broader source: Energy.gov (indexed) [DOE]

High Bay LED Lighting High Bay LED Lighting New and Underutilized Technology: High Bay LED Lighting October 7, 2013 - 8:55am Addthis The following information outlines key deployment considerations for high bay LED lighting within the Federal sector. Benefits LED light sources offer several potential benefits compared to metal halide or fluorescent lighting, including reduced energy consumption due to the ability to provide a more precise light distribution; longer operating life and lower maintenance requirements; less heat introduced into the space; and greater controllability for dimming and on/off control. Relevant to the cold storage application, LED performance improves in colder temperatures. Application High bay LED lighting is applicable for facilities containing high bay

453

Low-Pressure Sodium Lighting Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Low-Pressure Sodium Lighting Basics Low-Pressure Sodium Lighting Basics Low-Pressure Sodium Lighting Basics August 16, 2013 - 10:17am Addthis Low-pressure sodium lighting provides more energy-efficient outdoor lighting than high-intensity discharge lighting, but it has very poor color rendition. Typical applications include highway and security lighting, where color is not important. Low-pressure sodium lamps work somewhat like fluorescent lamps. Like high-intensity discharge lighting, low-pressure sodium lamps require up to 10 minutes to start and have to cool before they can restart. Therefore, they are most suitable for applications in which they stay on for hours at a time. They are not suitable for use with motion detectors. The chart below compares low-pressure sodium lamps and high-intensity

454

FusEdWeb | Fusion Education  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fluorescent Lights and Neon Signs Fluorescent Lights and Neon Signs CPEP: Online Fusion Course Main Topics Energy Sources and Conversions Two Key Fusion Reactions How Fusion Reactions Work Creating the Conditions for Fusion Plasmas - the 4th State of Matter Achieving Fusion Conditions More Info About CPEP Fusion Chart Images: English + 6 More Languages Main CPEP Web Site Printed Charts in 3 Sizes Search webby award honoree Webby Awards Honoree April 10, 2007 webby award honoree Links2Go - Fusion, November 9, 1998 FusEdWeb: Fusion Energy Education Overview | The Guided Tour Fluorescent Lights and Neon Signs Two of the most common plasma devices on the planet are the fluorescent light bulb, and its cousin, the neon sign. Since their development in the 1940's, fluorescent bulbs have become the lighting fixture of choice in

455

Synthesis and Characterization of Visible-to-UVC Upconversion Antimicrobial Ceramics  

Science Journals Connector (OSTI)

Advances in the syntheses and understanding of UC materials have led to numerous applications, including anticounterfeiting devices,(1) advanced solar cell prototypes,(2-6) bioimaging,(7, 8) and photodynamic therapy. ... Dishes were immediately placed in a collimated beam apparatus equipped with an Osram Dulux S 9 W fluorescent bulb, which was turned on for at least 30 min prior to each experiment to obtain constant light intensity. ... Under the much weaker light intensity of the fluorescent bulbs, a much thinner portion of each sample will experience sufficient blue light intensity to emit significant UVC. ...

Stephanie L. Cates; Ezra L. Cates; Min Cho; Jae-Hong Kim

2014-01-23T23:59:59.000Z

456

Energy saving in lighting system with fuzzy logic controller which uses light-pipe and dimmable ballast  

Science Journals Connector (OSTI)

Approximately, 20% of the electricity consumed in the world is spent for lighting. More efficient utilization of the sun, as a natural source of light, for lighting would save electricity used for lighting. The aim of this study is to illuminate a windowless room via a light-pipe and dimmable electronic ballasts. Light-pipe is used for the illumination of the space during the daytime. In case of inadequate daylight, artificial lighting is made via dimmable electronic ballasts and fluorescence lamps. Artificial lighting is supervised by a fuzzy logic control system to keep the illumination level at 350lux. When there is a motion in the room, the system works with the message of the motion sensor, which, thereby, enables energy saving. Additionally, dimming the lamps result in conversation of the electrical energy used for illumination. After the experimental studies, 350lux value targeted in the work plane is achieved with 10lux error.

Serta Grgl; Nazmi Ekren

2013-01-01T23:59:59.000Z

457

Environmental and health aspects of lighting: Mercury  

SciTech Connect (OSTI)

Most discharge lamps, including fluorescent lamps, metal halide lamps, and high pressure sodium lamps, contain Mercury, a toxic chemical. Lighting professionals need to be able to respond to questions about the direct hazards of Mercury from accidentally breaking lamps, and the potential environmental hazards of lamp operation and disposal. We calculated the exposures that could occur from an accidental breakage of lamps. Acute poisoning appears almost impossible. Under some circumstances a sealed environment, such as a space station, could be contaminated enough to make it unhealthy for long-term occupation. Mercury becomes a potential environmental hazard after it becomes methylated. Mercury is methylated in aquatic environments, where it may accumulate in fish, eventually rendering them toxic to people and other animals. Lighting causes Mercury to enter the environment directly from lamp disposal, and indirectly from power plant emissions. The environmental tradeoffs between incandescent and discharge lamps depend upon the amounts released by these two sources, their local concentrations, and their probabilities of being methylated. Indirect environmental effects of lighting also include the release of other heavy metals (Cadmium, Lead and Arsenic), and other air pollutants and carbon dioxide that are emitted by fossil fuel power plants. For a given light output, the level of power plant emissions depends upon the efficacy of the light source, and is thus much larger for incandescent lamps than for fluorescent or discharge lamps. As disposal and control technologies change the relative direct and indirect emissions from discharge and incandescent lamps will change.

Clear, R.; Berman, S.

1993-07-01T23:59:59.000Z

458

Electric Power | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Power Power Electric Power From incandescent bulbs to fluorescents to LEDs, learn more about the long history of the light bulb. From incandescent bulbs to fluorescents to LEDs, learn more about the long history of the light bulb. Electricity -- the flow of electrical power -- is a secondary energy source, generated by the conversion of primary sources of energy, like fossil, nuclear, wind or solar. Keeping the power flowing to American homes and businesses is a critical necessity for everyday life and economic vitality. The Energy Department works to keep the grid secure from cyber and physical attacks; partners with states and other stakeholders to plan more resilient infrastructure that can better withstand extreme weather events; and supports efforts to

459

The Specter of Fuel-Based Light  

SciTech Connect (OSTI)

Contemporary questions about sustainable energy and development converge in unexpected ways around a technology that is at once an echo of the past and yet very much a part of the present: fuel-based lighting in the developing world. An emerging opportunity for reducing the global costs and greenhouse-gas emissions associated with this highly inefficient form of lighting energy use is to replace fuel-based lamps with white solid-state (''LED'') lighting, described in this Policy Forum, which can be affordably solar-powered. Doing so would allow those without access to electricity in developing world to affordably leapfrog over the prevailing incandescent and fluorescent lighting technologies in use today through the electrified world.

Mills, Evan

2005-05-16T23:59:59.000Z

460

Max Tech and Beyond: Fluorescent Lamps  

E-Print Network [OSTI]

varies by watts of power per foot of electrical arc in theFoot Linear Fluorescent Lamps Efficacy Life Lumens Type Base Power

Scholand, Michael

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fluorescent light bulb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Covered Product Category: Compact Fluorescent Lamps  

Broader source: Energy.gov [DOE]

FEMP provides acquisition guidance across a variety of product categories, including compact fluorescent lamps (CFLs), which are an ENERGY STAR-qualified product category.

462

Exciplex Fluorescence Thermometry of Liquid Fuel  

Science Journals Connector (OSTI)

An experimental program is described that investigates the application of exciplex fluorescence to the internal thermometry of flowing liquid decane in the temperature range 24-91C....

Stufflebeam, John H

1989-01-01T23:59:59.000Z

463

Max Tech and Beyond: Fluorescent Lamps  

E-Print Network [OSTI]

Fluorescent Lamps and Incandescent Reflector Lamps; Finalmany end- use applications. Incandescent Outdoor Stationaryof color compared with the incandescent reference source is

Scholand, Michael

2012-01-01T23:59:59.000Z

464

Fluorescence, Single-Molecule Microscope | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Single-Molecule Microscope Fluorescence, Single-Molecule Microscope The single-molecule optical microscope is designed to study complex reaction dynamics such as enzymatic...

465

Single-Molecule Fluorescence Analysis in Solution  

Science Journals Connector (OSTI)

Over the past five years, several groups have developed the capability to detect and identify single fluorescent molecules in solution as the molecules flow through a focused laser...

Keller, Richard A; Ambrose, W Patrick; Goodwin, Peter M; Jett, James H; Martin, John C; Wu, Ming

1996-01-01T23:59:59.000Z

466

Fluorescence lidar monitoring of historic buildings  

Science Journals Connector (OSTI)

Laser-induced fluorescence spectra detected with high-spectral-resolution lidar on the facades of the Baptistery and the Cathedral in Parma are presented and discussed. The...

Raimondi, Valentina; Cecchi, Giovanna; Pantani, Luca; Chiari, Roberto

1998-01-01T23:59:59.000Z

467

Lighting Test Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Custom Projects Lighting Test Facilities SSL Guidelines Industrial Federal Agriculture LED Street and Area Lighting Field Test of Exterior LED Down Lights Abstract Outdoor...

468

Light Water Reactor Sustainability  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Light Water Reactor Sustainability ACCOMPLISHMENTS REPORT 2014 Accomplishments Report | Light Water Reactor Sustainability 2 T he mission of the Light Water Reactor...

469

Fluorescence technique for on-line monitoring of state of hydrogen-producing microorganisms  

DOE Patents [OSTI]

In situ fluorescence method to monitor state of sulfur-deprived algal culture's ability to produce H.sub.2 under sulfur depletion, comprising: a) providing sulfur-deprived algal culture; b) illuminating culture; c) measuring onset of H.sub.2 percentage in produced gas phase at multiple times to ascertain point immediately after anerobiosis to obtain H.sub.2 data as function of time; and d) determining any abrupt change in three in situ fluorescence parameters; i) increase in F.sub.t (steady-state level of chlorophyll fluorescence in light adapted cells); ii) decrease in F.sub.m', (maximal saturating light induced fluorescence level in light adapted cells); and iii) decrease in .DELTA.F/F.sub.m'=(F.sub.m'-F.sub.t)/F.sub.m' (calculated photochemical activity of photosystem II (PSII) signaling full reduction of plastoquinone pool between PSII and PSI, which indicates start of anaerobic conditions that induces synthesis of hydrogenase enzyme for subsequent H.sub.2 production that signal oxidation of plastoquinone pool asmain factor to regulate H.sub.2 under sulfur depletion.

Seibert, Michael (Lakewood, CO); Makarova, Valeriya (Golden, CO); Tsygankov, Anatoly A. (Pushchino, RU); Rubin, Andrew B. (Moscow, RU)

2007-06-12T23:59:59.000Z

470

Departments of Energy and Defense Launch ENERGY STAR® Operation Change Out  

Broader source: Energy.gov (indexed) [DOE]

Energy and Defense Launch ENERGY STAR® Operation Energy and Defense Launch ENERGY STAR® Operation Change Out - the Military Challenge Campaign to Promote the Use of Energy Efficient Light Bulbs Departments of Energy and Defense Launch ENERGY STAR® Operation Change Out - the Military Challenge Campaign to Promote the Use of Energy Efficient Light Bulbs April 22, 2008 - 11:31am Addthis CAMP LEJEUNE, NC - U.S. Secretary of Energy Samuel W. Bodman on Earth Day launched a joint Department of Energy (DOE) and Defense campaign to challenge military bases nationwide to change their incandescent light bulbs to energy efficient compact fluorescent light bulbs (CFLs) in on-base housing. The ENERGY STAR® campaign, called Operation Change Out, will help bases across the country increase energy efficiency, save money and reduce

471

Application of synchrotron radiation to x-ray fluorescence analysis of trace elements  

SciTech Connect (OSTI)

The development of synchrotron radiation x-ray sources has provided the means to greatly extend the capabilities of x-ray fluorescence analysis for determinations of trace element concentrations. A brief description of synchrotron radiation properties provides a background for a discussion of the improved detection limits compared to existing x-ray fluorescence techniques. Calculated detection limits for x-ray microprobes with micrometer spatial resolutions are described and compared with experimental results beginning to appear from a number of laboratories. The current activities and future plans for a dedicated x-ray microprobe beam line at the National Synchrotron Light Source (NSLS) of Brookhaven National Laboratory are presented.

Gordon, B.M.; Jones, K.W.; Hanson, A.L.

1986-08-01T23:59:59.000Z

472

Guide to Red Fluorescent Proteins and Biosensors for Flow Cytometry  

E-Print Network [OSTI]

CHAPTER 17 Guide to Red Fluorescent Proteins and Biosensors for Flow Cytometry Kiryl D. PiatkevichH Stability of Fluorescence F. Optimization of Nucleotide and Amino Acid Sequences III. Modern Advanced Red-Shifted FPs A. Orange Fluorescent Proteins B. Red Fluorescent Proteins C. Far-Red Fluorescent Proteins IV

Verkhusha, Vladislav V.

473

New and Underutilized Technology: Spectrally Enhanced Lighting | Department  

Broader source: Energy.gov (indexed) [DOE]

Spectrally Enhanced Lighting Spectrally Enhanced Lighting New and Underutilized Technology: Spectrally Enhanced Lighting October 4, 2013 - 4:50pm Addthis The following information outlines key deployment considerations for spectrally enhanced lighting within the Federal sector. Benefits U.S. Department of Energy (DOE) research studies show that simply shifting the color of fluorescent lamps from the warmer yellow to the cooler blue end of the color spectrum allows people to see things more clearly and for spaces to appear brighter. By changing the light color to be more like daylight, lighting levels can be reduced to save energy while still achieving the same visual acuity. Conventional practices use lamps with correlated color temperature (CCT) of 3,000K to 4,100K. Spectrally enhanced lighting uses lamps with a CCT of

474

--No Title--  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

alike can also reduce power demand, and thus carbon emissions, by replacing the incandescent bulbs in their homes with energy-saving compact fluorescent bulbs. That's a handy...

475

--No Title--  

Broader source: Energy.gov (indexed) [DOE]

out fixtures to accommodate compact fluorescent bulbs instead of relying on incandescent bulbs. Energy Efficiency and Conservation Block Grants Native Village of Stevens...

476

CX-000137: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

out fixtures to accommodate compact fluorescent bulbs instead of relying on incandescent bulbs. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-000137.pdf More Documents &...

477

--No Title--  

Broader source: Energy.gov (indexed) [DOE]

the funding permits. Residences for the retrofits will be selected based on need. Incandescent bulbs would be replaced with compact fluorescent bulbs. Power consumption would be...

478

Laser remote sensing of backscattered light from a target sample  

DOE Patents [OSTI]

A laser remote sensing apparatus comprises a laser to provide collimated excitation light at a wavelength; a sensing optic, comprising at least one optical element having a front receiving surface to focus the received excitation light onto a back surface comprising a target sample and wherein the target sample emits a return light signal that is recollimated by the front receiving surface; a telescope for collecting the recollimated return light signal from the sensing optic; and a detector for detecting and spectrally resolving the return light signal. The back surface further can comprise a substrate that absorbs the target sample from an environment. For example the substrate can be a SERS substrate comprising a roughened metal surface. The return light signal can be a surface-enhanced Raman signal or laser-induced fluorescence signal. For fluorescence applications, the return signal can be enhanced by about 10.sup.5, solely due to recollimation of the fluorescence return signal. For SERS applications, the return signal can be enhanced by 10.sup.9 or more, due both to recollimation and to structuring of the SERS substrate so that the incident laser and Raman scattered fields are in resonance with the surface plasmons of the SERS substrate.

Sweatt, William C. (Albuquerque, NM); Williams, John D. (Albuquerque, NM)

2008-02-26T23:59:59.000Z

479

Putting energy-efficient lighting in its place  

SciTech Connect (OSTI)

This article describes the marketing and the public acceptance of compact fluorescent lamps (CFL). Topics include how lighting products are or are not distributed; advertising the product; shaping the CFL, what customer buys; and how marketing needs to change. 4 refs., 1 tab.

Polsby, E.

1994-11-01T23:59:59.000Z

480

Incoherent Energy Transfer within Light-harvesting Complexes  

E-Print Network [OSTI]

Rate equations are used to model spectroscopic observation of incoherent energy transfer in light-harvesting antenna systems based upon known structures. A two-parameter two-dimensional model is proposed. The transfer rates obtained, by matching the fluorescent decay, are self-consistent within our model.

Juhi-Lian Julian Ting

1999-04-24T23:59:59.000Z

Note: This page contains sample records for the topic "fluorescent light bulb" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Light Bodies: Exploring Interactions with Responsive Lights  

E-Print Network [OSTI]

reinterpretation of street lighting. Before fixed infrastructure illuminated cities at night, people carried Urban street lighting today is a networked, fixed infrastructure that relies on the electrical grid. WeLight Bodies: Exploring Interactions with Responsive Lights Susanne Seitinger MIT Media Laboratory

Hunt, Galen

482

PEVELOPMENT OF FLUORESCENCE LIFETIME DIAGNOSTIC  

Office of Scientific and Technical Information (OSTI)

4 4 PEVELOPMENT OF FLUORESCENCE LIFETIME DIAGNOSTIC w I Project Accomplishments Summary (Attachment I) CRADA NO. TSB-1449-97 Date: U 1 8 1 9 8 Revision: 1 A . Parties The project is a relationship between the Lawrence Livennore National Laboratoq (LLNL) and Optiphase, Inc. University of California Lawrence Livermore National Laboratory 7000 East Avenue, L-399 Livermore, CA 94550 Optiphase, h c 7652 Haskell Ave. Van Nuys, CA 91406 Technical Contact - D r . Pepe Davis (8 18)782-0997ext 1 12 B . Background Fiber-optic-based sensors are excellent candidates for detecting the presence and monitoring the levels of degradation products in stockpiled weapons. Specifically, fl uorescence-based sensors are extremely sensitive, can have high specificity for compounds of interest, and are "e~ectrically

483

Using Superfolder Green Fluorescent Protein for Periplasmic Protein Localization Studies  

Science Journals Connector (OSTI)

...Microbial Cell Biology Using Superfolder Green Fluorescent Protein for Periplasmic Protein...hampered by problems with the export of green fluorescent protein (GFP). Here we show...problems with the export of functional green fluorescent protein (GFP) (9). When...

Thuy Dinh; Thomas G. Bernhardt

2011-07-15T23:59:59.000Z

484

Near-Infrared Fluorescent 9-Phenylethynylpyronin Analogues for Bioimaging  

Science Journals Connector (OSTI)

The syntheses and biological applications of two novel fluorescent 9-phenylethynylpyronin analogues containing either carbon or silicon at the position 10 are reported. Both fluorescent probes exhibited a relatively strong fluorescence in methanol and ...

Tom Pastierik; Peter ebej; Ji?ina Medalov; Peter tacko; Petr Kln

2014-03-31T23:59:59.000Z

485

McMinnville Water and Light - Commercial Energy Efficiency Rebate Programs  

Broader source: Energy.gov (indexed) [DOE]

McMinnville Water and Light - Commercial Energy Efficiency Rebate McMinnville Water and Light - Commercial Energy Efficiency Rebate Programs McMinnville Water and Light - Commercial Energy Efficiency Rebate Programs < Back Eligibility Commercial Industrial Savings Category Appliances & Electronics Commercial Lighting Lighting Manufacturing Program Info State Oregon Program Type Utility Rebate Program Rebate Amount McMinnville Water and Light Company Provider McMinnville Water and Light McMinnville Water and Light Company offers a variety of rebates for commercial and industrial customers to make energy efficient improvements to eligible facilities. MW&L offers rebates in three categories: Lighting retrofits, motor replacements, and process efficiency. Past lighting projects have included fluorescent lighting retrofits, mercury vapor

486

DETECTING UV LIGHT To demonstrate the existence of light invisible to our eyes by making a bracelet from  

E-Print Network [OSTI]

, these rays can be detected in other ways. X rays, for instance, change the color of photographic film. So the film. The beads in this activity work like X-ray film. They contain pigments that change color when, such as a desk lamp, an overhead projector, or fluorescent lights in the classroom. If you have a window in your

487

The study of charge transport through organic thin films: mechanism, tools and applications  

Science Journals Connector (OSTI)

...111816 Hutchison, K , J Gao, G Schick, Y Rubin, and F Wudl1999Bucky light bulbs: white light electroluminescence from a fluorescent C60 adduct-single layer organic LED. J. Am. Ceram. Soc. 121, 5611 Joachim, C 1999Electron transport through...

2007-01-01T23:59:59.000Z

488

Modeling of dimmable High Power LED illumination distribution using ANFIS on the isolated area  

Science Journals Connector (OSTI)

High power light emitting diodes (HP-LEDs) are more suitable for energy saving applications and have becoming replacing traditional fluorescent and incandescent bulbs for its energy efficient. Therefore, HP-LED lighting has been regarded in the next-generation ... Keywords: ANFIS, High Power LED, Illumination distribution

?smail Kiyak; Vedat Topuz; Blent Oral

2011-09-01T23:59:59.000Z

489

1876 IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 18, NO. 17, SEPTEMBER 1, 2006 Photonic Crystal Structure Effect on the Enhancement  

E-Print Network [OSTI]

or fluorescent light bulbs with HB LEDs. High efficiency HB LED light sources could provide for a reduction Structure Effect on the Enhancement in the External Quantum Efficiency of a Red LED Taesung Kim, Paul O-emitting diode (LED) from photonic crystal (PhC) hole patterns was investigated. A red LED was chosen because its

Choquette, Kent

490

Third Level Trigger for the Fluorescence Telescopes of the Pierre Auger Observatory  

E-Print Network [OSTI]

The trigger system for the Auger fluorescence telescopes is implemented in hard- and software for an efficient selection of fluorescence light tracks induced by high-energy extensive air showers. The algorithm of the third stage uses the multiplicity signal of the hardware for fast rejection of lightning events with above 99% efficiency. In a second step direct muon hits in the camera and random triggers are rejected by analyzing the space-time correlation of the pixels. The trigger algorithm was tested with measured and simulated showers and implemented in the electronics of the fluorescence telescopes. A comparison to a prototype trigger without multiplicity shows the superiority of this approach, e.g. the false rejection rate is a factor 10 lower.

A. Schmidt; T. Asch; H. Gemmeke; M. Kleifges; H. -J. Mathes; A. Menshikov; F. Schssler; D. Tcherniakhovski

2008-08-01T23:59:59.000Z

491

Third Level Trigger for the Fluorescence Telescopes of the Pierre Auger Observatory  

E-Print Network [OSTI]

The trigger system for the Auger fluorescence telescopes is implemented in hard- and software for an efficient selection of fluorescence light tracks induced by high-energy extensive air showers. The algorithm of the third stage uses the multiplicity signal of the hardware for fast rejection of lightning events with above 99% efficiency. In a second step direct muon hits in the camera and random triggers are rejected by analyzing the space-time correlation of the pixels. The trigger algorithm was tested with measured and simulated showers and implemented in the electronics of the fluorescence telescopes. A comparison to a prototype trigger without multiplicity shows the superiority of this approach, e.g. the false rejection rate is a factor 10 lower.

Schmidt, A; Gemmeke, H; Kleifges, M; Mathes, H -J; Menchikov, A; Schssler, F; Tcherniakhovski, D

2008-01-01T23:59:59.000Z

492

Building Technologies Office: Fluorescent and Incandescent Lamps Public  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fluorescent and Fluorescent and Incandescent Lamps Public Meeting to someone by E-mail Share Building Technologies Office: Fluorescent and Incandescent Lamps Public Meeting on Facebook Tweet about Building Technologies Office: Fluorescent and Incandescent Lamps Public Meeting on Twitter Bookmark Building Technologies Office: Fluorescent and Incandescent Lamps Public Meeting on Google Bookmark Building Technologies Office: Fluorescent and Incandescent Lamps Public Meeting on Delicious Rank Building Technologies Office: Fluorescent and Incandescent Lamps Public Meeting on Digg Find More places to share Building Technologies Office: Fluorescent and Incandescent Lamps Public Meeting on AddThis.com... About Standards & Test Procedures Implementation, Certification & Enforcement

493

Fluorescent Silica Nanoparticles with Efficient Urinary Excretion for Nanomedicine  

Science Journals Connector (OSTI)

Fluorescent Silica Nanoparticles with Efficient Urinary Excretion for Nanomedicine ... The emerging nanomedicine landscape ... Core-shell silica nanoparticles as fluorescent labels for nanomedicine ...

Andrew A. Burns; Jelena Vider; Hooisweng Ow; Erik Herz; Oula Penate-Medina; Martin Baumgart; Steven M. Larson; Ulrich Wiesner; Michelle Bradbury

2008-12-19T23:59:59.000Z

494

Excitation-emission spectra and fluorescence quantum yields for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Excitation-emission spectra and fluorescence quantum yields for fresh and aged biogenic secondary organic aerosols. Excitation-emission spectra and fluorescence quantum yields for...

495

2014-10-14 Issuance: Test Procedures Correction for Fluorescent...  

Broader source: Energy.gov (indexed) [DOE]

10-14 Issuance: Test Procedures Correction for Fluorescent Lamp Ballasts; Notice of Proposed Rulemaking 2014-10-14 Issuance: Test Procedures Correction for Fluorescent Lamp...

496

Single molecule fluorescence in rectangular nano-apertures  

Science Journals Connector (OSTI)

Fluorescence Correlation Spectroscopy is used to investigate fluorescent molecules in solution diffusing in subwavelength rectangular apertures milled in Aluminium films. This...

Wenger, Jrme; Lenne, Pierre-Franois; Popov, Evgueni; Rigneault, Herv; Dintinger, Jos; Ebbesen, Thomas

2005-01-01T23:59:59.000Z

497

Architectural Lighting Analysis in Virtual Lighting Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Architectural Lighting Analysis in Virtual Lighting Laboratory Architectural Lighting Analysis in Virtual Lighting Laboratory Speaker(s): Mehlika Inanici Date: July 7, 2003 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Satkartar K. Kinney Virtual Lighting Laboratory is a Radiance-based lighting analysis tool and methodology that proposes transformations in the utilization of computer visualization in lighting analysis and design decision-making. It is a computer environment, where the user has been provided with matrices of illuminance and luminance values extracted from high dynamic range images. The principal idea is to provide the laboratory to the designer and researcher to explore various lighting analysis techniques instead of imposing limited number of predetermined metrics. In addition, it introduces an analysis approach for temporal and spatial lighting

498

High Efficiency, Illumination Quality OLEDs for Lighting  

SciTech Connect (OSTI)

The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown. In 2003, a large area, OLED based illumination source was demonstrated that could provide light with a quality, quantity, and efficiency on par with what can be achieved with traditional light sources. The demonstration source was made by tiling together 16 separate 6-inch x 6-inch blue-emitting OLEDs. The efficiency, total lumen output, and lifetime of the OLED based illumination source were the same as what would be achieved with an 80 watt incandescent bulb. The devices had an average efficacy of 15 LPW and used solution-processed OLEDs. The individual 6-inch x 6-inch devices incorporated three technology strategies developed specifically for OLED lighting -- downconversion for white light generation, scattering for outcoupling efficiency enhancement, and a scalable monolithic series architecture to enable large area devices. The downconversion approach consists of optically coupling a blue-emitting OLED to a set of luminescent layers. The layers are chosen to absorb the blue OLED emission and then luminescence with high efficiency at longer wavelengths. The composition and number of layers are chosen so that the unabsorbed blue emission and the longer wavelength re-emission combine to make white light. A downconversion approach has the advantage of allowing a wide variety of colors to be made from a limited set of blue emitters. In addition, one does not have to carefully tune the emission wavelength of the individual electro-luminescent species within the OLED device in order to achieve white light. The downconversion architecture used to develop the 15LPW large area light source consisted of a polymer-based blue-emitting OLED and three downconversion layers. Two of the layers utilized perylene based dyes from BASF AG of Germany with high quantum efficiency (>98%) and one of the layers consisted of inorganic phosphor particles (Y(Gd)AG:Ce) with a quantum efficiency of {approx}85%. By independently varying the optical density of the downconversion layers, the overall emission spectrum could be adjusted to maximize performance for lighting (e.g. blackbody temp

Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

2008-03-31T23:59:59.000Z

499

Brnsted Acid Cocatalysts in Photocatalytic Radical Addition of ?-Amino CH Bonds across Michael Acceptors  

Science Journals Connector (OSTI)

Unless otherwise noted, reactions were conducted using 2 mol % of Ru(bpy)3Cl2 and 1 equiv of additive in degassed MeCN (0.25 M) and were irradiated using a 23 W compact fluorescent light bulb at a distance of 30 cm. ... In addition, these conditions utilize a commercially available Ru(bpy)32+ photocatalyst in place of the more precious iridium chromophore and a standard household light bulb in place of a high-intensity monochromatic blue LED strip. ... properties of these complexes, these new transformations, which use Ru(bpy)32+ and related photocatalysts, can be conducted using almost any source of visible light, including both store-bought fluorescent light bulbs and ambient sunlight. ...

Laura Ruiz Espelt; Eric M. Wiensch; Tehshik P. Yoon

2013-03-28T23:59:59.000Z

500

Neptun Light: Proposed Penalty (2012-SE-3504) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Neptun Light: Proposed Penalty (2012-SE-3504) Neptun Light: Proposed Penalty (2012-SE-3504) Neptun Light: Proposed Penalty (2012-SE-3504) May 2, 2013 DOE alleged in a Notice of Proposed Civil Penalty that Neptun Light, Inc. failed to certify a variety of medium base compact fluorescent lamps as compliant with the applicable energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Neptun Light: Proposed Penalty (2012-SE-3504) More Documents & Publications Neptun Light: Order (2012-SE-3504) Excellence Opto: Proposed Penalty (2013-CE-49002)