Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fluorescent high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

X-ray Methods in High-Intensity Discharges and Metal-Halide Lamps: X-ray Induced Fluorescence  

SciTech Connect

We describe the use of x-ray induced fluorescence to study metal-halide high-intensity discharge lamps and to measure equilibrium vapor pressures of metal-halide salts. The physical principles of metal-halide lamps, relevant aspects of x-ray-atom interactions, the experimental method using synchrotron radiation, and x-ray induced fluorescence measurements relevant to metal-halide lamps are covered.

Curry, John J.; Lapatovich, Walter P.; Henins, Albert (NIST)

2011-12-09T23:59:59.000Z

2

High-Intensity Discharge Lighting  

Energy.gov (U.S. Department of Energy (DOE))

High-intensity discharge (HID) lighting provides the highest efficacy and longest service life of any lighting type. It can save 75%-90% of lighting energy when it replaces incandescent lighting.

3

Assessment of Electrical, Efficiency, and Photometric Performance of Advanced Lighting Technologies: Dimmable Advanced Lighting Tech nologies -- Electronic Fluorescent, High-Intensity Discharge, and Light-Emitting Diode  

Science Conference Proceedings (OSTI)

This EPRI Technical Report is a compilation of four technical updates that address the basic dimming performance of advanced lighting sources: EPRI report 1018476 for linear fluorescent ballasts, 1018477 for hot and cold cathode compact fluorescent lamps, 1018479 for electronic high-intensity discharge (HID) ballasts, and 1018480 for light-emitting diode (LED) lighting. Chapter 1 provides a discussion of basic lighting control, the importance of considering power quality in lighting control, lighting con...

2008-12-22T23:59:59.000Z

4

,,,"Incandescent","Standard Fluorescent","Compact Fluorescent","High-Intensity Discharge","Halogen"  

U.S. Energy Information Administration (EIA) Indexed Site

B39. Lighting Equipment, Floorspace, 1999" B39. Lighting Equipment, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Lit Buildings","Lighting Equipment (more than one may apply)" ,,,"Incandescent","Standard Fluorescent","Compact Fluorescent","High-Intensity Discharge","Halogen" "All Buildings ................",67338,64321,38156,60344,20666,19223,17926 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5859,2946,5154,738,245,600 "5,001 to 10,000 ..............",8238,7464,4047,6722,1108,663,991 "10,001 to 25,000 .............",11153,10393,6055,9815,1759,1701,1996 "25,001 to 50,000 .............",9311,9053,5004,8344,2296,2224,1611

5

Electronic High-Intensity Discharge Lighting  

Science Conference Proceedings (OSTI)

This EPRI Technical Update addresses the most promising controllable energy efficient light source electronic high-intensity discharge (HID) lighting. Business and technical market factors (Chapter 2) explain the upcoming growth of the HID lamp and electronic HID ballast market. Future technical improvements are emphasized along with discussion of the importance of utility involvement in helping their customers make the switch from magnetically-ballasted HID lighting to higher efficiency electronic HID l...

2007-12-21T23:59:59.000Z

6

High intensity discharge device containing oxytrihalides  

DOE Patents (OSTI)

A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO.sub.2, with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube.

Lapatovich, Walter P. (Hudson, MA); Keeffe, William M. (Rockport, MA); Liebermann, Richard W. (Danvers, MA); Maya, Jakob (Brookline, MA)

1987-01-01T23:59:59.000Z

7

High intensity discharge device containing oxytrihalides  

DOE Patents (OSTI)

A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO[sub 2], with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube. 7 figs.

Lapatovich, W.P.; Keeffe, W.M.; Liebermann, R.W.; Maya, J.

1987-06-09T23:59:59.000Z

8

High-Intensity Discharge Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High-Intensity Discharge Lighting Basics High-Intensity Discharge Lighting Basics High-Intensity Discharge Lighting Basics August 15, 2013 - 5:59pm Addthis High-intensity discharge (HID) lighting provides the highest efficacy and longest service life of any lighting type. It can save 75%-90% of lighting energy when it replaces incandescent lighting. Illustration of a high-intensity discharge (HID) lIllustration amp. The lamp is a tall cylindrical shape, and a cutout of the outer tube shows the materials inside. A long, thin cylinder called the arc tube runs through the lamp between two electrodes. The space around the arc tube is labeled as a vacuum. In a high-intensity discharge lamp, electricity arcs between two electrodes, creating an intensely bright light. Mercury, sodium, or metal halide gas

9

Max Tech and Beyond: High-Intensity Discharge Lamps  

Science Conference Proceedings (OSTI)

High-intensity discharge (HID) lamps are most often found in industrial and commercial applications, and are the light source of choice in street and area lighting, and sports stadium illumination. HID lamps are produced in three types - mercury vapor (MV), high pressure sodium (HPS) and metal halide (MH). Of these, MV and MH are considered white-light sources (although the MV exhibits poor color rendering) and HPS produces a yellow-orange color light. A fourth lamp, low-pressure sodium (LPS), is not a HID lamp by definition, but it is used in similar applications and thus is often grouped with HID lamps. With the notable exception of MV which is comparatively inefficient and in decline in the US from both a sales and installed stock point of view; HPS, LPS and MH all have efficacies over 100 lumens per watt. The figure below presents the efficacy trends over time for commercially available HID lamps and LPS, starting with MV and LPS in 1930's followed by the development of HPS and MH in the 1960's. In HID lamps, light is generated by creating an electric arc between two electrodes in an arc tube. The particles in the arc are partially ionized, making them electrically conductive, and a light-emitting 'plasma' is created. This arc occurs within the arc tube, which for most HID lamps is enclosed within an evacuated outer bulb that thermally isolates and protects the hot arc tube from the surroundings. Unlike a fluorescent lamp that produces visible light through down-converting UV light with phosphors, the arc itself is the light source in an HID lamp, emitting visible radiation that is characteristic of the elements present in the plasma. Thus, the mixture of elements included in the arc tube is one critical factor determining the quality of the light emitted from the lamp, including its correlated color temperature (CCT) and color rendering index (CRI). Similar to fluorescent lamps, HID lamps require a ballast to start and maintain stable operating conditions, and this necessitates additional power beyond that used by the lamp itself. HID lamps offer important advantages compared to other lighting technologies, making them well suited for certain applications. HID lamps can be very efficient, have long operating lives, are relatively temperature-insensitive and produce a large quantity of light from a small package. For these reasons, HID lamps are often used when high levels of illumination are required over large areas and where operating and maintenance costs must be kept to a minimum. Furthermore, if the installation has a significant mounting height, high-power HID lamps can offer superior optical performance luminaires, reducing the number of lamps required to illuminate a given area. The indoor environments best suited to HID lamps are those with high ceilings, such as those commonly found in industrial spaces, warehouses, large retail spaces, sports halls and large public areas. Research into efficacy improvements for HID lighting technologies has generally followed market demand for these lamps, which is in decline for MV and LPS, has reached a plateau for HPS and is growing for MH. Several manufacturers interviewed for this study indicated that although solid-state lighting was now receiving the bulk of their company's R&D investment, there are still strong HID lamp research programs, which concentrate on MH technologies, with some limited amount of investment in HPS for specific niche applications (e.g., agricultural greenhouses). LPS and MV lamps are no longer being researched or improved in terms of efficacy or other performance attributes, although some consider MH HID lamps to be the next-generation MV lamp. Thus, the efficacy values of commercially available MV, LPS and HPS lamps are not expected to increase in the next 5 to 10 years. MH lamps, and more specifically, ceramic MH lamps are continuing to improve in efficacy as well as light quality, manufacturability and lamp life. Within an HID lamp, the light-producing plasma must be heated to sufficiently high temperatures to achieve high efficiencie

Scholand, Michael

2012-04-01T23:59:59.000Z

10

Assessment of Electrical, Efficiency, and Photometric Performance of Advanced Lighting Sources: Dimmable Advanced Lighting Technolog ies -- Electronic High-Intensity Discharge Ballasts  

Science Conference Proceedings (OSTI)

This EPRI Technical Update addresses the dimming performance of electronic high-intensity discharge (HID) ballasts. Chapter 1 provides a discussion of basic lighting control, the importance of considering power quality in lighting control, lighting control methods and parameters, and the advantages and future of lighting control. Chapter 2 addresses in more depth the dimming methods used in advanced lighting sources and controls for incandescent, fluorescent, high-intensity discharge (HID) and light-emit...

2008-12-18T23:59:59.000Z

11

400-Watt Electronic High-Bay Fixture for Metal-Halide High-Intensity Discharge Lighting  

Science Conference Proceedings (OSTI)

The product under assessment is an advanced lighting technology8212a 400-watt, metal-halide, electronic high-intensity discharge (HID) ballast technology designed to be operated as a stand-alone ballast or integrated as a fixture where the ballast becomes part of the fixture mechanical support system.

2008-06-12T23:59:59.000Z

12

High intensity discharge 400-watt sodium ballast. Phase I. Final report  

SciTech Connect

The results of a research and development program directed toward design, test, and evaluation of energy efficient High Intensity Discharge (HID) Solid State 400-Watt Ballast lighting system are reported. Phase I of the project which was designed to modify the existing Datapower ballast to LBL configuration, measure performance characteristics, and compare efficiency with a core/coil ballast including energy loss analysis is covered. In addition, Datapower was tasked to build six (6) prototype 400-Watt High Pressure Sodium Ballasts for verification tests by an independent test facility and follow-on performance and life tests at LBL.

Felper, G.

1980-06-01T23:59:59.000Z

13

High-intensity-discharger 400-W sodium ballast. Phase II. Final report  

SciTech Connect

A research and development program directed toward design, test, and evaluation of an energy efficient High Intensity Discharge (HID) Solid-State 400 Watt Ballast lighting system was undertaken. Under Phase I of the project, the existing ballast was modified, performance characteristics were measured, efficiency was compared with a core/coil ballast including energy loss analysis. Six (6) prototype 400 W High Pressure Sodium Ballasts were built, for verification tests by an independent test facility prior to follow-on performance and life tests. This report covers Phase II of the project which was designed to make test data comparisons on results received from the independent test laboratory, determine methods to increase ballast efficiency, determine the importance of power factors, conduct bulb life tests, perform specification review, performance versus cost analysis, investigate the ballast to determine compliance with new FCC requirement, and determine a line transient specification in respect to solid state ballasting. In addition, Phase II required reliability testing, a manufacturing test plan, a marketing study for solid-state ballast, and the manufacture and delivery of fifteen (15) demonstration ballast units to LBL. These requirements are discussed.

Felper, G.

1981-10-01T23:59:59.000Z

14

High intensity discharge lamp self-adjusting ballast system sensitive to the radiant energy or heat of the lamp  

SciTech Connect

This patent describes a self-adjusting ballast system for mercury vapor, high intensity discharge lamps having outputs of 100 watts or greater, comprising: a direct current source; a lamp circuit containing a high intensity discharge lamp; sensing means for sensing the radiant energy output of the lamp; a pulse width modulator which, in response to the output of the sensing means, varies the width of the pulses that power the lamp during warm-up of the lamp; a high frequency oscillator; a DC to AC converter that converts current from the direct source to pulses of alternating current for powering the lamp, the converter comprising: at least one switch for gating current to the lamp; a switch control means, responsive to the high frequency oscillator, for controlling the switch and controlling the frequency of the alternating current pulses that power the lamp; current sensing means for sensing the current being supplied to the lamp; and current control means for limiting the current through the lamp to a predetermined safe level when the current sensed by the current sensing means exceeds a reference value.

Kuhnel, D.S.; Ottenstein, S.A.

1987-07-21T23:59:59.000Z

15

Contribution to the numerical study of turbulence in high intensity discharge lamps  

SciTech Connect

We present in this paper a comparison between results obtained with a laminar and turbulent models for high-pressure mercury arc. The two models are based on the resolution of bidimensional time-dependent equations by a semi-implicit finite-element code. The numerical computation of turbulent model is solved with large eddy simulation model; this approach takes into account the various scales of turbulence by a filtering method on each scale. The results show the quantitative influence of turbulence on the flow fields and also the difference between laminar and turbulent effects on the dynamic thermal behaviour and on the characteristics of the discharge.

Kaziz, S.; Ben Ahmed, R.; Helali, H.; Gazzah, H.; Charrada, K. [Unite d'Etude des Milieux Ionises et Reactifs, IPEIM, 5019 route de Kairouan Monastir (Tunisia)

2011-07-15T23:59:59.000Z

16

High-intensity discharge (HID) solid-state ballast program: engineering development report. Phase II  

SciTech Connect

A high frequency (28 to 31/sup 0/K Hz) electronic current source (ballast) designed to drive a 200 watt 100 volt sodium vapor gas discharge lamp is described. A resonant switching power amplifier system utilizing a novel constant power feedback loop is employed to maintain the lamp input power constant within two percent via changes due to lamp aging etc. The lamp input power and therefore the light output is adjustable from 50 to 100 percent of rated power. A input (electronic filter) inverter, changes the 277 volts alternating voltage input to a regulated direct current (DC) voltage used to power the output stage. The inverter reflects, a essentially unity power factor load to the power input source at all times.

Carlson, R.S.

1983-12-01T23:59:59.000Z

17

Atomic gas temperature in a nonequilibrium high-intensity discharge lamp determined from the red wing of the resonance mercury line 254 nm  

Science Conference Proceedings (OSTI)

For developing low-wattage high intensity discharge (HID) lamps, a better understanding of the relatively unexplored nonequilibrium phenomena is essential. This needs interpretation of diagnostic results by methods free from equilibrium assumptions. In this paper, the atomic temperature is determined from the simulation of a quasistatic broadened resonance line by distinguishing between atomic temperature and excitation temperature in the equation of radiative transfer. The proposed method is applied to the red wing of the resonance mercury line 254 nm emitted from a HID lamp working on ac. The experimental results show severe deviation from local thermodynamic equilibrium. More than one thousand degrees difference was obtained between atomic and electron temperatures at the maximum current phase.

Drakakis, E. [Technological Educational Institute, Department of Electrical Engineering, 71004 Heraklion (Greece); Karabourniotis, D. [Institute of Plasma Physics, Department of Physics, University of Crete, 71003 Heraklion (Greece)

2012-09-01T23:59:59.000Z

18

High intensity hadron accelerators  

SciTech Connect

This rapporteur report consists mainly of two parts. Part I is an abridged review of the status of all High Intensity Hadron Accelerator projects in the world in semi-tabulated form for quick reference and comparison. Part II is a brief discussion of the salient features of the different technologies involved. The discussion is based mainly on my personal experiences and opinions, tempered, I hope, by the discussions I participated in in the various parallel sessions of the workshop. In addition, appended at the end is my evaluation and expression of the merits of high intensity hadron accelerators as research facilities for nuclear and particle physics.

Teng, L.C.

1989-05-01T23:59:59.000Z

19

Energy Basics: High-Intensity Discharge Lighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and longest service life of any lighting type. It can save 75%-90% of lighting energy when it replaces incandescent lighting. HID lamps use an electric arc to produce...

20

Transverse instability in high intensity proton rings  

SciTech Connect

In recent years, many applications are being considered for low energy high intensity proton synchrotrons. Most high intensity proton rings are at low energy below transition. Several aspects of the beam dynamics of this kind of rings are different from the electron or high energy rings. The transverse microwave instabilities will be discussed in this article.

Zhang, S.Y.; Weng, W.T.

1997-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "fluorescent high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Max Tech and Beyond: High-Intensity Discharge Lamps  

E-Print Network (OSTI)

demonstration (like street lights) and commercialization andthe dominant light source for street and roadway lighting,has been a popular light source for street lighting because

Scholand, Michael

2012-01-01T23:59:59.000Z

22

Max Tech and Beyond: High-Intensity Discharge Lamps  

E-Print Network (OSTI)

presents the national energy consumption profile for HIDVolume I: National Lighting Inventory and Energy Consumption

Scholand, Michael

2012-01-01T23:59:59.000Z

23

Max Tech and Beyond: High-Intensity Discharge Lamps  

E-Print Network (OSTI)

the reason industry started by developing ceramic MH lampsceramic metal halide lamps, which are the focus of industry’industry had invested in the development of very low wattage ceramic

Scholand, Michael

2012-01-01T23:59:59.000Z

24

Very high efficacy electrodeless high intensity discharge lamps  

DOE Patents (OSTI)

An electrodeless arc lamp comprises an outer jacket hermetically sealing and thermally protecting an arc tube inside which has an upwardly convex bottom center section. The absence of chemically reactive electrode material makes it possible to use metal halides other than iodides. The tube contains chlorides, bromides or a mixture thereof of scandium and sodium in a nearly equimolar relationship in addition to mercury and an inert gas. Good color balance can be obtained at reduced reservoir temperature and with less power loss. Reduction in wall temperature makes it possible to attain longer lamp life.

Johnson, P.D.

1985-10-03T23:59:59.000Z

25

STABILIZED HIGH INTENSITY SOURCE OF 80 kv  

SciTech Connect

With the change of the current load from 0 to 2.5 mamp and simultaneous change of incoming intensity from 270 to 190 v, the stabilized high-intensity source changes less than l%.. The stabilized intensity can be arranged in steps of 5 kv from 60 to 80 kv. The high-intensity stabilizer automatically switches on upon reaching 60 kv. (tr-auth)

Polivanov, V.V.; Izyurov, A.V.; Pyatakov, N.I.

1959-09-01T23:59:59.000Z

26

Very high intensity reaction chamber design  

SciTech Connect

The problem of achieving very high intensity irradiation by light in minimal regions was studied. Three types of irradiation chamber are suggested: the common laser-reaction chamber, the folded concentric or near-concentric resonator, and the asymmetric confocal resonator. In all designs the ratio of high-intensity illuminated volume to other volume is highly dependent (to the $sup 3$/$sub 2$ power) on the power and fluence tolerances of optical elements, primarily mirrors. Optimization of energy coupling is discussed for the common cavity. For the concentric cavities, optimization for both coherent and incoherent beams is treated. Formulae and numerical examples give the size of chambers, aspect ratios, maximum pass number, image sizes, fluences, and the like. Similarly for the asymmetric confocal chamber, formulae and numerical examples for fluences, dimensions, losses, and totally contained pass numbers are given. (auth)

Devaney, J.J.

1975-09-01T23:59:59.000Z

27

A Plasma Lens for High Intensity Laser Focusing  

SciTech Connect

A plasma lens based on a short hydrogen-filled alumina capillary discharge is experimentally characterized. For a plasma length of about 5mm, the focal length, measured from the plasma entrance, was {approx} 11 to 8mm for on axis densities of {approx} 2.5 to 5 x 1018cm-3, respectively. The plasma temperature away from the walls of the 1/2mm diameter capillary was estimated to be {approx} 8eV indicating that the plasma is fully ionized. Such a lens should thus be suitable for focusing very high intensity pulses. Comparisons of the measured focusing strength to that predicted by a first-order fluid model [N. A. Bobrova, et al., Phys. Rev. E 65, 016407 (2002)] shows reasonable agreement given that some of the observed plasma parameters are not predicted by this model.

Fang, F.; Clayton, C. E.; Marsh, K. A.; Joshi, C. [UCLA Department of Electrical Engineering, Los Angeles, CA, 90095 (United States); Lopes, N. C. [Grupo de Lasers e Plasmas, ESuperior Tecnico, Lisbon (Portugal); Ito, H. [Utsunomiya University, 7-1-2 Yoto, Utsunomiya City, Zip 321-8585 (Japan)

2006-11-27T23:59:59.000Z

28

High intensity performance of the Brookhaven AGS  

SciTech Connect

Experience and results from recent high intensity proton running periods of the Brookhaven AGS, during which a record intensity for a proton synchrotron of 6.3 x 10{sup 13} protons/pulse was reached, is presented. This high beam intensity allowed for the simultaneous operation of three high precision rare kaon decay experiments. The record beam intensities were achieved after the 1.5 GeV Booster was commissioned and a transition jump system, a powerful transverse damper, and an rf upgrade in the AGS were completed. Recently even higher intensity proton synchrotrons are studied for neutron spallation sources or proton driver for a muon collider. Implications of the experiences from the AGS to these proposals and also possible future upgrades for the AGS are discussed.

Brennan, J.M.; Roser, T.

1996-07-01T23:59:59.000Z

29

AGS RESONANT EXTRACTION WITH HIGH INTENSITY BEAMS.  

SciTech Connect

The Brookhaven AGS third integer resonant extraction system allows the AGS to provide high quality, high intensity 25.5 GeV/c proton beams simultaneously to four target stations and as many as 8 experiments. With the increasing intensities (over 7 x 10{sup 13} protons/pulse) and associated longer spill periods (2.4 to 3 seconds long), we continue to run with low losses and high quality low modulation continuous current beams.[1] Learning to extract and transport these higher intensity beams has required a process of careful modeling and experimentation. We have had to learn how to correct for various instabilities and how to better match extraction and the transport lines to the higher emittance beams being accelerated in the AGS. Techniques employed include ''RF'' methods to smooth out momentum distributions and fine structure. We will present results of detailed multi-particle tracking modeling studies which enabled us to develop a clear understanding of beam loss mechanisms in the transport and extraction process. We will report on our status, experiences, and the present understanding of the intensity limitations imposed by resonant extraction and transport to fixed target stations.

AHRENS,L.; BROWN,K.; GLENN,J.W.; ROSER,T.; TSOUPAS,N.; VANASSELT,W.

1999-03-29T23:59:59.000Z

30

ELECTRON CLOUD EFFECTS IN HIGH INTENSITY PROTON ACCELERATORS.  

SciTech Connect

One of the primary concerns in the design and operation of high-intensity proton synchrotrons and accumulators is the electron cloud and associated beam loss and instabilities. Electron-cloud effects are observed at high-intensity proton machines like the Los Alamos National Laboratory's PSR and CERN's SPS, and investigated experimentally and theoretically. In the design of next-generation high-intensity proton accelerators like the Spallation Neutron Source ring, emphasis is made in minimizing electron production and in enhancing Landau damping. This paper reviews the present understanding of the electron-cloud effects and presents mitigation measures.

WEI,J.; MACEK,R.J.

2002-04-14T23:59:59.000Z

31

Simulations Identify Requirements for LANL's High Intensity Laser...  

NLE Websites -- All DOE Office Websites (Extended Search)

Identify Requirements for LANL's High Intensity Laser Lab cielo equip Fig. 1. Cielo is a 1.37 petaflops capability-class supercomputer installed at LANL, funded by the US DOE NNSA...

32

A New High Intensity Electron Beam for Wakefield Acceleration...  

NLE Websites -- All DOE Office Websites (Extended Search)

HIGH INTENSITY ELECTRON BEAM FOR WAKEFIELD ACCELERATION STUDIES* M.E. Conde , W. Gai, C. Jing, R. Konecny, W. Liu, J.G. Power, H. Wang, Z. Yusof ANL, Argonne, IL 60439, USA...

33

On the high intensity aspects of AGS Booster proton operation  

SciTech Connect

Observations of high intensity effects on the proton performance of the AGS Booster are presented, including present operational limits and correction methods. The transverse emittances, optimum tune working points, damping of coherent transverse oscillations and correction of stopband resonances through third-order are discussed in addition to the observed tune spread due to space charge forces. The initial longitudinal phase space distribution, capture and acceleration parameters and measurements are also given. Operational tools and strategies relevant to the high intensity setup are mentioned.

Reece, R.K.; Ahrens, L.A.; Bleser, E.J.; Brennan, J.M.; Gardner, C.; Glenn, J.W.; Roser, T.; Shoji, Y.; van Asselt, W.; Weng, W.T.

1993-06-01T23:59:59.000Z

34

On the high intensity aspects of AGS Booster proton operation  

SciTech Connect

Observations of high intensity effects on the proton performance of the AGS Booster are presented, including present operational limits and correction methods. The transverse emittances, optimum tune working points, damping of coherent transverse oscillations and correction of stopband resonances through third-order are discussed in addition to the observed tune spread due to space charge forces. The initial longitudinal phase space distribution, capture and acceleration parameters and measurements are also given. Operational tools and strategies relevant to the high intensity setup are mentioned.

Reece, R.K.; Ahrens, L.A.; Bleser, E.J.; Brennan, J.M.; Gardner, C.; Glenn, J.W.; Roser, T.; Shoji, Y.; van Asselt, W.; Weng, W.T.

1993-01-01T23:59:59.000Z

35

Drift tube suspension for high intensity linear accelerators  

DOE Patents (OSTI)

The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

Liska, D.J.; Schamaun, R.G.; Clark, D.C.; Potter, R.C.; Frank, J.A.

1980-03-11T23:59:59.000Z

36

Critical design issues of high intensity proton linacs  

SciTech Connect

Medium-energy proton linear accelerators are being studied as drivers for spallation applications requiring large amounts of beam powder. Important design factors for such high-intensity linacs are reviewed, and issues and concerns specific to this unprecedented power regime are discussed.

Lawrence, G.P.

1994-08-01T23:59:59.000Z

37

Drift tube suspension for high intensity linear accelerators  

SciTech Connect

The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.

Liska, Donald J. (Los Alamos, NM); Schamaun, Roger G. (Los Alamos, NM); Clark, Donald C. (Los Alamos, NM); Potter, R. Christopher (Los Alamos, NM); Frank, Joseph A. (Los Alamos, NM)

1982-01-01T23:59:59.000Z

38

A high-intensity plasma-sputter heavy negative ion source  

SciTech Connect

A multicusp magnetic field plasma surface ion source, normally used for H/sup /minus//ion beam formation, has been modified for the generation of high-intensity, pulsed, heavy negative ion beams suitable for a variety of uses. To date, the source has been utilized to produce mA intensity pulsed beams of more than 24 species. A brief description of the source, and basic pulsed-mode operational data, (e.g., intensity versus cesium oven temperature, sputter probe voltage, and discharge pressure), are given. In addition, illustrative examples of intensity versus time and the mass distributions of ion beams extracted from a number of samples along with emittance data, are also presented. Preliminary results obtained during dc operation of the source under low discharge power conditions suggest that sources of this type may also be used to produce high-intensity (mA) dc beams. The results of these investigations are given, as well, and the technical issues that must be addressed for this mode of operation are discussed. 15 refs., 10 figs., 2 tabs.

Alton, G.D.; Mori, Y.; Takagi, A.; Ueno, A.; Fukumoto, S.

1989-01-01T23:59:59.000Z

39

High intensity performance and upgrades at the Brookhaven AGS  

SciTech Connect

The high intensity proton beam of the AGS is used both for the slow-extracted-beam (SEB) area with many target station to produce secondary beams and the fast-extracted-beam (FEB) line used for the production of muons for the g-2 experiment and for high intensity target testing for the spallation neutron sources and muon production targets for the muon collider. The same FEB line will also be used for the transfer of beam to RHIC. The proton beam intensity in the AGS has increased steadily over the 35 year existence of the AGS, but the most dramatic increase occurred over the last couple of years with the addition of the new AGS Booster. All modifications associated with this are discussed.

Roser, T.

1998-12-01T23:59:59.000Z

40

BEAM HALO FORMATION IN HIGH-INTENSITY BEAMS.  

SciTech Connect

Studies of beam halo became unavoidable feature of high-intensity machines where uncontrolled beam loss should be kept to extremely small level. For a well controlled stable beam such a loss is typically associated with the low density halo surrounding beam core. In order to minimize uncontrolled beam loss or improve performance of an accelerator, it is very important to understand what are the sources of halo formation in a specific machine of interest. The dominant mechanisms are, in fact, different in linear accelerators, circular machines or Energy Recovering Linacs (ERL). In this paper, we summarize basic mechanisms of halo formation in high-intensity beams and discuss their application to various types of accelerators of interest, such as linacs, rings and ERL.

FEDOTOV, A.V.

2005-03-18T23:59:59.000Z

Note: This page contains sample records for the topic "fluorescent high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

HIGH INTENSITY DISCHARGE (HID) SOLID STATE BALLAST PROGRAM PHASE I FINAL REPORT  

E-Print Network (OSTI)

1·-T-· 1''-'-'-l l% Lamp Volts (ri! VGII >! IH! At ()fvolt (maximum) pulse 1 usee wide atRMS voltage is 215 Volts. For complete specifications write

Ailing, W.R.

2013-01-01T23:59:59.000Z

42

HIGH INTENSITY DISCHARGE 400-WATT SODIUM BALLAST PHASE I FINAL REPORT  

E-Print Network (OSTI)

Output as a f n of line volt volts, and the test terminated at77H312 LRL :nG. 18 LA)YLP VOLTS Unh~$$ otherwise stiHed J aU

Felper, G.

2010-01-01T23:59:59.000Z

43

A Novel Light Source Based on a RF-Driven High Intensity Discharge...  

NLE Websites -- All DOE Office Websites (Extended Search)

90-3122 Almost all the lighting news recently has been about advances in LED (Light Emitting Diode) lighting. But several companies are quietly developing new light sources that...

44

HIGH INTENSITY DISCHARGE (HID) SOLID STATE BALLAST PROGRAM PHASE I FINAL REPORT  

E-Print Network (OSTI)

quite expensive. Cost projections based on these unitsmeaningless, however, cost projections can be made based onsavings and benefit projections to the end user. Luminoptics

Ailing, W.R.

2013-01-01T23:59:59.000Z

45

ELECTRON COUD DYNAMICS IN HIGH-INTENSITY RINGS.  

SciTech Connect

Electron cloud due to beam-induced multipacting is one of the main concerns for the high intensity. Electrons generated and accumulated inside the beam pipe form an ''electron cloud'' that interacts with the circulating charged particle beam. With sizeable amount of electrons, this interaction can cause beam instability, beam loss and emittance growth. At the same time, the vacuum pressure will rise due to electron desorption. This talk intends to provide an overview of the mechanism and dynamics of the typical electron multipacting in various magnetic fields and mitigation measures with different beams.

WANG, L.; WEI, J.

2005-05-16T23:59:59.000Z

46

Computational Simulations of High Intensity X-Ray Matter Interaction  

SciTech Connect

Free electron lasers have the promise of producing extremely high-intensity short pulses of coherent, monochromatic radiation in the 1-10 keV energy range. For example, the Linac Coherent Light Source at Stanford is being designed to produce an output intensity of 2 x 10{sup 14} W/cm{sup 2} in a 230 fs pulse. These sources will open the door to many novel research studies. However, the intense x-ray pulses may damage the optical components necessary for studying and controlling the output. At the full output intensity, the dose to optical components at normal incidence ranges from 1-10 eV/atom for low-Z materials (Z < 14) at photon energies of 1 keV. It is important to have an understanding of the effects of such high doses in order to specify the composition, placement, and orientation of optical components, such as mirrors and monochromators. Doses of 10 eV/atom are certainly unacceptable since they will lead to ablation of the surface of the optical components. However, it is not precisely known what the damage thresholds are for the materials being considered for optical components for x-ray free electron lasers. In this paper, we present analytic estimates and computational simulations of the effects of high-intensity x-ray pulses on materials. We outline guidelines for the maximum dose to various materials and discuss implications for the design of optical components.

London, R A; Rionta, R; Tatchyn, R; Roessler, S

2001-08-02T23:59:59.000Z

47

CW high intensity non-scaling FFAG proton drivers  

SciTech Connect

Accelerators are playing increasingly important roles in basic science, technology, and medicine including nuclear power, industrial irradiation, material science, and neutrino production. Proton and light-ion accelerators in particular have many research, energy and medical applications, providing one of the most effective treatments for many types of cancer. Ultra high-intensity and high-energy (GeV) proton drivers are a critical technology for accelerator-driven sub-critical reactors (ADS) and many HEP programs (Muon Collider). These high-intensity GeV-range proton drivers are particularly challenging, encountering duty cycle and space-charge limits in the synchrotron and machine size concerns in the weaker-focusing cyclotrons; a 10-20 MW proton driver is not presently considered technically achievable with conventional re-circulating accelerators. One, as-yet, unexplored re-circulating accelerator, the Fixed-field Alternating Gradient, or FFAG, is an attractive alternative to the cyclotron. Its strong focusing optics are expected to mitigate space charge effects, and a recent innovation in design has coupled stable tunes with isochronous orbits, making the FFAG capable of fixed-frequency, CW acceleration, as in the classical cyclotron. This paper reports on these new advances in FFAG accelerator technology and references advanced modeling tools for fixed-field accelerators developed for and unique to the code COSY INFINITY.

Johnstone, C.; /Fermilab; Berz, M.; Makino, K.; /Michigan State U.; Snopok, P.; /IIT, Chicago

2011-04-01T23:59:59.000Z

48

HIGH INTENSITY PERFORMANCE AND UPGRADES AT THE BROOKHAVEN AGS  

SciTech Connect

Fig. 1 shows the present layout of the AGS-RHIC accelerator complex. The high intensity proton beam of the AGS is used both for the slow-extracted-beam (SEB) area with many target station to produce secondary beams and the fast-extracted-beam (FEB) line used for the production of muons for the g-2 experiment and for high intensity target testing for the spallation neutron sources and muon production targets for the muon collider. The same FEB line will also be used for the transfer of beam to RHIC. The proton beam intensity in the AGS has increased steadily over the 35 year existence of the AGS, but the most dramatic increase occurred over the last couple of years with the addition of the new AGS Booster[1]. In Fig. 2 the history of the AGS intensity improvements is shown and the major upgrades are indicated. The AGS Booster has one quarter the circumference of the AGS and therefore allows four Booster beam pulses to be stacked in the AGS at an injection energy of 1.5--1.9 GeV. At this increased energy, space charge forces are much reduced and this in turn allows for the dramatic increase in the AGS beam intensity. The 200 MeV LINAC is being used both for the injection into the Booster as well as an isotope production facility. A recent upgrade of the LINAC rf system made it possible to operated at an average H{sup {minus}} current of 150 {micro}A and a maximum of 12 x 10{sup 13} H{sup {minus}} per 500 {micro}s LINAC pulse for the isotope production target. Typical beam currents during the 500 {micro}s pulse are about 80 mA at the source, 60 mA after the 750 keV RFQ, 38 mA after the first LINAC tank (10 MeV), and 37 mA at end of the LINAC at 200 MeV. The normalized beam emittance is about 2 {pi} mm mrad for 95% of the beam and the beam energy spread is about {+-}1.2 MeV. A magnetic fast chopper installed at 750 keV allows the shaping of the beam injected into the Booster to avoid excessive beam loss.

ROSER,T.

1998-05-04T23:59:59.000Z

49

Summary of sessions B and F: High intensity linacs and frontend & proton drivers  

SciTech Connect

This paper summarizes the sessions B&F of the 33rd ICFA Advanced Beam Dynamics Workshop on High Intensity & High Brightness Hadron Beams held in Bensheim, Germany. It covers high intensity linacs, front ends and proton driver topics.

Ferdinand, R.; /Saclay; Chou, W.; /Fermilab; Galambos, J.; /Oak Ridge

2005-01-01T23:59:59.000Z

50

Device for providing high-intensity ion or electron beam  

SciTech Connect

A thin film of a low-thermionic-work-function material is maintained on the cathode of a device for producing a high-current, low-pressure gas discharge by means of sputter deposition from an auxiliary electrode. The auxiliary electrode includes a surface with a low-work-function material, such as thorium, uranium, plutonium or one of the rare earth elements, facing the cathode but at a disposition and electrical potential so as to extract ions from the gas discharge and sputter the low-work-function material onto the cathode. By continuously replenishing the cathode film, high thermionic emissions and ion plasmas can be realized and maintained over extended operating periods.

McClanahan, Edwin D. (Richland, WA); Moss, Ronald W. (Richland, WA)

1977-01-01T23:59:59.000Z

51

Frequency conversion of high-intensity, femtosecond laser pulses  

SciTech Connect

Almost since the invention of the laser, frequency conversion of optical pulses via non- linear processes has been an area of active interest. However, third harmonic generation using ~(~1 (THG) in solids is an area that has not received much attention because of ma- terial damage limits. Recently, the short, high-intensity pulses possible with chirped-pulse amplification (CPA) laser systems allow the use of intensities on the order of 1 TW/cm2 in thin solids without damage. As a light source to examine single-crystal THG in solids and other high field inter- actions, the design and construction of a Ti:sapphire-based CPA laser system capable of ultimately producing peak powers of 100 TW is presented. Of special interest is a novel, all-reflective pulse stretcher design which can stretch a pulse temporally by a factor of 20,000. The stretcher design can also compensate for the added material dispersion due to propagation through the amplifier chain and produce transform-limited 45 fs pulses upon compression. A series of laser-pumped amplifiers brings the peak power up to the terawatt level at 10 Hz, and the design calls for additional amplifiers to bring the power level to the 100 TW level for single shot operation. The theory for frequency conversion of these short pulses is presented, focusing on conversion to the third harmonic in single crystals of BBO, KD*P, and d-LAP (deuterated I-arginine phosphate). Conversion efficiencies of up to 6% are obtained with 500 fs pulses at 1053 nm in a 3 mm thick BBO crystal at 200 GW/cm 2. Contributions to this process by unphasematched, cascaded second harmonic generation and sum frequency generation are shown to be very significant. The angular relationship between the two orders is used to measure the tensor elements of C = xt3)/4 with Crs = -1.8 x 1O-23 m2/V2 and .15Cri + .54Crs = 4.0 x 1O-23 m2/V2. Conversion efficiency in d-LAP is about 20% that in BBO and conversion efficiency in KD*P is 1% that of BBO. It is calculated that conversion efficiencies of 30-40% are possible at intensities of 600-800 GW/cm2, which is the operating level of the Petawatt laser at LLNL. The main limiting factors are phase modulation and material damage.

Banks, P S

1997-06-01T23:59:59.000Z

52

HIGH INTENSITY LIGHT SOURCES (Part II of Thesis)  

SciTech Connect

A stable carbon arc operated in controlled atmosphere is described. The arc was designed to serve as a light source during lifetime studies of the B/sup 2/ SIGMA state of the CN molecule. The CN radiation from the plasma of the arc was investigated and found to have a brightness temperature of 5500 icient laborato K at lambda 3883 A. This is considerably higher than an estimate of the value required for lifetime measurements. The stability of the carbon arc under various conditions is discussed. For successful lifetime measurements, the light source employed must have a high brightness temperature (intensity). A method for the determination of the brightness temperature of a light source at a specific wave length is described. The method was used for determining the brightness temperatures of some available light sources. Sodium, thallium, and mercury discharge lamps, a medium-pressure mercury arc lamp, and the carbon arc were studied. (auth)

Worden, E.F. Jr.

1958-10-01T23:59:59.000Z

53

Initial Results of the New High Intensity Electron Gun at the...  

NLE Websites -- All DOE Office Websites (Extended Search)

INITIAL RESULTS OF THE NEW HIGH INTENSITY ELECTRON GUN AT THE ARGONNE WAKEFIELD ACCELERATOR * M.E. Conde, W. Gai, R. Konecny, J.G. Power, P. Schoessow, X. Sun, ANL, Argonne, IL...

54

1997 Glossary  

U.S. Energy Information Administration (EIA)

All types of light bulbs are included: incandescent, fluorescent, compact fluorescent, halogen, and high-intensity-discharge (HID). (See Appliances ...

55

High-Intensity Discharge Industrial Lighting Design Strategies for the Minimization of Energy Usage and Life-Cycle Cost.  

E-Print Network (OSTI)

??Worldwide, the electrical energy consumed by artificial lighting is second only to the amount consumed by electric machinery. Of the energy usage attributed to lighting… (more)

Flory IV, Isaac L.

2008-01-01T23:59:59.000Z

56

Analysis, design and optimization of the LCC resonant inverter as a high-intensity discharge lamp ballast  

SciTech Connect

A complete study of the clamped-mode (CM) series-parallel (LCC) resonant inverter together with some of the control-to-output characteristics are presented in this paper. Also, a new control method for the CM LCC resonant inverter is introduced. With this method, the inverter is forced to operate with optimum commutations and without handling reactive energy, thus minimizing both switching and conduction losses. The corresponding design procedure is illustrated with a design example. Finally, some experimental results obtained from a prototype at the laboratory are also shown to validate the analysis and evaluate the proposed control method.

Alonso, J.M.; Blanco, C.; Lopez, E.; Calleja, A.J.; Rico, M. [Univ. de Oviedo, Gijon (Spain). Dept. de Ingenieria Electrica y Electronica

1998-05-01T23:59:59.000Z

57

Overview of the High Intensity Neutrino Source Linac R&D program at Fermilab  

SciTech Connect

The Fermilab High Intensity Neutrino Source (HINS) Linac R&D program is building a first-of-a-kind 60 MeV superconducting H- linac. The HINS Linac incorporates superconducting solenoids for transverse focusing, high power RF vector modulators for independent control of multiple cavities powered from a single klystron, and superconducting spoke-type accelerating cavities starting at 10 MeV. This will be the first application and demonstration of any of these technologies in a low-energy, high-intensity proton/H- linear accelerator. The HINS effort is relevant to a high intensity, superconducting H- linac that might serve the next generation of neutrino physics and muon storage ring/collider experiments. An overview of the HINS program, machine design, status, and outlook is presented.

Webber, R.C.; Appollinari, G.; Carneiro, J.P.; Gonin, I.; Hanna, B.; Hays, S.; Khabiboulline, T.; Lanfranco, G.; Madrak, R.L.; Moretti, A.; Nicol, T.; /Fermilab /Argonne

2008-09-01T23:59:59.000Z

58

The Edward teller medal lecture: High intensity lasers and the road to ignition  

SciTech Connect

There has been much progress in the development of high intensity lasers and in the science of laser driven inertially confined fusion such that ignition is now a near term prospect. This lecture reviews the field with particular emphasis on areas of my own involvement. {copyright} {ital 1997 American Institute of Physics.}

Key, M.H. [Lawrence Livermore National Laboratory, Livermore, California94551 (United States)

1997-04-01T23:59:59.000Z

59

The Edward Teller medal lecture: High intensity lasers and the road to ignition  

SciTech Connect

There has been much progress in the development of high intensity lasers and in the science of laser driven inertially confined fusion such that ignition is now a near term prospect. This lecture reviews the field with particular emphasis on areas of my own involvement.

Key, M. H. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

1997-04-15T23:59:59.000Z

60

Edward Teller medal lecture: high intensity lasers and the road to ignition  

SciTech Connect

There has been much progress in the development of high intensity lasers and in the science of laser driven inertially confined fusion such that ignition is now a near term prospect. This lecture reviews the field with particular emphasis on areas of my own involvement.

Key, M.H.

1997-06-02T23:59:59.000Z

Note: This page contains sample records for the topic "fluorescent high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Improved Heat Transfer and Performance of High Intensity Combustion Systems for Reformer Furnace Applications  

E-Print Network (OSTI)

Developments over the past fifteen years have evolved new short flame, high intensity (1,000,000 BTU/HR/ft3 ) combustion systems for industrial uses. Such systems produce a more uniform and higher heat flux than conventional low intensity systems and should enable substantial capital cost savings in new furnace applications. Recent performance improvements established from tests of high intensity combustion systems are described along with advances made in the analytical prediction of design performance. High intensity combustion systems can operate at zero excess air conditions without generating undesirable constituents in the exhaust. A more uniform gas temperature and gas emissivity renders modeling and design of the furnace radiant heat transfer section more realistic. 'Over-design' to allow for the less determinate conditions typical of low intensity, turbulent diffusion oil flame systems should be avoidable. A model has been set up and results generated which indicate the potentialities of the above premise. The application of vortex stabilized high intensity burners for reformer furnaces in the petrochemical industry is then reviewed and emphasized.

Williams, F. D. M.; Kondratas, H. M.

1983-01-01T23:59:59.000Z

62

Surface area generation and droplet size control in solvent extraction systems utilizing high intensity electric fields  

DOE Patents (OSTI)

A method and system for solvent extraction where droplets are shattered by a high intensity electric field. These shattered droplets form a plurality of smaller droplets which have a greater combined surface area than the original droplet. Dispersion, coalescence and phase separation are accomplished in one vessel through the use of the single pulsing high intensity electric field. Electric field conditions are chosen so that simultaneous dispersion and coalescence are taking place in the emulsion formed in the electric field. The electric field creates a large amount of interfacial surface area for solvent extraction when the droplet is disintegrated and is capable of controlling droplet size and thus droplet stability. These operations take place in the presence of a counter current flow of the continuous phase.

Scott, Timothy C. (Knoxville, TN); Wham, Robert M. (Oak Ridge, TN)

1988-01-01T23:59:59.000Z

63

HIGH-INTENSITY EFFECTS IN THE LONGITUDINAL MOTION OF STORED PARTICLE BEAMS  

SciTech Connect

A brief review is given of the various self-field phenomena associated with the longitudinal motion of particles in storage rings. Although there are some high-intensity phenomena for which the coupling of longitudinal and transverse motion is essential, such as, for example, the headtail effect; the great majority of high-intensity phenomena primarily involve either longitudinal or transverse degrees of freedom. In this review, we restrict our attention to phenomena which are essentially longitudinal in nature. It is convenient to consider separately the behavior of unbunched (coasting) and bunched (external RF system in operation) beams. Detailed experimental information on coasting beams has been obtained on the ISR, on the (old) CERN electron model CESAR, and on electron ring accelerators. All high-energy electron storage rings have bunched beams and, of course, so do synchrotrons, so that there are a large number of sources of experimental information about the longitudinal motion of bunched beams.

Sessler, Andrew M.

1973-02-01T23:59:59.000Z

64

STATUS OF SLOW EXTRACTION OF HIGH INTENSITY PROTONS FROM BROOKHAVEN'S AGS.  

SciTech Connect

The Brookhaven AGS third integer resonant extraction system allows the AGS to provide high quality, high intensity 25.5 GeV/c proton beams simultaneously to four target stations and as many as 8 experiments. With the increasing intensities (over 7 x 10{sup 13} protons/pulse) and associated longer spill periods (2.4 to 3 seconds long), we continue to run with low losses and high quality low modulation continuous current beams. We have an active program of high energy physics experiments, including the high precision measurement of the muons magnetic moment [1] and the discovery of the rare Kaon decay, K+ {yields} {pi} + {nu}{bar {nu}} [2]. This program is continuing into the future with the rare symmetry violating process experiments [3] currently being designed to operate at the AGS. In this paper, we will present results from operation of high intensity slow extraction, the problems we encounter, and our solutions to those problems.

BROWN,K.A.AHRENS,L.BRENNAN,J.M.GLENN,J.W.ROSER,T.RUSSO,T.TSOUPAS,N.SMITH,K.ZENO,K.

2003-05-12T23:59:59.000Z

65

Commissioning of the new high-intensity ultracold neutron source at the Paul Scherrer Institut  

E-Print Network (OSTI)

Commissioning of the new high-intensity ultracold neutron (UCN) source at the Paul Scherrer Institut (PSI) has started in 2009. The design goal of this new generation high intensity UCN source is to surpass by a factor of ~100 the current ultracold neutron densities available for fundamental physics research, with the greatest thrust coming from the search for a neutron electric dipole moment. The PSI UCN source is based on neutron production via proton induced lead spallation, followed by neutron thermalization in heavy water and neutron cooling in a solid deuterium crystal to cold and ultracold energies. A successful beam test with up to 2 mA proton beam on the spallation target was conducted recently. Most source components are installed, others being finally mounted. The installation is on the track for the first cool-down and UCN production in 2010.

Bernhard Lauss

2010-11-17T23:59:59.000Z

66

650 mm long liquid hydrogen target for use in a high intensity electron beam  

DOE Green Energy (OSTI)

This paper describes a 650 mm long liquid hydrogen targetr constructed for use in the high intensity electron beam at the Stanford Linear Accelerator Center (SLAC). The main design problem was to construct a target that would permit the heat deposited by the electron beam to be removed rapidly without boiling the hydrogen so as to maintain constant target density for optimum data taking. Design requirements, cosntruction details and operating experience are discussed.

Mark, J.W.

1984-02-01T23:59:59.000Z

67

650 mm long liquid hydrogen target for use in a high intensity electron beam  

DOE Green Energy (OSTI)

This paper describes a 650 mm long liquid hydrogen target constructed for use in the high intensity electron beam at the Stanford Linear Accelerator Center. The main design problem was to construct a target that would permit the heat deposited by the electron beam to be removed rapidly without boiling the hydrogen so as to maintain constant target density for optimum data taking. Design requirements, construction details and operating experience are discussed.

Mark, J.W.

1983-07-01T23:59:59.000Z

68

Generation of high intensity rf pulses in the ionosphere by means of in situ compression  

SciTech Connect

We demonstrate, using a simple model, that high intensity pulses can be generated from a frequency-chirped modifier of much lower intensity by making use of the dispersive properties of the ionosphere. We show that a frequency-chirped pulse can be constructed so that its various components overtake each other at a prescribed height, resulting in large (up to one hundred times) transient intensity enhancements as compared to those achievable from a steady modifier operating at the same power. We examine briefly one possible application: the enhancement of plasma wave amplitudes which occurs as a result of the interaction of such a compressed pulse with pre-generated turbulence.

Cowley, S.C.; Perkins, F.W.; Valeo, E.J.

1993-04-01T23:59:59.000Z

69

High intensity electron beam ion trap for charge state boosting of radioactive ion beams  

SciTech Connect

A high intensity electron beam ion trap under development at LLNL could be adapted for charge state boosting of radioactive ion beams, enabling a substantial reduction in the size and cost of a post-accelerator. We report estimates of the acceptance, ionization time, charge state distribution, emittance, and beam intensity for charge state boosting of radioactive ions in this device. The estimates imply that, for tin isotopes, over 10{sup 10} ions/s can be ionized to q = 40+ with an absolute emittance of approximately 1 (pi) mm mrad at an energy of 30 x q.k.

Marrs, R.

1998-09-30T23:59:59.000Z

70

Dynamical Schwinger effect and high-intensity lasers. Realising nonperturbative QED.  

Science Conference Proceedings (OSTI)

We consider the possibility of experimental verification of vacuum e{sup +}e{sup -} pair creation at the focus of two counter-propagating optical laser beams with intensities 10{sup 20}-10{sup 22} W/cm{sup 2}, achievable with present-day petawatt lasers, and approaching the Schwinger limit: 10{sup 29} W/cm{sup 2} to be reached at ELI. Our approach is based on the collisionless kinetic equation for the evolution of the e{sup +} and e{sup -} distribution functions governed by a non-Markovian source term for pair production. As possible experimental signals of vacuum pair production we consider e{sup +}e{sup -} annihilation into {gamma}-pairs and the refraction of a high-frequency probe laser beam by the produced e{sup +}e{sup -} plasma. We discuss the dependence of the dynamical pair production process on laser wavelength, with special emphasis on applications in the X-ray domain (X-FEL), as well as the prospects for {mu}{sup +}{mu}{sup -} and {pi}{sup +}{pi}{sup -} pair creation at high-intensity lasers. We investigate perspectives for using high-intensity lasers as 'boosters' of ion beams in the few-GeV per nucleon range, which is relevant, e.g., to the exploration of the QCD phase transition in laboratory experiments.

Blaschke, D. B.; Prozorkevich, A. V.; Roepke, G.; Roberts, C. D.; Schmidt, S. M.; Shkirmanov, D. S.; Smolyansky, S. A.; Physics; Univ. of Wroclaw; Joint Inst. for Nuclear Research; Univ. Rostock; Saratov State Univ.; Forschungszentrum Juelich GmbH

2009-11-01T23:59:59.000Z

71

Dynamical Schwinger effect and high-intensity lasers. Realising nonperturbative QED  

E-Print Network (OSTI)

We consider the possibility of experimental verification of vacuum e^+e^- pair creation at the focus of two counter-propagating optical laser beams with intensities 10^{20}-10^{22} W/cm^2, achievable with present-day petawatt lasers, and approaching the Schwinger limit: 10^{29} W/cm^2 to be reached at ELI. Our approach is based on the collisionless kinetic equation for the evolution of the e^+ and e^- distribution functions governed by a non-Markovian source term for pair production. As possible experimental signals of vacuum pair production we consider e^+e^- annihilation into gamma-pairs and the refraction of a high-frequency probe laser beam by the produced e^+e^- plasma. We discuss the dependence of the dynamical pair production process on laser wavelength, with special emphasis on applications in the X-ray domain (X-FEL), as well as the prospects for \\mu^+\\mu^- and \\pi^+\\pi^- pair creation at high-intensity lasers. We investigate perspectives for using high-intensity lasers as ``boosters'' of ion beams in the few-GeV per nucleon range, which is relevant, e.g., to the exploration of the QCD phase transition in laboratory experiments.

D. B. Blaschke; A. V. Prozorkevich; G. Roepke; C. D. Roberts; S. M. Schmidt; D. S. Shkirmanov; S. A. Smolyansky

2008-11-21T23:59:59.000Z

72

The upgraded rf system for the AGS and high intensity proton beams  

SciTech Connect

The AGS has been upgraded over the past three years to produce a record beam intensity of 6 {times} 10{sup 13} protons per pulse for the fixed-target physics program. The major elements of the upgrade are: the new 1.5 GeV Booster synchrotron, the main magnet power supply, a high frequency longitudinal dilution cavity, a feedback damper for transverse instabilities, a fast gamma transition jump system, and a new high-power rf system. The new rf system and its role in achieving the high intensity goal are the subjects of this report. The rf system is heavily beam loaded, with 7 Amps of rf current in the beam and a peak power of 0.75 MW delivered to the beam by ten cavities. As an example of the scale of beam loading, at one point in the acceleration cycle the cavities are operated at 1.5 kV/gap; whereas, were it not for the new power amplifiers, the beam-induced voltage on the cavities would be over 25 kV/gap. The upgraded rf system, comprising: new power amplifiers, wide band rf feedback, improved cavities, and new low-level beam control electronics, is described. Results of measurements with beam, which characterize the system`s performance, are presented. A typical high intensity acceleration cycle is described with emphasis on the key challenges of beam loading.

Brennan, J.M. [Brookhaven National Lab., Upton, NY (United States). AGS Dept.

1995-05-01T23:59:59.000Z

73

A Class Of Generalized Kapchinskij-Vladimirskij Solutions And Associated Envelope Equations For High-intensity Charged Particle Beams  

SciTech Connect

A class of generalized Kapchinskij-Vladimirskij solutions of the nonlinear Vlasov-Maxwell equations and the associated envelope equations for high-intensity beams in a periodic lattice is derived. It includes the classical Kapchinskij-Vladimirskij solution as a special case. For a given lattice, the distribution functions and the envelope equations are specified by eight free parameters. The class of solutions derived captures a wider range of dynamical envelope behavior for high-intensity beams, and thus provides a new theoretical tool to investigate the dynamics of high-intensity beams.

Hong Qin and Ronald C. Davidson

2012-04-25T23:59:59.000Z

74

Space charge measurements with a high intensity bunch at the Fermilab Main Injector  

SciTech Connect

For Project X, the Fermilab Main Injector will be required to operate with 3 times higher bunch intensity. The plan to study the space charge effects at the injection energy with intense bunches will be discussed. A multi-MW proton facility has been established as a critical need for the U.S. HEP program by HEPAP and P5. Utilization of the Main Injector (MI) as a high intensity proton source capable of delivering in excess of 2 MW beam power will require a factor of three increase in bunch intensity compared to current operations. Instabilities associated with beam loading, space charge, and electron cloud effects are common issues for high intensity proton machines. The MI intensities for current operations and Project X are listed in Table 1. The MI provides proton beams for Fermilab's Tevatron Proton-Antiproton Collider and MINOS neutrino experiments. The proposed 2MW proton facility, Project X, utilizes both the Recycler (RR) and the MI. The RR will be reconfigured as a proton accumulator and injector to realize the factor 3 bunch intensity increase in the MI. Since the energy in the RR and the MI at injection will be 6-8 GeV, which is relatively low, space charge effects will be significant and need to be studied. Studies based on the formation of high intensity bunches in the MI will guide the design and fabrication of the RF cavities and space-charge mitigation devices required for 2 MW operation of the MI. It is possible to create the higher bunch intensities required in the MI using a coalescing technique that has been successfully developed at Fermilab. This paper will discuss a 5 bunch coalescing scheme at 8 GeV which will produce 2.5 x 10{sup 11} protons in one bunch. Bunch stretching will be added to the coalescing process. The required RF parameters were optimized with longitudinal simulations. The beam studies, that have a goal of 85% coalescing efficiency, were started in June 2010.

Seiya, K.; Chase, B.; Dey, J.; Joireman, P.; Kourbanis, I.; /Fermilab; Yagodnitsyna, A.; /Novosibirsk State U.

2011-03-01T23:59:59.000Z

75

ANALYSIS AND MITIGATION OF X-RAY HAZARD GENERATED FROM HIGH INTENSITY LASER-TARGET INTERACTIONS  

SciTech Connect

Interaction of a high intensity laser with matter may generate an ionizing radiation hazard. Very limited studies have been made, however, on the laser-induced radiation protection issue. This work reviews available literature on the physics and characteristics of laser-induced X-ray hazards. Important aspects include the laser-to-electron energy conversion efficiency, electron angular distribution, electron energy spectrum and effective temperature, and bremsstrahlung production of X-rays in the target. The possible X-ray dose rates for several femtosecond Ti:sapphire laser systems used at SLAC, including the short pulse laser system for the Matter in Extreme Conditions Instrument (peak power 4 TW and peak intensity 2.4 x 10{sup 18} W/cm{sup 2}) were analysed. A graded approach to mitigate the laser-induced X-ray hazard with a combination of engineered and administrative controls is also proposed.

Qiu, Rui

2011-03-21T23:59:59.000Z

76

Liquid lithium target as a high intensity, high energy neutron source  

DOE Patents (OSTI)

This invention provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then "boil off" or evaporate a neutron.

Parkin, Don M. (Los Alamos, NM); Dudey, Norman D. (Glen Ellyn, IL)

1976-01-01T23:59:59.000Z

77

High intensity production of high and medium charge state uraniumand other heavy ion beams with VENUS  

SciTech Connect

The next generation, superconducting ECR ion source VENUS(Versatile ECR ion source for NUclear Science) started operation with 28GHzmicrowave heating in 2004. Since then it has produced world recordion beam intensities. For example, 2850 e mu A of O6+, 200 e mu A of U33+or U34+, and in respect to high charge state ions, 1 e mu A of Ar18+, 270e mu A of Ar16+, 28 e mu A of Xe35+ and 4.9 e mu A of U47+ have beenproduced. A brief overview of the latest developments leading to theserecord intensities is given and the production of high intensity uraniumbeams is discussed in more detail.

Leitner, Daniela; Galloway, Michelle L.; Loew, Timothy J.; Lyneis, Claude M.; Rodriguez, Ingrid Castro; Todd, Damon S.

2007-11-15T23:59:59.000Z

78

Design of a high-intensity RFQ for a possible LHC laser ion source  

E-Print Network (OSTI)

We have designed a 100 MHz RFQ to accelerate Pb25+ ions from 9.6 keV/u to 250 keV/u for the LHC ion program. We assume an input beam from a laser ion source with a total beam current of 90 mA, out of which 9 mA is Pb25+. The main challenge of the design is to match the tight longitudinal acceptance of the downstream Interdigital H structure while dealing with a high intensity beam composed of a variety of charge states. In this paper, we present a baseline setup optimized for nominal conditions, and show the sensitivity of the RFQ performance to varying input beam characteristics and rf parameters. Further studies will cover the compatibility of this design with an upgraded ECR source under investigation at CERN.

Hanke, K

2002-01-01T23:59:59.000Z

79

Magnetic fluorescent lamp  

DOE Patents (OSTI)

The radiant emission of a mercury-argon discharge in a fluorescent lamp assembly is enhanced by providing means for establishing a magnetic field with lines of force along the path of electron flow through the bulb of the lamp assembly, to provide Zeeman splitting of the ultraviolet spectral line. Optimum results are obtained when the magnetic field strength causes a Zeeman splitting of approximately 1.7 times the thermal line width.

Berman, S.M.; Richardson R.W.

1983-12-29T23:59:59.000Z

80

High-intensity, high-brightness polarized and unpolarized beam production in charge-exchange collisions  

DOE Green Energy (OSTI)

Basic limitations on the high-intensity H{sup -} ion beam production were experimentally studied in charge-exchange collisions of the neutral atomic hydrogen beam in the Na-vapour jet ionizer cell. These studies are the part of the polarized source upgrade (to 10 mA peak current and 85% polarization) project for RHIC. In the source the atomic hydrogen beam of a 5-10 keV energy and total (equivalent) current up to 5 A is produced by neutralization of proton beam in pulsed hydrogen gas target. Formation of the proton beam (from the surface of the plasma emitter with a low transverse ion temperature {approx}0.2 eV) is produced by four-electrode spherical multi-aperture ion-optical system with geometrical focusing. The hydrogen atomic beam intensity up to 1.0 A/cm{sup 2} (equivalent) was obtained in the Na-jet ionizer aperture of a 2.0 cm diameter. At the first stage of the experiment H-beam with 36 mA current, 5 keV energy and {approx}1.0 cm {center_dot} mrad normalized emittance was obtained using the flat grids and magnetic focusing.

Zelenski, A.; Ritter, J.; Zubets, V.; Steski, D.; Atoian, G.; Davydenko, V.; Ivanov, A.; Kolmogorov, A.

2011-03-28T23:59:59.000Z

Note: This page contains sample records for the topic "fluorescent high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Time Integrated Soft X-ray Imaging in High Intensity Laser Experiments (thesis)  

Science Conference Proceedings (OSTI)

2009 marks a significant achievement and the dawn of a new era in high intensity laser research with the final commissioning of all 192 beams at the National Ignition Facility (NIF). NIF is a department of energy (DOE) funded project more than 10 years in the making located at the Lawrence Livermore National Laboratory (LLNL). The following research was done as one of many preliminary experiments done to prepare for these historic events. The primary focus of the experimental campaign this paper addresses is to test and develop a thermal x-radiation source using a short pulse laser. This data is hoped to provide information about the thermal transport mechanisms important in the development of prediction models in High Energy Density (HED) science. One of several diagnostics fielded was a soft x-ray imager (SXRI) which is detailed in this paper. The SXRI will be used to measure the relative size of the heated region and also the relative level of specific x-ray emissions among several shot and target configurations. The laser system used was the Titan laser located in the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). Titan uses the JLF Janus Nd:glass laser west frontend system with a Optical Parametric Chirped Pulse Amplification (OPCPA) in place of the nanosecond oscillator. The system is capable of producing laser intensities of over a petawatt with several tens of joules delivered in the beam.

Stafford, D

2009-06-01T23:59:59.000Z

82

High-order harmonics from bow wave caustics driven by a high-intensity laser  

Science Conference Proceedings (OSTI)

We propose a new mechanism of high-order harmonic generation during an interaction of a high-intensity laser pulse with underdense plasma. A tightly focused laser pulse creates a cavity in plasma pushing electrons aside and exciting the wake wave and the bow wave. At the joint of the cavity wall and the bow wave boundary, an annular spike of electron density is formed. This spike surrounds the cavity and moves together with the laser pulse. Collective motion of electrons in the spike driven by the laser field generates high-order harmonics. A strong localization of the electron spike, its robustness to oscillations imposed by the laser field and, consequently, its ability to produce high-order harmonics is explained by catastrophe theory. The proposed mechanism explains the experimental observations of high-order harmonics with the 9 TW J-KAREN laser (JAEA, Japan) and the 120 TW Astra Gemini laser (CLF RAL, UK) [A. S. Pirozhkov, et al., arXiv:1004.4514 (2010); A. S. Pirozhkov et al, AIP Proceedings, this volume]. The theory is corroborated by high-resolution two-and three-dimensional particle-in-cell simulations.

Pirozhkov, A.S.; Kando, M.; Esirkepov, T.Zh. [Advanced Beam Technology Division, Japan Atomic Energy Agency (Japan); and others

2012-07-11T23:59:59.000Z

83

Development of a high intensity EBIT for basic and applied science/011  

Science Conference Proceedings (OSTI)

The electron-beam ion trap (EBIT) is a device for producing and studying cold, very highly charged ions of any element, up to a fully ionized U{sup 92+}. These highly charged ions occur in hot plasmas and therefore play important roles in nuclear weapons, controlled fusion, and astrophysical phenomena. The remarkable interaction of these ions with surfaces may lead to technological applications. The highly charged ions can either be studied inside the EBIT itself with measurements of their x-ray emission spectra, or the ions can be extracted from the EBIT in order to study their interaction with solid material. Both types of measurements are being pursued vigorously with the two existing low-intensity EBITs at LLNL and with similar EBITs that have been built at six other laboratories around the world since the EBIT was first developed at LLNL 10 years ago. However, all existing EBITs have approximately the same intensity as the original LLNL EBIT; that is, they all produce about the same number of very-highly-charged ions (roughly 2 x 10{sup 6} per second) and the same number of x-ray photons (roughly 10{sup 7} per second). The goal of the High-Intensity-EBIT project is to increase the x-ray emission per centimeter of length along the electron beam by a factor of 100 and to increase the ion output by a factor of 1000. This dramatic increase in intensity will enable the next generation of basic and applied experimental research in the structure of highly charged ions. For example, the precision of EBIT x-ray measurements of atomic energy levels- which is now limited by count rate-can be improved by an order of magnitude, and new applications in surface science, nanotechnology, and microscopy will be possible with the expected intense ion beams. When the high ion output is combined with the demonstrated low emittance of EBIT ions, we will have a high-brightness source of highly charged ions that can be focused to submicrometer spots. One example of a measurement that will benefit from increased x-ray intensity is our study of the binding energy of high-Z heliumlike ions. The small ``two-electron`` contribution to this binding energy is a fundamental aspect of atomic structure. It arises from the small forces that the two electrons exert on each other in the presence of the much larger force from the atomic nucleus. Our existing EBIT measurements are sensitive to the so-called ``second order`` contribution to the two-electron binding energy, but with the High-Intensity EBIT we can probe an even more subtle effect: the screening by one electron of the quantum electrodynamic (QED) energy contribution from the other electron.

Marrs, R.E., LLNL

1998-02-05T23:59:59.000Z

84

Attaining and using extremely high intensities of solar energy with non-imaging concentrators  

SciTech Connect

Using the principles and techniques of non-imaging optics, solar concentrations that approach the theoretical maximum can be achieved. In this paper, the authors review recent progress in attaining, measuring, and using such ultrahigh solar fluxes. In particular, they review the design principles for optimized two-stage concentrators and solar furnaces and discuss the characteristics and properties of a variety of non-imaging secondaries which have been employed. These include Compound Parabolic Concentrators (CPC) type secondaries, Dielectric Totally Internally Reflecting Concentrators (DTIRC), and flow-line or {open_quotes}trumpet{close_quotes} concentrators. The usual design is a configuration where {phi}, the rim angle of the primary, is small, that is, corresponding to a system with a relatively large focal length to diameter (F/D) ratio. All three types of secondary are characterized by a design acceptance angle {phi}{sub a} which must be greater than or equal to {phi}. The design parameters and trade-offs for each of these systems including strategies for choice of particular secondary and degree of truncation, are presented. The authors review the calorimetric techniques used to measure these high intensities and describe a newly developed technique for {open_quotes}extracting{close_quotes} light from inside a high index medium. Finally they review a number of potential applications for highly concentrated solar energy and the current status of the associated technology. By making possible new and unique applications for intense solar flux, these techniques have opened a whole new frontier for research and development of potential economic uses of solar energy. 63 refs., 34 figs., 3 tabs.

Jenkins, D.; O`Gallagher, J.; Winston, R.

1997-12-31T23:59:59.000Z

85

Conceptual design of a high-intensity positron source for the Advanced Neutron Source  

SciTech Connect

The Advanced Neutron Source (ANS) is a planned new basic and applied research facility based on a powerful steady-state research reactor that provides neutrons for measurements and experiments in the fields of materials science and engineering, biology, chemistry, materials analysis, and nuclear science. The useful neutron flux will be at least five times more than is available in the world`s best existing reactor facility. Construction of the ANS provides a unique opportunity to build a positron spectroscopy facility (PSF) with very-high-intensity beams based on the radioactive decay of a positron-generating isotope. The estimated maximum beam current is 1000 to 5000 times higher than that available at the world`s best existing positron research facility. Such an improvement in beam capability, coupled with complementary detectors, will reduce experiment durations from months to less than one hour while simultaneously improving output resolution. This facility will remove the existing barriers to the routine use of positron-based analytical techniques and will be a giant step toward realization of the full potential of the application of positron spectroscopy to materials science. The ANS PSF is based on a batch cycle process using {sup 64}Cu isotope as the positron emitter and represents the status of the design at the end of last year. Recent work not included in this report, has led to a proposal for placing the laboratory space for the positron experiments outside the ANS containment; however, the design of the positron source is not changed by that relocation. Hydraulic and pneumatic flight tubes transport the source material between the reactor and the positron source where the beam is generated and conditioned. The beam is then transported through a beam pipe to one of several available detectors. The design presented here includes all systems necessary to support the positron source, but the beam pipe and detectors have not been addressed yet.

Hulett, L.D.; Eberle, C.C.

1994-12-01T23:59:59.000Z

86

Generalized Kapchinskij-Vladimirskij Distribution and Envelope Equation for High-intensity Beams in a Coupled Transverse Focusing Lattice  

SciTech Connect

In an uncoupled lattice, the Kapchinskij-Vladimirskij (KV) distribution function first analyzed in 1959 is the only known exact solution of the nonlinear Vlasov-Maxwell equations for high- intensity beams including self-fields in a self-consistent manner. The KV solution is generalized here to high-intensity beams in a coupled transverse lattice using the recently developed generalized Courant-Snyder invariant for coupled transverse dynamics. This solution projects to a rotating, pulsating elliptical beam in transverse configuration space, determined by the generalized matrix envelope equation.

Hong Qin, Moses Chung, and Ronald C. Davidson

2009-11-20T23:59:59.000Z

87

High-intensity ion sources for accelerators with emphasis on H-beam formation and transport  

SciTech Connect

This paper lays out the fundamental working principles of a variety of high-current ion sources for accelerators in a tutorial manner, and gives examples of specific source types such as d. c. discharge- and rf-driven multicusp sources. Penning-type and ECR-based sources while discussing those principles, pointing out general performance limits as well as the performance parameters of specific sources. Laser-based, two-chamber-. and surface-ionization sources are briefly mentioned. Main aspects of this review are particle feed. ionization mechanism, beam formation and beam transport. Issues seen with beam formation and low-energy transport of negative hydrogen-ion beams are treated in detail.

Keller, Roderich [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

88

Appliance Standard Program - The FY 2003 Priority -Setting Summary...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fluorescent Lamp Ballasts Electric Motors, 1-200HP Fluorescent Lamps Commercial Oil- and Gas-Fired Packaged Boilers Mobile Home Furnaces High-Intensity Discharge Lamps...

89

Compton harmonic resonances, stochastic instabilities, quasilinear diffusion, and collisionless damping with ultra-high intensity laser waves  

SciTech Connect

The dynamics of electrons in two-dimensional, linearly or circularly polarized, ultra-high intensity (above 10{sup 18}W/cm{sup 2}) laser waves, is investigated. The Compton harmonic resonances are identified as the source of various stochastic instabilities. Both Arnold diffusion and resonance overlap are considered. The quasilinear kinetic equation, describing the evolution of the electron distribution function, is derived, and the associated collisionless damping coefficient is calculated. The implications of these new processes are considered and discussed.

Rax, J.M.

1992-04-01T23:59:59.000Z

90

GAS DISCHARGE DEVICES  

DOE Patents (OSTI)

The construction of gas discharge devices where the object is to provide a gas discharge device having a high dark current and stabilized striking voltage is described. The inventors have discovered that the introduction of tritium gas into a discharge device with a subsequent electrical discharge in the device will deposit tritium on the inside of the chamber. The tritium acts to emit beta rays amd is an effective and non-hazardous way of improving the abovementioned discharge tube characteristics

Arrol, W.J.; Jefferson, S.

1957-08-27T23:59:59.000Z

91

Mercury-free fluorescent lighting  

Science Conference Proceedings (OSTI)

A brief comparative review of possible mercury free fluorescent lighting technologies is presented, including rare-gas positive column discharges, molecular discharges, and dielectric barrier discharges. Detailed experimental results on xenon positive column discharges will then be considered. In order to judge whether xenon-based discharges are a viable UV source it is necessary to measure the radiant emittance (power per unit area) for the vacuum ultraviolet (VUV) resonance xenon emission at 147 nm. Two techniques to determine the VUV radiant emittance have been developed and applied to xenon discharges. One method combines the measured resonance level density using absorption spectroscopy and a calculation of the trapped decay rate for the resonance radiation to arrive at the radiant emittance at 147 nm. A second method utilizes a direct measurement of the radiance (power per unit area per unit solid angle) at 147 nm using a calibrated VUV photodiode, and a calculation of the relative angular distribution of the resonance radiation to determine the radiant emittance. In both techniques a simulation of the transport of resonance radiation is key to determining the radiant emittance.

Doughty, D.A. [General Electric Corporate Research and Development, Schenectady, NY (United States)

1996-05-01T23:59:59.000Z

92

Sensitivity to Dark Energy candidates by searching for four-wave mixing of high-intensity lasers in the vacuum  

E-Print Network (OSTI)

Theoretical challenges to understand Dark Matter and Dark Energy suggest the existence of low-mass and weakly coupling fields in the universe. The quasi-parallel photon-photon collision system (QPS) can provide chances to probe the resonant production of these light dark fields and the induced decay by the coherent nature of laser fields simultaneously. By focusing high-intensity lasers with different colors in the vacuum, new colors emerge as the signature of the interaction. Because four photons in the initial and final states interplay via the dark field exchange, this process is analogous to four-wave mixing in quantum optics, where the frequency sum and difference among the incident three waves generate the fourth wave with a new frequency via the nonlinear property of crystals. The interaction rate of the four-wave mixing process has the cubic dependence on the intensity of each wave. Therefore, if high-intensity laser fields are given, the sensitivity to the weakly coupling of dark fields to photons rapidly increases over the wide mass range below sub-eV. Based on the experimentally measurable photon energies and the linear polarization states, we formulate the relation between the accessible mass-coupling domains and the high-intensity laser parameters, where the effects of the finite spectrum width of pulse lasers are taken into account. The expected sensitivity suggests that we have a potential to explore interactions at the Super-Planckian coupling strength in the sub-eV mass range, if the cutting-edge laser technologies are properly combined.

Kensuke Homma

2012-11-09T23:59:59.000Z

93

Experimental Estimate of Beam Loading and Minimum rf Voltage for Acceleration of High Intensity Beam in the Fermilab Booster  

E-Print Network (OSTI)

The difference between the rf voltage seen by the beam and the accelerating voltage required to match the rate of change of the Booster magnetic field is used to estimate the energy loss per beam turn. Because the rf voltage (RFSUM) and the synchronous phase can be experimentally measured, they can be used to calculate the effective accelerating voltage. Also an RFSUM reduction technique has been applied to measure experimentally the RFSUM limit at which the beam loss starts. With information on beam energy loss, the running conditions, especially for the high intensity beam, can be optimized in order to achieve a higher intensity beam from the Fermilab Booster.

Yang, X; Norem, J; Yang, Xi

2004-01-01T23:59:59.000Z

94

Experimental estimate of beam loading and minimum rf voltage for acceleration of high intensity beam in the Fermilab Booster  

SciTech Connect

The difference between the rf voltage seen by the beam and the accelerating voltage required to match the rate of change of the Booster magnetic field is used to estimate the energy loss per beam turn. Because the rf voltage (RFSUM) and the synchronous phase can be experimentally measured, they can be used to calculate the effective accelerating voltage. Also an RFSUM reduction technique has been applied to measure experimentally the RFSUM limit at which the beam loss starts. With information on beam energy loss, the running conditions, especially for the high intensity beam, can be optimized in order to achieve a higher intensity beam from the Fermilab Booster.

Xi Yang; Charles M Ankenbrandt and Jim Norem

2004-04-01T23:59:59.000Z

95

Plume splitting and rebounding in a high-intensity CO{sub 2} laser induced air plasma  

Science Conference Proceedings (OSTI)

The dynamics of plasma plume formed by high-intensity CO{sub 2} laser induced breakdown of air at atmospheric pressure is investigated. The laser wavelength is 10.6 {mu}m. Measurements were made using 3 ns gated fast photography as well as space and time resolved optical emission spectroscopy. The behavior of the plasma plume was studied with a laser energy of 3 J and 10 J. The results show that the evolution of the plasma plume is very complicated. The splitting and rebounding of the plasma plume is observed to occur early in the plumes history.

Chen Anmin; Jiang Yuanfei; Liu Hang; Jin Mingxing; Ding Dajun [Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 (China)

2012-07-15T23:59:59.000Z

96

Fluorescent refrigeration  

DOE Patents (OSTI)

Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement. 6 figs.

Epstein, R.I.; Edwards, B.C.; Buchwald, M.I.; Gosnell, T.R.

1995-09-05T23:59:59.000Z

97

Fluorescent Lighting  

Energy.gov (U.S. Department of Energy (DOE))

Fluorescent lamps use 25%-35% of the energy used by incandescent lamps to provide the same amount of illumination (efficacy of 30-110 lumens per watt). They also last about 10 times longer (7,000-24,000 hours).

98

Max Tech and Beyond: Fluorescent Lamps  

Science Conference Proceedings (OSTI)

Fluorescent lamps are the most widely used artificial light source today, responsible for approximately 70% of the lumens delivered to our living spaces globally. The technology was originally commercialized in the 1930's, and manufacturers have been steadily improving the efficacy of these lamps over the years through modifications to the phosphors, cathodes, fill-gas, operating frequency, tube diameter and other design attributes. The most efficient commercially available fluorescent lamp is the 25 Watt T5 lamp. This lamp operates at 114-116 lumens per watt while also providing good color rendering and more than 20,000 hours of operating life. Industry experts interviewed indicated that while this lamp is the most efficient in the market today, there is still a further 10 to 14% of potential improvements that may be introduced to the market over the next 2 to 5 years. These improvements include further developments in phosphors, fill-gas, cathode coatings and ultraviolet (UV) reflective glass coatings. The commercialization of these technology improvements will combine to bring about efficacy improvements that will push the technology up to a maximum 125 to 130 lumens per watt. One critical issue raised by researchers that may present a barrier to the realization of these improvements is the fact that technology investment in fluorescent lamps is being reduced in order to prioritize research into light emitting diodes (LEDs) and ceramic metal halide high intensity discharge (HID) lamps. Thus, it is uncertain whether these potential efficacy improvements will be developed, patented and commercialized. The emphasis for premium efficacy will continue to focus on T5 lamps, which are expected to continue to be marketed along with the T8 lamp. Industry experts highlighted the fact that an advantage of the T5 lamp is the fact that it is 40% smaller and yet provides an equivalent lumen output to that of a T8 or T12 lamp. Due to its smaller form factor, the T5 lamp contains less material (i.e., glass, fill gas and phosphor), and has a higher luminance, enabling fixtures to take advantage of the smaller lamp size to improve the optics and provide more efficient overall system illuminance. In addition to offering the market a high-quality efficacious light source, another strong value proposition of fluorescent lighting is its long operating life. In today's market, one manufacturer is offering fluorescent lamps that have a rated life of 79,000 hours - which represents 18 years of service at 12 hours per day, 365 days per year. These lamps, operated using a long-life ballast specified by the manufacturer, take advantage of improvements in cathode coatings, fill gas chemistry and pressure to extend service life by a factor of four over conventional fluorescent lamps. It should be noted that this service life is also longer (approximately twice as long) as today's high-quality LED products. The fluorescent market is currently focused on the T5 and T8 lamp diameters, and it is not expected that other diameters would be introduced. Although T8 is a more optimal diameter from an efficacy perspective, the premium efficiency and optimization effort has been focused on T5 lamps because they are 40% smaller than T8, and are designed to operate at a higher temperature using high-frequency electronic ballasts. The T5 lamp offers savings in terms of materials, packaging and shipping, as well as smaller fixtures with improved optical performance. Manufacturers are actively researching improvements in four critical areas that are expected to yield additional efficacy improvements of approximately 10 to 14 percent over the next five years, ultimately achieving approximately 130 lumens per watt by 2015. The active areas of research where these improvements are anticipated include: (1) Improved phosphors which continue to be developed and patented, enabling higher efficacies as well as better color rendering and lumen maintenance; (2) Enhanced fill gas - adjusting proportions of argon, krypton, neon and xenon to optimize performance, while also m

Scholand, Michael

2012-04-01T23:59:59.000Z

99

High-Intensity and High-Density Charge-Exchange Injection Studies into the CERN PS Booster at Intermediate Energies  

E-Print Network (OSTI)

For the high brilliance LHC ultimate beam and the high intensity CNGS beam, single batch injections into the CERN Proton Synchrotron (PS) will be used to increase the overall machine intensity compared with the present double batch injections. Charge-exchange injection into the PS Booster with a new linac at intermediate energies is thus examined. A key parameter to consider is the energy dependence of beam incoherent tune shifts at injection. Increasing the linac energy from the present 50 MeV to 160 MeV should yield a safer tune shift. For each PS Booster ring, a charge-exchange injection scheme is envisaged inside a proper straight section, redesigned with new bends to make a local bump and using the existing fast bump magnets for horizontal phase-space painting. ACCSIM simulations for charge-exchange injection at 160 MeV have been investigated for both LHC and CNGS beams. After optimizing the parameters that are used for the space charge tracking routines, the results of the simulations agree well with ex...

Martini, M

2004-01-01T23:59:59.000Z

100

MR-Guided High-Intensity Focused Ultrasound Ablation of Breast Cancer with a Dedicated Breast Platform  

SciTech Connect

Optimizing the treatment of breast cancer remains a major topic of interest. In current clinical practice, breast-conserving therapy is the standard of care for patients with localized breast cancer. Technological developments have fueled interest in less invasive breast cancer treatment. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a completely noninvasive ablation technique. Focused beams of ultrasound are used for ablation of the target lesion without disrupting the skin and subcutaneous tissues in the beam path. MRI is an excellent imaging method for tumor targeting, treatment monitoring, and evaluation of treatment results. The combination of HIFU and MR imaging offers an opportunity for image-guided ablation of breast cancer. Previous studies of MR-HIFU in breast cancer patients reported a limited efficacy, which hampered the clinical translation of this technique. These prior studies were performed without an MR-HIFU system specifically developed for breast cancer treatment. In this article, a novel and dedicated MR-HIFU breast platform is presented. This system has been designed for safe and effective MR-HIFU ablation of breast cancer. Furthermore, both clinical and technical challenges are discussed, which have to be solved before MR-HIFU ablation of breast cancer can be implemented in routine clinical practice.

Merckel, Laura G., E-mail: L.G.Merckel-2@umcutrecht.nl [University Medical Center Utrecht, Department of Radiology (Netherlands); Bartels, Lambertus W., E-mail: W.Bartels@umcutrecht.nl [University Medical Center Utrecht, Image Sciences Institute (Netherlands); Koehler, Max O., E-mail: max.kohler@philips.com [Philips Healthcare (Finland); Bongard, H. J. G. Desiree van den, E-mail: D.vandenBongard@umcutrecht.nl [University Medical Center Utrecht, Department of Radiotherapy (Netherlands); Deckers, Roel, E-mail: R.Deckers-2@umcutrecht.nl [University Medical Center Utrecht, Image Sciences Institute (Netherlands)] [University Medical Center Utrecht, Image Sciences Institute (Netherlands); Mali, Willem P. Th. M., E-mail: W.Mali@umcutrecht.nl [University Medical Center Utrecht, Department of Radiology (Netherlands); Binkert, Christoph A., E-mail: Christoph.Binkert@ksw.ch [Cantonal Hospital Winterthur, Department of Radiology (Switzerland); Moonen, Chrit T., E-mail: C.Moonen@umcutrecht.nl [University Medical Center Utrecht, Image Sciences Institute (Netherlands); Gilhuijs, Kenneth G. A., E-mail: K.G.A.Gilhuijs@umcutrecht.nl; Bosch, Maurice A. A. J. van den, E-mail: mbosch@umcutrecht.nl [University Medical Center Utrecht, Department of Radiology (Netherlands)

2013-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "fluorescent high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Guiding of high intensity ultrashort laser pulses in plasma channels produced with the dual laser pulse ignitor-heater technique  

DOE Green Energy (OSTI)

The authors present results of experimental investigations of laser guiding in plasma channels. A new technique for plasma channel creation, the Ignitor-Heater scheme is proposed and experimentally tested in hydrogen and nitrogen. It makes use of two laser pulses. The Ignitor, an ultrashort (< 100 fs) laser pulse, is brought to a line focus using a cylindrical lens to ionize the gas. The Heater pulse (160 ps long) is used subsequently to heat the existing spark via inverse Bremsstrahlung. The hydrodynamic shock expansion creates a partially evacuated plasma channel with a density minimum on axis. Such a channel has properties of an optical waveguide. This technique allows creation of plasma channels in low atomic number gases, such as hydrogen, which is of importance for guiding of highly intense laser pulses. The channel density was diagnosed with time resolved longitudinal interferometry. From these measurements the plasma temperature was inferred. The guiding properties of the channels were tested by injecting a > 5 {times} 10{sup 17} W/cm{sup 2}, 75 fs laser pulse.

Volfbeyn, P.; Leemans, W.P.

1998-07-01T23:59:59.000Z

102

GAS DISCHARGE DEVICES  

DOE Patents (OSTI)

An apparatus utilized in introducing tritium gas into envelope of a gas discharge device for the purpose f maintaining the discharge path in ionized condition is described. ln addition to the cathode and anode, the ischarge device contains a zirconium or tantalum ilament arranged for external excitation and a metallic seed containing tritium, and also arranged to have a current passed through it. Initially, the zirconium or tantalum filament is vaporized to deposit its material adjacent the main discharge region. Then the tritium gas is released and, due to its affinity for the first released material, it deposits in the region of the main discharge where it is most effective in maintaining the discharge path in an ionized condition.

Jefferson, S.

1958-11-11T23:59:59.000Z

103

Silane discharge ion chemistry  

SciTech Connect

Silane dc, rf, and dc proximity discharges have been studied using mass spectroscopic measurements of the positive ions as a detailed diagnostic for the type of discharge used to produce hydrogenated amorphous silicon solar photovoltaic cells. The properties and quality of these films depends in a very complex way upon the interactions of the many reactive neutral and ion species in the discharge. Qualitative models of the ion chemical processes in these discharges have been developed from experimental measurements. Knowledge of the ion-molecule and electron-molecule collision cross sections is important to any attempt at understanding silane discharge chemistry. Consequently, the electron impact ionization cross sections for silane and disilane have been measured and for comparison purposes also for methane and ethane. In addition, the rate coefficients for charge exchange reactions of He , Ne , and Ar with silane, disilane, methane, and ethane have been measured as these are important to understanding discharges in inert gas-silane mixtures. A detailed quantitative model of the cathode sheath region of a silane dc discharge has been developed by extending the best recent calculation of the electron motion in the sheath to a self-consistent form which includes the ion motion. This model is used with comparison of silane dc discharge data to diagnose the ion chemistry occurring in the sheath region of silane dc discharge. The understanding of the discharge ion chemical processes that have been gained in this study represent an important step toward understanding the chemical and physical processes leading to film growth.

Chatham, R.H. III

1984-01-01T23:59:59.000Z

104

Dynamic T{sub 2}-mapping during magnetic resonance guided high intensity focused ultrasound ablation of bone marrow  

Science Conference Proceedings (OSTI)

Focal bone tumor treatments include amputation, limb-sparing surgical excision with bone reconstruction, and high-dose external-beam radiation therapy. Magnetic resonance guided high intensity focused ultrasound (MR-HIFU) is an effective non-invasive thermotherapy for palliative management of bone metastases pain. MR thermometry (MRT) measures the proton resonance frequency shift (PRFS) of water molecules and produces accurate (<1 Degree-Sign C) and dynamic (<5s) thermal maps in soft tissues. PRFS-MRT is ineffective in fatty tissues such as yellow bone marrow and, since accurate temperature measurements are required in the bone to ensure adequate thermal dose, MR-HIFU is not indicated for primary bone tumor treatments. Magnetic relaxation times are sensitive to lipid temperature and we hypothesize that bone marrow temperature can be determined accurately by measuring changes in T{sub 2}, since T{sub 2} increases linearly in fat during heating. T{sub 2}-mapping using dual echo times during a dynamic turbo spin-echo pulse sequence enabled rapid measurement of T{sub 2}. Calibration of T{sub 2}-based thermal maps involved heating the marrow in a bovine femur and simultaneously measuring T{sub 2} and temperature with a thermocouple. A positive T{sub 2} temperature dependence in bone marrow of 20 ms/ Degree-Sign C was observed. Dynamic T{sub 2}-mapping should enable accurate temperature monitoring during MR-HIFU treatment of bone marrow and shows promise for improving the safety and reducing the invasiveness of pediatric bone tumor treatments.

Waspe, Adam C.; Looi, Thomas; Mougenot, Charles; Amaral, Joao; Temple, Michael; Sivaloganathan, Siv; Drake, James M. [Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, M5G 1X8 (Canada); Philips Healthcare Canada, Markham, ON, L6C 2S3 (Canada); Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, M5G 1X8 (Canada); Department of Applied Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1 (Canada); Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, M5G 1X8 (Canada)

2012-11-28T23:59:59.000Z

105

Narrow Energy Spread Protons and Ions from High-Intensity, High-Contrast Laser Solid Target Interactions  

Science Conference Proceedings (OSTI)

Recent simulations show that an idealized, high intensity, short pulse laser can generate quasi-monoenergetic proton beams with energies over 100 MeV in an interaction with a thin film. However, most short pulse laser facilities with sufficient intensity have difficulty controlling the nanosecond and picosecond contrast necessary to realize such a regime. Experiments were performed to investigate proton and ion acceleration from a high contrast, short pulse laser by employing dual plasma mirrors along with a deformable mirror at the HERCULES laser facility at the Center for Ultrafast Optical Sciences, University of Michigan. Plasma mirrors were characterized, allowing a 50% throughput with an intensity contrast increase of 105. The focal spot quality was also exceptional, showing a 1.1 micron full width at half maximum (FWHM) focal diameter. Experiments were done using temporally cleaned 30 TW, 32 fs pulses to achieve an intensity of up to 10{sup 21} Wcm{sup -2} on Si{sub 3}N{sub 4} and Mylar targets with thicknesses ranging 50 nm to 13 microns. Proton beams with energy spreads below 2 MeV were observed from all thicknesses, peaking with energies up to 10.3 MeV and an energy spread of 0.8 MeV. Similar narrow energy spreads were observed for oxygen, nitrogen, and carbon at the silicon nitride thickness of 50 nm with energies up to 24 MeV with an energy spread of 3 MeV, whereas the energy spread is greatly increased at a larger thickness. Maximum energies were confirmed with CR39 track detectors, while a Thomson ion spectrometer was used to gauge the monoenergetic nature of the beam.

Dollar, Franklin; Matsuoka, Takeshi; McGuffey, Christopher; Bulanov, Stepan S.; Chvykov, Vladimir; Kalintchenko, Galina; Thomas, Alec G. R.; Willingale, Louise; Yanovsky, Victor; Maksimchuk, Anatoly; Krushelnick, Karl [Center for Ultrafast Optical Science, Univ. Of Michigan, Ann Arbor, MI 48109 (United States); Davis, Jack; Petrov, George [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States)

2010-11-04T23:59:59.000Z

106

HILL: The High-Intensity Laser Laboratory Core Team's Reply to Questions from the NNSA Experimental Facilities Panel  

SciTech Connect

Question 1 - The type of physics regimes that HILL can access for weapons studies is quite interesting. The question that arises for the proposal team is what priority does this type of experimental data have versus data that can be obtained with NIF, and Z. How does HILL rank in priority compared to MARIE 1.0 in terms of the experimental data it will provide? We reiterate that isochoric heating experiments to be conducted with HILL are complementary to the high energy density physics experiments at NIF and Z and uniquely access states of matter that neither other facility can access. It is our belief that HILL will enable several important questions, e.g., as related to mix morphology, radiation transfer from corrugated surfaces, and equations of state, to be run to ground through carefully diagnosed, 'unit-physics' experiments. Such experiments will substantially improve confidence in our computer models and provide a rigorous science basis for certification. Question 2 - A secondary question relates to the interests of LLNL and SNL in the physics that HILL can address. This should be spelled out clearly. I would like to see the other labs be part of the discussion regarding how important this capability would be if built. Both sister Labs have a keen interest in the physics enabled by high-intensity, high-energy lasers, as evinced by the Z Petawatt and NIF ARC upgrades to their signature facilities. LANL scientists have teamed with scientists from both Laboratories in high-intensity laser 'first experiments' envisioned for HILL and we fully intend to continue these profitable discussions going forward. In the preparation of the HILL proposal, feedback was solicited from the broader HEDP and weapons science communities. The consensus view was that HILL filled a critical gap and that there was a need for a facility like HILL to address outstanding questions in weapons science. It was recognized that co-location of HILL with a facility such as MaRIE 1.0, Z, NIF, or Omega may offer additional advantages and we would expect these to be explored and evaluated during the CD process. Question 3 - A laser/optics experts group should review this proposal to ensure the level of R&D is reasonable to provide a sufficient chance of success (>50%). In the preparation of the HILL proposal, we sent our proposal and cost estimates to laser designers/scientists across the complex. Though risks were identified with our design, the prevailing view of those we engaged was that the risks were appropriately represented by the TRL levels assigned and that the enabling R&D planned in our proposal was adequate for risk mitigation. Question 4 - More data and peer review is needed from its sister facilities around the world. It is our specific intent to conduct both scientific and technical workshops with the user community if the High Intensity Science field is further encouraged as part of the NNSA Roadmap. Question 5 - Does HILL have to be co-located with MARIE 1.0? Is that feasible from the point of view of TA-53 real estate? Multiple siting options were considered for HILL, including co-location with MaRIE 1.0 (the most cost-effective and flexible option), as well as in a separate, stand-alone building and in a retro-fitted existing building. The cost estimate included these contingencies and candidate locations for HILL in TA-53 were identified. There is actually significant space at TA-53 on the hill in the northeast end of the mesa. Question 6 - What would be the impact on the weapons program if this facility were NOT built? An inability to elucidate aspects of weapons science in the dense plasma regime and validate computer models for same. This will lead to reduced confidence in the computer tools used for certification. Question 7 - Will HILL allow some of the x-ray vulnerability studies proposed by SPARC? If so what does Sandia's vulnerability group think of this method versus SPARC. It is possible that some of the scope envisioned for SPARC could be achieved on HILL, although likely that the energy produced at HILL not bei

Albright, B J [Los Alamos National Laboratory

2012-08-02T23:59:59.000Z

107

Energy Basics: Fluorescent Lighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Cooling Water Heating Fluorescent Lighting Fluorescent lamps use 25%-35% of the energy used by incandescent lamps to provide the same amount of illumination (efficacy of...

108

Generalized Courant-Snyder Theory and Kapchinskij-Vladimirskij Distribution For High-intensity Beams In A Coupled Transverse Focusing Lattice  

SciTech Connect

The Courant-Snyder (CS) theory and the Kapchinskij-Vladimirskij (KV) distribution for high-intensity beams in a uncoupled focusing lattice are generalized to the case of coupled transverse dynamics. The envelope function is generalized to an envelope matrix, and the envelope equation becomes a matrix envelope equation with matrix operations that are non-commutative. In an uncoupled lattice, the KV distribution function, first analyzed in 1959, is the only known exact solution of the nonlinear Vlasov-Maxwell equations for high-intensity beams including self-fields in a self-consistent manner. The KV solution is generalized to high-intensity beams in a coupled transverse lattice using the generalized CS invariant. This solution projects to a rotating, pulsating elliptical beam in transverse configuration space. The fully self-consistent solution reduces the nonlinear Vlasov-Maxwell equations to a nonlinear matrix ordinary differential equation for the envelope matrix, which determines the geometry of the pulsating and rotating beam ellipse. These results provide us with a new theoretical tool to investigate the dynamics of high-intensity beams in a coupled transverse lattice. A strongly coupled lattice, a so-called N-rolling lattice, is studied as an example. It is found that strong coupling does not deteriorate the beam quality. Instead, the coupling induces beam rotation, and reduces beam pulsation.

Hong QIn, Ronald Davidson

2011-07-18T23:59:59.000Z

109

PERIODIC GLOW DISCHARGE REPORT  

NLE Websites -- All DOE Office Websites (Extended Search)

GLOW DISCHARGE REPORT GLOW DISCHARGE REPORT TIME: Jan 11 2014 11:29:09:000PM Power Supply ON/OFF Status OFF Power Supply Fault Status FAULT Power Supply Standby Status ON Power Supply Interlock Status NOT OK HV Power Resistors Status NORMAL Power Supply Voltage 52.00 Power Supply Current -71.00 Electrode 1 Voltage -15.00 Electrode 1 Current -79.00 Electrode 2 Voltage -14.00 Electrode 2 Current -70.00 ROSS 1 Status OPEN ROSS 2 Status OPEN ROSS 1 Common Line OPEN ROSS 2 Common Line OPEN IGBT1 Enable DISABLE IGBT2 Enable DISABLE

110

Longitudinal discharge laser baffles  

DOE Patents (OSTI)

The IR baffles placed between the window and the electrode of a longitudinal discharge laser improve laser performance by intercepting off-axis IR radiation from the laser and in doing so reduce window heating and subsequent optical distortion of the laser beam.

Warner, Bruce E. (Livermore, CA); Ault, Earl R. (Dublin, CA)

1994-01-01T23:59:59.000Z

111

Longitudinal discharge laser baffles  

DOE Patents (OSTI)

The IR baffles placed between the window and the electrode of a longitudinal discharge laser improve laser performance by intercepting off-axis IR radiation from the laser and in doing so reduce window heating and subsequent optical distortion of the laser beam. 1 fig.

Warner, B.E.; Ault, E.R.

1994-06-07T23:59:59.000Z

112

Fluorescent Optical Position Sensor  

Sandia National Laboratories has created a method and apparatus for measuring the position of an object.  It relies on the attenuation of fluorescence light carried inside a fluorescent optical fiber to determine the position of an object. 

113

Energy Basics: Fluorescent Lighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fluorescent Lighting Fluorescent lamps use 25%-35% of the energy used by incandescent lamps to provide the same amount of illumination (efficacy of 30-110 lumens per watt). They...

114

Principles of Electrical Discharge Machining  

Science Conference Proceedings (OSTI)

...supplied to the clearance from a pulse power supply (approximately 60 to 300 V) to provide transient arc discharge (discharge retention time: 0.1 ÎĽs to 8 ms) at a high frequency so as to remove workpiece metal with a very dense energy provided by the discharge....

115

Powerful glow discharge excilamp  

DOE Patents (OSTI)

A powerful glow discharge lamp comprising two coaxial tubes, the outer tube being optically transparent, with a cathode and anode placed at opposite ends of the tubes, the space between the tubes being filled with working gas. The electrodes are made as cylindrical tumblers placed in line to one other in such a way that one end of the cathode is inserted into the inner tube, one end of the anode coaxially covers the end of the outer tube, the inner tube penetrating and extending through the anode. The increased electrodes' surface area increases glow discharge electron current and, correspondingly, average radiation power of discharge plasma. The inner tube contains at least one cooling liquid tube placed along the axis of the inner tube along the entire lamp length to provide cathode cooling. The anode has a circumferential heat extracting radiator which removes heat from the anode. The invention is related to lighting engineering and can be applied for realization of photostimulated processes under the action of powerful radiation in required spectral range.

Tarasenko, Victor F. (Tomsk, RU); Panchenko, Aleksey N. (Tomsk, RU); Skakun, Victor S. (Tomsk, RU); Sosnin, Edward A. (Tomsk, RU); Wang, Francis T. (Danville, CA); Myers, Booth R. (Livermore, CA); Adamson, Martyn G. (Danville, CA)

2002-01-01T23:59:59.000Z

116

Oil and Hazardous Substance Discharge Preparedness (Minnesota...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Substance Discharge Preparedness (Minnesota) Oil and Hazardous Substance Discharge Preparedness (Minnesota) Eligibility Utility Fed. Government Commercial Agricultural...

117

DNA sequencing using fluorescence background electroblotting membrane  

DOE Patents (OSTI)

A method for the multiplex sequencing on DNA is disclosed which comprises the electroblotting or specific base terminated DNA fragments, which have been resolved by gel electrophoresis, onto the surface of a neutral non-aromatic polymeric microporous membrane exhibiting low background fluorescence which has been surface modified to contain amino groups. Polypropylene membranes are preferably and the introduction of amino groups is accomplished by subjecting the membrane to radio or microwave frequency plasma discharge in the presence of an aminating agent, preferably ammonia. The membrane, containing physically adsorbed DNA fragments on its surface after the electroblotting, is then treated with crosslinking means such as UV radiation or a glutaraldehyde spray to chemically bind the DNA fragments to the membrane through said smino groups contained on the surface thereof. The DNA fragments chemically bound to the membrane are subjected to hybridization probing with a tagged probe specific to the sequence of the DNA fragments. The tagging may be by either fluorophores or radioisotopes. The tagged probes hybridized to said target DNA fragments are detected and read by laser induced fluorescence detection or autoradiograms. The use of aminated low fluorescent background membranes allows the use of fluorescent detection and reading even when the available amount of DNA to be sequenced is small. The DNA bound to the membrances may be reprobed numerous times.

Caldwell, Karin D. (Salt Lake City, UT); Chu, Tun-Jen (Salt Lake City, UT); Pitt, William G. (Orem, UT)

1992-01-01T23:59:59.000Z

118

DNA sequencing using fluorescence background electroblotting membrane  

DOE Patents (OSTI)

A method for the multiplex sequencing on DNA is disclosed which comprises the electroblotting or specific base terminated DNA fragments, which have been resolved by gel electrophoresis, onto the surface of a neutral non-aromatic polymeric microporous membrane exhibiting low background fluorescence which has been surface modified to contain amino groups. Polypropylene membranes are preferably and the introduction of amino groups is accomplished by subjecting the membrane to radio or microwave frequency plasma discharge in the presence of an aminating agent, preferably ammonia. The membrane, containing physically adsorbed DNA fragments on its surface after the electroblotting, is then treated with crosslinking means such as UV radiation or a glutaraldehyde spray to chemically bind the DNA fragments to the membrane through amino groups contained on the surface. The DNA fragments chemically bound to the membrane are subjected to hybridization probing with a tagged probe specific to the sequence of the DNA fragments. The tagging may be by either fluorophores or radioisotopes. The tagged probes hybridized to the target DNA fragments are detected and read by laser induced fluorescence detection or autoradiograms. The use of aminated low fluorescent background membranes allows the use of fluorescent detection and reading even when the available amount of DNA to be sequenced is small. The DNA bound to the membranes may be reprobed numerous times. No Drawings

Caldwell, K.D.; Chu, T.J.; Pitt, W.G.

1992-05-12T23:59:59.000Z

119

Formation of silver nanoparticles inside a soda-lime glass matrix in the presence of a high intensity Ar{sup +} laser beam  

SciTech Connect

Formation and motion of the silver nanoparticles inside an ion-exchanged soda-lime glass in the presence of a focused high intensity continuous wave Ar{sup +} laser beam (intensity: 9.2 x 10{sup 4} W/cm{sup 2}) have been studied in here. One-dimensional diffusion equation has been used to model the diffusion of the silver ions into the glass matrix, and a two-dimensional reverse diffusion model has been introduced to explain the motion of the silver clusters and their migration toward the glass surface in the presence of the laser beam. The results of the mentioned models were in agreement with our measurements on thickness of the ion-exchange layer by means of optical microscopy and recorded morphology of the glass surface around the laser beam axis by using a Mirau interferometer. SEM micrographs were used to extract the size distribution of the migrated silver particles over the glass surface.

Niry, M. D.; Khalesifard, H. R. [Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731 (Iran, Islamic Republic of); Optics Research Center, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731 (Iran, Islamic Republic of); Mostafavi-Amjad, J.; Ahangary, A. [Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731 (Iran, Islamic Republic of); Azizian-Kalandaragh, Y. [Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731 (Iran, Islamic Republic of); Department of Physics, University of Mohaghegh Ardabili (UMA), P.O. Box 179, Ardabil (Iran, Islamic Republic of)

2012-02-01T23:59:59.000Z

120

Polarisation response of a gas medium in the field of a high-intensity ultrashort laser pulse: high order Kerr nonlinearities or plasma electron component?  

SciTech Connect

The polarisation response of quantum systems modelling silver and xenon atoms in the field of a high-intensity femtosecond Ti : sapphire laser (photon energy h{omega} Almost-Equal-To 1.5 eV), has been investigated by direct numerical integration of the Schroedinger equation. The applicability ranges of the perturbation theory and polarisation expansion in powers of field are determined. The contributions of excited atoms and electrons in the continuous-spectrum states to the polarisation response at the fundamental frequency, which arise as a result of excitation and photoionisation, are analysed. It is shown that specifically ionisation changes the sign of dielectric susceptibility with an increase in radiation intensity for the systems under consideration. (interaction of laser radiation with matter. laser plasmas)

Volkova, E A; Popov, Alexander M; Tikhonova, O V [D.V. Skobel'tsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

2012-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "fluorescent high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

X-ray polarization spectroscopy to study anisotropic velocity distribution of hot electrons produced by an ultra-high-intensity laser  

SciTech Connect

The anisotropy of the hot-electron velocity distribution in ultra-high-intensity laser produced plasma was studied with x-ray polarization spectroscopy using multilayer planar targets including x-ray emission tracer in the middle layer. This measurement serves as a diagnostic for hot-electron transport from the laser-plasma interaction region to the overdense region where drastic changes in the isotropy of the electron velocity distribution are observed. These polarization degrees are consistent with analysis of a three-dimensional polarization spectroscopy model coupled with particle-in-cell simulations. Electron velocity distribution in the underdense region is affected by the electric field of the laser and that in the overdense region becomes wider with increase in the tracer depth. A full-angular spread in the overdense region of 22.4 deg.{sub -2.4}{sup +5.4} was obtained from the measured polarization degree.

Inubushi, Y. [Institute of Laser Engineering, Osaka University, Suita, Osaka (Japan); Graduate School of Engineering, Osaka University, Suita, Osaka (Japan); Okano, Y.; Nishimura, H.; Cai, H.; Nagatomo, H.; Kai, T.; Fujioka, S.; Nakamura, T.; Johzaki, T.; Mima, K. [Institute of Laser Engineering, Osaka University, Suita, Osaka (Japan); Kawamura, T. [Tokyo Institute of Technology, Yokohama, Kanagawa (Japan); Batani, D.; Morace, A.; Redaelli, R. [Dipartmento di Fisica 'G. Occhialini', University of Milano-Bicocca, Milan (Italy); Fourment, C.; Santos, J. J.; Malka, G. [CELIA, Universite de Bordeaux/CNRS/CEA, Talence (France); Boscheron, A.; Bonville, O.; Grenier, J. [CEA/CESTA, Le Barp (France)

2010-03-15T23:59:59.000Z

122

Harmonic generation at high intensities  

Science Conference Proceedings (OSTI)

Atomic electrons subject to intense laser fields can absorb many photons, leading either to multiphoton ionization or the emission of a single, energetic photon which can be a high multiple of the laser frequency. The latter process, high-order harmonic generation, has been observed experimentally using a range of laser wavelengths and intensities over the past several years. Harmonic generation spectra have a generic form: a steep decline for the low order harmonics, followed by a plateau extending to high harmonic order, and finally an abrupt cutoff beyond which no harmonics are discernible. During the plateau the harmonic production is a very weak function of the process order. Harmonic generation is a promising source of coherent, tunable radiation in the XUV to soft X-ray range which could have a variety of scientific and possibly technological applications. Its conversion from an interesting multiphoton phenomenon to a useful laboratory radiation source requires a complete understanding of both its microscopic and macroscopic aspects. We present some recent results on the response of single atoms at intensities relevant to the short pulse experiments. The calculations employ time-dependent methods, which we briefly review in the next section. Following that we discuss the behavior of the harmonics as a function of laser intensity. Two features are notable: the slow scaling of the harmonic intensities with laser intensity, and the rapid variation in the phase of the individual harmonics with respect to harmonic order. We then give a simple empirical formula that predicts the extent of the plateau for a given ionization potential, wavelength and intensity.

Schafer, K.J.; Krause, J.L.; Kulander, K.C.

1993-06-01T23:59:59.000Z

123

High intensity protons in RHIC  

SciTech Connect

During the 2012 summer shutdown a pair of electron lenses will be installed in RHIC, allowing the beam-beam parameter to be increased by roughly 50 percent. To realize the corresponding luminosity increase bunch intensities have to be increased by 50 percent, to 2.5 {center_dot} 10{sup 11} protons per bunch. We list the various RHIC subsystems that are most affected by this increase, and propose beam studies to ensure their readiness. The proton luminosity in RHIC is presently limited by the beam-beam effect. To overcome this limitation, electron lenses will be installed in IR10. With the help of these devices, the headon beam-beam kick experienced during proton-proton collisions will be partially compensated, allowing for a larger beam-beam tuneshift at these collision points, and therefore increasing the luminosity. This will be accomplished by increasing the proton bunch intensity from the presently achieved 1.65 {center_dot} 10{sup 11} protons per bunch in 109 bunches per beam to 2.5 {center_dot} 10{sup 11}, thus roughly doubling the luminosity. In a further upgrade we aim for bunch intensities up to 3 {center_dot} 10{sup 11} protons per bunch. With RHIC originally being designed for a bunch intensity of 1 {center_dot} 10{sup 11} protons per bunch in 56 bunches, this six-fold increase in the total beam intensity by far exceeds the design parameters of the machine, and therefore potentially of its subsystems. In this note, we present a list of major subsystems that are of potential concern regarding this intensity upgrade, show their demonstrated performance at present intensities, and propose measures and beam experiments to study their readiness for the projected future intensities.

Montag, C.; Ahrens& #44; L.; Blaskiewicz& #44; M.; Brennan& #44; J.M.; Drees& #44; K.A.; Fischer& #44; W.; Huang& #44; H.; Minty& #44; M.; Robert-Demolaize& #44; G.; Thieberger& #44; P.; Yip& #44; K.

2012-01-05T23:59:59.000Z

124

High-Intensity Proton Accelerator  

SciTech Connect

Analysis is presented for an eight-cavity proton cyclotron accelerator that could have advantages as compared with other accelerators because of its potentially high acceleration gradient. The high gradient is possible since protons orbit in a sequence of TE111 rotating mode cavities of equally diminishing frequencies with path lengths during acceleration that greatly exceed the cavity lengths. As the cavities operate at sequential harmonics of a basic repetition frequency, phase synchronism can be maintained over a relatively wide injection phase window without undue beam emittance growth. It is shown that use of radial vanes can allow cavity designs with significantly smaller radii, as compared with simple cylindrical cavities. Preliminary beam transport studies show that acceptable extraction and focusing of a proton beam after cyclic motion in this accelerator should be possible. Progress is also reported on design and tests of a four-cavity electron counterpart accelerator for experiments to study effects on beam quality arising from variations injection phase window width. This device is powered by four 500-MW pulsed amplifiers at 1500, 1800, 2100, and 2400 MHz that provide phase synchronous outputs, since they are driven from a with harmonics derived from a phase-locked 300 MHz source.

Jay L. Hirshfield

2011-12-27T23:59:59.000Z

125

Microsoft Word - Groundwater Discharge Permit  

NLE Websites -- All DOE Office Websites (Extended Search)

State Renews Groundwater Discharge Permit for WIPP CARLSBAD, N.M., September 11, 2008 - The New Mexico Environment Department (NMED) has renewed the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) groundwater discharge permit until 2013. The permit regulates the discharge of water from WIPP facilities and operations to lined ponds, which protect groundwater resources. The permit allows WIPP to discharge domestic wastewater, non-hazardous wastewater and storm water into 13 on-site, synthetically-lined ponds. The new permit also provides for increased daily discharge volumes to allow more flexibility in plant operations. "This permit is the result of a positive year-long effort with the New Mexico Groundwater Quality Bureau," said Jody Plum, DOE Carlsbad Field Office Permitting and

126

Experimental and Numerical Study of Low-Pressure Hg-Ar Discharge at High Current Densities: For the Journal of Applied Physics  

Science Conference Proceedings (OSTI)

Experimental and numerical research on mercury low-pressure discharges have supported the development of fluorescent lighting technologies and made fundamental contributions to the understanding of low-pressure plasma physics. Numerical models of fluorescent lamps under "standard" operating conditions have reproduced the essential physical behavior of these discharges fairly well. However, recent developments in the lighting industry have led to the introduction of lamps operating at much higher current ...

2003-02-24T23:59:59.000Z

127

Highly thermostable fluorescent proteins  

DOE Patents (OSTI)

Thermostable fluorescent proteins (TSFPs), methods for generating these and other stability-enhanced proteins, polynucleotides encoding such proteins, and assays and method for using the TSFPs and TSFP-encoding nucleic acid molecules are provided. The TSFPs of the invention show extremely enhanced levels of stability and thermotolerance. In one case, for example, a TSFP of the invention is so stable it can be heated to 99.degree. C. for short periods of time without denaturing, and retains 85% of its fluorescence when heated to 80.degree. C. for several minutes. The invention also provides a method for generating stability-enhanced variants of a protein, including but not limited to fluorescent proteins.

Bradbury, Andrew M. (Santa Fe, NM); Waldo, Geoffrey S. (Santa Fe, NM); Kiss, Csaba (Los Alamos, NM)

2011-03-22T23:59:59.000Z

128

Fiber bundle fluorescence endomicroscopy  

E-Print Network (OSTI)

An improved design for fiber bundle fluorescence endomicroscopy is demonstrated. Scanned illumination and detection using coherent fiber bundles with 30,000 elements with 3 ?m resolution enables high speed imaging with ...

Tsai, Tsung-Han

129

Fluorescent filtered electrophosphorescence  

DOE Patents (OSTI)

The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters for the efficient utilization of all of the electrically generated excitons.

Forrest, Stephen (Ann Arbor, MI); Sun, Yiru (Princeton, NJ); Giebink, Noel (Ann Arbor, MI); Thompson, Mark E. (Anaheim Hills, CA)

2010-08-03T23:59:59.000Z

130

Fluorescent filtered electrophosphorescence  

DOE Patents (OSTI)

The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters for the efficient utilization of all of the electrically generated excitons.

Forrest, Stephen R. (Princeton, NJ); Sun, Yiru (Princeton, NJ); Giebink, Noel (Princeton, NJ); Thompson, Mark E. (Anaheim Hills, CA)

2009-01-06T23:59:59.000Z

131

DISCHARGE DEVICE FOR RADIOACTIVE MATERIAL  

DOE Patents (OSTI)

A device is described fur unloading bodies of fissionable material from a neutronic reactor. It is comprised essentially of a wheeled flat car having a receptacle therein containing a liquid coolant fur receiving and cooling the fuel elements as they are discharged from the reactor, and a reciprocating plunger fur supporting the fuel element during discharge thereof prior to its being dropped into the coolant. The flat car is adapted to travel along the face of the reactor adjacent the discharge ends of the coolant tubes.

Ohlinger, L.A.

1958-09-23T23:59:59.000Z

132

HIGH ENERGY GASEOUS DISCHARGE DEVICES  

DOE Patents (OSTI)

The high-energy electrical discharge device described comprises an envelope, a pair of main discharge electrodes supported in opposition in the envelope, and a metallic shell symmetrically disposed around and spaced from the discharge path between the electrodes. The metallic shell comprises a first element of spaced helical turns of metallic material and a second element of spaced helical turns of methllic material insulatedly supported in superposition outside the first element and with the turns overlapping the gap between the turns of the first element.

Josephson, V.

1960-02-16T23:59:59.000Z

133

Recombinant fluorescent protein microsphere calibration standard  

SciTech Connect

A method for making recombinant fluorescent protein standard particles for calibration of fluorescence instruments.

Nolan, John P. (Santa Fe, NM); Nolan, Rhiannon L. (Santa Fe, NM); Ruscetti, Teresa (Los Alamos, NM); Lehnert, Bruce E. (Los Alamos, NM)

2001-01-01T23:59:59.000Z

134

Industrial Discharge Permits (District of Columbia)  

Energy.gov (U.S. Department of Energy (DOE))

All businesses and government agencies discharging process wastewater to the public sewer system must report their activities to DC Water's Pretreatment Center. Wastewater discharge permits are...

135

Direct Discharge Permit (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Discharge Permit (Vermont) Direct Discharge Permit (Vermont) Eligibility Utility Agricultural Investor-Owned Utility Industrial MunicipalPublic Utility Rural Electric Cooperative...

136

Fluorescent Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fluorescent Lighting Fluorescent Lighting Fluorescent Lighting October 17, 2013 - 5:44pm Addthis Fluorescent Lighting Fluorescent Lighting Fluorescent lamps use 25%-35% of the energy used by incandescent products to provide a similar amount of light. They also last about 10 times longer (7,000-24,000 hours). The two general types of fluorescent lamps are: Compact fluorescent lamps (CFLs) -- commonly found with integral ballasts and screw bases, these are popular lamps often used in household fixtures Fluorescent tube and circline lamps -- typically used for task lighting such as garages and under cabinet fixtures, and for lighting large areas in commercial buildings. CFLs CFLs combine the energy efficiency of fluorescent lighting with the convenience and popularity of incandescent fixtures. CFLs fit most fixtures

137

Space charge effect of the high intensity proton beam during the resonance extraction for the Mu2e experiment at Fermilab  

SciTech Connect

The proposed Mu2e experiment to search for direct {mu} {yields} e conversion at Fermilab plans slow, resonant extraction of a beam with 3 x 10{sup 12} protons from the Debuncher ring. Space charge of this high intensity beam is a critical factor, since it induces significant betatron tune spread and consequently affects resonance extraction processes, such as spill uniformity and beam losses. This study shows the multi-particle simulation results in the early stages of resonance extraction and spill uniformity in the presence of 2D and 3D space charge effects. We have presented the results of the third-integer resonance extraction in early stage for the Mu2e experiment in the presence of space charge effects. In order to track particles and to calculate self-consistent space charge effects, Synergia2 was used, which is capable of parallel computing. The space charge tune shift was computed and was reasonable value compared with the analytical calculation. Locations of the septum and Lambertson were chosen so that particles are kicked and extracted efficiently. The spill rates for with and without space charge effects were uniform, but should be improved for the early stage after the sextupole field ramping.

Park, Chong Shik; Amundson, James; Johnstone, John; Michelotti, Leo; Nagaslaev, Vladimir; Werkema, Steve; /Fermilab

2011-03-01T23:59:59.000Z

138

Continuation of full-scale three-dimensional numerical experiments on high-intensity particle and laser beam-matter interactions  

SciTech Connect

We present results from the grant entitled, ���¢��������Continuation of full-scale three-dimensional numerical experiments on high-intensity particle and laser beam-matter interactions.���¢������� The research significantly advanced the understanding of basic high-energy density science (HEDS) on ultra intense laser and particle beam plasma interactions. This advancement in understanding was then used to to aid in the quest to make 1 GeV to 500 GeV plasma based accelerator stages. The work blended basic research with three-dimensions fully nonlinear and fully kinetic simulations including full-scale modeling of ongoing or planned experiments. The primary tool was three-dimensional particle-in-cell simulations. The simulations provided a test bed for theoretical ideas and models as well as a method to guide experiments. The research also included careful benchmarking of codes against experiment. High-fidelity full-scale modeling provided a means to extrapolate parameters into regimes that were not accessible to current or near term experiments, thereby allowing concepts to be tested with confidence before tens to hundreds of millions of dollars were spent building facilities. The research allowed the development of a hierarchy of PIC codes and diagnostics that is one of the most advanced in the world.

Mori, Warren, B.

2012-12-01T23:59:59.000Z

139

Optimizing electron-positron pair production on kilojoule-class high-intensity lasers for the purpose of pair-plasma creation  

Science Conference Proceedings (OSTI)

Expressions for the yield of electron-positron pairs, their energy spectra, and production rates have been obtained in the interaction of multi-kJ pulses of high-intensity laser light interacting with solid targets. The Bethe-Heitler conversion of hard x-ray bremsstrahlung [D. A. Gryaznykh, Y. Z. Kandiev, and V. A. Lykov, JETP Lett. 67, 257 (1998); K. Nakashima and H. Takabe, Phys. Plasmas 9, 1505 (2002)] is shown to dominate over direct production (trident process) [E. P. Liang, S. C. Wilks, and M. Tabak, Phys. Rev. Lett. 81, 4887 (1998)]. The yields and production rates have been optimized as a function of incident laser intensity by the choice of target material and dimensions, indicating that up to 5x10{sup 11} pairs can be produced on the OMEGA EP laser system [L. J. Waxer et al., Opt. Photonics News 16, 30 (2005)]. The corresponding production rates are high enough to make possible the creation of a pair plasma.

Myatt, J.; Delettrez, J. A.; Maximov, A. V.; Meyerhofer, D. D.; Short, R. W.; Stoeckl, C.; Storm, M. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)

2009-06-15T23:59:59.000Z

140

Constricted glow discharge plasma source  

SciTech Connect

A constricted glow discharge chamber and method are disclosed. The polarity and geometry of the constricted glow discharge plasma source is set so that the contamination and energy of the ions discharged from the source are minimized. The several sources can be mounted in parallel and in series to provide a sustained ultra low source of ions in a plasma with contamination below practical detection limits. The source is suitable for applying films of nitrides such as gallium nitride and oxides such as tungsten oxide and for enriching other substances in material surfaces such as oxygen and water vapor, which are difficult process as plasma in any known devices and methods. The source can also be used to assist the deposition of films such as metal films by providing low-energy ions such as argon ions.

Anders, Andre (Albany, CA); Anders, Simone (Albany, CA); Dickinson, Michael (San Leandro, CA); Rubin, Michael (Berkeley, CA); Newman, Nathan (Winnetka, IL)

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fluorescent high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Mechanism and computational model for Lyman-{alpha}-radiation generation by high-intensity-laser four-wave mixing in Kr-Ar gas  

SciTech Connect

We present a theoretical model combined with a computational study of a laser four-wave mixing process under optical discharge in which the non-steady-state four-wave amplitude equations are integrated with the kinetic equations of initial optical discharge and electron avalanche ionization in Kr-Ar gas. The model is validated by earlier experimental data showing strong inhibition of the generation of pulsed, tunable Lyman-{alpha} (Ly-{alpha}) radiation when using sum-difference frequency mixing of 212.6 nm and tunable infrared radiation (820-850 nm). The rigorous computational approach to the problem reveals the possibility and mechanism of strong auto-oscillations in sum-difference resonant Ly-{alpha} generation due to the combined effect of (i) 212.6-nm (2+1)-photon ionization producing initial electrons, followed by (ii) the electron avalanche dominated by 843-nm radiation, and (iii) the final breakdown of the phase matching condition. The model shows that the final efficiency of Ly-{alpha} radiation generation can achieve a value of {approx}5x10{sup -4} which is restricted by the total combined absorption of the fundamental and generated radiation.

Louchev, Oleg A.; Saito, Norihito; Wada, Satoshi [Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Bakule, Pavel [STFC, ISIS Facility, Rutherford Appleton Laboratory, Chilton, Oxfordshire OX11 0QX (United Kingdom); Yokoyama, Koji [Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Advanced Meson Science Laboratory, RIKEN Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan); Ishida, Katsuhiko; Iwasaki, Masahiko [Advanced Meson Science Laboratory, RIKEN Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan)

2011-09-15T23:59:59.000Z

142

Compact monolithic capacitive discharge unit  

DOE Patents (OSTI)

A compact monolithic capacitive discharge unit (CDU) is disclosed in which a thyristor switch and a flyback charging circuit are both sandwiched about a ceramic energy storage capacitor. The result is a compact rugged assembly which provides a low-inductance current discharge path. The flyback charging circuit preferably includes a low-temperature co-fired ceramic transformer. The CDU can further include one or more ceramic substrates for enclosing the thyristor switch and for holding various passive components used in the flyback charging circuit. A load such as a detonator can also be attached directly to the CDU.

Roesler, Alexander W. (Tijeras, NM); Vernon, George E. (Rio Rancho, NM); Hoke, Darren A. (Albuquerque, NM); De Marquis, Virginia K. (Tijeras, NM); Harris, Steven M. (Albuquerque, NM)

2007-06-26T23:59:59.000Z

143

Method and apparatus for dimming fluorescent lights  

SciTech Connect

This patent describes a dimmer for fluorescent lights that utilizes the standard ballast associated with the lights, comprising: means for controlling the transmission of the normal line A.C. voltage sine wave to the ballast. This is done so that the A.C. voltage is connected to the ballast for only a selectable period of time during each half cycle of the sine wave and is blocked during the remaining period of each half cycle thereby controlling the power supplied to the discharge portion of the lights to control brightness; and means for applying a high frequency voltage signal to the ballast during at least a portion of the time period when the A.C. signal to the ballast is blocked thereby supplying additional power to the filaments of lights.

Clark, R.

1987-03-17T23:59:59.000Z

144

Integrated fluorescence analysis system  

DOE Patents (OSTI)

An integrated fluorescence analysis system enables a component part of a sample to be virtually sorted within a sample volume after a spectrum of the component part has been identified from a fluorescence spectrum of the entire sample in a flow cytometer. Birefringent optics enables the entire spectrum to be resolved into a set of numbers representing the intensity of spectral components of the spectrum. One or more spectral components are selected to program a scanning laser microscope, preferably a confocal microscope, whereby the spectrum from individual pixels or voxels in the sample can be compared. Individual pixels or voxels containing the selected spectral components are identified and an image may be formed to show the morphology of the sample with respect to only those components having the selected spectral components. There is no need for any physical sorting of the sample components to obtain the morphological information.

Buican, Tudor N. (Los Alamos, NM); Yoshida, Thomas M. (Los Alamos, NM)

1992-01-01T23:59:59.000Z

145

Fluorescent fixtures and ballasts  

SciTech Connect

The basic parameters of a fluorescent lighting system that affect the illumination level are discussed. The parameters include the thermal performance of the fixture and the ballast factor, voltage regulation, and thermal regulation of the ballast/lamp system. Fixtures determine the minimum lamp-wall temperature of the lamps and are described as hot or cold. That is, the lamp-wall temperatures can vary from 39 to 61/sup 0/C. In general, cool fixtures tend to provide higher light levels and are more efficacious for a given ballast/lamp system. Solid-state fluorescent ballast/lamp systems have been measured and show a variation in light output from 6170 to 3780 lumens for the two-lamp, F-40, T-12, rapid-start lamps. Lighting designers must obtain this information in order to accurately predict illumination levels in a space.

Verderber, R.R.

1984-05-01T23:59:59.000Z

146

Fluorescent lamp ballast  

SciTech Connect

This patent describes an electronic ballast unit for a fluorescent lamp comprising: a circuit assembly having a pair of voltage input terminal and a first inductor and a capacitor in series relationship with each other to form a series resonant circuit. The circuit is adapted to be coupled to a fluorescent lamp to provide a starting voltage for the lamp; and a second inductor connected in shunt relationship to the first inductor and connected to the other input terminal. There is a core on which the first inductor and the second inductor are mounted. The core inductively couples the inductors with each other and are shaped to reduce core losses to minimize the increase of temperature of the core; the core is of a generally H-shaped configuration, and means of opposite ends of the H-shaped core to complete the magnetic flux path for each inductor, respectively.

Boyd, G.D.

1987-03-31T23:59:59.000Z

147

Electronic Compact Fluorescent Lamps  

Science Conference Proceedings (OSTI)

This EPRI Technical Update addresses the fastest growing energy efficient light source the electronic compact fluorescent lamp (CFL). Business and technical market factors (Chapter 2) explain the past and future growth of the CFL market while emphasizing future technical improvements along with discussion of the importance of utility involvement in helping their customers make the switch from incandescent lamps to CFLs. The basic CFL technology is covered in Chapter 3 including test results for selected ...

2007-12-18T23:59:59.000Z

148

Compact Fluorescent Lamps  

Science Conference Proceedings (OSTI)

Electric lighting constitutes approximately 21-23 % of the electric grid load in the United States. The higher energy and maintenance costs of incandescent lamps, combined with the favorable economics of high-efficiency compact fluorescent lamps (CFLs), are making CFLs the increasingly popular choice for both residential and commercial lighting. Utility incentive and rebate programs to stimulate CFL use and the beginnings of a ban on incandescent lamps are enhancing CFL penetration levels in these enviro...

2009-12-17T23:59:59.000Z

149

Laser induced fluorescence of trapped molecular ions  

SciTech Connect

Laser induced fluoresence (LIF) spectra (laser excitation spectra) are conceptually among the most simple spectra to obtain. One need only confine a gaseous sample in a suitable container, direct a laser along one axis of the container, and monitor the sample's fluorescence at a right angle to the laser beam. As the laser wavelength is changed, the changes in fluorescence intensity map the absorption spectrum of the sample. (More precisely, only absorption to states which have a significant radiative decay component are monitored.) For ion spectroscopy, one could benefit in many ways by such an experiment. Most optical ion spectra have been observed by emission techniques, and, aside from the problems of spectral analysis, discharge emission methods often produce the spectra of many species, some of which may be unknown or uncertain. Implicit in the description of LIF given above is certainty as to the chemical identity of the carrier of the spectrum. This article describes a method by which the simplifying aspects of LIF can be extended to molecular ions (albeit with a considerable increase in experimental complexity over that necessary for stable neutral molecules).

Winn, J.S.

1980-10-01T23:59:59.000Z

150

Oklahoma Pollutant Discharge Elimination System Act (Oklahoma)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Environmental Quality regulates facilities that discharge any pollutant into waters of the state. Permits must be acquired before the discharge of any pollutants into state waters...

151

Upward Electrical Discharges From Thunderstorm Tops  

Science Conference Proceedings (OSTI)

A variety of storm top electrical discharges have been observed using several types of low-light imagers, film, and the human eye. Recently, a video recorded an unprecedented, bright blue upward discharge from a tropical thunderstorm top near ...

Walter A. Lyons; Thomas E. Nelson; Russell A. Armstrong; Victor P. Pasko; Mark A. Stanley

2003-04-01T23:59:59.000Z

152

Cold cathode vacuum discharge tube  

DOE Patents (OSTI)

A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging.

Boettcher, Gordon E. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

153

Fluorescence analyzer for lignin  

SciTech Connect

A method and apparatus for measuring lignin concentration in a sample of wood pulp or black liquor comprises a light emitting arrangement for emitting an excitation light through optical fiber bundles into a probe which has an undiluted sensing end facing the sample. The excitation light causes the lignin concentration to produce fluorescent emission light which is then conveyed through the probe to analyzing equipment which measures the intensity of the emission light. Measures a This invention was made with Government support under Contract Number DOE: DE-FC05-90CE40905 awarded by the Department of Energy (DOE). The Government has certain rights in this invention.

Berthold, John W. (Salem, OH); Malito, Michael L. (Hubbard, OH); Jeffers, Larry (Alliance, OH)

1993-01-01T23:59:59.000Z

154

Fluorescent temperature sensor  

Science Conference Proceedings (OSTI)

The present invention is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

Baker, Gary A [Los Alamos, NM; Baker, Sheila N [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM

2009-03-03T23:59:59.000Z

155

Wastewater Discharge Program (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wastewater Discharge Program (Maine) Wastewater Discharge Program (Maine) Wastewater Discharge Program (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Buying & Making Electricity Program Info State Maine Program Type Siting and Permitting Provider Department of Environmental Protection The wastewater discharge regulations require that a license be obtained for the discharge of wastewater to a stream, river, wetland, or lake of the

156

Guiding of 35 TW laser pulses in ablative capillary discharge waveguides  

Science Conference Proceedings (OSTI)

An ablatively driven capillary discharge plasma waveguide has been used to demonstrate guiding of 30 fs, 35 TW laser pulses over distances up to 3 cm with incident intensity in excess of 4x10{sup 18} W/cm{sup 2}. The plasma density range over which good guiding was observed was 1-3x10{sup 18} cm{sup -3}. The quality of the laser spot at the exit mode was observed to be similar to that at the entrance and the transmitted energy was {approx}25% at input powers of 35 TW. The transmitted laser spectrum typically showed blueshifting due to ionization of carbon and hydrogen atoms in the capillary plasma by the high intensity laser pulse. The low plasma density regime in which these capillaries operate makes these devices attractive for use in single stage electron accelerators to multi-GeV energies driven by petawatt class laser systems.

McGuffey, C.; Matsuoka, T.; Chvykov, V.; Kalintchenko, G.; Rousseau, P.; Yanovsky, V.; Maksimchuk, A.; Krushelnick, K. [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Levin, M.; Zigler, A. [Hebrew University, Jerusalem 91904 (Israel)

2009-11-15T23:59:59.000Z

157

Flash Lighting with Fluorescent Lamp.  

E-Print Network (OSTI)

??A flash lighting circuit with the fluorescent lamp is designed to produce lighting flicker by means of controlling the operating frequency and the duty-ratio of… (more)

Hsieh, Horng

2005-01-01T23:59:59.000Z

158

Cold cathode vacuum discharge tube  

DOE Patents (OSTI)

A cold cathode vacuum discharge tube, and method for making same, are disclosed with an interior surface of the trigger probe coated with carbon deposited by carbon vapor deposition (CVD) or diamond-like carbon (DLC) deposition. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 15 figs.

Boettcher, G.E.

1998-03-10T23:59:59.000Z

159

Cold cathode vacuum discharge tube  

DOE Patents (OSTI)

A cold cathode vacuum discharge tube, and method for making same, with an interior surface of the trigger probe coated with carbon deposited by chemical vapor deposition (CVD) or diamond-like carbon (DLC) deposition are disclosed. Preferably a solid graphite insert is employed in the probe-cathode structure in place of an aluminum bushing employed in the prior art. The CVD or DLC probe face is laser scribed to allow resistance trimming to match available trigger voltage signals and to reduce electrical aging. 14 figs.

Boettcher, G.E.

1998-04-14T23:59:59.000Z

160

Fluorescent lamp ballast  

SciTech Connect

An electronic ballast is described having at least a first and second terminal for engaging the filaments of at least one fluorescent lamp which requires a breakdown voltage to ignite the lamp and a maintaining voltage for maintaining ionization therewithin, the electronic ballast comprising: a direct current voltage source; a transistor; a transformer having a primary winding separated into a first winding, a second winding, a third winding, and a fourth winding; the first winding connected between the voltage source and the first terminal; the second winding connected between the two terminals; the third winding connected between the second terminal and to both the transistor and to ground; the fourth winding connected between ground and the transistor; the lamp being parallel to the second winding when the lamp filaments engages the ballast terminals.

Ureche, A.

1987-08-25T23:59:59.000Z

Note: This page contains sample records for the topic "fluorescent high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Oklahoma Pollutant Discharge Elimination System (OPDES) Standards  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oklahoma Pollutant Discharge Elimination System (OPDES) Standards Oklahoma Pollutant Discharge Elimination System (OPDES) Standards (Oklahoma) Oklahoma Pollutant Discharge Elimination System (OPDES) Standards (Oklahoma) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Retail Supplier Rural Electric Cooperative State/Provincial Govt Systems Integrator Tribal Government Utility Program Info State Oklahoma Program Type Environmental Regulations Provider Oklahoma Department of Environmental Quality This program of the Water Quality Division of the Department of Environmental Quality sets the point source, biosolids (sewage sludge), and stormwater permitting standards for discharges to the waters of the State

162

Device for generation of pulsed corona discharge  

DOE Patents (OSTI)

The invention is a method and system for the generation of high voltage, pulsed, periodic corona discharges capable of being used in the presence of conductive liquid droplets. The method and system can be used, for example, in different devices for cleaning of gaseous or liquid media using pulsed corona discharge. Specially designed electrodes and an inductor increase the efficiency of the system, permit the plasma chemical oxidation of detrimental impurities, and increase the range of stable discharge operations in the presence of droplets of water or other conductive liquids in the discharge chamber.

Gutsol, Alexander F. (San Ramon, CA); Fridman, Alexander (Marlton, NJ); Blank, Kenneth (Philadelphia, PA); Korobtsev, Sergey (Moscow, RU); Shiryaevsky, Valery (Moscow, RU); Medvedev, Dmitry (Moscow, RU)

2012-05-08T23:59:59.000Z

163

DISCHARGE VALVE FOR GRANULAR MATERIAL  

DOE Patents (OSTI)

A gravity-red dispenser or valve is designed for discharging the fueled spherical elements used in a pebble bed reactor. The dispenser consists of an axially movable tube terminating under a hood having side walls with openings. When the tube is moved so that its top edge is above the tops of the side openings the elements will not flow. As the tube is moved downwardly, the elements flow into the hood through the side openings and over the top edge into the tube at an increasing rate as the tube is lowered further. The tube is spaced at all times from the hood and side walls a distance greater than the diameter of the largest element to prevent damaging of the elements when the dispenser is closed to flow. (AEC)

Stoughton, L.D.; Robinson, S.T.

1962-05-15T23:59:59.000Z

164

Nuclear Resonance Fluorescence for Materials Assay  

E-Print Network (OSTI)

clandestine material with nuclear resonance fluorescence”.E. Norman, UC Berkeley Dept. of Nuclear Engineering, privatepp. 349. G. Warren et al. “Nuclear Resonance Fluorescence of

Quiter, Brian

2010-01-01T23:59:59.000Z

165

Beam discharge excited by distributed virtual cathode  

Science Conference Proceedings (OSTI)

A new type of beam discharge, i.e., beam discharge with a distributed virtual cathode (VC) is proposed and considered by numerical simulation. The discharge is established during counter motion of high-current electron beams in a gas-filled equipotential cavity and is characterized by a state of hot dense electron plasma of primary electrons. The discharge temporal dynamics is studied. It is shown that the VC lifetime depends linearly from this sum in a wide range of the sum of beam currents, from the boundary current of two-beam instability to the critical current of Pierce instability. Generation of nonlinear electrostatic structures shaped as phase bubbles in the discharge is detected, and their dynamics is studied. The parameters are determined, at which the multiple coexistence of phase bubbles and their coalescence during collisions is observed.

Barabanov, V. N.; Dubinov, A. E.; Loiko, M. V.; Saikov, S. K.; Selemir, V. D. [All-Russia Research Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation); Tarakanov, V. P. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

2012-02-15T23:59:59.000Z

166

Spontaneous discharge in nickel-zinc accumulations  

SciTech Connect

The authors have examined discharge in nickel-zinc accumulators and monitored the gas. The measurements were made at room temperature with types having two layers of hydrated cellulose separators on the zinc electrodes and capron separators on the nickel oxide ones. There was a ratio of 2.5 between the active masses of the negative and positive electrodes. After three controlled cycles the accumulators were tested for spontaneous discharge. Then they determined the spontaneous discharge after use. The hydrogen, oxygen, and nitrogen in the gas were determined by a gasometric method in combination with gas chromatography. The zinc and the nickel oxide electrodes contribute to the self-discharge, which considerably exceeds the capacity loss determined from the hydrogen production. The zinc electrode corrosion indicated by the hydrogen production increases when the accumulator is operated. When a charged battery is stored, nitrogen is produced as well as hydrogen and oxygen. The nitrate accelerates the spontaneous discharge.

Dmitrenko, V.E.; Zubov, M.S.; Kuznetsova, L.N.; Okhlobystin, N.I.; Toguzov, B.M.; Tikhomirov, Yu.V.

1988-06-20T23:59:59.000Z

167

Discharge lamp with reflective jacket  

DOE Patents (OSTI)

A discharge lamp includes an envelope, a fill which emits light when excited disposed in the envelope, a source of excitation power coupled to the fill to excite the fill and cause the fill to emit light, and a reflector disposed around the envelope and defining an opening, the reflector being configured to reflect some of the light emitted by the fill back into the fill while allowing some light to exit through the opening. The reflector may be made from a material having a similar thermal index of expansion as compared to the envelope and which is closely spaced to the envelope. The envelope material may be quartz and the reflector material may be either silica or alumina. The reflector may be formed as a jacket having a rigid structure which does not adhere to the envelope. The lamp may further include an optical clement spaced from the envelope and configured to reflect an unwanted component of light which exited the envelope back into the envelope through the opening in the reflector. Light which can be beneficially recaptured includes selected wavelength regions, a selected polarization, and selected angular components.

MacLennan, Donald A. (Gaithersburg, MD); Turner, Brian P. (Damascus, MD); Kipling, Kent (Gaithersburg, MD)

2001-01-01T23:59:59.000Z

168

Nuclear Resonance Fluorescence for Nuclear Materials Assay  

E-Print Network (OSTI)

Potential of Nuclear Resonance Fluorescence . . . . . . . .2.9.1 Nuclear ThomsonSections . . . . . . . . . . . . . . . Nuclear Resonance

Quiter, Brian Joseph

2010-01-01T23:59:59.000Z

169

Spark-plasma Sintering vs. High Voltage Electric Discharge ...  

Science Conference Proceedings (OSTI)

High voltage electric discharge consolidation (HVEDC) includes high axial pressure and discharge of the electrical energy stored in capacitors, thus enabling a ...

170

Hydrothermal Heat Discharge In The Cascade Range, Northwestern...  

Open Energy Info (EERE)

Hydrothermal heat discharge in the Cascade Range includes the heat discharged by thermal springs, by "slightly thermal" springs that are only a few degrees warmer than...

171

Environmental constituents of Electrical Discharge Machining  

E-Print Network (OSTI)

Electrical Discharge Machining (EDM) is a non-traditional process that uses no mechanical forces to machine metals. It is extremely useful in machining hard materials. With the advantages EDM has to offer and its presence ...

Cho, Margaret H. (Margaret Hyunjoo), 1982-

2004-01-01T23:59:59.000Z

172

Fluorescent lamp dimming adaptor kit  

SciTech Connect

An add-on fluorescent lamp dimming adaptor is described for connecting to a conventional nondimming ballast in a fluorescent lighting system, the system including a source of ac voltage. The ballast has terminals for connecting to a fluorescent lamp, the adaptor comprising: a switching module adapted to be coupled to the terminals for switching current from the lamp, the switching module being connected in parallel with the lamp to divert current from the lamp when the switching module conducts; and a level control coupled to the switching module, the level control controlling the conductive state of the switching module to vary the current in the lamp according to a dimming control signal supplied to the level control, the level control causing the switching module to switch at a frequency in the range of 300 hertz and higher during times that the lamp current is being varied.

Alley, R.P.

1987-07-21T23:59:59.000Z

173

HIGH INTENSITY PERFORMANCE OF THE BROOKHAVEN AGS.  

SciTech Connect

The Brookhaven AGS provides 24 GeV protons for a multi-user program of fixed-target high energy physics experiments, such as the study of extremely rare Kaon decays. Up to 7 x 10{sup 13} protons are slowly extracted over 2.2 seconds each 5.1 seconds. The muon storage ring of the g-2 experiment is supplied with bunches of 7 x 10{sup 12} protons. Since the completion of the a 1.9 GeV Booster synchrotron and installation of a new high-power rf system and transition jump system in the AGS various modes of operation have been explored to overcome space charge limits and beam instabilities at these extreme beam intensities. Experiments have been done using barrier cavities to enable accumulation of debunched beam in the AGS as a potential path to significantly higher intensities. We report on the present understanding of intensity limitations and prospects for overcoming them.

AHRENS,L.A.; ALESSI,J.; BLASKIEWICZ,M.; BRENNAN,J.M.; BROWN,K.; GARDNER,C.; GLENN,J.W.; ROSER,T.; SMITH,K.S.; VAN ASSELT,W.; ZHANG,S.Y.

1999-03-29T23:59:59.000Z

174

Performances of BNL high-intensity synchrotrons  

SciTech Connect

The AGS proton synchrotron was completed in 1960 with initial intensity in the 10 to the 10th power proton per pulse (ppp) range. Over the years, through many upgrades and improvements, the AGS now reached an intensity record of 6.3 {times} 10{sup 13} ppp, the highest world intensity record for a proton synchrotron on a single pulse basis. At the same time, the Booster reached 2.2 {times} 10{sup 13} ppp surpassing the design goal of 1.5 {times} 10{sup 13} ppp due to the introduction of second harmonic cavity during injection. The intensity limitation caused by space charge tune spread and its relationship to injection energy at 50 MeV, 200 MeV, and 1,500 MeV will be presented as well as many critical accelerator manipulations. BNL currently participates in the design of an accumulator ring for the SNS project at Oak Ridge. The status on the issues of halo formation, beam losses and collimation are also presented.

Weng, W.T.

1998-03-01T23:59:59.000Z

175

Aspects of a high intensity neutron source  

E-Print Network (OSTI)

A unique methodology for creating a neutron source model was developed for deuterons and protons incident on solid phase beryllium and lithium targets. This model was then validated against experimental results already ...

Chapman, Peter H. (Peter Henry)

2010-01-01T23:59:59.000Z

176

Replacing Fluorescent Lightbulbs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Replacing Fluorescent Lightbulbs Replacing Fluorescent Lightbulbs Replacing Fluorescent Lightbulbs July 29, 2012 - 6:37pm Addthis Although fluorescent lightbulbs are generally energy efficient, you can replace them with new, even more efficient bulbs that use better electrodes and coatings than older ones. | Photo courtesy of ©iStockphoto.com/JoLin. Although fluorescent lightbulbs are generally energy efficient, you can replace them with new, even more efficient bulbs that use better electrodes and coatings than older ones. | Photo courtesy of ©iStockphoto.com/JoLin. What does this mean for me? Today's fluorescent light fixtures and bulbs are far more efficient than older ones. You can replace fluorescent bulbs and ballasts with more efficient ones to save money and energy. All fluorescent bulbs contain a very small amount of mercury:

177

Measuring the Natural Fluorescence of Phytoplankton Cultures  

Science Conference Proceedings (OSTI)

A laboratory instrument, the Natural Fluorescence Chemostat, was developed to measure the natural fluorescence of phytoplankton cultures. With this instrument, the physical and chemical environment of a culture can be manipulated with respect to ...

S. R. Laney; R. M. Letelier; R. A. Desiderio; M. R. Abbott; D. A. Kiefer; C. R. Booth

2001-11-01T23:59:59.000Z

178

Quantum Dot Fluorescence Lifetime Engineering with DNA ...  

Science Conference Proceedings (OSTI)

Quantum Dot Fluorescence Lifetime Engineering with DNA Origami ... such as metal nanoparticles and semiconductor quantum dots – is challenging ...

179

Program on Technology Innovation: Advanced Light Source Research  

Science Conference Proceedings (OSTI)

The Advanced Light Source (ALITE) research program is aimed at breakthrough basic research to achieve approximately 150 to 200 lumens per watt for fluorescent light sources, and to increase high intensity discharge light source efficiency by up to 50%. This report describes work on high intensity discharge (HID) lamps. These commercially available lamps currently have efficacies up to 120 lumens per watt (LPW), and radiate approximately 36% of their energy in the visible spectrum and 53% in the infrared ...

2006-03-27T23:59:59.000Z

180

LED-induced fluorescence diagnostics for turbine and combustion engine thermometry  

DOE Green Energy (OSTI)

Fluorescence from phosphor coatings is the basis of an established technique for measuring temperature in a wide variety of turbine and combustion engine applications. Example surfaces include blades, vanes, combustors, intake valves, pistons, and rotors. Many situations that are remote and noncontact require the high intensity of a laser to illuminate the phosphor, especially if the surface is moving. Thermometric resolutions of 0.1 C are obtainable, and some laboratory versions of these systems have been calibrated against NIST standards to even higher precision. To improve the measurement signal-to-noise ratio, synchronous detection timing has been used to repeatedly interrogate the same blade in a high speed rotating turbine. High spatial resolution can be obtained by tightly focusing the interrogation beam in measurements of static surfaces, and by precise differential timing of the laser pulses on rotating surfaces. We report here the use of blue light emitting diodes (LEDs) as a n illumination source for producing useable fluorescence from phosphors for temperature measurements. An LED can excite most of the same phosphors used to cover the temperature range from 8 to 1400 C. The advantages of using LEDs are obvious in terms of size, power requirements, space requirements and cost. There can also be advantages associated with very long operating lifetimes, wide range of available colors, and their broader emission bandwidths as compared to laser diodes. Temperature may be inferred either from phase or time-decay determinations.

Allison, S.W.

2001-08-17T23:59:59.000Z

Note: This page contains sample records for the topic "fluorescent high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Three-dimensional fluorescence lifetime tomography  

Science Conference Proceedings (OSTI)

Near-infrared fluorescence tomography using molecularly targeted lifetime-sensitive, fluorescent contrast agents have applications for early-stage cancer diagnostics. Yet, although the measurement of fluorescent lifetime imaging microscopy (FLIM) is extensively used in microscopy and spectroscopy applications, demonstration of fluorescence lifetime tomography for medical imaging is limited to two-dimensional studies. Herein, the feasibility of three-dimensional fluorescence-lifetime tomography on clinically relevant phantom volumes is established, using (i) a gain-modulated intensified charge coupled device (CCD) and modulated laser diode imaging system, (ii) two fluorescent contrast agents, e.g., Indocyanine green and 3-3'-Diethylthiatricarbocyanine iodide differing in their fluorescence lifetime by 0.62 ns, and (iii) a two stage approximate extended Kalman filter reconstruction algorithm. Fluorescence measurements of phase and amplitude were acquired on the phantom surface under different target to background fluorescence absorption (70:1, 100:1) and fluorescence lifetime (1:1, 2.1:1) contrasts at target depths of 1.4-2 cm. The Bayesian tomography algorithm was employed to obtain three-dimensional images of lifetime and absorption owing to the fluorophores.

Godavarty, Anuradha; Sevick-Muraca, Eva M.; Eppstein, Margaret J. [327 Votey Building, Department of Computer Science, University of Vermont, Burlington, Vermont 05405 (United States); 1011 Richardson Building, Photon Migration Laboratories, Texas A and M University, College Station, Texas 77843 (United States); 327 Votey Building, Department of Computer Science, University of Vermont, Burlington, Vermont 05405 (United States)

2005-04-01T23:59:59.000Z

182

Fluorescent Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fluorescent Lighting Basics Fluorescent Lighting Basics Fluorescent Lighting Basics October 17, 2013 - 5:39pm Addthis Light from a fluorescent lamp is first created by an electric current conducted through an inert gas producing ultraviolet light that is invisible to the human eye. The ultraviolet light in turn interacts with special blends of phosphors coating the interior surface of the fluorescent lamp tube that efficiently converts the invisible light into useful white light. Fluorescent lamps require a special power supply called a ballast that is needed to regulate lamp operating current and provide a compatible start-up voltage. Electronic ballasts perform the same function as a magnetic ballast but outperform the outdated magnetic products by operating at a very high frequency that eliminates flicker and noise while

183

A Review of Positive and Bipolar Lightning Discharges  

Science Conference Proceedings (OSTI)

Characteristics of lightning discharges that transport either positive charge or both positive and negative charges to the ground are reviewed. These are termed positive and bipolar lightning discharges, respectively. Different types of positive ...

V. A. Rakov

2003-06-01T23:59:59.000Z

184

Seasonal Predictability of European Discharge: NAO and Hydrological Response Time  

Science Conference Proceedings (OSTI)

In this paper the skill of seasonal prediction of river discharge and how this skill varies between the branches of European rivers across Europe is assessed. A prediction system of seasonal (winter and summer) discharge is evaluated using 1) ...

M. F. P. Bierkens; L. P. H. van Beek

2009-08-01T23:59:59.000Z

185

Experimental investigation of electron multipactor discharges at very high frequency  

E-Print Network (OSTI)

Multipactor discharges are a resonant condition in which electrons impact a surface in phase with an alternating electric field. The discharge is sustained by electron multiplication from secondary emission. As motivation, ...

Graves, Timothy P. (Timothy Paul)

2006-01-01T23:59:59.000Z

186

Bremsstrahlung-induced K fluorescence  

SciTech Connect

Bremsstrahlung radiation can be used to excite nearly monoenergetic x rays in secondary targets, which are then used to study the energy response of radiation detectors if the intensity and purity are known. A method is suggested for calculating the spectral intensity of the secondary target radiation, including K-fluorescent x rays, and the bremsstrahlung and characteristic line radiation scattered from the target. Coherent and incoherent scatter are included in the calculation. To test the theory, bremsstrahlung radiation from an x-ray unit operating in the 100- to 300-kV potential range was used to excite K-fluorescent radiation in secondary targets that range in atomic number from 29 to 90. The primary and secondary spectra were measured with NaI, silicon, and germanium detectors. The measured primary spectral intensities were used as input to the secondary spectral intensity calculation. Calculated secondary spectra were within 20 percent agreement with measurement. Optimization of the secondary target intensity and purity is discussed as a function of target thickness, potential, and selective filtration.

Storm, E.

1976-09-01T23:59:59.000Z

187

Sandia National Laboratories Fluorescent Optical Position Sensor  

As shown in the figure, a small excitation source, such as a laser or LED, excites a localized area of fluorescence at an unknown position along the

188

Energy saving controller for fluorescent lamps.  

E-Print Network (OSTI)

??Although fluorescent lamp is a very efficient lighting device in daily life, still the high harmonic distortion and low power factor cause unnecessary energy consumption.… (more)

Cheong, Zhi Xiong

2010-01-01T23:59:59.000Z

189

Portable spotter for fluorescent contaminants on surfaces  

DOE Patents (OSTI)

A portable fluorescence-based spotter for polynuclear aromatic hydrocarbon contamination on personnel and work area surfaces under ambient lighting conditions is provided. This instrument employs beam modulation and phase sensitive detection for discriminating between fluorescence from organic materials from reflected background light and inorganic fluorescent material. The device uses excitation and emission filters to provide differentiation between classes of aromatic organic compounds. Certain inorganic fluorescent materials, including heavy metal compounds, may also be distinguished from the organic compounds, despite both having similar optical properties.

Schuresko, Daniel D. (Oak Ridge, TN)

1980-01-01T23:59:59.000Z

190

Generation of hydrogen-rich gas using non equilibrium plasma discharges.  

E-Print Network (OSTI)

??This dissertation investigates Non equilibrium plasma discharges, particularly gliding arc plasma discharge and dielectric barrier discharge (DBD) as alternative techniques to thermal or catalytic conversion… (more)

Odeyemi, Olufela O.

2012-01-01T23:59:59.000Z

191

Magnetism in Lithium–Oxygen Discharge Product  

SciTech Connect

Nonaqueous lithium–oxygen batteries have a much superior theoretical gravimetric energy density compared to conventional lithium-ion batteries, and thus could render long-range electric vehicles a reality. A molecular-level understanding of the reversible formation of lithium peroxide in these batteries, the properties of major/minor discharge products, and the stability of the nonaqueous electrolytes is required to achieve successful lithium–oxygen batteries. We demonstrate that the major discharge product formed in the lithium–oxygen cell, lithium peroxide, exhibits a magnetic moment. These results are based on dc-magnetization measurements and a lithium– oxygen cell containing an ether-based electrolyte. The results are unexpected because bulk lithium peroxide has a significant band gap. Density functional calculations predict that superoxide- type surface oxygen groups with unpaired electrons exist on stoichiometric lithium peroxide crystalline surfaces and on nanoparticle surfaces; these computational results are consistent with the magnetic measurement of the discharged lithium peroxide product as well as EPR measurements on commercial lithium peroxide. The presence of superoxide-type surface oxygen groups with spin can play a role in the reversible formation and decomposition of lithium peroxide as well as the reversible formation and decomposition of electrolyte molecules.

Lu, Jun; Jung, Hun-Ji; Lau, Kah Chun; Zhang, Zhengcheng; Schlueter, John A.; Du, Peng; Assary, Rajeev S.; Greeley, Jeffrey P.; Ferguson, Glen A.; Wang, Hsien-Hau; Hassoun, Jusef; Iddir, Hakim; Zhou, Jigang; Zuin, Lucia; Hu, Yongfeng; Sun, Yang-Kook; Scrosati, Bruno; Curtiss, Larry A.; Amine, Khalil

2013-05-13T23:59:59.000Z

192

Capacitor discharge process for welding braided cable  

SciTech Connect

A capacitor discharge process for welding a braided cable formed from a plurality of individual cable strands to a solid metallic electrically conductive member comprises the steps of: (a) preparing the electrically conductive member for welding by bevelling one of its end portions while leaving an ignition projection extending outwardly from the apex of the bevel; (b) clamping the electrically conductive member in a cathode fixture; (c) connecting the electrically conductive member clamped in the cathode fixture to a capacitor bank capable of being charged to a preselected voltage value; (d) preparing the braided cable for welding by wrapping one of its end portions with a metallic sheet to form a retaining ring operable to maintain the individual strands of the braided cable in fixed position within the retaining ring; (e) clamping the braided cable and the retaining ring as a unit in an anode fixture so that the wrapped end portion of the braided cable faces the ignition projection of the electrically conductive member; and (f) moving the cathode fixture towards the anode fixture until the ignition projection of the electrically conductive member contacts the end portion of the braided cable thereby allowing the capacitor bank to discharge through the electrically conductive member and through the braided cable and causing the electrically conductive member to be welded to the braided cable via capacitor discharge action.

Wilson, Rick D. (Corvallis, OR)

1995-01-01T23:59:59.000Z

193

General Conditions Applicable to Water Discharge Permits and Procedures and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

General Conditions Applicable to Water Discharge Permits and General Conditions Applicable to Water Discharge Permits and Procedures and Criteria for Issuing Water Discharge Permits (Connecticut) General Conditions Applicable to Water Discharge Permits and Procedures and Criteria for Issuing Water Discharge Permits (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection

194

PEVELOPMENT OF FLUORESCENCE LIFETIME DIAGNOSTIC  

Office of Scientific and Technical Information (OSTI)

4 4 PEVELOPMENT OF FLUORESCENCE LIFETIME DIAGNOSTIC w I Project Accomplishments Summary (Attachment I) CRADA NO. TSB-1449-97 Date: U 1 8 1 9 8 Revision: 1 A . Parties The project is a relationship between the Lawrence Livennore National Laboratoq (LLNL) and Optiphase, Inc. University of California Lawrence Livermore National Laboratory 7000 East Avenue, L-399 Livermore, CA 94550 Optiphase, h c 7652 Haskell Ave. Van Nuys, CA 91406 Technical Contact - D r . Pepe Davis (8 18)782-0997ext 1 12 B . Background Fiber-optic-based sensors are excellent candidates for detecting the presence and monitoring the levels of degradation products in stockpiled weapons. Specifically, fl uorescence-based sensors are extremely sensitive, can have high specificity for compounds of interest, and are "e~ectrically

195

Applications of Nuclear Resonance Fluorescence  

Science Conference Proceedings (OSTI)

Nuclear Resonance Fluorescence (NRF) has the potential of addressing a wide variety of applications, which require isotopic and/or elemental information about a sample. We have investigated a variety of non-proliferation applications that may be addressed by NRF. From these applications, we have selected two, measuring uranium enrichment in UF6 cylinders and material verification in dismantlement, to investigate in more detail. Analytical models have been developed to evaluate these applications, and test measurements have been conducted to validate those models. We found that it is unlikely with current technology to address the requirements for UF6 cylinder enrichment measurements. In contrast, NRF is a very promising approach for material verification for dismantlement.

Warren, Glen A.; Detwiler, Rebecca S.; Peplowski, Patrick N.

2010-11-11T23:59:59.000Z

196

Fiber optical assembly for fluorescence spectrometry  

DOE Patents (OSTI)

A system for analyzing a sample for the presence of an analyte in a sample. The system includes a sample holder for containing the sample; an excitation source, such as a laser, and at least one linear array radially disposed about the sample holder. Radiation from the excitation source is directed to the sample, and the radiation induces fluorescent light in the sample. Each linear array includes a plurality of fused silica optical fibers that receive the fluorescent light and transmits a fluorescent light signal from the first end to an optical end port of the linear array. An end port assembly having a photo-detector is optically coupled to the optical end port. The photo-detector detects the fluorescent light signal and converts the fluorescent light signal into an electrical signal.

Carpenter, II, Robert W. (Pagosa Springs, CO); Rubenstein, Richard (Staten Island, NY); Piltch, Martin (Los Alamos, NM); Gray, Perry (Los Alamos, NM)

2010-12-07T23:59:59.000Z

197

Evaluation of plant seedling water stress using dynamic fluorescence index with blue LED-based fluorescence imaging  

Science Conference Proceedings (OSTI)

A dynamic fluorescence image index system capable of non-destructive assessment of water stress in cabbage seedlings was developed. The quenching curves of chlorophyll fluorescence characteristic to the plant's water stress status under reduced excitation ... Keywords: Chlorophyll fluorescence, Fluorescence image, Fluorescence index, Water stress

Shih-Chieh Hsiao; Suming Chen; I-Chang Yang; Chia-Tseng Chen; Chao-Yin Tsai; Yung-Kun Chuang; Feng-Jehng Wang; Yu-Liang Chen; Tzong-Shyan Lin; Y. Martin Lo

2010-07-01T23:59:59.000Z

198

Electrochemical cell assembled in discharged state  

DOE Patents (OSTI)

A secondary, electrochemical cell is assembled in a completely discharged state within a sealed containment. As assembled, the cell includes a positive electrode separated from a negative electrode by a molten salt electrolyte. The positive electrode is contained within a porous structure, permitting passage of molten electrolyte, and includes one or more layers of a metallic mesh, e.g. iron, impregnated with an intimate mixture of lithium sulfide and the electrolyte. The negative electrode is a porous plaque of aluminum metal. Prior to using the cell, an electrical charge forms lithium-aluminum alloy within the negative electrode and metal sulfide within the positive electrode.

Yao, Neng-Ping (Hinsdale, IL); Walsh, William J. (Naperville, IL)

1976-01-01T23:59:59.000Z

199

Highly ionized atoms in tokamak discharges  

DOE Green Energy (OSTI)

Tokamak discharges are characterized by electron densities usually approximately 0.3 to 1.0 x 10/sup 14/ cm/sup -3/ and temperatures from a few hundred eV to several keV. In addition to the working gas (H or He), the plasma normally contains some light impurities (approximately 10/sup 12/ cm/sup -3/ O or C) that are completely stripped except at the outer periphery, and heavier elements from the vacuum wall and current-aperture limiter (Fe, Cr, Ni, W, Mo and others, approximately 10/sup 10/-10/sup 11/ cm/sup -3/) that remain partly stripped, hence relatively strongly radiating, throughout the discharge. Other elements, especially noble gases, may be deliberately added for diagnostic purposes. Resonance lines of Fe and Ar in the beryllium and lithium sequences, of Fe, Kr, and Mo in the magnesium and sodium sequences, and of Mo and Xe in the zinc and copper sequences have been used for rough determination of plasma composition. Since crucial plasma characteristics such as temperature and confinement time are sensitively affected by the local composition, it is essential to improve the available atomic data necessary for more accurate analysis: wavelengths, transition probabilities, excitation, ionization and recombination rates, especially for the heavier elements.

Hinnov, E.

1976-05-01T23:59:59.000Z

200

Building Technologies Office: Fluorescent and Incandescent Lamps Public  

NLE Websites -- All DOE Office Websites (Extended Search)

Fluorescent and Fluorescent and Incandescent Lamps Public Meeting to someone by E-mail Share Building Technologies Office: Fluorescent and Incandescent Lamps Public Meeting on Facebook Tweet about Building Technologies Office: Fluorescent and Incandescent Lamps Public Meeting on Twitter Bookmark Building Technologies Office: Fluorescent and Incandescent Lamps Public Meeting on Google Bookmark Building Technologies Office: Fluorescent and Incandescent Lamps Public Meeting on Delicious Rank Building Technologies Office: Fluorescent and Incandescent Lamps Public Meeting on Digg Find More places to share Building Technologies Office: Fluorescent and Incandescent Lamps Public Meeting on AddThis.com... About Standards & Test Procedures Implementation, Certification & Enforcement

Note: This page contains sample records for the topic "fluorescent high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Using Nuclear Resonance Fluorescence for Nondestructive Isotopic Analysis  

E-Print Network (OSTI)

7, (1959) pp. 54. [12] B.J. Quiter, ``Nuclear ResonanceFluorescence for Nuclear Materials Assay,'' University ofclandestine material with nuclear resonance fluorescence,"

Ludewigt, Bernhard A.

2010-01-01T23:59:59.000Z

202

Compact Fluorescent Lamps : Technologies : From the Lab to the...  

NLE Websites -- All DOE Office Websites (Extended Search)

process. (Left) Compact Fluorescent Lamp; (Right) Cover of the 'Lighting Retrofit Workbook' (Left) Compact Fluorescent Lamp (CFL) (Right) Retrofitting national parks...

203

Reflector-coupled fluorescent solar collector  

SciTech Connect

The present invention provides a system for the collection of electromagnetic radiation and the transmission of that radiation to a point of use. In its simplest sense, an apparatus for the collection and transmission of electromagnetic radiation comprises a cylindrical fluorescent fiber, at least one end of which is optically coupled to an optical wave guide, and means for reflecting solar radiation impinging over a relatively wide area onto said cylindrical fluorescent fiber. Preferably, a compound parabolic mirror is employed for reflecting incident solar radiation onto the optical fluorescent fiber.

Younghouse, L.B.

1984-01-17T23:59:59.000Z

204

Hydrothermal Heat Discharge In The Cascade Range, Northwestern United  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Hydrothermal Heat Discharge In The Cascade Range, Northwestern United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Hydrothermal Heat Discharge In The Cascade Range, Northwestern United States Details Activities (3) Areas (1) Regions (0) Abstract: Hydrothermal heat discharge in the Cascade Range includes the heat discharged by thermal springs, by "slightly thermal" springs that are only a few degrees warmer than ambient temperature, and by fumaroles. Thermal-spring heat discharge is calculated on the basis of chloride-flux measurements and geothermometer temperatures and totals ~ 240 MW in the U.S. part of the Cascade Range, excluding the transient post-1980 discharge

205

Point Source Discharges to Surface Waters (North Carolina) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Point Source Discharges to Surface Waters (North Carolina) Point Source Discharges to Surface Waters (North Carolina) Point Source Discharges to Surface Waters (North Carolina) < Back Eligibility Commercial Industrial Construction Transportation Savings Category Buying & Making Electricity Program Info State North Carolina Program Type Siting and Permitting Provider Department of Environment and Natural Resources This rule requires permits for control of sources of water pollution by providing the requirements and procedures for application and issuance of state National Pollutant Discharge Elimination System (NPDES) permits for a discharge from an outlet, point source, or disposal system discharging to the surface waters of the state, and for the construction, entering a contract for construction, and operation of treatment works with such a

206

Circuit arrangement for starting and operating a gas discharge laser  

SciTech Connect

A circuit arrangement is described for starting and operating a gas discharge laser having a starting phase and an operating phase. It consists of two supply lines for supplying a direct current to the gas discharge laser, a ballast resistor connected in at least one of the supply lines, and circuit means in shunt with the ballast resistor through which a starting current flows during the starting phase of the gas discharge laser.

Bolhuis, P.J.

1989-04-25T23:59:59.000Z

207

Notice of Intent (NOI) for Storm Water Discharges Associated with  

Open Energy Info (EERE)

Intent (NOI) for Storm Water Discharges Associated with Intent (NOI) for Storm Water Discharges Associated with Construction Activities under TPDES General Permit (TXR150000) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Reference Material: Notice of Intent (NOI) for Storm Water Discharges Associated with Construction Activities under TPDES General Permit (TXR150000) Details Activities (0) Areas (0) Regions (0) Abstract: Unavailable Author(s): Unknown Published: Texas Commission on Environmental Quality, Date Unknown Document Number: Unavailable DOI: Unavailable Source: View Original Document Retrieved from "http://en.openei.org/w/index.php?title=Notice_of_Intent_(NOI)_for_Storm_Water_Discharges_Associated_with_Construction_Activities_under_TPDES_General_Permit_(TXR150000)&oldid=598006"

208

High Voltage Electric Discharge Consolidation of Tantalum Powders  

Science Conference Proceedings (OSTI)

Abstract Scope, The high voltage electric discharge consolidation (HVEDC) is a promising method of the volumetric-porous body manufacturing, which can be ...

209

(SPS) and High Voltage Electric Discharge Consolidation (HVEDC  

Science Conference Proceedings (OSTI)

Presentation Title, Inter-Particle Contact Phenomena in Spark-Plasma Sintering ( SPS) and High Voltage Electric Discharge Consolidation (HVEDC). Author(s) ...

210

(SPS) and High Voltage Electric Discharge Consolidation (HVEDC)  

Science Conference Proceedings (OSTI)

Presentation Title, Local Heat Balance in Spark-plasma Sintering (SPS) and High Voltage Electric Discharge Consolidation (HVEDC). Author(s), Eugene ...

211

Stress Effect on Charge and Discharge Rate and Energy Efficiency ...  

Science Conference Proceedings (OSTI)

Presentation Title, Stress Effect on Charge and Discharge Rate and Energy Efficiency of Li-alloy Electrodes. Author(s), Yifan Gao, Min Zhou. On-Site Speaker

212

State Surface Water Discharge Permits (New Hampshire) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Govt Systems Integrator Transportation Tribal Government Utility Program Information New Hampshire Program Type Environmental Regulations Rules apply to the discharge of all...

213

Green fluorescent protein as a mechanical sensor  

E-Print Network (OSTI)

Inquiry into intracellular and cytoskeletal mechanics requires an intracellular mechanical sensor to verify models of sub-cellular structure dynamics. To this end, the green fluorescent protein (GFP) is considered as a ...

Muso, Taro M. (Taro Michael)

2007-01-01T23:59:59.000Z

214

Nuclear Resonance Fluorescence for Nuclear Materials Assay.  

E-Print Network (OSTI)

??This dissertation examines the measurement of nuclear resonance fluorescence gamma-rays as a technique to non-destructively determine isotopic compositions of target materials that are of interest… (more)

Quiter, Brian Joseph

2010-01-01T23:59:59.000Z

215

LASER INDUCED FLUORESCENCE OF TRAPPED MOLECULAR IONS  

E-Print Network (OSTI)

System Laser Power Measurement Wavelength Calibration SystemLaser Power Measurement Wavelength Calibration PAGE Fluorescence Detection Systemmeasurement system. The actual time for initiation of the detection gate with respect to the laser

Grieman, Frederick Joseph.

2010-01-01T23:59:59.000Z

216

Application guidance for fluorescent lighting projects  

SciTech Connect

This application guides is intended to help activity personnel retrofit fluorescent lighting. With this guide, an energy manager can determine if replacing T-12 lamp and magnetic ballast fixtures is cost effective.

Rocha, M.

1994-06-01T23:59:59.000Z

217

Extreme-UV electrical discharge source  

DOE Patents (OSTI)

An extreme ultraviolet and soft x-ray radiation electric capillary discharge source that includes a boron nitride housing defining a capillary bore that is positioned between two electrodes one of which is connected to a source of electric potential can generate a high EUV and soft x-ray radiation flux from the capillary bore outlet with minimal debris. The electrode that is positioned adjacent the capillary bore outlet is typically grounded. Pyrolytic boron nitride, highly oriented pyrolytic boron nitride, and cubic boron nitride are particularly suited. The boron nitride capillary bore can be configured as an insert that is encased in an exterior housing that is constructed of a thermally conductive material. Positioning the ground electrode sufficiently close to the capillary bore outlet also reduces bore erosion.

Fornaciari, Neal R. (Tracey, CA); Nygren, Richard E. (Los Ranchos de Albuquerque, NM); Ulrickson, Michael A. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

218

Multiplexed fluorescence detector system for capillary electrophoresis  

DOE Patents (OSTI)

A fluorescence detection system for capillary electrophoresis is provided wherein the detection system can simultaneously excite fluorescence and substantially simultaneously monitor separations in multiple capillaries. This multiplexing approach involves laser irradiation of a sample in a plurality of capillaries through optical fibers that are coupled individually with the capillaries. The array is imaged orthogonally through a microscope onto a charge-coupled device camera for signal analysis. 14 figs.

Yeung, E.S.; Taylor, J.A.

1996-03-12T23:59:59.000Z

219

Alternative Minimum Levels for Utility Aqueous Discharges: Chemical Analytical Measurement Guide for National Pollutant Discharge El imination System (NPDES) Permits  

Science Conference Proceedings (OSTI)

The Clean Water Act requires the electric utility industry to monitor their wastewater discharges to ensure compliance with discharge permit limits. EPRI developed a new definition of quantitation level appropriate to water quality compliance monitoring and used data from its previous studies on trace element analysis of utility wastewaters to calculate Alternative Minimum Levels (AMLs). The approach developed in this report will help utilities define reasonable pollutant discharge limits to meet effluen...

1997-01-03T23:59:59.000Z

220

Laser excited confocal microscope fluorescence scanner and method  

DOE Patents (OSTI)

A fluorescent scanner for scanning the fluorescence from a fluorescence labeled separated sample on a sample carrier including a confocal microscope for illuminating a predetermined volume of the sample carrier and/or receiving and processing fluorescence emissions from said volume to provide a display of the separated sample.

Mathies, Richard A. (Contra Costa, CA); Peck, Konan (Contra Costa, CA)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fluorescent high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Model of Gamma Frequency Burst Discharge Generated by Conditional Backpropagation  

E-Print Network (OSTI)

Doiron, Brent, Andre´ Longtin, Ray W. Turner, and Leonard Maler. Model of gamma frequency burst dischargeModel of Gamma Frequency Burst Discharge Generated by Conditional Backpropagation BRENT DOIRON,1 ANDRE´ LONGTIN,1 RAY W. TURNER,2 AND LEONARD MALER3 1 Physics Department, University of Ottawa, Ottawa

Longtin, André

222

Ultratrace analysis of transuranic actinides by laser-induced fluorescence  

DOE Patents (OSTI)

Ultratrace quantities of transuranic actinides are detected indirectly by their effect on the fluorescent emissions of a preselected fluorescent species. Transuranic actinides in a sample are coprecipitated with a host lattice material containing at least one preselected fluorescent species. The actinide either quenches or enhances the laser-induced fluorescence of the preselected fluorescent species. The degree of enhancement or quenching is quantitatively related to the concentration of actinide in the sample.

Miller, Steven M. (Chelmsford, MA)

1988-01-01T23:59:59.000Z

223

LANL achieves milestone on path to zero wastewater discharge  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL achieves milestone on wastewater discharge LANL achieves milestone on wastewater discharge LANL achieves milestone on path to zero wastewater discharge Industrial wastewater will be recycled as the result of a long-term strategy to treat wastewater rather than discharging it into the environment. January 20, 2012 Aerial view of Los Alamos National Laboratory Aerial view of Los Alamos National Laboratory. Contact Colleen Curran Communications Office (505) 664-0344 Email Improved compliance while recycling millions of gallons of industrial wastewater LOS ALAMOS, New Mexico, January 20, 2012-Millions of gallons of industrial wastewater will be recycled at Los Alamos National Laboratory as the result of a long-term strategy to treat wastewater rather than discharging it into the environment. The U. S. Environmental Protection Agency, which issues permits for

224

Waste not Discharged to Surface Waters (North Carolina) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste not Discharged to Surface Waters (North Carolina) Waste not Discharged to Surface Waters (North Carolina) Waste not Discharged to Surface Waters (North Carolina) < Back Eligibility Commercial Industrial Construction Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Carolina Program Type Siting and Permitting The rules in this Subchapter apply to all persons proposing to construct, alter, extend, or operate any sewer system, treatment works, disposal system, contaminates soil treatment system, animal waste management system, stormwater management system or residual disposal/utilization system which does not discharge to surface waters of the state, including systems which discharge waste onto or below land surface.

225

State Waste Discharge Permit application: 400 Area Septic System  

Science Conference Proceedings (OSTI)

As part of the Hanford Federal Facility Agreement and Consent Order negotiations, the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affects groundwater or has the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. This document constitutes the State Waste Discharge Permit application for the 400 Area Septic System. The influent to the system is domestic waste water. Although the 400 Area Septic System is not a Public Owned Treatment Works, the Public Owned Treatment Works application is more applicable than the application for industrial waste water. Therefore, the State Waste Discharge Permit application for Public Owned Treatment Works Discharges to Land was used.

Not Available

1994-06-01T23:59:59.000Z

226

State Waste Discharge Permit application: 200-W Powerhouse Ash Pit  

Science Conference Proceedings (OSTI)

As part of the Hanford Federal Facility Agreement and Consent Order negotiations; the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. This document constitutes the State Waste Discharge Permit application for the 200-W Powerhouse Ash Pit. The 200-W Powerhouse Ash Waste Water discharges to the 200-W Powerhouse Ash Pit via dedicated pipelines. The 200-W Powerhouse Ash Waste Water is the only discharge to the 200-W Powerhouse Ash Pit. The 200-W Powerhouse is a steam generation facility consisting of a coal-handling and preparation section and boilers.

Atencio, B.P.

1994-06-01T23:59:59.000Z

227

Radio frequency discharge with control of plasma potential distribution  

Science Conference Proceedings (OSTI)

A RF discharge plasma generator with additional electrodes for independent control of plasma potential distribution is proposed. With positive biasing of this ring electrode relative end flanges and longitudinal magnetic field a confinement of fast electrons in the discharge will be improved for reliable triggering of pulsed RF discharge at low gas density and rate of ion generation will be enhanced. In the proposed discharge combination, the electron energy is enhanced by RF field and the fast electron confinement is improved by enhanced positive plasma potential which improves the efficiency of plasma generation significantly. This combination creates a synergetic effect with a significantly improving the plasma generation performance at low gas density. The discharge parameters can be optimized for enhance plasma generation with acceptable electrode sputtering.

Dudnikov, Vadim [Muons, Inc., Batavia, Illinois 60510 (United States); Dudnikov, A. [BINP, Novosibirsk 63090 (Russian Federation)

2012-02-15T23:59:59.000Z

228

Plasma mixing glow discharge device for analytical applications  

DOE Patents (OSTI)

An instrument for analyzing a sample has an enclosure that forms a chamber containing an anode which divides the chamber into a discharge region and an analysis region. A gas inlet and outlet are provided to introduce and exhaust a rare gas into the discharge region. A cathode within the discharge region has a plurality of pins projecting in a geometric pattern toward the anode for exciting the gas and producing a plasma discharge between the cathode and the anode. Low energy electrons (e.g. <0.5 eV) pass into the analysis region through an aperture. The sample to be analyzed is placed into the analysis region and bombarded by the metastable rare gas atoms and the low energy electrons extracted into from the discharge region. A mass or optical spectrometer can be coupled to a port of the analysis region to analyze the resulting ions and light emission. 3 figs.

Pinnaduwage, L.A.

1999-04-20T23:59:59.000Z

229

Plasma mixing glow discharge device for analytical applications  

DOE Patents (OSTI)

An instrument for analyzing a sample has an enclosure that forms a chamber containing an anode which divides the chamber into a discharge region and an analysis region. A gas inlet and outlet are provided to introduce and exhaust a rare gas into the discharge region. A cathode within the discharge region has a plurality of pins projecting in a geometric pattern toward the anode for exciting the gas and producing a plasma discharge between the cathode and the anode. Low energy electrons (e.g. <0.5 eV) pass into the analysis region through an aperture. The sample to be analyzed is placed into the analysis region and bombarded by the metastable rare gas atoms and the low energy electrons extracted into from the discharge region. A mass or optical spectrometer can be coupled to a port of the analysis region to analyze the resulting ions and light emission.

Pinnaduwage, Lal A. (Knoxville, TN)

1999-01-01T23:59:59.000Z

230

Time dependence of liquid-helium fluorescence  

SciTech Connect

The time dependence of extreme ultraviolet (EUV) fluorescence following an ionizing radiation event in liquid helium is observed and studied in the temperature range from 250 mK to 1.8 K. The fluorescence exhibits significant structure including a short ({approx}10 ns) strong initial pulse followed by single photons whose emission rate decays exponentially with a 1.6-{mu}s time constant. At an even longer time scale, the emission rate varies as '1/time' (inversely proportional to the time after the initial pulse). The intensity of the '1/time' component from {beta} particles is significantly weaker than those from {alpha} particles or neutron capture on {sup 3}He. It is also found that for {alpha} particles, the intensity of this component depends on the temperature of the superfluid helium. Proposed models describing the observed fluorescence are discussed.

McKinsey, D.N.; Brome, C.R.; Dzhosyuk, S.N.; Mattoni, C.E.H.; Yang, L.; Doyle, J.M. [Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States); Golub, R.; Habicht, K.; Korobkina, E. [Hahn-Meitner Institut, Berlin-Wannsee (Germany); Huffman, P.R.; Thompson, A.K. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Lamoreaux, S.K. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)

2003-06-01T23:59:59.000Z

231

Design, Syntheses and Applications of Fluorescent Dyes  

E-Print Network (OSTI)

New methodologies for the efficient syntheses of 4,4-difluoro-4-bora-3a,4adiaza- s-indacenes (BODIPYs) and rosamines were developed. A serendipitous discovery led to a new reaction which afforded BODIPYs in high yields. Systematic studies of the kinetics and mechanisms of the new reaction were performed. A series of BODIPYs were successfully prepared using the new approach. A simple and efficient synthesis of rosamines with cyclic-amine substituents was devised. These new rosamines showed interesting anti-tumor activities. Several types of novel fluorescent compounds were prepared. Highly fluorescent GFP-chromophore analogs were designed and synthesized. The correlation between the optical properties and the structures was investigated. New pyronin dyes with mesoheteroatom substituents were efficiently prepared. The fluorescence properties of these compounds were highly dependent on the nature of the meso-substituents. A set of BODIPY dyes that fluoresce brightly above 600 nm were made. They were then used as acceptors to prepare water-soluble through-bond energy transfer cassettes. All the cassettes had complete energy transfer and high quantum yields in MeOH. A few also had good fluorescence properties in aqueous media and even on proteins. The through-bond energy transfer cassettes were used to monitor protein-protein interactions. In order to test our hypothesis, an artificial protein interaction system was built by utilizing the biotin/(strept)avidin interactions. Thus Atto425-BSA-biotin, streptavidin-cassette1 and avidin-cassette2 were prepared. The interactions between Atto425-BSA-biotin and cassette labeled (strept)avidin were successfully detected in vitro and in living cells by fluorescence techniques.

Wu, Liangxing

2009-08-01T23:59:59.000Z

232

Ultrabright fluorescent OLEDS using triplet sinks  

DOE Patents (OSTI)

A first device is provided. The first device further comprises an organic light emitting device. The organic light emitting device further comprises an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer further comprises an organic host compound, an organic emitting compound capable of fluorescent emission at room temperature, and an organic dopant compound. The triplet energy of the dopant compound is lower than the triplet energy of the host compound. The dopant compound does not strongly absorb the fluorescent emission of the emitting compound.

Zhang, Yifan; Forrest, Stephen R; Thompson, Mark

2013-06-04T23:59:59.000Z

233

Regulations for the Rhode Island Pollutant Discharge Elimination System (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations aim to protect surface water from pollutant discharges. They describe allowable discharges in the state that are subject to permits, discharges which may be made without permits,...

234

River Discharge into the Mediterranean Sea: Climatology and Aspects of the Observed Variability  

Science Conference Proceedings (OSTI)

River discharge across the Mediterranean catchment basin is investigated by means of an extensive dataset of historical monthly time series to represent at-best discharge into the sea. Results give an annual mean river discharge into the ...

Maria Vittoria Struglia; Annarita Mariotti; Angelo Filograsso

2004-12-01T23:59:59.000Z

235

Wastewater Regulations for National Pollutant Discharge Elimination System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wastewater Regulations for National Pollutant Discharge Elimination Wastewater Regulations for National Pollutant Discharge Elimination System (NPDES) Permits, Underground Injection Control (UIC) Permits, State Permits, Water Quality Based Effluent Limitations and Water Quality Certification (Mississippi) Wastewater Regulations for National Pollutant Discharge Elimination System (NPDES) Permits, Underground Injection Control (UIC) Permits, State Permits, Water Quality Based Effluent Limitations and Water Quality Certification (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential

236

Optical Emission of Dusty RF Discharges: Experiment and Simulation  

Science Conference Proceedings (OSTI)

The spectral emission of argon atoms in a dusty radio frequence (RF) discharge has been investigated experimentally and in simulations. It was observed that the spatially and temporally resolved emission of the argon atoms in the dusty discharge was increased compared to the dust-free case during sheath expansion. The corresponding simulations have revealed that the dust trapped in the sheath of the discharge leads to a small, but important, increase of the amount of high-energy electrons that in turn leads to an increased argon emission.

Melzer, A.; Lewerentz, L.; Schneider, R. [Institute of Physics, University Greifswald, Felix-Hausdorff-Str. 6, 17489 Greifswald (Germany); Huebner, S. [Institute of Physics, University Greifswald, Felix-Hausdorff-Str. 6, 17489 Greifswald (Germany); Department of Applied Physics, Technical University Eindhoven, NL-5600 MB Eindhoven (Netherlands); Matyash, K. [Max-Planck-Institute for Plasma Physics, EURATOM Association, D-17491 Greifswald (Germany); Ikkurthi, V. R. [Institute for Plasma Research, Bhat, Ghandinagar, Gujarat (India)

2011-11-29T23:59:59.000Z

237

Storm Water Discharge Permits (Wisconsin) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storm Water Discharge Permits (Wisconsin) Storm Water Discharge Permits (Wisconsin) Storm Water Discharge Permits (Wisconsin) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info Start Date 08/2004 State Wisconsin Program Type Siting and Permitting Provider Department of Natural Resources Wisconsin's storm water runoff regulations include permitting requirements for construction sites and industrial facilities, including those

238

Control of the UV flux of a XeCl dielectric barrier discharge excilamp through its current variation  

Science Conference Proceedings (OSTI)

The efficiency of the electrical power transfer to the gas mixture of a XeCl dielectric barrier discharge (DBD) exciplex lamp is analysed. An equivalent circuit model of the DBD is considered. It is shown that the excilamp power can be controlled by applying current to the lamp. This highly desired property is ensured by means of a specific power supply topology, whose concepts and design are discussed. The experimental prototype of a current-mode converter operating in the pulsed regime at pulse repetition rate of 50 kHz is presented and its capability to control the amount of energy transferred during each current pulse is demonstrated. The capability of this power supply to maintain specific operating conditions for the DBD lamp, with a very stable behaviour (even at a very low current, in the regime of a single discharge channel), is illustrated. The experimental results of a combined use of this converter and a XeCl excilamp are presented. The influence of the supply parameters on the 308-nm XeCl excilamp is analysed. The shape of the UV pulse of the lamp is experimentally shown to be similar to that of the current, which actually flows into the gas mixture. The UV radiation power is demonstrated to be tightly correlated to the current injected into the gas and controlled by the available degrees of freedom offered by the power supply. The measured UV output characteristics and performance of the system are discussed. Time resolved UV imaging of a XeCl DBD excilamp is used to analyse the mechanisms involved in the production of exciplexes at various power supply regimes. It is shown that a pulsed voltage source leads to formation of short high intensity UV peaks, while current pulses lead to formation of sustained discharge filaments. Based on the results of modelling of the above-mentioned operation conditions, the two power supply regimes are compared and analysed from the point of view of the UV power and radiative control.

Piquet, H; Bhosle, S; Diez, R; Cousineau, M; Djibrillah, M; Le Thanh, D; Dagang, A N; Zissis, G

2012-02-28T23:59:59.000Z

239

Fluorescent compounds for plastic scintillation applications  

SciTech Connect

Several 2-(2{prime}-hydroxyphenyl)benzothiazole, -benzoxazole, and -benzimidazole derivatives have been prepared. Transmittance, fluorescence, light yield, and decay time characteristics of these compounds have been studied in a polystyrene matrix and evaluated for use in plastic scintillation detectors. Radiation damage studies utilizing a {sup 60}C source have also been performed.

Pla-Dalmau, A.; Bross, A.D.

1994-04-01T23:59:59.000Z

240

Energy Performance of Compact Fluorescent Lamps  

Science Conference Proceedings (OSTI)

This power quality (PQ) case study presents the results of tests performed at the Worcester Polytechnic Institute, in contract with the EPRI Power Electronics Applications Center (PEAC), to determine the light output, power consumption, efficiency, and power factor of off-the-shelf electronic and magnetic compact fluorescent lamps.

2003-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "fluorescent high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Permit Program Regulating Discharge of Nondomestic Wastewater into a POTW (Ohio)  

Energy.gov (U.S. Department of Energy (DOE))

Any significant industrial user is required to apply for and obtain an individual indirect discharge permit if they discharge water or waste into a publicly owned treatment works.

242

Forecasting the Anomalous Discharge of the Caroní River, Venezuela  

Science Conference Proceedings (OSTI)

This study develops methods for the extended-range forecasting of the February–March minimum of water discharge of the Caroní River in eastern Venezuela, a watershed providing more than 70% of the hydroelectric power for the country. The ...

Stefan Hastenrath; Lawrence Greischar; Esperanza Colón; Alfredo Gil

1999-08-01T23:59:59.000Z

243

Estimates of Freshwater Discharge from Continents: Latitudinal and Seasonal Variations  

Science Conference Proceedings (OSTI)

Annual and monthly mean values of continental freshwater discharge into the oceans are estimated at 1° resolution using several methods. The most accurate estimate is based on streamflow data from the world's largest 921 rivers, supplemented with ...

Aiguo Dai; Kevin E. Trenberth

2002-12-01T23:59:59.000Z

244

Use of microalgae to remove pollutants from power plant discharges  

DOE Patents (OSTI)

A method and system for removing pollutants dissolved in the aqueous discharge of a plant, such as a power plant, from a body of water having known hydraulogy and physicochemical characteristics, the method comprising (a) modifying the hydraulic system of the body of water including use of physical barriers to define a zone in a portion of the body of water which zone includes the discharge point and where the water has a range of physicochemical characteristics; (b) selecting a large and preferably filamentous, planktonically growing strain of algae adapted to absorb the particular pollutants and genetically dominating algae at the physicochemical characteristics of the zone; (c) establishing a colony of the selected algal strain in the zone; (d) harvesting a portion of the colony; and (e) reinnoculating the zone near the discharge point with a fraction of the harvested portion. The fraction used for reinnoculation can be adjusted to balance the rate of pollutant removal to the rate of pollutant discharge.

Wilde, Edward W. (1833 Pisgah Rd., North Augusta, SC 29841); Benemann, John R. (2741 O' Harte, San Pablo, CA 94806); Weissman, Joseph C. (2086 N. Porpoise Pt. La., Vero Beach, FL 32963); Tillett, David M. (911-3 Coquina La., Vero Beach, FL 32963)

1991-01-01T23:59:59.000Z

245

Glow discharge techniques for conditioning high vacuum systems  

DOE Green Energy (OSTI)

A review is given of glow discharge techniques which are useful for conditioning vacuum vessels for high vacuum applications. Substantial development of glow discharge techniques has been done for the purpose of in-situ conditioning of the large ultrahigh vacuum systems for particle accelerators and magnetic fusion devices. In these applications the glow discharge treatments remove impurities from vessel surfaces in order to minimize particle-induced desorption coefficients. Cleaning mechanisms involve a mixture of sputtering and ion- (or neutral) induced desorption effects depending on the gas mixture (ArO/sub 2/ vs. H/sub 2/) and excitation method (DC, RF, and ECR). The author will review the methodology of glow discharge conditioning, diagnostic measurements provided by residual gas and surface composition analysis, and applications to vessel conditioning and materials processing. 76 refs., 16 figs.

Dylla, H.F.

1988-03-01T23:59:59.000Z

246

Reactor-specific spent fuel discharge projections, 1984 to 2020  

Science Conference Proceedings (OSTI)

The original spent fuel utility data base (SFDB) has been adjusted to produce agreement with the EIA nuclear energy generation forecast. The procedure developed allows the detail of the utility data base to remain intact, while the overall nuclear generation is changed to match any uniform nuclear generation forecast. This procedure adjusts the weight of the reactor discharges as reported on the SFDB and makes a minimal (less than 10%) change in the original discharge exposures in order to preserve discharges of an integral number of fuel assemblies. The procedure used in developing the reactor-specific spent fuel discharge projections, as well as the resulting data bases themselves, are described in detail in this report. Discussions of the procedure cover the following topics: a description of the data base; data base adjustment procedures; addition of generic power reactors; and accuracy of the data base adjustments. Reactor-specific discharge and storage requirements are presented. Annual and cumulative discharge projections are provided. Annual and cumulative requirements for additional storage are shown for the maximum at-reactor (AR) storage assumption, and for the maximum AR with transshipment assumption. These compare directly to the storage requirements from the utility-supplied data, as reported in the Spent Fuel Storage Requirements Report. The results presented in this report include: the disaggregated spent fuel discharge projections; and disaggregated projections of requirements for additional spent fuel storage capacity prior to 1998. Descriptions of the methodology and the results are included in this report. Details supporting the discussions in the main body of the report, including descriptions of the capacity and fuel discharge projections, are included. 3 refs., 6 figs., 12 tabs.

Heeb, C.M.; Libby, R.A.; Holter, G.M.

1985-04-01T23:59:59.000Z

247

Pretreatment of industrial discharges to publicly owned treatment works (POTW)  

SciTech Connect

A discussion covers a brief survey of federal regulations establishing standards for the pretreatment of pollutants discharged into POTW's; the experience of the Municipality of Metropolitan Seattle (Metro) in dealing with the pretreatment of heavy metals in industrial and commercial discharges; a study and analysis by Seattle Metro of organic priority pollutants in wastewater including identification sources; and POTW treatment control technology for organic priority pollutants in Seattle Metro.

Ongerth, J.E.; Dewalle, F.B.

1980-08-01T23:59:59.000Z

248

Spent nuclear fuel discharges from U.S. reactors 1994  

Science Conference Proceedings (OSTI)

Spent Nuclear Fuel Discharges from US Reactors 1994 provides current statistical data on fuel assemblies irradiated at commercial nuclear reactors operating in the US. This year`s report provides data on the current inventories and storage capacities at these reactors. Detailed statistics on the data are presented in four chapters that highlight 1994 spent fuel discharges, storage capacities and inventories, canister and nonfuel component data, and assembly characteristics. Five appendices, a glossary, and bibliography are also included. 10 figs., 34 tabs.

NONE

1996-02-01T23:59:59.000Z

249

Fluorescent Nanoparticles for Radiation DetectionFluorescent Nanoparticles for Radiation Detection  

Researchers at ORNL invented a promising material for more efficient nanoscalescintillators, or radiation detectors. The new material, which can detect most kindsof radiation, consists of fluorescent nanoparticles embedded in a transparent matrix.The ...

250

New and Underutilized Technology: Efficient High Bay Fluorescent Lighting |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficient High Bay Fluorescent Efficient High Bay Fluorescent Lighting New and Underutilized Technology: Efficient High Bay Fluorescent Lighting October 7, 2013 - 8:54am Addthis The following information outlines key deployment considerations for efficient high bay fluorescent lighting within the Federal sector. Benefits Efficient high bay fluorescent lighting can include either T5 or T8 fluorescent lighting systems for high-bay applications currently using metal halide fixtures. Fluorescent fixtures offer better light distribution, better light maintenance over the life of the lamp, improved color quality, and on-off control (re-strike time) with lower energy consumption. Application Efficient high bay fluorescent lighting is applicable for facilities containing high bay areas. Key Factors for Deployment

251

Solid-State Lighting: LED Replacements for Linear Fluorescent...  

NLE Websites -- All DOE Office Websites (Extended Search)

LED Replacements for Linear Fluorescent Lamps Webcast to someone by E-mail Share Solid-State Lighting: LED Replacements for Linear Fluorescent Lamps Webcast on Facebook Tweet about...

252

Drilling Waste Management Fact Sheet: Discharge to Ocean  

NLE Websites -- All DOE Office Websites (Extended Search)

Discharge to Ocean Discharge to Ocean Fact Sheet - Discharge to Ocean Past Practices In early offshore oil and gas development, drilling wastes were generally discharged from the platforms directly to the ocean. Until several decades ago, the oceans were perceived to be limitless dumping grounds. During the 1970s and 1980s, however, evidence mounted that some types of drilling waste discharges could have undesirable effects on local ecology, particularly in shallow water. When water-based muds (WBMs) were used, only limited environmental harm was likely to occur, but when operators employed oil-based muds (OBMs) on deeper sections of wells, the resulting cuttings piles created impaired zones beneath and adjacent to the platforms. At some North Sea locations, large piles of oil-based cuttings remain on the sea floor near the platforms. Piles of oil-based cuttings can affect the local ecosystem in three ways: by smothering organisms, by direct toxic effect of the drilling waste, and by anoxic conditions caused by microbial degradation of the organic components in the waste. Current regulatory controls minimize the impacts of permitted discharges of cuttings.

253

Comparison of Segmentation Algorithms For Fluorescence Microscopy Images of Cells  

E-Print Network (OSTI)

Comparison of Segmentation Algorithms For Fluorescence Microscopy Images of Cells Alden A. Dima,1 Mary C. Brady,1 Hai C. Tang,1 Anne L. Plant2 * Abstract The analysis of fluorescence microscopy fluorescence microscopy; k-means cluster; image segmentation; cell edge; bivariate simi- larity index NUMEROUS

Bernal, Javier

254

Dissolved organic matter discharge in the six largest arctic rivers-chemical composition and seasonal variability  

E-Print Network (OSTI)

The vulnerability of the Arctic to climate change has been realized due to disproportionately large increases in surface air temperatures which are not uniformly distributed over the seasonal cycle. Effects of this temperature shift are widespread in the Arctic but likely include changes to the hydrological cycle and permafrost thaw, which have implications for the mobilization of organic carbon into rivers. The focus of this research was to describe the seasonal variability of the chemical composition of dissolved organic matter (DOM) in the six largest Arctic rivers (Yukon, Mackenzie, Ob, Yenisei, Lena and Kolyma) using optical properties (UV-Vis Absorbance and Fluorescence) and lignin phenol analysis. We also investigated differences between rivers and how watershed characteristics influence DOM composition. Dissolved organic carbon (DOC) concentrations followed the hydrograph with highest concentrations measured during peak river flow. The chemical composition of peak-flow DOM indicates a dominance of freshly leached material with elevated aromaticity, larger molecular weight, and elevated lignin yields relative to base-flow DOM. During peak flow, soils in the watershed are still frozen and snowmelt water follows a lateral flow path to the river channels. As the soils thaw, surface water penetrates deeper into the soil horizons leading to lower DOC concentrations and likely altered composition of DOM due to sorption and microbial degradation processes. The six rivers studied here shared a similar seasonal pattern and chemical composition. There were, however, large differences between rivers in terms of total carbon discharge reflecting the differences in watershed characteristics such as climate, catchment size, river discharge, soil types, and permafrost distribution. The large rivers (Lena, Yenisei), with a greater proportion of permafrost, exported the greatest amount of carbon. The Kolyma and Mackenzie exported the smallest amount of carbon annually, however, the discharge weighted mean DOC concentration was almost 2-fold higher in the Kolyma, again, indicating the importance of continuous permafrost. The quality and quantity of DOM mobilized into Arctic rivers appears to depend on the relative importance of surface run-off and extent of soil percolation. The relative importance of these is ultimately determined by watershed characteristics.

Rinehart, Amanda J.

2007-08-01T23:59:59.000Z

255

Modification of fluorescent luminaries for energy conservation  

SciTech Connect

Reducing energy consumption in existing buildings by reducing the number of lamps presents technical problems when more than one fluorescent lamp operates from a single ballast. A preliminary investigation was made whereby capacitors were substituted for one fluorescent lamp in a two-lamp luminaire which operated with a single ballast. Under optimum conditions, lighting efficiency (foot-candles per watt) was nearly as high at reduced power input as it was with two lamps operating normally. No failures in lighting equipment or capacitors occurred and no fire hazards, other safety hazards, or other unsatisfactory occurrences were observed. A more thorough investigation involving a number of parameters is needed to ascertain the feasibility of this modification.

Beausoliel, R.W.; Meese, W.J.; Yonemura, G.

1975-01-01T23:59:59.000Z

256

Modification of fluorescent luminaires for energy conservation  

SciTech Connect

Reducing energy consumption in existing buildings by reducing the number of lamps presents technical problems when more than one fluorescent lamp operates from a single ballast. A preliminary investigation was made whereby capacitors were substituted for one fluorescent lamp in a two-lamp luminaire which operated with a single ballast. Under optimum conditions, lighting efficiency (foot-candles per watt) was nearly as high at reduced power input as it was with two lamps operating normally. No failures in lighting equipment or capacitors occurred and no fire hazards, other safety hazards, or other unsatisfactory occurrences were observed. A more thorough investigation involving a number of parameters is needed to ascertain the feasibility of this modification. (auth)

Beausoliel, R.W.; Meese, W.J.; Yonemura, G.

1975-10-01T23:59:59.000Z

257

Product Standards for Fluorescent Lighting (Japan) | Open Energy  

Open Energy Info (EERE)

Product Standards for Fluorescent Lighting (Japan) Product Standards for Fluorescent Lighting (Japan) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Product Standards for Fluorescent Lighting (Japan) Focus Area: Appliances & Equipment Topics: Policy Impacts Website: www.eccj.or.jp/top_runner/pdf/tr_fluorescent_lights_jul.2009.pdf Equivalent URI: cleanenergysolutions.org/content/product-standards-fluorescent-lightin Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Industry Codes & Standards Regulations: Appliance & Equipment Standards and Required Labeling This Energy Conservation Center Japan (ECCJ) document was created as a

258

Transient Behaviour and Helium Discharge in Cryogenic Distribution Line (QRL) Headers Following Breakdown of Insulation Vacuum  

E-Print Network (OSTI)

Transient Behaviour and Helium Discharge in Cryogenic Distribution Line (QRL) Headers Following Breakdown of Insulation Vacuum

Chorowski, M

1997-01-01T23:59:59.000Z

259

A new optimized fluorescent lamp and ballast for low-energy general lighting applications  

SciTech Connect

A new fluorescent lamp and ballast system has been developed which minimizes system input power while maintaining light output close to values provided by conventional lamps and ballasts. The 28-WT-12 lamp designed for the new system utilizes a redesigned electrode structure which allows the lamp to be started in the rapid start manner but operated in an instant start mode to maximize the discharge efficacy (lumens/watt) while reducing lamp cathode power requirements. A matching two-lamp ballast incorporates a solid-state switching device to turn off the cathode heating circuit automatically once the lamps have started. Both lamps and ballasts are physically interchangeable with conventional equipment so that existing luminaires can be converted without luminaire, lampholder, and wiring modifications. This new lamp/ballast system can achieve efficacy values exceeding 80 lm/W--more than 25 percent better than the performance of conventional fluorescent systems of the early 1970's-along with the excellent life and reliability characteristics typical of electromagnetically ballasted systems. Economic analyses indicate that the new system is appropriate for many new commercial general lighting installations, although it is particularly suitable as a retrofit system for installations where power reductions are essential but where conversion costs must be minimized and illumination levels preserved.

Hammer, E.E.; McGowan, T.K.

1983-07-01T23:59:59.000Z

260

Rules and Regulations Pertaining to a User Fee System for Point Source Dischargers that Discharge Pollutants into the Waters of the State (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations establish a user fee system for point source dischargers that discharge pollutants into the surface waters of the State. The funds from such fees are used by the Department of...

Note: This page contains sample records for the topic "fluorescent high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Tracing And Quantifying Magmatic Carbon Discharge In Cold Groundwaters-  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Tracing And Quantifying Magmatic Carbon Discharge In Cold Groundwaters- Lessons Learned From Mammoth Mountain, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Tracing And Quantifying Magmatic Carbon Discharge In Cold Groundwaters- Lessons Learned From Mammoth Mountain, Usa Details Activities (3) Areas (1) Regions (0) Abstract: A major campaign to quantify the magmatic carbon discharge in cold groundwaters around Mammoth Mountain volcano in eastern California was carried out from 1996 to 1999. The total water flow from all sampled cold springs was >=1.8_107 m3/yr draining an area that receives an estimated

262

Electric Discharge Machining (EDM) Projects (4584), 4/11/2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Discharge Machining (EDM) Projects (4584) Electric Discharge Machining (EDM) Projects (4584) Program or Field Office: Y -12 Site Office Location(s) (Citv/Countv/State): Oak Ridge, Anderson County, Tennessee Proposed Action Description: Submit by E-mail The proposed action is to installation of oil submerged Electric Discharge Machining (EDM) for development and production use. Categorical Exclusion(s) Applied: 81.31 -Installation or relocation of machinery and equipment For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, including the full text of each categorical exclusion, see Subpart D of 10 CFR Part 1021. Regulatory Requirements in 10 CFR 1021.410(b): (See full text in regulation) [{Jrhe proposal fits within a class of actions that is listed in Appendix A orB to 10 CFR Part 1021, Subpart D.

263

Regulations For State Administration Of The National Pollutant Discharge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

For State Administration Of The National Pollutant For State Administration Of The National Pollutant Discharge Elimination System (Arkansas) Regulations For State Administration Of The National Pollutant Discharge Elimination System (Arkansas) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Arkansas Program Type Siting and Permitting Provider Department of Environmental Quality The Regulations For State Administration Of The National Pollutant

264

Electrochemical cell with high discharge/charge rate capability  

DOE Patents (OSTI)

A fully charged positive electrode composition for an electrochemical cell includes FeS/sub 2/ and NiS/sub 2/ in about equal molar amounts along with about 2 to 20 mole % of the reaction product Li/sub 2/S. Through selection of appropriate electrolyte compositions, high power output or low operating temperatures can be obtained. The cell includes a substantially constant electrode impedance through most of its charge and discharge range. Exceptionally high discharge rates and overcharge protection are obtainable through use of the inventive electrode composition.

Redey, L.

1986-07-28T23:59:59.000Z

265

High-power pulse modulator with ignitron discharger  

SciTech Connect

The high-power pulse modulator described here is used to produce spatial gaseous discharges and has an improved, controllable charging circuit, which permits a type ITR-4 ignitron discharger to be employed in a frequency mode as the basic commutator. The modulator is utilized in two modes: at a pulse repetition frequency of 50 Hz pulses are formed that have a duration of 25 usec and energies up to 3.5 kJ and at a frequency of 200 Hz, the pulses have a duration of -2 usec and energies up to 600 J. In all conditions the modulator operated stably with a wide range of load changes.

Anisimova, T.E.; Akkuratov, E.V.; Artemov, V.A.; Gromovenko, V.M.; Kalinin, V.P.; Nikonov, V.P.

1985-10-01T23:59:59.000Z

266

Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers  

E-Print Network (OSTI)

efficiency motors Lighting Controls Replace metal halide HID with high-intensity Daylighting fluorescents Replace incandescent with fluorescent or CFL

Galitsky, Christina; Worrell, Ernst; Ruth, Michael

2003-01-01T23:59:59.000Z

267

Interaction of High Intensity Electromagnetic Waves with Plasmas  

SciTech Connect

The focus of our work during the duration of this grant was on the following areas: (a) the fundamental plasma physics of intense laser-plasma interactions, including the nonlinear excitation of plasma waves for accelerator applications, as well as the recently discovered by us phenomenon of the relativistic bi-stability of relativistic plasma waves driven by a laser beatwave; (b) interaction of high power microwave beams with magnetized plasma, including some of the recently discovered by us phenomena such as the Undulator Induced Transparency (UIT) as well as the new approaches to dynamic manipulation of microwave pulses; (c) investigations of the multi-color laser pulse interactions in the plasma, including the recently discovered by us phenomenon of Electromagnetic Cascading (EC) and the effect of the EC of three-dimensional dynamics of laser pulses (enhanced/suppressed selffocusing etc.); (d) interaction of high-current electron beams with the ambient plasma in the context of Fast Ignitor (FI) physics, with the emphasis on the nonlinear dynamics of the Weibel instability and beam filamentation.

G. Shvets

2008-10-03T23:59:59.000Z

268

A High Intensity Neutron Scattering Techniques for Hydrogen ...  

Science Conference Proceedings (OSTI)

Nucleation and Growth Observed by Ultrafast SAXS and WAXS · O10: Effect of Nickel on the Neutron Irradiation Sensitivity of Nuclear Reactor Pressure Vessel ...

269

High-Intensity Laser Diagnostics for OMEGA EP  

Science Conference Proceedings (OSTI)

OMEGA EP is a new high-energy petawatt laser system under construction at the University of Rochester’s Laboratory for Laser Energetics. This paper describes our designs for two diagnostics critical to OMEGA EP’s mission. The focal-spot diagnostic (FSD) is responsible for characterizing the focal spot of OMEGA EP’s off-axis parabolic mirror at full energy. The ultrafast temporal diagnostic (UTD) is responsible for characterizing pulse shapes of full-energy target shots ranging in width from petawatt laser at full energy.

Bromage, J.; Zuegel, J.D.; Bahk, S.-W.; Vickery, D.S.; Waxer, L.J.; Irwin, D.; Bagnoud, V.; Boni, R.; Moore, M.D.; Junquist, R.; Stoeckl, C.

2006-07-13T23:59:59.000Z

270

High intensity performance and upgrades at the Brookhaven AGS  

SciTech Connect

For the last two years the Brookhaven AGS has operated the slow extracted beam program at record proton intensities. This high beam intensity allowed for the simultaneous operation of three high precision rare kaon decay experiments. The record beam intensities were achieved after the 1.5 GeV Booster was commissioned and a transition jump system, a powerful transverse damper, and an rf upgrade in the AGS were completed. Recently even higher intensity proton synchrotrons are studied for neutron spallation sources or proton driver for a muon collider. Implications of the experiences from the AGS to these proposals and also possible future upgrades for the AGS are discussed.

Roser, T.

1996-12-31T23:59:59.000Z

271

HIGH INTENSITY BEAM OPERATION OF THE BROOKHAVEN AGS  

SciTech Connect

For the last few years the Brookhaven AGS has operated at record proton intensities. This high beam intensity allowed for the simultaneous operation of several high precision rare kaon decay experiments. The record beam intensities were achieved after the AGS Booster was commissioned and a transition jump system, a powerful transverse damper, and an rf upgrade in the AGS were completed. The intensity is presently limited by space charge effects at both Booster and AGS injection and transverse instabilities in the AGS.

ROSER,T.

1999-06-28T23:59:59.000Z

272

Beam experiments towards high-intensity beams in RHIC  

SciTech Connect

Proton bunch intensities in RHIC are planned to be increased from 2 {center_dot} 10{sup 11} to 3 {center_dot} 10{sup 11} protons per bunch to increase the luminosity, together with head-on beam-beam compensation using electron lenses. To study the feasibility of the intensity increase, beam experiments are being performed. Recent experimental results are presented.

Montag C.; Ahrens, L.; Brennan, J.M.; Blaskiewicz, M.; Drees, A.; Fischer, W.; Hayes, T.; Huang, H.; Mernick, K.; Robert-Demolaize, G.; Smith, K.; Than, R.; Thieberger, P.; Yip, K.; Zeno, K.; Zhang, S.Y.

2012-05-20T23:59:59.000Z

273

High-Intensity Plasma Glass Melter Final Technical Report  

Science Conference Proceedings (OSTI)

The purpose of this project was to demonstrate the energy efficiency and reduced emissions that can be obtained with a dual torch DC plasma transferred arc-melting system. Plasmelt Glass Technologies, LLC was formed to solicit and execute the project, which utilize a full-scale test melter system. The system is similar to the one that was originally constructed by Johns Manville, but Plasmelt has added significant improvements to the torch design and melter system that has extended the original JM short torch lives. The original JM design has been shown to achieve melt rates 5 to 10 times faster than conventional gas or electric melting, with improved energy efficiency and reduced emissions. This project began on 7/28/2003 and ended 7/27/06. A laboratory scale melter was designed, constructed, and operated to conduct multiple experimental melting trials on various glass compositions. Glass quality was assessed. Although the melter design is generic and equally applicable to all sectors within the glass industry, the development of this melter has focused primarily on fiberglass with additional exploratory melting trials of frits, specialty, and minerals-melting applications. Throughput, energy efficiency, and glass quality have been shown to be heavily dependent on the selected glass composition. During this project, Plasmelt completed the proof-of-concept work in our Boulder, CO Lab to show the technical feasibility of this transferred-arc plasma melter. Late in the project, the work was focused on developing the processes and evaluating the economic viability of plasma melting aimed at the specific glasses of interest to specific client companies. Post project work is on going with client companies to address broader non-glass materials such as refractories and industrial minerals. Exploratory melting trials have been conducted on several glasses of commercial interest including: C-glass, E-glass, S-Glass, AR-Glass, B-glass, Lighting Glass, NE-Glass, and various frits. Exploratory melts of non-glassy materials, such as wollastonite, zirconium silicate, and alumino-silicate melts were successfully done indicating that plasma melting has potential application beyond glass. Experimental results were generated that show the high quality of plasma-melted fiberglass compositions, such as E-glass, can result in good fiberizing performance. Fiberizing performance and tensile strength data were achieved during the project to support this conclusion. High seed counts are a feature of the current lab scale melter and must be dealt with via other means, since fining work was outside the scope of this project.

Gonterman, J. Ronald; Weinstein, Michael A.

2006-10-27T23:59:59.000Z

274

Electrostatic LEBTs for High-Intensity Linac-Injectors  

E-Print Network (OSTI)

R. Yourd, “Progress with the SNS Front End Sys- tems,” Proc.Results Obtained with the SNS H - Ion Source and LEBT atthe Spallation Neutron Source (SNS) front end, the presented

Keller, R.; Kahto, S.K.

2005-01-01T23:59:59.000Z

275

HIGH INTENSITY LOW-ENERGY POSITRON SOURCE AT JEFFERSON  

SciTech Connect

We present a novel concept of a low-energy e{sup +} source with projected intensity on the order of 10{sup 10} slow e{sup +}/s. The key components of this concept are a continuous wave e{sup -} beam, a rotating positron-production target, a synchronized raster/anti-raster, a transport channel, and extraction of e{sup +} into a field-free area through a magnetic plug for moderation in a cryogenic solid. Components were designed in the framework of GEANT4-based (G4beamline) Monte Carlo simulation and TOSCA magnetic field calculation codes. Experimental data to demonstrate the effectiveness of the magnetic plug is presented.

Serkan Golge, Bogdan Wojtsekhowski, Branislav Vlahovic

2012-07-01T23:59:59.000Z

276

Efficient Light Sources Today  

E-Print Network (OSTI)

This paper reviews new lamp and lighting technology in terms of application and economic impact. Included are the latest advances in High Intensity Discharge systems, energy saving fluorescent lamps and ballasts, and the new state of the art high performance fluorescent systems. Cost analyses will show that typical owning and operating cost reductions of 15 to 65% can be achieved without sacrificing illumination levels when the right system is chosen and properly applied.

Hart, A. L.

1982-01-01T23:59:59.000Z

277

Advanced Light Sources  

Science Conference Proceedings (OSTI)

In the generation of artificial light using electric lamps, photometric and color performance have been paramount in lamp design, manufacturing, measurement, lighting design, and visual perception. Many designers and researchers have strived to understand how light and color are generated, related, and to improve them. This has stemmed from the development of incandescent lamps, halogen lamps, linear fluorescent lamps, high-intensity discharge (HID) lamps, and compact fluorescent lamps (CFLs) among other...

2008-03-31T23:59:59.000Z

278

New Electronic Light Sources for Sustainability in a Greener Environment  

Science Conference Proceedings (OSTI)

This EPRI Technical Update continues the technical assessment of advanced lighting technologies in the product areaselectronic linear fluorescent, electronic compact fluorescent, electronic high-intensity discharge (HID), and light-emitting diode (LED). This year, a new type of light sourcesolid-state plasma lighting (a miniature HID technology)was assessed. This project demonstrates how light sources are making their way into new designs providing new types of light fixtures. A total of seven products w...

2010-12-31T23:59:59.000Z

279

Survivability of Electronic Compact Fluorescent Lamps  

Science Conference Proceedings (OSTI)

This EPRI Technical Report addresses the fastest growing energy efficient light source8212the electronic compact fluorescent lamp (CFL). Because some of the failure modes for screw-in CFLs are different than those for plug-in CFLs, a cursory review of the difference between the two types of CFLs is provided in the first part of Chapter 2. A broad definition of shortened-life CFLs is also provided in Chapter 2 with an emphasis on revisiting mortality curves, the 10-minute lamp start, other relevant defini...

2008-03-31T23:59:59.000Z

280

Novel Nanophosphors for High Efficiency Fluorescent Lamps  

SciTech Connect

This is the Final Report of the Novel Nanophosphors for High Efficiency Fluorescent Lamps, Department of Energy (DOE). The overall goal of this three-year program is to develop novel hybrid phosphors by coating commercially available lamp phosphors with highly stable wide band-gap nanocrystalline phosphors (NCP). The prime technical approach is the development of NCP quantum-splitting phosphor (QSP) and ultra-violet (UV) emitting phosphors with quantum efficiencies exceeding that of the conventional phosphors at 185 nm. The novel hybrid phosphors will increase the efficiency of the fluorescent lamps by up to 32%, enabling total energy savings of 0.26 quads, the reduction in the U.S. energy bill by $6.5 billion and the reduction of the annual carbon emission by 4.1 billion kilogram. Our work started by investigating through modeling calculations the requirement for the particle size of the NCP. Our work to develop suitable nanocrystalline phosphors started with the known oxide quantum splitting and UV emitting phosphors. We demonstrated several synthesis techniques for the production of high quality nanocrystalline materials that crystallizes in the desired phase and with the desired particle size. In collaboration with our subcontractor we demonstrated the feasibility for the manufacture of NC phosphors. We also demonstrated novel techniques of coating the NCP on the surface of micron sized phosphors. Our chief achievement pertains to the successful testing of the coated hybrid phosphor systems in linear fluorescent lamps. In linear fluorescent lamp tests, we have demonstrated up to 7% increase in the efficacy of hybrid phosphors over the conventional (uncoated) phosphors. We have also demonstrated the improvement in the lumen maintenance of the coated phosphors. A hybrid phosphor system based on the commercial red emitting phosphor, Y{sub 2}O{sub 3}:Eu{sup 3+} did not show the anticipated improvement in lamp efficacy. We explored the reasons for this observation, which are detailed in this report. Within the program we have carried out fundamental investigations into the physical processes that determine the quantum splitting behavior of the Pr{sup 3+} ion in solids. Specifically, we have investigated the quantum splitting luminescence of this ion in the LaPO{sub 4}, SrAl{sub 12}O{sub 19} and LiLaP{sub 4}O{sub 12} host lattices. In this final report we summarize the technical work completed under the Program, summarize our findings about the performance limits of the various technologies we investigated, and outline promising paths for future work.

Alok Srivatava

2007-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "fluorescent high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Literature Review: Response of Fish to Thermal Discharges  

Science Conference Proceedings (OSTI)

This review of literature on the responses of fish species to thermal discharges was prepared from information contained in the EPRI Cooling System Effects Data Base. Tables of field and laboratory data on selected temperature variables for some 60 fish species are presented. Where possible, comparisons between field and laboratory observations are made.

1981-05-01T23:59:59.000Z

282

Wire-chamber radiation detector with discharge control  

DOE Patents (OSTI)

A wire chamber; radiation detector has spaced apart parallel electrodes and grids defining an ignition region in which charged particles or other ionizing radiations initiate brief localized avalanche discharges and defining an adjacent memory region in which sustained glow discharges are initiated by the primary discharges. Conductors of the grids at each side of the memory section extend in orthogonal directions enabling readout of the X-Y coordinates of locations at which charged particles were detected by sequentially transmitting pulses to the conductors of one grid while detecting transmissions of the pulses to the orthogonal conductors of the other grid through glow discharges. One of the grids bounding the memory region is defined by an array of conductive elements each of which is connected to the associated readout conductor through a separate resistance. The wire chamber avoids ambiguities and imprecisions in the readout of coordinates when large numbers of simultaneous or; near simultaneous charged particles have been detected. Down time between detection periods and the generation of radio frequency noise are also reduced.

Perez-Mendez, V.; Mulera, T.A.

1982-03-29T23:59:59.000Z

283

Use of microalgae to remove pollutants from power plant discharges  

DOE Patents (OSTI)

A method and system are described for removing pollutants dissolved in the aqueous discharge of a plant, such as a power plant, from a body of water having known hydraulic and physicochemical characteristics, the method comprising (a) modifying the hydraulic system of the body of water including use of physical barriers to define a zone in a portion of the body of water which zone includes the discharge point and where the water has a range of physicochemical characteristics; (b) selecting a large and preferably filamentous, planktonically growing strain of algae adapted to absorb the particular pollutants and genetically dominating algae at the physicochemical characteristics of the zone; (c) establishing a colony of the selected algal strain in the zone; (d) harvesting a portion of the colony; and (e) reinoculating the zone near the discharge point with a fraction of the harvested portion. The fraction used for reinoculation can be adjusted to balance the rate of pollutant removal to the rate of pollutant discharge. 4 figures.

Wilde, E.W.; Benemann, J.R.; Weissman, J.C.; Tillett, D.M.

1991-04-30T23:59:59.000Z

284

Argumentation-based framework for industrial wastewater discharges management  

Science Conference Proceedings (OSTI)

The daily operation of wastewater treatment plants (WWTPs) in unitary sewer systems of industrialized areas is of special concern. Severe problems can occur due to the characteristics of incoming flow. In order to avoid decision that leads to hazardous ... Keywords: Agents, Argumentation, Industrial discharge management, River basin management, Urban wastewater system, Wastewater treatment plant (WWTP)

M. Aulinas; P. Tolchinsky; C. Turon; M. Poch; U. Cortés

2012-03-01T23:59:59.000Z

285

J56: Electrical Discharge Consolidation with Stud Welding Technology  

Science Conference Proceedings (OSTI)

The main characteristic of the EDC technology is its high speed, in the order of ... Two different configurations with discharge voltages of 200 and 800 V, and ... B3: Consolidation of Silica/Graphene Oxide Composite by Spark Plasma Sintering ..... J5: Phase Equilibria and Tie-line Compositions of the ? and (?, ?, ?) Phases in  ...

286

Condenser for extreme-UV lithography with discharge source  

DOE Patents (OSTI)

Condenser system, for use with a ringfield camera in projection lithography, employs quasi grazing-incidence collector mirrors that are coated with a suitable reflective metal such as ruthenium to collect radiation from a discharge source to minimize the effect of contaminant accumulation on the collecting mirrors.

Sweatt, William C. (Albuquerque, NM); Kubiak, Glenn D. (Livermore, CA)

2001-01-01T23:59:59.000Z

287

Radioactive Liquid Waste Treatment Facility Discharges in 2011  

Science Conference Proceedings (OSTI)

This report documents radioactive discharges from the TA50 Radioactive Liquid Waste Treatment Facilities (RLWTF) during calendar 2011. During 2011, three pathways were available for the discharge of treated water to the environment: discharge as water through NPDES Outfall 051 into Mortandad Canyon, evaporation via the TA50 cooling towers, and evaporation using the newly-installed natural-gas effluent evaporator at TA50. Only one of these pathways was used; all treated water (3,352,890 liters) was fed to the effluent evaporator. The quality of treated water was established by collecting a weekly grab sample of water being fed to the effluent evaporator. Forty weekly samples were collected; each was analyzed for gross alpha, gross beta, and tritium. Weekly samples were also composited at the end of each month. These flow-weighted composite samples were then analyzed for 37 radioisotopes: nine alpha-emitting isotopes, 27 beta emitters, and tritium. These monthly analyses were used to estimate the radioactive content of treated water fed to the effluent evaporator. Table 1 summarizes this information. The concentrations and quantities of radioactivity in Table 1 are for treated water fed to the evaporator. Amounts of radioactivity discharged to the environment through the evaporator stack were likely smaller since only entrained materials would exit via the evaporator stack.

Del Signore, John C. [Los Alamos National Laboratory

2012-05-16T23:59:59.000Z

288

Electron beam switched discharge for rapidly pulsed lasers  

DOE Patents (OSTI)

Method and apparatus for electrical excitation of a laser gas by application of a pulsed voltage across the gas, followed by passage of a pulsed, high energy electron beam through the gas to initiate a discharge suitable for laser excitation. This method improves upon current power conditioning techniques and is especially useful for driving rare gas halide lasers at high repetition rates.

Pleasance, Lyn D. (Livermore, CA); Murray, John R. (Danville, CA); Goldhar, Julius (Walnut Creek, CA); Bradley, Laird P. (Livermore, CA)

1981-01-01T23:59:59.000Z

289

Acoustic detection of partial discharges in insulation oil  

Science Conference Proceedings (OSTI)

In this paper, we performed an insulation diagnosis technique for oil-immersed power transformers by an acoustic detection method. Electrode system such as needle to plane electrode was fabricated to simulate a defect of power transformers. In addition, ... Keywords: acoustic detection, frequency component, insulation diagnostic, partial discharge, positioning

Dae-Won Park; Sang-Wook Cha; Gyung-Suk Kil

2011-03-01T23:59:59.000Z

290

Modelling the sensitivity to various factors of shipborne pollutant discharges  

Science Conference Proceedings (OSTI)

Most of the marine pollution attributable to ship actions is associated with the illicit discharge of oily residues or ballast water, in what is commonly termed operational pollution. In the particular case of ballast water, careless disposal can lead ... Keywords: Ebro delta, Moving sources, Numerical modelling, Shipborne pollution

Marc Mestres; Joan Pau Sierra; César Mösso; Agustín Sánchez-Arcilla

2010-03-01T23:59:59.000Z

291

Solid state laser media driven by remote nuclear powered fluorescence  

DOE Patents (OSTI)

An apparatus is provided for driving a solid state laser by a nuclear powered fluorescence source which is located remote from the fluorescence source. A nuclear reaction produced in a reaction chamber generates fluorescence or photons. The photons are collected from the chamber into a waveguide, such as a fiber optic waveguide. The waveguide transports the photons to the remote laser for exciting the laser.

Prelas, M.A.

1991-01-16T23:59:59.000Z

292

Solid state laser media driven by remote nuclear powered fluorescence  

DOE Patents (OSTI)

An apparatus is provided for driving a solid state laser by a nuclear powered fluorescence source which is located remote from the fluorescence source. A nuclear reaction produced in a reaction chamber generates fluorescence or photons. The photons are collected from the chamber into a waveguide, such as a fiber optic waveguide. The waveguide transports the photons to the remote laser for exciting the laser.

Prelas, Mark A. (Columbia, MO)

1992-01-01T23:59:59.000Z

293

Optical Nanofibers for Manipulating and Probing Single-Atom Fluorescence  

E-Print Network (OSTI)

We demonstrate how optical nanofibers can be used to manipulate and probe single-atom fluorescence. We show that fluorescence photons from a very small number of atoms, average atom number of less than 0.1, around the nanofiber can readily be observed through single-mode optical fiber under resonant laser irradiation. We show also that optical nanofibers enable us to probe the van der Waals interaction between atoms and surface with high precision by observing the fluorescence excitation spectrum.

K. P. Nayak; P. N. Melentiev; M. Morinaga; Fam Le Kien; V. I. Balykin; K. Hakuta

2006-10-17T23:59:59.000Z

294

Improved Performance of a Fluorescent Blue Organic Light Emitting ...  

Science Conference Proceedings (OSTI)

Presentation Title, Improved Performance of a Fluorescent Blue Organic Light Emitting Diode with Hole Blocking Materials as Dopants for Transport Layers.

295

Time-resolved fluorescence decay measurements for flowing particles  

DOE Patents (OSTI)

Time-resolved fluorescence decay measurements are disclosed for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated CW laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes. 12 figs.

Deka, C.; Steinkamp, J.A.

1999-06-01T23:59:59.000Z

296

Dynamic fluorescence imaging with molecular agents for cancer detection  

E-Print Network (OSTI)

Non-invasive dynamic optical imaging of small animals requires the development of a novel fluorescence imaging modality. Herein, fluorescence imaging is demonstrated with sub-second camera integration times using agents specifically targeted to disease markers, enabling rapid detection of cancerous regions. The continuous-wave fluorescence imaging acquires data with an intensified or an electronmultiplying charge-coupled device. The work presented in this dissertation (i) assessed dose-dependent uptake using dynamic fluorescence imaging and pharmacokinetic (PK) models, (ii) evaluated disease marker availability in two different xenograft tumors, (iii) compared the impact of autofluorescence in fluorescence imaging of near-infrared (NIR) vs. red light excitable fluorescent contrast agents, (iv) demonstrated dual-wavelength fluorescence imaging of angiogenic vessels and lymphatics associated with a xenograft tumor model, and (v) examined dynamic multi-wavelength, whole-body fluorescence imaging with two different fluorescent contrast agents. PK analysis showed that the uptake of Cy5.5-c(KRGDf) in xenograft tumor regions linearly increased with doses of Cy5.5-c(KRGDf) up to 1.5 nmol/mouse. Above 1.5 nmol/mouse, the uptake did not increase with doses, suggesting receptor saturation. Target to background ratio (TBR) and PK analysis for two different tumor cell lines showed that while Kaposi’s sarcoma (KS1767) exhibited early and rapid uptake of Cy5.5-c(KRGDf), human melanoma tumors (M21) had non-significant TBR differences and early uptake rates similar to the contralateral normal tissue regions. The differences may be due to different compartment location of the target. A comparison of fluorescence imaging with NIR vs. red light excitable fluorescent dyes demonstrates that NIR dyes are associated with less background signal, enabling rapid tumor detection. In contrast, animals injected with red light excitable fluorescent dyes showed high autofluorescence. Dual-wavelength fluorescence images were acquired using a targeted 111In- DTPA-K(IRDye800)-c(KRGDf) to selectively detect tumor angiogenesis and an untargeted Cy5.5 to image lymphatics. After acquiring the experimental data, fluorescence image-guided surgery was performed. Dynamic, multi-wavelength fluorescence imaging was accomplished using a liquid crystal tunable filter (LCTF). Excitation light was used for reflectance images with a LCTF transmitting a shorter wavelength than the peak in the excitation light spectrum. Therefore, images can be dynamically acquired alternating frame by frame between emission and excitation light, which should enable image-guided surgery.

Kwon, Sun Kuk

2006-12-01T23:59:59.000Z

297

Research and Development of a New Field Enhanced Low Temperature Thermionic Cathode that Enables Fluorescent Dimming and Loan Shedding without Auxiliary Cathode Heating  

DOE Green Energy (OSTI)

This is the final report for project entitled 'Research and development of a new field enhanced low temperature thermionic cathode that enables fluorescent dimming and load shedding without auxiliary cathode heating', under Agreement Number: DE-FC26-04NT-42329. Under this project, a highly efficient CNT based thermionic cathode was demonstrated. This cathode is capable of emitting electron at a current density two order of magnitude stronger then a typical fluorescent cathode at same temperatures, or capable of emitting at same current density but at temperature about 300 C lower than that of a fluorescent cathode. Detailed fabrication techniques were developed including CVD growth of CNTs and sputter deposition of oxide thin films on CNTs. These are mature technologies that have been widely used in industry for large scale materials processing and device fabrications, thus, with further development work, the techniques developed in this project can be scaled-up in manufacturing environment. The prototype cathodes developed in this project were tested in lighting plasma discharge environment. In many cases, they not only lit and sustain the plasma, but also out perform the fluorescent cathodes in key parameters such like cathode fall voltages. More work will be needed to further evaluate more detailed and longer term performance of the prototype cathode in lighting plasma.

Feng Jin

2009-01-07T23:59:59.000Z

298

The Effects of Geometry on the Corona-to-Streamer Discharge Transition  

E-Print Network (OSTI)

The electric spark discharge has been studied for hundreds of years, yet many details of the phenomenon remain elusive. One particular area in the field of spark discharges that has yet to be explored in depth is the transition region between the corona and the streamer discharge. The parameters that characterize the transition region are purely geometric for a given potential difference applied between two electrodes. For the case of a point-to-plane electrode geometry, the transition between the oscillating corona discharge and the rapidly-growing streamer discharge is determined by the radius of curvature of the anode. In this contribution, the transition radius of curvature is found analytically using simplified models of each discharge and the principle of least action. For a sufficiently small anode, the corona discharge is also shown to be energetically more favorable at all radii of curvature, supporting the general claim that corona discharges are most readily produced on thin wires.

Humbird, Kelli D

2013-05-01T23:59:59.000Z

299

Rules for the Discharge of Non-Sanitary Wastewater and Other...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for the Discharge of Non-Sanitary Wastewater and Other Fluids To or Below the Ground Surface (Rhode Island) Rules for the Discharge of Non-Sanitary Wastewater and Other Fluids To...

300

Carbon nanostructures production by AC arc discharge plasma process at atmospheric pressure  

Science Conference Proceedings (OSTI)

Carbon nanostructures have received much attention for a wide range of applications. In this paper, we produced carbon nanostructures by decomposition of benzene using AC arc discharge plasma process at atmospheric pressure. Discharge was carried out ...

Shenqiang Zhao; Ruoyu Hong; Zhi Luo; Haifeng Lu; Biao Yan

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fluorescent high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Long-Term Performance of Screwbase Compact Fluorescent Lamps  

Science Conference Proceedings (OSTI)

The packaging material for compact fluorescent lamps normally includes some claim regarding expected lamp lifetime. This claimed lifetime is generally not obtained through rigorous testing. This study shows how different operating cycles, components, and lamp and ballast designs affect screwbase compact fluorescent lamp (SCFL) life.

2000-04-11T23:59:59.000Z

302

A transportable fluorescence imagining system for detecting fecal contaminants  

Science Conference Proceedings (OSTI)

Feces are the primary source of many pathogenic organisms that can potentially contaminate agricultural commodities. Feces generally contain chlorophyll a and related compounds due to ingestion of plant materials. Fluorescent responses of these compounds ... Keywords: Fecal contamination, Fluorescence, Food safety, Multispectral imaging

Alan M. Lefcourt; Moon S. Kim; Yud-Ren Chen

2005-07-01T23:59:59.000Z

303

Quantum Optics: Colloidal Fluorescent Semiconductor Nanocrystals (Quantum Dots)  

E-Print Network (OSTI)

U ncorrected Proof Chapter 3 Quantum Optics: Colloidal Fluorescent Semiconductor Nanocrystals (Quantum Dots) in Single-Molecule Detection and Imaging Laurent A. Bentolila, Xavier Michalet, and Shimon quantum dots (QDs), have emerged as new powerful fluorescent probes for in vitro and in vivo biological

Michalet, Xavier

304

Low pressure arc discharge lamp apparatus with magnetic field generating means  

DOE Patents (OSTI)

A low-pressure arc discharge apparatus having a magnetic field generating means for increasing the output of a discharge lamp is disclosed. The magnetic field generating means, which in one embodiment includes a plurality of permanent magnets, is disposed along the lamp for applying a constant transverse magnetic field over at least a portion of the positive discharge column produced in the arc discharge lamp operating at an ambient temperature greater than about 25 C. 3 figs.

Grossman, M.W.; George, W.A.; Maya, J.

1987-10-06T23:59:59.000Z

305

Zero Discharge Water Management for Horizontal Shale Gas Well Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Discharge Water Management for Discharge Water Management for Horizontal Shale Gas Well Development Final Report Start Date: October 1, 2009 End Date: March 31, 2012 Authors: Paul Ziemkiewicz, PhD Jennifer Hause Raymond Lovett, PhD David Locke Harry Johnson Doug Patchen, PG Report Date Issued: June 2012 DOE Award #: DE-FE0001466 Submitting Organization: West Virginia Water Research Institute West Virginia University PO Box 6064 Morgantown, WV 26506-6064 FilterSure, Inc. PO Box 1277 McLean, VA 22101 ShipShaper, LLP PO Box 2 Morgantown, WV 26507 2 | P a g e Acknowledgment "This material is based upon work supported by the Department of Energy under Award Number DE-FE0001466." Disclaimer "This report was prepared as an account of work sponsored by an agency of the United States

306

Analyses of MTI Imagery of Power Plant Thermal Discharge  

Science Conference Proceedings (OSTI)

MTI images of thermal discharge from three power plants are analyzed in this paper with the aid of a 3-D hydrodynamic code. The power plants use different methods to dissipate waste heat in the environment: a cooling lake at Comanche Peak, ocean discharge at Pilgrim and cooling canals at Turkey Point. This paper shows that it is possible to reproduce the temperature distributions captured in MTI imagery with accurate code inputs, but the key parameters change from site to site. Wind direction and speed are the most important parameters at Pilgrim, whereas air temperatures and dewpoint temperatures are most important at Comanche Peak and Turkey Point. This paper also shows how the combination of high-resolution thermal imagery and hydrodynamic simulation lead to better understanding of the mechanisms by which waste heat is dissipated in the environment.

Garrett, A.J.

2001-06-27T23:59:59.000Z

307

ArcSafe® with Pulsed Arrested Spark Discharge  

NLE Websites -- All DOE Office Websites (Extended Search)

ArcSafe® ArcSafe® with Pulsed Arrested Spark Discharge  2007 R&D 100 Award Entry Form ArcSafe® with Pulsed Arrested Spark Discharge  Joint Submitters Submitting Organization Sandia National Laboratories PO Box 5800, MS 1181 Albuquerque, NM 87185-1181 USA Larry Schneider Phone: (505) 845-7135 Fax: (505) 845-7685 Email: lxschne@sandia.gov AFFIRMATION: I affirm that all information submitted as a part of, or supplemental to, this entry is a fair and accurate represen- tation of this product. (Signature)______________________________________ Astronics-Advanced Electronic Systems, Inc. 9845 Willows Rd NE City: Redmond State: WA Zip/Postal: 98052-2540 USA Contact Name: Michael Ballas, Program Manager Phone: (425) 895-4304 Fax: (425)702.4930 Email: michael.ballas@astronics.com

308

METHOD AND APPARATUS FOR PRODUCING INTENSE ENERGETIC GAS DISCHARGES  

DOE Patents (OSTI)

A device for producing an energetic gas arc discharge employing the use of gas-fed hollow cathode and anode electrodes is reported. The rate of feed of the gas to the electrodes is regulated to cause complete space charge neutralization to occur within the electrodes. The arc discharge is closely fitted within at least one of the electrodes so tint the gas fed to this electrode is substantially completely ionized before it is emitted into the vacuum chamber. It is this electrode design and the axial potential gradient that exists in the arc which permits the arc to be operated in low pressures and at volthges and currents that permit the arc to be energetic. The use of the large number of energetic ions that are accelerated toward the cathode as a propulsion device for a space vehicle is set forth.

Bell, P.R.; Luce, J.S.

1960-01-01T23:59:59.000Z

309

Low energy neutral spectroscopy during pulsed discharge cleaning in PLT  

DOE Green Energy (OSTI)

The efflux of neutral hydrogen from PLT during discharge cleaning has been measured using a time-of-flight spectrometer. During high ionization pulsed discharge cleaning (PDC), the flux in the energy range of 5 to 1000 eV varies from 10/sup 14/ H/sup 0//cm/sup 2/xs to 10/sup 16/ H/sup 0//cm/sup 2/xs and the average energy from 10 to 80 eV. The energy distributions are nearly single temperature Maxwellians. Low ionization PDC (Taylor-type) produces a 1000 times lower fluence in the same energy range; however, a flux of 10/sup 16/ H/sup 0//cm/sup 2/xs at energies less than 5 eV is inferred. The detailed submillisecond time variation of these parameters with the fill gas pressure and state of cleanliness of the machine is presented. Comparisons with UV spectroscopy, bolometric measurements, and residual gas analysis are made.

Ruzic, D.; Cohen, S.; Denne, B.; Schivell, J.

1983-04-01T23:59:59.000Z

310

Spent nuclear fuel discharges from US reactors 1993  

SciTech Connect

The Energy Information Administration (EIA) of the U.S. Department of Energy (DOE) administers the Nuclear Fuel Data Survey, Form RW-859. This form is used to collect data on fuel assemblies irradiated at commercial nuclear reactors operating in the United States, and the current inventories and storage capacities of those reactors. These data are important to the design and operation of the equipment and facilities that DOE will use for the future acceptance, transportation, and disposal of spent fuels. The data collected and presented identifies trends in burnup, enrichment, and spent nuclear fuel discharged form commercial light-water reactor as of December 31, 1993. The document covers not only spent nuclear fuel discharges; but also site capacities and inventories; canisters and nonfuel components; and assembly type characteristics.

Not Available

1995-02-01T23:59:59.000Z

311

Glow discharge deposition at high rates using disilane  

DOE Green Energy (OSTI)

The research program reported makes use of the fact that amorphous silicon films can be grown faster from disilane in a glow discharge than from the traditional silane. The goal is to find a method to grow films at a high rate and with sufficiently high quality to be used in an efficient solar cell. It must also be demonstrated that the appropriate device structure can be successfully fabricated under conditions which give high deposition rates. High quality intrinsic films have been deposited at 20 A/s. Efficiency of 5.6% on steel substrates and 5.3% on glass substrates were achieved using disilane i-layers deposited at 15 A/s in a basic structure, without wide-gap doped layers or light trapping. Wide gap p-layers were deposited using disilane. Results were compared with those obtained at Vactronic using high power discharges of silane-hydrogen mixtures. (LEW)

Rajeswaran, G.; Corderman, R.R.; Kampas, F.J.; Vanier, P.E.

1985-01-01T23:59:59.000Z

312

Redox reactions with empirical potentials: Atomistic battery discharge simulations  

E-Print Network (OSTI)

Batteries are pivotal components in overcoming some of today's greatest technological challenges. Yet to date there is no self-consistent atomistic description of a complete battery. We take first steps toward modeling of a battery as a whole microscopically. Our focus lies on phenomena occurring at the electrode-electrolyte interface which are not easily studied with other methods. We use the redox split-charge equilibration (redoxSQE) method that assigns a discrete ionization state to each atom. Along with exchanging partial charges across bonds, atoms can swap integer charges. With redoxSQE we study the discharge behavior of a nano-battery, and demonstrate that this reproduces the generic properties of a macroscopic battery qualitatively. Examples are the dependence of the battery's capacity on temperature and discharge rate, as well as performance degradation upon recharge.

Dapp, Wolf B

2013-01-01T23:59:59.000Z

313

Focused shock spark discharge drill using multiple electrodes  

DOE Patents (OSTI)

A spark discharge focused drill provided with one pulse forming line or a number of pulse forming lines. The pulse forming line is connected to an array of electrodes which would form a spark array. One of the electrodes of each of the array is connected to the high voltage side of the pulse forming line and the other electrodes are at ground potential. When discharged in a liquid, these electrodes produce intense focused shock waves that can pulverize or fracture rock. By delaying the firing of each group of electrodes, the drill can be steered within the earth. Power can be fed to the pulse forming line either downhole or from the surface area. A high voltage source, such as a Marx generator, is suitable for pulse charging the lines.

Moeny, William M. (Albuquerque, NM); Small, James G. (Albuquerque, NM)

1988-01-01T23:59:59.000Z

314

Negative ion source with hollow cathode discharge plasma  

SciTech Connect

A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.

Hershcovitch, Ady (Mt. Sinai, NY); Prelec, Krsto (Setauket, NY)

1983-01-01T23:59:59.000Z

315

Inductively stabilized, long pulse duration transverse discharge apparatus  

DOE Patents (OSTI)

An inductively stabilized, long pulse duration transverse discharge apparatus. The use of a segmented electrode where each segment is attached to an inductive element permits high-energy, high-efficiency, long pulsed laser outputs to be obtained. The apparatus has been demonstrated with rare gas halide lasing media. Orders of magnitude increase in pulse repetition frequency are obtained in lasing devices that do not utilize gas flow.

Sze, R.C.

1983-09-01T23:59:59.000Z

316

Electron beam-switched discharge for rapidly pulsed lasers  

DOE Patents (OSTI)

A method and apparatus are designed for electrical excitation of a laser gas by application of a pulsed voltage across the gas, followed by passage of a pulsed, high energy electron beam through the gas to initiate a discharge suitable for laser excitation. This method improves upon current power conditioning techniques and is especially useful for driving rare gas halide lasers at high repetition rates.

Pleasance, L.D.; Murray, J.R.; Goldhar, J.; Bradley, L.P.

1979-12-11T23:59:59.000Z

317

High energy XeBr electric discharge laser  

DOE Patents (OSTI)

A high energy XeBr laser for producing coherent radiation at 282 nm. The XeBr laser utilizes an electric discharge as the excitation source to minimize formation of molecular ions thereby minimizing absorption of laser radiation by the active medium. Additionally, HBr is used as the halogen donor which undergoes harpooning reactions with Xe.sub.M * to form XeBr*.

Sze, Robert C. (Santa Fe, NM); Scott, Peter B. (Los Alamos, NM)

1981-01-01T23:59:59.000Z

318

Method and apparatus for processing exhaust gas with corona discharge  

DOE Patents (OSTI)

The present invention is placing a catalyst coating upon surfaces surrounding a volume containing corona discharge. In addition, the electrodes are coated with a robust dielectric material. Further, the electrodes are arranged so that at least a surface portion of each electrode extends into a flow path of the exhaust gas to be treated and there is only exhaust gas in the volume between each pair of electrodes. 12 figs.

Barlow, S.E.; Orlando, T.M.; Tonkyn, R.G.

1999-06-22T23:59:59.000Z

319

Inductively stabilized, long pulse duration transverse discharge apparatus  

DOE Patents (OSTI)

An inductively stabilized, long pulse duration transverse discharge apparatus. The use of a segmented electrode where each segment is attached to an inductive element permits high energy, high efficiency, long-pulsed laser outputs to be obtained. The present apparatus has been demonstrated with rare-gas halide lasing media. Orders of magnitude increase in pulse repetition frequency are obtained in lasing devices that do not utilize gas flow.

Sze, Robert C. (Santa Fe, NM)

1986-01-01T23:59:59.000Z

320

Observations and Inferred Physical Characteristics of Compact Intracloud Discharges  

Science Conference Proceedings (OSTI)

Compact intracloud discharges (CIDS) represent a distinct class of electrical discharges that occur within intense regions of thunderstorms. They are singular discharges that produce brief (typically 3 µs in duration) broadband RF emissions that are 20 to 30 dB more powerful than radiation from all other recorded lightning processes in the HF and VHF radio spectrum. Far field electric field change recordings of CIDS consist of a single, large-amplitude bipolar pulse that begins to rise during the RF-producing phase of the CID and typically lasts for 20 µs. During the summer of 1998 we operated a 4-station array of electric field change meters in New Mexico to support FORTE satellite observations of transient RF and optical sources and to learn more about the phenomenology and physical characteristics of CIDS. Over 800 CIDS were detected and located during the campaign. The events were identified on the basis of their unique field change waveforms. CID source heights determined using the relative delays of ionospherically reflected source emissions were typically between 4 and 11 km above ground level. Events of both positive and negative polarity were observed with events' of initially- negative polarity (indicative of discharges occurring between underlying positive and overlying negative charge) occurring at slightly higher altitudes. Within CID field change waveforms the CID pulse was often followed within a few ms by one or more smaller-amplitude pulses. We associate these subsequent pulses with the initial activity of a "normal" intracloud flash, the inference being that some fraction of the time, a CID initiates an intracloud lightning flash.

Argo, P.E.; Eack, K.B.; Holden, D.N.; Massey, R.S.; Shao, X.; Smith, D.A.; Wiens, K.C.

1999-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "fluorescent high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Negative ion source with hollow cathode discharge plasma  

DOE Patents (OSTI)

A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface is described. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.

Hershcovitch, A.; Prelec, K.

1980-12-12T23:59:59.000Z

322

High energy KrCl electric discharge laser  

SciTech Connect

A high energy KrCl laser for producing coherent radiation at 222 nm. Output energies on the order of 100 mJ per pulse are produced utilizing a discharge excitation source to minimize formation of molecular ions, thereby minimizing absorption of laser radiation by the active medium. Additionally, HCl is used as a halogen donor which undergoes a harpooning reaction with metastable Kr.sub.M * to form KrCl.

Sze, Robert C. (Santa Fe, NM); Scott, Peter B. (Los Alamos, NM)

1981-01-01T23:59:59.000Z

323

The Use of DC Glow Discharges as Undergraduate Educational Tools  

SciTech Connect

Plasmas have a beguiling way of getting students excited and interested in physics. We argue that plasmas can and should be incorporated into the undergraduate curriculum as both demonstrations and advanced investigations of electromagnetism and quantum effects. Our device, based on a direct current (DC) glow discharge tube, allows for a number of experiments into topics such as electrical breakdown, spectroscopy, magnetism, and electron temperature.

Stephanie A. Wissel and Andrew Zwicker, Jerry Ross, and Sophia Gershman

2012-10-09T23:59:59.000Z

324

An ultraviolet barrier-discharge OH molecular lamp  

Science Conference Proceedings (OSTI)

The energy and spectral parameters of a barrier discharge in a mixture of argon with hydroxyl {sup .}OH are studied experimentally. A sealed lamp with the radiation intensity maximum at {lambda} = 309.2 nm, an emitting surface area of {approx}700 cm{sup 2}, and a radiant excitance of 1.5 mW cm{sup -2} has been fabricated. The radiant power of the lamp is 1.1 W. (laser applications and other topics in quantum electronics)

Sosnin, E A; Erofeev, M V; Avdeev, S M; Panchenko, Aleksei N; Panarin, V A; Skakun, V S; Tarasenko, Viktor F; Shitts, D V [Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk (Russian Federation)

2006-10-31T23:59:59.000Z

325

X-Ray Fluorescence (XRF) | Open Energy Information  

Open Energy Info (EERE)

X-Ray Fluorescence (XRF) X-Ray Fluorescence (XRF) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: X-Ray Fluorescence (XRF) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Bulk and trace element analysis of rocks, minerals, and sediments. Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png X-Ray Fluorescence (XRF): X-Ray Fluorescence is a lab-based technique used for bulk chemical analysis of rock, mineral, sediment, and fluid samples. The technique depends on the fundamental principles of x-ray interactions with solid materials, similar

326

X-RAY FLUORESCENCE MICROPROBE (XFM) TECHNIQUES AND CAPABILITIES  

NLE Websites -- All DOE Office Websites (Extended Search)

RAY FLUORESCENCE MICROPROBE (XFM) RAY FLUORESCENCE MICROPROBE (XFM) TECHNIQUES AND CAPABILITIES APPLICATIONS WORLD-LEADING MICROFOCUSED EXAFS SPECTROSCOPY * XFM is an optimized three-pole wiggler beamline for the characterization of materials in an "as-is" state that are chemically heterogeneous at the micrometer scale via synchrotron induced X-ray fluorescence. * XFM includes instrumentation for microbeam X-ray fluorescence (µXRF), diffraction (µXRD) and fluorescence computed microtomography (FCMT) . However, it is optimized to provide users state-of-the-art microfocused Extended X-ray Absorption Fine Structure (µEXAFS) spectroscopy between 4 to 20 keV. * XFM will trade-off beam size and flux for sample configuration flexibility. This includes more readily achievable stability

327

SIMULTANEOUS MEASUREMENT OF CIRCULAR DICHROISM AND FLUORESCENCE POLARIZATION ANISOTROPY.  

Science Conference Proceedings (OSTI)

Circular dichroism and fluorescence polarization anisotropy are important tools for characterizing biomolecular systems. Both are used extensively in kinetic experiments involving stopped- or continuous flow systems as well as titrations and steady-state spectroscopy. This paper presents the theory for determining circular dichroism and fluorescence polarization anisotropy simultaneously, thus insuring the two parameters are recorded under exactly the same conditions and at exactly the same time in kinetic experiments. The approach to measuring circular dichroism is that used in almost all conventional dichrographs. Two arrangements for measuring fluorescence polarization anisotropy are described. One uses a single fluorescence detector and signal processing with a lock-in amplifier that is similar to the measurement of circular dichroism. The second approach uses classic ''T'' format detection optics, and thus can be used with conventional photon-counting detection electronics. Simple extensions permit the simultaneous measurement of the absorption and excitation intensity corrected fluorescence intensity.

SUTHERLAND,J.C.

2002-01-19T23:59:59.000Z

328

Compatibility testing of fluorescent lamp and ballast systems  

SciTech Connect

The rapid growth in the use of electronic ballasts for fluorescent lighting systems, and the corresponding increase in the number of new products and new manufacturers in the market, has raised a number of questions regarding the compatibility of the lamps and ballasts used in fluorescent systems. Because many of the new products start and operate lamps differently than previous products, the relevant American National Standards Institute requirements may no longer be adequate for addressing compatibility concerns. The impacts on system performance of the newer products of a parametric study designed to test key hypotheses regarding the impact of ballast parameters on fluorescent lamp life. In this study, samples of 4-ft T8 fluorescent lamps were operated on duty cycles of 5 min on and 5 min off, using seven different ballast types. The results of the study indicate which parameters seem to have the biggest effect on lamp life, and can be used in establishing new performance standards for fluorescent systems.

Ji, Y.; Davis, R.; O' Rourke, C.; Chui, E.W.M.

1999-12-01T23:59:59.000Z

329

The Discharge Design of HL-2M with the Tokamak Simulation Code (TSC)  

Science Conference Proceedings (OSTI)

We present results on the discharge design of the HL-2M tokamak, which is to be an upgrade to the existing HL-2A tokamak. We present simulation results for complete 5-sec. discharges, both double null and lower single null, for both ohmic and auxiliary heated discharges. We also discuss the vertical stability properties of the device. __________________________________________________

Yudong Pan, S.C. Jardin, and C. Kes

2007-10-10T23:59:59.000Z

330

Black hole discharge in massive electrodynamics and black hole disappearance in massive gravity  

E-Print Network (OSTI)

We define and calculate the "discharge mode" for a Schwarzschild black hole in massive electrodynamics. For small photon mass, the discharge mode describes the decay of the electric field of a charged star collapsing into a black hole. We argue that a similar "discharge of mass" occurs in massive gravity and leads to a strange process of black hole disappearance.

Mirbabayi, Mehrdad

2013-01-01T23:59:59.000Z

331

Stochastic fluctuations of dust particle charge in RF discharges  

Science Conference Proceedings (OSTI)

In addition to RF oscillations, intrinsic stochastic fluctuations due to the discreteness of electrons and ions could be important to the charging of a dust particle in RF discharges. These fluctuations are studied in the present work for three cases [M. Bacharis et al., Plasma Sources Sci. Technol. 19, 025002 (2010)] relevant to RF discharges employing a recently proposed model [B. Shotorban, Phys. Rev. E 83, 066403 (2011)] valid for stochastic charging at nonstationary states. The cases are concerned with a time varying electron number density relevant to sheaths, a time varying electric field relevant to the bulk plasma, and a time-dependent bi-Maxwellian distribution of electrons in a low pressure discharge. Two dust particles with different sizes are individually studied in each case. The radius of one is ten times larger than the radius of the other. In all of the cases, for the larger dust particle, the root-mean-squre of charge stochastic fluctuations is about an order of magnitude smaller than the amplitude of RF charge oscillations, while for the smaller dust particle, they are comparable in magnitude.

Shotorban, B. [Department of Mechanical and Aerospace Engineering, University of Alabama in Huntsville, Huntsville, Alabama 35899 (United States)

2012-05-15T23:59:59.000Z

332

Mercury Lamps Recycling Fluorescent light-tubes, compact fluorescent bulbs, mercury and sodium vapor lamps, ultraviolet and  

E-Print Network (OSTI)

Mercury Lamps Recycling Fluorescent light-tubes, compact fluorescent bulbs, mercury and sodium light tubes are recycled. They are made from aluminum and metal. Aluminum is a silver-white metal and is very light in weight and strong. Because aluminum is ductile, it can be drawn into wires or pressed

Ungerleider, Leslie G.

333

Testing of energy conservation of electronic ballasts for fluorescent lighting. Review of recent results and recommendations for design goals  

SciTech Connect

The performance of two 40-watt T-12 fluorescent lamps driven by both standard core-coil, and electronic ballasts has been measured over a range of temperatures and input voltages that simulate conditions they would experience in typical building installations. When using new energy-efficient lamps and electronic ballasts, an efficiency of 90 lumens/watt has been achieved, which represents an efficiency improvement of over 37% relative to standard lamps and core-coil ballasts. From these results, several design targets are suggested for ballast developers. Additional features of the electronic ballasts, (low noise, no flicker, and light level control), have potential to increase the use of efficient light sources (gas discharge types) as well as permit less costly luminaire construction. The dimming feature should also conserve energy whenever applied.

Verderber, R.R.; Cooper, D.; Ross, D.K.

1978-10-01T23:59:59.000Z

334

Operation features of a longitudinal-capacitive-discharge-pumped CuBr laser  

Science Conference Proceedings (OSTI)

The frequency and energy characteristics of a capacitive-discharge-pumped CuBr laser are investigated. Processes proceeding in the discharge circuit of lasers pumped in this way, in particular, pumped without an external storage capacitor are analysed. It is shown that, depending on the pumping circuit, laser levels are excited either during the charge current flow or during the discharge of electrode capacitances. The differences in the influence of the active HBr addition on the characteristics of the discharge and lasing compared to the case of a usual repetitively pulsed high-current discharge with internal electrodes are established. (lasers)

Gubarev, F A; Shiyanov, D V [V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, Tomsk (Russian Federation); Evtushenko, Gennadii S [Tomsk Polytechnical University, Tomsk (Russian Federation); Sukhanov, V B

2010-01-31T23:59:59.000Z

335

Sustainable LED Fluorescent Light Replacement Technology  

SciTech Connect

Ilumisys and the National Center for Manufacturing Sciences (NCMS) partnered on a three-year project awarded by the United States (U.S.) Department of Energy (DOE), to quantify the impacts of LED lamps, incandescent lamps and fluorescent benchmark lamps over a product lifecycle – i.e. to develop a sustainable design and manufacturing strategy that addresses product manufacturing, use, recycling and disposal scenarios for LED-based lighting. Based on the knowledge gained from extensive product tear-down studies of fluorescent and screw-in lighting products, lifecycle assessment tools, and accelerated lifecycle testing protocols, an interactive Sustainable LED Design Guide has been developed to aid architectural and lighting designers and engineers in making design decisions that consider three important environmental impacts (greenhouse gas emissions, energy use and mercury emission) across all phases of the life of an LED lighting product. Critical information developed for the lifecycle analysis and product feature comparisons is the useful life of the lighting product as well as its performance. The Design Guide is available at www.ncms.org, and was developed based on operational and durability testing of a variety of lighting products including power consumption, light output, and useful life of a lamp in order to allow a more realistic comparison of lamp designs. This report describes the main project tasks, results and innovative features of the lifecycle assessment (LCA)-based design tools, and the key considerations driving the sustainable design of LED lighting systems. The Design Guide incorporates the following three novel features for efficiently evaluating LED lighting features in value-chains: • Bill-of-Materials (BOM) Builder – Designers may import process data for each component and supply functional data for the product, including power, consumption, lumen output and expected useful life. • Environmental Impact Review – Designs are comparable across lifecycle phases, subsystems, and environmental impact category, and can be normalized to a userdefined functional unit. • Drill-down Review – These provide an indepth look at individual lamp designs with the ability to review across subsystem or lifecycle phase.

None

2011-06-30T23:59:59.000Z

336

ORNL DAAC GLOBAL RIVER DISCHARGE, 1807-1991, V. 1.1 (RIVDIS)  

NLE Websites -- All DOE Office Websites (Extended Search)

Data > Regional/Global > River Discharge (RIVDIS) > Guide Data > Regional/Global > River Discharge (RIVDIS) > Guide Document GLOBAL RIVER DISCHARGE, 1807-1991, V. 1.1 (RIVDIS) Get Data Global River Discharge, 1807-1991, V. 1.1 (RivDIS) Summary: The Global Monthly River Discharge Data Set contains monthly averaged discharge measurements for 1018 stations located throughout the world. The period of record varies widely from station to station with a mean of 21.5 years. The data are derived from the published UNESCO archives for river discharge and checked against information obtained from the Global Runoff Center in Koblenz, Germany, through the U.S. National Geophysical Data Center in Boulder, Colorado. Citation: Cite this data set as follows (citation revised on September 20, 2002): Vorosmarty, C. J., B. M. Fekete, and B. A. Tucker. 1998. Global River

337

GRR/Section 14-UT-b - Utah Pollutant Discharge Elimination System | Open  

Open Energy Info (EERE)

GRR/Section 14-UT-b - Utah Pollutant Discharge Elimination System GRR/Section 14-UT-b - Utah Pollutant Discharge Elimination System < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-UT-b - Utah Pollutant Discharge Elimination System 14UTBUtahPollutantDischargeEliminationSystemPermit.pdf Click to View Fullscreen Contact Agencies Utah Division of Water Quality Utah Department of Environmental Quality United States Environmental Protection Agency Regulations & Policies R317-2-3 Antidegradation Policy R317-8 Utah Pollutant Discharge Elimination System (UPDES) Triggers None specified Click "Edit With Form" above to add content 14UTBUtahPollutantDischargeEliminationSystemPermit.pdf 14UTBUtahPollutantDischargeEliminationSystemPermit.pdf Error creating thumbnail: Page number not in range.

338

Stabilization of liquid hydrocarbon fuel combustion by using a programmable microwave discharge in a subsonic airflow  

SciTech Connect

Under conditions of a programmable discharge (a surface microwave discharge combined with a dc discharge), plasma-enhanced combustion of alcohol injected into a subsonic (M = 0.3-0.9) airflow in the drop (spray) phase is stabilized. It is shown that the appearance of the discharge, its current-voltage characteristic, the emission spectrum, the total emission intensity, the heat flux, the electron density, the hydroxyl emission intensity, and the time dependences of the discharge current and especially discharge voltage change substantially during the transition from the airflow discharge to stabilized combustion of the liquid hydrocarbon fuel. After combustion stabilization, more than 80% of liquid alcohol can burn out, depending on the input power, and the flame temperature reaches {approx}2000 K.

Kopyl, P. V.; Surkont, O. S.; Shibkov, V. M.; Shibkova, L. V. [Moscow State University, Faculty of Physics (Russian Federation)

2012-06-15T23:59:59.000Z

339

Sub-microsecond pulsed atmospheric glow discharges with and without dielectric barrier  

Science Conference Proceedings (OSTI)

The discharge characteristics and mechanism of glow discharges in atmospheric pressure helium excited by repetitive voltage pulses with and without dielectric barriers are numerically studied using a one-dimensional self-consistent fluid model. The waveforms of discharge current density show that one discharge event occurs during the voltage pulse with bare electrodes and two distinct discharge events happen at the rising and falling phases of voltage pulse with dielectric barrier electrodes, respectively. The spatial profiles of electron and electric field at the time instant of discharge current peak reveal that the electrons are trapped in the plasma bulk with bare electrodes, while the electrons are accumulated in the region between the sheath and plasma bulk with dielectric barrier electrodes. Furthermore, the spatio-temporal evolution of electron density and mean electron energy clearly demonstrate the dynamics of discharge ignition, especially the temporal evolution of sheath above the instantaneous cathode.

Song Shutong [College of Science, Donghua University, Shanghai 201620 (China); Guo Ying; Zhang Jie; Zhang Jing; Shi, J. J. [College of Science, Donghua University, Shanghai 201620 (China); Member of Magnetic Confinement Fusion Research Center, Ministry of Education of the People's Republic of China, Shanghai 201620 (China); Choe, Wonho [Department of Physics, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

2012-12-15T23:59:59.000Z

340

Covered Product Category: Fluorescent Luminaires | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fluorescent Luminaires Fluorescent Luminaires Covered Product Category: Fluorescent Luminaires October 7, 2013 - 10:52am Addthis Did You Know? Lighting Can Help You Accomplish Other Facility Upgrades and Efficiency Improvements Facilities with significant potential savings in lighting may be able to bundle lighting upgrades with heating, ventilation, air conditioning, and other energy conservation measures into a Utility Energy Service Contract (UESC) or Energy Savings Performance Contract (ESPC). Because of the substantial cost and energy savings potential, replacing lighting can be a key component in financing facility retrofits. The funding portion of the FEMP website offers more information on these and other funding opportunities. FEMP provides acquisition guidance and Federal efficiency requirements

Note: This page contains sample records for the topic "fluorescent high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

History and technical evolution of high frequency fluorescent lighting  

SciTech Connect

This work was performed to accelerate development and commercialization of solid-state, high frequency ballasts for fluorescent lighting systems. The history and development of fluorescent lamps, of ballasts for these fixtures, and of related circuits and equipment are reviewed. The higher lamp efficiency of high-frequency (300 to 3000 Hz) fluorescent lamps as compared with 60 Hz lamps, the development of frequency converter circuits for high-frequency lamps, and uses, electrical characteristics, and economics of these lighting systems are discussed. (LCL)

Campbell, J.H.

1977-12-01T23:59:59.000Z

342

Fluorescent lamp unit with magnetic field generating means  

DOE Patents (OSTI)

A fluorescent lamp unit having a magnetic field generating means for improving the performance of the fluorescent lamp is disclosed. In a preferred embodiment the fluorescent lamp comprises four longitudinally extending leg portions disposed in substantially quadrangular columnar array and joined by three generally U-shaped portions disposed in different planes. In another embodiment of the invention the magnetic field generating means comprises a plurality of permanent magnets secured together to form a single columnar structure disposed within a centrally located region defined by the shape of lamp envelope. 4 figs.

Grossman, M.W.; George, W.A.

1989-08-08T23:59:59.000Z

343

Modeling cooling water discharges from the Burrard Generating Station  

E-Print Network (OSTI)

Abstract-A three-dimensional numerical model was applied to examine the impact of the Burrard Generating Station cooling water on the circulation patterns and thermal regime in the receiving water of Port Moody Arm. A key aspect of this study involved properly incorporating the submerged cooling water buoyant jet into the 3D model. To overcome the scale and interface barriers between the near-field and far-field zones of the buoyant jet, a sub-grid scheme was applied, and the coupled system of equations of motion, heat conservation and state are solved with a single modeling procedure over the complete field. Special care was taken with the diffusion and jet entrainment by using a second order turbulence closure model for vertical diffusion and the Smagorinsky formula for horizontal diffusion as well as jet entrainment. The model was calibrated and validated in terms of buoyant jet trajectory, centerline dilution, and temperature and velocity profiles. Extensive modeling experiments without and with the Burrard Generating Station in operation were then carried out to investigate the receiving water circulations and thermal processes under the influence of the cooling water discharge. The model results reveal that under the influence of the cooling water discharge, peak ebb currents are stronger than peak flood currents in the near-surface layer, and the reverse is true in the near-bottom layer. Meanwhile, the model revealed a well-developed eddy at the southeast side of the buoyant jet in the near-surface layer. It is also found that the warmer water released from the cooling water discharge is mainly confined to the upper layer of the Arm, which is largely flushed out of the Arm through tidal mixing processes, and a corresponding inflow of colder water into the Arm occurs within the lower layer. I.

J. Jiang; D. B. Fissel; D. D. Lemon

2002-01-01T23:59:59.000Z

344

Surface charging, discharging and chemical modification at a sliding contact  

Science Conference Proceedings (OSTI)

Electrostatic charging, discharging, and consequent surface modification induced by sliding dissimilar surfaces have been studied. The surface-charge related phenomena were monitored by using a home-built capacitive, non-contact electrical probe, and the surface chemistry was studied by X-ray photoelectron spectroscopy (XPS). The experiments were performed on the disk surface of a ball-on-rotating-disk apparatus; using a glass disk and a Teflon (polytetrafluoroethylene) ball arrangement, and a polyester disks and a diamondlike carbon (DLC) coated steel ball arrangement. The capacitive probe is designed to perform highly resolved measurements, which is sensitive to relative change in charge density on the probed surface. For glass and Teflon arrangement, electrical measurements show that the ball track acquires non-uniform charging. Here not only the increase in charge density, but interestingly, increase in number of highly charged regions on the ball track was resolved. Threefold increase in the number of such highly charged regions per cycle was detected immediately before the gas breakdown-like incidences compared to that of other charge/discharge incidences at a fixed disk rotation speed. We are also able to comment on the behavior and the charge decay time in the ambient air-like condition, once the sliding contact is discontinued. XPS analysis showed a marginal deoxidation effect on the polyester disks due to the charging and discharging of the surfaces. Moreover, these XPS results clearly indicate that the wear and friction (sliding without charging) on the surface can be discarded from inducing such a deoxidation effect.

Singh, S. V.; Kusano, Y. [Department of Wind Energy, Section of Composites and Materials Mechanics, Technical University of Denmark, Risoe Campus, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Morgen, P. [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense (Denmark); Michelsen, P. K. [Department of Physics, Technical University of Denmark, P.O. Box 49, DK-4000 Roskilde (Denmark)

2012-04-15T23:59:59.000Z

345

COMMENTS ON THE SEARCH FOR ELECTROSTATIC DISCHARGES ON MARS  

Science Conference Proceedings (OSTI)

Ruf et al. used the Deep Space Network (DSN) to search for the emission of non-thermal radiation by martian dust storms, theoretically predicted by Renno et al. They detected the emission of non-thermal radiation that they were searching for, but were surprised that it contained spectral peaks suggesting modulation at various frequencies and their harmonics. Ruf et al. hypothesized that the emission of non-thermal radiation was caused by electric discharges in a deep convective dust storm, modulated by Schumann resonances (SRs). Anderson et al. used the Allen Telescope Array (ATA) to search for similar emissions. They stated that they found only radio frequency interference (RFI) during their search for non-thermal emission by martian dust storms and implicitly suggested that the signal detected by Ruf et al. was also RFI. However, their search was not conducted during the dust storm season when deep convective storms are most likely to occur. Here, we show that the ubiquitous dust devils and small-scale dust storms that were instead likely present during their observations are too shallow to excite SRs and produce the signals detected by Ruf et al. We also show that the spectral and temporal behavior of the signals detected by Anderson et al. corroborates the idea that they originated from man-made pulse-modulated telecommunication signals rather than martian electric discharges. In contrast, an identical presentation of the signals detected by Ruf et al. demonstrates that they do not resemble man-made signals. The presentation indicates that the DSN signals were consistent with modulation by martian SRs, as originally hypothesized by Ruf et al. We propose that a more comprehensive search for electrostatic discharges be conducted with either the ATA or DSN during a future martian dust storm season to test the hypothesis proposed by Ruf et al.

Renno, Nilton O.; Ruf, Christopher S., E-mail: renno@alum.mit.edu [Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI (United States)

2012-12-20T23:59:59.000Z

346

Reducing industrial toxic wastes and discharges: The role of POTWs  

Science Conference Proceedings (OSTI)

Intended for use by elected and appointed local officials, the guidebook makes recommendations as to how publicly-owned treatment works (POTWs) can promote hazardous waste minimization. The guide suggests that POTWs can significantly reduce their toxic discharges to the sewer (without transferral of same pollutants to another media) by developing programs which combine features of three options - educational programs that provide waste minimization information to local companies; technical assistance programs that help companies identify and evaluate site-specific opportunities for waste minimization; and regulatory programs that establish indirect inducements or direct requirements to promote waste minimization.

Sherry, S.; Corbett, J.; Eulo, T.

1988-12-01T23:59:59.000Z

347

Ethanol reforming in non-equilibrium plasma of glow discharge  

E-Print Network (OSTI)

The results of a detailed kinetic study of the main plasma chemical processes in non-equilibrium ethanol/argon plasma are presented. It is shown that at the beginning of the discharge the molecular hydrogen is mainly generated in the reaction of ethanol H-abstraction. Later hydrogen is formed from active H, CH2OH and CH3CHOH and formaldehyde. Comparison with experimental data has shown that the used kinetic mechanism predicts well the concentrations of main species at the reactor outlet.

Levko, D

2012-01-01T23:59:59.000Z

348

Covered Product Category: Compact Fluorescent Lamps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Covered Product Category: Compact Fluorescent Lamps Covered Product Category: Compact Fluorescent Lamps Covered Product Category: Compact Fluorescent Lamps October 7, 2013 - 10:48am Addthis ENERGY STAR Qualified Products Federal Energy Management Program (FEMP) provides acquisition guidance across a variety of product categories, including compact fluorescent lamps (CFLs), which are an ENERGY STAR-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR.

349

Information Resources: LED Replacements for Linear Fluorescent Lamps  

NLE Websites -- All DOE Office Websites (Extended Search)

Replacements for Linear Fluorescent Lamps Webcast Replacements for Linear Fluorescent Lamps Webcast In this June 20, 2011 webcast on LED products marketed as replacements for linear fluorescent lamps, Jason Tuenge of the Pacific Northwest National Laboratory (PNNL) discussed current Lighting Facts-listed products as well as products evaluated in the latest CALiPER reports. Eric Richman, also of PNNL, reported on a recently completed GATEWAY demonstration project, in which LED and fluorescent lamps were installed in a variety of recessed troffer luminaires for comparison in an office environment. The presentation concluded with a discussion of specifications listed in a newly updated technology fact sheet. View presentation slides View the text-alternative version View the webcast (WMV 16 MB) Download Windows Media Player

350

" A Heterodyne Laser-induced Fluorescence Technique to Determine  

NLE Websites -- All DOE Office Websites (Extended Search)

A Heterodyne Laser-induced Fluorescence Technique to Determine A Heterodyne Laser-induced Fluorescence Technique to Determine Simultaneously the Bulk and Time Varying Molecule Velocity Distribution." Inventors Ahmed Diallo, Stephane Mazouffre.The method's primary goal is to determine simultaneously the bulk a The method's primary goal is to determine simultaneously the bulk and the time verying part of the molecule velocity distribution using a heterodyne laser induced fluorescence technique. Used in biology, chemistry and plasma physics laser-induced fluorescence is a well known technique to resolve the bulk velocity distribution of probed molecules and atoms in a medium. The novel approach is aimed at determining not only the bulk distribution, but also the time-varying velocity distribution. The two parts of the velocity distribution are key in the characterization of a

351

Lighting the Way with Compact Fluorescent Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting the Way with Compact Fluorescent Lighting Lighting the Way with Compact Fluorescent Lighting Lighting the Way with Compact Fluorescent Lighting April 28, 2009 - 5:00am Addthis John Lippert There is a major push today to get homeowners to adopt compact fluorescent lamp (CFL) light bulbs. They have been on the market for nearly three decades, and many homeowners still do not use them widely. But the tide is definitely turning. Their availability and the percentage of homeowners familiar with the technology and purchasing them for their homes have been steadily rising. The products have improved considerably compared to early products, and their prices have plummeted. The ENERGY STAR® Change a Light, Change the World Campaign has been running now for more than half a dozen years. This campaign is designed to

352

Altitude dependence of fluorescence light emission by extensive air showers  

E-Print Network (OSTI)

Fluorescence light is induced by extensive air showers while developing in the Earth's atmosphere. The number of emitted fluorescence photons depends on the conditions of the air and on the energy deposited by the shower particles at every stage of the development. In a previous model calculation, the pressure and temperature dependences of the fluorescence yield have been studied on the basis of kinetic gas theory, assuming temperature-independent molecular collision cross-sections. In this work we investigate the importance of temperature-dependent collision cross-sections and of water vapour quenching on the expected fluorescence yield. The calculations will be applied to simulated air showers while using actual atmospheric profiles to estimate the influence on the reconstructed energy of extensive air showers.

B. Keilhauer; J. Bluemer; R. Engel; H. O. Klages

2008-01-28T23:59:59.000Z

353

Calibration of fluorescence resonance energy transfer in microscopy  

DOE Patents (OSTI)

Imaging hardware, software, calibrants, and methods are provided to visualize and quantitate the amount of Fluorescence Resonance Energy Transfer (FRET) occurring between donor and acceptor molecules in epifluorescence microscopy. The MicroFRET system compensates for overlap among donor, acceptor, and FRET spectra using well characterized fluorescent beads as standards in conjunction with radiometrically calibrated image processing techniques. The MicroFRET system also provides precisely machined epifluorescence cubes to maintain proper image registration as the sample is illuminated at the donor and acceptor excitation wavelengths. Algorithms are described that pseudocolor the image to display pixels exhibiting radiometrically-corrected fluorescence emission from the donor (blue), the acceptor (green) and FRET (red). The method is demonstrated on samples exhibiting FRET between genetically engineered derivatives of the Green Fluorescent Protein (GFP) bound to the surface of Ni chelating beads by histidine-tags.

Youvan, Douglas C. (San Jose, CA); Silva, Christopher M. (Sunnyvale, CA); Bylina, Edward J. (San Jose, CA); Coleman, William J. (Moutain View, CA); Dilworth, Michael R. (Santa Cruz, CA); Yang, Mary M. (San Jose, CA)

2002-09-24T23:59:59.000Z

354

Exploring the mechanome with optical tweezers and single molecule fluorescence  

E-Print Network (OSTI)

The combination of optical tweezers and single molecule fluorescence into an instrument capable of making combined, coincident measurements adds an observable dimension that allows for the examination of the localized ...

Brau, Ricardo R. (Ricardo Rafael), 1979-

2008-01-01T23:59:59.000Z

355

Fluorescence Enhancement of White-Light Cadmium Selenide Nanocrystals.  

E-Print Network (OSTI)

??Advances are being made in lighting technology, as incandescent and fluorescent light bulbs become less efficient compared to solid-state lighting devices, especially light-emitting diodes (LEDs).… (more)

Rosson, Teresa Ellen

2011-01-01T23:59:59.000Z

356

THE HISTORY AND TECHNICAL EVOLUTION OF HIGH FREQUENCY FLUORESCENT LIGHTING  

E-Print Network (OSTI)

Dec. 1953. "Hi-Volt-Cycle Lighting ~ Launched i n a Hi-Wide2, F e b r u a r y , 19 53. "Lighting Your Plant with Highg h Frequency Fluorescent Lighting John H. Campbell December

Campbell, John H.

2011-01-01T23:59:59.000Z

357

A review of indocyanine green fluorescent imaging in surgery  

Science Conference Proceedings (OSTI)

The purpose of this paper is to give an overview of the recent surgical intraoperational applications of indocyanine green fluorescence imaging methods, the basics of the technology, and instrumentation used. Well over 200 papers describing this technique ...

Jarmo T. Alander, Ilkka Kaartinen, Aki Laakso, Tommi Pätilä, Thomas Spillmann, Valery V. Tuchin, Maarit Venermo, Petri Välisuo

2012-01-01T23:59:59.000Z

358

Lighting the Way with Compact Fluorescent Lighting | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

and compact fluorescent lights. And I've already purchased a few of the new light emitting diode (LED) solid-state lighting lights-but that's the topic of a future blog. Stay...

359

Assessment of Nuclear Resonance Fluorescence for Spent Nuclear Fuel Assay  

E-Print Network (OSTI)

Fluorescence for Spent Nuclear Fuel Assay Brian J. Quiter ?of Pu isotopes in spent nuclear fuel (SNF). Given the lowU and 239 Pu in spent nuclear fuel using NRF. II. PERFORMING

Quiter, Brian

2012-01-01T23:59:59.000Z

360

Large core polymer optical backplanes for fluorescence detection  

E-Print Network (OSTI)

Fluorescence based sensors are used for determining environmental parameters such as dissolved oxygen or pH in biological systems without disturbing a biological system's equilibrium. Recently, there has been a drive to ...

Lee, Kevin Shao-Kwan

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fluorescent high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The Effects of Table Lamp Shade Shape and Compact Fluorescent...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Effects of Table Lamp Shade Shape and Compact Fluorescent Lamp Burning Position on Visual Comfort Speaker(s): Zaidi Abdullah Date: March 15, 2001 - 12:00pm Location: Bldg. 90...

362

Lighting the Way with Compact Fluorescent Lighting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting the Way with Compact Fluorescent Lighting Lighting the Way with Compact Fluorescent Lighting Lighting the Way with Compact Fluorescent Lighting April 28, 2009 - 5:00am Addthis John Lippert There is a major push today to get homeowners to adopt compact fluorescent lamp (CFL) light bulbs. They have been on the market for nearly three decades, and many homeowners still do not use them widely. But the tide is definitely turning. Their availability and the percentage of homeowners familiar with the technology and purchasing them for their homes have been steadily rising. The products have improved considerably compared to early products, and their prices have plummeted. The ENERGY STAR® Change a Light, Change the World Campaign has been running now for more than half a dozen years. This campaign is designed to

363

Light Flicker in Compact Fluorescent Lamps Caused by Voltage Fluctuations  

Science Conference Proceedings (OSTI)

This power quality (PQ) case study presents tests performed at the EPRI Power Electronics Applications Center (PEAC) Power Quality Test Facility to characterize the light output of an incandescent lamp and compact fluorescent lamps during voltage fluctuations.

2003-12-31T23:59:59.000Z

364

Chemical Treatment Fosters Zero Discharge by Making Cooling Water Reusable  

E-Print Network (OSTI)

Over the past decade, the water requirements for cooling industrial manufacturing processes have changed dramatically. Once-through cooling has been largely replaced by open recirculating cooling water methods. This approach reduces water consumption by increasing the use of recycled water. Simplistically, the circulating cooling water flows through heat exchanger equipment and is cooled by passing through a cooling tower. The recycled water is cooled by evaporation of some of the circulating water as it passes through the tower. As a result of the evaporation process, the dissolved solids in the water become concentrated. The evaporated water is replaced by fresh makeup water. The dissolved solids content of the water is maintained by the rate of water discharge (blowdown). As the amount of dissolved solids increases, their solubility is exceeded and the solids tend to precipitate from the cooling water. The precipitated scale adheres to heat transfer surfaces and reduces heat transfer efficiency. In order to achieve zero discharge of water, it is paramount that the potential for scale formation and deposition be minimized. This can be accomplished through physical separation of scale-forming ions and particulate matter. Two widely used mechanical methods in this category are lime-soda side stream softening and vapor compression blowdown evaporation. Another approach is chemical treatment to promote scale inhibition and dispersion.

Boffardi, B. P.

1996-04-01T23:59:59.000Z

365

A Flexible Software Architecture for Tokamak Discharge Control Systems  

E-Print Network (OSTI)

The software structure of the plasma control system in use on the DIII--D tokamak experiment is described. This system implements control functions through software executing in real time on one or more digital computers. The software is organized into a hierarchy that allows new control functions needed to support the DIII--D experimental program to be added easily without affecting previously implemented functions. This also allows the software to be portable in order to create control systems for other applications. The tokamak operator uses an X-windows based interface to specify the time evolution of a tokamak discharge. The interface provides a high level view for the operator that reduces the need for detailed knowledge of the control system operation. There is provision for an asynchronous change to an alternate discharge time evolution in response to an event that is detected in real time. Quality control is enhanced through off-line testing that can make use of software-based...

Ferron Penaflor Walker

1995-01-01T23:59:59.000Z

366

COMPOSITION AND STRUCTURAL STUDIES OF STRONG GLOW DISCHARGE POLYMER COATINGS  

DOE Green Energy (OSTI)

OAK A271 COMPOSITION AND STRUCTURAL STUDIES OF STRONG GLOW DISCHARGE POLYMER COATINGS. An investigation of the chemical composition and structure of strong glow discharge (GDP) polymer shells made for cryogenic experiments at OMEGA is described. The investigation was carried out using combustion and Fourier Transform Infrared Spectroscopy (FTIR) analysis. The strongest coatings were observed to have the lowest hydrogen content or hydrogen/carbon H/C ratio, whereas the weakest coatings had the highest hydrogen content or H/C ratio. Chemical composition results from combustion were used to complement FTIR analysis to determine the relative hydrogen content of as-fabricated coatings. Good agreement was observed between composition results obtained from combustion and FTIR analysis. FTIR analysis of coating structures showed the strongest coatings to have less terminal methyl groups and a more double bond or olefinic structure. Strong GDP coatings that were aged in air react more with oxygen and moisture than standard GDP coatings. In addition to a more olefinic structure, there may also be more free-radial sites present in strong GDP coatings, which leads to greater oxygen uptake.

CZECHOWICZ, DG; CASTILLO, ER; NIKROO, A

2002-04-01T23:59:59.000Z

367

Battery discharge characteristics of wireless sensor nodes: An experimental analysis  

E-Print Network (OSTI)

Abstract — Battery life extension is the principal driver for energy-efficient wireless sensor network (WSN) design. However, there is growing awareness that in order to truly maximize the operating life of battery-powered systems such as sensor nodes, it is important to discharge the battery in a manner that maximizes the amount of charge extracted from it. In spite of this, there is little published data that quantitatively analyzes the effectiveness with which modern wireless sensor nodes discharge their batteries, under different operating conditions. In this paper, we report on systematic experiments that we conducted to quantify the impact of key wireless sensor network design and environmental parameters on battery performance. Our testbed consists of MICA2DOT Motes, a commercial lithiumcoin battery, and a suite of techniques for measuring battery performance. We evaluate the extent to which known electrochemical phenomena, such as rate-capacity characteristics, charge recovery and thermal effects, can play a role in governing the selection of key WSN design parameters such as power levels, packet sizes, etc. We demonstrate that battery characteristics significantly alter and complicate otherwise well-understood trade-offs in WSN design. In particular, we analyze the non-trivial implications of battery characteristics on WSN power control strategies, and find that a battery-aware approach to power level selection leads to a 52 % increase in battery efficiency. We expect our results to serve as a quantitative basis for future research in designing battery-efficient sensing applications and protocols. I.

Chulsung Park; Kanishka Lahiri

2005-01-01T23:59:59.000Z

368

Low-Pressure Sodium Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Pressure Sodium Lighting Basics Low-Pressure Sodium Lighting Basics Low-Pressure Sodium Lighting Basics August 16, 2013 - 10:17am Addthis Low-pressure sodium lighting provides more energy-efficient outdoor lighting than high-intensity discharge lighting, but it has very poor color rendition. Typical applications include highway and security lighting, where color is not important. Low-pressure sodium lamps work somewhat like fluorescent lamps. Like high-intensity discharge lighting, low-pressure sodium lamps require up to 10 minutes to start and have to cool before they can restart. Therefore, they are most suitable for applications in which they stay on for hours at a time. They are not suitable for use with motion detectors. The chart below compares low-pressure sodium lamps and high-intensity

369

GRR/Section 14-NV-e - Groundwater Discharge Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-NV-e - Groundwater Discharge Permit GRR/Section 14-NV-e - Groundwater Discharge Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-NV-e - Groundwater Discharge Permit 14NVEGroundwaterDischargePermit.pdf Click to View Fullscreen Contact Agencies Nevada Division of Environmental Protection Regulations & Policies NAC 445A NRS 445A Triggers None specified Click "Edit With Form" above to add content 14NVEGroundwaterDischargePermit.pdf 14NVEGroundwaterDischargePermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Nevada Division of Environmental Protection (NDEP) Bureau of Water Pollution Control is responsible for protecting Nevada water quality from

370

GRR/Elements/14-CA-b.6 - Does RWQCB decide to allow discharge | Open Energy  

Open Energy Info (EERE)

RWQCB decide to allow discharge RWQCB decide to allow discharge < GRR‎ | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections 14-CA-b.6 - Does RWQCB decide to allow discharge Once the RWQCB and EPA deem the application complete, the RWQCB makes an initial determination whether the application is appropriate for consideration or if it should be denied outright. If the discharge is denied outright, the process ends. If RWQCB decides to consider the application, the public process is triggered. Logic Chain No Parents \V/ GRR/Elements/14-CA-b.6 - Does RWQCB decide to allow discharge (this page) \V/ No Dependents Under Development Add.png Add an Element Retrieved from "http://en.openei.org/w/index.php?title=GRR/Elements/14-CA-b.6_-_Does_RWQCB_decide_to_allow_discharge&oldid=482583

371

GRR/Section 14-CO-e - Ground Water Discharge Permit | Open Energy  

Open Energy Info (EERE)

CO-e - Ground Water Discharge Permit CO-e - Ground Water Discharge Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-CO-e - Ground Water Discharge Permit 14COEGroundWaterDischargePermit.pdf Click to View Fullscreen Contact Agencies Colorado Department of Public Health and Environment Regulations & Policies Colorado Water Quality Control Act 5 CCR 1002-61 Colorado Discharge Permit System 5 CCR 1002-41 Basic Standards for Ground Water 5 CCR 1002-42 Site Specific Water Quality Standards for Ground Water Triggers None specified Click "Edit With Form" above to add content 14COEGroundWaterDischargePermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

372

GRR/Section 14-CA-e - Waste Discharge Requirements | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-CA-e - Waste Discharge Requirements GRR/Section 14-CA-e - Waste Discharge Requirements < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-CA-e - Waste Discharge Requirements 14CAEWasteDischargeRequirements.pdf Click to View Fullscreen Contact Agencies California Environmental Protection Agency Water Resources Control Board Regulations & Policies Title 27 CCR, Division 2 - Environmental Protection - Solid Waste SWRCB Exemptions Triggers None specified Click "Edit With Form" above to add content 14CAEWasteDischargeRequirements.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The State Water Resources Control Board (SWRCB) may require Waste discharge

373

GRR/Section 14-TX-e - Ground Water Discharge Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-TX-e - Ground Water Discharge Permit GRR/Section 14-TX-e - Ground Water Discharge Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-e - Ground Water Discharge Permit 14TXEGroundWaterDischargePermit (1).pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas United States Environmental Protection Agency Regulations & Policies 16 TAC 3.8 (Rule 8) Triggers None specified Click "Edit With Form" above to add content 14TXEGroundWaterDischargePermit (1).pdf 14TXEGroundWaterDischargePermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Pits are used in drilling operations to contain drilling related fluids and

374

GRR/Section 14-CO-b - Colorado Discharge Permit System (CDPS) | Open Energy  

Open Energy Info (EERE)

CO-b - Colorado Discharge Permit System (CDPS) CO-b - Colorado Discharge Permit System (CDPS) < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-CO-b - Colorado Discharge Permit System (CDPS) 14COBColoradoDischargePermitSystemCDPS.pdf Click to View Fullscreen Contact Agencies Colorado Department of Public Health and Environment Regulations & Policies Colorado Water Quality Control Act 5 CCR 1002-61 5 CCR 1002-62 Triggers None specified Click "Edit With Form" above to add content 14COBColoradoDischargePermitSystemCDPS.pdf 14COBColoradoDischargePermitSystemCDPS.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Colorado Department of Public Health and Environment (CDPHE) Water

375

Micro Electro Discharge Machining of Electrically Nonconductive Ceramics  

Science Conference Proceedings (OSTI)

EDM is a known process for machining of hard and brittle materials. Due to its noncontact and nearly forceless behaviour, it has been introduced into micro manufacturing and through constant development it is now an important means for producing high-precision micro geometries. One restriction of EDM is its limitation to electrically conducting materials.Today many applications, especially in the biomedical field, make use of the benefits of ceramic materials, such as high strength, very low wear and biocompatibility. Common ceramic materials such as Zirconium dioxide are, due to their hardness in the sintered state, difficult to machine with conventional cutting techniques. A demand for the introduction of EDM to these materials could so far not be satisfied because of their nonconductive nature.At the Chemnitz University of Technology and the Fraunhofer IWU, investigations in the applicability of micro-EDM for the machining of nonconductive ceramics are being conducted. Tests are undertaken using micro-EDM drilling with Tungsten carbide tool electrodes and ZrO{sub 2} ceramic workpieces. A starting layer, in literature often referred to as 'assisting electrode' is used to set up a closed electric circuit to start the EDM process. Combining carbon hydride based dielectric and a specially designed low-frequency vibration setup to excite the workpiece, the process environment can be held within parameters to allow for a constant EDM process even after the starting layer is machined. In the experiments a cylindrical 120 {mu}m diameter Tungsten carbide tool electrode and Y{sub 2}O{sub 3}- and MgO- stabilized ZrO{sub 2} worpieces are used. The current and voltage signals of the discharges within the different stages of the process (machining of the starting layer, machining of the base material, transition stage) are recorded and their characteristics compared to discharges in metallic material. Additionally, the electrode feed is monitored. The influences of the process parameters are analysed with regard to the discharge type, electrode wear and process speed.Using the found parameters, micro geometries can be successfully machined into nonconductive Y{sub 2}O{sub 3}- and MgO- stabilized ZrO{sub 2} ceramic by means of micro-EDM.

Schubert, A. [Chair Micromanufacturing Technology, Faculty of Mechanical Engineering, Chemnitz University of Technology, 09107 Chemnitz (Germany); Fraunhofer Institute for Machine Tools and Forming Technology IWU, 09126 Chemnitz (Germany); Zeidler, H.; Hackert, M. [Chair Micromanufacturing Technology, Faculty of Mechanical Engineering, Chemnitz University of Technology, 09107 Chemnitz (Germany); Wolf, N. [Fraunhofer Institute for Machine Tools and Forming Technology IWU, 09126 Chemnitz (Germany)

2011-05-04T23:59:59.000Z

376

A dielectric-barrier discharge enhanced plasma brush array at atmospheric pressure  

SciTech Connect

This study developed a large volume cold atmospheric plasma brush array, which was enhanced by a dielectric barrier discharge by integrating a pair of DC glow discharge in parallel. A platinum sheet electrode was placed in the middle of the discharge chamber, which effectively reduced the breakdown voltage and working voltage. Emission spectroscopy diagnosis indicated that many excited argon atoms were distributed almost symmetrically in the lateral direction of the plasma. The concentration variations of reactive species relative to the gas flow rate and discharge current were also examined.

Li Xuemei; Zhan Xuefang; Yuan Xin; Zhao Zhongjun; Yan Yanyue; Duan Yixiang [Research Center of Analytical Instrumentation, Analytical Testing Center, College of Chemistry, Sichuan University, Chengdu (China); Tang Jie [State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics of CAS, Xi'an (China)

2013-07-15T23:59:59.000Z

377

High Frequency Discharging Characteristics of LiFePO4 Battery.  

E-Print Network (OSTI)

??This thesis investigates the high frequency discharging characteristics of the lithium iron phosphate battery. The investigation focuses on effects of the high-frequency current on the… (more)

Tsai, Tsung-Rung

2010-01-01T23:59:59.000Z

378

Self-discharge mechanism of sealed-type nickel/metal-hydride battery  

Science Conference Proceedings (OSTI)

Factors affecting the self-discharge rate of a nickel/metal-hydride (Ni-MH) battery, generally much higher than that of nickel/cadmium (Ni-Cd) battery, are investigated, and the self-discharge mechanism is discussed. Ammonia and amine participate in the shuttle reaction like nitrate ion in the Ni-Cd battery, resulting in acceleration of the self-discharge. When nonwoven fabric made of sulfonated-polypropylene is used as a separator instead of conventional polyamide separator, the self-discharge rate of the Ni-MH battery is strongly depressed, to the same level as that of Ni-Cd battery.

Ikoma, Munehisa; Hoshina, Yasuko; Matsumoto, Isao [Matsushita Battery Industrial Co., Ltd., Osaka (Japan); Iwakura, Chiaki [Univ. of Osaka Prefecture, Sakai, Osaka (Japan). Dept. of Applied Chemistry

1996-06-01T23:59:59.000Z

379

GRR/Elements/18-CA-a.12 - Does the Facility Discharge Waste Water...  

Open Energy Info (EERE)

2 - Does the Facility Discharge Waste Water to Wells by Injection < GRR | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap...

380

GRR/Section 14-CA-e - Waste Discharge Permit | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit History Facebook icon Twitter icon GRRSection 14-CA-e - Waste Discharge Permit < GRR Jump to: navigation, search Retrieved from "http:...

Note: This page contains sample records for the topic "fluorescent high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Detection, identification and localization of partial discharges in power transformers using UHF techniques.  

E-Print Network (OSTI)

??Partial discharge (PD) detection using the ultra high frequency (UHF) method has proven viable in monitoring the insulation condition of GIS. Recently, it is being… (more)

Sinaga, Herman Halomoan

2012-01-01T23:59:59.000Z

382

Cyanine-based probe\\tag-peptide pair fluorescence protein imaging and fluorescence protein imaging methods  

DOE Patents (OSTI)

A molecular probe comprises two arsenic atoms and at least one cyanine based moiety. A method of producing a molecular probe includes providing a molecule having a first formula, treating the molecule with HgOAc, and subsequently transmetallizing with AsCl.sub.3. The As is liganded to ethanedithiol to produce a probe having a second formula. A method of labeling a peptide includes providing a peptide comprising a tag sequence and contacting the peptide with a biarsenical molecular probe. A complex is formed comprising the tag sequence and the molecular probe. A method of studying a peptide includes providing a mixture containing a peptide comprising a peptide tag sequence, adding a biarsenical probe to the mixture, and monitoring the fluorescence of the mixture.

Mayer-Cumblidge, M. Uljana; Cao, Haishi

2013-01-15T23:59:59.000Z

383

Simulation benchmarks for low-pressure plasmas: capacitive discharges  

E-Print Network (OSTI)

Benchmarking is generally accepted as an important element in demonstrating the correctness of computer simulations. In the modern sense, a benchmark is a computer simulation result that has evidence of correctness, is accompanied by estimates of relevant errors, and which can thus be used as a basis for judging the accuracy and efficiency of other codes. In this paper, we present four benchmark cases related to capacitively coupled discharges. These benchmarks prescribe all relevant physical and numerical parameters. We have simulated the benchmark conditions using five independently developed particle-in-cell codes. We show that the results of these simulations are statistically indistinguishable, within bounds of uncertainty that we define. We therefore claim that the results of these simulations represent strong benchmarks, that can be used as a basis for evaluating the accuracy of other codes. These other codes could include other approaches than particle-in-cell simulations, where benchmarking could exa...

Turner, M M; Donko, Z; Eremin, D; Kelly, S J; Lafleur, T; Mussenbrock, T

2012-01-01T23:59:59.000Z

384

Shielding of mirror FERF plasma by arc discharges  

SciTech Connect

The feasibility of shielding a mirror-confined fusion plasma against erosion by incident neutrals with a plasma blanket generated by an array of hollow-cathode arc discharges was studied. Such a plasma blanket could also be used for linetying stabilization of a single mirror confined plasma as well as to provide a warm plasma stream for stabilization of microinstabilities. The requirements for the plasma blanket are dependent on the parameter ..gamma.., the ratio of the actual cross-field diffusion coefficient to the classical value. The power requirement compares favorably with power loss due to change exchange without shielding. More importantly, the blanket permits a relaxation of vacuum requirements to prevent erosion of the hot plasma by background neutrals.

Woo, J.T.

1976-12-08T23:59:59.000Z

385

Determination of Actinide Isotope Ratios Using Glow Discharge Optogalvanic Spectroscopy  

SciTech Connect

Diode-laser excited optogalvanic spectroscopy (OGS) of a glow discharge has been utilized to measure U-235/U-235 + U-238 isotope ratios. This ``optical mass spectrometric`` measurement has been demonstrated for a number of samples including uranium oxide, fluoride, and metal. Various diode-laser accessible atomic transitions in the 775 to 835 nm region have been evaluated; these transitions were chosen by considering OGS sensitivity and isotope shift. Using the 831.84 nm uranium line, for example, it was possible to measure the U-235/U-235 + U-238 isotope ratio (0.0026) of depleted uranium samples. A prototypical field instrument to make these measurements has been assembled and demonstrated. A U-236 spectral line was identified in a sample of enriched uranium, and an abundance sensitivity was measured.

Young, J.P.; Shaw, R.W.; Barshick, C.M.; Ramsey, J.M.

1997-08-01T23:59:59.000Z

386

Equilibrium and Stability of Partial Toroidal Plasma Discharges  

SciTech Connect

The equilibrium and stability of partial toroidal flux ropes are studied in detail in the laboratory, motivated by ubiquitous loop structures on the solar surface. The flux ropes studied here are magnetized arc discharges formed in the Magnetic Reconnection Experiment (MRX). It is found that these loops robustly maintain their equilibrium on time scales much longer than the Alfven time over a wide range of plasma current, guide eld strength, and angle between electrodes, even in the absence of a strapping fi eld. Additionally, the external kink stability of these flux ropes is found to be governed by the Kruskal-Shafranov limit for a flux rope with line-tied boundary conditions at both ends (q > 1).

E. Oz, C. E. Myers, M. Yamada, H. Ji, R. Kulsrud, and J. Xie

2011-01-04T23:59:59.000Z

387

Self-discharge rate of lithium thionyl-chloride cells  

DOE Green Energy (OSTI)

Our low-rate lithium/thionyl-chloride ``D`` cell is required to provide power continuously for up to 10 years. The cell was designed at Sandia National Laboratories and manufactured at Eagle-Picher Industries, Joplin, Missouri. We have conducted accelerated aging studies at elevated temperatures to predict long-term performance of cells fabricated in 1992. Cells using 1.0M LiAlCl{sub 4} electrolyte follow Arrhenius kinetics with an activation energy of 14.6 Kcal/mol. This results in an annual capacity loss to self-discharge of 0.13 Ah at 25 C. Cells using a 1.0M LiAlCl{sub 4}{sm_bullet}SO{sub 2} electrolyte do not follow Arrhenius behavior. The performance of aged cells from an earlier fabrication lot is variable.

Cieslak, W.R.

1993-12-31T23:59:59.000Z

388

Fueling Requirements for Steady State high butane current fraction discharges  

SciTech Connect

The CT injector originally used for injecting CTs into 1T toroidal field discharges in the TdeV tokamak was shipped PPPL from the Affiliated Customs Brokers storage facility in Montreal during November 2002. All components were transported safely, without damage, and are currently in storage at PPPL, waiting for further funding in order to begin advanced fueling experiments on NSTX. The components are currently insured through the University of Washington. Several technical presentations were made to investigate the feasibility of the CT injector installation on NSTX. These technical presentations, attached to this document, were: (1) Motivation for Compact Toroida Injection in NSTX; (2) Assessment of the Engineering Feasibility of Installing CTF-II on NSTX; (3) Assessment of the Cost for CT Installation on NSTX--A Peer Review; and (4) CT Fueling for NSTX FY 04-08 steady-state operation needs.

R.Raman

2003-10-08T23:59:59.000Z

389

Electrode configuration for extreme-UV electrical discharge source  

DOE Patents (OSTI)

It has been demonstrated that debris generation within an electric capillary discharge source, for generating extreme ultraviolet and soft x-ray, is dependent on the magnitude and profile of the electric field that is established along the surfaces of the electrodes. An electrode shape that results in uniform electric field strength along its surface has been developed to minimize sputtering and debris generation. The electric discharge plasma source includes: (a) a body that defines a circular capillary bore that has a proximal end and a distal end; (b) a back electrode positioned around and adjacent to the distal end of the capillary bore wherein the back electrode has a channel that is in communication with the distal end and that is defined by a non-uniform inner surface which exhibits a first region which is convex, a second region which is concave, and a third region which is convex wherein the regions are viewed outwardly from the inner surface of the channel that is adjacent the distal end of the capillary bore so that the first region is closest to the distal end; (c) a front electrode positioned around and adjacent to the proximal end of the capillary bore wherein the front electrode has an opening that is communication with the proximal end and that is defined by a non-uniform inner surface which exhibits a first region which is convex, a second region which is substantially linear, and third region which is convex wherein the regions are viewed outwardly from the inner surface of the opening that is adjacent the proximal end of the capillary bore so that the first region is closest to the proximal end; and (d) a source of electric potential that is connected across the front and back electrodes.

Spence, Paul Andrew (Pleasanton, CA); Fornaciari, Neal Robert (Tracey, CA); Chang, Jim Jihchyun (San Ramon, CA)

2002-01-01T23:59:59.000Z

390

Interference in the resonance fluorescence of two incoherently coupled transitions  

E-Print Network (OSTI)

The fluorescence light emitted by a 4-level system in $J=1/2$ to $J=1/2$ configuration driven by a monochromatic laser field and in an external magnetic field is studied. We show that the spectrum of resonance fluorescence emitted on the $\\pi$ transitions shows a signature of spontaneously generated interference effects. The degree of interference in the fluorescence spectrum can be controlled by means of the external magnetic field, provided that the Land\\'e g-factors of the excited and the ground state doublet are different. For a suitably chosen magnetic field strength, the relative weight of the Rayleigh line can be completely suppressed, even for low intensities of the coherent driving field. The incoherent fluorescence spectrum emitted on the $\\pi$ transitions exhibits a very narrow peak whose width and weight depends on the magnetic field strength. We demonstrate that the spectrum of resonance fluorescence emitted on the $\\sigma$ transitions show an indirect signature of interference. A measurement of the relative peak heights in the spectrum from the $\\sigma$ transitions allows to determine the branching ratio of the spontaneous decay of each excited state into the $\\sigma$ channel.

Martin Kiffner; Joerg Evers; Christoph H. Keitel

2006-03-09T23:59:59.000Z

391

Nuclear Resonance Fluorescence for Safeguards Applications  

SciTech Connect

In nuclear resonance fluorescence (NRF) measurements, resonances are excited by an external photon beam leading to the emission of {gamma} rays with specific energies that are characteristic of the emitting isotope. The promise of NRF as a non-destructive analysis technique (NDA) in safeguards applications lies in its potential to directly quantify a specific isotope in an assay target without the need for unfolding the combined responses of several fissile isotopes as often required by other NDA methods. The use of NRF for detection of sensitive nuclear materials and other contraband has been researched in the past. In the safeguards applications considered here one has to go beyond mere detection and precisely quantify the isotopic content, a challenge that is discussed throughout this report. Basic NRF measurement methods, instrumentation, and the analytical calculation of NRF signal strengths are described in Section 2. Well understood modeling and simulation tools are needed for assessing the potential of NRF for safeguards and for designing measurement systems. All our simulations were performed with the radiation transport code MCNPX, a code that is widely used in the safeguards community. Our initial studies showed that MCNPX grossly underestimated the elastically scattered background at backwards angles due to an incorrect treatment of Rayleigh scattering. While new, corrected calculations based on ENDF form factors showed much better agreement with experimental data for the elastic scattering of photons on an uranium target, the elastic backscatter is still not rigorously treated. Photonuclear scattering processes (nuclear Thomson, Delbruck and Giant Dipole Resonance scattering), which are expected to play an important role at higher energies, are not yet included. These missing elastic scattering contributions were studied and their importance evaluated evaluated against data found in the literature as discussed in Section 3. A transmission experiment was performed in September 2009 to test and demonstrate the applicability of the method to the quantitative measurement of an isotope of interest embedded in a thick target. The experiment, data analysis, and results are described in Section 4. The broad goal of our NRF studies is to assess the potential of the technique in safeguards applications. Three examples are analyzed in Section 5: the isotopic assay of spent nuclear fuel (SNF), the measurement of {sup 235}U enrichment in UF{sub 6} cylinders, and the determination of {sup 239}Pu in mixed oxide (MOX) fuel. The study of NRF for the assay of SNF assemblies was supported by the Next Generation Safeguards Initiative (NGSI) of the U.S. Department of Energy as part of a large multi-lab/university effort to quantify the plutonium (Pu) mass in spent nuclear fuel assemblies and to detect the diversion of pins with non-destructive assay (NDA) methods. NRF is one of 14 NDA techniques being researched. The methodology for performing and analyzing quantitative NRF measurements was developed for determining Pu mass in SNF and is extensively discussed in this report. The same methodology was applied to the assessment of NRF for the measurement of {sup 235}U enrichment and the determination of {sup 239}Pu in MOX fuel. The analysis centers on determining suitable NRF measurement methods, measurement capabilities that could be realized with currently available instrumentation, and photon source and detector requirements for achieving useful NDA capabilities.

Ludewigt, Bernhard A; Quiter, Brian J; Ambers, Scott D

2011-02-04T23:59:59.000Z

392

Energy Cost Calculator for Compact Fluorescent Lamps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Compact Fluorescent Lamps Compact Fluorescent Lamps Energy Cost Calculator for Compact Fluorescent Lamps October 8, 2013 - 2:18pm Addthis This tool calculates the payback period for your calc retrofit project. Modify the default values to suit your project requirements. Existing incandescent lamp wattage Watts Incandescent lamp cost dollars Incandescent lamp life 1000 hours calc wattage Watts calc cost dollars calc life (6000 hours for moderate use, 10000 hours for high use) 8000 hours Number of lamps in retrofit project Hours operating per week hours Average cost of electricity 0.06 $/kWh Relamper labor costs $/hr Time taken to retrofit all lamps in this project min Time taken to relamp one lamp min Type of Relamping Practiced: Group Relamping: Calculate Simple Payback Period months

393

A Bright Idea: New Efficiency Standards for Incandescent and Fluorescent  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Bright Idea: New Efficiency Standards for Incandescent and A Bright Idea: New Efficiency Standards for Incandescent and Fluorescent Lights A Bright Idea: New Efficiency Standards for Incandescent and Fluorescent Lights July 21, 2009 - 5:18pm Addthis John Lippert Pretty soon, lighting is going to get a lot more efficient. New standards for incandescent reflector bulbs, general purpose fluorescent bulbs, and regular incandescent bulbs are going into effect beginning in approximately three years. You may be curious about how these standards will affect the most popular types of incandescent bulbs we've all used for so long: the common non-reflector 40-watt, 60-watt, 75-watt, and 100-watt bulbs. The Energy Independence and Security Act of 2007 (also known as EISA) requires that these incandescent bulbs use 30% less energy than today's

394

Laser-induced differential normalized fluorescence method for cancer diagnosis  

SciTech Connect

An apparatus and method for cancer diagnosis are disclosed. The diagnostic method includes the steps of irradiating a tissue sample with monochromatic excitation light, producing a laser-induced fluorescence spectrum from emission radiation generated by interaction of the excitation light with the tissue sample, and dividing the intensity at each wavelength of the laser-induced fluorescence spectrum by the integrated area under the laser-induced fluorescence spectrum to produce a normalized spectrum. A mathematical difference between the normalized spectrum and an average value of a reference set of normalized spectra which correspond to normal tissues is calculated, which provides for amplifying small changes in weak signals from malignant tissues for improved analysis. The calculated differential normalized spectrum is correlated to a specific condition of a tissue sample.

Vo-Dinh, Tuan (Knoxville, TN); Panjehpour, Masoud (Knoxville, TN); Overholt, Bergein F. (Knoxville, TN)

1996-01-01T23:59:59.000Z

395

BIOCOMPATIBLE FLUORESCENT MICROSPHERES: SAFE PARTICLES FOR MATERIAL PENETRATION STUDIES  

SciTech Connect

Biocompatible polymers with hydrolyzable chemical bonds have been used to produce safe, non-toxic fluorescent microspheres for material penetration studies. The selection of polymeric materials depends on both biocompatibility and processability, with tailored fluorescent properties depending on specific applications. Microspheres are composed of USFDA-approved biodegradable polymers and non-toxic fluorophores and are therefore suitable for tests where human exposure is possible. Micropheres were produced which contain unique fluorophores to enable discrimination from background aerosol particles. Characteristics that affect dispersion and adhesion can be modified depending on use. Several different microsphere preparation methods are possible, including the use of a vibrating orifice aerosol generator (VOAG), a Sono-Tek atomizer, an emulsion technique, and inkjet printhead. Applications for the fluorescent microspheres include challenges for biodefense system testing, calibrants for biofluorescence sensors, and particles for air dispersion model validation studies.

Farquar, G; Leif, R

2009-07-15T23:59:59.000Z

396

Fluorescent single walled nanotube/silica composite materials  

DOE Patents (OSTI)

Fluorescent composites of surfactant-wrapped single-walled carbon nanotubes (SWNTs) were prepared by exposing suspensions of surfactant-wrapped carbon nanotubes to tetramethylorthosilicate (TMOS) vapor. Sodium deoxycholate (DOC) and sodium dodecylsulphate (SDS) were the surfactants. No loss in emission intensity was observed when the suspension of DOC-wrapped SWNTs were exposed to the TMOS vapors, but about a 50% decrease in the emission signal was observed from the SDS-wrapped SWNTs nanotubes. The decrease in emission was minimal by buffering the SDS/SWNT suspension prior to forming the composite. Fluorescent xerogels were prepared by adding glycerol to the SWNT suspensions prior to TMOS vapor exposure, followed by drying the gels. Fluorescent aerogels were prepared by replacing water in the gels with methanol and then exposing them to supercritical fluid drying conditions. The aerogels can be used for gas sensing.

Dattelbaum, Andrew M.; Gupta, Gautam; Duque, Juan G.; Doorn, Stephen K.; Hamilton, Christopher E.; DeFriend Obrey, Kimberly A.

2013-03-12T23:59:59.000Z

397

Design and Operation Checklists for Zero Discharge Power Plant Water Systems  

Science Conference Proceedings (OSTI)

Design and operation checklists prepared by participants in the Zero Discharge Symposium identify key issues for the successful operation of a zero discharge power plant.The checklists highlight the importance of communication between utilities and architect/engineering companies, as well as within the utility industry itself.

1985-06-13T23:59:59.000Z

398

Spatially hybrid computations for streamer discharges: II. Fully 3D simulations  

Science Conference Proceedings (OSTI)

We recently have presented first physical predictions of a spatially hybrid model that follows the evolution of a negative streamer discharge in full three spatial dimensions; our spatially hybrid model couples a particle model in the high field region ... Keywords: Hybrid model, Multiscale, Streamer discharge

Chao Li; Ute Ebert; Willem Hundsdorfer

2012-02-01T23:59:59.000Z

399

Tesla coil discharges guided by femtosecond laser filaments in air Yohann Brelet1  

E-Print Network (OSTI)

1 Tesla coil discharges guided by femtosecond laser filaments in air Yohann Brelet1 , Aurélien, Palaiseau, France A Tesla coil generator was designed to produce high voltage pulses oscillating at 100 k experiments of laser guided discharges obtained in air by high voltage bursts delivered by a compact Tesla

400

Global Particle Balance Measurements in DIII-D H-mode Discharges  

SciTech Connect

Experiments are performed on the DIII-D tokamak to determine the retention rate in an all graphite first-wall tokamak. A time-dependent particle balance analysis shows a majority of the fuel retention occurs during the initial Ohmic and L-mode phase of discharges, with peak fuel retention rates typically similar to 2 x 10(21) D/s. The retention rate can be zero within the experimental uncertainties (<3 x 10(20) D/s) during the later stationary phase of the discharge. In general, the retention inventory can decrease in the stationary phase by similar to 20-30% from the initial start-up phase of the discharge. Particle inventories determined as a function of time in the discharge, using a 'dynamic' particle balance analysis, agree with more accurate particle inventories directly measured after the discharge, termed 'static' particle balance. Similarly, low stationary retention rates are found in discharges with heating from neutral-beams, which injects particles, and from electron cyclotron waves, which does not inject particles. Detailed analysis of the static and dynamic balance methods provide an estimate of the DIII-D global co-deposition rate of <= 0.6-1.2 x 10(20) D/s. Dynamic particle balance is also performed on discharges with resonant magnetic perturbation ELM suppression and shows no additional retention during the ELM-suppressed phase of the discharge.

Unterberg, Ezekial A [ORNL; Allen, S. L. [Lawrence Livermore National Laboratory (LLNL); Brooks, N [General Atomics, San Diego; Evans, T. E. [General Atomics, San Diego; Leonard, A. W. [General Atomics; McLean, A. [Sandia National Laboratories (SNL); Watkins, J. G. [Sandia National Laboratories (SNL); Whyte, D. G. [Massachusetts Institute of Technology (MIT)

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fluorescent high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Optical Investigations of Dust Particles Distribution in RF and DC Discharges  

Science Conference Proceedings (OSTI)

Optical emission spectroscopy is used to study dust particles movement and conditions of a formation of ordered plasma-dust structures in a capacitively coupled RF discharge. 3D binocular diagnostics of plasma-dust structures in dc discharge was made.

Ramazanov, T. S.; Dosbolayev, M. K.; Jumabekov, A. N.; Amangaliyeva, R. Zh. [Al-Farabi Kazakh National University, IETP, 96a Tole Bi St., Almaty 050012 (Kazakhstan); Filatova, I. I.; Azharonok, V. V. [B. I. Stepanov Institute of Physics NAS of Belarus, Nezavisimosti Ave., 68, 220072, Minsk (Belarus)

2008-09-07T23:59:59.000Z

402

Optimum Discharge Burnup for Nuclear Fuel: A Comprehensive Study of Duke Power's Reactors  

Science Conference Proceedings (OSTI)

Economic analysis of two pressurized water reactors (PWRs) shows that increasing the discharge burnup of light water reactor (LWR) fuel above current values can result in significant cost benefits. Optimum discharge burnup levels, however, may not be achievable without exceeding the current limit on enrichment.

1999-06-01T23:59:59.000Z

403

Optimal and Adaptive Battery Discharge Strategies for Cyber-Physical Fumin Zhang and Zhenwu Shi  

E-Print Network (OSTI)

Optimal and Adaptive Battery Discharge Strategies for Cyber-Physical Systems Fumin Zhang and Zhenwu Shi Abstract-- We introduce a dynamic battery model that de- scribes the variations of the capacity of a battery under time varying discharge current. This model is input-output equivalent to the Rakhmatov

Zhang, Fumin

404

Battery Sizing for Grid Connected PV Systems with Fixed Minimum Charging/Discharging Time  

E-Print Network (OSTI)

Battery Sizing for Grid Connected PV Systems with Fixed Minimum Charging/Discharging Time Yu Ru, Jan Kleissl, and Sonia Martinez Abstract-- In this paper, we study a battery sizing problem for grid-connected photovoltaic (PV) systems assuming that the battery charging/discharging limit scales linearly with its

MartĂ­nez, Sonia

405

Intelligent process modeling and optimization of die-sinking electric discharge machining  

Science Conference Proceedings (OSTI)

This paper reports an intelligent approach for process modeling and optimization of electric discharge machining (EDM). Physics based process modeling using finite element method (FEM) has been integrated with the soft computing techniques like artificial ... Keywords: Artificial neural networks (ANN), Electric discharge machining (EDM), Finite element method (FEM), Non-dominated sorting genetic algorithm (NSGA), Process modeling and optimization, Scaled conjugate gradient algorithm (SCG)

S. N. Joshi; S. S. Pande

2011-03-01T23:59:59.000Z

406

A model of plasma discharges in pre-arcing regime for water treatment  

Science Conference Proceedings (OSTI)

It is presented a simulation study of a water treatment system based upon 1 kHz frequency plasma discharges in the pre-arcing regime produced within a coaxial cylinder reactor. The proposed computational model takes into consideration the three main ... Keywords: modelling, pulsed corona discharges, simulation, streamers

B. G. Rodríguez-Méndez; R. López-Callejas; R. Peńa-Eguiluz; A. Mercado-Cabrera; R. Valencia-Alvarado; S. R. Barocio; A. de la Piedad-Beneitez; J. S. Benítez-Read; J. O. Pacheco-Sotelo

2006-02-01T23:59:59.000Z

407

Technical Assistance to Kansas City Plant: Mitigation of Polychlorinated Biphenyl Discharges  

SciTech Connect

Soil and storm water discharges from the Department of Energy Kansas City Plant (KCP) contain polychlorinated biphenyls (PCBs) resulting from past spills and discharges. KCP has implemented a range of actions to mitigate the soil contamination and to reduce the measured PCB releases.

Looney, B.B.

2003-04-21T23:59:59.000Z

408

Simulation of water hammer phenomenon in a pumping discharge duct protected by air  

Science Conference Proceedings (OSTI)

Air chamber and free air dispersed throughout the water are two efficient means of protection of a discharge duct from water hammer damages. The paper presents the results regarding the extreme pressures in the discharge duct of a pumping installation, ... Keywords: air chamber, dissolution, free air, pumping installation, water hammer

Anca Constantin; Claudiu Stefan Nitescu

2010-07-01T23:59:59.000Z

409

Diagnostics of a glow discharge used to produce hydrogenated amorphous silicon films. Final subcontract report  

DOE Green Energy (OSTI)

This report and recent publications cited summarize our measurements of the neutral radicals produced in pure silane discharges, our measurements of the interaction of silane with a growing amorphous silicon surface, qualitative models of discharge neutral radical chemistry, and quantitative models of dc discharge ion chemistry. All radicals of the monosilane and disilane groups have been measured and are reported as a function of discharge parameters, but not yet for the full range of parameters that must be investigated for detailed analysis. Observations of the reaction of SiH/sub 4/ with a hot amorphous silicon surface are given. These are closely related to the dominant discharge film deposition mechanism of SiH/sub 3/ reacting with a hydrogen covered amorphous silicon surface and a surface reaction model is suggested that explains some but not all of our data. The dc discharge model is used to obtain quantitative predictions of the ion species at the cathode surface of a dc discharge. This is compared to observations and used to explain the observations at our laboratory and other laboratories. We conclude that most but not all features of the ion chemistry in dc discharges of pure silane can be relatively well understood from this model.

Gallagher, A.

1984-11-01T23:59:59.000Z

410

Method of inducing differential etch rates in glow discharge produced amorphous silicon  

DOE Patents (OSTI)

A method of inducing differential etch rates in glow discharge produced amorphous silicon by heating a portion of the glow discharge produced amorphous silicon to a temperature of about 365.degree. C. higher than the deposition temperature prior to etching. The etch rate of the exposed amorphous silicon is less than the unheated amorphous silicon.

Staebler, David L. (Lawrenceville, NJ); Zanzucchi, Peter J. (Lawrenceville, NJ)

1980-01-01T23:59:59.000Z

411

Detection of partial discharges by a monopole antenna in insulation oil  

Science Conference Proceedings (OSTI)

This paper dealt with the measurement and analysis of electromagnetic waves generated by partial discharge (PD) in insulation oil to develop insulation diagnostic techniques for oil-immersed transformers. Two types of narrow-band monopole antennas with ... Keywords: electromagnetic wave, insulation diagnosis, insulation oil, monopole antenna, partial discharge (PD), resonant frequency

Chang-Hwan Jin; Jung-Yoon Lee; Dae-Won Park; Gyung-Suk Kil

2012-04-01T23:59:59.000Z

412

Study on CO2 Reforming of CH4 by Dielectric Barrier Discharge  

Science Conference Proceedings (OSTI)

In this article it is demonstrated that DBD (dielectric barrier discharge) is an effective tool to convert CH4 and CO2 to synthesis gas (syngas, H2/CO) at low temperature and ambient pressure. The DBD is performed in the co-axial quartz cube by using ... Keywords: methane, carbon dioxide, syngas, dielectric barrier discharge

Zhao Yuhan

2011-03-01T23:59:59.000Z

413

Time-resolved Hyperspectral Fluorescence Spectroscopy using Frequency Modulated Excitation  

SciTech Connect

An intensity-modulated excitation light source is used together with a micro channel plate intensified CCD (ICCD) detector gated at a slightly different frequency to generate a beat frequency from a fluorescent sample. The addition of a spectrograph produces a hyperspectral time-resolved data product where the resulting beat frequency is detected with a low frame rate camera. Measuring the beat frequency of the spectrum as a function of time allows separation of the excited fluorescence from ambient constant light sources. The excitation and detector repetition rates are varied over a range of discrete frequencies, and the phase shift of the beat wave maps out the emission decay rate(s).

,; Neill, M

2012-07-01T23:59:59.000Z

414

Heat transfer assembly for a fluorescent lamp and fixture  

DOE Patents (OSTI)

In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure. 11 figs.

Siminovitch, M.J.; Rubenstein, F.M.; Whitman, R.E.

1992-12-29T23:59:59.000Z

415

A versatile detector for total fluorescence and electron yield experiments  

Science Conference Proceedings (OSTI)

The combination of a non-coated silicon photodiode with electron repelling meshes makes a versatile detector for total fluorescence yield and electron yield techniques highly suitable for x-ray absorption spectroscopy. In particular, a copper mesh with a bias voltage allows to suppress or transmit the electron yield signal. The performance of this detection scheme has been characterized by near edge x-ray absorption fine structure studies of thermal oxidized silicon and sapphire. The results show that the new detector probes both electron yield and for a bias voltage exceeding the maximum photon energy the total fluorescence yield.

Thielemann, N. [Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstrasse 15, 12489 Berlin (Germany); Hoffmann, P. [Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Foehlisch, A. [Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Institut fuer Physik und Astronomie, Universitaet Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam (Germany)

2012-09-15T23:59:59.000Z

416

Digital optical phase conjugation of fluorescence in turbid tissue  

SciTech Connect

We demonstrate a method for phase conjugating fluorescence. Our method, called reference free digital optical phase conjugation, can conjugate extremely weak, incoherent optical signals. It was used to phase conjugate fluorescent light originating from a bead covered with 0.5 mm of light-scattering tissue. The phase conjugated beam refocuses onto the bead and causes a local increase of over two orders of magnitude in the light intensity. Potential applications are in imaging, optical trapping, and targeted photochemical activation inside turbid tissue.

Vellekoop, Ivo M.; Cui Meng; Yang Changhuei [Department of Electrical Engineering, California Institute of Technology, Pasadena, California (United States)

2012-08-20T23:59:59.000Z

417

Heat transfer assembly for a fluorescent lamp and fixture  

DOE Patents (OSTI)

In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure.

Siminovitch, Michael J. (Richmond, CA); Rubenstein, Francis M. (Berkeley, CA); Whitman, Richard E. (Richmond, CA)

1992-01-01T23:59:59.000Z

418

Fluorescence Axial Localization with Nanometer Accuracy and Precision  

SciTech Connect

We describe a new technique, standing wave axial nanometry (SWAN), to image the axial location of a single nanoscale fluorescent object with sub-nanometer accuracy and 3.7 nm precision. A standing wave, generated by positioning an atomic force microscope tip over a focused laser beam, is used to excite fluorescence; axial position is determined from the phase of the emission intensity. We use SWAN to measure the orientation of single DNA molecules of different lengths, grafted on surfaces with different functionalities.

Li, Hui; Yen, Chi-Fu; Sivasankar, Sanjeevi

2012-06-15T23:59:59.000Z

419

GRR/Section 15-OR-a - Air Contaminant Discharge Permit | Open Energy  

Open Energy Info (EERE)

5-OR-a - Air Contaminant Discharge Permit 5-OR-a - Air Contaminant Discharge Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 15-OR-a - Air Contaminant Discharge Permit 15ORAAirContaminantDischargePermit (1).pdf Click to View Fullscreen Contact Agencies Oregon Department of Environmental Quality Regulations & Policies ORS Chapter 468a OAR 340-209 OAR 340-216 340-216-0020 (Table 1) Triggers None specified Click "Edit With Form" above to add content 15ORAAirContaminantDischargePermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Oregon Department of Environmental Quality (DEQ) regulates air

420

Flow and temperature fields in a free discharge inductively coupled plasma  

SciTech Connect

Computations were made of the flow and temperature fields in an inductively coupled argon plasma at atmospheric pressure under confined and free discharge conditions. The model takes into account gravity effects and swirl in the sheath gas. Natural convection was found to have a negligible effect on the flow and temperature fields under confined discharge conditions but a significant effect for the free discharge. The back flow in the discharge was substantially reduced in the presence of swirl for swirl velocities over the range 0-50 m/s. Also with a mode-rate increase in swirl, the conduction heat flux to the wall decreased but increased with the further increase in swirl. From an overall energy balance point of view, conductive heat flux to the wall of the plasma confinement tube was substantially lower for a free plasma discharge compared to that for a confined plasma.

Gagne, R.; Boulos, M.I.; Barnes, R.M.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fluorescent high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Free-surface flow simulations for discharge-based operation of hydraulic structure gates  

E-Print Network (OSTI)

We combine non-hydrostatic flow simulations of the free surface with a discharge model based on elementary gate flow equations for decision support in operation of hydraulic structure gates. A water level-based gate control used in most of today's general practice does not take into account the fact that gate operation scenarios producing similar total discharged volumes and similar water levels may have different local flow characteristics. Accurate and timely prediction of local flow conditions around hydraulic gates is important for several aspects of structure management: ecology, scour, flow-induced gate vibrations and waterway navigation. The modelling approach is described and tested for a multi-gate sluice structure regulating discharge from a river to the sea. The number of opened gates is varied and the discharge is stabilized with automated control by varying gate openings. The free-surface model was validated for discharge showing a correlation coefficient of 0.994 compared to experimental data. A...

Erdbrink, C D; Sloot, P M A

2012-01-01T23:59:59.000Z

422

GRR/Section 14-AK-b - Alaska Pollutant Discharge Elimination System Permit  

Open Energy Info (EERE)

GRR/Section 14-AK-b - Alaska Pollutant Discharge Elimination System Permit GRR/Section 14-AK-b - Alaska Pollutant Discharge Elimination System Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-AK-b - Alaska Pollutant Discharge Elimination System Permit 14AKBAlaskaPollutantDischargeEliminationSystemPermit (1).pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation United States Environmental Protection Agency Regulations & Policies Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 14AKBAlaskaPollutantDischargeEliminationSystemPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

423

Combination of fluorescence imaging and local spectrophotometry in fluorescence diagnostics of early cancer of larynx and bronchi  

SciTech Connect

The results of comparative studies of autofluorescence and 5-ALA-induced fluorescence of protoporphyrin IX, used in the diagnostics of early cancer of larynx and bronchi, are presented. The autofluorescence and 5-ALA-induced fluorescence images of larynx and bronchial tissues are analysed during the endoscopic study. The method of local spectrophotometry is used to verify findings obtained from fluorescence images. It is shown that such a combined approach can be efficiently used to improve the diagnostics of precancer and early cancer, to detect a primary multiple tumours, as well as for the diagnostics of a residual tumour or an early recurrence after the endoscopic, surgery or X-ray treatment. The developed approach allows one to minimise the number of false-positive results and to reduce the number of biopsies, which are commonly used in the white-light bronchoscopy search for occult cancerous loci. (laser biology and medicine)

Sokolov, Vladimir V; Filonenko, E V; Telegina, L V [P.A. Hertsen Moscow Research Oncological Institute, Moscow (Russian Federation); Boulgakova, N N; Smirnov, V V [A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

2002-11-30T23:59:59.000Z

424

Assessment of Electrical, Efficiency, and Photometric Performance of Advanced Lighting Sources: Dimmable Advanced Lighting Technolog ies -- Electronic Light-Emitting Diode (LED) Fixtures, Lamps, and Drivers  

Science Conference Proceedings (OSTI)

This EPRI Technical Update addresses the dimming performance of light-emitting diode (LED) lighting. Chapter 1 provides a discussion of basic lighting control, the importance of considering power quality in lighting control, lighting control methods and parameters, and the advantages and future of lighting control. Chapter 2 addresses in more depth the dimming methods used in advanced lighting sources and controls for incandescent, fluorescent, high-intensity discharge (HID) and LED sources. Chapter 3 ad...

2008-12-19T23:59:59.000Z

425

Advanced Lighting Technologies  

Science Conference Proceedings (OSTI)

This report continues the technical assessment of advanced lighting technologies in the following product areasdimmable light-emitting diode (LED) screw-in replacement lamp, hybrid compact fluorescent lamp/halogen screw-in replacement lamp, replacement recessed can LED downlight, organic LED (OLED) disc, replacement mini high-intensity discharge (HID) lamp and ballast system, and solid-state plasma lighting (miniature HID technology) high-bay fixture. The research in this project helps to demonstrate how...

2011-12-21T23:59:59.000Z

426

Mercury oxidization in dielectric barrier discharge plasma system  

SciTech Connect

The pronounced volatility of elemental mercury (Hg{sup 0}) and some of its compounds, coupled with their extreme toxicity, makes these substances extremely hazardous. Conversion of Hg{sup 0} to HgO would significantly enhance mercury removal from flue gases. This investigation is focused on studying the effect of some of the constituents such as O{sub 2}, H{sub 2}O, CO{sub 2}, and NOx present in flue gases on elemental mercury oxidation in a dielectric barrier discharge (DBD) reactor. The results show that Hg vapors (6 ppbv) in a stream of 0.1% O{sub 2} and N{sub 2} are effectively oxidized at the energy density of up to 114 J/L. Hg conversion of over 80% is achieved when present in a gas mixture of 8% O{sub 2}, 2% H{sub 2}O, and 10% CO{sub 2} in N{sub 2} balance. The presence of NOx enhanced mercury oxidation in the DBD reactor. The oxidation chemistry is discussed. Studies show that Hg can be simultaneously removed along with the other two major pollutants, NOx and SO{sub 2}, in one DBD reactor followed by a wet scrubber system. This avoids the need of three techniques for the removal of major gaseous pollutants from coal-fired power plants.

Chen, Z.Y.; Mannava, D.P.; Mathur, V.K. [University New Hampshire, Durham, NH (United States). Dept. for Chemical Engineering

2006-08-16T23:59:59.000Z

427

Zero discharge and large-scale DCS are plant highlights  

Science Conference Proceedings (OSTI)

This article reports that the Mulberry cogeneration facility has several features that make it notable in the power field. A zero-discharge wastewater system, an inlet-air chilling system, a secondary boiler, and an extensive distributed-control system (DCS) for overall plant operation are examples. Ability to meet the two-stage NO{sub x}-emission limits -- 25 ppm during the first three years and 15 ppm thereafter -- is a unique challenge. The plant design allows the lower limit to be met now, and retrofit with different burners is possible if NO{sub x}-emission limits are tightened later. The facility, near Bartow in Polk County, Fla, is owned by Polk Power Partners LP, whose members include Central and South West Energy Inc (CSW) of Dallas and ARK Energy of Laguna Hills, Calif. The operating company, CSW Operations, is a subsidiary of CSW. Heart of the plant is a single gas-turbine (GT)/HRSG/steam-turbine combined cycle, providing electric power to Tampa Electric Co and Florida Power Corp, with up to 25,000 lb/hr of process steam for an adjacent ethanol plant which was developed by the facility`s partnership. Commercial operation of Mulberry began on Sept 2, 1994.

Solar, R.

1995-04-01T23:59:59.000Z

428

On the streamer propagation in methane plasma discharges  

SciTech Connect

The initial stages of formation and propagation of a streamer in methane at atmospheric pressure were studied using a 2-dimensional axial symmetric hydrodynamic model. The model is based on the drift diffusion approximation and exploits electron transport parameters determined using an external Boltzmann equation solver. The resulting system of equations was solved using the finite element methods and integrated in time with an Euler backward algorithm. An approach useful to alleviate the numerical difficulties determined by the steep gradients that appear on the streamer front was developed. It is based on a proper choice of the adaptation algorithm of the integration time step. Three phases in the streamer development could be identified, in agreement with analytical and numerical models reported in the literature: ionization avalanche, streamer, and shielded plasma. The properties of the three phases have been characterized analyzing the evolution in time of the most important variables characterizing the system (ion and electron densities, potential, and electric field). Finally, the influence of some operative parameters, such as inter-electrodic gap, seed electron density, and applied potential, has been investigated in order to determine how it affects the evolution of the micro-discharge, and in particular, the transition from ionization avalanche to streamer.

Ferrara, Carlo; Preda, Marco; Cavallotti, Carlo [Dept. di Chimica, Materiali e Ingegneria chimica 'G. Natta,' Politecnico di Milano, via Mancinelli 7-20131 Milano (Italy)

2012-12-01T23:59:59.000Z

429

The Allen Telescope Array Search for Electrostatic Discharges on Mars  

E-Print Network (OSTI)

The Allen Telescope Array was used to monitor Mars between 9 March and 2 June 2010, over a total of approximately 30 hours, for radio emission indicative of electrostatic discharge. The search was motivated by the report from Ruf et al. (2009) of the detection of non-thermal microwave radiation from Mars characterized by peaks in the power spectrum of the kurtosis, or kurtstrum, at 10 Hz, coinciding with a large dust storm event on 8 June 2006. For these observations, we developed a wideband signal processor at the Center for Astronomy Signal Processing and Electronics Research (CASPER). This 1024-channel spectrometer calculates the accumulated power and power-squared, from which the spectral kurtosis is calculated post-observation. Variations in the kurtosis are indicative of non-Gaussianity in the signal, which can be used to detect variable cosmic signals as well as radio frequency interference (RFI). During the three month period of observations, dust activity occurred on Mars in the form of small-scale d...

Anderson, Marin M; Barott, William C; Bower, Geoffrey C; Delory, Gregory T; de Pater, Imke; Werthimer, Dan

2011-01-01T23:59:59.000Z

430

Automated hybridization/imaging device for fluorescent multiplex DNA sequencing  

DOE Patents (OSTI)

A method is disclosed for automated multiplex sequencing of DNA with an integrated automated imaging hybridization chamber system. This system comprises an hybridization chamber device for mounting a membrane containing size-fractionated multiplex sequencing reaction products, apparatus for fluid delivery to the chamber device, imaging apparatus for light delivery to the membrane and image recording of fluorescence emanating from the membrane while in the chamber device, and programmable controller apparatus for controlling operation of the system. The multiplex reaction products are hybridized with a probe, the enzyme (such as alkaline phosphatase) is bound to a binding moiety on the probe, and a fluorogenic substrate (such as a benzothiazole derivative) is introduced into the chamber device by the fluid delivery apparatus. The enzyme converts the fluorogenic substrate into a fluorescent product which, when illuminated in the chamber device with a beam of light from the imaging apparatus, excites fluorescence of the fluorescent product to produce a pattern of hybridization. The pattern of hybridization is imaged by a CCD camera component of the imaging apparatus to obtain a series of digital signals. These signals are converted by the controller apparatus into a string of nucleotides corresponding to the nucleotide sequence an automated sequence reader. The method and apparatus are also applicable to other membrane-based applications such as colony and plaque hybridization and Southern, Northern, and Western blots. 9 figs.

Weiss, R.B.; Kimball, A.W.; Gesteland, R.F.; Ferguson, F.M.; Dunn, D.M.; Di Sera, L.J.; Cherry, J.L.

1995-11-28T23:59:59.000Z

431

Automated hybridization/imaging device for fluorescent multiplex DNA sequencing  

DOE Patents (OSTI)

A method is disclosed for automated multiplex sequencing of DNA with an integrated automated imaging hybridization chamber system. This system comprises an hybridization chamber device for mounting a membrane containing size-fractionated multiplex sequencing reaction products, apparatus for fluid delivery to the chamber device, imaging apparatus for light delivery to the membrane and image recording of fluorescence emanating from the membrane while in the chamber device, and programmable controller apparatus for controlling operation of the system. The multiplex reaction products are hybridized with a probe, then an enzyme (such as alkaline phosphatase) is bound to a binding moiety on the probe, and a fluorogenic substrate (such as a benzothiazole derivative) is introduced into the chamber device by the fluid delivery apparatus. The enzyme converts the fluorogenic substrate into a fluorescent product which, when illuminated in the chamber device with a beam of light from the imaging apparatus, excites fluorescence of the fluorescent product to produce a pattern of hybridization. The pattern of hybridization is imaged by a CCD camera component of the imaging apparatus to obtain a series of digital signals. These signals are converted by the controller apparatus into a string of nucleotides corresponding to the nucleotide sequence an automated sequence reader. The method and apparatus are also applicable to other membrane-based applications such as colony and plaque hybridization and Southern, Northern, and Western blots.

Weiss, Robert B. (Salt Lake City, UT); Kimball, Alvin W. (Salt Lake City, UT); Gesteland, Raymond F. (Salt Lake City, UT); Ferguson, F. Mark (Salt Lake City, UT); Dunn, Diane M. (West Valley City, UT); Di Sera, Leonard J. (Salt Lake City, UT); Cherry, Joshua L. (Salt Lake City, UT)

1995-01-01T23:59:59.000Z

432

Restoration of X-ray fluorescence images of hidden paintings  

Science Conference Proceedings (OSTI)

This paper describes our methods for repairing and restoring images of hidden paintings (paintings that have been painted over and are now covered by a new surface painting) that have been obtained via noninvasive X-ray fluorescence imaging of their ... Keywords: Art restoration, Artifact correction, Image restoration, Underdetermined source separation

Anila Anitha; Andrei Brasoveanu; Marco Duarte; Shannon Hughes; Ingrid Daubechies; Joris Dik; Koen Janssens; Matthias Alfeld

2013-03-01T23:59:59.000Z

433

Fluorescent lamp with static magnetic field generating means  

DOE Patents (OSTI)

A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed.

Moskowitz, Philip E. (Peabody, MA); Maya, Jakob (Brookline, MA)

1987-01-01T23:59:59.000Z

434

Fluorescent lamp with static magnetic field generating means  

DOE Patents (OSTI)

A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed. 2 figs.

Moskowitz, P.E.; Maya, J.

1987-09-08T23:59:59.000Z

435

Distinguishability of Biological Material Using Ultraviolet Multi-Spectral Fluorescence  

SciTech Connect

Recent interest in the detection and analysis of biological samples by spectroscopic methods has led to questions concerning the degree of distinguishability and biological variability of the ultraviolet (W) fluorescent spectra from such complex samples. We show that the degree of distinguishability of such spectra is readily determined numerically.

Gray, P.C.; Heinen, R.J.; Rigdon, L.D.; Rosenthal, S.E.; Shokair, I.R.; Siragusa, G.R.; Tisone, G.C.; Wagner, J.S.

1998-10-14T23:59:59.000Z

436

Convection venting lensed reflector-type compact fluorescent lamp system  

DOE Patents (OSTI)

Disclosed herein is a fluorescent lamp housing assembly capable of providing convection cooling to the lamp and the ballast. The lens of the present invention includes two distinct portions, a central portion and an apertured portion. The housing assembly further includes apertures so that air mass is able to freely move up through the assembly and out ventilation apertures. 12 figs.

Pelton, B.A.; Siminovitch, M.

1997-07-29T23:59:59.000Z

437

Fluorescence photon migration by the boundary element method  

Science Conference Proceedings (OSTI)

The use of the boundary element method (BEM) is explored as an alternative to the finite element method (FEM) solution methodology for the elliptic equations used to model the generation and transport of fluorescent light in highly scattering media, without the need for an internal volume mesh. The method is appropriate for domains where it is reasonable to assume the fluorescent properties are regionally homogeneous, such as when using highly specific molecularly targeted fluorescent contrast agents in biological tissues. In comparison to analytical results on a homogeneous sphere, BEM predictions of complex emission fluence are shown to be more accurate and stable than those of the FEM. Emission fluence predictions made with the BEM using a 708-node mesh, with roughly double the inter-node spacing of boundary nodes as in a 6956-node FEM mesh, match experimental frequency-domain fluorescence emission measurements acquired on a 1087 cm{sup 3} breast-mimicking phantom at least as well as those of the FEM, but require only 1/8 to 1/2 the computation time.

Fedele, Francesco [Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT 05405 (United States); Eppstein, Margaret J. [Department of Computer Science, University of Vermont, Burlington, VT 05405 (United States)]. E-mail: maggie.eppstein@uvm.edu; Laible, Jeffrey P. [Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT 05405 (United States); Godavarty, Anuradha [Photon Migration Laboratories, Department of Chemistry, Texas A and M University, College Station, TX 77842-3012 (United States); Sevick-Muraca, Eva M. [Photon Migration Laboratories, Department of Chemistry, Texas A and M University, College Station, TX 77842-3012 (United States)

2005-11-20T23:59:59.000Z

438

Convection venting lensed reflector-type compact fluorescent lamp system  

SciTech Connect

Disclosed herein is a fluorescent lamp housing assembly capable of providing convection cooling to the lamp and the ballast. The lens of the present invention includes two distinct portions, a central portion and an apertured portion. The housing assembly further includes apertures so that air mass is able to freely move up through the assembly and out ventilation apertures.

Pelton, Bruce A. (825 Manor Rd., El Sobrante, CA 94803); Siminovitch, Michael (829 Manor Rd., El Sobrante, CA 94803)

1997-01-01T23:59:59.000Z

439

510 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 24, NO. 2, FEBRUARY 2009 Self-Discharge Characterization and Modeling  

E-Print Network (OSTI)

capacitor, also referred to as a supercapacitor, is an important factor in de- termining the duration-discharge characterization, self-discharge modeling, supercapacitor. I. INTRODUCTION OVER years, electrochemical capacitors

Paris-Sud XI, Université de

440

Examining 239Pu and 240Pu Nuclear Resonance Fluorescence Measurements on Spent Fuel for Nuclear Safeguards  

E-Print Network (OSTI)

resonance fluorescence in 240 Pu,” Submitted to Phys. Rev.near 2 MeV in 235 U and 239 Pu,” Phys. Rev. C 041601(R) (Examining Pu and Pu Nuclear Resonance Fluorescence

Quiter, Brian

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fluorescent high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Have You Switched to Compact Fluorescent Lights? Why or Why Not...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Switched to Compact Fluorescent Lights? Why or Why Not? Have You Switched to Compact Fluorescent Lights? Why or Why Not? May 1, 2009 - 1:52pm Addthis On Tuesday, John wrote about...

442

Ganga-Brahmaputra river discharge from Jason-2 radar altimetry: An update to the long-term satellite-derived  

E-Print Network (OSTI)

) for Hardinge, Ganga. The blue line with plus sign is the river discharge from ENVISAT (QERS/G for 2006

Delcroix, Thierry

443

Wave modeling in a cylindrical non-uniform helicon discharge  

Science Conference Proceedings (OSTI)

A radio frequency field solver based on Maxwell's equations and a cold plasma dielectric tensor is employed to describe wave phenomena observed in a cylindrical non-uniform helicon discharge. The experiment is carried out on a recently built linear plasma-material interaction machine: The magnetized plasma interaction experiment [Blackwell et al., Plasma Sources Sci. Technol. (submitted)], in which both plasma density and static magnetic field are functions of axial position. The field strength increases by a factor of 15 from source to target plate, and the plasma density and electron temperature are radially non-uniform. With an enhancement factor of 9.5 to the electron-ion Coulomb collision frequency, a 12% reduction in the antenna radius, and the same other conditions as employed in the experiment, the solver produces axial and radial profiles of wave amplitude and phase that are consistent with measurements. A numerical study on the effects of axial gradient in plasma density and static magnetic field on wave propagations is performed, revealing that the helicon wave has weaker attenuation away from the antenna in a focused field compared to a uniform field. This may be consistent with observations of increased ionization efficiency and plasma production in a non-uniform field. We find that the relationship between plasma density, static magnetic field strength, and axial wavelength agrees well with a simple theory developed previously. A numerical scan of the enhancement factor to the electron-ion Coulomb collision frequency from 1 to 15 shows that the wave amplitude is lowered and the power deposited into the core plasma decreases as the enhancement factor increases, possibly due to the stronger edge heating for higher collision frequencies.

Chang, L.; Hole, M. J.; Caneses, J. F.; Blackwell, B. D.; Corr, C. S. [Plasma Research Laboratory, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Chen, G. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

2012-08-15T23:59:59.000Z

444

Penning discharge ion source with self-cleaning aperture  

DOE Patents (OSTI)

An ion source of the Penning discharge type having a self-cleaning aperture is provided by a second dynode with an exit aperture in a position opposite a first dynode, from which the ions are sputtered, two opposing cathodes, each with an anode for accelerating electrons emitted from the cathodes into a cylindrical space defined by the first and second dynode. A support gas maintained in this space is ionized by the electrons. While the cathodes are supplied with a negative pulse to emit electrons, the first dynode is supplied with a negative pulse (e.g., -300 V) to attract atoms of the ionized gas (plasma). At the same time, the second dynode may also be supplied with a small voltage that is negative with respect to the plasma (e.g., -5 V) for tuning the position of the plasma miniscus for optimum extraction geometry. When the negative pulse to the first dynode is terminated, the second dynode is driven strongly negative (e.g., -600 V) thereby allowing heavy sputtering to take place for a short period to remove virtually all of the atoms deposited on the second dynode from material sputtered off the first dynode. An extractor immediately outside the exit aperture of the second dynode is maintained at ground potential while the anode, dynode, and cathode reference voltage is driven strongly positive (about +20 kV to +30 kV) so that ions accelerated through the aperture will be at ground potential. Material from the first dynode deposited on the second dynode will be sputtered, in time, to add to the ion beam.

Gavin, B.F.; MacGill, R.A.; Thatcher, R.K.

1980-11-10T23:59:59.000Z

445

Penning discharge ion source with self-cleaning aperture  

DOE Patents (OSTI)

An ion source of the Penning discharge type having a self-cleaning aperture is provided by a second dynode (24) with an exit aperture (12) in a position opposite a first dynode 10a, from which the ions are sputtered, two opposing cathodes (14, 16), each with an anode (18, 20) for accelerating electrons emitted from the cathodes into a cylindrical space defined by the first and second dynode. A support gas maintained in this space is ionized by the electrons. While the cathodes are supplied with a negative pulse to emit electrons, the first dynode is supplied with a negative pulse (e.g., -300 V) to attract atoms of the ionized gas (plasma). At the same time, the second dynode may also be supplied with a small voltage that is negative with respect to the plasma (e.g., -5 V) for tuning the position of the plasma miniscus for optimum extraction geometry. When the negative pulse to the first dynode is terminated, the second dynode is driven strongly negative (e.g., -600 V) thereby allowing heavy sputtering to take place for a short period to remove virtually all of the atoms deposited on the second dynode from material sputtered off the first dynode. An extractor (22) immediately outside the exit aperture of the second dynode is maintained at ground potential during this entire period of sputtering while the anode, dynode and cathode reference voltage is driven strongly positive (about +20 kV to +30 kV) so that ions accelerated through the aperture will be at ground potential. In that manner, material from the first dynode deposited on the second dynode will be sputtered, in time, to add to the ion beam. Atoms sputtered from the second dynode which do not become ionized and exit through the slit will be redeposited on the first dynode, and hence recycled for further ion beam generation during subsequent operating cycles.

Gavin, Basil F. (Berkeley, CA); MacGill, Robert A. (Richmond, CA); Thatcher, Raymond K. (El Cerrito, CA)

1982-01-01T23:59:59.000Z

446

Application of self organizing map approach to partial discharge pattern recognition of cast-resin current transformers  

Science Conference Proceedings (OSTI)

Partial discharge (PD) measurement and recognition is a significant tool for potential failure diagnosis of a power transformer. This paper proposes the application of self organizing map (SOM) approach to recognize partial discharge patterns of cast-resin ... Keywords: cast-resin current transformer, partial discharge, pattern recognition, self organizing map

Wen-Yeau Chang; Hong-Tzer Yang

2008-03-01T23:59:59.000Z

447

XeCl avalanche discharge laser employing Ar as a diluent  

DOE Patents (OSTI)

A XeCl avalanche discharge exciplex laser which uses a gaseous lasing starting mixture of: 0.2 to 0.4% chlorine donor/2.5% to 10% Xe/97.3% to 89.6% Ar) is provided. The chlorine donor normally comprises HCl but can also comprise CCl/sub 4/ BCl/sub 3/. Use of Ar as a diluent gas reduces operating pressures over other rare gas halide lasers to near atmospheric pressure, increases output lasing power of the XeCl avalanche discharge laser by 30% to exceed KrF avalanche discharge lasing outputs, and is less expensive to operate.

Sze, R.C.

1979-10-10T23:59:59.000Z

448

XeCl Avalanche discharge laser employing Ar as a diluent  

DOE Patents (OSTI)

A XeCl avalanche discharge exciplex laser which uses a gaseous lasing starting mixture of: (0.2%-0.4% chlorine donor/2.5%-10% Xe/97.3%-89.6% Ar). The chlorine donor normally comprises HCl but can also comprise CCl.sub.4 BCl.sub.3. Use of Ar as a diluent gas reduces operating pressures over other rare gas halide lasers to near atmospheric pressure, increases output lasing power of the XeCl avalanche discharge laser by 30% to exceed KrF avalanche discharge lasing outputs, and is less expensive to operate.

Sze, Robert C. (Santa Fe, NM)

1981-01-01T23:59:59.000Z

449

Comment on Origin of Groundwater Discharge at Fall River Springs  

SciTech Connect

I'm writing at the request of the Pit River Tribe to offer my professional opinion as a geochemist regarding the origin of groundwater discharge at the Fall River Springs, Shasta Co., California. In 1997, I conducted a study of the large volume cold springs associated with the Cascade Volcanoes in northern California, in collaboration with one of my colleagues. This work was published as a Lawrence Livermore National Laboratory report (Davisson and Rose, 1997). The Fall River Springs emerge from the distal end of the Giant Crater Lava Field, a laterally extensive basalt flow that stretches from the southern flank of Medicine Lake Volcano southward for a distance of 40 km. Both Medicine Lake Volcano and the Giant Crater Lava Field have virtually no surface water drainages. Precipitation that falls in these areas is inferred to seep into fractures in the rock, where it is carried down gradient under the force of gravity. Mean annual precipitation rates on Medicine Lake Volcano and the Giant Crater Lava field are adequate to account for the {approx}1200 ft{sup 3}/sec discharge of the Fall River Springs. To evaluate the origin of the springs using geochemical methods, water samples were collected from the Fall River Springs and the Medicine Lake highlands and analyzed for oxygen and hydrogen isotope ratios. The isotope ratios measured for a groundwater sample are diagnostic of the average composition of the precipitation from which the water was derived. The isotope ratios of rain and snow also vary systematically with elevation, such that groundwater derived from recharge at higher elevations can be distinguished from that which originated at lower elevations. The stable isotope data for the Fall River Springs are consistent with groundwater recharge on the Medicine Lake Volcano and adjacent lava field. Mass balance calculations suggest that approximately half of the Fall River Springs flow is derived from the volcanic edifice. Rose and Davisson (1996) showed that the large volume cold springs associated with the Cascade Volcanoes commonly contain dissolved CO{sub 2} that originated from the volcanoes. This volcanic CO{sub 2} component is readily identified from carbon-14 measurements of the water. Carbon-14 analyses of the Fall River samples indicate that at least 27% of the dissolved inorganic carbon in the springs was derived from a volcanic CO{sub 2} source. Such a large volcanic CO{sub 2} flux requires that the groundwater supplying flow to the Fall River Springs must originate from a volcano where magma degassing is actively occurring. Given the hydrogeologic configuration of the Fall River aquifer system, it appears that the Medicine Lake Volcano is the only likely source of the volcanic CO{sub 2}. These data independently confirm the Medicine Lake highlands as a significant recharge source for the Fall River Springs. Moreover, these data indicate that groundwater recharge occurring on Medicine Lake Volcano must interact with a CO{sub 2} volatile phase derived from the geothermal system beneath the volcano. The lack of hot springs on Medicine Lake Volcano suggests that the geothermal system underlying the volcano is relatively tightly sealed. Nevertheless, it is probable that the geothermal fluid originates from precipitation falling on the volcanic edifice. This is the same water that supplies an important fraction of the Fall River Spring discharge. The source of the geothermal fluid can be evaluated using stable isotopes. The oxygen isotope signature of the geothermal fluid may have been modified by high temperature oxygen isotope exchange with the surrounding rock, but the hydrogen isotope signature should still be diagnostic of the origin of the fluid. Although the geothermal system appears to be largely decoupled from the shallow groundwater system that supplies the Fall River Springs, it is uncertain what impact the development of the geothermal system as an energy resource would have on groundwater circulation patterns on the volcano. Given the importance of the Fall River Springs as a water resource for the

Rose, T

2006-10-20T23:59:59.000Z

450

Comment on Origin of Groundwater Discharge at Fall River Springs  

Science Conference Proceedings (OSTI)

I'm writing at the request of the Pit River Tribe to offer my professional opinion as a geochemist regarding the origin of groundwater discharge at the Fall River Springs, Shasta Co., California. In 1997, I conducted a study of the large volume cold springs associated with the Cascade Volcanoes in northern California, in collaboration with one of my colleagues. This work was published as a Lawrence Livermore National Laboratory report (Davisson and Rose, 1997). The Fall River Springs emerge from the distal end of the Giant Crater Lava Field, a laterally extensive basalt flow that stretches from the southern flank of Medicine Lake Volcano southward for a distance of 40 km. Both Medicine Lake Volcano and the Giant Crater Lava Field have virtually no surface water drainages. Precipitation that falls in these areas is inferred to seep into fractures in the rock, where it is carried down gradient under the force of gravity. Mean annual precipitation rates on Medicine Lake Volcano and the Giant Crater Lava field are adequate to account for the {approx}1200 ft{sup 3}/sec discharge of the Fall River Springs. To evaluate the origin of the springs using geochemical methods, water samples were collected from the Fall River Springs and the Medicine Lake highlands and analyzed for oxygen and hydrogen isotope ratios. The isotope ratios measured for a groundwater sample are diagnostic of the average composition of the precipitation from which the water was derived. The isotope ratios of rain and snow also vary systematically with elevation, such that groundwater derived from recharge at higher elevations can be distinguished from that which originated at lower elevations. The stable isotope data for the Fall River Springs are consistent with groundwater recharge on the Medicine Lake Volcano and adjacent lava field. Mass balance calculations suggest that approximately half of the Fall River Springs flow is derived from the volcanic edifice. Rose and Davisson (1996) showed that the large volume cold springs associated with the Cascade Volcanoes commonly contain dissolved CO{sub 2} that originated from the volcanoes. This volcanic CO{sub 2} component is readily identified from carbon-14 measurements of the water. Carbon-14 analyses of the Fall River samples indicate that at least 27% of the dissolved inorganic carbon in the springs was derived from a volcanic CO{sub 2} source. Such a large volcanic CO{sub 2} flux requires that the groundwater supplying flow to the Fall River Springs must originate from a volcano where magma degassing is actively occurring. Given the hydrogeologic configuration of the Fall River aquifer system, it appears that the Medicine Lake Volcano is the only likely source of the volcanic CO{sub 2}. These data independently confirm the Medicine Lake highlands as a significant recharge source for the Fall River Springs. Moreover, these data indicate that groundwater recharge occurring on Medicine Lake Volcano must interact with a CO{sub 2} volatile phase derived from the geothermal system beneath the volcano. The lack of hot springs on Medicine Lake Volcano suggests that the geothermal system underlying the volcano is relatively tightly sealed. Nevertheless, it is probable that the geothermal fluid originates from precipitation falling on the volcanic edifice. This is the same water that supplies an important fraction of the Fall River Spring discharge. The source of the geothermal fluid can be evaluated using stable isotopes. The oxygen isotope signature of the geothermal fluid may have been modified by high temperature oxygen isotope exchange with the surrounding rock, but the hydrogen isotope signature should still be diagnostic of the origin of the fluid. Although the geothermal system appears to be largely decoupled from the shallow groundwater system that supplies the Fall River Springs, it is uncertain what impact the development of the geothermal system as an energy resource would have on groundwater circulation patterns on the volcano. Given the importance of the Fall River Springs as a water resource for the

Rose, T

2006-10-20T23:59:59.000Z

451

Incan-  

Gasoline and Diesel Fuel Update (EIA)

Area Only Floorspace (million square feet) Incan- descent Standard Fluor- escent Compact Fluor- escent High Intensity Discharge Halogen All Buildings* ......

452

DNA complexes with dyes designed for energy transfer as fluorescent markers  

DOE Patents (OSTI)

Heteromultimeric fluorophores are provided for binding to DNA, which allow for the detection of DNA in electrical separations and preparation of probes having high-fluorescent efficiencies and large Stokes shifts. In addition, by appropriate choice of fluorescent molecules, one can use a single narrow wavelength band excitation light source, while obtaining fluorescent emissions having sufficient separation to be readily discriminated. 4 figs.

Glazer, A.N.; Benson, S.C.

1997-07-08T23:59:59.000Z

453

DNA complexes with dyes designed for energy transfer as fluorescent markers  

DOE Patents (OSTI)

Heteromultimeric fluorophores are provided for binding to DNA, which allow for the detection of DNA in electrical separations and preparation of probes having high-fluorescent efficiencies and large Stokes shifts. In addition, by appropriate choice of fluorescent molecules, one can use a single narrow wavelength band excitation light source, while obtaining fluorescent emissions having sufficient separation to be readily discriminated. 4 figs.

Glazer, A.M.; Benson, S.C.

1998-06-16T23:59:59.000Z

454

The Sensitivity of Simulated River Discharge to Land Surface Representation and Meteorological Forcings  

Science Conference Proceedings (OSTI)

The discharge of freshwater into oceans represents a fundamental process in the global climate system, and this flux is taken into account in simulations with general circulation models (GCMs). Moreover, the availability of realistic river ...

Stefano Materia; Paul A. Dirmeyer; Zhichang Guo; Andrea Alessandri; Antonio Navarra

2010-04-01T23:59:59.000Z

455

Discharge characteristics and dynamics of compressive plasma streams generated by a compact magnetoplasma compressor  

SciTech Connect

Results from experimental studies of a compact magnetoplasma compressor designed for operation with heavy gases are presented. The integral characteristics of the discharge and the energy contents and other parameters of the generated xenon plasma streams are determined.

Garkusha, I. E.; Tereshin, V. I.; Chebotarev, V. V.; Solyakov, D. G.; Petrov, Yu. V.; Ladygina, M. S.; Marchenko, A. K.; Staltsov, V. V.; Yelisyeyev, D. V. [National Academy of Sciences of Ukraine, Institute of Plasma Physics, National Science Center 'Kharkiv Institute of Physics and Technology,' (Ukraine)

2011-11-15T23:59:59.000Z

456

Forecasting Annual Discharge of River Murray, Australia, from a Geophysical Model of ENSO  

Science Conference Proceedings (OSTI)

Annual discharge (Q) in the largest river system in Australia, the River Murray (including the extensive tributary network of the Darling River), is often inversely related to sea surface temperature (SST) anomalies in the eastern equatorial ...

H. J. Simpson; M. A. Cane; S. K. Lin; S. E. Zebiak; A. L. Herczeg

1993-02-01T23:59:59.000Z

457

Climate–Carbon Cycle Model Response to Freshwater Discharge into the North Atlantic  

Science Conference Proceedings (OSTI)

The response of a coupled climate–carbon cycle model to discharge of freshwater into the North Atlantic is investigated with regard to cold reversals caused by meltwater from northern continental ice sheets such as the Younger Dryas during the ...

Atsushi Obata

2007-12-01T23:59:59.000Z

458

Suppression of Phase Separation in LiFePO 4 Nanoparticles During Battery Discharge  

E-Print Network (OSTI)

Using a novel electrochemical phase-field model, we question the common belief that LiXFePO? nanoparticles always separate into Li-rich and Li-poor phases during battery discharge. For small currents, spinodal decomposition ...

Bai, Peng

459

Produced water discharges to the Gulf of Mexico: Background information for ecological risk assessments  

Science Conference Proceedings (OSTI)

This report reviews ecological risk assessment concepts and methods; describes important biological resources in the Gulf of Mexico of potential concern for produced water impacts; and summarizes data available to estimate exposure and effects of produced water discharges. The emphasis is on data relating to produced water discharges in the central and western Gulf of Mexico, especially in Louisiana. Much of the summarized data and cited literature are relevant to assessments of impacts in other regions. Data describing effects on marine and estuarine fishes, mollusks, crustaceans and benthic invertebrates are emphasized. This review is part of a series of studies of the health and ecological risks from discharges of produced water to the Gulf of Mexico. These assessments will provide input to regulators in the development of guidelines and permits, and to industry in the use of appropriate discharge practices.

Meinhold, A.F.; Holtzman, S.; DePhillips, M.P.

1996-06-01T23:59:59.000Z

460

A radiocarbon method and multi-tracer approach to quantifying groundwater discharge to coastal waters  

E-Print Network (OSTI)

Groundwater discharge into estuaries and the coastal ocean is an important mechanism for the transport of dissolved chemical species to coastal waters. Because many dissolved species are present in groundwater in concentrations ...

Gramling, Carolyn M

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fluorescent high-intensity discharge" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Seasonal dynamics in costal aquifers : investigation of submarine groundwater discharge through field measurements and numerical models  

E-Print Network (OSTI)

The fresh and saline groundwater flowing from coastal aquifers into the ocean comprise submarine groundwater discharge (SGD). This outflow is an important pathway for the transport of nutrients and contaminants, and has ...

Michael, Holly Anne, 1976-

2005-01-01T23:59:59.000Z

462

Constructed Wetland Treatment Systems for the Remediation of Metal-Bearing Aqueous Discharges  

Science Conference Proceedings (OSTI)

Constructed wetland treatment systems potentially offer utilities an effective, relatively low-cost option for treating aqueous discharges that contain metals. This report provides a ready source of information on these systems and their use within the electric utility industry.

1995-10-05T23:59:59.000Z

463

Discharge Characteristics and Changes over the Ob River Watershed in Siberia  

Science Conference Proceedings (OSTI)

This study analyzes long-term (1936–90) monthly streamflow records for the major subbasins within the Ob River watershed in order to examine discharge changes induced by human activities (particularly reservoirs and agricultural activities) and ...

Daqing Yang; Baisheng Ye; Alexander Shiklomanov

2004-08-01T23:59:59.000Z

464

Why Does the Amazon Water Flow to the North after Its Discharge?  

Science Conference Proceedings (OSTI)

Through a simple model, it is demonstrated that earth's sphericity (the beta effect) imposes a severe constraint on the discharge pattern near the equator. Using either bottom or lateral friction to counter the beta effect in the vorticity ...

Hsien Wang Ou

1989-08-01T23:59:59.000Z

465

Effect of energetic electrons on dust charging in hot cathode filament discharge  

Science Conference Proceedings (OSTI)

The effect of energetic electrons on dust charging for different types of dust is studied in hydrogen plasma. The hydrogen plasma is produced by hot cathode filament discharge method in a dusty plasma device. A full line cusped magnetic field cage is used to confine the plasma elements. To study the plasma parameters for various discharge conditions, a cylindrical Langmuir probe having 0.15 mm diameter and 10.0 mm length is used. An electronically controlled dust dropper is used to drop the dust particles into the plasma. For different discharge conditions, the dust current is measured using a Faraday cup connected to an electrometer. The effect of secondary emission as well as discharge voltage on charging of dust grains in hydrogen plasma is studied with different dust.

Kakati, B.; Kausik, S. S.; Saikia, B. K. [Centre of Plasma Physics, Institute for Plasma Research, Nazirakhat, Sonapur 782 402, Kamrup, Assam (India); Bandyopadhyay, M. [ITER-India, Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)

2011-03-15T23:59:59.000Z

466

Environmental and Economic Assessment of Discharges from Gulf of Mexico Region Oil and Gas Operations  

SciTech Connect

The primary objectives of the project are to increase the base of scientific knowledge concerning (1) the fate and environmental effects of organics, trace metals, and NORM in water, sediment, and biota near several offshore oil and gas facilities; (2) the characteristics of produced water and produced sand discharges as they pertain to organics, trace metals, and NORM variably found in association with the discharges; (3) the recovery of three terminated produced water discharge sites located in wetland and high-energy open bay sites of coastal Louisiana; (4) the economic and energy supply impacts of existing and anticipated federal and state offshore and coastal discharge regulations; and (5) the catch, consumption and human use patterns of seafood species collected from coastal and offshore waters. The products of the effort will be a series of technical reports det