Fluid Bed Combustion Applied to Industrial Waste
Mullen, J. F.; Sneyd, R. J.
1985-01-01
Because of its unique ability to handle a wide variety of liquids and solids in an energy efficient and environmentally acceptable manner, fluid bed combustion is being increasingly applied to the utilization of waste materials and low grade fuels...
Applied Fluid Mechanics I) Course goals
Leu, Tzong-Shyng "Jeremy"
design. #12;2 Textbook " Applied Fluid Mechanics" by Robert L. Mott, Sixth Edition in SI unit 1 Exam 30 Final Exam 30 (Total of 100) (30%)(&10%) () PDF lecture notes if any can be downloaded from
A STUDY OF COMPUTATIONAL FLUID DYNAMICS APPLIED TO ROOM AIR FLOW
for supplying me a copy of his three-dimensional, laminar, constant density fluid flow computer program, whichi A STUDY OF COMPUTATIONAL FLUID DYNAMICS APPLIED TO ROOM AIR FLOW By JAMES W. WEATHERS Bachelor of the requirements for the Degree of MASTER OF SCIENCE May, 1992 #12;ii A STUDY OF COMPUTATIONAL FLUID DYNAMICS
Paris-Sud XI, Université de
Experimental identification of turbulent fluid forces applied to fuel assemblies using an uncertain with an experimental setup which is constituted of a half fuel assembly which bathes in a turbulent fluid This paper is devoted to the identification of stochastic loads applied to fuel assemblies using an uncertain
Numerical modeling of fluid flow and time-lapse seismograms applied to
Santos, Juan
; and CO2 and CO2 are the CO2 mole fraction and the CO2 mass fraction in the brine phase. This conversionNumerical modeling of fluid flow and time-lapse seismograms applied to CO2 storage and monitoring G and time-lapse seismograms applied to CO2 storage and monitoring p. #12;Introduction · Fossil
Fernandez, Eduardo
knowledge of fundamental and applied engineering subjects: fluid and solid mechanics, dynamics, hydrostatics System Design), students are required to have sound multi disciplinary knowledge of engineering' knowledge of engineering and science subjects and their achievement of technical skills based
Trends in Hydraulic Fracturing Distributions and Treatment Fluids, Additives, Proppants, and Water.S. Geological Survey #12;Cover photos. U.S. hydraulic fracturing operation (front and back covers). Photos courtesy of Mark Engle, U.S. Geological Survey. #12;Trends in Hydraulic Fracturing Distributions
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Apply Application Process Bringing together top, space science students with internationally recognized researchers at Los Alamos in an educational and collaborative atmosphere....
Attard, Phil
Statistical mechanical theory for the structure of steady state systems: Application to a Lennard-Jones fluid with applied temperature gradient Phil Attard School of Chemistry F11, University of Sydney, New statistical mechanics for inhomogeneous systems may now be applied to determining the structure
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D SFederal FacilityApplicantOffice ofApply Application
Grohs, Philipp
Proceedings in Applied Mathematics and Mechanics, 8 April 2008 Locomotion based on the control of the shape of magnetic fluid surfaces and of magnetizable media K. Zimmermann1 , V.A. Naletova 2,3 , I. Zeidis1 , V.A. Turkov3 , V. BÂ¨ohm1 , E. Kolev1 , and J. Popp1 1 Faculty of Mechanical Engineering
1D Fluid Mechanics Sheet 3 Solutions Applying Bernoulli at the reservoir surface and at the tap: 1
Walton, Andrew G
= 2 metres. Then u2 = 30/h2 = 30/2 metres per sec. From the lecture notes, energy loss per unit by V. The simply add +V to the hydraulic jump problem considered in the notes (we are then in a frame in which the bore is staionary and we have an ordinary hydraulic jump with the left hand fluid moving
Khan, Arshad; Khan, Ilyas; Shafie, Sharidan [Faculty of Science, Universiti Teknologi Malaysia (Malaysia)
2014-06-19
This article studies the radiation and porosity effects on the unsteady magnetohydrodynamic free convection flow of an incompressible viscous fluid past an infinite vertical plate that applies a shear stress f(t) to the fluid. Conjugate phenomenon of heat and mass transfer is considered. General solutions of the dimensionless governing equations along with imposed initial and boundary conditions are determined using Laplace transform technique. The solution of velocity is presented as a sum of mechanical and non mechanical parts. These solutions satisfy all imposed initial and boundary conditions and reduce to some known solutions from the literature as special cases. The results for embedded parameters are shown graphically. Numerical results for skin friction, Nusselt number and Sherwood number are computed and presented in tabular forms.
Fernandez, Eduardo
), students are required to have sound multidisciplinary knowledge of engineering and science subjects' knowledge of engineering and science subjects based on their performance in the senior design courses, formulate, and solve engineering problems by applying knowledge of mathematics, science and engineering
Thermophysical Properties of Fluids and Fluid Mixtures
Sengers, Jan V.; Anisimov, Mikhail A.
2004-05-03
The major goal of the project was to study the effect of critical fluctuations on the thermophysical properties and phase behavior of fluids and fluid mixtures. Long-range fluctuations appear because of the presence of critical phase transitions. A global theory of critical fluctuations was developed and applied to represent thermodynamic properties and transport properties of molecular fluids and fluid mixtures. In the second phase of the project, the theory was extended to deal with critical fluctuations in complex fluids such as polymer solutions and electrolyte solutions. The theoretical predictions have been confirmed by computer simulations and by light-scattering experiments. Fluctuations in fluids in nonequilibrium states have also been investigated.
Finite element simulation of electrorheological fluids
Rhyou, Chanryeol, 1973-
2005-01-01
Electrorheological (ER) fluids change their flow properties dramatically when an electric field is applied. These fluids are usually composed of dispersions of polarizable particles in an insulating base fluid or composed ...
Electrorheological fluids and methods
Green, Peter F.; McIntyre, Ernest C.
2015-06-02
Electrorheological fluids and methods include changes in liquid-like materials that can flow like milk and subsequently form solid-like structures under applied electric fields; e.g., about 1 kV/mm. Such fluids can be used in various ways as smart suspensions, including uses in automotive, defense, and civil engineering applications. Electrorheological fluids and methods include one or more polar molecule substituted polyhedral silsesquioxanes (e.g., sulfonated polyhedral silsesquioxanes) and one or more oils (e.g., silicone oil), where the fluid can be subjected to an electric field.
1993-12-31
From the title, the reader is led to expect a broad practical treatise on combustion and combustion devices. Remarkably, for a book of modest dimension, the author is able to deliver. The text is organized into 12 Chapters, broadly treating three major areas: combustion fundamentals -- introduction (Ch. 1), thermodynamics (Ch. 2), fluid mechanics (Ch. 7), and kinetics (Ch. 8); fuels -- coal, municipal solid waste, and other solid fuels (Ch. 4), liquid (Ch. 5) and gaseous (Ch. 6) fuels; and combustion devices -- fuel cells (Ch. 3), boilers (Ch. 4), Otto (Ch. 10), diesel (Ch. 11), and Wankel (Ch. 10) engines and gas turbines (Ch. 12). Although each topic could warrant a complete text on its own, the author addresses each of these major themes with reasonable thoroughness. Also, the book is well documented with a bibliography, references, a good index, and many helpful tables and appendices. In short, Applied Combustion does admirably fulfill the author`s goal for a wide engineering science introduction to the general subject of combustion.
CX-009143: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Development of High Operating Temperature Heat Transfer Fluids for Solar Thermal Power Generation CX(s) Applied: A9, B3.6 Date: 09/07/2012 Location(s): California Offices(s): Golden Field Office
CX-012680: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Fluid Stratification Separate Effects Analysis, Testing, and Benchmarking– Oregon State University CX(s) Applied: B3.6Date: 41863 Location(s): OregonOffices(s): Nuclear Energy
CX-009561: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Using Solid Particles as Heat Transfer Fluid for Use in Concentrating Solar Power (CSP) Plants CX(s) Applied: A9 Date: 12/04/2012 Location(s): Colorado Offices(s): Golden Field Office
Fluid jet electric discharge source
Bender, Howard A. (Ripon, CA)
2006-04-25
A fluid jet or filament source and a pair of coaxial high voltage electrodes, in combination, comprise an electrical discharge system to produce radiation and, in particular, EUV radiation. The fluid jet source is composed of at least two serially connected reservoirs, a first reservoir into which a fluid, that can be either a liquid or a gas, can be fed at some pressure higher than atmospheric and a second reservoir maintained at a lower pressure than the first. The fluid is allowed to expand through an aperture into a high vacuum region between a pair of coaxial electrodes. This second expansion produces a narrow well-directed fluid jet whose size is dependent on the size and configuration of the apertures and the pressure used in the reservoir. At some time during the flow of the fluid filament, a high voltage pulse is applied to the electrodes to excite the fluid to form a plasma which provides the desired radiation; the wavelength of the radiation being determined by the composition of the fluid.
Detachment Energies of Spheroidal Particles from Fluid-Fluid Interfaces
Gary B. Davies; Timm Krüger; Peter V. Coveney; Jens Harting
2014-10-28
The energy required to detach a single particle from a fluid-fluid interface is an important parameter for designing certain soft materials, for example, emulsions stabilised by colloidal particles, colloidosomes designed for targeted drug delivery, and bio-sensors composed of magnetic particles adsorbed at interfaces. For a fixed particle volume, prolate and oblate spheroids attach more strongly to interfaces because they have larger particle-interface areas. Calculating the detachment energy of spheroids necessitates the difficult measurement of particle-liquid surface tensions, in contrast with spheres, where the contact angle suffices. We develop a simplified detachment energy model for spheroids which depends only on the particle aspect ratio and the height of the particle centre of mass above the fluid-fluid interface. We use lattice Boltzmann simulations to validate the model and provide quantitative evidence that the approach can be applied to simulate particle-stabilized emulsions, and highlight the experimental implications of this validation.
Fourier's Law for a Granular Fluid
James W. Dufty
2007-07-07
Newton' viscosity law for the momentum flux and Fourier's law for the heat flux define Navier-Stokes hydrodynamics for a simple, one component fluid. There is ample evidence that a hydrodynamic description applies as well to a mesoscopic granular fluid with the same form for Newton's viscosity law. However, theory predicts a qualitative difference for Fourier's law with an additional contribution from density gradients even at uniform temperature. The reasons for the absence of such terms for normal fluids are indicated, and a related microscopic explanation for their existence in granular fluids is presented.
$author.value
Current research topics by the Applied Math Faculty members include: Numerical analysis and applications of finite difference, finite element and spectral ...
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Dilley, Lorie
Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Dilley, Lorie
2013-01-01
Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.
DeRoos, B.G.; Downing, J.P. Jr.; Neal, M.P.
1995-11-14
An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitting for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container. 13 figs.
Electrokinetic micro-fluid mixer
Paul, Phillip H. (Livermore, CA); Rakestraw, David J. (Fremont, CA)
2000-01-01
A method and apparatus for efficiently and rapidly mixing liquids in a system operating in the creeping flow regime such as would be encountered in capillary-based systems. By applying an electric field to each liquid, the present invention is capable of mixing together fluid streams in capillary-based systems, where mechanical or turbulent stirring cannot be used, to produce a homogeneous liquid.
Standardization of Thermo-Fluid Modeling in Modelica.Fluid
Franke, Rudiger
2010-01-01
Thermo-Fluid Systems, Modelica 2003 Conference, Linköping,H. Tummescheit: The Modelica Fluid and Media Library forThermo-Fluid Pipe Networks, Modelica 2006 Conference, Vi-
Lenert, Andrej
2012-01-01
The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...
Forrest, G.T.
1992-04-07
This patent describes a product for use in the drilling of wells. It comprises a drilling fluid and peanut hulls ground to powder form added to the drilling fluid.
Johnston, Roger G. (Los Alamos, NM); Garcia, Anthony R. E. (Espanola, NM); Martinez, Ronald K. (Santa Cruz, NM)
2001-09-25
The invention includes a rotatable tool for collecting fluid through the wall of a container. The tool includes a fluid collection section with a cylindrical shank having an end portion for drilling a hole in the container wall when the tool is rotated, and a threaded portion for tapping the hole in the container wall. A passageway in the shank in communication with at least one radial inlet hole in the drilling end and an opening at the end of the shank is adapted to receive fluid from the container. The tool also includes a cylindrical chamber affixed to the end of the shank opposite to the drilling portion thereof for receiving and storing fluid passing through the passageway. The tool also includes a flexible, deformable gasket that provides a fluid-tight chamber to confine kerf generated during the drilling and tapping of the hole. The invention also includes a fluid extractor section for extracting fluid samples from the fluid collecting section.
Lagrangian perfect fluids and black hole mechanics
Vivek Iyer
1996-10-15
The first law of black hole mechanics (in the form derived by Wald), is expressed in terms of integrals over surfaces, at the horizon and spatial infinity, of a stationary, axisymmetric black hole, in a diffeomorphism invariant Lagrangian theory of gravity. The original statement of the first law given by Bardeen, Carter and Hawking for an Einstein-perfect fluid system contained, in addition, volume integrals of the fluid fields, over a spacelike slice stretching between these two surfaces. When applied to the Einstein-perfect fluid system, however, Wald's methods yield restricted results. The reason is that the fluid fields in the Lagrangian of a gravitating perfect fluid are typically nonstationary. We therefore first derive a first law-like relation for an arbitrary Lagrangian metric theory of gravity coupled to arbitrary Lagrangian matter fields, requiring only that the metric field be stationary. This relation includes a volume integral of matter fields over a spacelike slice between the black hole horizon and spatial infinity, and reduces to the first law originally derived by Bardeen, Carter and Hawking when the theory is general relativity coupled to a perfect fluid. We also consider a specific Lagrangian formulation for an isentropic perfect fluid given by Carter, and directly apply Wald's analysis. The resulting first law contains only surface integrals at the black hole horizon and spatial infinity, but this relation is much more restrictive in its allowed fluid configurations and perturbations than that given by Bardeen, Carter and Hawking. In the Appendix, we use the symplectic structure of the Einstein-perfect fluid system to derive a conserved current for perturbations of this system: this current reduces to one derived ab initio for this system by Chandrasekhar and Ferrari.
Miller, Jan D; Hupka, Jan; Aranowski, Robert
2012-11-20
A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.
Computational fluid dynamic applications
Chang, S.-L.; Lottes, S. A.; Zhou, C. Q.
2000-04-03
The rapid advancement of computational capability including speed and memory size has prompted the wide use of computational fluid dynamics (CFD) codes to simulate complex flow systems. CFD simulations are used to study the operating problems encountered in system, to evaluate the impacts of operation/design parameters on the performance of a system, and to investigate novel design concepts. CFD codes are generally developed based on the conservation laws of mass, momentum, and energy that govern the characteristics of a flow. The governing equations are simplified and discretized for a selected computational grid system. Numerical methods are selected to simplify and calculate approximate flow properties. For turbulent, reacting, and multiphase flow systems the complex processes relating to these aspects of the flow, i.e., turbulent diffusion, combustion kinetics, interfacial drag and heat and mass transfer, etc., are described in mathematical models, based on a combination of fundamental physics and empirical data, that are incorporated into the code. CFD simulation has been applied to a large variety of practical and industrial scale flow systems.
Ris-R-1453(EN) Optics and Fluid Dynamics
Risø-R-1453(EN) Optics and Fluid Dynamics Department Annual Progress Report for 2003 Edited by H May 2004 #12;Abstract The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) laser systems and optical materials, (2) optical diagnostics
Ris-R-1314(EN) Optics and Fluid Dynamics
Risø-R-1314(EN) Optics and Fluid Dynamics Department Annual Progress Report for 2001 Edited by H March 2002 #12;Abstract The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) laser systems and optical materials, (2) optical diagnostics
Ris-R-1399(EN) Optics and Fluid Dynamics
Risø-R-1399(EN) Optics and Fluid Dynamics Department Annual Progress Report for 2002 Edited by H May 2003 #12;Abstract The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) laser systems and optical materials, (2) optical diagnostics
Angel, S. Michael (Livermore, CA)
1989-01-01
Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.
Angel, S.M.
1987-02-27
Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.
Metalworking and machining fluids
Erdemir, Ali (Naperville, IL); Sykora, Frank (Caledon, ON, CA); Dorbeck, Mark (Brighton, MI)
2010-10-12
Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.
High speed imaging of transient non-Newtonian fluid phenomena
Gallup, Benjamin H. (Benjamin Hodsdon), 1982-
2004-01-01
In this thesis, I investigate the utility of high speed imaging for gaining scientific insight into the nature of short-duration transient fluid phenomena, specifically applied to the Kaye effect. The Kaye effect, noted ...
2005 Pearson Education South Asia Pte Ltd Applied Fluid Mechanics
Leu, Tzong-Shyng "Jeremy"
Sections 10.Minor Losses 11.Series Pipeline Systems 12.Parallel Pipeline Systems 13.Pump Selection is not circular. · An example is the shell-and-tube heat exchanger shown in Fig. 9.1, in which, for example, hot water from an industrial process may be flowing to the right inside the inner tube. #12;4 9. Velocity
2005 Pearson Education South Asia Pte Ltd Applied Fluid Mechanics
Leu, Tzong-Shyng "Jeremy"
, magnetic flowmeter, vortex flowmeter, and ultrasonic flowmeter. #12;3 15. Flow Measurement Â©2005 Pearson Flowmeter 6. Vortex Flowmeter 7. Magnetic Flowmeter 8. Ultrasonic Flowmeters 9. Positive-Displacement Meters system. Â· Describe four types of variable-head meters: the venturi tube, the flow nozzle, the orifice
Bush, John W.M.
, with the fluid sheet being the fish head and the tendrils its bones. Increasing the flow rate serves to broaden the fishbones. In the wake of the fluid fish, a regular array of drops obtains, the number and spacing of which
Hoff, Brian D.; Johnson, Kris William; Algrain, Marcelo C.; Akasam, Sivaprasad
2006-06-06
A method of controlling the delivery of fluid to an engine includes receiving a fuel flow rate signal. An electric pump is arranged to deliver fluid to the engine. The speed of the electric pump is controlled based on the fuel flow rate signal.
Jakaboski, Juan-Carlos (Albuquerque, NM); Hughs, Chance G. (Albuquerque, NM); Todd, Steven N. (Rio Rancho, NM)
2012-01-10
A fluid blade disablement (FBD) tool that forms both a focused fluid projectile that resembles a blade, which can provide precision penetration of a barrier wall, and a broad fluid projectile that functions substantially like a hammer, which can produce general disruption of structures behind the barrier wall. Embodiments of the FBD tool comprise a container capable of holding fluid, an explosive assembly which is positioned within the container and which comprises an explosive holder and explosive, and a means for detonating. The container has a concavity on the side adjacent to the exposed surface of the explosive. The position of the concavity relative to the explosive and its construction of materials with thicknesses that facilitate inversion and/or rupture of the concavity wall enable the formation of a sharp and coherent blade of fluid advancing ahead of the detonation gases.
Microscale fluid transport using optically controlled marangoni effect
Thundat, Thomas G (Knoxville, TN); Passian, Ali (Knoxville, TN); Farahi, Rubye H (Oak Ridge, TN)
2011-05-10
Low energy light illumination and either a doped semiconductor surface or a surface-plasmon supporting surface are used in combination for manipulating a fluid on the surface in the absence of any applied electric fields or flow channels. Precise control of fluid flow is achieved by applying focused or tightly collimated low energy light to the surface-fluid interface. In the first embodiment, with an appropriate dopant level in the semiconductor substrate, optically excited charge carriers are made to move to the surface when illuminated. In a second embodiment, with a thin-film noble metal surface on a dispersive substrate, optically excited surface plasmons are created for fluid manipulation. This electrode-less optical control of the Marangoni effect provides re-configurable manipulations of fluid flow, thereby paving the way for reprogrammable microfluidic devices.
Feedback regulated induction heater for a flowing fluid
Migliori, Albert (Santa Fe, NM); Swift, Gregory W. (Los Alamos, NM)
1985-01-01
A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable proportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005.degree. C. at a flow rate of 50 cm.sup.3 /second with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.
Feedback regulated induction heater for a flowing fluid
Migliori, A.; Swift, G.W.
1984-06-13
A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable porportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005/sup 0/C at a flow rate of 50 cm/sup 3//sec with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.
Z .Dynamics of Atmospheres and Oceans 28 1998 93105 Fluid transport by dipolar vortices
Flór, Jan-Bert
Z .Dynamics of Atmospheres and Oceans 28 1998 93105 Fluid transport by dipolar vortices I. Eames a forward, where C s1 for a Lamb's dipole. The results areM M applied to examine fluid transport by dipolar potential vorticity. q 1998 Elsevier Science B.V. All rights reserved. Keywords: Fluid transport; Dipoles
Computer Vision in Fluid Mechanics
Aminfar, AmirHessam
2015-01-01
layers," Journal of Fluid Mechanics, vol. 30, no. 04, pp.M. Princevac, "Fundamental fluid mechanics," 2014. C. W.Computer Vision in Fluid Mechanics A Thesis submitted in
Computer Vision in Fluid Mechanics
Aminfar, AmirHessam
2015-01-01
layers," Journal of Fluid Mechanics, vol. 30, no. 04, pp.Fundamental fluid mechanics," 2014. C. W. Enderlin, "MacroComputer Vision in Fluid Mechanics A Thesis submitted in
Multiphase fluid characterization system
Sinha, Dipen N.
2014-09-02
A measurement system and method for permitting multiple independent measurements of several physical parameters of multiphase fluids flowing through pipes are described. Multiple acoustic transducers are placed in acoustic communication with or attached to the outside surface of a section of existing spool (metal pipe), typically less than 3 feet in length, for noninvasive measurements. Sound speed, sound attenuation, fluid density, fluid flow, container wall resonance characteristics, and Doppler measurements for gas volume fraction may be measured simultaneously by the system. Temperature measurements are made using a temperature sensor for oil-cut correction.
Effective field theory of dissipative fluids
Crossley, Michael; Liu, Hong
2015-01-01
We develop an effective field theory for dissipative fluids which governs the dynamics of gapless modes associated to conserved quantities. The system is put in a curved spacetime and coupled to external sources for charged currents. The invariance of the hydrodynamical action under gauge symmetries and diffeomorphisms suggests a natural set of dynamical variables which provide a mapping between an emergent "fluid spacetime" and the physical spacetime. An essential aspect of our formulation is to identify the appropriate symmetries in the fluid spacetime. Our theory applies to nonlinear disturbances around a general density matrix. For a thermal density matrix, we require an additional Z_2 symmetry, to which we refer as the local KMS condition. This leads to the standard constraints of hydrodynamics, as well as a nonlinear generalization of the Onsager relations. It also leads to an emergent supersymmetry in the classical statistical regime, with a higher derivative version required for the full quantum regim...
Semans, J.P.; Johnson, P.G.; LeBoeuf, R.F. Jr.; Kromka, J.A.; Goron, R.H.; Hay, G.D.
1991-04-30
This invention, a trainer mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.
Circulating Fluid Bed Combustor
Fraley, L. D.; Do, L. N.; Hsiao, K. H.
1982-01-01
The circulating bed combustor represents an alternative concept of burning coal in fluid bed technology, which offers distinct advantages over both the current conventional fluidized bed combustion system and the pulverized coal boilers equipped...
Semans, Joseph P. (Uniontown, PA); Johnson, Peter G. (Pittsburgh, PA); LeBoeuf, Jr., Robert F. (Clairton, PA); Kromka, Joseph A. (Idaho Falls, ID); Goron, Ronald H. (Connellsville, PA); Hay, George D. (Venetia, PA)
1993-01-01
A trainer, mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.
Barran, Brian Arthur
2006-08-16
physically based rendering method known as photon mapping is used in conjunction with ray tracing to generate realistic images of water with caustics. These methods were implemented as a C++ application framework capable of simulating and rendering fluid in a...
West, Phillip B. (Idaho Falls, ID)
2006-01-17
A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.
Oborny, Michael C. (Albuquerque, NM); Paul, Phillip H. (Livermore, CA); Hencken, Kenneth R. (Pleasanton, CA); Frye-Mason, Gregory C. (Cedar Crest, NM); Manginell, Ronald P. (Albuquerque, NM)
2001-01-01
A valve for controlling fluid flows. This valve, which includes both an actuation device and a valve body provides: the ability to incorporate both the actuation device and valve into a unitary structure that can be placed onto a microchip, the ability to generate higher actuation pressures and thus control higher fluid pressures than conventional microvalves, and a device that draws only microwatts of power. An electrokinetic pump that converts electric potential to hydraulic force is used to operate, or actuate, the valve.
Lecture notes Introductory fluid mechanics
Malham, Simon J.A.
Lecture notes Introductory fluid mechanics Simon J.A. Malham Simon J.A. Malham (15th September 2014 of fluid mechanics and along the way see lots of interesting applications. 2 Fluid flow, the Continuum are generally incompressible--a feature essential to all modern car braking mechanisms. Fluids can be further
MQSN -Fluid queues Werner Scheinhardt
Boucherie, Richard J.
of Markov fluid sources is again Markov fluid. This idea can be formalized using Kronecker sums. #12;Burst information captured by number of sources that is on! #12;Burst-level models: Markov fluid Special case: sources are identical, for instance two-state on-off Markov-fluid sources. All state information captured
Applied Mathematics Department of Applied Mathematics
Applied Mathematics Department of Applied Mathematics 208 Engineering 1 Building 10 W. 32nd St, Graduate Studies: Xiaofan Li The Department of Applied Mathematics puts mathe- matics to work solving, such as how to construct methods for multi-criteria decision making (requiring discrete mathematics
Fluid driven reciprocating apparatus
Whitehead, J.C.
1997-04-01
An apparatus is described comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached. 13 figs.
Fluid driven recipricating apparatus
Whitehead, John C. (Davis, CA)
1997-01-01
An apparatus comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached.
Block, J.
1985-09-17
An aqueous completion or workover fluid for oil or gas wells having at least two solid components. One component is a hydroxy containing aluminum compound represented by the formula AlO(OH).xH/sub 2/O. The second component is a fluid loss control agent which can be either a cross-linked polyvinyl alcohol or a cross-linked hydroxyalkyl cellulose reaction product. An acid soluble weighting agent can be added for wells having higher down hole pressures. Examples of the weighting agents include iron carbonates, iron oxides, calcium carbonates, dolomite, sodium or calcium chloride, zinc bromide and calcium bromide. After use, the fluid can be displaced from the well with acid, e.g. 15% HCl, and the cake previously deposited on the bore-hole wall is dissolved by the acid so that no damaging residue remains.
Gray, Harold E. (Las Vegas, NV); McLaurin, Felder M. (Las Vegas, NV); Ortiz, Monico (Las Vegas, NV); Huth, William A. (Las Vegas, NV)
1996-01-01
A device or system for monitoring for the presence of leaks from a hazardous fluid is disclosed which uses two electrodes immersed in deionized water. A gas is passed through an enclosed space in which a hazardous fluid is contained. Any fumes, vapors, etc. escaping from the containment of the hazardous fluid in the enclosed space are entrained in the gas passing through the enclosed space and transported to a closed vessel containing deionized water and two electrodes partially immersed in the deionized water. The electrodes are connected in series with a power source and a signal, whereby when a sufficient number of ions enter the water from the gas being bubbled through it (indicative of a leak), the water will begin to conduct, thereby allowing current to flow through the water from one electrode to the other electrode to complete the circuit and activate the signal.
Universal fluid droplet ejector
Lee, Eric R. (Redwood City, CA); Perl, Martin L. (Palo Alto, CA)
1999-08-24
A droplet generator comprises a fluid reservoir having a side wall made of glass or quartz, and an end cap made from a silicon plate. The end cap contains a micromachined aperture through which the fluid is ejected. The side wall is thermally fused to the end cap, and no adhesive is necessary. This means that the fluid only comes into contact with the side wall and the end cap, both of which are chemically inert. Amplitudes of drive pulses received by reservoir determine the horizontal displacements of droplets relative to the ejection aperture. The drive pulses are varied such that the dropper generates a two-dimensional array of vertically-falling droplets. Vertical and horizontal interdroplet spacings may be varied in real time. Applications include droplet analysis experiments such as Millikan fractional charge searches and aerosol characterization, as well as material deposition applications.
Universal fluid droplet ejector
Lee, E.R.; Perl, M.L.
1999-08-24
A droplet generator comprises a fluid reservoir having a side wall made of glass or quartz, and an end cap made from a silicon plate. The end cap contains a micromachined aperture through which the fluid is ejected. The side wall is thermally fused to the end cap, and no adhesive is necessary. This means that the fluid only comes into contact with the side wall and the end cap, both of which are chemically inert. Amplitudes of drive pulses received by reservoir determine the horizontal displacements of droplets relative to the ejection aperture. The drive pulses are varied such that the dropper generates a two-dimensional array of vertically-falling droplets. Vertical and horizontal inter-droplet spacings may be varied in real time. Applications include droplet analysis experiments such as Millikan fractional charge searches and aerosol characterization, as well as material deposition applications. 8 figs.
Reversible shear thickening at low shear rates of electrorheological fluids under electric fields
Yu Tian; Minliang Zhang; Jile Jiang; Noshir Pesika; Hongbo Zeng; Jacob Israelachvili; Yonggang Meng; Shizhu Wen
2010-08-24
Shear thickening is a phenomenon of significant viscosity increase of colloidal suspensions. While electrorheological (ER) fluids can be turned into a solid-like material by applying an electric field, their shear strength is widely represented by the attractive electrostatic interaction between ER particles. By shearing ER fluids between two concentric cylinders, we show a reversible shear thickening of ER fluids above a low critical shear rate (electric field strength (>100 V/mm), which could be characterized by a modified Mason number. Shear thickening and electrostatic particle interaction-induced inter-particle friction forces is considered to be the real origin of the high shear strength of ER fluids, while the applied electric field controls the extent of shear thickening. The electric field-controlled reversible shear thickening has implications for high-performance ER/magnetorheological (MR) fluid design, clutch fluids with high friction forces triggered by applying local electric field, other field-responsive materials and intelligent systems.
Fluid Mechanical and Electrical Fluctuation Forces in Colloids
D. Drosdoff; A. Widom
2004-10-06
Fluctuations in fluid velocity and fluctuations in electric fields may both give rise to forces acting on small particles in colloidal suspensions. Such forces in part determine the thermodynamic stability of the colloid. At the classical statistical thermodynamic level, the fluid velocity and electric field contributions to the forces are comparable in magnitude. When quantum fluctuation effects are taken into account, the electric fluctuation induced van der Waals forces dominate those induced by purely fluid mechanical motions. The physical principles are applied in detail for the case of colloidal particle attraction to the walls of the suspension container and more briefly for the case of forces between colloidal particles.
Cosmological fluctuations of a random field and radiation fluid
Bastero-Gil, Mar [Departamento de Física Teórica y del Cosmos, Campus de Fuentenueva, Universidad de Granada, Granada, 18071 (Spain); Berera, Arjun [SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3JZ (United Kingdom); Moss, Ian G. [School of Mathematics and Statistics, Newcastlle University, Newcastle upon Tyne, NE1 7RU (United Kingdom); Ramos, Rudnei O., E-mail: mbg@ugr.es, E-mail: ab@ph.ed.ac.uk, E-mail: ian.moss@ncl.ac.uk, E-mail: rudnei@uerj.br [Departamento de Física Teórica, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20550-013 Brazil (Brazil)
2014-05-01
A generalization of the random fluid hydrodynamic fluctuation theory due to Landau and Lifshitz is applied to describe cosmological fluctuations in systems with radiation and scalar fields. The viscous pressures, parametrized in terms of the bulk and shear viscosity coefficients, and the respective random fluctuations in the radiation fluid are combined with the stochastic and dissipative scalar evolution equation. This results in a complete set of equations describing the perturbations in both scalar and radiation fluids. These derived equations are then studied, as an example, in the context of warm inflation. Similar treatments can be done for other cosmological early universe scenarios involving thermal or statistical fluctuations.
Ultrasonic fluid densitometry and densitometer
Greenwood, Margaret S. (Richland, WA); Lail, Jason C. (Conover, NC)
1998-01-01
The present invention is an ultrasonic fluid densitometer that uses a material wedge having an acoustic impedance that is near the acoustic impedance of the fluid, specifically less than a factor of 11 greater than the acoustic impedance of the fluid. The invention also includes a wedge having at least two transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.
Ultrasonic fluid densitometry and densitometer
Greenwood, M.S.; Lail, J.C.
1998-01-13
The present invention is an ultrasonic fluid densitometer that uses a material wedge having an acoustic impedance that is near the acoustic impedance of the fluid, specifically less than a factor of 11 greater than the acoustic impedance of the fluid. The invention also includes a wedge having at least two transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.
MECH 386 INDUSTRIAL FLUID MECHANICS INDUSTRIAL FLUID MECHANICS
Phani, A. Srikantha
technologies - Wind turbine - Wave energy (Wells turbine) - Tidal power 7. Flow in porous media - Darcy's law 8 fluid-mechanics research and its application, as well as the technology associated with fluid flow
TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID...
TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION GAS CHEMISTRY Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings:...
EXPERIMENTAL BUBBLE FORMATION IN A LARGE SCALE SYSTEM FOR NEWTONIAN AND NONNEWTONIAN FLUIDS
Leishear, R; Michael Restivo, M
2008-06-26
The complexities of bubble formation in liquids increase as the system size increases, and a photographic study is presented here to provide some insight into the dynamics of bubble formation for large systems. Air was injected at the bottom of a 28 feet tall by 30 inch diameter column. Different fluids were subjected to different air flow rates at different fluid depths. The fluids were water and non-Newtonian, Bingham plastic fluids, which have yield stresses requiring an applied force to initiate movement, or shearing, of the fluid. Tests showed that bubble formation was significantly different in the two types of fluids. In water, a field of bubbles was formed, which consisted of numerous, distributed, 1/4 to 3/8 inch diameter bubbles. In the Bingham fluid, large bubbles of 6 to 12 inches in diameter were formed, which depended on the air flow rate. This paper provides comprehensive photographic results related to bubble formation in these fluids.
Relativistic viscoelastic fluid mechanics
Masafumi Fukuma; Yuho Sakatani
2011-09-01
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski spacetime become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
Supersymmetric Fluid Mechanics
R. Jackiw; A. P. Polychronakos
2000-07-17
When anticommuting Grassmann variables are introduced into a fluid dynamical model with irrotational velocity and no vorticity, the velocity acquires a nonvanishing curl and the resultant vorticity is described by Gaussian potentials formed from the Grassmann variables. Upon adding a further specific interaction with the Grassmann degrees of freedom, the model becomes supersymmetric.
Development of an analytical model for organic-fluid fouling
Panchal, C.B.; Watkinson, A.P.
1994-10-01
The research goal of this project is to determine ways to effectively mitigate fouling in organic fluids: hydrocarbons and derived fluids. The fouling research focuses on the development of methodology for determining threshold conditions for fouling. Initially, fluid containing chemicals known to produce foulant is analyzed; subsequently, fouling of industrial fluids is investigated. The fouling model developed for determining the effects of physical parameters is the subject of this report. The fouling model is developed on the premise that the chemical reaction for generation of precursor can take place in the bulk fluid, in the thermal-boundary layer, or at the fluid/wall interface, depending upon the interactive effects of fluid dynamics, heat and mass transfer, and the controlling chemical reaction. In the analysis, the experimental data are examined for fouling deposition of polyperoxide produced by autoxidation of indene in kerosene. The effects of fluid and wall temperatures for two flow geometries are analyzed. The results show that the relative effects of physical parameters on the fouling rate differ for the three fouling mechanisms. Therefore, to apply the closed-flow-loop data to industrial conditions, the controlling mechanism must be identified.
Magnetically stimulated fluid flow patterns
Martin, Jim; Solis, Kyle
2014-03-06
Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.
Fluid Flow Modeling in Fractures
Sarkar, Sudipta
2004-01-01
In this paper we study fluid flow in fractures using numerical simulation and address the challenging issue of hydraulic property characterization in fractures. The methodology is based on Computational Fluid Dynamics, ...
Magnetically stimulated fluid flow patterns
Martin, Jim; Solis, Kyle
2014-08-06
Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.
Computer Vision in Fluid Mechanics
Aminfar, AmirHessam
2015-01-01
Laminar flows are usually unidirectional flows, which the fluidlaminar flows ? Streak line: Streak line is locus of fluid
Memory Effects and Transport Coefficients for Non-Newtonian Fluids
T. Kodama; T. Koide
2008-12-22
We discuss the roles of viscosity in relativistic fluid dynamics from the point of view of memory effects. Depending on the type of quantity to which the memory effect is applied, different terms appear in higher order corrections. We show that when the memory effect applies on the extensive quantities, the hydrodynamic equations of motion become non-singular. We further discuss the question of memory effect in the derivation of transport coefficients from a microscopic theory. We generalize the application of the Green-Kubo-Nakano (GKN) to calculate transport coefficients in the framework of projection operator formalism, and derive the general formula when the fluid is non-Newtonian.
Galilean relativistic fluid mechanics
Ván, Péter
2015-01-01
Single component Galilean-relativistic (nonrelativistic) fluids are treated independently of reference frames. The basic fields are given, their balances, thermodynamic relations and the entropy production is calculated. The usual relative basic fields, the mass, momentum and energy densities, the diffusion current density, the pressure tensor and the heat flux are the time- and spacelike components of the third order mass-momentum-energy density tensor according to a velocity field. The transformation rules of the basic fields are derived and prove that the non-equilibrium thermodynamic background theory, that is the Gibbs relation, extensivity condition and the entropy production is absolute, that is independent of the reference frame and also of the fluid velocity. --- Az egykomponensu Galilei-relativisztikus (azaz nemrelativisztikus) disszipativ folyadekokat vonatkoztatasi rendszertol fuggetlenul targyaljuk. Megadjuk az alapmennyisegeket, ezek merlegeit, a termodinamikai osszefuggeseket es kiszamoljuk az ...
Oscillating fluid power generator
Morris, David C
2014-02-25
A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.
Hall, David R.; Fox, Joe; Garner, Kory
2007-01-23
A drilling fluid filter for placement within a bore wall of a tubular drill string component comprises a perforated receptacle with an open end and a closed end. A hanger for engagement with the bore wall is mounted at the open end of the perforated receptacle. A mandrel is adjacent and attached to the open end of the perforated receptacle. A linkage connects the mandrel to the hanger. The linkage may be selected from the group consisting of struts, articulated struts and cams. The mandrel operates on the hanger through the linkage to engage and disengage the drilling fluid filter from the tubular drill string component. The mandrel may have a stationary portion comprising a first attachment to the open end of the perforated receptacle and a telescoping adjustable portion comprising a second attachment to the linkage. The mandrel may also comprise a top-hole interface for top-hole equipment.
Mathematical thermodynamics of fluids Eduard Feireisl
KrejcÃ, Pavel
Mathematical thermodynamics of fluids Eduard Feireisl Institute of Mathematics, Academy of Sciences Agreement 320078 CIME courses, Cetraro 29 June - 4 July 2015 Eduard Feireisl Thermodynamics of fluids #12 Thermodynamics of fluids #12;Fluids at equilibrium Thermodynamic state variables mass density
Downhole Fluid Analyzer Development
Bill Turner
2006-11-28
A novel fiber optic downhole fluid analyzer has been developed for operation in production wells. This device will allow real-time determination of the oil, gas and water fractions of fluids from different zones in a multizone or multilateral completion environment. The device uses near infrared spectroscopy and induced fluorescence measurement to unambiguously determine the oil, water and gas concentrations at all but the highest water cuts. The only downhole components of the system are the fiber optic cable and windows. All of the active components--light sources, sensors, detection electronics and software--will be located at the surface, and will be able to operate multiple downhole probes. Laboratory testing has demonstrated that the sensor can accurately determine oil, water and gas fractions with a less than 5 percent standard error. Once installed in an intelligent completion, this sensor will give the operating company timely information about the fluids arising from various zones or multilaterals in a complex completion pattern, allowing informed decisions to be made on controlling production. The research and development tasks are discussed along with a market analysis.
Acoustic concentration of particles in fluid flow
Ward, Michael D. (Los Alamos, NM); Kaduchak, Gregory (Los Alamos, NM)
2010-11-23
An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.
It's The Fluids SEG Honorary Lecture
T.P. Water Butane CO2 #12;Fluid Density 800 1000 1200FluidDensity[kg/m3] Brine CO2 0 2 4 6 8 10 0 200 400 600 Fluid Pressure [MPa] FluidDensity[kg/m Butane CO2 #12;Fluid Modulus 2000 2500 3000 FluidModulus[MPa] Brine 0 2 4 6 8 10 0 500 1000 1500 Fluid Pressure [MPa] FluidModulus[MPa] Butane CO2 #12;GENERAL PHASE
MATHMATICS & APPLIED STATISTICS
Frey, Jesse C.
MATHMATICS & APPLIED STATISTICS Graduate Studies in Build Your Future with Graduate Study in Mathematics or Applied Statistics Our graduate programs can help you advance your career in education will deepen your knowledge and prepare you for further study. The Master of Science in Applied Statistics
Hybrid models for complex fluids with multipolar interactions
Cesare Tronci
2011-11-06
Multipolar order in complex fluids is described by statistical correlations. This paper presents a novel dynamical approach, which accounts for microscopic effects on the order parameter space. Indeed, the order parameter field is replaced by a statistical distribution function that is carried by the fluid flow. Inspired by Doi's model of colloidal suspensions, the present theory is derived from a hybrid moment closure for Yang-Mills Vlasov plasmas. This hybrid formulation is constructed under the assumption that inertial effects dominate over dissipative phenomena, so that the total energy is conserved. After presenting the basic geometric properties of the theory, the effect of Yang-Mills fields is considered and a direct application is presented to magnetized fluids with quadrupolar order (spin nematic phases). Hybrid models are also formulated for complex fluids with symmetry breaking. For the special case of liquid crystals, the moment method can be applied to the hybrid formulation to study to the dynamics of cubatic phases.
System for concentrating and analyzing particles suspended in a fluid
Fiechtner, Gregory J. (Bethesda, MD); Cummings, Eric B. (Livermore, CA); Singh, Anup K. (Danville, CA)
2011-04-26
Disclosed is a device for separating and concentrating particles suspended in a fluid stream by using dielectrophoresis (DEP) to trap and/or deflect those particles as they migrate through a fluid channel. The method uses fluid channels designed to constrain a liquid flowing through it to uniform electrokinetic flow velocities. This behavior is achieved by connecting deep and shallow sections of channels, with the channel depth varying abruptly along an interface. By careful design of abrupt changes in specific permeability at the interface, an abrupt and spatially uniform change in electrokinetic force can be selected. Because these abrupt interfaces also cause a sharp gradient in applied electric fields, a DEP force also can be established along the interface. Depending on the complex conductivity of the suspended particles and the immersion liquid, the DEP force can controllably complement or oppose the local electrokinetic force transporting the fluid through the channel allowing for manipulation of particles suspended in the transporting liquid.
CX-010568: Categorical Exclusion Determination
Office of Energy Efficiency and Renewable Energy (EERE)
Harvard University- Novel Slippery Coatings for Extreme Energy-Savings Associated with Fluid Handling in Oil Pipelines and Water Circulation Systems CX(s) Applied: B3.6 Date: 04/01/2013 Location(s): Massachusetts, Pennsylvania Offices(s): Advanced Research Projects Agency-Energy
CX-009855: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Development of Geographical Information System-Based Tool for Optimized Fluid Management in Shale Gas Operations CX(s) Applied: A9, A11, B3.6 Date: 01/18/2013 Location(s): Colorado Offices(s): National Energy Technology Laboratory
CX-008560: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Small Scale Electrical Power Generation from Heat Co-produced in Geothermal Fluids CX(s) Applied: A9, B3.6, B5.2, B5.15 Date: 05/31/2012 Location(s): Nevada Offices(s): Golden Field Office
CX-008601: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Small Scale Electrical Power Generation from Heat Co-Produced in Geothermal Fluids: Mining Operation CX(s) Applied: B3.1, B5.15 Date: 07/19/2012 Location(s): Nevada, Nevada Offices(s): Golden Field Office
Null Fluids - A New Viewpoint of Galilean Fluids
Banerjee, Nabamita; Jain, Akash
2015-01-01
This article is a detailed version of our short letter `On equilibrium partition function for non-relativistic fluid' [arXiv:1505.05677] extended to include an anomalous $U(1)$ symmetry. We construct a relativistic system, which we call null fluid and show that it is in one-to-one correspondence with a Galilean fluid living in one lower dimension. The correspondence is based on light cone reduction, which is known to reduce the Poincare symmetry of a theory to Galilean in one lower dimension. We show that the proposed null fluid and the corresponding Galilean fluid have exactly same symmetries, thermodynamics, constitutive relations, and equilibrium partition to all orders in derivative expansion. We also devise a mechanism to introduce $U(1)$ anomaly in even dimensional Galilean theories using light cone reduction, and study its effect on the constitutive relations of a Galilean Fluid.
Null Fluids - A New Viewpoint of Galilean Fluids
Nabamita Banerjee; Suvankar Dutta; Akash Jain
2015-09-15
This article is a detailed version of our short letter `On equilibrium partition function for non-relativistic fluid' [arXiv:1505.05677] extended to include an anomalous $U(1)$ symmetry. We construct a relativistic system, which we call null fluid and show that it is in one-to-one correspondence with a Galilean fluid living in one lower dimension. The correspondence is based on light cone reduction, which is known to reduce the Poincare symmetry of a theory to Galilean in one lower dimension. We show that the proposed null fluid and the corresponding Galilean fluid have exactly same symmetries, thermodynamics, constitutive relations, and equilibrium partition to all orders in derivative expansion. We also devise a mechanism to introduce $U(1)$ anomaly in even dimensional Galilean theories using light cone reduction, and study its effect on the constitutive relations of a Galilean Fluid.
Notes 09. Fluid inertia and turbulence in fluid film bearings
San Andres, Luis
2009-01-01
. Use the program to observe the effects of fluid inertia in the pressure field (shifting and increase/decrease) and the resulting forces. In addition, derive conclusions from the effects of the Gumbel cavitation condition on the fluid film forces.... Question to ponder: Does the physical modeling of liquid cavitation in superlaminar thin film flows must be revised? (Inertialess) Turbulent flow model for short length journal bearings Fluid inertia effects are not that important in a hydrodynamic...
M. Bahrami Fluid Mechanics (S 09) Fluid statics 9 Archimedes's 1st
Bahrami, Majid
M. Bahrami Fluid Mechanics (S 09) Fluid statics 9 Buoyancy Archimedes's 1st laws #12; M. Bahrami Fluid Mechanics (S 09) Fluid statics 10 Fig. 11: Archimedes second law. Bahrami Fluid Mechanics (S 09) Fluid statics 11 Pressure distribution in rigidbody motion Fluids
Under consideration for publication in J. Fluid Mech. 1 Evaporation and combustion
fluid can be a fire hazard. A leak of liquid fuel at high pressure in industrial applications mayUnder consideration for publication in J. Fluid Mech. 1 Evaporation and combustion of thin films of liquid fuels By J. ARMEND ' AR I Z y AND M. MATALON Engineering Sciences and Applied Mathematics, Mc
Optics and Fluid Dynamics Ris-R-1227(EN) Annual Progress Report for 2000
Optics and Fluid Dynamics Risø-R-1227(EN) Department Annual Progress Report for 2000 Edited by S;2 Risø-R-1227(EN) Abstract The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) optical materials, (2) optical diagnostics and information
Optics and Fluid Dynamics Ris-R-1157(EN) Annual Progress Report for 1999
Optics and Fluid Dynamics Risø-R-1157(EN) Department Annual Progress Report for 1999 Edited by S;2 Risø-R-1157(EN) Abstract The Optics and Fluid Dynamics Department performs basic and applied research within the three programmes: (1) optical materials, (2) optical diagnostics and information processing
A FLUID-CELL INTERACTION AND ADHESION ALGORITHM FOR TISSUE-COATING OF CARDIOVASCULAR IMPLANTS
Canic, Suncica
A FLUID-CELL INTERACTION AND ADHESION ALGORITHM FOR TISSUE-COATING OF CARDIOVASCULAR IMPLANTS JIAN. In this manuscript we develop a fluid-cell interaction and adhesion algorithm applied to modeling the cell coating parameters and adhesion parameters on the generation of a stable and strong tissue coating of artificial
Global weak solutions to magnetic fluid flows with nonlinear Maxwell-Cattaneo heat transfer law
Boyer, Edmond
Global weak solutions to magnetic fluid flows with nonlinear Maxwell-Cattaneo heat transfer law F transfer in a magnetic fluid flow under the action of an applied magnetic field. Instead of the usual heat-Cattaneo law, heat transfer, magnetic field, magnetization AMS subject classifications: 76N10, 35Q35. 1
Ultrasonic fluid quality sensor system
Gomm, Tyler J. (Meridian, ID); Kraft, Nancy C. (Idaho Falls, ID); Phelps, Larry D. (Pocatello, ID); Taylor, Steven C. (Idaho Falls, ID)
2002-10-08
A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.
Ultrasonic Fluid Quality Sensor System
Gomm, Tyler J. (Meridian, ID); Kraft, Nancy C. (Idaho Falls, ID); Phelps, Larry D. (Pocatello, ID); Taylor, Steven C. (Idaho Falls, ID)
2003-10-21
A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.
Utilizing Standing Ultrasonic Waves to Harvest Microalgae from a Fluid Suspension
Loveless, Kolin, 1986-
2010-07-14
timeconsuming, and centrifugation requires significant energy input and frequent repairs. Here, the ultrasonic cell separation techniques employed by Jeremy J. Hawkes and others are applied to the specific case of separating microalgae from a fluid medium...
Blaedel, K.L.; Lord, S.C.; Murray, I.
1986-07-17
A passive fluid pressure relief and check valve allows the relief pressure to be slaved to a reference pressure independently of the exhaust pressure. The pressure relief valve is embodied by a submerged vent line in a sealing fluid, the relief pressure being a function of the submerged depth. A check valve is embodied by a vertical column of fluid (the maximum back pressure being a function of the height of the column of fluid). The pressure is vented into an exhaust system which keeps the exhaust out of the area providing the reference pressure.
Propulsion in a viscoelastic fluid
Eric Lauga
2007-03-21
Flagella beating in complex fluids are significantly influenced by viscoelastic stresses. Relevant examples include the ciliary transport of respiratory airway mucus and the motion of spermatozoa in the mucus-filled female reproductive tract. We consider the simplest model of such propulsion and transport in a complex fluid, a waving sheet of small amplitude free to move in a polymeric fluid with a single relaxation time. We show that, compared to self-propulsion in a Newtonian fluid occurring at a velocity U_N, the sheet swims (or transports fluid) with velocity U / U_N = [1+De^2 (eta_s)/(eta) ]/[1+De^2], where eta_s is the viscosity of the Newtonian solvent, eta is the zero-shear-rate viscosity of the polymeric fluid, and De is the Deborah number for the wave motion, product of the wave frequency by the fluid relaxation time. Similar expressions are derived for the rate of work of the sheet and the mechanical efficiency of the motion. These results are shown to be independent of the particular nonlinear constitutive equations chosen for the fluid, and are valid for both waves of tangential and normal motion. The generalization to more than one relaxation time is also provided. In stark contrast with the Newtonian case, these calculations suggest that transport and locomotion in a non-Newtonian fluid can be conveniently tuned without having to modify the waving gait of the sheet but instead by passively modulating the material properties of the liquid.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
ARC Privacy and Security Notice Skip over navigation Search the JLab Site Applied Research Center Please upgrade your browser. This site's design is only visible in a graphical...
The following sample of the publications has been made available to you by members of the Applied faculty through their personal homepages. Prof. Zhiqiang
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
1 Applied Modern Physics From the first bionic eye to airport scanners that detect liquid explosives, our expertise in developing advanced diagnostics results in real-world...
Applied MathCAD Journal, Volume 2, Number 3, 1993 Lubrication Flow in a Narrow Gap
Kostic, Milivoje M.
Applied MathCAD Journal, Volume 2, Number 3, 1993 Lubrication Flow in a Narrow Gap by M. Kostic in a narrow gap is a very characteristic problem in Fluid Mechanics, or more specifically in lubrication is reduced if a viscous fluid (lubricant) with viscosity Jl is allowed to move through a narrow but variable
Chakrabarti, Brato
2015-01-01
This work explores a simple model of a slender, flexible structure in a uniform flow, providing analytical solutions for the translating, axially flowing equilibria of strings subjected to a uniform body force and drag forces linear in the velocities. The classical catenaries are extended to a five-parameter family of curves. A sixth parameter affects the tension in the curves. Generic configurations are planar, represented by a single first order equation for the tangential angle. The effects of varying parameters on representative shapes, orbits in angle-curvature space, and stress distributions are shown. As limiting cases, the solutions include configurations corresponding to "lariat chains" and the towing, reeling, and sedimentation of flexible cables in a highly viscous fluid. Regions of parameter space corresponding to infinitely long, semi-infinite, and finite length curves are delineated. Almost all curves subtend an angle less than $\\pi$ radians, but curious special cases with doubled or infinite ra...
INTRODUCTION APPLIED GEOPHYSICS
Merriam, James
GEOL 384.3 INTRODUCTION TO APPLIED GEOPHYSICS OUTLINE INTRODUCTION TO APPLIED GEOPHYSICS GEOL 384 unknowns; the ones we don't know we don't know. And if one looks throughout the history of geophysics he didn't really say geophysics. He said, " ... our country and other free countries ...". But I am
Applied Music Curriculum Guide
Kearfott, R. Baker
1 Applied Music Curriculum Guide The University of Louisiana at Lafayette School of Music #12;2 Revised Spring 2009 UNIVERSITY OF LOUISIANA, Lafayette SCHOOL OF MUSIC APPLIED MUSIC CURRICULUM GUIDE Dr. Garth Alper, Director DEGREES OFFERED Bachelor of Music with emphases in Performance, Theory
Stabilizing Fluid-Fluid Displacements in Porous Media Through Wettability Alteration
Trojer, Mathias
We study experimentally how wettability impacts fluid-fluid-displacement patterns in granular media. We inject a low-viscosity fluid (air) into a thin bed of glass beads initially saturated with a more-viscous fluid (a ...
Course: Numerical Simulation in Applied Geophysics. From the Mesoscale to the Macroscale
Santos, Juan
Course: Numerical Simulation in Applied Geophysics. From the Mesoscale to the Macroscale Professor variations in the fluid and solid matrix properties, fine layering, frac- tures and craks at the mesoscale
Master Applied Physics 2014 -2015 Research list (R-list)
Nuclear Chemistry 2 6 RST CH3782 Chemistry of the Nuclear Fuel Cycle 2 3 RST WB4422 Thermal Power Plants 4 Radiative Heat Transfer 1+2 6 TPFF CH3053 Applied Transport Phenomena 2 6 TPFF WB1428 Computational Fluid+2 6 QN AP3242 Particle Radiotherapy 3 3 RST AP3322 (*) Computational Neutron Transport for Nuclear
Molecular Dynamics Simulation of Binary Fluid in a Nanochannel
Mullick, Shanta; Ahluwalia, P. K. [Department of Physics, Himachal Pradesh University, SummerHill, Shimla - 171005 (India); Pathania, Y. [Chitkara University, Atal Shiksha Kunj, Atal Nagar, Barotiwala, Dist Solan, Himachal Pradesh - 174103 (India)
2011-12-12
This paper presents the results from a molecular dynamics simulation of binary fluid (mixture of argon and krypton) in the nanochannel flow. The computational software LAMMPS is used for carrying out the molecular dynamics simulations. Binary fluids of argon and krypton with varying concentration of atom species were taken for two densities 0.65 and 0.45. The fluid flow takes place between two parallel plates and is bounded by horizontal walls in one direction and periodic boundary conditions are imposed in the other two directions. To drive the flow, a constant force is applied in one direction. Each fluid atom interacts with other fluid atoms and wall atoms through Week-Chandler-Anderson (WCA) potential. The velocity profile has been looked at for three nanochannel widths i.e for 12{sigma}, 14{sigma} and 16{sigma} and also for the different concentration of two species. The velocity profile of the binary fluid predicted by the simulations agrees with the quadratic shape of the analytical solution of a Poiseuille flow in continuum theory.
Sawa Manoff
2002-05-07
The method of Lagrangians with covariant derivative (MLCD) is applied to a special type of Lagrangian density depending on scalar and vector fields as well as on their first covariant derivatives. The corresponding Euler-Lagrange's equations and energy-momentum tensors are found on the basis of the covariant Noether's identities.
The Flow of Newtonian Fluids in Axisymmetric Corrugated Tubes
Taha Sochi
2010-06-08
This article deals with the flow of Newtonian fluids through axially-symmetric corrugated tubes. An analytical method to derive the relation between volumetric flow rate and pressure drop in laminar flow regimes is presented and applied to a number of simple tube geometries of converging-diverging nature. The method is general in terms of fluid and tube shape within the previous restrictions. Moreover, it can be used as a basis for numerical integration where analytical relations cannot be obtained due to mathematical difficulties.
The Flow of Newtonian Fluids in Axisymmetric Corrugated Tubes
Sochi, Taha
2010-01-01
This article deals with the flow of Newtonian fluids through axially-symmetric corrugated tubes. An analytical method to derive the relation between volumetric flow rate and pressure drop in laminar flow regimes is presented and applied to a number of simple tube geometries of converging-diverging nature. The method is general in terms of fluid and tube shape within the previous restrictions. Moreover, it can be used as a basis for numerical integration where analytical relations cannot be obtained due to mathematical difficulties.
Relativistic Viscous Fluid Description of Microscopic Black Hole Wind
J. I. Kapusta
2001-05-25
Microscopic black holes explode with their temperature varying inversely as their mass. Such explosions would lead to the highest temperatures in the present universe, all the way to the Planck energy. Whether or not a quasi-stationary shell of matter undergoing radial hydrodynamic expansion surrounds such black holes is been controversial. In this paper relativistic viscous fluid equations are applied to the problem. It is shown that a self-consistent picture emerges of a fluid just marginally kept in local thermal equilibrium; viscosity is a crucial element of the dynamics.
Fluid equations in the presence of electron cyclotron current drive
Jenkins, Thomas G.; Kruger, Scott E. [Tech-X Corporation, 5621 Arapahoe Avenue, Boulder, Colorado 80303 (United States)
2012-12-15
Two-fluid equations, which include the physics imparted by an externally applied radiofrequency source near electron cyclotron resonance, are derived in their extended magnetohydrodynamic forms using the formalism of Hegna and Callen [Phys. Plasmas 16, 112501 (2009)]. The equations are compatible with the closed fluid/drift-kinetic model developed by Ramos [Phys. Plasmas 17, 082502 (2010); 18, 102506 (2011)] for fusion-relevant regimes with low collisionality and slow dynamics, and they facilitate the development of advanced computational models for electron cyclotron current drive-induced suppression of neoclassical tearing modes.
QUALITATIVE REASONING ABOUT FLUIDS AND MECHANICS
Forbus, Kenneth D.
QUALITATIVE REASONING ABOUT FLUIDS AND MECHANICS Hyeonkyeong Kim November 1993 The Institute and North West Water, Institute Partners . #12;QUALITATIVE REASONING ABOUT FLUIDS AND MECHANICS #12;()Copyright by Hyeonkyeong Kim 1993 #12;QUALITATIVE REASONING ABOUT FLUIDS AND MECHANICS
Inserting Group Variables into Fluid Mechanics
R. Jackiw
2004-10-28
A fluid, like a quark-gluon plasma, may possess degrees of freedom indexed by a group variable, which retains its identity even in the fluid/continuum description. Conventional Eulerian fluid mechanics is extended to encompass this possibility.
Multipurpose Acoustic Sensor for Downhole Fluid Monitoring
Broader source: Energy.gov [DOE]
Novel sensor design based on acoustics. Determine in real-timeand in a single sensor packagemultiple parameters: temperature, pressure, fluid flow; and fluid properties, such as density, viscosity, fluid composition.
Application of optimal homotopy asymptotic method to nonlinear Bingham fluid dampers
Marinca, Vasile; Bereteu, Liviu
2015-01-01
Magnetorheological fluids (MR) are stable suspensions of magnetizable microparticles, characterized by the property to change the rheological characteristics when subjected to the action of magnetic field. Together with another class of materials that change their rheological characteristics in the presence of an electric field, called electrorheological materials are known in the literature as the smart materials or controlled materials. In the absence of a magnetic field the particles in MR fluid are dispersed in the base fluid and its flow through the apertures is behaves as a Newtonian fluid having a constant shear stress. When the magnetic field is applying a MR fluid behavior change, and behaves like a Bingham fluid with a variable shear stress. Dynamic response time is an important characteristic for determining the performance of MR dampers in practical civil engineering applications. The purpose of this paper is to show how to use the Optimal Homotopy Asymptotic Method (OHAM) to solve the nonlinear d...
Analytical Chemistry Applied Mathematics
Heller, Barbara
Architecture Information Technology & Management Integrated Building Delivery Landscape Architecture ManagementAnalytical Chemistry Applied Mathematics Architectural Engineering Architecture Architecture Electricity Markets Environmental Engineering Food Process Engineering Food Safety & Technology
Sandia Energy - Applied & Computational Math
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Applied & Computational Math Home Energy Research Advanced Scientific Computing Research (ASCR) Applied & Computational Math Applied & Computational Mathcwdd2015-03-26T13:34:5...
KATAYUN (KATY) BARMAK Department of Applied Physics and Applied Mathematics
Columbia University
MEMBERSHIP OF PROFESSIONAL SOCIETIES IEEE, Materials Research Society (MRS); American Physical Society (APS1 KATAYUN (KATY) BARMAK Department of Applied Physics and Applied Mathematics Seeley W. Mudd. of Applied Physics and Applied Mathematics, Columbia University 2011-present Philips Electronics Professor
McKay, M.D.; Sweeney, C.E.; Spangler, B.S. Jr.
1993-11-30
A flow meter and temperature measuring device are described comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips. 7 figures.
McKay, Mark D. (1426 Socastee Dr., North Augusta, SC 29841); Sweeney, Chad E. (3600 Westhampton Dr., Martinez, GA 30907-3036); Spangler, Jr., B. Samuel (2715 Margate Dr., Augusta, GA 30909)
1993-01-01
A flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.
Houck, Edward D. (Idaho Falls, ID)
1994-01-01
An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.
Houck, E.D.
1994-10-11
An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to be decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank. 4 figs.
Violation of Bell's inequality in fluid mechanics
Robert Brady; Ross Anderson
2013-05-28
We show that a classical fluid mechanical system can violate Bell's inequality because the fluid motion is correlated over large distances.
High-density fluid compositions
Sanders, D.C.
1981-09-29
Clear, high-density fluids suitable for use as well completion, packing, and perforation media comprise aqueous solutions of zinc bromide and calcium bromide having densities lying in the range of about 14.5 up to about 18.0 pounds per gallon and measured PH's lying in the range of about 3.5 up to about 6.0. Optionally, such fluids may also comprise calcium chloride and/or a soluble film-forming amine-based corrosion inhibitor. Such fluids under conditions of ordinary use exhibit low corrosion rates and have crystallization points lying well below the range of temperatures under which they are used.
APPLIED AERODYNAMICS Aerodynamics is an applied science to learn
Leu, Tzong-Shyng "Jeremy"
on flying objects (insects, birds, airplanes, missiles) - Wind forces on building, cars, sports (ski the application of a shear (tangential) stress. · No matter how small the shear stress may be, a fluid will deform the nature of the fluid. · VALID, whenever the small
Standardization of Thermo-Fluid Modeling in Modelica.Fluid
Franke, Rudiger; Casella, Francesco; Sielemann, Michael; Proelss, Katrin; Otter, Martin; Wetter, Michael
2009-09-01
This article discusses the Modelica.Fluid library that has been included in the Modelica Standard Library 3.1. Modelica.Fluid provides interfaces and basic components for the device-oriented modeling of onedimensional thermo-fluid flow in networks containing vessels, pipes, fluid machines, valves and fittings. A unique feature of Modelica.Fluid is that the component equations and the media models as well as pressure loss and heat transfer correlations are decoupled from each other. All components are implemented such that they can be used for media from the Modelica.Media library. This means that an incompressible or compressible medium, a single or a multiple substance medium with one or more phases might be used with one and the same model as long as the modeling assumptions made hold. Furthermore, trace substances are supported. Modeling assumptions can be configured globally in an outer System object. This covers in particular the initialization, uni- or bi-directional flow, and dynamic or steady-state formulation of mass, energy, and momentum balance. All assumptions can be locally refined for every component. While Modelica.Fluid contains a reasonable set of component models, the goal of the library is not to provide a comprehensive set of models, but rather to provide interfaces and best practices for the treatment of issues such as connector design and implementation of energy, mass and momentum balances. Applications from various domains are presented.
Insertable fluid flow passage bridgepiece and method
Jones, Daniel O. (Glenville, NV)
2000-01-01
A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.
Information Science, Computing, Applied Math
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Information Science, Computing, Applied Math science-innovationassetsimagesicon-science.jpg Information Science, Computing, Applied Math National security depends on science...
Quantum Field Theory of Fluids
Ben Gripaios; Dave Sutherland
2015-04-23
The quantum theory of fields is largely based on studying perturbations around non-interacting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is `freer', in the sense that the non-interacting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree- and loop-level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behaviour is radically different to both classical fluids and quantum fields, with interesting physical consequences for fluids in the low temperature regime.
Daniel Schubring; Vitaly Vanchurin
2013-06-02
We consider conserved currents in an interacting network of one-dimensional objects (or strings). Singular currents localized on a single string are considered in general, and a formal procedure for coarse-graining over many strings is developed. This procedure is applied to strings described by the Nambu-Goto action such as cosmic strings. In addition to conserved currents corresponding to the energy-momentum tensor, we consider an antisymmetric tensor of conserved currents related to the string tangent vector. Under the assumption of local equilibrium we derive a complete set of hydrodynamic equations for strings.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D SFederal FacilityApplicantOffice ofApply ApplicationApply
A preliminary study to Assess Model Uncertainties in Fluid Flows
Marc Oliver Delchini; Jean C. Ragusa
2009-09-01
The goal of this study is to assess the impact of various flow models for a simplified primary coolant loop of a light water nuclear reactor. The various fluid flow models are based on the Euler equations with an additional friction term, gravity term, momentum source, and energy source. The geometric model is purposefully chosen simple and consists of a one-dimensional (1D) loop system in order to focus the study on the validity of various fluid flow approximations. The 1D loop system is represented by a rectangle; the fluid is heated up along one of the vertical legs and cooled down along the opposite leg. A pressurizer and a pump are included in the horizontal legs. The amount of energy transferred and removed from the system is equal in absolute value along the two vertical legs. The various fluid flow approximations are compressible vs. incompressible, and complete momentum equation vs. Darcy’s approximation. The ultimate goal is to compute the fluid flow models’ uncertainties and, if possible, to generate validity ranges for these models when applied to reactor analysis. We also limit this study to single phase flows with low-Mach numbers. As a result, sound waves carry a very small amount of energy in this particular case. A standard finite volume method is used for the spatial discretization of the system.
Pitch-catch only ultrasonic fluid densitometer
Greenwood, Margaret S. (Richland, WA); Harris, Robert V. (Pasco, WA)
1999-01-01
The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.
FLUID MECHANICS AND MATHEMATICAL STRUCTURES PHILIP BOYLAND
Boyland, Philip
FLUID MECHANICS AND MATHEMATICAL STRUCTURES PHILIP BOYLAND Department of Mathematics University in the most basic models of fluid motion. 1. Introduction Fluid mechanics is the source of many of the ideas, Lagrange, . . .. Mathematicians have abstracted and vastly generalized ba- sic fluid mechanical concepts
Mechanical Engineering ME 3720 FLUID MECHANICS
Panchagnula, Mahesh
Mechanical Engineering ME 3720 FLUID MECHANICS Pre-requisite: ME 2330 Co-requisite: ME 3210) to develop an understanding of the physical mechanisms and the mathematical models of fluid mechanics of fluid mechanics problems in engineering practice. The basic principles of fluid mechanics
Lecture notes Introductory incompressible fluid mechanics
Malham, Simon J.A.
Lecture notes Introductory incompressible fluid mechanics Simon J.A. Malham Simon J.A. Malham (23rd of fluid mechanics and along the way see lots of interesting applications. 2 Fluid flow, the Continuum. Liquids are generally incompressible--a feature essential to all modern car braking mechanisms. Fluids can
Pitch-catch only ultrasonic fluid densitometer
Greenwood, M.S.; Harris, R.V.
1999-03-23
The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.
Fluid Imaging of Enhanced Geothermal Systems
Broader source: Energy.gov [DOE]
Project objectives: Attempting to Image EGS Fracture & Fluid Networks; Employing joint Geophysical Imaging Technologies.
Fluid Mechanics IB Lecturer: Dr Natalia Berloff
: hydroelectric power, chemical processing, jet-driven cutting tools · our fluid environment: ozone loss, climate
Nov 11, 2009 ... Location: Engineering (Periodicals) ... wave propagation in such systems is examined in reference (4). Gassman (5, 6) has ... Now Research Scientist at Missile. Systems ... Presented at the Applied Mechanics Division Summer Conference,. Berkeley ..... This will be true in some cases for a water- saturated ...
FUNDED BY CALL FOR SUSTAINABILITY RESEARCH STUDENT WHO CAN APPLY Undergraduate and graduate Participate in the Global Change & Sustainability Center's Research Symposium; attend workshops with faculty or publish in the U's student-run sustainability publication to be released in May 2014. Are you conducting
APPLYING RESEARCH ON METACOGNITION
School of Medicine01/09/14 #12;Define metacognition and explain its importance in teaching and learning, understand key genetic terms.) Next, apply knowledge to determine inheritance patterns and to formulate students presume that a best response strategy is to relate everything they know about a subject figuring
Two-fluid-sourced rotating wormholes
Azreg-Aïnou, Mustapha
2015-01-01
We briefly discuss some of the known and new properties of rotating geometries that are relevant to this work. We generalize the analytical method of superposition of fields, known for generating nonrotating solutions, and apply it to construct massless and massive rotating physical wormholes sourced by a source-free electromagnetic field and an exotic fluid both anisotropic. Their stress-energy tensors are presented in compact and general forms. For the massive rotating wormholes there exists a mass-charge constraint yielding almost no more dragging effects than ordinary stars. There are conical spirals through the throat along which the null and weak energy conditions are not violated for these rotating wormholes. This conclusion extends to nonrotating massive type I wormholes derived previously by the author that seem to be the first kind of nonrotating wormholes with this property.
Two-fluid-sourced rotating wormholes
Mustapha Azreg-Aïnou
2015-05-06
We briefly discuss some of the known and new properties of rotating geometries that are relevant to this work. We generalize the analytical method of superposition of fields, known for generating nonrotating solutions, and apply it to construct massless and massive rotating physical wormholes sourced by a source-free electromagnetic field and an exotic fluid both anisotropic. Their stress-energy tensors are presented in compact and general forms. For the massive rotating wormholes there exists a mass-charge constraint yielding almost no more dragging effects than ordinary stars. There are conical spirals through the throat along which the null and weak energy conditions are not violated for these rotating wormholes. This conclusion extends to nonrotating massive type I wormholes derived previously by the author that seem to be the first kind of nonrotating wormholes with this property.
Under consideration for publication in J. Fluid Mech. 1 Shape dynamics and scaling laws for a body
dissolving in fluid flow Jinzi Mac Huang1, M. Nicholas J. Moore1,2, Leif Ristroph1 1 Applied Math Lab November 2014) While fluid flows are known to promote dissolution of materials, such processes are poorly problem through experiments in which hard candy bodies dissolve in laminar, high-speed water flows. We
Eindhoven, Technische Universiteit
. In this paper, 2 time marching and one spatial discretisation scheme, widely used for fluids' equations are applied to a transient structural problem (beam bending) and the results compare favorably with available Hz frequency h m height I - unit tensor K Pa bulk modulus L m length F - fluid p Pa pressure
Transport Coefficients for the Hard Sphere Granular Fluid
Aparna Baskaran; James W. Dufty; J. Javier Brey
2006-12-15
In the preceding paper, linear response methods have been applied to obtain formally exact expressions for the parameters of Navier-Stokes order hydrodynamics. The analysis there is general, applying to both normal and granular fluids with a wide range of collision rules. Those results are specialized here to the case of smooth, inelastic hard spheres with constant coefficient of normal restitution, for further elaboration. Explicit expressions for the cooling rate, pressure, and the transport coefficients are given and compared with the corresponding expressions for a system of elastic hard spheres. The scope of the results for further analytical explorations and possible numerical evaluation is discussed.
Paris-Sud XI, Université de
in a continuously stratified fluid, here applied to internal waves. Iso-density surfaces are marked with thin requires high- quality optical windows in the test tank walls, with fairly limited field of view. Another
LECTURE NOTES ON APPLIED MATHEMATICS
Hunter, John K.
. Fluid mechanics 13 5. Stokes formula for the drag on a sphere 18 6. Kolmogorov's 1941 theory equations 33 Lecture 3. The Calculus of Variations 43 1. Motion of a particle in a conservative force field
Well completion and servicing fluid
Grimsley, R.L.
1990-09-25
This patent describes a well completion servicing fluid for controlling formation pressure during completion or servicing of a well. It comprises: an aqueous solution of calcium chloride, a solid weighing agent suspended in the solution and being selected from the group consisting of zinc, zinc oxide, and mixtures thereof; and a viscosifier dissolved in the solution in an amount effective to suspend the weighing agent. The fluid has a density of greater than 15 pounds per gallon and being substantially free of bromide ions and being substantially free of solid material which is not soluble in hydrochloric acid.
Viscosity of a nucleonic fluid
Aram Z. Mekjian
2012-03-21
The viscosity of nucleonic matter is studied both classically and in a quantum mechanical description. The collisions between particles are modeled as hard sphere scattering as a baseline for comparison and as scattering from an attractive square well potential. Properties associated with the unitary limit are developed which are shown to be approximately realized for a system of neutrons. The issue of near perfect fluid behavior of neutron matter is remarked on. Using some results from hard sphere molecular dynamics studies near perfect fluid behavior is discussed further.
Wellbottom fluid implosion treatment system
Brieger, Emmet F. (HC 67 Box 58, Nogal, NM 88341)
2001-01-01
A system for inducing implosion shock forces on perforation traversing earth formations with fluid pressure where an implosion tool is selected relative to a shut in well pressure and a tubing pressure to have a large and small area piston relationship in a well tool so that at a predetermined tubing pressure the pistons move a sufficient distance to open an implosion valve which permits a sudden release of well fluid pressure into the tubing string and produces an implosion force on the perforations. A pressure gauge on the well tool records tubing pressure and well pressure as a function of time.
Fluid-solid contact vessel having fluid distributors therein
Jones, Jr., John B. (Rifle, CO)
1980-09-09
Rectangularly-shaped fluid distributors for large diameter, vertical vessels include reinforcers for high heat operation, vertical sides with gas distributing orifices and overhanging, sloped roofs. Devices are provided for cleaning the orifices from a buildup of solid deposits resulting from the reactions in the vessel.
DECOUPLED TIME STEPPING METHODS FOR FLUID-FLUID INTERACTION
Kasman, Alex
-fluid interaction, atmosphere-ocean, implicit-explicit method. 1. Introduction. The dynamic core in atmosphere-ocean to the coupled system using only (uncoupled) atmosphere and ocean solves, (see e.g. [4, 6, 17, 18, 19 their shared interface I by a rigid-lid coupling condition, i.e. no penetration and a slip with friction
Silica recovery and control in Hawaiian geothermal fluids. Final report
Thomas, D.M.
1992-06-01
A series of experiments was performed to investigate methods of controlling silica in waste geothermal brines produced at the HGP-A Generator Facility. Laboratory testing has shown that the rate of polymerization of silica in the geothermal fluids is highly pH dependent. At brine pH values in excess of 8.5 the suspension of silica polymers flocculated and rapidly precipitated a gelatinous silica mass. Optimum flocculation and precipitation rates were achieved at pH values in the range of 10.5 to 11.5. The addition of transition metal salts to the geothermal fluids similarly increased the rate of polymerization as well as the degree of precipitation of the silica polymer from suspension. A series of experiments performed on the recovered silica solids demonstrated that methanol extraction of the water in the gels followed by critical point drying yielded surface areas in excess of 300 M{sup 2}/g and that treatment of the dried solids with 2 N HCl removed most of the adsorbed impurities in the recovered product. A series of experiments tested the response of the waste brines to mixing with steam condensate and non-condensable gases.The results demonstrated that the addition of condensate and NCG greatly increased the stability of the silica in the geothermal brines. They also indicated that the process could reduce the potential for plugging of reinjection wells receiving waste geothermal fluids from commercial geothermal facilities in Hawaii. Conceptual designs were proposed to apply the gas re-combination approach to the disposal of geothermal waste fluids having a range of chemical compositions. Finally, these designs were applied to the geothermal fluid compositions found at Cerro Prieto, Ahuachapan, and Salton Sea.
Silica recovery and control in Hawaiian geothermal fluids
Thomas, D.M.
1992-06-01
A series of experiments was performed to investigate methods of controlling silica in waste geothermal brines produced at the HGP-A Generator Facility. Laboratory testing has shown that the rate of polymerization of silica in the geothermal fluids is highly pH dependent. At brine pH values in excess of 8.5 the suspension of silica polymers flocculated and rapidly precipitated a gelatinous silica mass. Optimum flocculation and precipitation rates were achieved at pH values in the range of 10.5 to 11.5. The addition of transition metal salts to the geothermal fluids similarly increased the rate of polymerization as well as the degree of precipitation of the silica polymer from suspension. A series of experiments performed on the recovered silica solids demonstrated that methanol extraction of the water in the gels followed by critical point drying yielded surface areas in excess of 300 M{sup 2}/g and that treatment of the dried solids with 2 N HCl removed most of the adsorbed impurities in the recovered product. A series of experiments tested the response of the waste brines to mixing with steam condensate and non-condensable gases.The results demonstrated that the addition of condensate and NCG greatly increased the stability of the silica in the geothermal brines. They also indicated that the process could reduce the potential for plugging of reinjection wells receiving waste geothermal fluids from commercial geothermal facilities in Hawaii. Conceptual designs were proposed to apply the gas re-combination approach to the disposal of geothermal waste fluids having a range of chemical compositions. Finally, these designs were applied to the geothermal fluid compositions found at Cerro Prieto, Ahuachapan, and Salton Sea.
ORISE: Applied health physics projects
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Applied health physics projects The Oak Ridge Institute for Science and Education (ORISE) provides applied health physics services to government agencies needing technical support...
Waggoner, L.O.
1998-02-05
The presentation focuses on some of the time-proven and new technologies being used to accomplish radiological work. These techniques can be applied at nuclear facilities to reduce radiation doses and protect the environment. The last reactor plants and processing facilities were shutdown and Hanford was given a new mission to put the facilities in a safe condition, decontaminate, and prepare them for decommissioning. The skills that were necessary to operate these facilities were different than the skills needed today to clean up Hanford. Workers were not familiar with many of the tools, equipment, and materials needed to accomplish:the new mission, which includes clean up of contaminated areas in and around all the facilities, recovery of reactor fuel from spent fuel pools, and the removal of millions of gallons of highly radioactive waste from 177 underground tanks. In addition, this work has to be done with a reduced number of workers and a smaller budget. At Hanford, facilities contain a myriad of radioactive isotopes that are 2048 located inside plant systems, underground tanks, and the soil. As cleanup work at Hanford began, it became obvious early that in order to get workers to apply ALARA and use hew tools and equipment to accomplish the radiological work it was necessary to plan the work in advance and get radiological control and/or ALARA committee personnel involved early in the planning process. Emphasis was placed on applying,ALARA techniques to reduce dose, limit contamination spread and minimize the amount of radioactive waste generated. Progress on the cleanup has,b6en steady and Hanford workers have learned to use different types of engineered controls and ALARA techniques to perform radiological work. The purpose of this presentation is to share the lessons learned on how Hanford is accomplishing radiological work.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery ActTools to someone byApplied Science/Techniques
Effects of fluid dynamics on cleaning efficacy of supercritical fluids
Phelps, M.R.; Willcox, W.A.; Silva, L.J.; Butner, R.S.
1993-03-01
Pacific Northwest Laboratory (PNL) and Boeing Aerospace Company are developing a process to clean metal parts using a supercritical solvent. This work is part of an effort to address issues inhibiting the rapid commercialization of Supercritical Fluid Parts Cleaning (SFPC). PNL assembled a SFPC test stand to observe the relationship between the fluid dynamics of the system and the mass transfer of a contaminant from the surface of a contaminated metal coupon into the bulk fluid. The bench-scale test stand consists of a ``Berty`` autoclave modified for these tests and supporting hardware to achieve supercritical fluids parts cleaning. Three separate sets of tests were conducted using supercritical carbon dioxide. For the first two tests, a single stainless steel coupon was cleaned with organic solvents to remove surface residue, doped with a single contaminant, and then cleaned in the SFPC test stand. Contaminants studied were Dow Corning 200 fluid (dimethylpolysiloxane) and Castle/Sybron X-448 High-temperature Oil (a polybutane/mineral oil mixture). A set of 5-minute cleaning runs was conducted for each dopant at various autoclave impeller speeds. Test results from the first two sets of experiments indicate that precision cleaning for difficult-to-remove contaminants can be dramatically improved by introducing and increasing turbulence within the system. Metal coupons that had been previously doped with aircraft oil were used in a third set of tests. The coupons were placed in the SFPC test stand and subjected to different temperatures, pressures, and run times at a constant impeller speed. The cleanliness of each part was measured by Optically Stimulated Electron Emission. The third set of tests show that levels of cleanliness attained with supercritical carbon dioxide compare favorably with solvent and aqueous cleaning levels.
Effects of fluid dynamics on cleaning efficacy of supercritical fluids
Phelps, M.R.; Willcox, W.A.; Silva, L.J.; Butner, R.S.
1993-03-01
Pacific Northwest Laboratory (PNL) and Boeing Aerospace Company are developing a process to clean metal parts using a supercritical solvent. This work is part of an effort to address issues inhibiting the rapid commercialization of Supercritical Fluid Parts Cleaning (SFPC). PNL assembled a SFPC test stand to observe the relationship between the fluid dynamics of the system and the mass transfer of a contaminant from the surface of a contaminated metal coupon into the bulk fluid. The bench-scale test stand consists of a Berty'' autoclave modified for these tests and supporting hardware to achieve supercritical fluids parts cleaning. Three separate sets of tests were conducted using supercritical carbon dioxide. For the first two tests, a single stainless steel coupon was cleaned with organic solvents to remove surface residue, doped with a single contaminant, and then cleaned in the SFPC test stand. Contaminants studied were Dow Corning 200 fluid (dimethylpolysiloxane) and Castle/Sybron X-448 High-temperature Oil (a polybutane/mineral oil mixture). A set of 5-minute cleaning runs was conducted for each dopant at various autoclave impeller speeds. Test results from the first two sets of experiments indicate that precision cleaning for difficult-to-remove contaminants can be dramatically improved by introducing and increasing turbulence within the system. Metal coupons that had been previously doped with aircraft oil were used in a third set of tests. The coupons were placed in the SFPC test stand and subjected to different temperatures, pressures, and run times at a constant impeller speed. The cleanliness of each part was measured by Optically Stimulated Electron Emission. The third set of tests show that levels of cleanliness attained with supercritical carbon dioxide compare favorably with solvent and aqueous cleaning levels.
Compressor bleed cooling fluid feed system
Donahoo, Eric E; Ross, Christopher W
2014-11-25
A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.
Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids
Raade, Justin; Roark, Thomas; Vaughn, John; Bradshaw, Robert
2013-07-22
Concentrating solar power (CSP) facilities are comprised of many miles of fluid-filled pipes arranged in large grids with reflective mirrors used to capture radiation from the sun. Solar radiation heats the fluid which is used to produce steam necessary to power large electricity generation turbines. Currently, organic, oil-based fluid in the pipes has a maximum temperature threshold of 400 °C, allowing for the production of electricity at approximately 15 cents per kilowatt hour. The DOE hopes to foster the development of an advanced heat transfer fluid that can operate within higher temperature ranges. The new heat transfer fluid, when used with other advanced technologies, could significantly decrease solar electricity cost. Lower costs would make solar thermal electricity competitive with gas and coal and would offer a clean, renewable source of energy. Molten salts exhibit many desirable heat transfer qualities within the range of the project objectives. Halotechnics developed advanced heat transfer fluids (HTFs) for application in solar thermal power generation. This project focused on complex mixtures of inorganic salts that exhibited a high thermal stability, a low melting point, and other favorable characteristics. A high-throughput combinatorial research and development program was conducted in order to achieve the project objective. Over 19,000 candidate formulations were screened. The workflow developed to screen various chemical systems to discover salt formulations led to mixtures suitable for use as HTFs in both parabolic trough and heliostat CSP plants. Furthermore, salt mixtures which will not interfere with fertilizer based nitrates were discovered. In addition for use in CSP, the discovered salt mixtures can be applied to electricity storage, heat treatment of alloys and other industrial processes.
Oliver, Marcel
Society for Industrial and Applied Mathematics Vol. 51, No. 3, pp. 613635 Boltzmann's Dilemma Fluids mix, but cannot be unmixed by the same process (with some notable exceptions [15, 8]). Steam
Fluid flow effects on electroplating
Kirkpatrick, J.R.
1990-09-01
The effects of fluid flow patterns on the electroplating of rotating cylindrically symmetric objects are examined. Ways are outlined for preventing undesirable spiral patterns on the plated surface. Estimates are given for the diffusion boundary later thickness for cylinders, disks, spheres, and cones. 16 refs., 7 figs., 1 tab.
Directed flow fluid rinse trough
Kempka, Steven N. (9504 Lona La., Albuquerque, NM 87111); Walters, Robert N. (11872 LaGrange St., Boise, ID 83709)
1996-01-01
Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs.
Directed flow fluid rinse trough
Kempka, S.N.; Walters, R.N.
1996-07-02
Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs. 9 figs.
Petroleum Engineering 310 Reservoir Fluids
of oilfield brine properties: Salinity, Bubble Point, formation volume factor, density and solution gas water12 Petroleum Engineering 310 Reservoir Fluids Credit 4: (3-3) Required for Juniors Catalog: Gas Formation Volume Factor. Viscosity. Wet Gas Gravity and Isothermal Compressibility. 5. Definition
APPLIED TECHNOLOGY Strategic Plan Summary
Heller, Barbara
SCHOOL OF APPLIED TECHNOLOGY Strategic Plan Summary #12;School of Applied Technology Strategic Plan Summary | 1 SCHOOL OF APPLIED TECHNOLOGY STRATEGIC PLAN SUMMARY MISSION STATEMENT The mission Technology and Management program to achieve national visibility. #12;School of Applied Technology Strategic
Drug transport in brain via the cerebrospinal fluid
Pardridge, William M
2011-01-01
diffusion. Drug transport into cerebrospinal fluid vs. brainDrug transport from blood to interstitial fluid (ISF) isDrug transport in brain via the cerebrospinal fluid William
Formulation of the Chip Cleanability Mechanics from fluid transport
Garg, Saurabh; Dornfeld, David; Berger, K.
2009-01-01
Mechanics from Fluid Transport Author: Garg, Saurabh,Mechanics from fluid transport", International Conference onsimply relying on the fluid transport energy of high
Helium measurements of pore-fluids obtained from SAFOD drillcore
Ali, S.
2010-01-01
ionized water (DI) as drilling fluid. This procedure avoidsbeen contaminated with drilling fluids during recovery ofenough fluid inflow throughout scheduled drilling phases to
Heat Transfer in Complex Fluids
Mehrdad Massoudi
2012-01-01
Amongst the most important constitutive relations in Mechanics, when characterizing the behavior of complex materials, one can identify the stress tensor T, the heat flux vector q (related to heat conduction) and the radiant heating (related to the radiation term in the energy equation). Of course, the expression 'complex materials' is not new. In fact, at least since the publication of the paper by Rivlin & Ericksen (1955), who discussed fluids of complexity (Truesdell & Noll, 1992), to the recently published books (Deshpande et al., 2010), the term complex fluids refers in general to fluid-like materials whose response, namely the stress tensor, is 'non-linear' in some fashion. This non-linearity can manifest itself in variety of forms such as memory effects, yield stress, creep or relaxation, normal-stress differences, etc. The emphasis in this chapter, while focusing on the constitutive modeling of complex fluids, is on granular materials (such as coal) and non-linear fluids (such as coal-slurries). One of the main areas of interest in energy related processes, such as power plants, atomization, alternative fuels, etc., is the use of slurries, specifically coal-water or coal-oil slurries, as the primary fuel. Some studies indicate that the viscosity of coal-water mixtures depends not only on the volume fraction of solids, and the mean size and the size distribution of the coal, but also on the shear rate, since the slurry behaves as shear-rate dependent fluid. There are also studies which indicate that preheating the fuel results in better performance, and as a result of such heating, the viscosity changes. Constitutive modeling of these non-linear fluids, commonly referred to as non-Newtonian fluids, has received much attention. Most of the naturally occurring and synthetic fluids are non-linear fluids, for example, polymer melts, suspensions, blood, coal-water slurries, drilling fluids, mud, etc. It should be noted that sometimes these fluids show Newtonian (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a given temperature, an increase in {zeta} implies that the activation energy is smaller and thus, the reaction ra
Stanley, H. Eugene
contribution to the laminar fluid flow through the void space. The calcu- lations we perform do not apply on Fluid Flow through Disordered Porous Media J. S. Andrade, Jr.,1,3 U. M. S. Costa,1 M. P. Almeida,1 H. A.11.+j A standard approach in the investigation of single- phase fluid flow in microscopically disordered
2015 GRADUATE STUDIES ENVIRONMENTAL FLUID MECHANICS
· Climate change and impact assessments Environmental Fluid Mechanics and Hydraulic Engi- neering research generated by winds, landslide, avalanche, or earthquake · Marine Hydrokinetic Energy · Circulation2015 GRADUATE STUDIES ENVIRONMENTAL FLUID MECHANICS AND WATER RESOURCES ENGINEERING RESEARCH AREAS
Fluid&ParticulateSystems 424514/2010
Zevenhoven, Ron
" Ron Zevenhoven ÅA Thermal and Flow Engineering ron.zevenhoven@abo.fi 9Fluid&ParticulateSystems 424514 Being often a low temperature process, better energy economy than, for example, distillation Fluid
Fluid sampling system for a nuclear reactor
Lau, L.K.; Alper, N.I.
1994-11-22
A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump. 1 fig.
Fluid sampling system for a nuclear reactor
Lau, Louis K. (Monroeville, PA); Alper, Naum I. (Monroeville, PA)
1994-01-01
A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump.
Quantifying the stimuli of photorheological fluids
Bates, Sarah Woodring
2010-01-01
We develop a model to predict the dynamics of photorheological fluids and, more generally, photoresponsive fluids for monochromatic and polychromatic light sources. Derived from first principles, the model relates the ...
Fluid&ParticulateSystems 424514/2010
Zevenhoven, Ron
· A c c s s S S-1 S S-1 ),,( ),,( 1 )1( fluid csfluid csfluid s s c c fluid SSf whereSSfV S S S Sw Vw
Ultrasonic fluid densitometer for process control
Greenwood, Margaret S. (Richland, WA)
2000-01-01
The present invention is an ultrasonic fluid densitometer that uses at least one pair of transducers for transmitting and receiving ultrasonic signals internally reflected within a material wedge. A temperature sensor is provided to monitor the temperature of the wedge material. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface and comparing a transducer voltage and wedge material temperature to a tabulation as a function of density.
INTRODUCTION TO FLUID MECHANICS Spring 2011
Bahrami, Majid
Experiment 3: Basics of Fluid Mechanics, Friction in Laminar and Turbulent Pipe Flow Experiment:20, Wed 2:30 5:20, Fri 8:30 11:20, Lab 4302 Course Outline: Properties of fluids. Basic flow1 ENSC 283 INTRODUCTION TO FLUID MECHANICS Spring 2011 Instructor: Dr. Majid Bahrami 4372
Foundations of Fluid Mechanics Giovanni Gallavotti
Roma "La Sapienza", Università di
1 Foundations of Fluid Mechanics Giovanni Gallavotti 4 Roma 2000 20/novembre/2011; 22:03 #12, harmonic analysis, elasticity, general relativity or fluid mechanics and chaos in turbulence. So that when in 1988 I was made chair of Fluid Mechanics at the Universit`a La Sapienza, not to recognize work I did
MECH 502: Fluid Mechanics Winter semester 2010
Phani, A. Srikantha
MECH 502: Fluid Mechanics Winter semester 2010 Instructor: I.A. Frigaard Times: Tuesdays week of semester. Location: CHBE 103 Synopsis: This course will focus primarily on fluid mechanics will be to look at fluid mechanics fundamentals, and at the mathematical modeling & analysis of simplified flow
New Methods to Transport Fluids in
Herr, Hugh
New Methods to Transport Fluids in Micro-Sized Devices Shaun Berry and Jakub Kedzierski control and transport fluid in micro-sized structures presents its own unique set of challenges fluidic operations that are essential to the functionality of the system-- such as fluid transport, mixing
SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW
Santos, Juan
SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW J. E. Santos1, G. B. Savioli2, J. M. Carcione3, D´e, Argentina SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW p. #12;Introduction. I Storage of CO2). SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW p. #12;Introduction. II CO2 is separated from natural
SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW
Santos, Juan
SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW J. E. Santos1 1 Department of Mathematics, Purdue University, USA Purdue University, March 1rst, 2013 SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW p. #12 (North Sea). SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW p. #12;Introduction. II CO2 is separated
PHYSICS OF FLUIDS 24, 043102 (2012) A numerical investigation of the fluid mechanical
Audoly, Basile
2012-01-01
PHYSICS OF FLUIDS 24, 043102 (2012) A numerical investigation of the fluid mechanical sewing or jet of liquid falling onto a fixed surface is one of the simplest situations in fluid mechanics, yet by Chiu-Webster and Lister9 (henceforth CWL), who called it the "fluid mechanical sewing machine
Transport in inhomogeneous quantum critical fluids and in the Dirac fluid in graphene
-impurity scattering. We use this formalism to compute transport coe cients in the Dirac fluid in clean sampleseaster egg Transport in inhomogeneous quantum critical fluids and in the Dirac fluid in graphene-perturbative in the strength of long wavelength fluctuations in the background charge density of the electronic fluid
Zevenhoven, Ron
Introduction to Computational Fluid Dynamics 424512 E #1 - rz Introduction to Computational Fluid to Computational Fluid Dynamics 424512 E #1 - rz maj 2015 Åbo Akademi Univ - Thermal and Flow Engineering - Piispankatu 8, 20500 Turku 2 / 68 1.0 Course content / Time table #12;Introduction to Computational Fluid
Transport coefficients of gluonic fluid
Santosh K Das; Jan-e Alam
2011-06-14
The shear ($\\eta$) and bulk ($\\zeta$) viscous coefficients have been evaluated for a gluonic fluid. The elastic, $gg \\rightarrow gg$ and the inelastic, number non-conserving, $gg\\rightarrow ggg$ processes have been considered as the dominant perturbative processes in evaluating the viscous co-efficients to entropy density ($s$) ratios. Recently the processes: $gg \\rightarrow ggg$ has been revisited and a correction to the widely used Gunion-Bertsch (GB) formula has been obtained. The $\\eta$ and $\\zeta$ have been evaluated for gluonic fluid with the formula derived recently. The sensitivity of the quantity, $\\eta/s$ on the running coupling constant is also discussed. At $\\alpha_s=0.3$ we get $\\eta/s=0.24$ which is close to the value obtained from the analysis of the elliptic flow at RHIC experiments.
Ellipsoidal particles at fluid interfaces
H. Lehle; E. Noruzifar; M. Oettel
2008-01-18
For partially wetting, ellipsoidal colloids trapped at a fluid interface, their effective, interface--mediated interactions of capillary and fluctuation--induced type are analyzed. For contact angles different from 90$^o$, static interface deformations arise which lead to anisotropic capillary forces that are substantial already for micrometer--sized particles. The capillary problem is solved using an efficient perturbative treatment which allows a fast determination of the capillary interaction for all distances between and orientations of two particles. Besides static capillary forces, fluctuation--induced forces caused by thermally excited capillary waves arise at fluid interfaces. For the specific choice of a spatially fixed three--phase contact line, the asymptotic behavior of the fluctuation--induced force is determined analytically for both the close--distance and the long--distance regime and compared to numerical solutions.
Short-lived lattice quasiparticles for strongly interacting fluids
Mendoza, M
2015-01-01
It is shown that lattice kinetic theory based on short-lived quasiparticles proves very effective in simulating the complex dynamics of strongly interacting fluids (SIF). In particular, it is pointed out that the shear viscosity of lattice fluids is the sum of two contributions, one due to the usual interactions between particles (collision viscosity) and the other due to the interaction with the discrete lattice (propagation viscosity). Since the latter is {\\it negative}, the sum may turn out to be orders of magnitude smaller than each of the two contributions separately, thus providing a mechanism to access SIF regimes at ordinary values of the collisional viscosity. This concept, as applied to quantum superfluids in one-dimensional optical lattices, is shown to reproduce shear viscosities consistent with the AdS-CFT holographic bound on the viscosity/entropy ratio. This shows that lattice kinetic theory continues to hold for strongly coupled hydrodynamic regimes where continuum kinetic theory may no longer...
A. Benseny; G. Albareda; A. S. Sanz; J. Mompart; X. Oriols
2014-10-20
Bohmian mechanics provides an explanation of quantum phenomena in terms of point particles guided by wave functions. This review focuses on the formalism of non-relativistic Bohmian mechanics, rather than its interpretation. Although the Bohmian and standard quantum theories have different formalisms, both give exactly the same predictions for all phenomena. Fifteen years ago, the quantum chemistry community began to study the practical usefulness of Bohmian mechanics. Since then, the scientific community has mainly applied it to study the (unitary) evolution of single-particle wave functions, either by developing efficient quantum trajectory algorithms or by providing a trajectory-based explanation of complicated quantum phenomena. Here we present a large list of examples showing how the Bohmian formalism provides a useful solution in different forefront research fields for this kind of problems (where the Bohmian and the quantum hydrodynamic formalisms coincide). In addition, this work also emphasizes that the Bohmian formalism can be a useful tool in other types of (non-unitary and nonlinear) quantum problems where the influence of the environment or the global wave function are unknown. This review contains also examples on the use of the Bohmian formalism for the many-body problem, decoherence and measurement processes. The ability of the Bohmian formalism to analyze this last type of problems for (open) quantum systems remains mainly unexplored by the scientific community. The authors of this review are convinced that the final status of the Bohmian theory among the scientific community will be greatly influenced by its potential success in these type of problems that present non-unitary and/or nonlinear quantum evolutions. A brief introduction of the Bohmian formalism and some of its extensions are presented in the last part of this review.
Hydrostatic bearings for a turbine fluid flow metering device
Fincke, J.R.
1982-05-04
A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion. 3 figs.
Applying Mathematics.... ... to catch criminals
O'Leary, Michael
Applying Mathematics.... ... to catch criminals Mike O'Leary Department of Mathematics Towson University Stevenson University Kappa Mu Epsion 2008 Mike O'Leary (Towson University) Applying mathematics Department Mike O'Leary (Towson University) Applying mathematics to catch criminals September 10, 2008 2 / 42
Journal of Applied Ecology 2004
Holl, Karen
Journal of Applied Ecology 2004 41, 922933 © 2004 British Ecological Society Blackwell Publishing-scale, Sacramento River, succession, vegetation Journal of Applied Ecology (2004) 41, 922933 Introduction More than@ucsc.edu). #12;923 Riparian forest restoration © 2004 British Ecological Society, Journal of Applied Ecology, 41
Journal of Applied Ecology 2002
Holl, Karen
Journal of Applied Ecology 2002 39, 960970 © 2002 British Ecological Society Blackwell Science- tion, succession. Journal of Applied Ecology (2002) 39, 960970 Introduction Efforts to reclaim@ucsc.edu). #12;961 Vegetation on reclaimed mines © 2002 British Ecological Society, Journal of Applied Ecology
Journal of Applied Ecology 2007
Journal of Applied Ecology 2007 44, 748759 © 2007 The Authors. Journal compilation © 2007 British, distribution, edge, marbled murrelets, model transferability, old-growth Journal of Applied Ecology (2007) 44-nesting Alcid © 2007 The Authors. Journal compilation © 2007 British Ecological Society, Journal of Applied
Xu, Tianfu; Pruess, Karsten; Apps, John
2008-01-01
instead of water as heat transmission fluid. Initial studies2 ) instead of water as heat transmission fluid, and would
Apparatus and method for concentrating and filtering particles suspended in a fluid
Fiechtner, Gregory J. (Bethesda, MD); Cummings, Eric B. (Livermore, CA); Singh, Anup K. (Danville, CA)
2009-05-19
Disclosed is a device for separating and concentrating particles suspended in a fluid stream by using dielectrophoresis (DEP) to trap and/or deflect those particles as they migrate through a fluid channel. The method uses fluid channels designed to constrain a liquid flowing through it to uniform electrokinetic flow velocities. This behavior is achieved by connecting deep and shallow sections of channels, with the channel depth varying abruptly along an interface. By careful design of abrupt changes in specific permeability at the interface, an abrupt and spatially uniform change in electrokinetic force can be selected. Because these abrupt interfaces also cause a sharp gradient in applied electric fields, a DEP force also can be established along the interface. Depending on the complex conductivity of the suspended particles and the immersion liquid, the DEP force can controllably complement or oppose the local electrokinetic force transporting the fluid through the channel allowing for manipulation of particles suspended in the transporting liquid.
A nonlocal model for fluid-structure interaction with applications in hydraulic fracturing
Turner, Daniel Z
2012-01-01
Modeling important engineering problems related to flow-induced damage (in the context of hydraulic fracturing among others) depends critically on characterizing the interaction of porous media and interstitial fluid flow. This work presents a new formulation for incorporating the effects of pore pressure in a nonlocal representation of solid mechanics. The result is a framework for modeling fluid-structure interaction problems with the discontinuity capturing advantages of an integral based formulation. A number of numerical examples are used to show that the proposed formulation can be applied to measure the effect of leak-off during hydraulic fracturing as well as modeling consolidation of fluid saturated rock and surface subsidence caused by fluid extraction from a geologic reservoir. The formulation incorporates the effect of pore pressure in the constitutive description of the porous material in a way that is appropriate for nonlinear materials, easily implemented in existing codes, straightforward in i...
Applied Rheology Volume 19 Issue 3
Georgiou, Georgios
viscometric flow for many fluids including mate- rials with yield stress, such as paints, cosmetics, drilling-posed inverseproblem,knownasCouetteinverseprob- lem, which becomes more complicated in the case of fluids with yield-law assumptions used in the determination of the material properties of viscoplastic fluids from circular Couette
Fluid cooled vehicle drive module
Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.
2005-11-15
An electric vehicle drive includes a support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EM/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Shear Banding of Complex Fluids
Thibaut Divoux; Marc A. Fardin; Sébastien Manneville; Sandra Lerouge
2015-03-13
Even in simple geometries many complex fluids display non-trivial flow fields, with regions where shear is concentrated. The possibility for such shear banding has been known since several decades, but the recent years have seen an upsurge of studies offering an ever more precise understanding of the phenomenon. The development of new techniques to probe the flow on multiple scales and with increasing spatial and temporal resolution has opened the possibility for a synthesis of the many phenomena that could only have been thought of separately before. In this review, we bring together recent research on shear banding in polymeric and on soft glassy materials, and highlight their similarities and disparities.
Immersible solar heater for fluids
Kronberg, James W. (Aiken, SC)
1995-01-01
An immersible solar heater comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.
Fluid Dynamics and Solid Mechanics
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article) |FinalIndustrial Technologies Industrial3 Fluid Dynamics
Split driveshaft pump for hazardous fluids
Evans, II, Thomas P. (Aiken, SC); Purohit, Jwalit J. (Evans, GA); Fazio, John M. (Orchard Park, NY)
1995-01-01
A pump having a split driveshaft for use in pumping hazardous fluids wherein only one driveshaft becomes contaminated by the fluid while the second remains isolated from the fluid. The pump has a first portion and a second portion. The first portion contains a pump motor, the first driveshaft, a support pedestal, and vapor barriers and seals. The second portion contains a second, self-lubricating driveshaft and an impeller. The first and second driveshafts are connected together by a releasable coupling. A shield and a slinger deployed below the coupling prevent fluid from the second portion from reaching the first portion. In operation, only the second assembly comes into contact with the fluid being pumped, so the risk of contamination of the first portion by the hazardous fluid is reduced. The first assembly can be removed for repairs or routine maintenance by decoupling the first and second driveshafts and disconnecting the motor from the casing.
J . Fluid Mech. (1990).vol. 212, pp. 209-240 Printed in Great Britain
Huppert, Herbert
1990-01-01
) Intense fluid motions can be generated by the solidification of a binary liquid. This review paper of both the thermal and the compositional fieldsin various geometries. The results of many all departments of applied mathematics and engineering. In addition, aspects of the subject that can
Thermal Expansion Models of Viscous Fluids Based on Limits of Free Energy
Thermal Expansion Models of Viscous Fluids Based on Limits of Free Energy S.E. Bechtel Department applied directly on the free energy formulation of the compressible Navier-Stokes system. The method the reversible physical mechanisms governed by the gradient and Hessian of the free energy function take special
Zakaria Mohamed Reda, Ahmed
2014-07-29
Most carbonate rocks are heterogeneous at multiple length scales. These heterogeneities strongly influence the outcome of the acid stimulation treatments which are routinely performed to improve well productivity. At the pore scale, carbonate rocks...
Wide band Fresnel super-resolution applied to capillary break up of viscoelastic fluids
Fiscina, Jorge E; Sattler, Rainer; Wagner, Christian
2013-01-01
We report a technique based on Fresnel diffraction with white illumination that permits the resolution of capillary surface patterns of less than 100 nanometers. We investigate Rayleigh Plateaux like instability on a viscoelastic capillary bridge and show that we can overcome the resolution limit of optical microscopy. The viscoelastic filaments are approximately 20 microns thick at the end of the thinning process when the instability sets in. The wavy distortions grow exponentially in time and the pattern is resolved by an image treatment that is based on an approximation of the measured rising flank of the first Fresnel peak.
Wide band Fresnel super-resolution applied to capillary break up of viscoelastic fluids
Jorge E. Fiscina; Pierre Fromholz; Rainer Sattler; Christian Wagner
2013-10-05
We report a technique based on Fresnel diffraction with white illumination that permits the resolution of capillary surface patterns of less than 100 nanometers. We investigate Rayleigh Plateaux like instability on a viscoelastic capillary bridge and show that we can overcome the resolution limit of optical microscopy. The viscoelastic filaments are approximately 20 microns thick at the end of the thinning process when the instability sets in. The wavy distortions grow exponentially in time and the pattern is resolved by an image treatment that is based on an approximation of the measured rising flank of the first Fresnel peak.
Nanoparticle Assemblies at Fluid Interfaces
Russell, Thomas P.
2015-03-10
A systematic study of the structure and dynamics of nanoparticles (NP) and NP-surfactants was performed. The ligands attached to both the NPs and NP-surfactants dictate the manner in which the nanoscopic materials assemble at fluid interfaces. Studies have shown that a single layer of the nanoscpic materials form at the interface to reduce the interactions between the two immiscible fluids. The shape of the NP is, also, important, where for spherical particles, a disordered, liquid-like monolayer forms, and, for nanorods, ordered domains at the interface is found and, if the monolayers are compressed, the orientation of the nanorods with respect to the interface can change. By associating end-functionalized polymers to the NPs assembled at the interface, NP-surfactants are formed that increase the energetic gain in segregating each NP at the interface which allows the NP-surfactants to jam at the interface when compressed. This has opened the possibility of structuring the two liquids by freezing in shape changes of the liquids.
Sullivan, Scott C; Fansler, Douglas
2014-10-14
A vehicle having multiple isolated fluid circuits configured to be filled through a common fill port includes a first fluid circuit disposed within the vehicle, the first fluid circuit having a first fill port, a second fluid circuit disposed within the vehicle, and a conduit defining a fluid passageway between the first fluid circuit and second fluid circuit, the conduit including a valve. The valve is configured such that the first and second fluid circuits are fluidly coupled via the passageway when the valve is open, and are fluidly isolated when the valve is closed.
Fluid control structures in microfluidic devices
Mathies, Richard A. (Moraga, CA); Grover, William H. (Berkeley, CA); Skelley, Alison (Berkeley, CA); Lagally, Eric (Oakland, CA); Liu, Chung N. (Albany, CA)
2008-11-04
Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.
Vibratory pumping of a free fluid stream
Merrigan, M.A.; Woloshun, K.A.
1990-11-13
A vibratory fluid pump is described having a force generator for generating asymmetric periodic waves or oscillations connected to one end of one or more fluid conveyance means, such as filaments. The opposite ends of the filaments are connected to springs. Fluid introduced onto the filaments will traverse along the filaments according to the magnitude of the positive and negative excursions of the periodic waves or oscillations, and can be recovered from the filaments. 3 figs.
Benedetti, G.A.
1990-11-01
When a fluid flows inside a tube, the deformations of the tube can interact with the fluid flowing within it and these dynamic interactions can result in significant lateral motions of the tube and the flowing fluid. The purpose of this report is to examine the dynamic stability of a spinning tube through which an incompressible frictionless fluid is flowing. The tube can be considered as either a hollow beam or a hollow cable. The analytical results can be applied to spinning or stationary tubes through which fluids are transferred; e.g., liquid coolants, fuels and lubricants, slurry solutions, and high explosives in paste form. The coupled partial differential equations are determined for the lateral motion of a spinning Bernoulli-Euler beam or a spinning cable carrying an incompressible flowing fluid. The beam, which spins about an axis parallel to its longitudinal axis and which can also be loaded by a constant axial force, is straight, uniform, simply supported, and rests on a massless, uniform elastic foundation that spins with the beam. Damping for the beam and foundation is considered by using a combined uniform viscous damping coefficient. The fluid, in addition to being incompressible, is frictionless, has a constant density, and flows at a constant speed relative to the longitudinal beam axis. The Galerkin method is used to reduce the coupled partial differential equations for the lateral motion of the spinning beam to a coupled set of 2N, second order, ordinary differential equations for the generalized beam coordinates. By simplifying these equations and examining the roots of the characteristic equation, an analytical solution is obtained for the lateral dynamic instability of the beam (or cable). The analytical solutions determined the minimum critical fluid speed and the critical spin speeds, for a specified fluid speed, in terms of the physical parameters of the system.
Hydrostatic bearings for a turbine fluid flow metering device
Fincke, J.R.
1980-05-02
A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.
Gas powered fluid gun with recoil mitigation
Grubelich, Mark C; Yonas, Gerold
2013-11-12
A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.
Fluid casting of particle-based articles
Menchhofer, Paul (Oak Ridge, TN)
1995-01-01
A method for the production of articles made of a particle-based material; e.g., ceramics and sintered metals. In accordance with one aspect of the invention, a thermally settable slurry containing a relatively high concentration of the particles is introduced into an immiscible, heated fluid. The slurry sets or hardens into a shape determined by the physical characteristics of the fluid and the manner of introduction of the slurry into the fluid. For example, the slurry is pulse injected into the fluid to provide spherical articles. The hardened spheres may then be sintered to consolidate the particles and provide a high density product.
Methodologies for Reservoir Characterization Using Fluid Inclusion...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Surveys Chemical Signatures of and Precursors to Fractures Using Fluid Inclusion Stratigraphy Creation of an Engineered Geothermal System through Hydraulic and Thermal...
DISPLAYING AND INTERPRETING FLUID INCLUSION STRATIGRAPHY ANALYSES...
DISPLAYING AND INTERPRETING FLUID INCLUSION STRATIGRAPHY ANALYSES ON MUDLOG GRAPHS Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings:...
Solution generating theorems for perfect fluid spheres
Petarpa Boonserm; Matt Visser; Silke Weinfurtner
2006-09-20
The first static spherically symmetric perfect fluid solution with constant density was found by Schwarzschild in 1918. Generically, perfect fluid spheres are interesting because they are first approximations to any attempt at building a realistic model for a general relativistic star. Over the past 90 years a confusing tangle of specific perfect fluid spheres has been discovered, with most of these examples seemingly independent from each other. To bring some order to this collection, we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres. In addition, we develop new ``solution generating'' theorems for the TOV, whereby any given solution can be ``deformed'' to a new solution. Because these TOV-based theorems work directly in terms of the pressure profile and density profile it is relatively easy to impose regularity conditions at the centre of the fluid sphere.
Sandia Energy - Applied Turbulent Combustion
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
and they form the basis for the creation of validated submodels that bridge fundamental energy sciences with applied device engineering and optimization. Turbulent-combustion-lab...
Fluid-driven reciprocating apparatus and valving for controlling same
Whitehead, John C. (Davis, CA); Toews, Hans G. (East Aurora, NY)
1993-01-01
A control valve assembly for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve is switched by a pressure signal depending on the state of its counterpart's piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. One embodiment of the invention utilized two pairs of fluid-driven free-piston devices whereby a bipropellant liquid propulsion system may be operated, so as to provide continuous flow of both fuel and oxidizer liquids when used in rocket applications, for example.
Large rotating AdS black holes from fluid mechanics
Sayantani Bhattacharyya; Subhaneil Lahiri; R. Loganayagam; Shiraz Minwalla
2008-07-25
We use the AdS/CFT correspondence to argue that large rotating black holes in global AdS(D) spaces are dual to stationary solutions of the relativistic Navier-Stokes equations on S**(D-2). Reading off the equation of state of this fluid from the thermodynamics of non-rotating black holes, we proceed to construct the nonlinear spinning solutions of fluid mechanics that are dual to rotating black holes. In all known examples, the thermodynamics and the local stress tensor of our solutions are in precise agreement with the thermodynamics and boundary stress tensor of the spinning black holes. Our fluid dynamical description applies to large non-extremal black holes as well as a class of large non-supersymmetric extremal black holes, but is never valid for supersymmetric black holes. Our results yield predictions for the thermodynamics of all large black holes in all theories of gravity on AdS spaces, for example, string theory on AdS(5) x S**5 and M theory on AdS(4) x S**7 and AdS(7) x S**4.
Fluid-Particle and Fluid-Structure Interactions in Inertial Microfluidics
Amini, Hamed
2012-01-01
large-inertia laminar pipe flow. Journal of Fluid Mechanicsfluid are finite, still lies within the realm of laminar flow (
Under consideration for publication in J. Fluid Mech. 1 Hydroelastic waves on fluid sheets
Parau, Emilian I.
). In particular our work may find application in flat plate-type fuel assemblies found in nuclear reactor coolingUnder consideration for publication in J. Fluid Mech. 1 Hydroelastic waves on fluid sheets M. G. B 6BT, UK (Received 26 March 2012) Nonlinear travelling waves on a two-dimensional inviscid fluid
Journal of Fluids and Structures (1996) 10, 395420 FLUID-STRUCTURE INTERACTION AND
Tijsseling, A.S.
1996-01-01
of cooling-water systems in nuclear power stations, the reliability of fuel injection systems in aircraftJournal of Fluids and Structures (1996) 10, 395420 FLUID-STRUCTURE INTERACTION AND CAVITATION) The simultaneous occurrence of fluid-structure interaction (FSI) and vaporous cavitation in the transient vibration
Laser microfluidics : fluid actuation by light Laser microfluidics: fluid actuation by light
Paris-Sud XI, Université de
Laser microfluidics : fluid actuation by light Laser microfluidics: fluid actuation by light Jean.delville@cpmoh.u-bordeaux1.fr Abstract: The development of microfluidic devices is still hindered by the lack of robust to extend this concept to microfluidic two-phase flows. First, we investigate the destabilization of fluid
The Foundations of Applied Mathematics
Baez, John
The Foundations of Applied Mathematics John Baez Category-Theoretic Foundations of Mathematics Workshop May 5, 2013 #12;We often picture the flow of information about mathematics a bit like this: SCIENCE AND ENGINEERING APPLIED MATHEMATICS PURE MATHEMATICS FOUNDATIONS OF MATHEMATICS #12;Of course
Immersible solar heater for fluids
Hazen, T.C.; Fliermans, C.B.
1994-01-01
An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.
Immersible solar heater for fluids
Kronberg, J.W.
1995-07-11
An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater. 11 figs.
Pressurized-fluid-operated engine
Holleyman, J.E.
1990-01-30
This patent describes a pressurized-fluid-operated reciprocating engine for providing output power by use of a pressurized gas that expands within the engine without combustion. It comprises: an engine block having a plurality of cylinders within which respective pistons are reciprocatable to provide a rotary power output; gas inlet means connected with the engine block for introducing a pressurized gas into the respective cylinders in a predetermined, timed relationship to provide a smooth power output from the engine; gas outlet means connected with the engine block for conveying exhaust gas from the respective cylinders after the gas expanded to move the pistons within the cylinders; and recirculation means extending between the inlet means and the outlet means for recirculation a predetermined quantity of exhaust gas. The recirculation means including ejector means for drawing exhaust gas into the recirculation means.
FINITE VOLUME METHODS APPLIED TO THE COMPUTATIONAL MODELLING OF WELDING PHENOMENA
Taylor, Gary
1 FINITE VOLUME METHODS APPLIED TO THE COMPUTATIONAL MODELLING OF WELDING PHENOMENA Gareth A.Taylor@brunel.ac.uk ABSTRACT This paper presents the computational modelling of welding phenomena within a versatile numerical) and Computational Solid Mechanics (CSM). With regard to the CFD modelling of the weld pool fluid dynamics, heat
LEVEL 2 MATH modules offered in 15/16 Applied Maths
Haase, Markus
LEVEL 2 MATH modules offered in 15/16 Applied Maths MATH 2365 - Vector Calculus This module mathematics, such as fluid mechanics and electromagnetism. MATH 2375 - Linear Differential Equations and also partial differential equations. It also introduces Fourier and Laplace transforms. MATH 2391 - Non
Fusion programs in applied plasma physics
Not Available
1992-02-01
The objectives of the theoretical science program are: To support the interpretation of present experiments and predict the outcome of future planned experiments; to improve on existing models and codes and validate against experimental results; and to conduct theoretical physics development of advanced concepts with applications for DIII-D and future devices. Major accomplishments in FY91 include the corroboration between theory and experiment on MHD behavior in the second stable regime of operation on DIII-D, and the frequency and mode structure of toroidal Alfven eigenmodes in high beta, shaped plasmas. We have made significant advances in the development of the gyro-Landau fluid approach to turbulence simulation which more accurately models kinetic drive and damping mechanisms. Several theoretical models to explain the bifurcation phenomenon in L- to H-mode transition were proposed providing the theoretical basis for future experimental verification. The capabilities of new rf codes have been upgraded in response to the expanding needs of the rf experiments. Codes are being employed to plan for a fully non-inductive current drive experiment in a high beta, enhanced confinement regime. GA's experimental effort in Applied Physics encompasses two advanced diagnostics essential for the operation of future fusion experiments: Alpha particle diagnostic, and current and density profile diagnostics. This paper discusses research in all these topics.
MEC E 230 Introduction to thermo-fluid sciences
Flynn, Morris R.
. Introduction to fluid mechanics. Fluid properties. Fluid statics. Use of control volumes. Internal flows. Pre in mechanical engineering. The physics of heat transfer and fluid mechanics are introduced. · Understand tension in calculating pressure in a fluid · Calculate static pressure and forces on immersed objects
William Benton and Jim Turner, Cabot Specialty Fluids
Laughlin, Robert B.
with a range of beneficial properties. This makes them ideally suited for use as drilling and completion fluids for use as a drilling fluid, which are stable to 160°C. Drilling fluids made up of formate-based fluids materials, whereas a typical drilling fluid will contain up to 40% by volume of solids to obtain
Foam vessel for cryogenic fluid storage
Spear, Jonathan D (San Francisco, CA)
2011-07-05
Cryogenic storage and separator vessels made of polyolefin foams are disclosed, as are methods of storing and separating cryogenic fluids and fluid mixtures using these vessels. In one embodiment, the polyolefin foams may be cross-linked, closed-cell polyethylene foams with a density of from about 2 pounds per cubic foot to a density of about 4 pounds per cubic foot.
It's The Fluids SEG Honorary Lecture
information please visit: #12;·WATER and BRINE (BRINE = H2O + Salt) ·HYDROCARBONS Oil Gas TYPES of PORE FLUIDS Gas Mixtures ·DRILLING MUD ·PRODUCTION FLUIDS Miscible Injectants (CO2, Enriched Gas) #12;From Ivar = Porosity = Density sat = 0 (1- ) + f Density: #12;·WATER and BRINE (BRINE = H2O + Salt) ·HYDROCARBONS Oil
Fluid Neutral Momentum Transport Reference Problem
Budny, Robert
Fluid Neutral Momentum Transport Reference Problem D. P. Stotler, PPPL S. I. Krasheninnikov, UCSD 1 Summary Type of problem: kinetic or fluid neutral transport Physics or algorithm stressed: thermal force term (spatial resolution) in momentum transport equation and treatment of collisions (charge ex- change
PKN problem for non-Newtonian fluid
Linkov, Alexander
2012-01-01
The paper presents analytical solution for hydraulic fracture driven by a non-Newtonian fluid and propagating under plane strain conditions in cross sections parallel to the fracture front. Conclusions are drawn on the influence of the fluid properties on the fracture propagation.
Thermal System Design Thermal/Fluids
Kostic, Milivoje M.
of thermodynamics, heat transfer, and fluid mechanics ? Hardware: fans, pumps, compressors, engines, heat exchangers, fluids transport, and food, chemical, and process industries #12;3 Basic Course Topics ? Analysis networks ? Thermodynamics: modeling and optimization of a refrigeration system ? Heat Transfer: design
Fluid&ParticulateSystems 424514/2010
Zevenhoven, Ron
Åbo / Turku Finland Source: C06 #12;Fluid&ParticulateSystems 424514/2010 Fluid&ParticulateSystems ÅA below ~5 m Problems above ~ 400 °C februari 2014 RoNz 7Åbo Akademi University - Värme- och d dd For a certain cyclone and a certain gas, the separation efficiency c is a function
Extreme pressure fluid sample transfer pump
Halverson, Justin E. (Grovertown, GA); Bowman, Wilfred W. (North Augusta, SC)
1990-01-01
A transfer pump for samples of fluids at very low or very high pressures comprising a cylinder having a piston sealed with an O-ring, the piston defining forward and back chambers, an inlet and exit port and valve arrangement for the fluid to enter and leave the forward chamber, and a port and valve arrangement in the back chamber for adjusting the pressure across the piston so that the pressure differential across the piston is essentially zero and approximately equal to the pressure of the fluid so that the O-ring seals against leakage of the fluid and the piston can be easily moved, regardless of the pressure of the fluid. The piston may be actuated by a means external to the cylinder with a piston rod extending through a hole in the cylinder sealed with a bellows attached to the piston head and the interior of the back chamber.
Fluid transport by active elastic membranes
Arthur A. Evans; Eric Lauga
2013-02-10
A flexible membrane deforming its shape in time can self-propel in a viscous fluid. Alternatively, if the membrane is anchored, its deformation will lead to fluid transport. Past work in this area focused on situations where the deformation kinematics of the membrane were prescribed. Here we consider models where the deformation of the membrane is not prescribed, but instead the membrane is internally forced. Both the time-varying membrane shape, and the resulting fluid motion, result then from a balance between prescribed internal active stresses, internal passive resistance, and external viscous stresses. We introduce two specific models for such active internal forcing: one where a distribution of active bending moments is prescribed, and one where active inclusions exert normal stresses on the membrane by pumping fluid through it. In each case, we asymptotically calculate the membrane shape and the fluid transport velocities for small forcing amplitudes, and recover our results using scaling analysis.
Modelling anisotropic fluid spheres in general relativity
Petarpa Boonserm; Tritos Ngampitipan; Matt Visser
2015-02-03
We argue that an arbitrary general relativistic anisotropic fluid sphere, (spherically symmetric but with transverse pressure not equal to radial pressure), can nevertheless be successfully modelled by suitable linear combinations of quite ordinary classical matter: an isotropic perfect fluid, a classical electromagnetic field, and a classical (minimally coupled) scalar field. While the most general decomposition is not unique, a preferred minimal decomposition can be constructed that is unique. We show how the classical energy conditions for the anisotropic fluid sphere can be related to energy conditions for the isotropic perfect fluid, electromagnetic field, and scalar field components of the model. Furthermore we show how this decomposition relates to the distribution of electric charge density and scalar charge density throughout the model that is used to mimic the anisotropic fluid sphere. Consequently, we can build physically reasonable matter models for almost any spherically symmetric spacetime.
Euler's fluid equations: Optimal Control vs Optimization
Darryl D. Holm
2009-09-28
An optimization method used in image-processing (metamorphosis) is found to imply Euler's equations for incompressible flow of an inviscid fluid, without requiring that the Lagrangian particle labels exactly follow the flow lines of the Eulerian velocity vector field. Thus, an optimal control problem and an optimization problem for incompressible ideal fluid flow both yield the \\emph {same} Euler fluid equations, although their Lagrangian parcel dynamics are \\emph{different}. This is a result of the \\emph{gauge freedom} in the definition of the fluid pressure for an incompressible flow, in combination with the symmetry of fluid dynamics under relabeling of their Lagrangian coordinates. Similar ideas are also illustrated for SO(N) rigid body motion.
Fluid permeability measurement system and method
Hallman, Jr., Russell Louis (Knoxville, TN); Renner, Michael John (Oak Ridge, TN)
2008-02-05
A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.
Conformal higher-order viscoelastic fluid mechanics
Masafumi Fukuma; Yuho Sakatani
2012-05-28
We present a generally covariant formulation of conformal higher-order viscoelastic fluid mechanics with strain allowed to take arbitrarily large values. We give a general prescription to determine the dynamics of a relativistic viscoelastic fluid in a way consistent with the hypothesis of local thermodynamic equilibrium and the second law of thermodynamics. We then elaborately study the transient time scales at which the strain almost relaxes and becomes proportional to the gradients of velocity. We particularly show that a conformal second-order fluid with all possible parameters in the constitutive equations can be obtained without breaking the hypothesis of local thermodynamic equilibrium, if the conformal fluid is defined as the long time limit of a conformal second-order viscoelastic system. We also discuss how local thermodynamic equilibrium could be understood in the context of the fluid/gravity correspondence.
Pumping viscoelastic two-fluid media
Hirofumi Wada
2010-04-08
Using a two-fluid model for viscoelastic polymer solutions, we study analytically fluid transport driven by a transverse, small amplitude traveling wave propagation. The pumping flow far from the waving boundary is shown to be strongly wave number and viscosity dependent, in contrast to a viscous Newtonian fluid. We find the two qualitatively different regimes: In one regime relevant to small wave numbers, the fluidic transport is almost the same as the Newtonian case, and uniform viscoelastic constitutive equations provide a good approximation. In the other regime, the pumping is substantially decreased because of the gel-like character. The boundary separating these two regimes is clarified. Our results suggest possible needs of two-fluid descriptions for the transport and locomotion in biological fluids with cilia and flagella.
Systems, compositions, and methods for fluid purification
Ho, W.S. Winston; Verweij, Hendrik; Shqau, Krenar; Ramasubranian, Kartik
2015-12-22
Disclosed herein are membranes comprising a substrate, a support layer, and a selective layer. In some embodiments the membrane may further comprise a permeable layer. Methods of forming membranes are also disclosed comprising forming a support layer on a substrate, removing adsorbed species from the support layer, preparing a solution containing inorganic materials of a selective layer, contacting the support layer with the solution, drying the membrane, and exposing the membrane to rapid thermal processing. Also disclosed are methods of fluid purification comprising providing a membrane having a feed side and a permeable side, passing a fluid mixture across the feed side of the membrane, providing a driving force for transmembrane permeation, removing from the permeate side a permeate stream enriched in a purified fluid, and withdrawing from the feed side a fluid that is depleted in a purified fluid.
Modelling anisotropic fluid spheres in general relativity
Boonserm, Petarpa; Visser, Matt
2015-01-01
We argue that an arbitrary general relativistic anisotropic fluid sphere, (spherically symmetric but with transverse pressure not equal to radial pressure), can nevertheless be successfully modelled by suitable linear combinations of quite ordinary classical matter: an isotropic perfect fluid, a classical electromagnetic field, and a classical (minimally coupled) scalar field. While the most general decomposition is not unique, a preferred minimal decomposition can be constructed that is unique. We show how the classical energy conditions for the anisotropic fluid sphere can be related to energy conditions for the isotropic perfect fluid, electromagnetic field, and scalar field components of the model. Furthermore we show how this decomposition relates to the distribution of electric charge density and scalar charge density throughout the model that is used to mimic the anisotropic fluid sphere. Consequently, we can build physically reasonable matter models for almost any spherically symmetric spacetime.
Tezduyar, Tayfun E.
Chapter 17 in Encyclopedia of Computational Mechanics, Volume 3: Fluids Finite Element Methods surfaces, two-fluid interfaces, fluidobject and fluidstructure in- teractions, and moving mechanical in Encyclopedia of Computational Mechanics, Volume 3: Fluids (eds. E. Stein, R. De Borst and T.J.R. Hughes), John
York, A.R. II [Sandia National Labs., Albuquerque, NM (United States). Engineering and Process Dept.] [Sandia National Labs., Albuquerque, NM (United States). Engineering and Process Dept.
1997-07-01
The material point method (MPM) is an evolution of the particle in cell method where Lagrangian particles or material points are used to discretize the volume of a material. The particles carry properties such as mass, velocity, stress, and strain and move through a Eulerian or spatial mesh. The momentum equation is solved on the Eulerian mesh. Modifications to the material point method are developed that allow the simulation of thin membranes, compressible fluids, and their dynamic interactions. A single layer of material points through the thickness is used to represent a membrane. The constitutive equation for the membrane is applied in the local coordinate system of each material point. Validation problems are presented and numerical convergence is demonstrated. Fluid simulation is achieved by implementing a constitutive equation for a compressible, viscous, Newtonian fluid and by solution of the energy equation. The fluid formulation is validated by simulating a traveling shock wave in a compressible fluid. Interactions of the fluid and membrane are handled naturally with the method. The fluid and membrane communicate through the Eulerian grid on which forces are calculated due to the fluid and membrane stress states. Validation problems include simulating a projectile impacting an inflated airbag. In some impact simulations with the MPM, bodies may tend to stick together when separating. Several algorithms are proposed and tested that allow bodies to separate from each other after impact. In addition, several methods are investigated to determine the local coordinate system of a membrane material point without relying upon connectivity data.
Fluid dynamic effects on precision cleaning with supercritical fluids
Phelps, M.R.; Hogan, M.O.; Silva, L.J.
1994-06-01
Pacific Northwest Laboratory staff have assembled a small supercritical fluids parts cleaning test stand to characterize how system dynamics affect the efficacy of precision cleaning with supercritical carbon dioxide. A soiled stainless steel coupon, loaded into a ``Berty`` autoclave, was used to investigate how changes in system turbulence and solvent temperature influenced the removal of test dopants. A pulsed laser beam through a fiber optic was used to investigate real-time contaminant removal. Test data show that cleaning efficiency is a function of system agitation, solvent density, and temperature. These data also show that high levels of cleaning efficiency can generally be achieved with high levels of system agitation at relatively low solvent densities and temperatures. Agitation levels, temperatures, and densities needed for optimal cleaning are largely contaminant dependent. Using proper system conditions, the levels of cleanliness achieved with supercritical carbon dioxide compare favorably with conventional precision cleaning methods. Additional research is currently being conducted to generalize the relationship between cleaning performance and parameters such as contaminant solubilities, mass transfer rates, and solvent agitation. These correlations can be used to optimize cleaning performance, system design, and time and energy consumption for particular parts cleaning applications.
An Experimental Setup to Study the Settling Behavior of Epoxy Based Fluids
El-Mallawany, Ibrahim Ismail
2012-07-16
or liquid. It assumes that the settling object is a small sphere and that the difference in densities is not large. This is because Stokes? law takes into account only the viscous forces that cause drag and does not account for drag due to impact forces.... Therefore, Stokes? law only applies where Reynolds number is very low. Stokes? law is given by the following equation (Batchelor 1967) ??????.?. (1) where Fd is the drag force, ? is the fluid?s viscosity, R is the sphere?s radius and V...
The Flow of Power-Law Fluids in Axisymmetric Corrugated Tubes
Sochi, Taha
2010-01-01
In this article we present an analytical method for deriving the relationship between the pressure drop and flow rate in laminar flow regimes, and apply it to the flow of power-law fluids through axially-symmetric corrugated tubes. The method, which is general with regards to fluid and tube shape within certain restrictions, can also be used as a foundation for numerical integration where analytical expressions are hard to obtain due to mathematical or practical complexities. Five converging-diverging geometries are used as examples to illustrate the application of this method.
The Flow of Power-Law Fluids in Axisymmetric Corrugated Tubes
Taha Sochi
2010-06-13
In this article we present an analytical method for deriving the relationship between the pressure drop and flow rate in laminar flow regimes, and apply it to the flow of power-law fluids through axially-symmetric corrugated tubes. The method, which is general with regards to fluid and tube shape within certain restrictions, can also be used as a foundation for numerical integration where analytical expressions are hard to obtain due to mathematical or practical complexities. Five converging-diverging geometries are used as examples to illustrate the application of this method.
Transport Control of Eyring-Fluids along a Transversely-Corrugated Nanoannulus
Zhu Guang Hua
2008-09-07
The volume flow rates of Eyring-fluids inside the wavy-rough nanoannulus were obtained analytically (up to the second order) by using the verified model and boundary perturbation method. Our results show that the wavy-roughness could enhance the flow rate especially for smaller forcing due to the larger surface-to-volume ratio and slip-velocity effect. Meanwhile, the phase shift between the outer and inner walls of nanoannuli could tune the transport of Eyring-fluids either forward or backward when the wavy-roughness of a nanoannulus is larger enough. Our results could be applied to the flow control in nanofluidics as well as biofluidics.
Black Warrior: Sub-soil gas and fluid inclusion exploration and slim well drilling
Broader source: Energy.gov [DOE]
DOE Geothermal Peer Review 2010 - Presentation. Project Objectives: Discover a blind, low-moderate temperature resource: Apply a combination of detailed sub-soil gas, hydrocarbon, and isotope data to define possible upflow areas; Calibrate the sub-soil chemistry with down-hole fluid inclusion stratigraphy and fluid analyses to define a follow-up exploration drilling target; Create short term jobs and long term employment through resource exploration, development and power plant operation; Extend and adapt the DOE sub-soil 2 meter probe technology to gas sampling.
GRADUATE BOOKLET Physics / Applied Physics
Rock, Chris
GRADUATE BOOKLET Physics / Applied Physics This booklet contains rules, guidelines and general information about graduate studies in the Physics Department at Texas Tech University. It does not replace documents. Contents I. General Comments: Admission, general policies, deadlines, etc II. Minimum
Modeling applied to problem solving
Pawl, Andrew
We describe a modeling approach to help students learn expert problem solving. Models are used to present and hierarchically organize the syllabus content and apply it to problem solving, but students do not develop and ...
IIT SCHOOL OF APPLIED TECHNOLOGY
Heller, Barbara
. MANUFACTURINGTECHNOLOGY. #12;BE A LEADER OF THE NEXT INDUSTRIAL REVOLUTION. An undergraduate degree in IndustrialINDUSTRIAL TECHNOLOGY AND MANAGEMENT IIT SCHOOL OF APPLIED TECHNOLOGY INDUSTRIAL OPERATIONS. RESOURCE MANAGEMENT. INDUSTRIAL FACILITIES. SUPPLY CHAIN MANAGEMENT. SUSTAINABILITY
Fluid-rock interaction: A reactive transport approach
Steefel, C.
2009-01-01
to coupled mass transport and fluid-rock interaction in aof a reactive transport approach in fluid-rock interaction,reactive transport models for fluid-rock interaction. Case
Formulation of the Chip Cleanability Mechanics from Fluid Transport
Garg, Saurabh; Dornfeld, David; Klaus Berger
2009-01-01
Mechanics from fluid transport S. Garg , D. Dornfeld , K.simply relying on the fluid transport energy of highagain aids in their transport in the fluid stream. For a
Fluid processing device and method
Whyatt, Greg A. (West Richland, WA); Davis, James M. (Richland, WA)
2006-02-07
A fluid processing unit having first and second interleaved flow paths in a cross flow configuration is disclosed. The first flow paths are substantially longer than the second flow paths such that the pressure drop in the second flow paths can be maintained at a relatively low level and temperature variations across the second flow paths are reduced. One or more of the flow paths can be microchannels. When used as a vaporizer and/or superheater, the longer first flow paths include an upstream liquid flow portion and a downstream vapor flow portion of enlarged cross sectional area. A substantial pressure drop is maintained through the upstream liquid flow portion for which one or more tortuous flow channels can be utilized. The unit is a thin panel, having a width substantially less its length or height, and is manufactured together with other thin units in a bonded stack of thin metal sheets. The individual units are then separated from the stack after bonding.
Modeling fluid flow in deformation bands with stabilized localization...
Office of Scientific and Technical Information (OSTI)
Modeling fluid flow in deformation bands with stabilized localization mixed finite elements. Citation Details In-Document Search Title: Modeling fluid flow in deformation bands...
Microfluidics: Kinetics of Hybridized DNA With Fluid Flow Variations...
Office of Scientific and Technical Information (OSTI)
Conference: Microfluidics: Kinetics of Hybridized DNA With Fluid Flow Variations. Citation Details In-Document Search Title: Microfluidics: Kinetics of Hybridized DNA With Fluid...
Application of Neutron Imaging and Scattering to Fluid Flow and...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS...
Synovial fluid homeostasis : bulk flow, lubricant transport, and biophysical restoration
McCarty, William Joseph
2012-01-01
of synovial fluid lubricants hyaluronan and proteoglycan 4HOMEOSTASIS: BULK FLOW, LUBRICANT TRANSPORT, AND BIOPHYSICALmodel of synovial fluid lubricant composition in normal and
Electric Power Generation from Coproduced Fluids from Oil and...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Electric Power Generation from Coproduced Fluids from Oil and Gas Wells Electric Power Generation from Coproduced Fluids from Oil and Gas Wells The primary objective of this...
Development of Molten-Salt Heat Trasfer Fluid Technology for...
Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar Power Plants Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar...
ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID INCLUSION...
> 0.001 mol % typically have ethane > ethylene, propane > propylene, and butane > butylene. There are three end member fluid compositions: type 1 fluids in which...
Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (Rao...
Fluid At Valles Caldera - Redondo Area (Rao, Et Al., 1996) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Valles...
Property:FluidMechanicsMeasurement | Open Energy Information
Property Name FluidMechanicsMeasurement Property Type String Description MHK Fluid Mechanics Measurement Categories Used in FormTemplate MHKSensor Allows Values Differential...
Fracture Network and Fluid Flow Imaging for EGS Applications...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure Fracture Network and Fluid Flow Imaging for EGS Applications from...
Evaluation of Biodiesel Fuels from Supercritical Fluid Processing...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Biodiesel Fuels from Supercritical Fluid Processing with the Advanced Distillation Curve Method Evaluation of Biodiesel Fuels from Supercritical Fluid Processing with the Advanced...
ITP Chemicals: Technology Roadmap for Computational Fluid Dynamics...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Fluid Dynamics, January 1999 ITP Chemicals: Technology Roadmap for Computational Fluid Dynamics, January 1999 cfdroadmap.pdf More Documents & Publications 3-D Combustion...
A STOCHASTIC METHOD FOR MODELING FLUID DISPLACEMENT IN PETROLEUM RESERVOIRS
Anderson, C.
2011-01-01
FLUID DISPLACEMENT IN PETROLEUM RESERVOIRS C. Anderson andFLUID DISPLACEMENT IN PETROLEUM RESERVOIRS C. Anderson andachieve optimal recovery of petroleum from a reservoir, it
Volatiles in hydrothermal fluids- A mass spectrometric study...
Volatiles in hydrothermal fluids- A mass spectrometric study of fluid inclusions from active geothermal systems Jump to: navigation, search OpenEI Reference LibraryAdd to library...
Fluid Inclusion Stratigraphy Interpretation of New Wells in the...
Fluid Inclusion Stratigraphy Interpretation of New Wells in the Coso Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Fluid...
High Operating Temperature Heat Transfer Fluids for Solar Thermal...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
High Operating Temperature Heat Transfer Fluids for Solar Thermal Power Generation FY13 Q1 High Operating Temperature Heat Transfer Fluids for Solar Thermal Power Generation FY13...
Hamiltonian description of the ideal fluid
Morrison, P.J.
1994-01-01
Fluid mechanics is examined from a Hamiltonian perspective. The Hamiltonian point of view provides a unifying framework; by understanding the Hamiltonian perspective, one knows in advance (within bounds) what answers to expect and what kinds of procedures can be performed. The material is organized into five lectures, on the following topics: rudiments of few-degree-of-freedom Hamiltonian systems illustrated by passive advection in two-dimensional fluids; functional differentiation, two action principles of mechanics, and the action principle and canonical Hamiltonian description of the ideal fluid; noncanonical Hamiltonian dynamics with examples; tutorial on Lie groups and algebras, reduction-realization, and Clebsch variables; and stability and Hamiltonian systems.
Apparatus and method for fluid analysis
Wilson, Bary W.; Peters, Timothy J.; Shepard, Chester L.; Reeves, James H.
2004-11-02
The present invention is an apparatus and method for analyzing a fluid used in a machine or in an industrial process line. The apparatus has at least one meter placed proximate the machine or process line and in contact with the machine or process fluid for measuring at least one parameter related to the fluid. The at least one parameter is a standard laboratory analysis parameter. The at least one meter includes but is not limited to viscometer, element meter, optical meter, particulate meter, and combinations thereof.
The Super-Higgs Mechanism in Fluids
Karim Benakli; Yaron Oz; Giuseppe Policastro
2013-10-18
Supersymmetry is spontaneously broken when the field theory stress-energy tensor has a non-zero vacuum expectation value. In local supersymmetric field theories the massless gravitino and goldstino combine via the super-Higgs mechanism to a massive gravitino. We study this mechanism in four-dimensional fluids, where the vacuum expectation value of the stress-energy tensor breaks spontaneously both supersymmetry and Lorentz symmetry. We consider both constant as well as space-time dependent ideal fluids. We derive a formula for the gravitino mass in terms of the fluid velocity, energy density and pressure. We discuss some of the phenomenological implications.
On the Hamiltonian Description of Fluid Mechanics
I. Antoniou; G. P. Pronko
2002-03-14
We suggest the Hamiltonian approach for fluid mechanics based on the dynamics, formulated in terms of Lagrangian variables. The construction of the canonical variables of the fluid sheds a light of the origin of Clebsh variables, introduced in the previous century. The developed formalism permits to relate the circulation conservation (Tompson theorem) with the invariance of the theory with respect to special diffiomorphisms and establish also the new conservation laws. We discuss also the difference of the Eulerian and Lagrangian description, pointing out the incompleteness of the first. The constructed formalism is also applicable for ideal plasma. We conclude with several remarks on the quantization of the fluid.
Creating fluid injectivity in tar sands formations
Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan
2010-06-08
Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons are produced from the portion.
Creating fluid injectivity in tar sands formations
Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan
2012-06-05
Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons including mobilized hydrocarbons are produced from the portion.
Geothermal energy production with supercritical fluids
Brown, Donald W.
2003-12-30
There has been invented a method for producing geothermal energy using supercritical fluids for creation of the underground reservoir, production of the geothermal energy, and for heat transport. Underground reservoirs are created by pumping a supercritical fluid such as carbon dioxide into a formation to fracture the rock. Once the reservoir is formed, the same supercritical fluid is allowed to heat up and expand, then is pumped out of the reservoir to transfer the heat to a surface power generating plant or other application.
Fluid properties determine flow line blockage potential
Hunt, A.
1996-07-15
A thorough understanding of fluid properties helps in determining the potential of hydrates, paraffins, or asphaltenes to block subsea flow lines. Thermal, chemical, and mechanical methods are the main ways for preventing deposition. Already in both the North Sea and the Gulf of Mexico, blockages have led to significant losses in production and reserves recovery. This first article in a two-part series discusses thermal and chemical methods in overcoming fluid behavior problems caused by hydrate and other fluid constituents in subsea multiphase flow. The paper discusses subsea production, possible problems, nucleation, growth, deposition, preventing deposition, hydrate predictions, multiphase flow, and hydrate inhibition.
CX-009418: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Electron Beam Melting CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office
CX-009420: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Additive Manufacturing Using EOSINT M280 CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office
CX-009419: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Magnetic Pulser CX(s) Applied: None applied. Date: 10/30/2012 Location(s): Missouri Offices(s): Kansas City Site Office
Vlasov Fluid stability of a 2-D plasma with a linear magnetic field null
Kim, J.S.
1984-01-01
Vlasov Fluid stability of a 2-dimensional plasma near an O type magnetic null is investigated. Specifically, an elongated Z-pinch is considered, and applied to Field Reversed Configurations at Los Alamos National Laboratory by making a cylindrical approximation of the compact torus. The orbits near an elliptical O type null are found to be very complicated; the orbits are large and some are stochastic. The kinetic corrections to magnetohydrodynamics (MHD) are investigated by evaluating the expectation values of the growth rates of a Vlasov Fluid dispersion functional by using a set of trial functions based on ideal MHD. The dispersion functional involves fluid parts and orbit dependent parts. The latter involves phase integral of two time correlations. The phase integral is replaced by the time integral both for the regular and for the stochastic orbits. Two trial functions are used; one has a large displacement near the null and the other away from the null.
Dynamics of a confined dusty fluid in a sheared ion flow
Laishram, Modhuchandra; Sharma, Devendra; Kaw, Predhiman K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)
2014-07-15
Dynamics of an isothermally driven dust fluid is analyzed which is confined in an azimuthally symmetric cylindrical setup by an effective potential and is in equilibrium with an unconfined sheared flow of a streaming plasma. Cases are analyzed where the confining potential constitutes a barrier for the driven fluid, limiting its spatial extension and boundary velocity. The boundary effects entering the formulation are characterized by applying the appropriate boundary conditions and a range of solutions exhibiting single and multiple vortex are obtained. The equilibrium solutions considered in the cylindrical setup feature a transition from single to multiple vortex state of the driven flow. Effects of (i) the variation in dust viscosity, (ii) coupling between the driving and the driven fluid, and (iii) a friction determining the equilibrium dynamics of the driven system are characterized.
Charron, Richard; Pierce, Daniel
2015-08-11
A shaft cover support for a gas turbine engine is disclosed. The shaft cover support not only provides enhanced support to a shaft cover of the gas turbine engine, but also includes a cooling fluid chamber for passing fluids from a rotor air cooling supply conduit to an inner ring cooling manifold. Furthermore, the shaft cover support may include a cooling shield supply extending from the cooling fluid chamber between the radially outward inlet and the radially inward outlet on the radially extending region and in fluid communication with the cooling fluid chamber for providing cooling fluids to a transition section. The shaft cover support may also provide additional stiffness and reduce interference of the flow from the compressor. In addition, the shaft cover support accommodates a transition section extending between compressor and turbine sections of the gas turbine engine.
Addendum to fluid flow effects on electroplating
Kirkpatrick, J.R.
1990-10-01
Expressions are given for concentration boundary layer thickness on complex axisymmetric shapes for use in electroplating calculations. This is an addendum to a discussion of fluid flow effects in electroplating. 6 refs., 1 fig.
Preparation, Injection and Combustion of Supercritical Fluids...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
of Supercritical Fluids This project shows the conceptual design of diesel fuel-EGR flow from sub- to super-critical conditions of 394 degrees C and 229 bar....
Relativistic Elasticity of Stationary Fluid Branes
Jay Armas; Niels A. Obers
2012-10-18
Fluid mechanics can be formulated on dynamical surfaces of arbitrary co-dimension embedded in a background space-time. This has been the main object of study of the blackfold approach in which the emphasis has primarily been on stationary fluid configurations. Motivated by this approach we show under certain conditions that a given stationary fluid configuration living on a dynamical surface of vanishing thickness and satisfying locally the first law of thermodynamics will behave like an elastic brane when the surface is subject to small deformations. These results, which are independent of the number of space-time dimensions and of the fluid arising from a gravitational dual, reveal the (electro)elastic character of (charged) black branes when considering extrinsic perturbations.
Relativistic Elasticity of Stationary Fluid Branes
Armas, Jay
2012-01-01
Fluid mechanics can be formulated on dynamical surfaces of arbitrary co-dimension embedded in a background space-time. This has been the main object of study of the blackfold approach in which the emphasis has primarily been on stationary fluid configurations. Motivated by this approach we show under certain conditions that a given stationary fluid configuration living on a dynamical surface of vanishing thickness and satisfying locally the first law of thermodynamics will behave like an elastic brane when the surface is subject to small deformations. These results, which are independent of the number of space-time dimensions and of the fluid arising from a gravitational dual, reveal the (electro)elastic character of (charged) black branes when considering extrinsic perturbations.
Institute of Fluid Mechanics and Engineering Acoustics
Berlin,Technische Universität
Institute of Fluid Mechanics and Engineering Acoustics Large Kundt's tubes Click to insert the image of the facility or test-rig Application area Facility Mechanical Property measurement Physical
Institute of Fluid Mechanics and Engineering Acoustics
Berlin,Technische Universität
Institute of Fluid Mechanics and Engineering Acoustics Sound Transmission Lab Click to insert the image of the facility or test-rig Application area Facility Mechanical Property measurement Physical
Reactive flash volatilization of fluid fuels
Schmidt, Lanny D.; Dauenhauer, Paul J.; Dreyer, Bradon J.; Salge, James R.
2013-01-08
The invention provides methods for the production of synthesis gas. More particularly, various embodiments of the invention relate to systems and methods for volatilizing fluid fuel to produce synthesis gas by using a metal catalyst on a solid support matrix.
Controllable adhesion using field-activated fluids
Ewoldt, Randy H.
We demonstrate that field-responsive magnetorheological fluids can be used for variable-strength controllable adhesion. The adhesive performance is measured experimentally in tensile tests (a.k.a. probe-tack experiments) ...
Parametric internal waves in a compressible fluid
Das, Kausik S; Bhattacharyay, A
2007-01-01
We describe the effect of vibration on a confined volume of fluid which is density stratified due to its compressibility. We show that internal gravity-acoustic waves can be parametrically destabilized by the vibration. The resulting instability is similar to the classic Faraday instability of surface waves, albeit modified by the compressible nature of the fluid. It may be possible to observe experimentally near a gas-liquid critical point.
Water as a thermoacoustic working fluid
Swift, G.W.
1988-01-01
This short report, addressed only to the thermoacoustic cognoscenti, discusses thermodynamic and transport properties of water with emphasis on water's virtues as a thermoacoustic working fluid. Short-stack-approximation calculations are presented, showing that water is a good working fluid. A very rough design for a sound source using water is also presented as a starting point for discussing the merits and difficulties of this technology. 4 figs.
Control system for fluid heated steam generator
Boland, J.F.; Koenig, J.F.
1984-05-29
A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.
Biphase Turbine Tests on Process Fluids
Helgeson, N. L.; Maddox, J. P.
1983-01-01
two-phase flows because of life-limiting erosion and cavitation problems. With the development of the Biphase tur bine, however, a reliable machine for efficiently converting this energy into shaft power is now avail able. Biphase Energy Systems.... The reinjection pump can then be eliminated, or at least reduced in size, and the problem of cavitation damage from pumping a saturated fluid is eliminated. Figure 3. Advanced Biphase Rotary Separator Turbine Operating with Air/Water Figure 2. Process Fluids...
Control system for fluid heated steam generator
Boland, James F. (Bonneville County, ID); Koenig, John F. (Idaho Falls, ID)
1985-01-01
A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.
Viscosity of High Energy Nuclear Fluids
V. Parihar; A. Widom; D. Drosdoff; Y. N. Srivastava
2007-03-15
Relativistic high energy heavy ion collision cross sections have been interpreted in terms of almost ideal liquid droplets of nuclear matter. The experimental low viscosity of these nuclear fluids have been of considerable recent quantum chromodynamic interest. The viscosity is here discussed in terms of the string fragmentation models wherein the temperature dependence of the nuclear fluid viscosity obeys the Vogel-Fulcher-Tammann law.
Nanoparticle enhanced ionic liquid heat transfer fluids
Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.
2014-08-12
A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.
Stirling engine with air working fluid
Corey, John A. (North Troy, NY)
1985-01-01
A Stirling engine capable of utilizing air as a working fluid which includes a compact heat exchange module which includes heating tube units, regenerator and cooler positioned about the combustion chamber. This arrangement has the purpose and effect of allowing the construction of an efficient, high-speed, high power-density engine without the use of difficult to seal light gases as working fluids.
Computational fluid dynamics improves liner cementing operation
Barton, N.A.; Archer, G.L. ); Seymour, D.A. )
1994-09-26
The use of computational fluid dynamics (CFD), an analytical tool for studying fluid mechanics, helped plan the successful cementing of a critical liner in a North Sea extended reach well. The results from CFD analysis increased the confidence in the primary cementing of the liner. CFD modeling was used to quantify the effects of increasing the displacement rate and of rotating the liner on the mud flow distribution in the annulus around the liner.
Fluid driven torsional dipole seismic source
Hardee, Harry C. (Albuquerque, NM)
1991-01-01
A compressible fluid powered oscillating downhole seismic source device capable of periodically generating uncontaminated horizontally-propagated, shear waves is provided. A compressible fluid generated oscillation is created within the device which imparts an oscillation to a housing when the device is installed in a housing such as the cylinder off an existing downhole tool, thereby a torsional seismic source is established. Horizontal waves are transferred to the surrounding bore hole medium through downhole clamping.
High gliding fluid power generation system with fluid component separation and multiple condensers
Mahmoud, Ahmad M; Lee, Jaeseon; Radcliff, Thomas D
2014-10-14
An example power generation system includes a vapor generator, a turbine, a separator and a pump. In the separator, the multiple components of the working fluid are separated from each other and sent to separate condensers. Each of the separate condensers is configured for condensing a single component of the working fluid. Once each of the components condense back into a liquid form they are recombined and exhausted to a pump that in turn drives the working fluid back to the vapor generator.
Chemical Signatures of and Precursors to Fractures Using Fluid Inclusion Stratigraphy
Lorie M. Dilley
2011-03-30
Enhanced Geothermal Systems (EGS) are designed to recover heat from the subsurface by mechanically creating fractures in subsurface rocks. Open or recently closed fractures would be more susceptible to enhancing the permeability of the system. Identifying dense fracture areas as well as large open fractures from small fracture systems will assist in fracture stimulation site selection. Geothermal systems are constantly generating fractures (Moore, Morrow et al. 1987), and fluids and gases passing through rocks in these systems leave small fluid and gas samples trapped in healed microfractures. These fluid inclusions are faithful records of pore fluid chemistry. Fluid inclusions trapped in minerals as the fractures heal are characteristic of the fluids that formed them, and this signature can be seen in fluid inclusion gas analysis. This report presents the results of the project to determine fracture locations by the chemical signatures from gas analysis of fluid inclusions. With this project we hope to test our assumptions that gas chemistry can distinguish if the fractures are open and bearing production fluids or represent prior active fractures and whether there are chemical signs of open fracture systems in the wall rock above the fracture. Fluid Inclusion Stratigraphy (FIS) is a method developed for the geothermal industry which applies the mass quantification of fluid inclusion gas data from drill cuttings and applying known gas ratios and compositions to determine depth profiles of fluid barriers in a modern geothermal system (Dilley, 2009; Dilley et al., 2005; Norman et al., 2005). Identifying key gas signatures associated with fractures for isolating geothermal fluid production is the latest advancement in the application of FIS to geothermal systems (Dilley and Norman, 2005; Dilley and Norman, 2007). Our hypothesis is that peaks in FIS data are related to location of fractures. Previous work (DOE Grant DE-FG36-06GO16057) has indicated differences in the chemical signature of fluid inclusions between open and closed fractures as well as differences in the chemical signature of open fractures between geothermal systems. Our hypothesis is that open fracture systems can be identified by their FIS chemical signature; that there are differences based on the mineral assemblages and geology of the system; and that there are chemical precursors in the wall rock above open, large fractures. Specific goals for this project are: (1) To build on the preliminary results which indicate that there are differences in the FIS signatures between open and closed fractures by identifying which chemical species indicate open fractures in both active geothermal systems and in hot, dry rock; (2) To evaluate the FIS signatures based on the geology of the fields; (3) To evaluate the FIS signatures based on the mineral assemblages in the fracture; and (4) To determine if there are specific chemical signatures in the wall rock above open, large fractures. This method promises to lower the cost of geothermal energy production in several ways. Knowledge of productive fractures in the boreholes will allow engineers to optimize well production. This information can aid in well testing decisions, well completion strategies, and in resource calculations. It will assist in determining the areas for future fracture enhancement. This will develop into one of the techniques in the 'tool bag' for creating and managing Enhanced Geothermal Systems.
Applying for a Training Contract
, usual deadline is July 31, 2013 for entry in September 2015. Students should apply in the 2nd year aimed at 2nd year LLB students & final year non-law students. Competition for these places is often more will successfully complete the Legal Practice Course each year. From the point of view of the student, there can
Applied Sustainability Political Science 319
Young, Paul Thomas
1 Applied Sustainability Political Science 319 College of Charleston Spring 2013 Day/Time: TH 1 Address: fisherb@cofc.edu Office: 284 King Street, #206 (Office of Sustainability) Office Hours: by appt sustainability. It will focus on the development of semester-long sustainability projects, from conception
Journal of Applied Ecology 2006
Thomas, Len
Journal of Applied Ecology 2006 43, 377384 © 2006 The Authors. Journal compilation © 2006 British Ecological Society Blackwell Publishing Ltd METHODOLOGICAL INSIGHTS Point transect sampling with traps, Etive House, Beechwood Park, Inverness IV2 3BW, UK Summary 1. The ability to monitor abundance of animal
Applying the Continuous Monitoring Technical
by providing technical leadership for the nation's measurement and standards infrastructure. ITL develops tests of technical, physical, administrative, and management standards and guidelines for the cost-effective securityApplying the Continuous Monitoring Technical Reference Model to the Asset, Configuration
temperature heat pumps applied to
Oak Ridge National Laboratory
Very high- temperature heat pumps applied to energy efficiency in industry Application of industrial heat pumps June 21 th 2012 J-L Peureux, E. Sapora, D. Bobelin EDF R&D #12;Achema 2012 Frankfurt There are thermal requirements in the industrial plant Treq Heat exchanger = Cons ~ 0 CO2 ~ -100% Treq
Computational fluid dynamic modeling of fluidized-bed polymerization reactors
Rokkam, Ram
2012-11-02
Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.
Fluid-particle flow modelling and validation using two-way-coupled mesoscale SPH-DEM
Robinson, Martin; Ramaioli, Marco
2013-01-01
We present a meshless simulation method for multiphase fluid-particle flows coupling Smoothed Particle Hydrodynamics (SPH) and the Discrete Element Method (DEM). Rather than fully resolving the interstitial fluid, which is often infeasible, the unresolved fluid model is based on the locally averaged Navier Stokes equations, which are coupled with a DEM model for the solid phase. In contrast to similar mesh-based Discrete Particle Methods (DPMs), this is a purely particle-based method and enjoys the flexibility that comes from the lack of a prescribed mesh. It is suitable for problems such as free surface flow or flow around complex, moving and/or intermeshed geometries. It can be used for both one and two-way coupling and is applicable to both dilute and dense particle flows. A comprehensive validation procedure for fluid-particle simulations is presented and applied to the SPH-DEM method, using simulations of single and multiple particle sedimentation in a 3D fluid column and comparison with analytical model...
Modeling and Algorithmic Approaches to Constitutively-Complex, Micro-structured Fluids
Forest, Mark Gregory [University of North Carolina at Chapel Hill] [University of North Carolina at Chapel Hill
2014-05-06
The team for this Project made significant progress on modeling and algorithmic approaches to hydrodynamics of fluids with complex microstructure. Our advances are broken down into modeling and algorithmic approaches. In experiments a driven magnetic bead in a complex fluid accelerates out of the Stokes regime and settles into another apparent linear response regime. The modeling explains the take-off as a deformation of entanglements, and the longtime behavior is a nonlinear, far-from-equilibrium property. Furthermore, the model has predictive value, as we can tune microstructural properties relative to the magnetic force applied to the bead to exhibit all possible behaviors. Wave-theoretic probes of complex fluids have been extended in two significant directions, to small volumes and the nonlinear regime. Heterogeneous stress and strain features that lie beyond experimental capability were studied. It was shown that nonlinear penetration of boundary stress in confined viscoelastic fluids is not monotone, indicating the possibility of interlacing layers of linear and nonlinear behavior, and thus layers of variable viscosity. Models, algorithms, and codes were developed and simulations performed leading to phase diagrams of nanorod dispersion hydrodynamics in parallel shear cells and confined cavities representative of film and membrane processing conditions. Hydrodynamic codes for polymeric fluids are extended to include coupling between microscopic and macroscopic models, and to the strongly nonlinear regime.
Method for electrically producing dispersions of a nonconductive fluid in a conductive medium
DePaoli, David W. (Knoxville, TN); Tsouris, Constantinos (Oak Ridge, TN); Feng, James Q. (Fairport, NY)
1998-01-01
A method for use in electrically forming dispersions of a nonconducting fluid in a conductive medium that minimizes power consumption, gas generation, and sparking between the electrode of the nozzle and the conductive medium. The method utilizes a nozzle having a passageway, the wall of which serves as the nozzle electrode, for the transport of the nonconducting fluid into the conductive medium. A second passageway provides for the transport of a flowing low conductivity buffer fluid which results in a region of the low conductivity buffer fluid immediately adjacent the outlet from the first passageway to create the necessary protection from high current drain and sparking. An electrical potential difference applied between the nozzle electrode and an electrode in contact with the conductive medium causes formation of small droplets or bubbles of the nonconducting fluid within the conductive medium. A preferred embodiment has the first and second passageways arranged in a concentric configuration, with the outlet tip of the first passageway withdrawn into the second passageway.
Method for electrically producing dispersions of a nonconductive fluid in a conductive medium
DePaoli, D.W.; Tsouris, C.; Feng, J.Q.
1998-06-09
A method is described for use in electrically forming dispersions of a nonconducting fluid in a conductive medium that minimizes power consumption, gas generation, and sparking between the electrode of the nozzle and the conductive medium. The method utilizes a nozzle having a passageway, the wall of which serves as the nozzle electrode, for the transport of the nonconducting fluid into the conductive medium. A second passageway provides for the transport of a flowing low conductivity buffer fluid which results in a region of the low conductivity buffer fluid immediately adjacent the outlet from the first passageway to create the necessary protection from high current drain and sparking. An electrical potential difference applied between the nozzle electrode and an electrode in contact with the conductive medium causes formation of small droplets or bubbles of the nonconducting fluid within the conductive medium. A preferred embodiment has the first and second passageways arranged in a concentric configuration, with the outlet tip of the first passageway withdrawn into the second passageway. 4 figs.
Statistical mechanics of simple fluids: beyond van der Waals
Lebowitz, Joel
Statistical mechanics of simple fluids: beyond van der Waals Equilibrium properties of dense fluids, such as a fluid of "hard spheres," and to calculations on high-speed computers. Joel L. Lebowitz and Eduardo M. Waisman Dense fluids, defined to include both dense gases and liquids, have the repu- tation of being
Journal of Fluid Mechanics A furtive stare at an
Goldstein, Raymond E.
Journal of Fluid Mechanics Focus luids on F A furtive stare at an intra-cellular flow T. M. SQUIRES of the fluid flow within individual living cells, which agree quantitatively with their fluid mechanical model. Introduction Nature has long inspired researchers in fluid mechanics to explore the mechanical strategies used
Spring 2015 ENG BE 436 Fundamentals of Fluid Mechanics
Vajda, Sandor
Spring 2015 ENG BE 436 Fundamentals of Fluid Mechanics Dimitrije Stamenovi (Instructor) Alicia Zollinger (TA), Daniel Reynolds (TA) Tue. & Thu., 2 4 pm Fluid mechanics is a discipline that studies motion of fluids (gasses and liquids) and forces that act on them. A sub discipline of fluid mechanics
Fossil evidence for serpentinization fluids fueling chemosynthetic assemblages
Demouchy, Sylvie
Fossil evidence for serpentinization fluids fueling chemosynthetic assemblages Franck Lartauda,b,1 years, Lost City on the Mid-Atlantic Ridge (MAR) is remarkable both for its alkaline fluids derived from these fluids. Despite high concentrations of reduced chemicals in the fluids, this unique example of a serpenti
Fluid transport properties by equilibrium molecular dynamics. II. Multicomponent systems
Dysthe, Dag Kristian
Fluid transport properties by equilibrium molecular dynamics. II. Multicomponent systems D. K than 25 years molecular dynamics has been used to study fluid transport properties. Such MD studies and multicenter molecular models.816 d The study of transport properties of certain fluids and classes of fluids
Energy Constrained Transport Maximization across a Fluid Interface Sanjeeva Balasuriya*
Balasuriya, Sanjeeva
Energy Constrained Transport Maximization across a Fluid Interface Sanjeeva Balasuriya* Department of maximizing fluid transport across a fluid interface subject to an available energy budget is examined advective fluid transport across such an interface is a first step towards achieving good mixing
Valving for controlling a fluid-driven reciprocating apparatus
Whitehead, John C. (Davis, CA)
1995-01-01
A pair of control valve assemblies for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve assembly is switched by a pressure signal depending on the state of its counterpart's piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. Each of the valve assemblies uses an intake-exhaust valve and a signal valve with the signal valve of one pump being connected to be pressure responsive to the piston of the opposite cylinder or pump.
Valving for controlling a fluid-driven reciprocating apparatus
Whitehead, J.C.
1995-06-27
A pair of control valve assemblies is described for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve assembly is switched by a pressure signal depending on the state of its counterpart`s piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. Each of the valve assemblies uses an intake-exhaust valve and a signal valve with the signal valve of one pump being connected to be pressure responsive to the piston of the opposite cylinder or pump. 15 figs.
Single Particle, Passive Microrheology in Biological Fluids with Drift
John W. R. Mellnik; Martin Lysy; Paula A. Vasquez; Natesh S. Pillai; David B. Hill; Jeremy Crib; Scott A. McKinley; M. Gregory Forest
2015-09-10
Volume limitations and low yield thresholds of biological fluids have led to widespread use of passive microparticle rheology. The mean-squared-displacement (MSD) statistics of bead position time series (bead paths) are transformed to determine dynamic storage and loss moduli [Mason and Weitz (1995)]. A prevalent hurdle arises when there is a non-diffusive experimental drift in the data. Commensurate with the magnitude of drift relative to diffusive mobility, quantified by a P\\'eclet number, the MSD statistics are distorted, and thus the path data must be "corrected" for drift. The standard approach is to estimate and subtract the drift from particle paths, and then calculate MSD statistics. We present an alternative, parametric approach using maximum likelihood estimation (MLE) that simultaneously fits drift and diffusive model parameters from the path data; the MSD statistics (and dynamic moduli) then follow directly from the best-fit model. We illustrate and compare both methods on simulated path data over a range of P\\'eclet numbers, where exact answers are known. We choose fractional Brownian motion as the numerical model because it affords tunable, sub-diffusive MSD statistics consistent with several biological fluids. Finally, we apply and compare both methods on data from human bronchial epithelial cell culture mucus.
"Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"
Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann
2008-06-12
ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers
Feeny, Brian
June 2006 MSME with depth in Fluid Mechanics The primary areas of fluid mechanics research Mechanics The MSME degree program for fluid mechanics is based around two graduate-level foundation courses offered through the Department of Mechanical Engineering (ME). These courses are ME 830 Fluid Mechanics I
Michael R. Gross; Kajari Ghosh; Alex K. Manda; Sumanjit Aich
2006-05-08
The theory behind how chemically reactive tracers are used to characterize the velocity and temperature distribution in steady flowing systems is reviewed. Kinetic parameters are established as a function of reservoir temperatures and fluid residence times for selecting appropriate reacting systems. Reactive tracer techniques are applied to characterize the temperature distribution in a laminar-flow heat exchanger. Models are developed to predict reactive tracer behavior in fractured geothermal reservoirs of fixed and increasing size.
The role of homology in fluid vortices I: non-relativistic flow
D. H. Delphenich
2014-12-09
The methods of singular and de Rham homology and cohomology are reviewed to the extent that they are applicable to the structure and motion of vortices. In particular, they are first applied to the concept of integral invariants. After a brief review of the elements of fluid mechanics, when expressed in the language of exterior differential forms and homology theory, the basic laws of vortex theory are shown to be statements that are rooted in the homology theory of integral invariants.
The comparison of the 3-fluid dynamic model with experimental data
Kizka, V A
2015-01-01
The method of comparison of theoretical predictions with experimental data had been developed.This method allows estimate the quality of theory. Published theoretical data of the three-fluid dynamic (3FD) model applied to the experimental data from heavy-ion collisions at the energy range $\\sqrt{s_{NN}}\\,=\\,2.7 - 63$ GeV were used as example of application of the developed methodology.
The comparison of the 3-fluid dynamic model with experimental data
V. A. Kizka
2015-08-13
The method of comparison of theoretical predictions with experimental data had been developed.This method allows estimate the quality of theory. Published theoretical data of the three-fluid dynamic (3FD) model applied to the experimental data from heavy-ion collisions at the energy range $\\sqrt{s_{NN}}\\,=\\,2.7 - 63$ GeV were used as example of application of the developed methodology.
Selective evaporation of focusing fluid in two-fluid hydrodynamic print head.
Keicher, David M.; Cook, Adam W.
2014-09-01
The work performed in this project has demonstrated the feasibility to use hydrodynamic focusing of two fluid steams to create a novel micro printing technology for electronics and other high performance applications. Initial efforts focused solely on selective evaporation of the sheath fluid from print stream provided insight in developing a unique print head geometry allowing excess sheath fluid to be separated from the print flow stream for recycling/reuse. Fluid flow models suggest that more than 81 percent of the sheath fluid can be removed without affecting the print stream. Further development and optimization is required to demonstrate this capability in operation. Print results using two-fluid hydrodynamic focusing yielded a 30 micrometers wide by 0.5 micrometers tall line that suggests that the cross-section of the printed feature from the print head was approximately 2 micrometers in diameter. Printing results also demonstrated that complete removal of the sheath fluid is not necessary for all material systems. The two-fluid printing technology could enable printing of insulated conductors and clad optical interconnects. Further development of this concept should be pursued.
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2010; 63:231248
Noack, Bernd R.
of Technology MB1, D-10623 Berlin, Germany 2Institute of Combustion Engines and Transportation, Pozna of computational fluid dynamics (CFD) consists of finding Correspondence to: Bernd R. Noack, Department of Fluid of turbulence models for the effect of unresolved scales on the resolved flow. Examples of CFD are large eddy
Lisal, Martin
Z .Fluid Phase Equilibria 161 1999 241256 Vaporliquid equilibrium, fluid state, and zero-pressure but independent constant pressureconstant temperature Z .molecular dynamics simulations of the vapor and liquid. Keywords: Chlorine; Intermolecular potential; Molecular simulation; Vaporliquid equilibria; Vapor pressure
Microfluidic Arrays of Fluid-Fluid Diffusional Contacts as Detection Elements and Combinatorial
Kenis, Paul J. A.
Microfluidic Arrays of Fluid-Fluid Diffusional Contacts as Detection Elements and Combinatorial microfluidic systems that can be used to investigate multiple chemical or biochemical interactions in a parallel format. These three-dimensional systems are generated by crossing two sets of microfluidic
PHYSICS OF FLUIDS 24, 051902 (2012) Self-propulsion in viscoelastic fluids: Pushers vs. pullers
Lauga, Eric
2012-01-01
PHYSICS OF FLUIDS 24, 051902 (2012) Self-propulsion in viscoelastic fluids: Pushers vs. pullers Lailai Zhu,1,a) Eric Lauga,2 and Luca Brandt1 1 Linn´e Flow Centre, KTH Mechanics, S-100 44 Stockholm, Sweden 2 Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500
Ultrasonic fluid flow measurement method and apparatus
Kronberg, J.W.
1993-10-12
An apparatus for measuring the flow of a fluid in a pipe using ultrasonic waves. The apparatus comprises an ultrasonic generator, a lens for focusing the sound energy produced by the generator, and means for directing the focused energy into the side of the pipe through an opening and in a direction close to parallel to the long axis of the pipe. A cone carries the sound energy to the lens from the generator. Depending on the choice of materials, there may be a quarter-wave, acoustic impedance matching section between the generator and the cone to reduce the reflections of energy at the cone boundary. The lens material has an acoustic impedance similar to that of the cone material but a different sonic velocity so that the lens can converge the sound waves in the fluid. A transition section between the lens and the fluid helps to couple the energy to the fluid and assures it is directed as close to parallel to the fluid flow direction as possible. 3 figures.
A fluid mechanical explanation of dark matter
Carl H. Gibson
1999-04-22
Matter in the universe has become ``dark'' or ``missing'' through misconceptions about the fluid mechanics of gravitational structure formation. Gravitational condensation occurs on non-acoustic density nuclei at the largest Schwarz length scale L_{ST}, L_{SV}, L_{SM}, L_{SD} permitted by turbulence, viscous, or magnetic forces, or by the fluid diffusivity. Non-baryonic fluids have diffusivities larger (by factors of trillions or more) than baryonic (ordinary) fluids, and cannot condense to nucleate baryonic galaxy formation as is usually assumed. Baryonic fluids begin to condense in the plasma epoch at about 13,000 years after the big bang to form proto-superclusters, and form proto-galaxies by 300,000 years when the cooling plasma becomes neutral gas. Condensation occurs at small planetary masses to form ``primordial fog particles'' from nearly all of the primordial gas by the new theory, Gibson (1996), supporting the Schild (1996) conclusion from quasar Q0957+651A,B microlensing observations that the mass of the lens galaxy is dominated by ``rogue planets ... likely to be the missing mass''. Non-baryonic dark matter condenses on superclusters at scale L_{SD} to form massive super-halos.
A fluid mechanical explanation of dark matter
Gibson, C H
1999-01-01
Matter in the universe has become ``dark'' or ``missing'' through misconceptions about the fluid mechanics of gravitational structure formation. Gravitational condensation occurs on non-acoustic density nuclei at the largest Schwarz length scale L_{ST}, L_{SV}, L_{SM}, L_{SD} permitted by turbulence, viscous, or magnetic forces, or by the fluid diffusivity. Non-baryonic fluids have diffusivities larger (by factors of trillions or more) than baryonic (ordinary) fluids, and cannot condense to nucleate baryonic galaxy formation as is usually assumed. Baryonic fluids begin to condense in the plasma epoch at about 13,000 years after the big bang to form proto-superclusters, and form proto-galaxies by 300,000 years when the cooling plasma becomes neutral gas. Condensation occurs at small planetary masses to form ``primordial fog particles'' from nearly all of the primordial gas by the new theory, Gibson (1996), supporting the Schild (1996) conclusion from quasar Q0957+651A,B microlensing observations that the mass ...
Ultrasonic fluid flow measurement method and apparatus
Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)
1993-01-01
An apparatus for measuring the flow of a fluid in a pipe using ultrasonic waves. The apparatus comprises an ultrasonic generator, a lens for focusing the sound energy produced by the generator, and means for directing the focused energy into the side of the pipe through an opening and in a direction close to parallel to the long axis of the pipe. A cone carries the sound energy to the lens from the generator. Depending on the choice of materials, there may be a quarter-wave, acoustic impedance matching section between the generator and the cone to reduce the reflections of energy at the cone boundary. The lens material has an acoustic impedance similar to that of the cone material but a different sonic velocity so that the lens can converge the sound waves in the fluid. A transition section between the lens and the fluid helps to couple the energy to the fluid and assures it is directed as close to parallel to the fluid flow direction as possible.
Carbon-bearing fluids at nanoscale interfaces
Cole, David [Ohio State University; Ok, Salim [Ohio State University, Columbus; Phan, A [Ohio State University, Columbus; Rother, Gernot [ORNL; Striolo, Alberto [Oklahoma University; Vlcek, Lukas [ORNL
2013-01-01
The behaviour of fluids at mineral surfaces or in confined geometries (pores, fractures) typically differs from their bulk behaviour in many ways due to the effects of large internal surfaces and geometrical confinement. We summarize research performed on C-O-H fluids at nanoscale interfaces in materials of interest to the earth and material sciences (e.g., silica, alumina, zeolites, clays, rocks, etc.), emphasizing those techniques that assess microstructural modification and/or dynamical behaviour such as gravimetric analysis, small-angle (SANS) neutron scattering, and nuclear magnetic resonance (NMR). Molecular dynamics (MD) simulations will be described that provide atomistic characterization of interfacial and confined fluid behaviour as well as aid in the interpretation of the neutron scattering results.
Detecting low levels of radionuclides in fluids
Patch, Keith D. (Lexington, MA); Morgan, Dean T. (Sudbury, MA)
2000-01-01
An apparatus and method for detecting low levels of one or more radionuclides in a fluid sample uses a substrate that includes an ion exchange resin or other sorbent material to collect the radionuclides. A collecting apparatus includes a collecting chamber that exposes the substrate to a measured amount of the fluid sample such that radionuclides in the fluid sample are collected by the ion exchange resin. A drying apparatus, which can include a drying chamber, then dries the substrate. A measuring apparatus measures emissions from radionuclides collected on the substrate. The substrate is positioned in a measuring chamber proximate to a detector, which provides a signal in response to emissions from the radionuclides. Other analysis methods can be used to detect non-radioactive analytes, which can be collected with other types of sorbent materials.
Relativistic fluid mechanics, Kahler manifolds and supersymmetry
T. S. Nyawelo; J. W. van Holten; S. Groot Nibbelink
2003-09-11
We propose an alternative for the Clebsch decomposition of currents in fluid mechanics, in terms of complex potentials taking values in a Kahler manifold. We reformulate classical relativistic fluid mechanics in terms of these complex potentials and rederive the existence of an infinite set of conserved currents. We perform a canonical analysis to find the explicit form of the algebra of conserved charges. The Kahler-space formulation of the theory has a natural supersymmetric extension in 4-D space-time. It contains a conserved current, but also a number of additional fields complicating the interpretation. Nevertheless, we show that an infinite set of conserved currents emerges in the vacuum sector of the additional fields. This sector can therefore be identified with a regime of supersymmetric fluid mechanics. Explicit expressions for the current and the density are obtained.
Convective Heat Transport in Compressible Fluids
Akira Furukawa; Akira Onuki
2002-02-01
We present hydrodynamic equations of compressible fluids in gravity as a generalization of those in the Boussinesq approximation used for nearly incompressible fluids. They account for adiabatic processes taking place throughout the cell (the piston effect) and those taking place within plumes (the adiabatic temperature gradient effect). Performing two-dimensional numerical analysis, we reveal some unique features of plume generation and convection in transient and steady states of compressible fluids. As the critical point is approached, overall temperature changes induced by plume arrivals at the boundary walls are amplified, giving rise to overshoot behavior in transient states and significant noises of the temperature in steady states. The velocity field is suggested to assume a logarithmic profile within boundary layers. Random reversal of macroscopic shear flow is examined in a cell with unit aspect ratio. We also present a simple scaling theory for moderate Rayleigh numbers.
Fuel cell membrane hydration and fluid metering
Jones, Daniel O. (Glenville, NY); Walsh, Michael M. (Fairfield, CT)
2003-01-01
A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).
Fuel cell membrane hydration and fluid metering
Jones, Daniel O. (Glenville, NY); Walsh, Michael M. (Fairfield, CT)
1999-01-01
A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).
Multipurpose Acoustic Sensor for Downhole Fluid Monitoring
Pantea, Cristian
2012-05-04
The projects objectives and purpose are to: (1) development a multipurpose acoustic sensor for downhole fluid monitoring in Enhanced Geothermal Systems (EGS) reservoirs over typical ranges of pressures and temperatures and demonstrate its capabilities and performance for different EGS systems; (2) determine in real-time and in a single sensor package several parameters - temperature, pressure, fluid flow and fluid properties; (3) needed in nearly every phase of an EGS project, including Testing of Injection and Production Wells, Reservoir Validation, Inter-well Connectivity, Reservoir Scale Up and Reservoir Sustainability. (4) Current sensors are limited to operating at lower temperatures, but the need is for logging at high temperatures. The present project deals with the development of a novel acoustic-based sensor that can work at temperatures up to 374 C, in inhospitable environments.
Full Life Wind Turbine Gearbox Lubricating Fluids
Lutz, Glenn A.; Jungk, Manfred; Bryant, Jonathan J.; Lauer, Rebecca S.; Chobot, Anthony; Mayer, Tyler; Palmer, Shane; Kauffman, Robert E.
2012-02-28
Industrial gear box lubricants typically are hydrocarbon based mineral oils with considerable amounts of additives to overcome the lack of base fluid properties like wear protection, oxidation stability, load carrying capacity, low temperature solidification and drop of viscosity at higher temperatures. For today's wind turbine gearboxes, the requirements are more severe and synthetic hydrocarbon oils are used to improve on this, but all such hydrocarbon based lubricants require significant amounts of Extreme Pressure (EP) additives to meet performance requirements. Perfluoropolyether (PFPE) fluids provide load carrying capacity as an inherent property. During the course of the project with the main tasks of 'Establish a Benchmark', 'Lubricant Evaluation', 'Full Scale Gearbox Trial' and 'Economic Evaluation', the PAO Reference oil exhibited significant changes after laboratory gear testing, in service operation in the field and full scale gearbox trial. Four hydrocarbon base oils were selected for comparison in the benchmarking exercise and showed variation with respect to meeting the requirements for the laboratory micro-pitting tests, while the PFPE fluid exceeded the requirements even with the material taken after the full scale gear box trial. This is remarkable for a lubricant without EP additives. Laboratory bearing tests performed on the PFPE fluids before and after the full scale gear box trial showed the results met requirements for the industry standard. The PFPE fluid successfully completed the full scale gear box test program which included baseline and progressive staged load testing. The evaluation of gears showed no micro-pitting or objectionable wear. By the final stage, lubricant film thickness had been reduced to just 21% of its original value, this was by design and resulted in a lambda ratio of well below 1. This test design scenario of a low lambda ratio is a very undesirable lubrication condition for real world but creates the ability to test the lubricating fluids performance under the most extreme conditions. The PAO Reference oil also passed its testing without any noticeable deterioration of the gear surface. However the PAO Reference oil was replaced midway through the progressive loading, as the lubricant was burned in an attempt to raise the sump temperature to the same levels as for the PFPE. Both materials experienced a decrease of viscosity during their respective run times. The viscosity index decreased for the PAO there while there was a slight increase for the PFPE. FZG laboratory gear tests and measurements of the drive motor's current during the full scale gear box trial were made to characterize the relative efficiency between the PFPE fluid and the PAO Reference oil. In the FZG laboratory efficiency test, the PFPE fluids show much higher churning losses due to their higher viscosity and density. The analysis seems to show that the efficiency correlates better to dynamic viscosity than any other of the measured metrics such as film thickness. In load stages where the load, speed and temperature are similar, the PFPE fluid has a greater film thickness and theoretical gear protection, but requires a larger current for the drive motor than the PAO. However in load stages where the film thickness is the same, the PFPE fluid's reduced dynamic viscosity gives it a slight efficiency advantage relative to the PAO reference oil. Ultimately, many factors such as temperature, rotational speed, and fluid viscosity combine in a complex fashion to influence the results. However, the PFPE's much lower change of viscosity with respect to temperature, allows variations in designing an optimum viscosity to balance efficiency versus gear protection. Economic analysis was done using Cost of Energy calculations. The results vary from 5.3% for a 'Likely Case' to 16.8% for a 'Best Case' scenario as potential cost improvement by using PFPE as the gearbox lubricating fluid. It is important to note the largest portion of savings comes in Levelized Replacement Cost, which is dictated by the assumption on gearb
Applied Mathematics Conferences and Workshops | U.S. DOE Office...
Office of Science (SC) Website
Applied Mathematics Applied Mathematics Conferences And Workshops Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Applied Mathematics...
International combustion engines; Applied thermosciences
Ferguson, C.R.
1985-01-01
Focusing on thermodynamic analysis - from the requisite first law to more sophisticated applications - and engine design, this book is an introduction to internal combustion engines and their mechanics. It covers the many types of internal combustion engines, including spark ignition, compression ignition, and stratified charge engines, and examines processes, keeping equations of state simple by assuming constant specific heats. Equations are limited to heat engines and later applied to combustion engines. Topics include realistic equations of state, stroichiometry, predictions of chemical equilibrium, engine performance criteria, and friction, which is discussed in terms of the hydrodynamic theory of lubrication and experimental methods such as dimensional analysis.
ORISE: Applied health physics projects
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSE The 2014 surveyNuclearHow toContactUndergraduateApplied
Sandia Energy - Applied Turbulent Combustion
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumni >ScientificApplied Turbulent Combustion Home
Friction-Induced Fluid Heating in Nanoscale Helium Flows
Li Zhigang [Department of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)
2010-05-21
We investigate the mechanism of friction-induced fluid heating in nanoconfinements. Molecular dynamics simulations are used to study the temperature variations of liquid helium in nanoscale Poiseuille flows. It is found that the fluid heating is dominated by different sources of friction as the external driving force is changed. For small external force, the fluid heating is mainly caused by the internal viscous friction in the fluid. When the external force is large and causes fluid slip at the surfaces of channel walls, the friction at the fluid-solid interface dominates over the internal friction in the fluid and is the major contribution to fluid heating. An asymmetric temperature gradient in the fluid is developed in the case of nonidentical walls and the general temperature gradient may change sign as the dominant heating factor changes from internal to interfacial friction with increasing external force.
Static charged fluid spheres in general relativity
B. V. Ivanov
2001-09-04
Interior perfect fluid solutions for the Reissner-Nordstrom metric are studied on the basis of a new classification scheme. It specifies which two of the fluid's characteristics are given functions and picks up accordingly one of the three main field equations, the other two being universal. General formulae are found for charged de Sitter solutions, the case of constant energy component of the energy-momentum tensor, the case of known pressure (including charged dust) and the case of linear equation of state. Explicit new global solutions, mainly in elementary functions, are given as illustrations. Known solutions are briefly reviewed and corrected.
General noncommuting curvilinear coordinates and fluid Mechanics
S. A. Alavi
2006-08-16
We show that restricting the states of a charged particle to the lowest Landau level introduces noncommutativity between general curvilinear coordinate operators. The cartesian, circular cylindrical and spherical polar coordinates are three special cases of our quite general method. The connection between U(1) gauge fields defined on a general noncommuting curvilinear coordinates and fluid mechanics is explained. We also recognize the Seiberg-Witten map from general noncommuting to commuting variables as the quantum correspondence of the Lagrange to Euler map in fluid mechanics.
Geomechanical Simulation of Fluid-Driven Fractures
Makhnenko, R.; Nikolskiy, D.; Mogilevskaya, S.; Labuz, J.
2012-11-30
The project supported graduate students working on experimental and numerical modeling of rock fracture, with the following objectives: (a) perform laboratory testing of fluid-saturated rock; (b) develop predictive models for simulation of fracture; and (c) establish educational frameworks for geologic sequestration issues related to rock fracture. These objectives were achieved through (i) using a novel apparatus to produce faulting in a fluid-saturated rock; (ii) modeling fracture with a boundary element method; and (iii) developing curricula for training geoengineers in experimental mechanics, numerical modeling of fracture, and poroelasticity.
Fluid sphere: stability problem and dimensional constraint
Farook Rahaman; Anirudh Pradhan; Nasr Ahmed; Saibal Ray; Bijan Saha; Mosiur Rahaman
2015-04-14
We study different dimensional fluids inspired by noncommutative geometry which admit conformal Killing vectors. The solutions of the Einstein field equations examined specifically for five different set of spacetime. We calculate the active gravitational mass and impose stability conditions of the fluid sphere. The analysis thus carried out immediately indicates that at $4$-dimension only one can get a stable configuration for any spherically symmetric stellar system and any other dimensions, lower or higher, becomes untenable as far as the stability of a system is concerned.
Method and apparatus for chemically altering fluids in continuous flow
Heath, William O. (Richland, WA); Virden, Jr., Judson W. (Richland, WA); Richardson, R. L. (West Richland, WA); Bergsman, Theresa M. (Richland, WA)
1993-01-01
The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation.
Method and apparatus for chemically altering fluids in continuous flow
Heath, W.O.; Virden, J.W. Jr.; Richardson, R.L.; Bergsman, T.M.
1993-10-19
The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation. 4 figures.
Designing Imprint Rolls for Fluid Pathway Fabrication
Vijayaraghavan, Athulan; Dornfeld, David A
2007-01-01
optimization will be validated by applying the rolls in the fabrication of micro-fluidic and fuel cell
At the Intersection of Applied Formal Methods
Zimmerman, Daniel M.
of Technology University of Washington Tacoma NTU Graduate Seminar, - 7 January 2011 #12;Outline · Applied
Building Reliable Software Applied Formal Methods
Zimmerman, Daniel M.
Institute of Technology University of Washington Tacoma #12;Outline · Applied Formal Methods · Correctness
Complex Fluids. . . so much more than water!
Wirosoetisno, Djoko
solvent, head groups attracted to one another Form spherical micelles at low concentrations Higher hydrophobic head groups hydrophilic tail groups Complex Fluids Â Bristol Â Dec 17 2011 Â p. 6/21 #12;Specific Example: Surfactants Bipolar molecules hydrophobic head groups hydrophilic tail groups Used in soaps Head
Fluid&ParticulateSystems 424514/2010
Zevenhoven, Ron
Potential energy Including flows of Kinetic energy Internal energy Flow energy Thermal energy Electrical - Steady state (no time derivates) - Thermal energy is omitted since temperature is assumed to remain Ron Zevenhoven ÅA Thermal and Flow Engineering ron.zevenhoven@abo.fi 1Fluid&ParticulateSystems 424514
Nonlinear stability of ideal fluid equilibria
Holm, D.D.
1988-01-01
The Lyapunov method for establishing stability is related to well- known energy principles for nondissipative dynamical systems. A development of the Lyapunov method for Hamiltonian systems due to Arnold establishes sufficient conditions for Lyapunov stability by using the energy plus other conserved quantities, together with second variations and convexity estimates. When treating the stability of ideal fluid dynamics within the Hamiltonian framework, a useful class of these conserved quantities consists of the Casimir functionals, which Poisson-commute with all functionals of the dynamical fluid variables. Such conserved quantities, when added to the energy, help to provide convexity estimates that bound the growth of perturbations. These convexity estimates, in turn, provide norms necessary for establishing Lyapunov stability under the nonlinear evolution. In contrast, the commonly used second variation or spectral stability arguments only prove linearized stability. As ideal fluid examples, in these lectures we discuss planar barotropic compressible fluid dynamics, the three-dimensional hydrostatic Boussinesq model, and a new set of shallow water equations with nonlinear dispersion due to Basdenkov, Morosov, and Pogutse(1985). Remarkably, all three of these samples have the same Hamiltonian structure and, thus, possess the same Casimir functionals upon which their stability analyses are based. We also treat stability of modified quasigeostrophic flow, a problem whose Hamiltonian structure and Casimirs closely resemble Arnold's original example. Finally, we discuss some aspects of conditional stability and the applicability of Arnold's development of the Lyapunov technique. 100 refs.
Fluid Dynamics IB Dr Natalia Berloff
are said to form the boundary of a vortex tube. We say that `stretching amplfies vorticity'. It is also as if they were material lines. Or, vortex tubes rotate and stretch just like the material line elementsFluid Dynamics IB Dr Natalia Berloff §2.6 Vorticity Definition: Vorticity = × u. A vortex line
On rigidly rotating perfect fluid cylinders
B. V. Ivanov
2002-05-07
The gravitational field of a rigidly rotating perfect fluid cylinder with gamma- law equation of state is found analytically. The solution has two parameters and is physically realistic for gamma in the interval (1.41,2]. Closed timelike curves always appear at large distances.
On the shear instability of fluid interfaces
A. Alexakis; Y. Young; R. Rosner
2001-10-31
We examine the linear stability of fluid interfaces subjected to a shear flow. Our main object is to generalize previous work to arbitrary Atwood number, and to allow for surface tension and weak compressibility. The motivation derives from instances in astrophysical systems where mixing across material interfaces driven by shear flows may significantly affect the dynamical evolution of these systems.
Forms: crystalline, and fluid October 28, 2007
Mazur, Barry
Forms: crystalline, and fluid October 28, 2007 Emily Galvin's poems, in Do The Math, are written in forms that have the grace of being intensely crystalline--in a way that I will describe in a moment of her novel poetic forms, making full use of the interplay between their crystalline and organic nature
Dense colloidal fluids form denser amorphous sediments
Schofield, Andrew B.
for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel; and c School of Physics, by simple analytical centrifugation experiments, the density of colloidal fluids with the nature sedimentation in a centrifuge is sufficiently rapid to avoid crystalli- zation, demonstrate that the density
Fluid Mechanics Unit code: MATH20502
Sidorov, Nikita
MATH20502 Fluid Mechanics Unit code: MATH20502 Credit Rating: 10 Unit level: Level 2 Teaching period(s): Semester 2 Offered by School of Mathematics Available as a free choice unit?: N Requisites None Overview The primary aim of this course unit is to provide students with a first introduction
Fluid Dynamics IB Dr Natalia Berloff
. If an earthquake generates a tsunami or `tidal wave' near Japan, at one side of the Pacific, it is fairly simple) Example: ocean swell (small-amplitude, low-frequency waves generated by distant storms, the wavesFluid Dynamics IB Dr Natalia Berloff §4 FLOWS WITH A FREE SURFACE Water waves, river flow including
Thermodynamics of viscoelastic fluids: the temperature equation.
Wapperom, Peter
Thermodynamics of viscoelastic fluids: the temperature equation. Peter Wapperom Martien A. Hulsen and Hydrodynamics Rotterdamseweg 145 2628 AL Delft (The Netherlands) Abstract From the thermodynamics with internal. The well- known stress differential models that fit into the thermodynamic theory will be treated
Experimental verification of bifurcation in fluid bearings
Deepak, James Christopher
1997-01-01
The thesis presents the results of the experiments that were conducted on short and long fluid film bearings with a simple single disk rotor. The behavior of the journal was analyzed as function of the rotor system parameters such as the load, speed...
Project Profile: Chemically Reactive Working Fluids
Broader source: Energy.gov [DOE]
Argonne National Laboratory (ANL), under the 2012 SunShot Concentrating Solar Power (CSP) R&D funding opportunity announcement (FOA), is working to identify and test new heat-transfer fluids (HTFs) that store energy chemically for more efficient energy transfer in CSP applications.
Animating Sand as a Fluid Yongning Zhu
Fournier, John J.F.
Animating Sand as a Fluid by Yongning Zhu B.Sc., Peking University, 2003 A THESIS SUBMITTED;Abstract My thesis presents a physics-based simulation method for animating sand. To allow for efficiently scaling up to large volumes of sand, we abstract away the individual grains and think of the sand
Animating Sand as a Fluid Yongning Zhu
Teschner, Matthias
Animating Sand as a Fluid Yongning Zhu University of British Columbia Robert Bridson University of British Columbia Figure 1: The Stanford bunny is simulated as water and as sand. Abstract We present a physics-based simulation method for animating sand. To allow for efficiently scaling up to large volumes
Using Nanotechnology in Viscoelastic Surfactant Stimulation Fluids
Gurluk, Merve Rabia 1986-
2012-11-12
-networked VES fluid systems were analyzed in an HP/HT viscometer. A series of rheology experiments have been performed by using 2-4 vol% amidoamine oxide surfactant in 13 to 14.2 ppg CaBr2 brines and 10.8 to 11.6 ppg CaCl2 brines at different temperatures up...
The fluid mechanics of dissolution trapping in
Bolster, Diogo
supercritical carbon dioxide (CO2) is injected into deep subsurface formations for long-term storage, the supercritical CO2 phase and the solid porous medium phase. This results in important dynamics associated). The density of supercritical CO2 is less than that of the resident fluid; thus buoyancy effects are important
The Fluid Mechanics of Carbon Dioxide Sequestration
Huppert, Herbert
with a potentially disastrous global problem owing to the current emission of 32 gigatonnes of carbon dioxide (CO2The Fluid Mechanics of Carbon Dioxide Sequestration Herbert E. Huppert1-3 and Jerome A. Neufeld4 1 FurtherANNUAL REVIEWS #12;1. INTRODUCTION Undeniably, the average global carbon dioxide (CO2) content
Algorithmic construction of static perfect fluid spheres
Damien Martin; Matt Visser
2004-03-31
Perfect fluid spheres, both Newtonian and relativistic, have attracted considerable attention as the first step in developing realistic stellar models (or models for fluid planets). Whereas there have been some early hints on how one might find general solutions to the perfect fluid constraint in the absence of a specific equation of state, explicit and fully general solutions of the perfect fluid constraint have only very recently been developed. In this article we present a version of Lake's algorithm [Phys. Rev. D 67 (2003) 104015; gr-qc/0209104] wherein: (1) we re-cast the algorithm in terms of variables with a clear physical meaning -- the average density and the locally measured acceleration due to gravity, (2) we present explicit and fully general formulae for the mass profile and pressure profile, and (3) we present an explicit closed-form expression for the central pressure. Furthermore we can then use the formalism to easily understand the pattern of inter-relationships among many of the previously known exact solutions, and generate several new exact solutions.
Transport in inhomogeneous quantum critical fluids and in the Dirac fluid in graphene
Lucas, Andrew; Fong, Kin Chung; Kim, Philip; Sachdev, Subir
2015-01-01
We develop a general hydrodynamic framework for computing direct current thermal and electric transport in a strongly interacting finite temperature quantum system near a Lorentz-invariant quantum critical point. Our framework is non-perturbative in the strength of long wavelength fluctuations in the background charge density of the electronic fluid, and requires the rate of electron-electron scattering to be faster than the rate of electron-impurity scattering. We use this formalism to compute transport coefficients in the Dirac fluid in clean samples of graphene near the charge neutrality point, and find results insensitive to long range Coulomb interactions. Numerical results are compared to recent experimental data on thermal and electrical conductivity in the Dirac fluid in graphene and substantially improved quantitative agreement over existing hydrodynamic theories is found. We comment on the interplay between the Dirac fluid and acoustic and optical phonons, and qualitatively explain experimentally ob...
Gary B. Davies; Lorenzo Botto
2015-07-22
Capillary interactions have emerged as a tool for the directed assembly of particles adsorbed at fluid-fluid interfaces, and play a role in controlling the mechanical properties of emulsions and foams. In this paper, following Davies et al. [Advanced Materials, 26, 6715 (2014)] investigation into the assembly of ellipsoidal particles at interfaces interacting via dipolar capillary interactions, we numerically investigate the interaction between tilted ellipsoidal particles adsorbed at a fluid-fluid interface as their aspect ratio, tilt angle, bond angle, and separation vary. High-resolution Surface Evolver simulations of ellipsoidal particle pairs in contact reveal an energy barrier between a metastable tip-tip configuration and a stable side-side configuration. The side-side configuration is the global energy minimum for all parameters we investigated. Lattice Boltzmann simulations of clusters of up to 12 ellipsoidal particles show novel highly symmetric flower-like and ring-like arrangements.
Francois Louchet
2015-04-07
Snow slab avalanche release usually results from failure of weak layers made of loose ice crystals. In previous field experiments, we evidenced for the first time an interesting stress-driven transition in the weak layer between a granular fluid and a solid phase. We propose here an original model involving the kinetics of ice grains bonds failure and reconstruction. The model evidences a sudden transition between two drastically different types of weak layer behaviors. It accounts for the characteristics of both the studied fluid-solid transition and for slab avalanche release observations. It may possibly apply to a number of other granular materials.
On the dynamics of magnetic fluids in magnetic resonance imaging
Cantillon-Murphy, Pádraig J
2008-01-01
The hydrodynamics of magnetic fluids, often termed ferrofluids, has been an active area of research since the mid 1960s. However, it is only in the past twenty years that these fluids have begun to be used in magnetic ...
FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO...
the fluid geochemistry in the field is spatially variable and complex, with two distinct deep geothermal fluid types (high vs. low K, Na, Cl, Ca, Li, F concentrations) and two...
A controllably adhesive climbing robot using magnetorheological fluid
Wiltsie, Nicholas Eric
2012-01-01
In this thesis, the novel adhesive effects of magnetorheological fluid for use in climbing robotics were experimentally measured and compared to existing cohesive failure fluid models of yield stress adhesion. These models ...
Methods of conveying fluids and methods of sublimating solid particles
Turner, Terry D; Wilding, Bruce M
2013-10-01
A heat exchanger and associated methods for sublimating solid particles therein, for conveying fluids therethrough, or both. The heat exchanger includes a chamber and a porous member having a porous wall having pores in communication with the chamber and with an interior of the porous member. A first fluid is conveyed into the porous member while a second fluid is conveyed into the porous member through the porous wall. The second fluid may form a positive flow boundary layer along the porous wall to reduce or eliminate substantial contact between the first fluid and the interior of the porous wall. The combined first and second fluids are conveyed out of the porous member. Additionally, the first fluid and the second fluid may each be conveyed into the porous member at different temperatures and may exit the porous member at substantially the same temperature.
Problems of fluid flow in a deformable reservoir
Diyashev, Ildar
2006-04-12
This research is focused on development and enhancement of the model of fluid flow in a formation with stress-dependent permeability. Several typical axi-symmetrical problems of fluid flow in a multi-layered reservoir with ...
Can We Accurately Model Fluid Flow in Shale?
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Can We Accurately Model Fluid Flow in Shale? Can We Accurately Model Fluid Flow in Shale? Print Thursday, 03 January 2013 00:00 Over 20 trillion cubic meters of natural gas are...
The ramifications of diffusive volume transport in classical fluid mechanics
Bielenberg, James R. (James Ronald), 1976-
2004-01-01
The thesis that follows consists of a collection of work supporting and extending a novel reformulation of fluid mechanics, wherein the linear momentum per unit mass in a fluid continuum, m, is supposed equal to the volume ...
NMRI methods for characterizing fluid flow in porous media
Yao, Xiaoli
1997-01-01
Many important processes such as petroleum production and catalytic chemical reactions involve the flow of fluids through porous media. The measurement of localized velocity can provide information about how fluid is transported in porous media...
Mechanotransduction of fluid stresses governs 3D cell migration
Polacheck, William J.
Solid tumors are characterized by high interstitial fluid pressure, which drives fluid efflux from the tumor core. Tumor-associated interstitial flow (IF) at a rate of ?3 µm/s has been shown to induce cell migration in the ...
Structure and dynamics of mangetorheological fluids confined in microfluidic devices
Haghgooie, Ramin
2006-01-01
Microfluidic devices and magnetorheological (MR) fluids have been two areas of intense research for several years. Traditionally, these two fields have remained separated from one another by scale. MR fluids are best known ...
Arrayed microfluidic actuation for active sorting of fluid bed particulates
Gerhardt, Antimony L
2004-01-01
Fluidic actuation offers a facile method to move large quantities of small solids, often referred to as fluid-bed movement. Applications for fluid bed processing are integral to many fields including petrochemical, petroleum, ...
The incorporation of bubbles into a computer graphics fluid simulation
Greenwood, Shannon Thomas
2005-08-29
level set representation of the fluid surface. We create bubbles from escaped marker particles from the outside to the inside. These marker particles might represent air that has been trapped within the fluid surface. Further, we detect when air...
Synthetic aperture imaging for three dimensional resolution of fluid flows
Belden, Jesse (Jesse Levi)
2011-01-01
Fluid mechanics and instrumentation have a long history together, as experimental fluids studies play an important role in describing a more complete physical picture in a variety of problems. Presently. state-of-the-art ...
Solution generating theorems: perfect fluid spheres and the TOV equation
Petarpa Boonserm; Matt Visser; Silke Weinfurtner
2006-09-22
We report several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. In addition, we report new ``solution generating'' theorems for the TOV, whereby any given solution can be ``deformed'' to a new solution.
Eur. J. A4ech. B/Fluids @ Elsevier, Paris
Zakharov, Vladimir
Eur. J. A4ech. B/Fluids @ Elsevier, Paris STATISTICAL THEORY OF GRAVITY AND CAPILLARY WAVES-nonlinear waves on the surface of an ideal fluid in an infinite basin of constant depth h. The vertical coordinate
Marcello Sega; Mauro Sbragaglia; Sofia Sergeevna Kantorovich; Alexey Olegovich Ivanov
2014-02-19
Complex fluid-fluid interfaces featuring mesoscale structures with adsorbed particles are key components of newly designed materials which are continuously enriching the field of soft matter. Simulation tools which are able to cope with the different scales characterizing these systems are fundamental requirements for efficient theoretical investigations. In this paper we present a novel simulation method, based on the approach of Ahlrichs and D\\"unweg [Ahlrichs and D\\"unweg, Int. J. Mod. Phys. C, 1998, 9, 1429], that couples the "Shan-Chen" multicomponent Lattice Boltzmann technique to off-lattice molecular dynamics to simulate efficiently complex fluid-fluid interfaces. We demonstrate how this approach can be used to study a wide class of challenging problems. Several examples are given, with an accent on bicontinuous phases formation in polyelectrolyte solutions and ferrofluid emulsions. We also show that the introduction of solvation free energies in the particle-fluid interaction unveils the hidden, multiscale nature of the particle-fluid coupling, allowing to treat symmetrically (and interchangeably) the on-lattice and off-lattice components of the system.
Acoustic energy-driven fluid pump and method
Janus, Michael C.; Richards, George A.; Robey, Edward H.
1997-12-01
Bulk fluid motion is promoted in a gaseous fluid contained within a conduit system provided with a diffuser without the need for a mean pressure differential across the conduit system. The contacting of the gaseous fluid with unsteady energy at a selected frequency and pressure amplitude induces fluid flow through the conical diffuser. The unsteady energy can be provided by pulse combustors, thermoacoustic engines, or acoustic energy generators such as acoustic speakers.
Working Fluids and Their Effect on Geothermal Turbines
Broader source: Energy.gov [DOE]
DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: Identify new working fluids for binary geothermal plants.
Optimizing drilling performance using a selected drilling fluid
Judzis, Arnis (Salt Lake City, UT); Black, Alan D. (Coral Springs, FL); Green, Sidney J. (Salt Lake City, UT); Robertson, Homer A. (West Jordan, UT); Bland, Ronald G. (Houston, TX); Curry, David Alexander (The Woodlands, TX); Ledgerwood, III, Leroy W. (Cypress, TX)
2011-04-19
To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.
Code Verification of the HIGRAD Computational Fluid Dynamics Solver
Van Buren, Kendra L. [Los Alamos National Laboratory; Canfield, Jesse M. [Los Alamos National Laboratory; Hemez, Francois M. [Los Alamos National Laboratory; Sauer, Jeremy A. [Los Alamos National Laboratory
2012-05-04
The purpose of this report is to outline code and solution verification activities applied to HIGRAD, a Computational Fluid Dynamics (CFD) solver of the compressible Navier-Stokes equations developed at the Los Alamos National Laboratory, and used to simulate various phenomena such as the propagation of wildfires and atmospheric hydrodynamics. Code verification efforts, as described in this report, are an important first step to establish the credibility of numerical simulations. They provide evidence that the mathematical formulation is properly implemented without significant mistakes that would adversely impact the application of interest. Highly accurate analytical solutions are derived for four code verification test problems that exercise different aspects of the code. These test problems are referred to as: (i) the quiet start, (ii) the passive advection, (iii) the passive diffusion, and (iv) the piston-like problem. These problems are simulated using HIGRAD with different levels of mesh discretization and the numerical solutions are compared to their analytical counterparts. In addition, the rates of convergence are estimated to verify the numerical performance of the solver. The first three test problems produce numerical approximations as expected. The fourth test problem (piston-like) indicates the extent to which the code is able to simulate a 'mild' discontinuity, which is a condition that would typically be better handled by a Lagrangian formulation. The current investigation concludes that the numerical implementation of the solver performs as expected. The quality of solutions is sufficient to provide credible simulations of fluid flows around wind turbines. The main caveat associated to these findings is the low coverage provided by these four problems, and somewhat limited verification activities. A more comprehensive evaluation of HIGRAD may be beneficial for future studies.
Theory and Fluid Simulations of Boundary Plasma Fluctuations
Cohen, R H; LaBombard, B; LoDestro, L L; Rognlien, T D; Ryutov, D D; Terry, J L; Umansky, M V; Xu, X Q; Zweben, S
2007-01-09
Theoretical and computational investigations are presented of boundary plasma microturbulence that take into account important effects of the geometry of diverted tokamaks--in particular, the effect of x-point magnetic shear and the termination of field lines on divertor plates. We first generalize our previous 'heuristic boundary condition' which describes, in a lumped model, the closure of currents in the vicinity of the x-point region to encompass three current-closure mechanisms. We then use this boundary condition to derive the dispersion relation for low-beta flute-like modes in the divertor-leg region under the combined drives of curvature, sheath impedance, and divertor tilt effects. The results indicate the possibility of strongly growing instabilities, driven by sheath boundary conditions, and localized in either the private or common flux region of the divertor leg depending on the radial tilt of divertor plates. We re-visit the issue of x-point effects on blobs, examining the transition from blobs terminated by x-point shear to blobs that extend over both the main SOL and divertor legs. We find that, for a main-SOL blob, this transition occurs without a free-acceleration period as previously thought, with x-point termination conditions applying until the blob has expanded to reach the divertor plate. We also derive propagation speeds for divertor-leg blobs. Finally, we present fluid simulations of the C-Mod tokamak from the BOUT edge fluid turbulence code, which show main-SOL blob structures with similar spatial characteristics to those observed in the experiment, and also simulations which illustrate the possibility of fluctuations confined to divertor legs.
Variational Methods for Computational Fluid Dynamics Annee 2013 -2014.
Alouges, François
are only valid for laminar flow at low Reynolds number. 4. Compute the flow rate F (the quantity of fluid that a fluid is flowing (from left to right) obeying Navier-Syokes equation. 1. Show that there is a stationary1 Variational Methods for Computational Fluid Dynamics Ann´ee 2013 - 2014. X2011. PC 1 Exercise 1
Journal of Fluid Mechanics http://journals.cambridge.org/FLM
Marusic, Ivan
prove that the drag in pipe and channel flows of an unforced laminar fluid constitutes a lower bound drag reduction due to added polymers in Poiseuille flow. Journal of Fluid Mechanics, 659, pp 473483 to laminar fluids invariably increases drag. This proof does not rely on the adoption of a particular
Universal penetration test apparatus with fluid penetration sensor
Johnson, Phillip W. (Rochester, MN); Stampfer, Joseph F. (Santa Fe, NM); Bradley, Orvil D. (Santa Fe, NM)
1999-01-01
A universal penetration test apparatus for measuring resistance of a material to a challenge fluid. The apparatus includes a pad saturated with the challenge fluid. The apparatus includes a compression assembly for compressing the material between the pad and a compression member. The apparatus also includes a sensor mechanism for automatically detecting when the challenge fluid penetrates the material.
Journal of Fluid Mechanics http://journals.cambridge.org/FLM
Goldstein, Raymond E.
Journal of Fluid Mechanics http://journals.cambridge.org/FLM Additional services for Journal of Fluid Mechanics: Email alerts: Click here Subscriptions: Click here Commercial reprints: Click here. Woodhouse and Raymond E. Goldstein Journal of Fluid Mechanics / Volume 705 / August 2012, pp 165 175 DOI
APSAPS--DFD09DFD09 Experimental Fluid Mechanics and
Wolberg, George
APSAPS--DFD09DFD09 Experimental Fluid Mechanics and Aerodynamics Laboratory Department Experimental Fluid Mechanics and Aerodynamics Laboratory Department of Mechanical Engineering City College=dipole density D=E+P Matrix of piezoelectric coefficients #12;APSAPS--DFD09DFD09 Experimental Fluid Mechanics
"Audacity or Precision": The Paradoxes of Henri Villat's Fluid Mechanics
Aubin, David
1 "Audacity or Precision": The Paradoxes of Henri Villat's Fluid Mechanics in Interwar France David researches on fluid mechanics. Most of his original work was done before the First Word War; it was highly on, he held the fluid mechanics chair established by the Air Ministry at the Sorbonne in Paris
2 Geophysical Aspects of Non-Newtonian Fluid Mechanics
Balmforth, Neil
2 Geophysical Aspects of Non-Newtonian Fluid Mechanics N.J. Balmforth1 and R.V. Craster2 1, London, SW7 2BZ, UK 2.1 Introduction Non-Newtonian fluid mechanics is a vast subject that has several journals partly, or primarily, dedicated to its investigation (Journal of Non-Newtonian Fluid Mechanics
Fluid Dynamic Models of Flagellar and Ciliary Beating
Fauci, Lisa
University, New Orleans, Louisiana, USA ABSTRACT: We have developed a fluidmechanical model of a eucaryotic mechanics of microtubules, and forces due to nexin links with a surrounding incompressible fluid. This model mechanisms, the passive elastic structure of the axoneme, and the external fluid dynamics. These flagellar
Journal of Fluid Mechanics http://journals.cambridge.org/FLM
Parau, Emilian I.
Journal of Fluid Mechanics http://journals.cambridge.org/FLM Additional services for Journal of Fluid Mechanics: Email alerts: Click here Subscriptions: Click here Commercial reprints: Click here and E. I. Parau Journal of Fluid Mechanics / Volume 688 / December 2011, pp 528 550 DOI: 10.1017/jfm
Capillary tension and imbibition sequester frack fluid in Marcellus
Engelder, Terry
LETTER Capillary tension and imbibition sequester frack fluid in Marcellus gas shale In a recent years, it would now be all gone. Introducing 104 m3 of fracking fluid per horizontal well seems sizable free brine from the Marcellus comes in contact with the frack fluid. Drawing brine into a Marcellus
MAE 101A (4 units) Introductory Fluid Mechanics
Fainman, Yeshaiahu
; fluid kinematics; integral and differential forms of the conservation laws for mass, momentum and energy an ability to calculate static forces on bodies submerged within a fluid 2.3 Students will demonstrate an ability to relate control volume conservation principles to differential equations for fluid motion
Magnetorheology in an aging, yield stress matrix fluid
et al. 2001), precision polishing (Kordonski and Golini 1999), and drilling fluids (Zitha 2004). MR1 Magnetorheology in an aging, yield stress matrix fluid Jason P. Rich,a Patrick S. Doyle,a Gareth) suspensions in an aging, yield stress matrix fluid composed of an aqueous dispersion of Laponite® clay. Using
Waste Management of Cuttings, Drilling Fluids, Flowback and Produced Water
Walter, M.Todd
Waste Management of Cuttings, Drilling Fluids, Flowback and Produced Water the drill bit as it cuts deeper into the earth. This fluid, which is used only of the shale. Drilling muds are made up of a base fluid (water, mineral oil
Pruess, Karsten
2008-01-01
systems (EGS), heat transmission, CO 2 storage, numericaleither CO 2 or water as heat transmission fluid. For a modelCO 2 instead of water as heat transmission fluid. Originally
CX-007571: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Pulaski County - Wastewater CX(s) Applied: B5.1 Date: 12/29/2011 Location(s): Missouri Offices(s): Golden Field Office
CX-007596: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Ohio Advanced Transportation Partnership CX(s) Applied: B5.23 Date: 01/25/2012 Location(s): Ohio Offices(s): National Energy Technology Laboratory
CX-012729: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Hydrogen Sulfide Scavenger BOA (Multiple) CX(s) Applied: B5.2Date: 41880 Location(s): LouisianaOffices(s): Strategic Petroleum Reserve Field Office
CX-008588: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
St. Petersburg Solar Pilot Project CX(s) Applied: B5.1 Date: 07/19/2012 Location(s): Florida Offices(s): Golden Field Office
CX-008684: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Metaline Radio Station Upgrade Project CX(s) Applied: B1.19 Date: 07/11/2012 Location(s): Washington Offices(s): Bonneville Power Administration
CX-010148: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Merritt Radio Station Upgrade CX(s) Applied: B1.19 Date: 04/18/2013 Location(s): Washington Offices(s): Bonneville Power Administration
CX-008706: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Tunk Mountain Radio Station Upgrade CX(s) Applied: B1.19 Date: 05/30/2012 Location(s): Washington Offices(s): Bonneville Power Administration
CX-012716: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
General Scientific Infrastructure Support for University of Wisconsin CX(s) Applied: B1.31Date: 41844 Location(s): WisconsinOffices(s): Nuclear Energy
CX-008543: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Colorado State Energy Plan 2012 CX(s) Applied: A9, A11 Date: 06/25/2012 Location(s): Colorado Offices(s): Golden Field Office
CX-012333: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Support Buildings CX(s) Applied: B1.15 Date: 06/03/2014 Location(s): Washington Offices(s): River Protection-Richland Operations Office
CX-011165: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Heavy Mineral Separation CX(s) Applied: B3.6 Date: 08/07/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office
CX-012817: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Bell Maintenance Headquarters Access Road Maintenance CX(s) Applied: B1.3Date: 41890 Location(s): WashingtonOffices(s): Bonneville Power Administration
CX-006225: Categorical Exclusion Determination | Department of...
Broader source: Energy.gov (indexed) [DOE]
Infrastructure Upgrades - Materials and Fuel Complex (MFC)- Irradiated Materials Characterization Laboratory (IMCL) CX(s) Applied: B3.6 Date: 06072011 Location(s): Idaho Falls,...
CX-010791: Categorical Exclusion Determination | Department of...
Exclusion Determination Gulf of Mexico Miocene Carbon Dioxide (CO2) Site Characterization Mega Transect CX(s) Applied: A9, A11 Date: 08142013 Location(s): Texas...
Categorical Exclusion Determinations: Science | Department of...
Broader source: Energy.gov (indexed) [DOE]
Determination Establishment of an Easement for Enhanced Electrical Service to the Computational Sciences Facility CX(s) Applied: B1.7 Date: 08302011 Location(s):...
CX-011634: Categorical Exclusion Determination
Office of Energy Efficiency and Renewable Energy (EERE)
Closure Turf Installation CX(s) Applied: B6.1 Date: 08/27/2013 Location(s): Texas Offices(s): Pantex Site Office
CX-008993: Categorical Exclusion Determination | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
CX-008993: Categorical Exclusion Determination "Continuous Processing of High Thermal Conductivity Polyethylene Fibers and Sheets CX(s) Applied: A9, B3.6 Date: 0822...
CX-012776: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Catalyst Processing, KCP14-05 CX(s) Applied: NOT NOTEDDate: 41857 Location(s): MissouriOffices(s): Kansas City Site Office
CX-008146: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Advanced Formation Evaluator Tools (Haliburton) CX(s) Applied: B3.7 Date: 09/11/2011 Location(s): Wyoming Offices(s): RMOTC
CX-004095: Categorical Exclusion Determination | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Exclusion Determination CX-004095: Categorical Exclusion Determination Thermal Transport Properties of Nanostructured Materials for Energy Conversion CX(s) Applied: B3.6 Date: 09...
CX-008144: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Planned Repair of Flow Lines CX(s) Applied: B5.4 Date: 08/09/2011 Location(s): Wyoming Offices(s): RMOTC
CX-003164: Categorical Exclusion Determination | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Categorical Exclusion Determination CX-003164: Categorical Exclusion Determination Optimization of Biomass Production Across a Landscape CX(s) Applied: A9 Date: 07262010...
CX-012730: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Replace West Hackberry Radio Tower CX(s) Applied: B1.19Date: 41880 Location(s): LouisianaOffices(s): Strategic Petroleum Reserve Field Office
CX-011069: Categorical Exclusion Determination
Office of Energy Efficiency and Renewable Energy (EERE)
Induction Furnace Melting CX(s) Applied: B3.6 Date: 08/29/2013 Location(s): Oregon Offices(s): National Energy Technology Laboratory
CX-010057: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Eugene Substation Protective Relay Installation CX(s) Applied: B1.7 Date: 01/29/2013 Location(s): Oregon Offices(s): Bonneville Power Administration
CX-011214: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Sensitive Instrument Facility CX(s) Applied: B3.6 Date: 07/10/2013 Location(s): Iowa Offices(s): Ames Site Office
CX-012795: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
North Bonneville Substation 23- Kilovolt Line Retermination CX(s) Applied: B4.11Date: 41926 Location(s): WashingtonOffices(s): Bonneville Power Administration
CX-010618: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Midwest Region Alternative Fuels Project CX(s) Applied: 0 Date: 07/19/2013 Location(s): Missouri Offices(s): National Energy Technology Laboratory
CX-012789: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Building 440 CNM Clean Room Expansion CX(s) Applied: B3.15Date: 41906 Location(s): IllinoisOffices(s): Argonne Site Office
CX-008438: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Biogas Reconditioning Project CX(s) Applied: B5.1 Date: 06/27/2012 Location(s): Nevada Offices(s): National Energy Technology Laboratory
CX-008282: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Biogas Reconditioning Project CX(s) Applied: B5.1 Date: 05/01/2012 Location(s): Nevada Offices(s): National Energy Technology Laboratory
Categorical Exclusion Determinations: Western Area PowerAdministratio...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Center October 26, 2009 CX-005544: Categorical Exclusion Determination Power Rate Formula for the Provo River Project of the Western Area Power Administration CX(s) Applied:...
CX-012311: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Accelerator Test Facility II CX(s) Applied: B3.10 Date: 05/28/2014 Location(s): New York Offices(s): Brookhaven Site Office
CX-008799: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Jack Case Showers Projects CX(s) Applied: B1.3 Date: 06/04/2012 Location(s): Tennessee Offices(s): Y-12 Site Office
CX-010763: Categorical Exclusion Determination | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
CX-010763: Categorical Exclusion Determination Nevada Desert Research Institute- Photovoltaic Installation CX(s) Applied: B5.16 Date: 07172013 Location(s): Nevada Offices(s):...
CX-012254: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Hydro Research Foundation University Research Awards - Vanderbilt CX(s) Applied: A9 Date: 05/28/2014 Location(s): Tennessee Offices(s): Golden Field Office
CX-012253: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Hydro Research Foundation University Research Awards - OSU CX(s) Applied: A9 Date: 05/27/2014 Location(s): Oregon Offices(s): Golden Field Office
CX-004351: Categorical Exclusion Determination | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
4351: Categorical Exclusion Determination CX-004351: Categorical Exclusion Determination Center for Development of Math, Science and Technology CX(s) Applied: B1.15 Date: 1029...
CX-003959: Categorical Exclusion Determination | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
59: Categorical Exclusion Determination CX-003959: Categorical Exclusion Determination Federal Bureau of Investigation Radiological Dispersion Device Training CX(s) Applied: B1.2...
CX-010689: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Generic CX Determination for Financial Assistance Awards CX(s) Applied: Unknown Date: 07/17/2013 Location(s): Illinois Offices(s): Chicago Office
CX-005987: Categorical Exclusion Determination | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
87: Categorical Exclusion Determination CX-005987: Categorical Exclusion Determination Stion Corporation - Superstrate Device for High Efficiency Tandem Modules CX(s) Applied: A9,...
Categorical Exclusion (CX) Determinations By Date | Department...
Office of Environmental Management (EM)
(CX) Determinations By Date Categorical Exclusion (CX) Determinations By Date August 25, 2015 CX-012469: Categorical Exclusion Determination Gas Analysis Services CX(s) Applied:...
CX-100022: Categorical Exclusion Determination | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
CX-100022: Categorical Exclusion Determination CX-100022: Categorical Exclusion Determination EERE Demonstration for Advanced Retro-Commissioning Technology CX(s) Applied: A9,...
CX-001378: Categorical Exclusion Determination | Department of...
Office of Environmental Management (EM)
378: Categorical Exclusion Determination CX-001378: Categorical Exclusion Determination Wackenhut Services, Incorporated Training Facility CX(s) Applied: B1.2 Date: 10282009...
CX-012664: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
SBIR/STTR Phase 0 Outreach and Assistance Program CX(s) Applied: A8Date: 41844 Location(s): IllinoisOffices(s): Chicago Office
CX-007826: Categorical Exclusion Determination | Department of...
007826: Categorical Exclusion Determination CX-007826: Categorical Exclusion Determination "Crittenden City Facilities Re-Roofing CX(s) Applied: B5.1 Date: 01312012 Location(s):...
CX-012433: Categorical Exclusion Determination
Broader source: Energy.gov [DOE]
Computer Simulation and Prototype Construction and Testing CX(s) Applied: A9Date: 41878 Location(s): GeorgiaOffices(s): National Energy Technology Laboratory
CX-000310: Categorical Exclusion Determination | Department of...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
0: Categorical Exclusion Determination CX-000310: Categorical Exclusion Determination New Jersey Revision 1 - Energy Efficiency Upgrades for State Buildings CX(s) Applied: A9, A11,...