Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fluidized solids technique" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Lateral solids dispersion coefficient in large-scale fluidized beds  

SciTech Connect

The design of fuel feed ports in a large-scale fluidized bed combustor depends on the fuel characteristics and lateral solids mixing. However, the reported values of the effective lateral solids dispersion coefficient (D{sub sr}) are scattered in the broad range of 0.0001-0.1 m{sup 2}/s. With the aim of predicting D{sub sr} in wider fluidized beds which is difficult to measure directly or deduce from experimental results in lab-scale facilities, a computational method is proposed. It combines the Eulerian-Granular simulation and fictitious particle tracing technique. The value of D{sub sr} is calculated based on the movement of the tracers. The effect on D{sub sr} of bed width (W) ranging from 0.4 m up to 12.8 m at different levels of superficial gas velocity (U{sub 0}) is investigated. It is found that increasing W whilst maintaining U{sub 0}, D{sub sr} initially increases markedly, then its increase rate declines, and finally it stays around a constant value. The computed values of D{sub sr} are examined quantitatively and compared with a thorough list of the measured D{sub sr} in the literature since 1980s. Agreed with the measurements performed in the pilot-scale fluidized beds, the value of D{sub sr} in wider facilities at higher fluidizing velocities is predicted to be around the order of magnitude of 0.1 m{sup 2}/s, much higher than that in lab-scale beds. Finally, the effect of D{sub sr} on the distribution of fuel particles over the cross section in fluidized beds with the specified layout of feed ports is discussed. (author)

Liu, Daoyin; Chen, Xiaoping [School of Energy and Environment, Southeast University, Nanjing 210096 (China)

2010-11-15T23:59:59.000Z

2

Phase shift method to estimate solids circulation rate in circulating fluidized beds  

SciTech Connect

While solids circulation rate is a critical design and control parameter in circulating fluidized bed (CFB) reactor systems, there are no available techniques to measure it directly at conditions of industrial interest. Cold flow tests have been conducted at NETL in an industrial scale CFB unit where the solids flow has been the topic of research in order to develop an independent method which could be applied to CFBs operating under the erosive and corrosive high temperatures and pressures of a coal fired boiler or gasifier. The dynamic responses of the CFB loop to modest modulated aeration flows in the return leg or standpipe were imposed to establish a periodic response in the unit without causing upset in the process performance. The resulting periodic behavior could then be analyzed with a dynamic model and the average solids circulation rate could be established. This method was applied to the CFB unit operated under a wide range of operating conditions including fast fluidization, core annular flow, dilute and dense transport, and dense suspension upflow. In addition, the system was operated in both low and high total solids inventories to explore the influence of inventory limiting cases on the estimated results. The technique was able to estimate the solids circulation rate for all transport circulating fluidized beds when operating above upper transport velocity, U{sub tr2}. For CFB operating in the fast fluidized bed regime (i.e., U{sub g}< U{sub tr2}), the phase shift technique was not successful. The riser pressure drop becomes independent of the solids circulation rate and the mass flow rate out of the riser does not show modulated behavior even when the riser pressure drop does.

Ludlow, James Christopher [U.S. DOE (retired); Panday, Rupen [REM; Shadle, Lawrence J. [U.S. DOE

2013-01-01T23:59:59.000Z

3

MODELING AND SIMULATION OF SOLID FLUIDIZATION IN A RESIN COLUMN  

SciTech Connect

The objective of the present work is to model the resin particles within the column during fluidization and sedimentation processes using computation fluid dynamics (CFD) approach. The calculated results will help interpret experimental results, and they will assist in providing guidance on specific details of testing design and establishing a basic understanding of particle’s hydraulic characteristics within the column. The model is benchmarked against the literature data and the test data (2003) conducted at Savannah River Site (SRS). The paper presents the benchmarking results and the modeling predictions of the SRS resin column using the improved literature correlations applicable for liquid-solid granular flow.

Lee, S.

2014-06-24T23:59:59.000Z

4

Investigation of Gas Solid Fluidized Bed Dynamics with Non-Spherical Particles  

SciTech Connect

One of the largest challenges for 21st century is to fulfill global energy demand while also reducing detrimental impacts of energy generation and use on the environment. Gasification is a promising technology to meet the requirement of reduced emissions without compromising performance. Coal gasification is not an incinerating process; rather than burning coal completely a partial combustion takes place in the presence of steam and limited amounts of oxygen. In this controlled environment, a chemical reaction takes place to produce a mixture of clean synthetic gas. Gas-solid fluidized bed is one such type of gasification technology. During gasification, the mixing behavior of solid (coal) and gas and their flow patterns can be very complicated to understand. Many attempts have taken place in laboratory scale to understand bed hydrodynamics with spherical particles though in actual applications with coal, the particles are non-spherical. This issue drove the documented attempt presented here to investigate fluidized bed behavior using different ranges of non-spherical particles, as well as spherical. For this investigation, various parameters are controlled that included particle size, bed height, bed diameter and particle shape. Particles ranged from 355 µm to 1180 µm, bed diameter varied from 2 cm to 7 cm, two fluidized beds with diameters of 3.4 cm and 12.4 cm, for the spherical and non-spherical shaped particles that were taken into consideration. Pressure drop was measured with increasing superficial gas velocity. The velocity required in order to start to fluidize the particle is called the minimum fluidization velocity, which is one of the most important parameters to design and optimize within a gas-solid fluidized bed. This minimum fluidization velocity was monitored during investigation while observing variables factors and their effect on this velocity. From our investigation, it has been found that minimum fluidization velocity is independent of bed height for both spherical and non-spherical particles. Further, it decrease with decreasing particle size and decreases with decreasing bed diameter. Shadow sizing, a non-intrusive imaging and diagnostic technology, was also used to visualize flow fields inside fluidized beds for both spherical and non- spherical particles and to detect the particle sizes.

Choudhuri, Ahsan

2013-06-30T23:59:59.000Z

5

Flooding of Gas?Solids Countercurrent Flow in Fluidized Beds  

Science Journals Connector (OSTI)

Flooding of Commercial Coker Strippers and Its Simulation ... A baffle configuration with 30°-top-included-angle sheds on the top row and simulated fouled sheds on the second row (Figure 3f) was tested to further investigate the effects of baffle configuration on flooding, with a minimum open area of 33%. ... Figure 12 predicts that the stripper should not be flooded at a solids flux of 63 kg/m2·s and a steam superficial velocity of 0.52 m/s, as tested at the end of the run when there was no sign of flooding in the commercial unit. ...

Hsiaotao Bi; Heping Cui; John Grace; Andreas Kern; C. Jim Lim; Dan Rusnell; Xuqi Song; Craig McKnight

2004-05-28T23:59:59.000Z

6

Energy recovery from municipal solid waste and sewage sludge using multi-solid fluidized bed combustion technology  

SciTech Connect

This study was initiated to investigate the recovery of energy from municipal solid waste (MSW) and domestic sewage sludge (DSS) simultaneously by using Battelle's multi-solid fluidized-bed combustion (MS-FBC) technology. The concept was to recover energy as high and low pressure steam, simultaneously. High pressure steam would be generated from flue gas using a conventional tubular boiler. Low pressure steam would be generated by direct contact drying of DSS (as 4% solids) with hot sand in a fluidized bed that is an integral part of the MS-FBC process. It was proposed that high pressure steam could be used for district heating or electricity generation. The low pressure steam could be used for close proximity building heat. Alternatively, low pressure steam could be used to heat wastewater in a sewage treatment plant to enhance sedimentation and biological activity that would provide a captive market for this part of the recovered energy. The direct contact drying or tubeless steam generation eliminates fouling problems that are common during heat exchange with DSS. The MS-FBC process was originally developed for coal and was chosen for this investigation because its combustion rate is about three times that of conventional fluidized beds and it was projected to have the flexibility needed for accomplishing tubeless steam generation. The results of the investigation show that the MS-FBC process concept for the co-utilization of MSW and DSS is technically feasible and that the thermal efficiency of the process is 76 to 82% based on experiments conducted in a 70 to 85 lb/h pilot plant and calculations on three conceptual cases.

Not Available

1981-07-01T23:59:59.000Z

7

Leaching behavior and possible resource recovery from air pollution control residues of fluidized bed combustion of municipal solid waste  

SciTech Connect

Ash residues are generated at several points during combustion of municipal solid waste (MSW), i.e., in cyclones, electrostatic precipitators and fabric filters. Such residues are of a complex physical and chemical nature and are often enriched in soluble salts and heavy metals such as Pb, Cd and Zn. Fluidized bed combustion (FBC) of MSW is a relatively new technique and very little information is available about the leaching behavior of its residues. In this study, the total elemental composition, mineralogy and leaching behavior of cyclone and bag-house filter ashes from a bubbling fluidized bed (BFB) boiler fired with municipal solid waste have been investigated. In addition, the possibilities of recovery heavy metals from these ashes were studied. The long-term leaching behavior of the ash constituents was evaluated using a two-step batch leaching test known as the CEN-test, whereas short and medium term leaching behavior was evaluated using a Column test. The extraction of elements from cyclone and filter ashes with various acidic solutions was also investigated. The leaching behavior of acid washed ashes was evaluated using the CEN test. The cyclone ash was mainly composed of aluminosilicate minerals, whereas the filter ash consisted of chlorides and hydroxides of alkali and alkaline earth metals. The concentration of heavy metals such as Zn, Cu, Cd and Pb was higher in the filter ash than in the cyclone ash. The leached amounts of sulfates and Pb from the cyclone ash decreased with leaching test contact time, indicating the formation of secondary mineral phases. Large amounts of chlorides, sulfates, Ca, Cu and Pb were leached from the filter ash. Acid extraction removed large amounts ({gt}50%) of Zn, Pb and Cu from the filter ash and approximately 56% of the total amount of Zn present in the cyclone ash. An efficient removal of heavy metal species from these types of ashes can probably be achieved by application of a recycling or multi-step process.

Abbas, Z.; Andersson, B.A.; Steenari, B.M.

1999-07-01T23:59:59.000Z

8

Combustion of paper deinking solids in a pilot-scale fluidized bed  

SciTech Connect

Pressed solids from two commercial deinking operations were incinerated in a pilot-scale fluidized-bed combustor. Test parameters included usage of support fuel (dry wood pellets or propane) and supply of overfire air. Stable combustion was achieved for a wide range of feedstock moisture contents (43% and 68%) and bed temperatures (700--1,000 C). Overfire air was varied from 0% to 60% of the total air, and the use of overfire air greatly improved burnout of CO in most cases. NO[sub x] emissions increased when overfire air was used and were in the range of 200 ppm to 275 ppm at 3% O[sub 2]. Ash from the deinking solids did not fuse at temperatures below 1,200 C, and no clinkers were formed in the bed during the trials. The ash consists mainly of kaolinite and contains insignificant quantities of heavy metals.

Douglas, M.A. (ABB Combustion Systems, Gloucester, Ontario (Canada)); Latva-Somppi, J.; Tran, H.N. (Univ. of Toronto, Ontario (Canada)); Razbin, V.V. (Canada Center for Mineral And Energy Technology, Ottawa, Ontario (Canada)); Friedrich, F.D.

1994-05-01T23:59:59.000Z

9

Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Final report  

SciTech Connect

The problem addressed by our invention is that of municipal solid waste utilization. The dimensions of the problem can be visualized by the common comparison that the average individual in America creates in five years time an amount of solid waste equivalent in weight to the Statue of Liberty. The combustible portion of the more than 11 billion tons of solid waste (including municipal solid waste) produced in the United States each year, if converted into useful energy, could provide 32 quads per year of badly needed domestic energy, or more than one-third of our annual energy consumption. Conversion efficiency and many other factors make such a production level unrealistic, but it is clear that we are dealing with a very significant potential resource. This report describes research pertaining to the co-combustion of oil shale with solid municipal wastes in a circulating fluidized bed. The oil shale adds significant fuel content and also constituents that can possible produce a useful cementitious ash.

NONE

1996-06-30T23:59:59.000Z

10

Energy balance of ethanol production with a gas-solid fluidized bed fermenter  

Science Journals Connector (OSTI)

This paper delivers the theoretical results achieved the production of ethanol by Saccharomyces cerevisiae in a fluidized bed ... recirculation of the fluidizing gas and coolers for ethanol recovery. The influenc...

Dipl.-Ing. M. Beck; Prof. Dr.-Ing. W. Bauer

11

Robust techniques for developing empirical models of fluidized bed combustors  

E-Print Network (OSTI)

This report is designed to provide a review of those data analysis techniques that are most useful for fitting m-dimensional empirical surfaces to very large sets of data. One issue explored is the improvement

Gruhl, Jim

12

Gasification of a solid recovered fuel in a pilot scale fluidized bed reactor  

Science Journals Connector (OSTI)

Abstract The paper investigates the technical feasibility of an air gasification process of a Solid Recovered Fuel (SRF) obtained from municipal solid waste. A pilot scale bubbling fluidized bed gasifier, having a feedstock capacity of about 70 kg/h and a maximum thermal output of about 400 kW, provided the experimental data: the complete composition of the syngas (including the tar, particulate and acid/basic gas contents), the chemical and physical characterization of the bed material and that of entrained fines collected at the cyclone. The experimental runs were carried out by reaching a condition of thermal and chemical steady state under values of equivalence ratio ranging from 0.25 to 0.33. The results indicate that the selected SRF can be conveniently gasified, yielding a syngas of valuable quality for energy applications. The rather high content of tar in the syngas indicates that the more appropriate plant configuration should be that of a “thermal gasifier”, with the direct combustion of the syngas in a burner ad hoc designed, coupled with an adequate energy-conversion device.

Umberto Arena; Fabrizio Di Gregorio

2014-01-01T23:59:59.000Z

13

Influence of solids hydrodynamics on local heat transfer from tube banks immersed in a gas fluidized bed  

SciTech Connect

Fluidized bed combustion (FBC) has generated considerable interest as an efficient low-cost and non-polluting means of burning a variety of fuels. Despite the research and developmental efforts focused on FBC for more than three decades, the current state-of-the-art remains at a distance from the point where the combustor/boiler performance can be predicted with confidence. The high heat transfer rates and small internal temperature gradients as perceived from efficient mixing have yet to be fully realized. This is due largely to the multiplicity of variables involved in a fluidized bed combustor and the complexity of its hydrodynamics. Many empirical correlations for predicting heat transfer between a gas fluidized bed and the immersed internals have been proposed. They are based mainly on gross experimental observations with minimal attention to the mechanism of heat transfer due, at least in part, to the lack of systematic data on solids motion. Much useful insight can be obtained from a simultaneous determination of the local heat transfer rates from immersed internal structures and the associated hydrodynamics of the solid particles. Accordingly, in this study, the local mean heat transfer coefficients of horizontal internals simulating tube banks were measured for several locations in the bed along with measurements of the mean solids velocity and density distributions for a range of superficial gas velocities. The experiments were conducted in a 184 mm (7.25 in.) ID air fluidized bed with a horizontal in-line internal rod bundle of 16 mm (0.625 in.) OD with pitch-to-diameter ratio of 4 over a wide range of gas velocities. The results showed that the local heat transfer rates depend strongly on the flow pattern of solids induced by the bubble motion. The data confirmed the expectation that particle convection plays a major role in the mechanisms of heat transfer from immersed internals. 15 refs., 12 figs., 2 tabs.

Moslemian, D.; Chen, M.M.; Chao, B.T.

1986-01-01T23:59:59.000Z

14

Simulation of Syngas Production from Municipal Solid Waste Gasification in a Bubbling Fluidized Bed Using Aspen Plus  

Science Journals Connector (OSTI)

Simulation of Syngas Production from Municipal Solid Waste Gasification in a Bubbling Fluidized Bed Using Aspen Plus ... When the reaction kinetics is not known, a rigorous reactor and multiphase equilibrium based on the minimization of the total Gibbs free energy of the product mixture (an RGibbs block) is preferred to predict the equilibrium composition of the produced syngas. ... Catalytic steam gasification of municipal solid waste (MSW) to produce hydrogen-rich gas or syngas (H2 + CO) with calcined dolomite as a catalyst in a bench-scale downstream fixed bed reactor was investigated. ...

Miaomiao Niu; Yaji Huang; Baosheng Jin; Xinye Wang

2013-09-06T23:59:59.000Z

15

17 - Fluidized bed gasification  

Science Journals Connector (OSTI)

Abstract: The chapter describes the state-of-the-art of fluidized bed gasification of solid fuels, starting from the key role played by hydrodynamics, and its strong correlation with physical and chemical phenomena of the process and operating performance parameters of the reactor. The possible configurations of fluidized bed gasification plants are also assessed, and an analysis of the main methods for syngas cleaning is reported. Finally, the chapter describes some of the most interesting commercial experiences. The analysis indicates that the gasification of biomass and also of municipal and industrial solid wastes appear to be the most interesting sectors for the industrial development and utilization of fluidized bed gasifiers.

U. Arena

2013-01-01T23:59:59.000Z

16

Characterization of Solid Emissions from Atmospheric Fluidized-Bed Combustion of Two Czech Lignites  

Science Journals Connector (OSTI)

In fluidized-bed combustion, particles of coal burn within the bed of vigorously moving smaller inert particles with bed temperatures between 1000 and 1300 K. Due to intense heat transfer from the burning particle to bed particles and percolating gas, the temperature of a particle is on average 200 K above that of the bed (29, 30). ... Two lignites from the Centrum mine and the Vršany open pit mine (North Bohemian Coal Basin) were used in this study. ... The reactor is equipped with a supplementary natural gas burner, a feeding system, and measuring and control peripherals. ...

Ji?í Smolík; Jaroslav Schwarz; Václav Veselý; Ivana Sýkorová; Jan Kuc?era; Vladimír Havránek

1999-09-01T23:59:59.000Z

17

Effects of the ship motion on gas–solid flow and heat transfer in a circulating fluidized bed  

Science Journals Connector (OSTI)

A series of experiments on a circulating fluidized bed (CFB) was performed to investigate the effects of ship motion on gas–solid flow and heat transfer in the CFB. Rolling period, rolling amplitude, inclination angle, superficial velocity, particle diameter range, and solid circulation flux were varied in the experiments. The following results were obtained: (1) When the CFB undergoes rolling motion, the downflow of particles changes periodically and the solid volume fraction increases at the riser bottom. As a result, the time-averaged total pressure drop of the CFB in rolling motion becomes larger than that at the upright attitude. Similarly, the total pressure drop of the CFB at an inclined attitude is larger than that at the upright attitude. (2) The total pressure drop of the CFB in rolling motion is hardly affected by rolling period. As rolling amplitude increases, on the other hand, the effects of rolling motion become more remarkable. From these results, it is concluded that gravity dominantly affects gas–solid flow in the system. (3) At an inclined attitude, the symmetry of the flow field with respect to the riser center plane breaks, and heat transfer at the lower wall of the riser is promoted. As inclination angle increases, heat transfer augmentation becomes more remarkable. Similarly, the heat transfer coefficient in rolling motion is larger than that at the upright attitude. (4) Heat transfer augmentation by ship motion is concluded to be caused by the direct contact between solid particles and the heater surface owing to the vertical component of gravity to the surface.

Hiroyuki Murata; Hideyuki Oka; Masaki Adachi; Kazuyoshi Harumi

2012-01-01T23:59:59.000Z

18

Fluidized bed combustion of alternative solid fuels: Status, successes and problems of the technology  

SciTech Connect

This paper surveys the literature on some of the more important alternative fuels for fluidized bed combustion (FBC) and also makes specific recommendations about problems or major issues with those fuels. Particular attention is given to the use of FBC for coal wastes, wood pulp sludges, petroleum coke and biomass residues. These fuels are emphasized because of their current economic importance, particularly in North America. Such fuels, which are often described as {open_quotes}alternative{close_quotes}, or {open_quotes}opportunity{close_quotes} fuels, also lend themselves to FBC applications if they are to be combusted in an environmentally benign way. Further, waste or low grade fuels are normally available at low or even negative costs. This factor is particularly important in North America, where an essentially flat energy market exists, and low electricity prices mean that considerations other than energy sales must often drive the project economics. 57 refs., 2 tabs.

Anthony, E.J. [CETC, Natural Resources (Canada)

1997-12-31T23:59:59.000Z

19

Development of Solid Particle Thermal Energy Storage for Concentrating Solar Power Plants that Use Fluidized Bed Technology  

Science Journals Connector (OSTI)

Abstract The National Renewable Energy Laboratory is developing a thermal energy storage (TES) system that uses solid particles as the storage medium for a concentrating solar power plant. This paper focuses on the particle-TES performance in terms of three efficiency metrics: first-law efficiency, second-law efficiency, and storage effectiveness. The paper presents the derivation of the efficiency expression and their application in assessing the particle-TES performance and design. The particle-TES system uses low-cost stable materials that withstand high temperature at a fraction of the cost of the salt and metal containment vessels for high-temperature TES. Cost analysis indicates that particle TES costs less than $10/kWhth, which is less than half the cost of the current molten-salt-based TES and just a fraction of liquid heat transfer fluid storage at a similar high temperature of >700 °C, due to its low cost of storage medium and containment. The fluidized-bed TES can hold hot particles of > 800 °C with >95% exergetic efficiency, storage effectiveness, and thermal efficiency.

Z. Ma; G.C. Glatzmaier; M. Mehos

2014-01-01T23:59:59.000Z

20

Hydrodynamic modeling of poly-solid reactive circulating fluidized beds: Application to Chemical Looping Combustion.  

E-Print Network (OSTI)

??Une étude précise des écoulements gaz-particules poly-solides et réactifs rencontrés dans les lits fluidisés circulants (LFC) appliqués au procédé de Chemical Looping Combustion (CLC) est… (more)

Nouyrigat, Nicolas

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fluidized solids technique" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Hydrodynamic modeling of poly-solid reactive circulating fluidized beds : Application to Chemical Looping Combustion.  

E-Print Network (OSTI)

??Une étude précise des écoulements gaz-particules poly-solides et réactifs rencontrés dans les lits fluidisés circulants (LFC) appliqués au procédé de Chemical Looping Combustion (CLC) est… (more)

Nouyrigat, Nicolas

2012-01-01T23:59:59.000Z

22

Trace element behavior in the fluidized bed gasification of solid recovered fuels – A thermodynamic study  

Science Journals Connector (OSTI)

Gasification of biomass and recycled fuels is of particular interest for the efficient production of power and heat. Trace elements present as impurities in the product gas should be removed very efficiently. The objective of this work has been to develop and test thermodynamic models for the reactions of trace elements with chlorine and sulfur in the gasification processes of recycled fuels. In particular, the chemical reactions of trace elements with main thermochemical conversion products, main ash components, and bed and sorbent material are implemented into the model. The possibilities of gas cleaning devices in condensing and removing the trace element compounds are studied by establishing the volatilization tendency of trace element compounds in reducing gases. The results obtained with the model are compared with the measured data of trace elements of gasification experiments using solid recovered fuel as feedstock. Some corresponding studies in the literature are also critically reviewed and compared. The observed discrepancies may be attributed to differences in thermodynamic databases applied and experimental arrangements. The method of removing gaseous trace elements by condensation is already in use in the 160 MWth waste gasification plant in Lahti, Finland.

Jukka Konttinen; Rainer Backman; M. Hupa; Antero Moilanen; Esa Kurkela

2013-01-01T23:59:59.000Z

23

Dynamic Modeling and Control Studies of a Two-Stage Bubbling Fluidized Bed Adsorber-Reactor for Solid-Sorbent CO{sub 2} Capture  

SciTech Connect

A one-dimensional, non-isothermal, pressure-driven dynamic model has been developed for a two-stage bubbling fluidized bed (BFB) adsorber-reactor for solid-sorbent carbon dioxide (CO{sub 2}) capture using Aspen Custom Modeler® (ACM). The BFB model for the flow of gas through a continuous phase of downward moving solids considers three regions: emulsion, bubble, and cloud-wake. Both the upper and lower reactor stages are of overflow-type configuration, i.e., the solids leave from the top of each stage. In addition, dynamic models have been developed for the downcomer that transfers solids between the stages and the exit hopper that removes solids from the bottom of the bed. The models of all auxiliary equipment such as valves and gas distributor have been integrated with the main model of the two-stage adsorber reactor. Using the developed dynamic model, the transient responses of various process variables such as CO{sub 2} capture rate and flue gas outlet temperatures have been studied by simulating typical disturbances such as change in the temperature, flowrate, and composition of the incoming flue gas from pulverized coal-fired power plants. In control studies, the performance of a proportional-integral-derivative (PID) controller, feedback-augmented feedforward controller, and linear model predictive controller (LMPC) are evaluated for maintaining the overall CO{sub 2} capture rate at a desired level in the face of typical disturbances.

Modekurti, Srinivasarao; Bhattacharyya, Debangsu; Zitney, Stephen E.

2013-07-31T23:59:59.000Z

24

Gas fluidized-bed stirred media mill  

DOE Patents (OSTI)

A gas fluidized-bed stirred media mill is provided for comminuting solid ticles. The mill includes a housing enclosing a porous fluidizing gas diffuser plate, a baffled rotor and stator, a hollow drive shaft with lateral vents, and baffled gas exhaust exit ports. In operation, fluidizing gas is forced through the mill, fluidizing the raw material and milling media. The rotating rotor, stator and milling media comminute the raw material to be ground. Small entrained particles may be carried from the mill by the gas through the exit ports when the particles reach a very fine size.

Sadler, III, Leon Y. (Tuscaloosa, AL)

1997-01-01T23:59:59.000Z

25

Combined fluidized bed retort and combustor  

DOE Patents (OSTI)

The present invention is directed to a combined fluidized bed retorting and combustion system particularly useful for extracting energy values from oil shale. The oil-shale retort and combustor are disposed side-by-side and in registry with one another through passageways in a partition therebetween. The passageways in the partition are submerged below the top of the respective fluid beds to preclude admixing or the product gases from the two chambers. The solid oil shale or bed material is transported through the chambers by inclining or slanting the fluidizing medium distributor so that the solid bed material, when fluidized, moves in the direction of the downward slope of the distributor.

Shang, Jer-Yu (Fairfax, VA); Notestein, John E. (Morgantown, WV); Mei, Joseph S. (Morgantown, WV); Zeng, Li-Wen (Morgantown, WV)

1984-01-01T23:59:59.000Z

26

Method and apparatus for the separation of a gas-solids mixture in a circulating fluidized bed reactor  

DOE Patents (OSTI)

The system of the present invention includes a centripetal cyclone for separating particulate material from a particulate laden gas solids stream. The cyclone includes a housing defining a conduit extending between an upstream inlet and a downstream outlet. In operation, when a particulate laden gas-solids stream passes through the upstream housing inlet, the particulate laden gas-solids stream is directed through the conduit and at least a portion of the solids in the particulate laden gas-solids stream are subjected to a centripetal force within the conduit.

Vimalchand, Pannalal (Birmingham, AL); Liu, Guohai (Birmingham, AL); Peng, WanWang (Birmingham, AL)

2010-08-10T23:59:59.000Z

27

Fluidization quality analyzer for fluidized beds  

DOE Patents (OSTI)

A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence. 9 figs.

Daw, C.S.; Hawk, J.A.

1995-07-25T23:59:59.000Z

28

Fluidized bed catalytic coal gasification process  

DOE Patents (OSTI)

Coal or similar carbonaceous solids impregnated with gasification catalyst constituents (16) are oxidized by contact with a gas containing between 2 volume percent and 21 volume percent oxygen at a temperature between 50.degree. C. and 250.degree. C. in an oxidation zone (24) and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone (44) at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

Euker, Jr., Charles A. (15163 Dianna La., Houston, TX 77062); Wesselhoft, Robert D. (120 Caldwell, Baytown, TX 77520); Dunkleman, John J. (3704 Autumn La., Baytown, TX 77520); Aquino, Dolores C. (15142 McConn, Webster, TX 77598); Gouker, Toby R. (5413 Rocksprings Dr., LaPorte, TX 77571)

1984-01-01T23:59:59.000Z

29

Assessment of fluidized-bed-combustion solid wastes for land disposal. Volume 5. Appendix G. Final report, June 1980-June 1984  

SciTech Connect

This report, Appendix G, gives results of: (1) an analysis of representative samples of fluidized-bed-combustion (FBC) wastes, (2) an assessment of the characteristics of leachates generated from the wastes under laboratory and field (landfill) conditions, (3) a characterization of the attenuation of the leachates by earth materials that are typical of disposal settings, (4) development of a way to predict the leachate generation behavior of FBC wastes under landfill conditions on the basis of laboratory test results by establishing a rigorous statistical relationship between the laboratory and field-leaching results, and (5) assessment of the compatibility of commonly used landfill-liner materials with FBC waste leachates. FBC is an emerging energy technology that holds promise for both high efficiency of energy conversion and minimization of adverse air-quality impacts. A major advantage of FBC is that high-sulfur coal can be burned without the use of flue-gas desulfurization equipment to meet air-quality standards. The solid residues that are generated in an FBC unit are usually larger in volume and have different properties than the typical bottom ash from a conventional boiler.

Williamson, H.J.; Grimshaw, T.W.; Dunn, J.E.

1985-02-01T23:59:59.000Z

30

Assessment of fluidized-bed-combustion solid wastes for land disposal. Volume 3. Appendices D and E. Final report, June 1980-June 1984  

SciTech Connect

This report, Appendices D and E, gives results of: (1) an analysis of representative samples of fluidized-bed-combustion (FBC) wastes, (2) an assessment of the characteristics of leachates generated from the wastes under laboratory and field (landfill) conditions, (3) a characterization of the attenuation of the leachates by earth materials that are typical of disposal settings, (4) development of a way to predict the leachate generation behavior of FBC wastes under landfill conditions on the basis of laboratory test results by establishing a rigorous statistical relationship between the laboratory and field-leaching results, and (5) assessment of the compatibility of commonly used landfill-liner materials with FBC waste leachates. FBC is an emerging energy technology that holds promise for both high efficiency of energy conversion and minimization of adverse air-quality impacts. A major advantage of FBC is that high-sulfur coal can be burned without the use of flue-gas desulfurization equipment to meet air-quality standards. The solid residues that are generated in an FBC unit are usually larger in volume and have different properties than the typical bottom ash from a conventional boiler.

Minear, R.A.; Grimshaw, T.W.; Little, W.M.

1985-02-01T23:59:59.000Z

31

Assessment of fluidized-bed-combustion solid wastes for land disposal. Volume 6. Appendix H. Final report, June 1980-June 1984  

SciTech Connect

This report, Appendix H, gives results of: (1) an analysis of representative samples of fluidized-bed-combustion (FBC) wastes, (2) an assessment of the characteristics of leachates generated from the wastes underlaboratory and field (landfill) conditions, (3) a characterization of the attenuation of the leachates by earth materials that are typical of disposal settings, (4) development of a way to predict the leachate generation behavior of FBC wastes under landfill conditions on the basis of laboratory test results by establishing a rigorous statistical relationship between the laboratory and field-leaching results, and (5) assessment of the compatibility of commonly used landfill-liner materials with FBC waste leachates. FBC is an emerging energy technology that holds promise for both high efficiency of energy conversion and minimization of adverse air-quality impacts. A major advantage of FBC is that high-sulfur coal can be burned without the use of flue-gas desulfurization equipment to meet air-quality standards. The solid residues that are generated in an FBC unit are usually larger in volume and have different properties than the typical bottom ash from a conventional boiler.

Williamson, H.J.; Heinrich, D.L.; Grimshaw, T.W.

1985-02-01T23:59:59.000Z

32

Assessment of fluidized-bed-combustion solid wastes for land disposal. Volume 7. Appendix I. Final report, June 1980-June 1984  

SciTech Connect

This report, Appendix 1, gives results of: (1) an analysis of representative samples of fluidized-bed-combustion (FBC) wastes, (2) an assessment of the characteristics of leachates generated from the wastes under laboratory and field (landfill) conditions, (3) a characterization of the attenuation of the leachates by earth materials that are typical of disposal settings, (4) development of a way to predict the leachate generation behavior of FBC wastes under landfill conditions on the basis of laboratory test results by establishing a rigorous statistical relationship between the laboratory and field-leaching results, and (5) assessment of the compatibility of commonly used landfill-liner materials with FBC waste leachates. FBC is an emerging energy technology that holds promise for both high efficiency of energy conversion and minimization of adverse air-quality impacts. A major advantage of FBC is that high-sulfur coal can be burned without the use of flue-gas desulfurization equipment to meet air-quality standards. The solid residues that are generated in an FBC unit are usually larger in volume and have different properties than the typical bottom ash from a conventional boiler.

Eklund, A.G.; Grimshaw, T.W.; Minear, R.A.

1985-02-01T23:59:59.000Z

33

Assessment of fluidized-bed-combustion solid wastes for land disposal. Volume 2. Appendices A through C. Final report, June 1980-June 1984  

SciTech Connect

This report Appendices A through C, gives results of: (1) an analysis of representative samples of fluidized-bed-combustion (FBC) wastes, (2) an assessment of the characteristics of leachates generated from the wastes under laboratory and field (landfill) conditions, (3) a characterization of the attenuation of the leachates by earth materials that are typical of disposal settings, (4) development of a way to predict the leachate generation behavior of FBC wastes under landfill conditions on the basis of laboratory test results by establishing a rigorous statistical relationship between the laboratory and field-leaching results, and (5) assessment of the compatibility of commonly used landfill-liner materials with FBC waste leachates. FBC is an emerging energy technology that holds promise for both high efficiency of energy conversion and minimization of adverse air-quality impacts. A major advantage of FBC is that high-sulfur coal can be burned without the use of flue-gas desulfurization equipment to meet air-quality standards. The solid residues that are generated in an FBC unit are usually larger in volume and have different properties than the typical bottom ash from a conventional boiler.

Little, W.M.; Gibson, T.S.; Grimshaw, T.W.; Eklund, A.G.

1985-02-01T23:59:59.000Z

34

Assessment of fluidized-bed-combustion solid wastes for land disposal. Volume 1. Final report. Report for June 1980-June 1984  

SciTech Connect

This report, including 10 appendices, gives results of: (1) an analysis of representative samples of fluidized-bed-combustion (FBC) wastes, (2) an assessment of the characteristics of leachates generated from the wastes under laboratory and field (landfill) conditions, (3) a characterization of the attenuation of the leachates by earth materials that are typical of disposal settings, (4) development of a way to predict the leachate generation behavior of FBC wastes under landfill conditions on the basis of laboratory test results by establishing a rigorous statistical relationship between the laboratory and field-leaching results, and (5) assessment of the compatibility of commonly used landfill-liner materials with FBC waste leachates. FBC is an emerging energy technology that holds promise for both high efficiency of energy conversion and minimization of adverse air-quality impacts. A major advantage of FBC is that high-sulfur coal can be burned without the use of flue-gas desulfurization equipment to meet air-quality standards. The solid residues that are generated in an FBC unit are usually larger in volume and have different properties than the typical bottom ash from a conventional boiler.

Grimshaw, T.W.; Minear, R.A.; Eklund, A.G.; Little, W.M.; Dunn, J.E.

1985-02-01T23:59:59.000Z

35

Assessment of fluidized-bed-combustion solid wastes for land disposal. Volume 4. Appendix F. Final report, June 1980-June 1984  

SciTech Connect

This report, Appendix F, gives results of: (1) an analysis of representative samples of fluidized-bed-combustion (FBC) wastes, (2) an assessment of the characteristics of leachates generated from the wastes under laboratory and field (landfill) conditions, (3) a characterization of the attenuation of the leachates by earth materials that are typical of disposal settings, (4) development of a way to predict the leachate generation behavior of FBC wastes under landfill conditions on the basis of laboratory test results by establishing a rigorous statistical relationship between the laboratory and field-leaching results, and (5) assessment of the compatibility of commonly used landfill-liner materials with FBC waste leachates. FBC is an emerging energy technology that holds promise for both high efficiency of energy conversion and minimization of adverse air-quality impacts. A major advantage of FBC is that high-sulfur coal can be burned without the use of flue-gas desulfurization equipment to meet air-quality standards. The solid residues that are generated in an FBC unit are usually larger in volume and have different properties than the typical bottom ash from a conventional boiler.

Eklund, A.G.; Grimshaw, T.W.

1985-02-01T23:59:59.000Z

36

Assessment of fluidized-bed-combustion solid wastes for land disposal. Volume 8. Appendix J. Final report, June 1980-June 1984  

SciTech Connect

This report, Appendix J, gives results of: (1) an analysis of representative samples of fluidized-bed-combustion (FBC) wastes, (2) an assessment of the characteristics of leachates generated from the wastes under laboratory and field (landfill) conditions, (3) a characterization of the attenuation of the leachates by earth materials that are typical of disposal settings, (4) development of a way to predict the leachate generation behavior of FBC wastes under landfill conditions on the basis of laboratory test results by establishing a rigorous statistical relationship between the laboratory and field-leaching results, and (5) assessment of the compatibility of commonly used landfill-liner materials with FBC waste leachates. FBC is an emerging energy technology that holds promise for both high efficiency of energy conversion and minimization of adverse air-quality impacts. A major advantage of FBC is that high-sulfur coal can be burned without the use of flue-gas desulfurization equipment to meet air-quality standards. The solid residues that are generated in an FBC unit are usually larger in volume and have different properties than the typical bottom ash from a conventional boiler.

Williamson, H.J.; South, R.C.; Grimshaw, T.W.

1985-02-01T23:59:59.000Z

37

Utilization of ash from fluidized bed boilers  

SciTech Connect

Combustion ash from a fluidized bed combustion (FBC) boiler contains not only carbon, but also silica alumina, quicklime as a sorbent, and a calcium sulfate by-product. These substances react chemically during fluidized bed combustion, and with the addition of water, they start an ettringite reaction and solidify. We determined the conditions necessary for producing hard solids through the study of the composition, curing methods, and characteristics of the solidified ash. We then used two types of road base material, crushed stone and solidified ash from an FBC boiler, to construct a test road at a site with a great deal of heavy traffic. Construction began in 1985, and since then, periodic tests have been performed to evaluate the performance of the road base materials. The testing of the manufacturing techniques centered on the amount and manner that water was added to the mixture and the curing methods of the mixture. Additional testing focused on the handling of the ash powder, the mixtures, and the solidified ash. Since 1991, under the sponsorship of MITI, the Center for Coal Utilization, in conjunction with Naruto Salt Mfg., Ltd., Nippon Hodo Co., Ltd., and Kawasaki Heavy Industries, Ltd., has used the referenced results to undertake a joint research and development project aimed at the eventual practical application of the technology. In 1993, a pilot facility to solidify ash with the fluidized bed boiler of 75 t/h capacity was completed. At present, all the discharged ash from the pilot facility is being solidified, and experiments on solidification and road base application techniques are underway. Actual road base tests are also in progress, and we are continuing research to meet the national certification requirements for road base materials.

Takada, Tomoaki [Kawasaki Heavy Industries Co., Ltd., Akashi (Japan)

1994-12-31T23:59:59.000Z

38

Fluidized Bed Technology - Overview | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation » Clean Coal » Advanced Combustion Science & Innovation » Clean Coal » Advanced Combustion Technologies » Fluidized Bed Technology - Overview Fluidized Bed Technology - Overview Fluidized beds suspend solid fuels on upward-blowing jets of air during the combustion process. The result is a turbulent mixing of gas and solids. The tumbling action, much like a bubbling fluid, provides more effective chemical reactions and heat transfer. Fluidized-bed combustion evolved from efforts to find a combustion process able to control pollutant emissions without external emission controls (such as scrubbers). The technology burns fuel at temperatures of 1,400 to 1,700 degrees F, well below the threshold where nitrogen oxides form (at approximately 2,500 degrees F, the nitrogen and oxygen atoms in the

39

Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Quarterly report, quarter ending December 31, 1995  

SciTech Connect

The objective of this project is to demonstrate that cocombustion of municipal solid waste and oil shale can reduce emissions of gaseous pollutants (SO{sub 2} and HCl) to acceptable levels. Tests in 6- and 15-inch units showed that the oil shale absorbs acid gas pollutants and produces an ash which could be, at the least, disposed of in a normal landfill. Further analysis of the results are underway to estimate scale-up to commercial size. Additional work will be done to evaluate the cementitious properties of oil shale ash.

NONE

1996-01-01T23:59:59.000Z

40

Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Quarterly report, quarter ending 31 December 1994  

SciTech Connect

The test plan is designed to demonstrate that oil shale co-combusted with municipal solid waste (MSW) can reduce gaseous pollutants (SO{sub 2}, CO) to acceptable levels (90%+ reduction) and produce a cementitious ash which will, at a minimum, be acceptable in normal land fills. The small-scale combustion testing will be accomplished in a 6-in. circulating fluid bed combustor (CFBC) at Hazen Research Laboratories. This work will be patterned after the study the authors conducted in 1988 when coal and oil shale were co-combusted in a program sponsored by the Electric Power Research Institute. The specific purpose of the test program will be to: determine the required ratio of oil shale to MSW by determining the ratio of absorbent to pollutant (A/P); determine the effect of temperature and resident time in the reactor; and determine if kinetic model developed for coal/oil shale mixture is applicable.

Not Available

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fluidized solids technique" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

An experimental study of the hydrodynamics and cluster formation in a circulating fluidized bed. Topical report, January 1, 1991--June 30, 1992  

SciTech Connect

This research program involves two major aspects. First, to evaluate techniques to effectively probe the polydisperse gas-solid flows and second, to apply these techniques to study the gas-solid flow structure and clusters in the riser of a circulating fluidized bed riser. Amongst the non-intrusive techniques a modified laser Doppler technique based on the fluorescence-emission concept has been adopted and the other techniques involve pitot-static pressure probes. A circulating fluidized bed (CFB) facility has been designed, built and is currently operational at West Virginia University. The design provides for maximum versatility in investigating the hydrodynamics of the CFB riser. Two stage cyclones are employed to capture the particles exhausted from the riser. Measurements of gas velocity distribution were carried out in the circulating fluidized bed riser. with particles having a mean diameter of 112 {mu}m and a density of 2305 kg/m{sup 3} and another set of particles with a mean diameter of 145 {mu}m and a density of 2245 kg/m{sup 3}. The experimental results showed that the local gas velocity varied with the radial position, elevation, solids circulation rate, superficial velocity and particle size. A general formula for gas velocity distribution in the circulating fluidized bed riser was obtained based on the particle circulation, superficial velocity and particle diameter. The pressure drops across the L-valve were also studied for different particle sizes, L-valve diameters and aeration. The solids flowrate was found to be a function of the L-valve geometry, operating parameters and solids properties. Pressure drop of L-valve increases with increasing solids diameter and decreasing diameter of the L-valve. Pressure drop across standpipe increases as the solids diameter and diameter of the standpipe decrease.

Gautam, M.; Jurewicz, J.; Heping, Y.; Clifton, K.

1992-07-01T23:59:59.000Z

42

Reversed flow fluidized-bed combustion apparatus  

DOE Patents (OSTI)

The present invention is directed to a fluidized-bed combustion apparatus provided with a U-shaped combustion zone. A cyclone is disposed in the combustion zone for recycling solid particulate material. The combustion zone configuration and the recycling feature provide relatively long residence times and low freeboard heights to maximize combustion of combustible material, reduce nitrogen oxides, and enhance sulfur oxide reduction.

Shang, Jer-Yu (Fairfax, VA); Mei, Joseph S. (Morgantown, WV); Wilson, John S. (Morgantown, WV)

1984-01-01T23:59:59.000Z

43

Staged fluidized bed  

DOE Patents (OSTI)

The invention relates to oil shale retorting and more particularly to staged fluidized bed oil shale retorting. Method and apparatus are disclosed for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.

Mallon, R.G.

1983-05-13T23:59:59.000Z

44

Fluidized bed gasification of extracted coal  

DOE Patents (OSTI)

Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone (12) with an aqueous solution having a pH above 12.0 at a temperature between 65.degree. C. and 110.degree. C. for a period of time sufficient to remove bitumens from the coal into said aqueous solution and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m.sup.3. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step.

Aquino, Dolores C. (Houston, TX); DaPrato, Philip L. (Westfield, NJ); Gouker, Toby R. (Baton Rouge, LA); Knoer, Peter (Houston, TX)

1986-01-01T23:59:59.000Z

45

The Design and Tests in a Three Interconnected Fluidized Bed  

Science Journals Connector (OSTI)

Hydrogen production based on chemical looping combustion can obtain clean hydrogen with near zero emission of carbon dioxide. This technique can be auto-thermal, making it very promising for hydrogen production. In this paper, the interconnected fluidized ... Keywords: chemical looping combustion, hydrogen production Interconnected fluidized beds

Junjiao Zhang; Jingzhou Jiang; Qiang Lu; Changqing Dong; Teng Zhang; Xinglei Liu; Zhiyong Liang; Yongping Yang

2010-12-01T23:59:59.000Z

46

Circulating fluidized bed hydrodynamics experiments for the multiphase fluid dynamics research consortium (MFDRC).  

SciTech Connect

An experimental program was conducted to study the multiphase gas-solid flow in a pilot-scale circulating fluidized bed (CFB). This report describes the CFB experimental facility assembled for this program, the diagnostics developed and/or applied to make measurements in the riser section of the CFB, and the data acquired for several different flow conditions. Primary data acquired included pressures around the flow loop and solids loadings at selected locations in the riser. Tomographic techniques using gamma radiation and electrical capacitance were used to determine radial profiles of solids volume fraction in the riser, and axial profiles of the integrated solids volume fraction were produced. Computer Aided Radioactive Particle Tracking was used to measure solids velocities, fluxes, and residence time distributions. In addition, a series of computational fluid dynamics simulations was performed using the commercial code Arenaflow{trademark}.

Oelfke, John Barry; Torczynski, John Robert; O'Hern, Timothy John; Tortora, Paul Richard; Bhusarapu, Satish (; ); Trujillo, Steven Mathew

2006-08-01T23:59:59.000Z

47

A New Continuous Solid-fluid Contacting Technique  

Science Journals Connector (OSTI)

... solid and fluid flow rates is achieved by direct control of external flows to the contactor, and does not require a fine hydrostatic balance or close tolerances in construction of ...

F. L. D. CLOETE; M. STREAT

1963-12-21T23:59:59.000Z

48

Development of a lidar polarimeter technique of measuring suspended solids in water  

E-Print Network (OSTI)

DEVELOPMENT OF A LIDAR POLARIMETER TECHNIQUE OF MEASURING SUSPENDED SOLIDS IN WATER A Thesis by DAVID W. PRESLEY Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE May 1980 Major Subject; Electrical Engineering DEVELOPMENT OF A LIDAR POLARIMETER TECHNIQUE OF MEASURING SUSPENDED SOLIDS IN WATER A Thesis by DAVID W, PRESLEY Approved as to sty1e and content by: Chairman of Committee H d of Department...

Presley, David W

1980-01-01T23:59:59.000Z

49

Fate of Fuel Nitrogen in the Furnace of an Industrial Bubbling Fluidized Bed Boiler during Combustion of Biomass Fuel Mixtures  

Science Journals Connector (OSTI)

Co-firing biomass with challenging fuels, such as sludge, demolition wood, and solid recovered fuel (SRF), has become an attractive possibility to improve the economy of power production and to reduce the amount of landfill. ... Therefore, the fuel was extremely wet, with a dry solids content below 50 wt %. ... Thus, CS could reduce NOx effectively in devices where other techniques fails, e.g., in kraft recovery boilers, fluidized bed combustors, low-grade fuel combustors, small and domestic boilers, and fast engines. ...

Emil Vainio; Anders Brink; Mikko Hupa; Hannu Vesala; Tuula Kajolinna

2011-11-28T23:59:59.000Z

50

Fluidized wall for protecting fusion chamber walls  

DOE Patents (OSTI)

Apparatus for protecting the inner wall of a fusion chamber from microexplosion debris, x-rays, neutrons, etc. produced by deuterium-tritium (DT) targets imploded within the fusion chamber. The apparatus utilizes a fluidized wall similar to a waterfall comprising liquid lithium or solid pellets of lithium-ceramic, the waterfall forming a blanket to prevent damage of the structural materials of the chamber.

Maniscalco, James A. (Danville, CA); Meier, Wayne R. (Livermore, CA)

1982-01-01T23:59:59.000Z

51

Synthetic aperture focusing techniques for ultrasonic imaging of solid objects.  

E-Print Network (OSTI)

technique (SAFT) has been used in non-destructive testing mainly in its simplest form that mimics acoustic a review of SAFT algorithms applied for post-processing of ultrasonic data acquired in non-destructive inspection of metals. The performance of SAFT in terms of its spatial resolution and suppression

52

Biparticle fluidized bed reactor  

DOE Patents (OSTI)

A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.

Scott, C.D.; Marasco, J.A.

1995-04-25T23:59:59.000Z

53

Biparticle fluidized bed reactor  

DOE Patents (OSTI)

A fluidized bed reactor system is described which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves. 3 figs.

Scott, C.D.; Marasco, J.A.

1996-02-27T23:59:59.000Z

54

A new technique to monitor ground-water quality at municipal solid waste landfills  

E-Print Network (OSTI)

A NEW TECHNIQUE TO MONITOR GROUND-WATER EQUALITY AT MUNICIPAL SOLID WASTE LANDFILLS A Thesis by STEVEN CHARLES HART Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE May 1989 Major Subject: Geology A NEW TECHNIIIUE TO MONITOR GROUND-WATER IIUALITY AT MUNICIPAL SOLID WASTE LANDFILLS A Thesis by STEVEN CHARLES HART Approved as to style and content by: Christo her C. Mathewson (Chair...

Hart, Steven Charles

2012-06-07T23:59:59.000Z

55

Bed drain cover assembly for a fluidized bed  

DOE Patents (OSTI)

A loose fitting movable cover plate (36), suitable for the severe service encountered in a fluidized bed combustor (10), restricts the flow of solids into the combustor drain lines (30) during shutdown of the bed. This cover makes it possible to empty spent solids from the bed drain lines which would otherwise plug the piping between the drain and the downstream metering device. This enables use of multiple drain lines each with a separate metering device for the control of solids flow rate.

Comparato, Joseph R. (Bloomfield, CT); Jacobs, Martin (Hartford, CT)

1982-01-01T23:59:59.000Z

56

An acoustic technique for measurement of bubble solids mass loading (a) Fundamental study of single bubble  

E-Print Network (OSTI)

An acoustic technique for measurement of bubble solids mass loading ­ (a) Fundamental study of single bubble Wen Zhang , Steven J. Spencer, Peter Coghill Lucas Heights Research Laboratory, CSIRO i n f o Article history: Available online 6 March 2012 Keywords: Flotation bubbles On-line analysis

Zhang, Wen

57

Fluidized bed boiler feed system  

DOE Patents (OSTI)

A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

Jones, Brian C. (Windsor, CT)

1981-01-01T23:59:59.000Z

58

Tenth annual fluidized bed conference  

SciTech Connect

The proceedings of the Tenth Annual Fluidized Bed Conference is presented. The Conference was held November 14-15, 1994 in Jacksonville, FL and covered such topics as: opportunity fuels, the fluid bed market, bubbling fluid bed retrofitting, waste fuel-based circulating fluidized-bed project, construction permits for major air pollution sources, fluidized bed residues, uses for fluidized bed combustion ash, ash pelletization, sorbents for FBC applications, refractory maintenance, and petroleum coke. A separate abstract and indexing have been prepared for each paper for inclusion in the Energy Science and Technology Database.

NONE

1994-12-31T23:59:59.000Z

59

Fluidized bed retorting of eastern oil shale  

SciTech Connect

This topical report summarizes the conceptual design of an integrated oil shale processing plant based on fluidized bed retorting of eastern New Albany oil shale. This is the fourth design study conducted by Foster Wheeler; previous design cases employed the following technologies: Fluidized bed rotating/combustion of Colorado Mahogany zone shale. An FCC concept of fluidized bed retorting/combustion of Colorado Mahogany zone shale. Directly heated moving vertical-bed process using Colorado Mahogany zone shale. The conceptual design encompasses a grassroots facility which processes run-of-mine oil shale into a syncrude oil product and dispose of the spent shale solids. The plant has a nominal capacity of 50,000 barrels per day of syncrude product, produced from oil shale feed having a Fischer Assay of 15 gallons per ton. Design of the processing units was based on non-confidential published information and supplemental data from process licensors. Maximum use of process and cost information developed in the previous Foster Wheeler studies was employed. The integrated plant design is described in terms of the individual process units and plant support systems. The estimated total plant investment is detailed by plant section and estimates of the annual operating requirements and costs are provided. In addition, process design assumptions and uncertainties are documented and recommendations for process alternatives, which could improve the overall plant economics, are discussed. 12 refs., 17 figs., 52 tabs.

Gaire, R.J.; Mazzella, G.

1989-03-01T23:59:59.000Z

60

Method for using fast fluidized bed dry bottom coal gasification  

DOE Patents (OSTI)

Carbonaceous solid material such as coal is gasified in a fast fluidized bed gasification system utilizing dual fluidized beds of hot char. The coal in particulate form is introduced along with oxygen-containing gas and steam into the fast fluidized bed gasification zone of a gasifier assembly wherein the upward superficial gas velocity exceeds about 5.0 ft/sec and temperature is 1500.degree.-1850.degree. F. The resulting effluent gas and substantial char are passed through a primary cyclone separator, from which char solids are returned to the fluidized bed. Gas from the primary cyclone separator is passed to a secondary cyclone separator, from which remaining fine char solids are returned through an injection nozzle together with additional steam and oxygen-containing gas to an oxidation zone located at the bottom of the gasifier, wherein the upward gas velocity ranges from about 3-15 ft/sec and is maintained at 1600.degree.-200.degree. F. temperature. This gasification arrangement provides for increased utilization of the secondary char material to produce higher overall carbon conversion and product yields in the process.

Snell, George J. (Fords, NJ); Kydd, Paul H. (Lawrenceville, NJ)

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fluidized solids technique" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Pulsed atmospheric fluidized bed combustion  

SciTech Connect

The general specifications for a Pulsed Atmospheric Fluidized Bed Combustor Design Report (PAFBC) plant are presented. The design tasks for the PAFBC are described in the following areas: Coal/Limestone preparation and feed system; pulse combustor; fluidized bed; boiler parts; and ash handling system.

Not Available

1992-08-01T23:59:59.000Z

62

Fluidized-bed catalytic coal-gasification process. [US patent; pretreatment to minimize agglomeration  

DOE Patents (OSTI)

Coal or similar carbonaceous solids impregnated with gasification catalyst constituents are oxidized by contact with a gas containing between 2 vol % and 21 vol % oxygen at a temperature between 50 and 250/sup 0/C in an oxidation zone and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

Euker, C.A. Jr.; Wesselhoft, R.D.; Dunkleman, J.J.; Aquino, D.C.; Gouker, T.R.

1981-09-14T23:59:59.000Z

63

Dynamic analysis of a circulating fluidized bed riser  

SciTech Connect

A linear state model is proposed to analyze dynamic behavior of a circulating fluidized bed riser. Different operating regimes were attained with high density polyethylene beads at low and high system inventories. The riser was operated between the classical choking velocity and the upper transport velocity demarcating fast fluidized and transport regimes. At a given riser superficial gas velocity, the aerations fed at the standpipe were modulated resulting in a sinusoidal solids circulation rate that goes into the riser via L-valve. The state model was derived based on the mass balance equation in the riser. It treats the average solids fraction across the entire riser as a state variable. The total riser pressure drop was modeled using Newton’s second law of motion. The momentum balance equation involves contribution from the weight of solids and the wall friction caused by the solids to the riser pressure drop. The weight of solids utilizes the state variable and hence, the riser inventory could be easily calculated. The modeling problem boils down to estimating two parameters including solids friction coefficient and time constant of the riser. It has been shown that the wall friction force acts in the upward direction in fast fluidized regime which indicates that the solids were moving downwards on the average with respect to the riser wall. In transport regimes, the friction acts in the opposite direction. This behavior was quantified based on a sign of Fanning friction factor in the momentum balance equation. The time constant of the riser appears to be much higher in fast fluidized regime than in transport conditions.

Panday, Rupen [REM Engineering PLLC; Shadle, Lawrence J. [U.S. DOE; Guenther, Chris [U.S. DOE

2012-01-01T23:59:59.000Z

64

Advances in mathematical modeling of fluidized bed gasification  

Science Journals Connector (OSTI)

Abstract Gasification is the thermochemical conversion of solid fuel into the gas which contains mainly hydrogen, carbon monoxide, carbon dioxide, methane and nitrogen. In gasification, fluidized bed technology is widely used due to its various advantageous features which include high heat transfer, uniform and controllable temperature and favorable gas–solid contacting. Modeling and simulation of fluidized bed gasification is useful for optimizing the gasifier design and operation with minimal temporal and financial cost. The present work investigates the different modeling approaches applied to the fluidized bed gasification systems. These models are broadly classified as the equilibrium model and the rate based or kinetic model. On the other hand, depending on the description of the hydrodynamic of the bed, fluidized bed models may also be classified as the two-phase flow model, the Euler–Euler model and the Euler–Lagrange model. Mathematical formulation of each of the model mentioned above and their merits and demerits are discussed. Detail reviews of different model used by different researchers with major results obtained by them are presented while the special focus is given on Euler–Euler and Euler–Lagrange CFD models.

Chanchal Loha; Sai Gu; Juray De Wilde; Pinakeswar Mahanta; Pradip K. Chatterjee

2014-01-01T23:59:59.000Z

65

Results of familiarization of and prospects for a procedure for the burning of wastes in a vortical fluidized bed  

Science Journals Connector (OSTI)

Problems that have arisen during tune-up of the production line for the thermal processing of solid household waste by the method of burning in a vortical fluidized bed (principally,...

A. N. Tugov; G. A. Ryabov; V. I. Rodionov…

2006-09-01T23:59:59.000Z

66

Twelfth annual fluidized bed conference  

SciTech Connect

The Proceedings of the Twelfth Annual Fluidized Bed Conference held November 11-13, 1996 in Pittsburgh, PA are presented. Information is given on: owner`s discussions; new aspects and field upgrades in fluidized bed boilers; manufacturer`s perspectives; fuel considerations; FBC ash reclassification; and beneficial uses of FBC ash. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

NONE

1996-12-31T23:59:59.000Z

67

Advanced atmospheric fluidized-bed combustion design - spouted bed  

SciTech Connect

This report describes the Spouted-Fluidized Bed Boiler that is an advanced atmospheric fluidized bed combustor (FBC). The objective of this system design study is to develop an advanced AFBC with improved performance and reduced capital and operating costs compared to a conventional AFBC and an oil-fired system. The Spouted-Fluidized Bed (SFB) system is a special type of FBC with a distinctive jet of air in the bed to establish an identifiable solids circulation pattern. This feature is expected to provide: reduced NO/sub x/ emissions because of the fuel rich spout zone; high calcium utilization, calcium-to-sulfur ratio of 1.5, because of the spout attrition and mixing; high fuel utilization because of the solids circulation and spout attrition; improved thermal efficiency because of reduced solids heat loss; and improved fuel flexibility because of the spout phenomena. The SFB was compared to a conventional AFBC and an oil-fired package boiler for 15,000 pound per hour system. The evaluation showed that the operating cost advantages of the SFB resulted from savings in fuel, limestone, and waste disposal. The relative levelized cost for steam from the three systems in constant 1985 dollars is: SFB - $10 per thousand pounds; AFBC - $11 per thousand pounds; oil-fired - $14 per thousand pounds. 18 refs., 5 figs., 11 tabs.

Shirley, F.W.; Litt, R.D.

1985-11-27T23:59:59.000Z

68

New techniques for double-layer capacitance measurements at solid metal electrodes  

Science Journals Connector (OSTI)

Two new techniques are described for the measurement of electric double-layer capacitance particularly suited for application to solid electrodes. The capacitance can be recorded as a function of time and/or potential with an accuracy of better than 1%, and a response time in the range of 0·01–0·1 s, depending on the applied frequency. Measurements on an analogue made of electric capacitors and resistors show the effect of a parallel or series resistance on the measured capacitance at various frequency. Agreement with available data for measurements of the capacitance of mercury in 0·1 M NaCl and 0·1 M NaOH has been found.

N. Tshernikovski; E. Gileadi

1971-01-01T23:59:59.000Z

69

Characteristics of solid hold up and circulation rate in the CFB reactor with 3-loops  

Science Journals Connector (OSTI)

The effects of the Uo..., PA/[PA+SA] ratio, total solid inventory and fluidizing velocity of loopseal on the axial solid holdup and the solid circulation rate have been determined with different particle sizes (1...

Jong-Min Lee; Jae-Sung Kim; Jong-Jin Kim

2001-11-01T23:59:59.000Z

70

A free radical equilibrium in the fluidized bed retort  

SciTech Connect

The solid-recycle fluidized bed retort has been used to study gas phase local equilibria in an oil shale pyrolyzer. In the LLNL pilot scale retort, light gases, methane, ethane, ethylene, and propylene, form in a ratio that is inconsistent with equilibration, and they are not equilibrated when recycled. However, in a variety of fluidized bed retorting experiments, the free radical precursors of these gases come to a steady state that requires a transient free radical equilibrium. The steady state is established very rapidly, without need for gas recycle. The 1- and 2-butyl free radicals have been investigated as representative intermediates. The steady state mechanism extends to the entire homologous series of free radicals, and offers a means to achieve improved liquid product yield. 12 refs., 4 figs., 2 tabs.

Coburn, T.T.; Droege, M.W.

1986-11-01T23:59:59.000Z

71

Eleventh annual fluidized bed conference  

SciTech Connect

The Proceedings of the Eleventh Annual Fluidized Bed Conference are presented. The Conference was held November 14-15, 1995 in Allentown, Pennsylvania and discussed the following topics: third and fourth generation systems; fuel considerations; and FBC energy and environmntal regulatory issues. A separate abstract was entered into the Energy Science and Technology Database for each of the 19 papers presented at the conference.

NONE

1995-12-31T23:59:59.000Z

72

422 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 2, FEBRUARY 2005 Noise-Shaping Techniques Applied to  

E-Print Network (OSTI)

422 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 2, FEBRUARY 2005 Noise-Shaping Techniques to be portable. However, as battery use continues, the battery voltage drops, sometimes gradually and sometimes suddenly, depending on the type of battery and type of electronic device. Such variations in the battery

Moon, Un-Ku

73

Fluidized bed injection assembly for coal gasification  

DOE Patents (OSTI)

A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

Cherish, Peter (Bethel Park, PA); Salvador, Louis A. (Hempfield Township, Westmoreland County, PA)

1981-01-01T23:59:59.000Z

74

Fluidized Bed Technology - Overview | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fluidized-bed combustion evolved from efforts to find a combustion process able to control pollutant emissions without external emission controls (such as scrubbers). The...

75

Tube construction for fluidized bed combustor  

DOE Patents (OSTI)

A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

De Feo, Angelo (Totowa, NJ); Hosek, William (Mt. Tabor, NJ)

1984-01-01T23:59:59.000Z

76

Fluidized bed combustor and tube construction therefor  

DOE Patents (OSTI)

A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

De Feo, Angelo (Passaic, NJ); Hosek, William (Morris, NJ)

1981-01-01T23:59:59.000Z

77

Metal wastage design guidelines for bubbling fluidized-bed combustors. Final report  

SciTech Connect

These metal wastage design guidelines identify relationships between metal wastage and (1) design parameters (such as tube size, tube spacing and pitch, tube bundle and fluidized-bed height to distributor, and heat exchanger tube material properties) and (2) operating parameters (such as fluidizing velocity, particle size, particle hardness, and angularity). The guidelines are of both a quantitative and qualitative nature. Simplified mechanistic models are described, which account for the essential hydrodynamics and metal wastage processes occurring in bubbling fluidized beds. The empirical correlational approach complements the use of these models in the development of these design guidelines. Data used for model and guideline validation are summarized and referenced. Sample calculations and recommended design procedures are included. The influences of dependent variables on metal wastage, such as solids velocity, bubble size, and in-bed pressure fluctuations, are discussed.

Lyczkowski, R.W.; Podolski, W.F.; Bouillard, J.X.; Folga, S.M. [Argonne National Lab., IL (United States)

1992-11-01T23:59:59.000Z

78

ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM  

SciTech Connect

This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2004 through September 30, 2004. The following tasks have been completed. First, renovation of the new Combustion Laboratory and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building have started. Second, the design if the component parts of the CFBC system have been reviewed and finalized so that the drawings may be released to the manufacturers during the next quarter. Third, the experiments for solid waste (chicken litter) incineration have been conducted using a Thermogravimetric Analyzer (TGA). This is in preparation for testing in the simulated fluidized-bed combustor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter has been outlined in this report.

Wei-Ping Pan; Andy Wu; John T. Riley

2004-10-30T23:59:59.000Z

79

Three-dimensional CFD simulation of hydrodynamics in an interconnected fluidized bed for chemical looping combustion  

Science Journals Connector (OSTI)

Abstract A hydrodynamic model of an interconnected fluidized bed for chemical looping combustion was established based on the Eulerian–Eulerian two-fluid model with the kinetic theory of granular flow. The effect of the drag model on the computational results was investigated and detailed hydrodynamics were predicted in the three-dimensional circulating fluidized bed (composed of a riser, bubbling bed, pot-seal and cyclone). Both qualitative and quantitative results indicated that the drag model had a significant effect on the flow behavior. The Gidaspow and the Syamlal & O'Brien drag models both produced accurate predictions in this study. The pressure balance of an interconnected fluidized bed revealed that the pressure in the bubbling bed was lower than that in the pot-seal and the riser, whilst still being higher than the pressure in the cyclone. The riser and bubbling bed were individually operated in fast and bubbling fluidization regions. The three distinct regions identified from the bottom to the top of the riser were: entrance region, bulk region and exit region. The solids volume fraction was higher in the near-wall region but lower in the center region for both the riser and bubbling bed. The coupled characteristics of the fluidized bed were predominantly identified by the strong effect of operational gas velocity in the riser on the hydrodynamics in the bubbling bed.

Yanjun Guan; Jian Chang; Kai Zhang; Baodong Wang; Qi Sun

2014-01-01T23:59:59.000Z

80

Method of burning sulfur-containing fuels in a fluidized bed boiler  

DOE Patents (OSTI)

A method of burning a sulfur-containing fuel in a fluidized bed of sulfur oxide sorbent wherein the overall utilization of sulfur oxide sorbent is increased by comminuting the bed drain solids to a smaller average particle size, preferably on the order of 50 microns, and reinjecting the comminuted bed drain solids into the bed. In comminuting the bed drain solids, particles of spent sulfur sorbent contained therein are fractured thereby exposing unreacted sorbent surface. Upon reinjecting the comminuted bed drain solids into the bed, the newly-exposed unreacted sorbent surface is available for sulfur oxide sorption, thereby increasing overall sorbent utilization.

Jones, Brian C. (Windsor, CT)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fluidized solids technique" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

An experimental study of the hydrodynamics and cluster formation in a circulating fluidized-bed riser. Semi-annual report, July 1, 1992--December 31, 1992  

SciTech Connect

A novel gas-solid flow measuring technique is being developed and tested for studying the hydrodynamics inside the riser of a Circulating Fluidized Bed (CFB). First of the two aims of the overall program, namely, design, development and testing of the technique to characterize the particle and gas velocities in two-phase flows was accomplished in the past year. The second objective, that of making detailed measurements of gas and solid phases in the rises of a cold CFB model to investigate the phenomena of clusters and streamers for different bed operating parameters is being accomplished in the current year. The differential pressure fluctuations were in order to study the solids cluster formation. Of the several factors which lead to differential pressure fluctuations, the solids cluster formation in CFB riser is by far the most important of all. Simultaneously, theoretical formulation of the two-phase flow in the CFB riser was initiated. The concept of entropy maximization is being applied to explain the hydrodynamics inside the riser. The results from this study will present a unique detailed description of the complex gas-solid behavior in the CFB riser.

Gautam, M.; Jurewicz, J.T.; Johnson, E.K.; Heping, Y.

1993-01-01T23:59:59.000Z

82

Attrition resistant fluidizable reforming catalyst  

DOE Patents (OSTI)

A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.

Parent, Yves O. (Golden, CO); Magrini, Kim (Golden, CO); Landin, Steven M. (Conifer, CO); Ritland, Marcus A. (Palm Beach Shores, FL)

2011-03-29T23:59:59.000Z

83

MFIX simulation of NETL/PSRI challenge problem of circulating fluidized bed  

In this paper, numerical simulations of NETL/PSRI challenge problem of circulating fluidized bed (CFB) using the open-source code Multiphase Flow with Interphase eXchange (MFIX) are reported. Two rounds of simulation results are reported including the first-round blind test and the second-round modeling refinement. Three-dimensional high fidelity simulations are conducted to model a 12-inch diameter pilot-scale CFB riser. Detailed comparisons between numerical results and experimental data are made with respect to axial pressure gradient profile, radial profiles of solids velocity and solids mass flux along different radial directions at various elevations for operating conditions covering different fluidization regimes. Overall, the numerical results show that CFD can predict the complex gas–solids flow behavior in the CFB riser reasonably well. In addition, lessons learnt from modeling this challenge problem are presented.

Li, Tingwen; Dietiker, Jean-Francois; Shahnam, Mehrdad

2012-12-24T23:59:59.000Z

84

Simulation and experimental verification of a hydrodynamic model for a dual fluidized Bed gasifier  

Science Journals Connector (OSTI)

Abstract We propose a revised 2-D energy-minimization multi-scale (EMMS) model based on a two-fluid model to perform the hydrodynamic character analysis of a pilot-scale full-loop dual fluidized bed gasifier (DFBG), which consists of a riser, a cyclone with a down-comer, a bubbling fluidized bed (BFB), and a loop-seal. The EMMS model is used to analyze the interaction force between the gas and solid phases in the DFBG. For comparison, O'Brien & Syamlal's drag heterogeneous force coefficient correction is also analyzed. The instantaneous particle profiles are described by the calculated results. The local and overall flow characteristics are determined by the solids concentration under different fluidization conditions. The effects of the gas velocities in the riser and the recycle gas velocities in the U loop seal on the axial solids concentration and solids circulation profiles, as well as the flow heterogeneity in sub-zones of the riser are investigated. The numerical results are in good agreement with the experimental data, indicating that the EMMS model is appropriate to simulate the heterogeneous gas–solids two-phase flow in DFBG.

Xueyao Wang; Jing Lei; Xiang Xu; Zhengzhong Ma; Yunhan Xiao

2014-01-01T23:59:59.000Z

85

The fluidized bed combustion ash management puzzle  

SciTech Connect

As the electric and industrial power generation industry upgrades and expands, the amount of coal and other solid fuels also expands. With increased environmental controls, the introduction of a competitive market for power, and the increased interest in opportunity fuels will increase the usage of Fluidized Bed Combustion (FBC) boilers in the power industry. The combustion of these solid fuels will generate combustion ashes. Power generators, including FBC boilers owners, have traditionally looked to landfills for the disposal of their ash. With the tighter environmental controls being placed on landfills at the federal and state level, power generators are beginning to see constantly escalating tipping fees which now make the landfill option less attractive. In some instances, landfills are beginning to refuse to accept ash regardless of the tipping fee. In view of this, the power generators are now struggling to find a place to store or dispose of the ash that is produced by their power boiler. Other disposal alternatives such as backhaul to the mine and beneficial reuse are now being considered. Either alternative presents its own set of technical and environmental variables to be considered in developing an effective ash management plan. To be effective, these plans need to incorporate an aggressive, yet realistic, role to support beneficial reuse of the ash. Many applications exist for reuse of the various types of ash. The applications for conventional ashes such as those from pulverized coal boilers and stoker fired boilers are mature and more commonplace. The uses for FBC ash are not as well researched and demonstrated and therefore the marketing opportunities for FBC ash continue to require development. FBC boiler owners and operators must be willing to accept the challenges posed in developing these reuse applications for FBC ash for the market to accept the applications for FBC ash and allow the full value of the FBC ash to be realized.

Fitzgerald, H.B. [ReUse Technology, Inc., Kennesaw, GA (United States)

1996-12-31T23:59:59.000Z

86

Biomass Gasification in Dual Fluidized Bed Gasifier  

Science Journals Connector (OSTI)

The dual fluidized bed gasification technology is prospective because it produces high...2...dilution even when air is used to generate the required endothermic heat via in situ combustion. This study is devoted ...

Toshiyuki Suda; Takahiro Murakami…

2007-01-01T23:59:59.000Z

87

Particle withdrawal from fluidized bed systems  

DOE Patents (OSTI)

Method and apparatus for removing ash formed within, and accumulated at the lower portion of, a fluidized bed coal gasification reactor vessel. A supplemental fluidizing gas, at a temperature substantially less than the average fluidized bed combustion operating temperature, is injected into the vessel and upwardly through the ash so as to form a discrete thermal interface region between the fluidized bed and the ash. The elevation of the interface region, which rises with ash accumulation, is monitored by a thermocouple and interrelated with a motor controlled outlet valve. When the interface rises above the temperature indicator, the valve opens to allow removal of some of the ash, and the valve is closed, or positioned at a minimum setting, when the interface drops to an elevation below that of the thermocouple.

Salvador, Louis A. (Greensburg, PA); Andermann, Ronald E. (Arlington Heights, IL); Rath, Lawrence K. (Mt. Pleasant, PA)

1982-01-01T23:59:59.000Z

88

Design of Slurry Bubble Column Reactors: Novel Technique for Optimum Catalyst Size Selection  

NLE Websites -- All DOE Office Websites (Extended Search)

Slurry Bubble Column Reactors: Novel Technique Slurry Bubble Column Reactors: Novel Technique for Optimum Catalyst Size Selection Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking licensing partners interested in implementing United States Patent Number 7,619,011 entitled "Design of Slurry Bubble Column Reactors: Novel Technique for Optimum Catalyst Size Selection." Disclosed in this patent is a method to determine the optimum catalyst particle size for application in a fluidized bed reactor, such as a slurry bubble column reactor (SBCR), to convert synthesis gas into liquid fuels. The reactor can be gas-solid, liquid- solid, or gas-liquid-solid. The method considers the complete granular temperature balance based on the kinetic theory of

89

Fluidized bed heat treating system  

DOE Patents (OSTI)

Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

Ripley, Edward B; Pfennigwerth, Glenn L

2014-05-06T23:59:59.000Z

90

Flow Regime Study in a Circulating Fluidized Bed Riser with an Abrupt Exit: Fully Developed Flow in CFB Riser  

Science Journals Connector (OSTI)

Flow regime study was conducted in a 0.3 m diameter, 15.5 m height circulating fluidized bed (CFB) riser with an abrupt exit at the...2001a) as: The radial solids distribution in the riser no longer changes with ...

J. S. Mei; G. T. Lee; S. M. Seachman…

2010-01-01T23:59:59.000Z

91

Heat transfer characteristics of fluidized bed heat exchanger in a 300 MW CFB boiler  

Science Journals Connector (OSTI)

In order to investigate the heat transfer characteristics of fluidized bed heat exchanger (FBHE), a series of experiments was carried out in a commercial 300 MW circulating fluidized bed (CFB) boiler with FBHE. The parameters of steam, solids and air in FBHE were measured at different boiler loads, based on which the absorbed heat and heat transfer coefficient were calculated. Further study indicates that when the calculated results are applied to the design of large-scale CFB boilers, the bed side heat transfer coefficient in FBHE can be simplified as the function of solids temperature and flow. Therefore, the empirical model of heat transfer coefficient at bed side is put forward. The deviation between calculated results and measured values is acceptable in engineering application. This model provides strong support for the FBHE design in 600 MW supercritical CFB boilers.

Man Zhang; Haibo Wu; Qinggang Lu; Yunkai Sun; Guoliang Song

2012-01-01T23:59:59.000Z

92

Design of a Pilot Plant Fluidized Bed Gasifier  

Science Journals Connector (OSTI)

This article presents the design principles for a biomass fluidized bed gasifier pilot plant. The fluidized bed gasifier has a nominal capacity of 400 kg ... most important parameters for the performance of the gasifier

K. Maniatis; V. Vassilatos; S. Kyritsis

1993-01-01T23:59:59.000Z

93

Sorbent utilization prediction methodology: sulfur control in fluidized-bed combustors  

SciTech Connect

The United States Government has embarked on an ambitious program to develop and commercialize technologies to efficiently extract energy from coal in an environmentally acceptable manner. One of the more promising new technologies for steam and power generation is the fluidized-bed combustion of coal. In this process, coal is burned in a fluidized bed composed mainly of calcined limestone sorbent. The calcium oxide reacts chemically to capture the sulfur dioxide formed during the combustion and to maintain the stack gas sulfur emissions at acceptable levels. The spent sulfur sorbent, containing calcium sulfate, is a dry solid that can be disposed of along with coal ash or potentially used. Other major advantages of fluidized-bed combustion are the reduction in nitrogen oxide emissions because of the relatively low combustion temperatures, the capability of burning wide varieties of fuel, the high carbon combustion efficiencies, and the high heat-transfer coefficients. A key to the widespread commercialization of fluidized-bed technology is the ability to accurately predict the amount of sulfur that will be captured by a given sorbent. This handbook meets this need by providing a simple, yet reliable, user-oriented methodology (the ANL method) that allows performance of a sorbent to be predicted. The methodology is based on only three essential sorbent parameters, each of which can be readily obtained from standardized laboratory tests. These standard tests and the subsequent method of data reduction are described in detail.

Fee, D.C.; Wilson, W.I.; Shearer, J.A.; Smith, G.W.; Lenc, J.F.; Fan, L.S.; Myles, K.M.; Johnson, I.

1980-09-01T23:59:59.000Z

94

Experimental determination of agglomeration tendency in fluidized bed combustion of biomass by measuring slip resistance  

Science Journals Connector (OSTI)

Abstract A method by measuring the slip resistance between particles was used to determine the agglomeration tendency in fluidized bed combustion of biomass. Solid particles were taken from different stages of biomass combustion in a fluidized bed and loaded into a bench-scale test apparatus with two concentric cylinders. A precision variable frequency motor and a torque sensor were employed to measure the torque driven by the inner cylinder at a constant speed, which is directly related to the slip resistance of the solid particles. The measurement results showed significant difference in the slip resistance of the bed solids taken from different stages of biomass combustion at different operating temperatures. A strong correlation was found between the onset of agglomeration and increase in the slip resistance, especially near the onset of agglomeration, due to the build-up of molten biomass ashes, presence of liquid bridges between particles and formation of incipient agglomerates. With further validation, the method developed in the present study can potentially be used to quantify agglomeration tendency in a fluidized bed reactor and characterize the dynamic process of agglomeration.

Chunjiang Yu; Zifeng Tang; Leiyun Zeng; Chen Chen; Bin Gong

2014-01-01T23:59:59.000Z

95

Fluidized bed selective pyrolysis of coal  

DOE Patents (OSTI)

The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyzes the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step.

Shang, Jer Y. (McLean, VA); Cha, Chang Y. (Golden, CO); Merriam, Norman W. (Laramie, WY)

1992-01-01T23:59:59.000Z

96

Evaluating the fluidized bed combustion options  

SciTech Connect

The proceedings from a conference on fluidized bed combustion are now available. The book discusses the immediate availability of atmospheric fluidized bed combustion technology as a practical, environmentally sound option for burning all grades of coal, wood, wood wastes, and biomass. The economics and technical fundamentals of atmospheric FBC are explained for the benefit of owners and managers of industrial boilers, boiler operators, architects/engineers, boiler manufacturers, and fuel suppliers. More than 15 FBC experts have contributed their expertise and experiences to the book.

Sheahan, R.T. (ed.)

1984-01-01T23:59:59.000Z

97

A Study of Vertical Gas Jets in a Bubbling Fluidized Bed  

SciTech Connect

A detailed experimental study of a vertical gas jet impinging a fluidized bed of particles has been conducted with the help of Laser Doppler Velocimetry measurements. Mean and fluctuating velocity profiles of the two phases have been presented and analyzed for different fluidization states of the emulsion. The results of this work would be greatly helpful in understanding the complex two-phase mixing phenomenon that occurs in bubbling beds, such as in coal and biomass gasification, and also in building more fundamental gas-solid Eulerian/Lagrangian models which can be incorporated into existing CFD codes. Relevant simulations to supplement the experimental findings have also been conducted using the Department of Energyâ??s open source code MFIX. The goal of these simulations was two-fold. One was to check the two-dimensional nature of the experimental results. The other was an attempt to improve the existing dense phase Eulerian framework through validation with the experimental results. In particular the sensitivity of existing frictional models in predicting the flow was investigated. The simulation results provide insight on wall-bounded turbulent jets and the effect frictional models have on gas-solid bubbling flows. Additionally, some empirical minimum fluidization correlations were validated for non-spherical particles with the idea of extending the present study to non-spherical particles which are more common in industries.

Steven Ceccio; Jennifer Curtis

2011-01-18T23:59:59.000Z

98

Fluidized-bed gasification of an eastern oil shale  

SciTech Connect

The current conceptual HYTORT process design for the hydroretorting of oil shales employs moving-bed retorts that utilize shale particles larger than 3 mm. Work at the Institute of Gas Technology (IGT) is in progress to investigate the potential of high-temperature (1100 to 1300 K) fluidized-bed gasification of shale fines (<3 mm size) using steam and oxygen as a technique for more complete utilization of the resource. Synthesis gas produced from fines gasification can be used for making some of the hydrogen needed in the HYTORT process. After completing laboratory-scale batch and continuous gasification tests with several Eastern oil shales, two tests with Indiana New Albany shale were conducted in a 0.2 m diameter fluidized-bed gasification process development unit (PDU). A conceptual gasifier design for 95% carbon conversion was completed. Gasification of 20% of the mined shale can produce the hydrogen required by the HYTORT reactor to retort 80% of the remaining shale. 12 refs., 1 fig., 5 tabs.

Lau, F.S.; Rue, D.M.; Punwani, D.V.; Rex, R.C. Jr.

1987-01-01T23:59:59.000Z

99

Proceedings of the 1987 international conference on fluidized bed combustion: FBC comes of age  

SciTech Connect

This book presents the papers given at a conference on fluidized-bed combustors. Topics considered at the conference included fluidized bed boilers for utility applications, coal-fired systems, boiler retrofit, demonstration programs, atmospheric fluidized bed applications at the Tennessee Valley Authority, pressurized fluidized bed applications, waste disposal, adsorbents, fluid mechanics in fluidized beds, hydrodynamics, desulfurization, environmental issues, and advanced concepts.

Mustonen, J.P.

1987-01-01T23:59:59.000Z

100

THE SCALE-UP OF LARGE PRESSURIZED FLUIDIZED BEDS FOR ADVANCED COAL FIRED PROCESSES  

SciTech Connect

Pressurized fluidization is a promising new technology for the clean and efficient combustion of coal. Its principle is to operate a coal combustor at high inlet gas velocity to increase the flow of reactants, at an elevated pressure to raise the overall efficiency of the process. Unfortunately, commercialization of large pressurized fluidized beds is inhibited by uncertainties in scaling up units from the current pilot plant levels. In this context, our objective is to conduct a study of the fluid dynamics and solid capture of a large pressurized coal-fired unit. The idea is to employ dimensional similitude to simulate in a cold laboratory model the flow in a Pressurized Circulating Fluid Bed ''Pyrolyzer,'' which is part of a High Performance Power System (HIPPS) developed by Foster Wheeler Development Corporation (FWDC) under the DOE's Combustion 2000 program.

Leon Glicksman; Hesham Younis; Richard Hing-Fung Tan; Michel Louge; Elizabeth Griffith; Vincent Bricout

1998-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "fluidized solids technique" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Modeling of gas-solid flow in a CFB riser based on computational particle fluid dynamics  

Science Journals Connector (OSTI)

A three-dimensional model for gas-solid flow in a circulating fluidized bed (CFB) riser was developed based on computational particle ... experimental data validated the CPFD model for the CFB riser. The model pr...

Yinghui Zhang; Xingying Lan; Jinsen Gao

2012-12-01T23:59:59.000Z

102

Application of a Monte Carlo Method to the Solid Flow Pattern Visualization in CFB  

Science Journals Connector (OSTI)

Circulating Fluidized Bed has been accepted worldwide as an advanced technology for many applications. The understanding of the solid flow pattern in CFB is of great importance in order to ... account for the act...

B. P. A. Grandjean; J. Chaouki

1992-01-01T23:59:59.000Z

103

Fluidizable Catalysts for Hydrogen Production from Biomass  

E-Print Network (OSTI)

Fluidizable Catalysts for Hydrogen Production from Biomass Pyrolysis/Steam Reforming K. Magrini/Objective Develop and demonstrate technology to produce hydrogen from biomass at $2.90/kg plant gate price based Bio-oil aqueous fraction CO H2 CO2 H2O Trap grease Waste plastics textiles Co-processing Pyrolysis

104

2514 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 11, NOVEMBER 2008 Techniques to Extend Canary-Based Standby VDD  

E-Print Network (OSTI)

2514 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 11, NOVEMBER 2008 Techniques to Extend in both active and standby mode. For battery-constrained devices, the reduc- tion of standby leakage power is especially important for longer battery life. Since SRAM/Cache is the largest component in many digital

Calhoun, Benton H.

105

Durability Testing of Fluidized Bed Steam Reforming Products  

SciTech Connect

Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of radioactive wastes but especially aqueous high sodium wastes at the Hanford site, at the Idaho National Laboratory (INL), and at the Savannah River Site (SRS). The FBSR technology converts organic compounds to CO{sub 2} and H{sub 2}O, converts nitrate/nitrite species to N{sub 2}, and produces a solid residue through reactions with superheated steam, the fluidizing media. If clay is added during processing a ''mineralized'' granular waste form can be produced. The mineral components of the waste form are primarily Na-Al-Si (NAS) feldspathoid minerals with cage-like and ring structures and iron bearing spinel minerals. The cage and ring structured minerals atomically bond radionuclides like Tc{sup 99} and Cs{sup 137} and anions such as SO{sub 4}, I, F, and Cl. The spinel minerals appear to stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Durability testing of the FBSR products was performed using ASTM C1285 (Product Consistency Test) and the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP). The FBSR mineral products (bed and fines) evaluated in this study were found to be two orders of magnitude more durable than the Hanford Low Activity Waste (LAW) glass requirement of 2 g/m{sup 2} release of Na{sup +}. The PCT responses for the FBSR samples tested were consistent with results from previous FBSR Hanford LAW product testing. Differences in the response can be explained by the minerals formed and their effects on PCT leachate chemistry.

JANTZEN, CAROL M.; PAREIZS, JOHN M.; LORIER, TROY H.; MARRA, JAMES C.

2005-07-01T23:59:59.000Z

106

Bed material agglomeration during fluidized bed combustion. Final report  

SciTech Connect

The purpose of this project is to determine the physical and chemical reactions which lead to the undesired agglomeration of bed material during fluidized bed combustion of coal and to relate these reactions to specific causes. A survey of agglomeration and deposit formation in industrial fluidized bed combustors (FBCs) indicate that at least five boilers were experiencing some form of bed material agglomeration. Deposit formation was reported at nine sites with deposits most commonly at coal feed locations and in cyclones. Other deposit locations included side walls and return loops. Three general types of mineralogic reactions were observed to occur in the agglomerates and deposits. Although alkalies may play a role with some {open_quotes}high alkali{close_quotes} lignites, we found agglomeration was initiated due to fluxing reactions between iron (II) from pyrites and aluminosilicates from clays. This is indicated by the high amounts of iron, silica, and alumina in the agglomerates and the mineralogy of the agglomerates. Agglomeration likely originated in the dense phase of the FBC bed within the volatile plume which forms when coal is introduced to the boiler. Secondary mineral reactions appear to occur after the agglomerates have formed and tend to strengthen the agglomerates. When calcium is present in high amounts, most of the minerals in the resulting deposits are in the melilite group (gehlenite, melilite, and akermanite) and pyroxene group (diopside and augite). During these solid-phase reactions, the temperature of formation of the melilite minerals can be lowered by a reduction of the partial pressure of CO{sub 2} (Diopside + Calcite {r_arrow}Akermanite).

Brown, R.C.; Dawson, M.R.; Smeenk, J.L.

1996-01-01T23:59:59.000Z

107

Modeling of Solid Oxide Fuel Cell functionally graded electrodes and a feasibility study of fabrication techniques for functionally graded electrodes.  

E-Print Network (OSTI)

??Currently, Solid Oxide Fuel Cell (SOFC) electrodes have not been explored for optimization of graded electrodes and nonlinear functional grading. In this work, a complete… (more)

Flesner, Reuben

2009-01-01T23:59:59.000Z

108

EIS-0289: JEA Circulating Fluidized Bed Combustor Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

289: JEA Circulating Fluidized Bed Combustor Project 289: JEA Circulating Fluidized Bed Combustor Project EIS-0289: JEA Circulating Fluidized Bed Combustor Project SUMMARY This EIS assesses environmental issues associated with constructing and demonstrating a project that would be cost-shared by DOE and JEA (formerly the Jacksonville Electric Authority) under the Clean Coal Technology Program. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD December 7, 2000 EIS-0289: Record of Decision JEA Circulating Fluidized Bed Combustor Project, Jacksonville, Duval County, FL June 1, 2000 EIS-0289: Final Environmental Impact Statement JEA Circulating Fluidized Bed Combustor Project August 1, 1999 EIS-0289: Draft Environmental Impact Statement JEA Circulating Fluidized Bed Combustor

109

E-Print Network 3.0 - agitated fluidized bed Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

testing of manure digestion system has been initiated. The new TAMU fluidized bed gasifier... of the fluidized bed gasifier. Activity this quarter: a. The assembly of the new...

110

E-Print Network 3.0 - atmospheric fluidized bed Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

conditions... in a fluidized bed coater. The bed relative humidity and the droplet size of the coating aerosol were predicted... Fluidized bed coating ... Source: Groningen,...

111

E-Print Network 3.0 - agitation fluidized bed Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

testing of manure digestion system has been initiated. The new TAMU fluidized bed gasifier... of the fluidized bed gasifier. Activity this quarter: a. The assembly of the new...

112

E-Print Network 3.0 - annual fluidized bed Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

University of Minnesota Collection: Engineering 16 POTENTIAL ADVANTAGES OF INCINERATION IN FLUIDIZED BEDS Summary: POTENTIAL ADVANTAGES OF INCINERATION IN FLUIDIZED BEDS...

113

Integrated Gasification Combined Cycle Based on Pressurized Fluidized Bed Gasification  

Science Journals Connector (OSTI)

Enviropower Inc. has developed a modern power plant concept based on an integrated pressurized fluidized bed gasification and gas turbine combined cycle (IGCC)....

Kari Salo; J. G. Patel

1997-01-01T23:59:59.000Z

114

Bed material agglomeration during fluidized bed combustion  

SciTech Connect

The purpose of this project is to determine the physical and chemical reactions which led to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. Survey of industrial-scale fluidized bed combustors is being conducted to determine the occurrence of bed agglomeration and the circumstances under which agglomeration took place. This task should be finished by the end of February. Samples of bed material, agglomerate material, and boiler deposits are being requested from boiler operators as part of the survey. Once received, these sample will be analyzed to determine chemical and mineralogic composition. The bulk chemical determination will be performed using x-ray fluorescence and inductively coupled plasma-optical emission (ICP). Mineralogy will be detected by x-ray diffraction (XRD). Chemical and mineral reactions will be determined by scanning electron microscopy, optical microscopy, and electron microprobe.

Brown, R.C.; Dawson, M.R.; Noble, S.

1993-02-01T23:59:59.000Z

115

Gas distributor for fluidized bed coal gasifier  

DOE Patents (OSTI)

A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

Worley, Arthur C. (Mt. Tabor, NJ); Zboray, James A. (Irvine, CA)

1980-01-01T23:59:59.000Z

116

Pulsed atmospheric fluidized bed combustor apparatus  

DOE Patents (OSTI)

A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g., organic and medical waste, drying materials, heating air, calcining and the like.

Mansour, Momtaz N. (Columbia, MD)

1993-10-26T23:59:59.000Z

117

Flow Mapping in a Gas-Solid Riser via Computer Automated Radioactive Particle Tracking (CARPT)  

SciTech Connect

Statement of the Problem: Developing and disseminating a general and experimentally validated model for turbulent multiphase fluid dynamics suitable for engineering design purposes in industrial scale applications of riser reactors and pneumatic conveying, require collecting reliable data on solids trajectories, velocities ? averaged and instantaneous, solids holdup distribution and solids fluxes in the riser as a function of operating conditions. Such data are currently not available on the same system. Multiphase Fluid Dynamics Research Consortium (MFDRC) was established to address these issues on a chosen example of circulating fluidized bed (CFB) reactor, which is widely used in petroleum and chemical industry including coal combustion. This project addresses the problem of lacking reliable data to advance CFB technology. Project Objectives: The objective of this project is to advance the understanding of the solids flow pattern and mixing in a well-developed flow region of a gas-solid riser, operated at different gas flow rates and solids loading using the state-of-the-art non-intrusive measurements. This work creates an insight and reliable database for local solids fluid-dynamic quantities in a pilot-plant scale CFB, which can then be used to validate/develop phenomenological models for the riser. This study also attempts to provide benchmark data for validation of Computational Fluid Dynamic (CFD) codes and their current closures. Technical Approach: Non-Invasive Computer Automated Radioactive Particle Tracking (CARPT) technique provides complete Eulerian solids flow field (time average velocity map and various turbulence parameters such as the Reynolds stresses, turbulent kinetic energy, and eddy diffusivities). It also gives directly the Lagrangian information of solids flow and yields the true solids residence time distribution (RTD). Another radiation based technique, Computed Tomography (CT) yields detailed time averaged local holdup profiles at various planes. Together, these two techniques can provide the needed local solids flow dynamic information for the same setup under identical operating conditions, and the data obtained can be used as a benchmark for development, and refinement of the appropriate riser models. For the above reasons these two techniques were implemented in this study on a fully developed section of the riser. To derive the global mixing information in the riser, accurate solids RTD is needed and was obtained by monitoring the entry and exit of a single radioactive tracer. Other global parameters such as Cycle Time Distribution (CTD), overall solids holdup in the riser, solids recycle percentage at the bottom section of the riser were evaluated from different solids travel time distributions. Besides, to measure accurately and in-situ the overall solids mass flux, a novel method was applied.

Muthanna Al-Dahhan; Milorad P. Dudukovic; Satish Bhusarapu; Timothy J. O'hern; Steven Trujillo; Michael R. Prairie

2005-06-04T23:59:59.000Z

118

Electrostatic Precipitator Collection Efficiency and Trace Element Emissions from Co-Combustion of Biomass and Recovered Fuel in Fluidized-Bed Combustion  

Science Journals Connector (OSTI)

Electrostatic Precipitator Collection Efficiency and Trace Element Emissions from Co-Combustion of Biomass and Recovered Fuel in Fluidized-Bed Combustion ... In this investigation, electrostatic precipitator fractional collection efficiency and trace metal emissions were determined experimentally at a 66 MW biomass-fueled bubbling fluidized-bed combustion plant. ... The solid fuel combustion-generated particle emissions typically consist of two types of particles:? fine particles approximately 0.1?1 ?m in diameter that are formed from the ash-forming species that are volatilized during combustion and residual ash particles larger than 1 ?m in diameter that are formed from mineral impurities in the fuels (4). ...

Terttaliisa Lind; Jouni Hokkinen; Jorma K. Jokiniemi; Sanna Saarikoski; Risto Hillamo

2003-05-08T23:59:59.000Z

119

Heat exchanger support apparatus in a fluidized bed  

DOE Patents (OSTI)

A heat exchanger is mounted in the upper portion of a fluidized combusting bed for the control of the temperature of the bed. A support, made up of tubes, is extended from the perforated plate of the fluidized bed up to the heat exchanger. The tubular support framework for the heat exchanger has liquid circulated therethrough to prevent deterioration of the support.

Lawton, Carl W. (West Hartford, CT)

1982-01-01T23:59:59.000Z

120

Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maturation Plan (TMP) Fluidized Bed Steam Reforming Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) This assessment determines the technology maturity level of the candidate Tank 48H treatment technologies that are being considered for implementation at DOE's SRS - specifically Fluidized Bed Steam Reformer System. Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) More Documents & Publications Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) Technology for Tank 48H Treatment Project (TTP) SRS Tank 48H Waste Treatment Project Technology Readiness Assessment

Note: This page contains sample records for the topic "fluidized solids technique" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

EXPERIMENT AND NEURAL NETWORK MODEL OF PRIMARY FRAGMENTATION OF OIL SHALE IN FLUIDIZED BED  

E-Print Network (OSTI)

that the fluidized bed temperature is an important factor of primary fragmentation of oil shale, and

Zhigang Cui; Xiangxin Han; Xiumin Jiang; Jianguo Liu

122

Development and Implementation of 3-D, High Speed Capacitance Tomography for Imaging Large-Scale, Cold-Flow Circulating Fluidized Bed  

SciTech Connect

A detailed understanding of multiphase flow behavior inside a Circulating Fluidized Bed (CFB) requires a 3-D technique capable of visualizing the flow field in real-time. Electrical Capacitance Volume Tomography (ECVT) is a newly developed technique that can provide such measurements. The attractiveness of the technique is in its low profile sensors, fast imaging speed and scalability to different section sizes, low operating cost, and safety. Moreover, the flexibility of ECVT sensors enable them to be designed around virtually any geometry, rendering them suitable to be used for measurement of solid flows in exit regions of the CFB. Tech4Imaging LLC has worked under contract with the U.S. Department of Energyâ??s National Energy Technology Laboratory (DOE NETL) to develop an ECVT system for cold flow visualization and install it on a 12 inch ID circulating fluidized bed. The objective of this project was to help advance multi-phase flow science through implementation of an ECVT system on a cold flow model at DOE NETL. This project has responded to multi-phase community and industry needs of developing a tool that can be used to develop flow models, validate computational fluid dynamics simulations, provide detailed real-time feedback of process variables, and provide a comprehensive understating of multi-phase flow behavior. In this project, a complete ECVT system was successfully developed after considering different potential electronics and sensor designs. The system was tested at various flow conditions and with different materials, yielding real-time images of flow interaction in a gas-solid flow system. The system was installed on a 12 inch ID CFB of the US Department of Energy, Morgantown Labs. Technical and economic assessment of Scale-up and Commercialization of ECVT was also conducted. Experiments conducted with larger sensors in conditions similar to industrial settings are very promising. ECVT has also the potential to be developed for imaging multi-phase flow systems in high temperature and high pressure conditions, typical in many industrial applications.

Qussai Marashdeh

2012-09-30T23:59:59.000Z

123

DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)  

SciTech Connect

Foster Wheeler Development Corporation is working under DOE contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% while producing near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The unique aspect of the process is that it utilizes a pressurized circulating fluidized bed partial gasifier and does not attempt to consume the coal in a single step. To convert all the coal to syngas in a single step requires extremely high temperatures ({approx}2500 to 2800F) that melt and vaporize the coal and essentially drive all coal ash contaminants into the syngas. Since these contaminants can be corrosive to power generating equipment, the syngas must be cooled to near room temperature to enable a series of chemical processes to clean the syngas. Foster Wheeler's process operates at much lower temperatures that control/minimize the release of contaminants; this eliminates/minimizes the need for the expensive, complicated syngas heat exchangers and chemical cleanup systems typical of high temperature gasification. By performing the gasification in a circulating bed, a significant amount of syngas can still be produced despite the reduced temperature and the circulating bed allows easy scale up to large size plants. Rather than air, it can also operate with oxygen to facilitate sequestration of stack gas carbon dioxide gases for a 100% reduction in greenhouse gas emissions. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building block that offers all the advantages of coal gasification but in a more user friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. The PGM consists of a pressurized circulating fluidized bed (PCFB) reactor together with a recycle cyclone and a particulate removing barrier filter. Coal, air, steam, and possibly sand are fed to the bottom of the PCFB reactor and establish a relatively dense bed of coal/char in the bottom section. As these constituents react, a hot syngas is produced which conveys the solids residue vertically up through the reactor and into the recycle cyclone. Solids elutriated from the dense bed and contained in the syngas are collected in the cyclone and drain via a dipleg back to the dense bed at the bottom of the PCFB reactor. This recycle loop of hot solids acts as a thermal flywheel and promotes efficient solid-gas chemical reaction.

Unknown

2001-07-10T23:59:59.000Z

124

Circulating fluidized-bed boiler makes inroads for waste recycling  

SciTech Connect

Circulating fluidized-bed (CFB) boilers have ben used for years in Scandinavia to burn refuse-derived fuel (RDF). Now, Foster Wheeler Power Systems, Inc., (Clinton, N.J.) is bringing the technology to the US. Touted as the world`s largest waste-to-energy plant to use CFB technology, the Robbins (III.) Resource Recovery Facility will have the capacity to process 1,600 tons/d of municipal solid waste (MSW) when it begins operation in early 1997. The facility will have two materials-separation and RDF-processing trains, each with dual trommel screens, magnetic and eddy current separators, and shredders. About 25% of the incoming MSW will be sorted and removed for recycling, while 75% of it will be turned into fuel, with a heat value of roughly 6,170 btu/lb. Once burned in the twin CFB boilers the resulting steam will be routed through a single turbine generator to produce 50,000 mW of electric power.

NONE

1995-09-01T23:59:59.000Z

125

Model for attrition in fluidized beds  

SciTech Connect

A model developed to predict the particle-size distribution and amount of fines generated during the attrition of particles in fluidized beds agrees well with experimental data for siderite iron ore and lignite char. Certain parameters used in the model are independent of particle size, orifice size, system pressure, bed weight, and attrition time, thus making the model suitable for scale-up purposes. Although the analysis was limited to a single jet with the attrition occurring at room temperature, the model can be extended to multi-jet, high-temperature operations.

Chen, T.P.; Sishtla, C.I.; Punwani, D.V.; Arastoopour, H.

1980-01-01T23:59:59.000Z

126

Second-generation pressurized fluidized bed combustion  

SciTech Connect

Under the sponsorship of the United States Department of Energy, Foster Wheeler Corporation is developing second-generation pressurized fluidized bed combustion (PFBC) power plant technology that will enable this type of plant to operate with net plant efficiencies in the range of 43 to 46 percent (based on the higher heating value of the coal), with a reduction in the cost of electricity of at least 20 percent. A three-phase program is under way. Its scope encompasses the conceptual design of a commercial plant through the process of gathering needed experimental test data to obtain design parameters.

Wolowodiuk, W.; Robertson, A.

1992-01-01T23:59:59.000Z

127

Second-generation pressurized fluidized bed combustion  

SciTech Connect

Under the sponsorship of the United States Department of Energy, Foster Wheeler Corporation is developing second-generation pressurized fluidized bed combustion (PFBC) power plant technology that will enable this type of plant to operate with net plant efficiencies in the range of 43 to 46 percent (based on the higher heating value of the coal), with a reduction in the cost of electricity of at least 20 percent. A three-phase program is under way. Its scope encompasses the conceptual design of a commercial plant through the process of gathering needed experimental test data to obtain design parameters.

Wolowodiuk, W.; Robertson, A.

1992-05-01T23:59:59.000Z

128

Solid fuel combustion system for gas turbine engine  

DOE Patents (OSTI)

A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN)

1993-01-01T23:59:59.000Z

129

Thermal conversion of municipal solid waste via hydrothermal carbonization: Comparison of carbonization products to products from current waste management techniques  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Hydrothermal carbonization (HTC) is a novel thermal conversion process. Black-Right-Pointing-Pointer HTC converts wastes into value-added resources. Black-Right-Pointing-Pointer Carbonization integrates majority of carbon into solid-phase. Black-Right-Pointing-Pointer Carbonization results in a hydrochar with high energy density. Black-Right-Pointing-Pointer Using hydrochar as an energy source may be beneficial. - Abstract: Hydrothermal carbonization (HTC) is a novel thermal conversion process that may be a viable means for managing solid waste streams while minimizing greenhouse gas production and producing residual material with intrinsic value. HTC is a wet, relatively low temperature (180-350 Degree-Sign C) thermal conversion process that has been shown to convert biomass to a carbonaceous residue referred to as hydrochar. Results from batch experiments indicate HTC of representative waste materials is feasible, and results in the majority of carbon (45-75% of the initially present carbon) remaining within the hydrochar. Gas production during the batch experiments suggests that longer reaction periods may be desirable to maximize the production of energy-favorable products. If using the hydrochar for applications in which the carbon will remain stored, results suggest that the gaseous products from HTC result in fewer g CO{sub 2}-equivalent emissions than the gases associated with landfilling, composting, and incineration. When considering the use of hydrochar as a solid fuel, more energy can be derived from the hydrochar than from the gases resulting from waste degradation during landfilling and anaerobic digestion, and from incineration of food waste. Carbon emissions resulting from the use of the hydrochar as a fuel source are smaller than those associated with incineration, suggesting HTC may serve as an environmentally beneficial alternative to incineration. The type and extent of environmental benefits derived from HTC will be dependent on hydrochar use/the purpose for HTC (e.g., energy generation or carbon storage).

Lu Xiaowei; Jordan, Beth [Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208 (United States); Berge, Nicole D., E-mail: berge@cec.sc.edu [Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208 (United States)

2012-07-15T23:59:59.000Z

130

Practical and Regulatory Challenges in Controlling Trace Element Inputs to Soils from Land Application of Fluidized Bed Combustion Residues  

Science Journals Connector (OSTI)

The 165 MWe circulating fluidized bed boiler at the Nova Scotia Power Inc. ( ... largest fluidized bed unit. Fluidized bed combustion (FBC) allows the burning of high sulphur (...in situ capture of S (removal of ...

M. Hope-Simpson; W. Richards

2003-01-01T23:59:59.000Z

131

Initial Design of a Dual Fluidized Bed Reactor  

E-Print Network (OSTI)

from a steam hydro gasification and reforming process.study on biomass Air-steam gasification in a fluidized bed.limestone calcination on the gasification processes in a BFB

Yun, Minyoung

2014-01-01T23:59:59.000Z

132

Initial Design of a Dual Fluidized Bed Reactor  

E-Print Network (OSTI)

fluidized bed gaisifers (CFB) (Figure 1.6) 1.3.1. Bubblingbed gasifiers (BFB and CFB) have great features for SH.employed for the SHR design. CFB enables a circulation of

Yun, Minyoung

2014-01-01T23:59:59.000Z

133

Chemical looping combustion of coal in interconnected fluidized beds  

Science Journals Connector (OSTI)

Chemical looping combustion is the indirect combustion by use of oxygen carrier. It can...2...capture in power generating processes. In this paper, chemical looping combustion of coal in interconnected fluidized ...

LaiHong Shen; Min Zheng; Jun Xiao; Hui Zhang…

2007-04-01T23:59:59.000Z

134

Simulation of biomass gasification in a dual fluidized bed gasifier  

Science Journals Connector (OSTI)

Biomass gasification with steam in a dual-fluidized bed gasifier (DFBG) was simulated with ASPEN Plus. ... that the content of char transferred from the gasifier to the combustor decreases from 22.5...2 concentra...

Jie He; Kristina Göransson; Ulf Söderlind…

2012-03-01T23:59:59.000Z

135

EA-0575: Fundamental Fluidization Research Project, Morgantown, West Virginia  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts of a proposal to design, construct, and operate a 2-foot diameter, 50-foot high pressurized fluidization with particular emphasis on operation in the...

136

Fluidized Bed Technology- An R&D Success Story  

Energy.gov (U.S. Department of Energy (DOE))

In the early 1990s, POWER magazine called the development of fluidized bed coal combustors "the commercial success story of the last decade in the power generation business." The success, perhaps...

137

Current Status and Challenges within Fluidized Bed Combustion  

Science Journals Connector (OSTI)

Fluidized-bed technology is rapidly expanding. Today, more than 600 large (20+ MWth) FBC boilers with a total installed thermal capacity of ... beds (BFBC). The size of the boilers has increased steeply; the larg...

Mikko Hupa

2007-01-01T23:59:59.000Z

138

Inclined fluidized bed system for drying fine coal  

DOE Patents (OSTI)

Coal is processed in an inclined fluidized bed dryer operated in a plug-flow manner with zonal temperature and composition control, and an inert fluidizing gas, such as carbon dioxide or combustion gas. Recycled carbon dioxide, which is used for drying, pyrolysis, quenching, and cooling, is produced by partial decarboxylation of the coal. The coal is heated sufficiently to mobilize coal tar by further pyrolysis, which seals micropores upon quenching. Further cooling with carbon dioxide enhances stabilization.

Cha, Chang Y. (Golden, CO); Merriam, Norman W. (Laramie, WY); Boysen, John E. (Laramie, WY)

1992-02-11T23:59:59.000Z

139

The backflow cell model for fluidized bed catalytic reactors  

E-Print Network (OSTI)

that the backmixing of gas in a small fluidized bed with high length to diameter rati. o is relatively small. Hence, it was recommended. that reaction rate studies in fluidized bed reactors be correlated on the basis oi' piston flow~ neglecting mixing. Nay (19...) points out that the straight line obtained on plotting the results of Gilliland's ex- periment on a paper with semilogarithmic coordinates, can be used to characterize the residence time distribution introduced by Danckwerts (6). A steep slope, he...

Ganapathy, E. V

2012-06-07T23:59:59.000Z

140

Fluidized-bed retrofit a practical alternative to FGD  

SciTech Connect

A comparison is made between the costs of flue-gas desulphurization retrofit to a 112 MW pf-fired boiler, fluidized-bed combustion retrofit to the boiler, and a new fluidized-bed boiler. Breakdowns are given for capital costs, operating and maintenance costs and the busbar cost of energy for a 20 year unit life. The analysis shows that fbc is a viable option for the retrofit of many existing boilers from both a technical and economic viewpoint.

Stringfellow, T.E.

1984-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "fluidized solids technique" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Data summary of municipal solid waste management alternatives  

SciTech Connect

This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

Not Available

1992-10-01T23:59:59.000Z

142

Fluidized bed boiler having a segmented grate  

DOE Patents (OSTI)

A fluidized bed furnace (10) is provided having a perforate grate (9) within a housing which supports a bed of particulate material including some combustibles. The grate is divided into a plurality of segments (E2-E6, SH1-SH5, RH1-RH5), with the airflow to each segment being independently controlled. Some of the segments have evaporating surface imbedded in the particulate material above them, while other segments are below superheater surface or reheater surface. Some of the segments (E1, E7) have no surface above them, and there are ignitor combustors (32, 34) directed to fire into the segments, for fast startup of the furnace without causing damage to any heating surface.

Waryasz, Richard E. (Longmeadow, MA)

1984-01-01T23:59:59.000Z

143

Fluidized bed combustion picks up steam  

SciTech Connect

Industrial interest in fluidized-bed combustion (FBC) continues, although the technology has been slow to enter the marketplace. Two FBC pilot plants funded by DOE and one commercial size project are in operation. FBC designs and commercial warranties are already available from the boiler industry, but 1981 was the first year to see significant numbers of privately-funded orders, now numbering 38 out of 50 boilers. Manufacturers are working on a universal boiler able to accept any fuel, but potential users are wary of new technology without a long-term demonstration of reliability and economics. There is interest in second generation designs, a new shallow-bed design suitable for retrofitting, and circulating bed types that decouple the combustion system from the heat removal system. (DCK)

Lawn, J.

1982-02-01T23:59:59.000Z

144

Development and applications of clean coal fluidized bed technology  

SciTech Connect

Power generation in Europe and elsewhere relies heavily on coal and coal-based fuels as the source of energy. The reliance will increase in the future due to the decreasing stability of price and security of oil supply. In other words, the studies on fluidized bed combustion systems, which is one of the clean coal technologies, will maintain its importance. The main objective of the present study is to introduce the development and the applications of the fluidized bed technology (FBT) and to review the fluidized bed combustion studies conducted in Turkey. The industrial applications of the fluidized bed technology in the country date back to the 1980s. Since then, the number of the fluidized bed boilers has increased. The majority of the installations are in the textile sector. In Turkey, there is also a circulating fluidized bed thermal power plant with a capacity of 2 x 160 MW under construction at Can in Canakkale. It is expected that the FBT has had, or will have, a significant and increasing role in dictating the energy strategies for Turkey.

Eskin, N.; Hepbasli, A. [Ege University, Izmir (Turkey). Faculty of Engineering

2006-09-15T23:59:59.000Z

145

Use of fluidized bed combustion by-products for liners and alkali substitutes. Technical report, March 1--May 31, 1995  

SciTech Connect

Fluidized Bed Combustion of coal eliminates most emissions of S and N oxides but produces sizable volumes of a solid residue that EPA may require to be placed in capped and lined landfills. Fluidized Bed Combustors are one of the most promising growth markets for Illinois coal and imposing cap and liner requirements may make the technology uneconomic. Fluidized Bed residues are cementlike and when mixed with soil, produce a material as impermeable as the clay liners used at landfills. This project will demonstrate that the residues can be mixed with soils by regular construction equipment and used in place of clays as liner material. The demonstration cap will cover an area of 7 acres and will prevent water infiltration into acid producing material. Baseline studies of Briar Creek indicate that the water is now highly degraded by acid drainage. Construction delays have enhanced the data collected on Briar Creek by allowing monitoring to continue through major seasonal changes without any effects attributable to the FBC ash. Materials needed to place the wells and lysimeters have been obtained. A contractor will build and deliver a mobile foam generator and spray to the field to demonstrate fugitive dust control from FBC fly ash (dust problem is one key barrier to more widespread use of FBC ash).

Paul, B.C.; Esling, S. [Southern Illinois Univ., Carbondale, IL (United States); Pisani, F. [Illinois Abandoned Mined Lands reclamation Council (United States); Wells, T. [Archer-Daniels-Midland Co., Minneapolis, MN (United States)

1995-12-31T23:59:59.000Z

146

Method for Determining Solids Circulation Rate  

NLE Websites -- All DOE Office Websites (Extended Search)

Determining Solids Circulation Rate Determining Solids Circulation Rate Contact NETL Technology Transfer Group techtransfer@netl.doe.gov May 2012 Opportunity Research is currently active on the patented technology "Method for Determining Solids Circulation Rate." The technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Overview This invention provides a method to measure the rate of solids circulation, particularly in those applications where the solids are recycled back to pro- cesses for further use. The applications include processes such as circulating fluidized bed gasifiers and combustors, as well as chemical looping. In the above applications, determining solids circulation rates is needed to

147

Development of Catalytic Tar Decomposition in an Internally Circulating Fluidized-Bed Gasifier  

Science Journals Connector (OSTI)

Biomass gasification in an Internally Circulating Fluidized-bed Gasifier (ICFG) using Ni/Ah03 as tar ... as catalyst in a lab-scale fluidized bed gasifier with catalyst fixed bed. The new catalyst...

Xianbin Xiao; Due Dung Le; Kayoko Morishita…

2010-01-01T23:59:59.000Z

148

Steam Gasification of Coal at Low?Medium (600?800 °C) Temperature with Simultaneous CO2 Capture in Fluidized Bed at Atmospheric Pressure:? The Effect of Inorganic Species. 1. Literature Review and Comments  

Science Journals Connector (OSTI)

2,3 Apart from optimizing the design (topology) of the gasifier, its operating conditions, and the composition, moisture, and particle size of the feedstock, there is another operation variable that can be used to achieve the above said objectives:? the presence of some inorganic species (ISs) in the gasifier. ... bed?composition?(AAEM?solids?and?particle?sizes) ... When some calcined dolomite (CaO·MgO) is used in the bed of a biomass gasifier of fluidized bed type the raw gas produced is cleaner than when only silica sand is used in it as fluidizing medium. ...

Jose Corella; Jose M. Toledo; Gregorio Molina

2006-07-29T23:59:59.000Z

149

Use of fluidized bed combustion by-products for liners and alkali substitutes. Technical report, December 1, 1994--February 28, 1995  

SciTech Connect

Fluidized Bed Combustion (FBC) of coal eliminates most emissions of sulfur and nitrogen oxides, but produces sizable volumes of a solid residue that EPA may require to be placed in capped and lined landfills. Fluidized Bed Combustors are one of the most promising growth markets for Illinois coal and imposing cap and liner requirements would render the technology economically inviable. Fluidized Bed residues are cement-like and when mixed with soil produce a material as impermeable as the clay liners used at landfills. This project will demonstrate that Fluidized Bed Combustion Residues can be mixed with soils by regular construction equipment and used in place of clays as a liner material. The demonstration cap will cover an area of seven acres, and will prevent water infiltration into acid producing material. Baseline studies of Briar Creek indicate that the water is now highly degraded by acid drainage. Construction delays have enhanced the data collected on Briar Creek by allowing monitoring to continue through major seasonal changes without any effects attributable to the FBC ash. The materials needed to place the wells and lysimeters as soon as the weather improves this spring have been purchased and delivered. Also experiments suggest that it may be possible to control dust by foam conditioning the FBC ash at the power station.

Paul, B.C.; Esling, S. [Southern Illinois Univ., Carbondale, IL (United States); Pisani, F. [Illinois Abandoned Mined Lands Reclamation Council, IL (United States); Wells, T. [Archer-Daniels-Midland Co., Minneapolis, MN (United States)

1996-03-01T23:59:59.000Z

150

Gasification and its emission characteristics for dried sewage sludge utilizing a fluidized bed gasifier  

Science Journals Connector (OSTI)

The effects of these parameters were, therefore, investigated through a series of experiments with a fluidized bed gasifier.

Seong-Wan Kang; Jong-In Dong; Jong-Min Kim…

2011-10-01T23:59:59.000Z

151

An assessment of waste fuel burning in operating circulating fluidized bed boilers  

SciTech Connect

Fluidized bed combustion (FBC), today's fastest growing boiler technology, has the flexibility to burn a wide range of fuels, including many waste fuels, while satisfying all present and anticipated environmental regulations. The first generation of FBC--atmospheric fluidized bed combustion (AFBC)--concentrated on ''bubbling'' fluidized bed designs. These systems have inherent limitations and experienced several problems. In response to these problems, circulating fluidized bed (CFB) technology was developed.

Gendreau, R.J.; Raymond, D.L.

1986-01-01T23:59:59.000Z

152

Circulating-Fluidized-Bed-Based Calcium-Looping Gasifier: Experimental Studies on the Calcination–Carbonation Cycle  

Science Journals Connector (OSTI)

With the first one, kinetic rates are developed for calcination in the presence of three media: nitrogen (N2), CO2, and steam (H2O). ... For this study, the particle size was taken to be 45 ?m.(1)(2)To study the effects of the particle size on calcination and carbonation reactions, limestone particles of sizes 325, 275, 230, and 135 ?m were subjected to calcination with N2 as the medium at 950 °C. ... The gasifier was heated by a hot solid coming from the regenerator and by the fluidizing medium. ...

Bishnu Acharya; Animesh Dutta; Prabir Basu

2012-05-31T23:59:59.000Z

153

Burning mill sludge in a fluidized-bed incinerator and waste-heat-recovery system; Ten years of successful operation  

SciTech Connect

This paper reports on burning mill sludge in a fluidized-bed incinerator and waste-heat-recovery system. In the late 1970s, the Lielahti sulfite mill of G.A. Serlachius Corp. (now Metsa Serla Oy) began investigating alternative methods of sludge disposal. The mill had an annual capacity of 100,000 tons of bleached pulp, generated 80,000 tons of by-product lignin sulfonates, and specialized in dissolving pulps. Because of the end product's high quality requirements, the mill had a low pulp yield and high losses in the form of both dissolved and suspended solids.

Nickull, O. (Metsa Serla, Oy (FI)); Lehtonen, O. (Tampella Ltd., Tampere (FI)); Mullen, J. (Tampella Keeler, Williamsport, PA (US))

1991-03-01T23:59:59.000Z

154

Emergent Behavior in a Low-Order Fluidized-Bed Bubble Model  

E-Print Network (OSTI)

Emergent Behavior in a Low-Order Fluidized-Bed Bubble Model John S. Halow National Energy of this type of model to describe the dynamics of voids in bubbling fluidized beds. The model considers vertical interactions between neighboring bubbles in fluidized beds. Emergent collective behavior is shown

Tennessee, University of

155

Materials performance in fluidized-bed air heaters  

SciTech Connect

Development of cogeneration systems that involve combustion of coal in a fluidized bed and use of air heaters to generate hot air for turbine systems has been in progress for a number of years. The US Department of Energy (DOE) sponsored the Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) to assess the performance of various heat exchanger materials and establish confidence in the resultant designs of fluidized-bed-combustion air heater systems. Westinghouse Electric Corporation, in association with Babcock & Wilcox, Foster Wheeler, and ABB/Combustion Engineering, prepared specifications and hardware for the ACAHE. Argonne National Laboratory, through a contract with the Rocketdyne Division of Rockwell International, conducted tests in the DOE 1.8 {times} 1.8 m atmospheric fluidized-bed combustion facility in El Segundo, California. This paper presents an assessment of the materials performance in fluidized bed environments and examines guidelines for materials selection on the basis of corrosion resistance in air and in combustion environments, mechanical properties, fabricability/thermal stability, and cost.

Natesan, K.; Podolski, W.

1991-12-01T23:59:59.000Z

156

Materials performance in fluidized-bed air heaters  

SciTech Connect

Development of cogeneration systems that involve combustion of coal in a fluidized bed and use of air heaters to generate hot air for turbine systems has been in progress for a number of years. The US Department of Energy (DOE) sponsored the Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) to assess the performance of various heat exchanger materials and establish confidence in the resultant designs of fluidized-bed-combustion air heater systems. Westinghouse Electric Corporation, in association with Babcock Wilcox, Foster Wheeler, and ABB/Combustion Engineering, prepared specifications and hardware for the ACAHE. Argonne National Laboratory, through a contract with the Rocketdyne Division of Rockwell International, conducted tests in the DOE 1.8 {times} 1.8 m atmospheric fluidized-bed combustion facility in El Segundo, California. This paper presents an assessment of the materials performance in fluidized bed environments and examines guidelines for materials selection on the basis of corrosion resistance in air and in combustion environments, mechanical properties, fabricability/thermal stability, and cost.

Natesan, K.; Podolski, W.

1991-12-01T23:59:59.000Z

157

COAL CLEANING VIA LIQUID-FLUIDIZED CLASSIFICAITON (LFBC) WITH SELECTIVE SOLVENT SWELLING  

SciTech Connect

The concept of coal beneficiation due to particle segregation in water-fluidized beds, and its improvement via selective solvent-swelling of organic material-rich coal particles, was investigated in this study. Particle size distributions and their behavior were determined using image analysis techniques, and beneficiation effects were explored via measurements of the ash content of segregated particle samples collected from different height locations in a 5 cm diameter liquid-fluidized bed column (LFBC). Both acetone and phenol were found to be effective swelling agents for both Kentucky No.9 and Illinois No.6 coals, considerably increasing mean particle diameters, and shifting particle size distributions to larger sizes. Acetone was a somewhat more effective swelling solvent than phenol. The use of phenol was investigated, however, to demonstrate that low cost, waste solvents can be effective as well. For unswollen coal particles, the trend of increasing particle size from top to bottom in the LFBC was observed in all cases. Since the organic matter in the coal tends to concentrate in the smaller particles, the larger particles are typically denser. Consequently, the LFBC naturally tends to separate coal particles according to mineral matter content, both due to density and size. The data for small (40-100 {micro}m), solvent-swollen particles clearly showed improved beneficiation with respect to segregation in the water-fluidized bed than was achieved with the corresponding unswollen particles. This size range is quite similar to that used in pulverized coal combustion. The original process concept was amply demonstrated in this project. Additional work remains to be done, however, in order to develop this concept into a full-scale process.

J. M. Calo

2000-12-01T23:59:59.000Z

158

Fluidized bed pyrolysis of terrestrial biomass feedstocks  

SciTech Connect

Hybrid poplar, switchgrass, and corn stover were pyrolyzed in a bench scale fluidized-bed reactor to examine the influence of storage time on thermochemical converting of these materials. The influence of storage on the thermochemical conversion of the biomass feedstocks was assessed based on pyrolysis product yields and chemical and instrumental analyses of the pyrolysis products. Although char and gas yields from corn stover feedstock were influenced by storage time, hybrid poplar and switchgrass were not significantly affected. Liquid, char, and gas yields were feedstock dependent. Total liquid yields (organic+water) varied from 58%-73% depending on the feedstock. Char yields varied from 14%-19% while gas yields ranged from 11%-15%. The chemical composition of the pyrolysis oils from hybrid polar feedstock was slightly changed by storage, however, corn stover and switchgrass feedstock showed no significant changes. Additionally, stored corn stover and hybrid poplar pyrolysis oils showed a significant decrease in their higher heating values compared to the fresh material.

Besler, S.; Agblevor, F.A.; Davis, M.F. [National Renewable Energy Lab., Golden, CO (United States)] [and others

1994-12-31T23:59:59.000Z

159

Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System  

NLE Websites -- All DOE Office Websites (Extended Search)

EstablishmEnt EstablishmEnt of an EnvironmEntal Control tEChnology laboratory with a CirCulating fluidizEd-bEd Combustion systEm Description In response to President Bush's Clear Skies Initiative in 2002-a legislative proposal to control the emissions of nitrogen oxides (NO x ), sulfur dioxide (SO 2 ), and mercury (Hg) from power plants-the National Energy Technology Laboratory (NETL) organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified four high- priority research needs for controlling emissions from fossil-fueled power plants: multipollutant control, improved sorbents and catalysts, mercury monitoring and capture, and an improved understanding of the underlying combustion chemistry.

160

Multiphase flow simulations of a moving fluidized bed regenerator in a carbon capture unit  

Science Journals Connector (OSTI)

Abstract To accelerate the commercialization and deployment of carbon capture technologies, computational fluid dynamics (CFD)-based tools may be used to model and analyze the performance of carbon capture devices. This work presents multiphase CFD flow simulations for the regenerator—a device responsible for extracting CO2 from CO2-loaded particles before the sorbent is recycled. The use of solid particle sorbents in this design is a departure from previously reported systems, where aqueous sorbents are employed. Another new feature is the inclusion of a series of perforated plates along the regenerator height. The influence of these plates on sorbent distribution is examined for varying sorbent holdup, fluidizing gas velocity, and particle size. The residence time distribution of sorbents is also measured to classify the flow regime as plug flow or well-mixed flow. The purpose of this work is to better understand the sorbent flow characteristics before reaction kinetics of CO2 desorption can be implemented.

Avik Sarkar; Wenxiao Pan; DongMyung Suh; E. David Huckaby; Xin Sun

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fluidized solids technique" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Assessment of sorbent reactivation by water hydration for fluidized bed combustion application  

SciTech Connect

Disposal of fluidized bed combustion (FBC) solid residues currently represents one of the major issues in FBC design and operation, and contributes significantly to its operating cost. This issue has triggered research activities on the enhancement of sorbent utilization for in situ sulfur removal. The present study addresses the effectiveness of the reactivation by liquid water hydration of FB spent sorbents. Two materials are considered in the study, namely the bottom ash from the operation of a full-scale utility FB boiler and the raw commercial limestone used in the same boiler. Hydration-reactivation tests were carried out at temperatures of 40{sup o}C and 80{sup o}C and for curing times ranging from 15 minutes to 2d, depending on the sample. The influence of hydration conditions on the enhancement of sulfur utilization has been assessed. A combination of methods has been used to characterize the properties of liquid water-hydrated materials

Fabio Montagnaro; Piero Salatino; Fabrizio Scala; Yinghai Wu; Edward J. Anthony; Lufei Jia [Universita degli Studi di Napoli Federico II, Complesso Universitario del Monte di Sant'Angelo, Naples (Italy). Dipartimento di Chimica

2006-06-15T23:59:59.000Z

162

Performance analysis of co-firing waste materials in an advanced pressurized fluidized-bed combustor  

SciTech Connect

The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal wastes. Leading this approach is the atmospheric fluidized-bed combustor (AFBC). It has demonstrated its commercial acceptance in the utility market as a reliable source of power by burning a variety of waste and alternative fuels. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economical feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. The results and conclusions developed are generally applicable to current and advanced PFBC design concepts. Wastes considered for co-firing include municipal solid waste (MSW), sewage sludge, and industrial de-inking sludge. Conceptual designs of two power plants rated at 250 MWe and 150 MWe were developed. Heat and material balances were completed for each plant along with environmental issues. With the PFBC`s operation at high temperature and pressure, efforts were centered on defining feeding systems capable of operating at these conditions. Air emissions and solid wastes were characterized to assess the environmental performance comparing them to state and Federal regulations. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

Bonk, D.L.; McDaniel, H.M. [USDOE Morgantown Energy Technology Center, WV (United States); DeLallo, M.R. Jr.; Zaharchuk, R. [Gilbert/Commonwealth, Inc., Reading, PA (United States)

1995-07-01T23:59:59.000Z

163

Fluidized bed combustor and removable windbox and tube assembly therefor  

DOE Patents (OSTI)

A fluidized bed combustor comprises a housing having a chamber therein with a top having a discharge for the gases which are generated in the chamber and a bottom with a discharge for heated fluid. An assembly is arranged in the lower portion of the chamber and the assembly includes a lower plate which is mounted on a support flange of the housing so that it is spaced from the bottom of the chamber and defines a fluid plenum between it and the bottom of the chamber for the discharge of heated fluid. The assembly includes a heat exchanger inlet plenum having tubes therethrough for the passage of fluidizer air and a windbox above the heat exchanger plenum which has a distributor plate top wall. A portion of the chamber above the top wall defines a fluidized bed.

DeFeo, Angelo (Totowa, NJ); Hosek, William (Mt. Tabor, NJ)

1983-01-01T23:59:59.000Z

164

Fluidized bed combustor and removable windbox and tube assembly therefor  

DOE Patents (OSTI)

A fluidized bed combustor comprises a housing having a chamber therein with a top having a discharge for the gases which are generated in the chamber and a bottom with a discharge for heated fluid. An assembly is arranged in the lower portion of the chamber and the assembly includes a lower plate which is mounted on a support flange of the housing so that it is spaced from the bottom of the chamber and defines a fluid plenum between it and the bottom of the chamber for the discharge of heated fluid. The assembly includes a heat exchanger inlet plenum having tubes therethrough for the passage of fluidizer air and a windbox above the heat exchanger plenum which has a distributor plate top wall. A portion of the chamber above the top wall defines a fluidized bed.

DeFeo, Angelo (Totowa, NJ); Hosek, William S. (Mt. Tabor, NJ)

1981-01-01T23:59:59.000Z

165

Methods of forming a fluidized bed of circulating particles  

DOE Patents (OSTI)

There is disclosed an apparatus for forming a fluidized bed of circulating particles. In an embodiment, the apparatus includes a bottom portion having a sidewall, the sidewall defining a curvilinear profile, and the bottom portion configured to contain a bed of particles; and a gas inlet configured to produce a column of gas to carry entrained particles therein. There is disclosed a method of forming a fluidized bed of circulating particles. In an embodiment, the method includes positioning particles within a bottom portion having a sidewall, the sidewall defining a curvilinear profile; producing a column of gas directed upwardly through a gas inlet; carrying entrained particles in the column of gas to produce a fountain of particles over the fluidized bed of circulating particles and subside in the particle bed until being directed inwardly into the column of gas within the curvilinear profile.

Marshall, Douglas W. (Blackfoot, ID)

2011-05-24T23:59:59.000Z

166

CRUCIBLE TESTING OF TANK 48H RADIOACTIVEWASTE SAMPLE USING FLUIDIZED BED STEAMREFORMING TECHNOLOGY FOR ORGANICDESTRUCTION  

SciTech Connect

The purpose of crucible scale testing with actual radioactive Tank 48H material was to duplicate the test results that had been previously performed on simulant Tank 48H material. The earlier crucible scale testing using simulants was successful in demonstrating that bench scale crucible tests produce results that are indicative of actual Fluidized Bed Steam Reforming (FBSR) pilot scale tests. Thus, comparison of the results using radioactive Tank 48H feed to those reported earlier with simulants would then provide proof that the radioactive tank waste behaves in a similar manner to the simulant. Demonstration of similar behavior for the actual radioactive Tank 48H slurry to the simulant is important as a preliminary or preparation step for the more complex bench-scale steam reformer unit that is planned for radioactive application in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF) later in 2008. The goals of this crucible-scale testing were to show 99% destruction of tetraphenylborate and to demonstrate that the final solid product produced is sodium carbonate. Testing protocol was repeated using the specifications of earlier simulant crucible scale testing, that is sealed high purity alumina crucibles containing a pre-carbonated and evaporated Tank 48H material. Sealing of the crucibles was accomplished by using an inorganic 'nepheline' sealant. The sealed crucibles were heat-treated at 650 C under constant argon flow to inert the system. Final product REDOX measurements were performed to establish the REDuction/OXidation (REDOX) state of known amounts of added iron species in the final product. These REDOX measurements confirm the processing conditions (pyrolysis occurring at low oxygen fugacity) of the sealed crucible environment which is the environment actually achieved in the fluidized bed steam reformer process. Solid product dissolution in water was used to measure soluble cations and anions, and to investigate insoluble fractions of the product solids. Radioanalytical measurements were performed on the Tank 48H feed material and on the dissolved products in order to estimate retention of Cs-137 in the process. All aspects of prior crucible scale testing with simulant Tank 48H slurry were demonstrated to be repeatable with the actual radioactive feed. Tetraphenylborate destruction was shown to be >99% and the final solid product is sodium carbonate crystalline material. Less than 10 wt% of the final solid products are insoluble components comprised of Fe/Ni/Cr/Mn containing sludge components and Ti from monosodium titanate present in Tank 48H. REDOX measurements on the radioactive solid products indicate a reducing atmosphere with extremely low oxygen fugacity--evidence that the sealed crucible tests performed in the presence of a reductant (sugar) under constant argon purge were successful in duplicating the pyrolysis reactions occurring with the Tank 48H feed. Soluble anion measurements confirm that using sugar as reductant at 1X stoichiometry was successful in destroying nitrate/nitrite in the Tank 48H feed. Radioanalytical measurements indicate that {approx}75% of the starting Cs-137 is retained in the solid product. No attempts were made to analyze/measure other potential Cs-137 in the process, i.e., as possible volatile components on the inner surface of the alumina crucible/lid or as offgas escaping the sealed crucible. The collective results from these crucible scale tests on radioactive material are in good agreement with simulant testing. Crucible scale processing has been shown to duplicate the complex reactions of an actual fluidized bed steam reformer. Thus this current testing should provide a high degree of confidence that upcoming bench-scale steam reforming with radioactive Tank 48H slurry will be successful in tetraphenylborate destruction and production of sodium carbonate product.

Crawford, C

2008-07-31T23:59:59.000Z

167

Advanced Circulating Pressurized Fluidized Bed Combustion (APFBC) Repowering Considerations  

NLE Websites -- All DOE Office Websites (Extended Search)

Weinstein & Travers: APFBC Repowering Considerations Weinstein & Travers: APFBC Repowering Considerations paper 970563 Page 1 of 35 Advanced Circulating Pressurized Fluidized Bed Combustion (APFBC) Repowering Considerations Richard E. Weinstein, P.E. Parsons Power Group Inc. Reading, Pennsylvania eMail: Richard_E_Weinstein@Parsons.COM / phone: 610 / 855-2699 Robert W. Travers, P.E. U.S. Department of Energy Office of Fossil Energy Germantown, Maryland eMail: Robert.Travers@HQ.DOE.GOV / phone: 301 / 903-6166 Weinstein & Travers: APFBC Repowering Considerations paper 970563 Page 2 of 35 Advanced Circulating Pressurized Fluidized Bed Combustion Repowering Considerations ABSTRACT ..............................................................................................................................................................................

168

Refractory experience in circulating fluidized bed combustors, Task 7  

SciTech Connect

This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE's Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

Vincent, R.Q.

1989-11-01T23:59:59.000Z

169

The combustion of large particles of char in bubbling fluidized beds: The dependence of Sherwood number and the rate of burning on particle diameter  

SciTech Connect

Particles of char derived from a variety of fuels (e.g., biomass, sewage sludge, coal, or graphite), with diameters in excess of {approx}1.5mm, burn in fluidized bed combustors containing smaller particles of, e.g., sand, such that the rate is controlled by the diffusion both of O{sub 2} to the burning solid and of the products CO and CO{sub 2} away from it into the particulate phase. It is therefore important to characterize these mass transfer processes accurately. Measurements of the burning rate of char particles made from sewage sludge suggest that the Sherwood number, Sh, increases linearly with the diameter of the fuel particle, d{sub char} (for d{sub char}>{approx}1.5mm). This linear dependence of Sh on d{sub char} is expected from the basic equation Sh=2{epsilon}{sub mf}(1+d{sub char}/2{delta}{sub diff})/{tau}, provided the thickness of the boundary layer for mass transfer, {delta}{sub diff}, is constant in the region of interest (d{sub char}>{approx}1.5mm). Such a dependence is not seen in the empirical equations currently used and based on the Frossling expression. It is found here that for chars made from sewage sludge (for d{sub char}>{approx}1.5mm), the thickness of the boundary layer for mass transfer in a fluidized bed, {delta}{sub diff}, is less than that predicted by empirical correlations based on the Frossling expression. In fact, {delta}{sub diff} is not more than the diameter of the fluidized sand particles. Finally, the experiments in this study indicate that models based on surface renewal theory should be rejected for a fluidized bed, because they give unrealistically short contact times for packets of fluidized particles at the surface of a burning sphere. The result is the new correlation Sh = 2{epsilon}{sub mf}/{tau} + (A{sub cush}/A{sub char})(d{sub char}/ {delta}{sub diff}) for the dependence of Sh on d{sub char}, the diameter of a burning char particle. This equation is based on there being a gas-cushion of fluidizing gas underneath a burning char particle; the implication of this correlation is that a completely new picture emerges for the combustion of a char particle in a hot fluidized bed. (author)

Dennis, J.S.; Hayhurst, A.N.; Scott, S.A. [University of Cambridge, Department of Chemical Engineering, Pembroke Street, Cambridge CB2 3RA, England (United Kingdom)

2006-11-15T23:59:59.000Z

170

FLUIDIZED BED STEAM REFORMER MONOLITH FORMATION  

SciTech Connect

Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or ''mineralized'' waste form while converting organic components to CO{sub 2} and steam, and nitrate/nitrite components, if any, to N{sub 2}. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO{sub 4}, I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydroceramics. All but one of the nine monoliths tested met the <2g/m{sup 2} durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydroceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form.

Jantzen, C

2006-12-22T23:59:59.000Z

171

Fluidized bed combustor and coal gun-tube assembly therefor  

DOE Patents (OSTI)

A coal supply gun assembly for a fluidized bed combustor which includes heat exchange elements extending above the bed's distributor plate assembly and in which the gun's nozzles are disposed relative to the heat exchange elements to only discharge granular coal material between adjacent heat exchange elements and in a path which is substantially equidistant from adjacent heat exchange elements.

Hosek, William S. (Mt. Tabor, NJ); Garruto, Edward J. (Wayne, NJ)

1984-01-01T23:59:59.000Z

172

DMEC-1 Pressurized Circulating Fluidized-Bed Demonstration Project  

SciTech Connect

The DMEC-1 project will demonstrate the use of Pyropower`s PYROFLOW pressurized circulating fluidized bed technology to repower an existing coal fired generating station. This will be the first commercial application of this technology in the world. The project is now in budget period 1, the preliminary design phase.

Kruempel, G.E.; Ambrose, S.J. [Midwest Power, Des Moines, IA (United States); Provol, S.J. [Pyropower Corp., San Diego, CA (United States)

1992-12-01T23:59:59.000Z

173

138 Chemical Engineering Education FLUIDIZED BED  

E-Print Network (OSTI)

] and to characterize the gas-solid flow regimes.[5,6] This experiment is compact and cost-effective; the cost at the precollege and freshman level, the fluid motion of the gas and the brightly colored particles attracts processes used for chemical production of materials to fabrication processes needed to transform

Hesketh, Robert

174

Study of Gas Solid Flow Characteristics in Cyclone Inlet Ducts of A300Mwe CFB Boiler  

Science Journals Connector (OSTI)

Gas solid flow characteristics in cyclone’s inlet duct of a 300MW CFB boiler were studied in a cold circulating fluidized bed (CFB) experimental setup according to a 410t/h CFB boiler with a scale of 10?1....Figs...

J. Y. Tang; X. F. Lu; J. Lai; H. Z. Liu

2010-01-01T23:59:59.000Z

175

Influence of Lime Addition to Ilmenite in Chemical-Looping Combustion (CLC) with Solid Fuels  

Science Journals Connector (OSTI)

The influence of calcined and sulfated limestone addition in an oxygen carrier bed of ilmenite has been investigated for chemical-looping combustion (CLC) with solid fuel. The experiments have been performed in a laboratory-batch fluidized-bed reactor ...

Guillaume Teyssié; Henrik Leion; Georg L. Schwebel; Anders Lyngfelt; Tobias Mattisson

2011-07-07T23:59:59.000Z

176

Data summary of municipal solid waste management alternatives. Volume 12, Numerically indexed bibliography  

SciTech Connect

This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

none,

1992-10-01T23:59:59.000Z

177

Highly Attrition Resistant Zinc Oxide-Based Sorbents for H2S Removal by Spray Drying Technique  

SciTech Connect

Primary issues for the fluidized-bed/transport reactor process are high attrition resistant sorbent, its high sorption capacity and regenerability, durability, and cost. The overall objective of this project is the development of a superior attrition resistant zinc oxide-based sorbent for hot gas cleanup in integrated coal gasification combined cycle (IGCC). Sorbents applicable to a fluidized-bed hot gas desulfurization process must have a high attrition resistance to withstand the fast solid circulation between a desulfurizer and a regenerator, fast kinetic reactions, and high sulfur sorption capacity. The oxidative regeneration of zinc-based sorbent usually initiated at greater than 600 C with highly exothermic nature causing deactivation of sorbent as well as complication of sulfidation process by side reaction. Focusing on solving the sorbent attrition and regenerability of zinc oxide-based sorbent, we have adapted multi-binder matrices and direct incorporation of regeneration promoter. The sorbent forming was done with a spray drying technique that is easily scalable to commercial quantity.

Ryu, C.K.; Lee, J.B.; Ahn, D.H.; Kim, J.J.; Yi, C.K.

2002-09-19T23:59:59.000Z

178

Implementation of fluidized granulated iron reactors in a chromate remediation process  

Science Journals Connector (OSTI)

Abstract A new approach concerning in-situ remediation on source (‘hot-spot’) decontamination of a chromate damage in connection with an innovative pump-and-treat-technique has been developed. Iron granulates show significant higher reduction rates, using fluidized bed conditions, than a literature study with a fixed bed installation of small-sized iron granules. First results from an abandoned tannery site concerning injections of sodium dithionite as a chromate reductant for the vadose zone in combination with a pump-and-treat-method, allying the advantages of granulated zero valent iron (ZVI), are reported. Reduction amounts of chromate have been found up to 88% compared with initial values in the soil after a soil water exchange of 8 pore volumes within 2.5 months. Chromate concentrations in the pumped effluent have been reduced to under the detection limit of 0.005 mg/L by treatment with ZVI in the pilot plant.

P. Müller; K.E. Lorber; R. Mischitz; C. Weiß

2014-01-01T23:59:59.000Z

179

Fluidized-bed bioreactor process for the microbial solubiliztion of coal  

DOE Patents (OSTI)

A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor.

Scott, Charles D. (Oak Ridge, TN); Strandberg, Gerald W. (Farragut, TN)

1989-01-01T23:59:59.000Z

180

Fluidized-bed bioreactor system for the microbial solubilization of coal  

DOE Patents (OSTI)

A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor. 2 figs.

Scott, C.D.; Strandberg, G.W.

1987-09-14T23:59:59.000Z

Note: This page contains sample records for the topic "fluidized solids technique" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Bed-inventory Overturn Mechanism for Pant-leg Circulating Fluidized Bed Boilers  

E-Print Network (OSTI)

A numerical model was established to investigate the lateral mass transfer as well as the mechanism of bed-inventory overturn inside a pant-leg circulating fluidized bed (CFB), which are of great importance to maintain safe and efficient operation of the CFB. Results show that the special flow structure in which the solid particle volume fraction along the central line of the pant-leg CFB is relative high enlarges the lateral mass transfer rate and make it more possible for bed inventory overturn. Although the lateral pressure difference generated from lateral mass transfer inhibits continuing lateral mass transfer, providing the pant-leg CFB with self-balancing ability to some extent, the primary flow rate change due to the outlet pressure change often disable the self-balancing ability by continually enhancing the flow rate difference. As the flow rate of the primary air fan is more sensitive to its outlet pressure, it is easier to lead to bed inventory overturn. While when the solid particle is easier to c...

Wang, Zhe; Yang, Zhiwei; West, Logan; Li, Zheng

2011-01-01T23:59:59.000Z

182

Fluidized-Bed Waste-Heat Recovery System development. Semiannual report, February 1-July 31, 1982  

SciTech Connect

The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, a recirculating medium is heated by the flue gas in a fluidized bed. The hot medium is then removed from the bed and placed in a second fluidized bed where it is fluidized by the combustion air. Through this process, the combustion air is heated. The cooled medium is then returned to the first bed. Initial development of this concept is for the aluminum smelting industry.

Cole, W. E.; DeSaro, R.; Griffith, J.; Joshi, C.

1982-08-01T23:59:59.000Z

183

Numerical and experimental study of hydrodynamics in a compartmented fluidized bed oil palm shell biomass gasifier.  

E-Print Network (OSTI)

??Numerical and experimental studies of hydrodynamic parameters of fluidized beds formed by either a single component system or a binary mixture in a pilot plant… (more)

Wee, Siaw Khur

2011-01-01T23:59:59.000Z

184

E-Print Network 3.0 - advanced fluidized bed Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

"Biomass Thermochemcial Conversion to Biofuels: Advances in Modeling and Summary: gasification in fluidized bed reactors will be presented. This includes the development of...

185

Valve for controlling solids flow  

DOE Patents (OSTI)

A fluidized solids control valve is disclosed that is particularly well adapted for use with a flow of coal or char that includes both large particles and fines. The particles may or may not be fluidized at various times during the operation. The valve includes a tubular body that terminates in a valve seat covered by a normally closed closure plate. The valve body at the seat and the closure plate is provided with aligned longitudinal slots that receive a pivotally supported key plate. The key plate is positionable by an operator in inserted, intermediate and retracted positions respecting the longitudinal slot in the valve body. The key plate normally closes the slot within the closure plate but is shaped and aligned obliquely to the longitudinal slot within the valve body to provide progressively increasing slot openings between the inserted and retracted positions. Transfer members are provided between the operator, key plate and closure plate to move the closure plate into an open position only when the key plate is retracted from the longitudinal slot within the valve body.

Feldman, David K. (Fairlawn, NJ)

1980-01-01T23:59:59.000Z

186

Decontamination of combustion gases in fluidized bed incinerators  

DOE Patents (OSTI)

Sulfur-containing atmospheric pollutants are effectively removed from exit gas streams produced in a fluidized bed combustion system by providing a fluidized bed of particulate material, i.e. limestone and/or dolomite wherein a concentration gradient is maintained in the vertical direction. Countercurrent contacting between upwardly directed sulfur containing combustion gases and descending sorbent particulate material creates a concentration gradient across the vertical extent of the bed characterized in progressively decreasing concentration of sulfur, sulfur dioxide and like contaminants upwardly and decreasing concentration of e.g. calcium oxide, downwardly. In this manner, gases having progressively decreasing sulfur contents contact correspondingly atmospheres having progressively increasing concentrations of calcium oxide thus assuring optimum sulfur removal.

Leon, Albert M. (Mamaroneck, NY)

1982-01-01T23:59:59.000Z

187

FUNDAMENTAL FLUIDIZATION RESEARCH PROJECT DOE/E~0575 ENVIRONMENTAL ASSESSMENT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FUNDAMENTAL FLUIDIZATION RESEARCH PROJECT FUNDAMENTAL FLUIDIZATION RESEARCH PROJECT DOE/E~0575 ENVIRONMENTAL ASSESSMENT JANUARY 1994 Prepared by U.S. Department of Energy Morgantown Energy Technology Center P.O. Box 880 Morgantown, WV 26507-0880 q e!" .t= I \, F= ··-0 Nov 1 5 19911a n V \) r I Iv,ASTER tJ :DISTRIBUTION OF THIS DOCUMENT IS UNL~ITe:> Jf DISCLAIMER This report was .. prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned

188

State of Industrial Fluidized Bed Combustion  

E-Print Network (OSTI)

A new combustion technique has been developed in the last decade that permits the burning of low quality coal, lignite and other fuels, while maintaining stack emissions within State and Federal limits. Low quality fuels can be burned directly...

Mesko, J. E.

1982-01-01T23:59:59.000Z

189

Fluidized bed gasification ash reduction and removal process  

DOE Patents (OSTI)

In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

Schenone, Carl E. (Madison, PA); Rosinski, Joseph (Vanderbilt, PA)

1984-12-04T23:59:59.000Z

190

Fluidized bed gasification ash reduction and removal system  

DOE Patents (OSTI)

In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

Schenone, Carl E. (Madison, PA); Rosinski, Joseph (Vanderbilt, PA)

1984-02-28T23:59:59.000Z

191

Four Rivers second generation Pressurized Circulating Fluidized Bed Combustion Project  

SciTech Connect

Air Products has been selected in the DOE Clean Coal Technology Round V program to build, own, and operate the first commercial power plant using second generation Pressurized Circulating Fluidized Bed (PCFB) combustion technology. The four Rivers Energy Project (Four Rivers) will produce up to 400,000 lb/hr steam, or an equivalent gross capacity of 95 MWe. The unit will be used to repower an Air Products chemicals manufacturing facility in Calvert City, Kentucky.

Holley, E.P.; Lewnard, J.J. [Air Products and Chemicals, Inc. (United States); von Wedel, G. [LLB Lurgi Lentjes Babcock Energietechnik (GmbH); Richardson, K.W. [Foster Wheeler Energy Corp. (United States); Morehead, H.T. [Westinghouse Electric Corp. (United States)

1995-04-01T23:59:59.000Z

192

Great lakes fluidized-bed combustion. Final report  

SciTech Connect

A program was conducted to design, construct, and operate an industrial fluidized bed combustion (FBC) boiler demonstration plant with a capacity of 50,000 lb/h steam. The following were the objectives of the program: (1) to extend the fluidized bed boiler design by employing natural circulation cooling; (2) to design, build, operate, test, and demonstrate a fluidized bed boiler that could burn high sulfur coal in an environmentally acceptable manner; and (3) to obtain sufficient data for industry to make an objective appraisal of fluidized bed coal burning boilers. Following a five-year design, development, and construction effort, the demonstration plant was first operated in June of 1981. Initial operation identified several equipment and operating problems, particularly in the areas of the fuel preparation and fuel feed systems. Unit operation and availability steadily improved, culminating in a 30-day continuous run ending in May 1982. Following shutdown, major problem areas such as bed tube failures were addressed by C-E and rectified prior to the start of the test program. Shakedown/testing operation commenced on August 12, 1983. The objectives for the test program were to establish the unit operating conditions required to optimize SO/sub 2/ removal and combustion efficiency for different operating modes, and to evaluate the long-term performance of components which are essential for reliable FBC operation. A total of 23 tests were run from February 16, 1984 to April 19, 1984. The test results demonstrated that FBC is an environmentally and commercially sound technology. Specificially, the required sulfur removal, low NO/sub x//CO emissions and high combustion efficiencies can be readily achieved. This report identifies the effects of recycle, excess air, Ca/S mole ratio, and overfire air on combustion efficiency, boiler efficiency, and emissions. 6 refs., 97 figs., 8 tabs.

Not Available

1985-12-01T23:59:59.000Z

193

Pulsed atmospheric fluidized bed combustor apparatus and process  

DOE Patents (OSTI)

A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g. organic and medical waste, drying, calcining and the like.

Mansour, Momtaz N. (Columbia, MD)

1992-01-01T23:59:59.000Z

194

Erosion of heat exchanger tubes in fluidized beds  

SciTech Connect

This final report describes the activities of the 3-year project entitled Erosion of Heat Exchanger Tubes In Fluidized Beds.'' which was completed at the end of 1990. Project accomplishments include the collection of a substantial body of wear data In a 24in. [times] 24in. fluidized bed, comparative wear results In a 6in. [times] 6in. fluidized bed, the development of a dragometer and the collection of a comprehensive set of drag force data in the 24in. [times] 24in. bed, Fast Fourier Transform (FFT) analysis of bubble probe data to establish dominant bubble frequencies in the 24in. [times] 24in. bed, the use of a heat flux gauge for measurement of heat transfer coefficients in the 24in. [times] 24in. bed and the modeling of the tube wear in the 24in. [times] 24in. bed. Analysis of the wear data from the 24in. square bed indicates that tube wear increases with increase in superficial velocity, and with increase in tube height. The latter effect is a result of the tubes higher up in the bed seeing greater movement of dense phase than tubes lower down In the bed. In addition, tube wear was found to decrease with increase in particle size, for constant superficial velocity. Three models of tube wear were formulated and provided acceptable prediction of wear when compared with the experimental data.

Johnson, E.K.; Flemmer, R.L.C.

1991-01-01T23:59:59.000Z

195

Propagating Waves in a Monolayer of Gas-Fluidized Rods  

E-Print Network (OSTI)

We report on an observation of propagating compression waves in a quasi-two-dimensional monolayer of apolar granular rods fluidized by an upflow of air. The collective wave speed is an order of magnitude faster than the speed of the particles. This gives rise to anomalously large number fluctuations dN ~ $N^{0.72 \\pm 0.04}$, which are greater than ordinary number fluctuations of N^{1/2}. We characterize the waves by calculating the spatiotemporal power spectrum of the density. The position of observed peaks, as a function of frequency w and wavevector k, yields a linear dispersion relationship in the long-time, long-wavelength limit and a wavespeed c = w/k. Repeating this analysis for systems at different densities and air speeds, we observe a linear increase in the wavespeed with increasing packing fraction with no dependence on the airflow. Although air-fluidized rods self-propel individually or in dilute collections, the parallel and perpendicular root-mean-square speeds of the rods indicate that they no longer self-propel when propagating waves are present. Based on this mutual exclusivity, we map out the phase behavior for the existence of waves vs self-propulsion as a function of density and fluidizing airflow.

L. J. Daniels; D. J. Durian

2010-11-12T23:59:59.000Z

196

Fluid-bed combustion of solid wastes  

SciTech Connect

For over ten years combustion Power Company has been conducting experimental programs and developing fluid bed systems for agencies of the federal government and for private industry and institutions. Many of these activities have involved systems for the combustion of solid waste materials. Discussed here will be three categories of programs, development of Municipal Solid Waste (MSW) fired fluid beds, development of wood waste fired fluid beds, and industrial installations. Research and development work on wood wastes has led to the design and construction of two large industrial fluid bed combustors. In one of these, a fluid bed is used for the generation of steam with a fuel that was previously suited only for landfill. Rocks and inerts are continuously removed from this combustor using a patented system. The second FBC is designed to use a variety of fuels as the source of energy to dry hog fuel for use in a high performance power boiler. Here the FBC burns green hog fuel, log yard debris, fly ash (char) from the boiler, and dried wood fines to produce a hot gas system for the wood dryer. A significant advantage of the fluidized bed reactor over conventional incinerators is its ability to reduce noxious gas emission and, finally, the fluidized bed is unique in its ability to efficiently consume low quality fuels. The relatively high inerts and moisture content of solid wastes pose no serious problem and require no associated additional devices for their removal.

Vander Molen, R.H.

1980-01-01T23:59:59.000Z

197

Subdue solids in towers  

SciTech Connect

Many distillation, absorption, and stripping columns operate with solids present in the system. The presence of solids may be either intentional or unintentional. But, in all cases, the solids must be handled or tolerated by the vapor/liquid mass-transfer equipment. Such solids should be dealt with by a combination of four methods. From most favorable to least favorable, these are: (1) keep the solids out; (2) keep the solids moving; (3) put the solids somewhere harmless; and (4) make it easier to clean the hardware. The key precept for all these approaches is the realization that solids present in a system just don't disappear. In this article, the authors review the techniques and design issues involved in making a vapor/liquid mass-transfer system operate with solids present. They assume that the solids cannot be kept out, eliminating the first choice. The type of mass-transfer service does not matter. The same principles apply equally well to distillation, adsorption, and stripping. They include equipment design criteria based on the methods outlined above, as well as detailed recommendations for each of the major equipment choices that can be made for mass-transfer devices. Then, they illustrate the approach via an example--a vinyl chloride monomer (VCM) unit having solids as an inherent part of its feed.

Sloley, A.W.; Martin, G.R.

1995-01-01T23:59:59.000Z

198

Updating for Ash Cooler Fluidized Air System of a 410 t/h CFB Boiler  

Science Journals Connector (OSTI)

The paper presents an updating scheme for ash cooler fluidized air system of a 410 t/h CFB boiler. The ash cooler fluidized air, which is originally designed, is provided by the independent configuration of two forced fans. By analyzing and studying ...

Gao Jian-qiang; Chen Hong-wei; Zhang Wei

2009-10-01T23:59:59.000Z

199

Using Ilmenite To Reduce the Tar Yield in a Dual Fluidized Bed Gasification System  

Science Journals Connector (OSTI)

In this work, ilmenite was used as the catalytic material in the Chalmers 2–4 MWth dual fluidized bed gasifier to decrease the yield of tar. ... Indirect gasification, using the Dual Fluidized Bed (DFB) concept, has been identified as being suitable for medium- to large-scale production units. ... catalytic reactors, the implementation of specific reaction media such as supercrit. ...

Anton Larsson; Mikael Israelsson; Fredrik Lind; Martin Seemann; Henrik Thunman

2014-03-10T23:59:59.000Z

200

Intermittent contact of fluidized anode particles containing exoelectrogenic biofilms for continuous power generation in microbial  

E-Print Network (OSTI)

Intermittent contact of fluidized anode particles containing exoelectrogenic biofilms on granular activated carbon (GAC) particles. Particles were fluidized in the anode chamber for electricity was sustained by inter- mittent contact of charged particles with the anode. Higher power was obtained by flu

Note: This page contains sample records for the topic "fluidized solids technique" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Inactivation of Salmonella Enteritidis PT 30 on Almonds with a Fluidized Bed Atmospheric Pressure Plasma  

E-Print Network (OSTI)

investigated the use of a fluidized bed atmospheric pressure plasma (APP) as a possible pasteurization methodInactivation of Salmonella Enteritidis PT 30 on Almonds with a Fluidized Bed Atmospheric Pressure Plasma Kalyani Narayanan1, Nathan M. Anderson2, Gregory J. Fleischman2 and Susanne Keller2 1Institute

Heller, Barbara

202

Tar Reduction by Primary Measures in an Autothermal Air-Blown Fluidized Bed Biomass Gasifier  

Science Journals Connector (OSTI)

mean size (?m) ... When some calcined dolomite (CaO·MgO) is used in the bed of a biomass gasifier of fluidized bed type the raw gas produced is cleaner than when only silica sand is used in it as fluidizing medium. ...

Manuel Campoy; Alberto Go?mez-Barea; Diego Fuentes-Cano; Pedro Ollero

2010-10-01T23:59:59.000Z

203

Pulsed atmospheric fluidized bed combustion. Technical progress report, April 1992--June 1992  

SciTech Connect

The general specifications for a Pulsed Atmospheric Fluidized Bed Combustor Design Report (PAFBC) plant are presented. The design tasks for the PAFBC are described in the following areas: Coal/Limestone preparation and feed system; pulse combustor; fluidized bed; boiler parts; and ash handling system.

Not Available

1992-08-01T23:59:59.000Z

204

Operation of a steam hydro-gasifier in a fluidized bed reactor  

E-Print Network (OSTI)

OF A S T E A M HYDRO-GASIFIER IN A FLUIDIZED BED REACTOROF A S T E A M HYDRO-GASIFIER IN A FLUIDIZED BED REACTOR F Iis fed into a hydro-gasifier reactor. One such process was

Park, Chan Seung; Norbeck, Joseph N.

2008-01-01T23:59:59.000Z

205

Adaptive higher order numerical simulation of heat and mass transfer in fluidized beds  

E-Print Network (OSTI)

Adaptive higher order numerical simulation of heat and mass transfer in fluidized beds Ch. Nagaiah1 adaptive numerical results of heat and mass transfer in fluidized beds using higher order time stepping injection. The numerical results are tested with different time stepping methods for different spatial grid

Magdeburg, Universität

206

Enhanced durability of desulfurization sorbents for fluidized-bed applications  

SciTech Connect

To extend the operating temperature range and further improve the durability of fluidizable sorbents, zinc titanate, another leading regenerable sorbent, was selected for development in the later part of this project. A number of zinc titanate formulations were prepared in the 50 to 300 {mu}m range using granulation and spray drying methods. Important sorbent preparation variables investigated included zinc to titanium ratio, binder type, binder amount, and various chemical additives such as cobalt and molybdenum. A number of sorbents selected on the basis of screening tests were subjected to bench-scale testing for 10 cycles at high temperature, high pressure (HTHP) conditions using the reactor system designed and constructed during the base program. This reactor system is capable of operation either as a 2.0 in. or 3.0 in. I.D. bubbling bed and is rated up to 20 atm operation at 871{degrees}C. Bench-scale testing variables included sorbent type, temperature (550 to 750{degrees}C), gas type (KRW or Texaco gasifier gas), steam content of coal gas, and fluidizing gas velocity (6 to 15 cm/s). The sorbents prepared by spray drying showed poor performance in terms of attrition resistance and chemical reactivity. On the other hand, the granulation method proved to be very successful. For example, a highly attrition-resistant zinc titanate formulation, ZT-4, prepared by granulation exhibited virtually no zinc loss and demonstrated a constant high reactivity and sulfur capacity over 10 cycles, i.e., approximately a 60 percent capacity utilization, with Texaco gas at 750{degrees}C, 15 cm/s fluidizing velocity and 15 atm pressure. The commercial potential of the granulation method for zinc titanate manufacture was demonstrated by preparing two 80 lb batches of sorbent with zinc to titanium mol ratios of 0.8 and 1.5.

Gupta, R.P.; Gangwal, S.K.

1992-11-01T23:59:59.000Z

207

Enhanced durability of desulfurization sorbents for fluidized-bed applications  

SciTech Connect

To extend the operating temperature range and further improve the durability of fluidizable sorbents, zinc titanate, another leading regenerable sorbent, was selected for development in the later part of this project. A number of zinc titanate formulations were prepared in the 50 to 300 [mu]m range using granulation and spray drying methods. Important sorbent preparation variables investigated included zinc to titanium ratio, binder type, binder amount, and various chemical additives such as cobalt and molybdenum. A number of sorbents selected on the basis of screening tests were subjected to bench-scale testing for 10 cycles at high temperature, high pressure (HTHP) conditions using the reactor system designed and constructed during the base program. This reactor system is capable of operation either as a 2.0 in. or 3.0 in. I.D. bubbling bed and is rated up to 20 atm operation at 871[degrees]C. Bench-scale testing variables included sorbent type, temperature (550 to 750[degrees]C), gas type (KRW or Texaco gasifier gas), steam content of coal gas, and fluidizing gas velocity (6 to 15 cm/s). The sorbents prepared by spray drying showed poor performance in terms of attrition resistance and chemical reactivity. On the other hand, the granulation method proved to be very successful. For example, a highly attrition-resistant zinc titanate formulation, ZT-4, prepared by granulation exhibited virtually no zinc loss and demonstrated a constant high reactivity and sulfur capacity over 10 cycles, i.e., approximately a 60 percent capacity utilization, with Texaco gas at 750[degrees]C, 15 cm/s fluidizing velocity and 15 atm pressure. The commercial potential of the granulation method for zinc titanate manufacture was demonstrated by preparing two 80 lb batches of sorbent with zinc to titanium mol ratios of 0.8 and 1.5.

Gupta, R.P.; Gangwal, S.K.

1992-11-01T23:59:59.000Z

208

Standby cooling system for a fluidized bed boiler  

DOE Patents (OSTI)

A system for protecting components including the heat exchangers of a fluidized bed boiler against thermal mismatch. The system includes an injection tank containing an emergency supply of heated and pressurized feedwater. A heater is associated with the injection tank to maintain the temperature of the feedwater in the tank at or about the same temperature as that of the feedwater in the heat exchangers. A pressurized gas is supplied to the injection tank to cause feedwater to flow from the injection tank to the heat exchangers during thermal mismatch.

Crispin, Larry G. (Akron, OH); Weitzel, Paul S. (Canal Fulton, OH)

1990-01-01T23:59:59.000Z

209

Control of thermal processes in a fluidized bed combustor (FBC)  

SciTech Connect

Heat and mass balance equations for the transient process of a fluidized bed furnace are described. The equations involve heat release from char and volatiles combustion, heat consumption during moisture evaporation, and heating of char and circulating particles. Calculations and experimental data for steady-state and unsteady conditions are compared. The results show that the height of the dense bed, the excess-air ratio and kinetic features of the fuel affect the rate of the transient process. The time constant for a disturbance by a change of the air flow rate was found to be smaller than the one for a change of the fuel input.

Munts, V.A.; Filippovskij, N.F.; Baskakov, A.P.; Pavliok, E.J. [Ural State Technical Univ., Ekaterinburg (Russian Federation). Heat Power Dept.; Leckner, B. [Chalmers Univ. of Technology, Gothenburg (Sweden). Dept. of Energy Conversion

1997-12-31T23:59:59.000Z

210

Heterotrophic denitrification of aquaculture effluent using fluidized sand biofilters  

Science Journals Connector (OSTI)

Abstract The ability to consistently and cost-effectively reduce nitrate-nitrogen loads in effluent from recirculating aquaculture systems would enhance the industry's environmental stewardship and allow improved facility proximity to large markets in sensitive watersheds. Heterotrophic denitrification technologies specifically employing organic carbon found in aquaculture system waste offer a unique synergy for treatment of land-based, closed-containment production outflows. For space-efficient fluidized sand biofilters to be used as such denitrification reactors, system parameters (e.g., influent dissolved oxygen and carbon to nitrogen ratios, C:N) must be evaluated to most effectively use an endogenous carbon source. The objectives of this work were to quantify nitrate removal under a range of C:Ns and to explore the biofilter bacterial community using three replicated fluidized sand biofilters (height 3.9 m, diameter 0.31 m; fluidized sand volume plus biofilm volume of 0.206 m3) operated at a hydraulic retention time of 15 min and a hydraulic loading rate of 188 L/min m2 at The Conservation Fund Freshwater Institute in Shepherdstown, West Virginia, USA. Nitrate reduction was consistently observed during the biofilter study period (26.9 ± 0.9% removal efficiency; 402 ± 14 g NO3-N/(m3 biofilter d)) although nitrite-N and total ammonium nitrogen concentrations slightly increased (11 and 13% increases, respectively). Nitrate removal efficiency was correlated with carbonaceous oxygen demand to nitrate ratios (R2 > 0.70). Nitrate removal rates during the study period were moderately negatively correlated with influent dissolved oxygen concentration indicating it may be possible the biofilter hydraulic retention time was too short to provide optimized nitrate removal. It is reasonable to assume that the efficiency of nitrate removal across the fluidized sand biofilters could be substantially increased, as long as organic carbon was not limiting, by increasing biofilter bed depths (to 6–10 m), and thus hydraulic retention time. These findings provide a low-cost yet effective technology to remove nitrate-nitrogen from effluent waters of land-based closed-containment aquaculture systems.

Scott Tsukuda; Laura Christianson; Alex Kolb; Keiko Saito; Steven Summerfelt

2014-01-01T23:59:59.000Z

211

Fluidized-Bed Waste-Heat Recovery System Advances  

E-Print Network (OSTI)

ACCESS DOOR (TYPICAL) 1.. LEVEL . PUTFORII ?n'if~~??? FLUIDIZED L--lJ FLUE ';:S ! "'D I DUCT , PRQVISK>N FOR 14" I.P.S. : FLUE GAS . LFr UN! J-~DU~C~T~CL!:!:E~ANO~UT~? RE~':aL:"-~L_--WL:!:!J~~~=:IAIR 1." I.P.S. PREHEATED COMBUSTION AIR... of six months. Data gathered will be used to evaluate performance, energy savings. and economic attractiveness of the FBWHR system. ACKNOWLEDGEMENT This work was jointly funded by the Depart ment of Energy and Thermo Electron Corporation...

Patch, K. D.; Cole, W. E.

212

Evaluation and selection of circulating fluidized bed boilers  

SciTech Connect

The use of circulating fluidized bed (CFB) boilers to generate steam on an industrial scale is increasing. The reasons for this growth include high combustion efficiency, fuel flexibility, and inherent emissions control capability, particularly with regards to control of nitrogen oxides (NO{sub x}) and sulfur oxides (SO{sub x}). However, CFB boiler technology is unique, with operating performance, and construction features that differ significantly from those used in conventional pulverized coal (PC) and stoker-fired boiler technology. An overview of these features is presented by the author.

Marcinek, F.T. (Charles B. Tibbits and Associates, Seattle, WA (US))

1989-05-01T23:59:59.000Z

213

A simple and convenient solid state microanalytical technique for identification and characterization of the high temperature superconductor YBa2Cu3O7?x  

Science Journals Connector (OSTI)

The application of a new electroanalytical technique, abrasive stripping voltammetry, is described for the purpose of identification and characterization of orthorhombic YBa2Cu3O7?x. The method is based on the pe...

F. Scholz; L. Nitschke; E. Kemnitz…

1989-01-01T23:59:59.000Z

214

Conductivity tracer studies for a fluidized-bed bioreactor  

SciTech Connect

An automated conductivity tracer test was developed to measure the residence time distribution (RTD) of a cometabolic fluidized-bed bioreactor (FBBR). The FBBR contained sand-core bioparticles grown with phenol and it provided high (70% to 80%) removal of trichloroethene (TCE) at short (3 minute) detention times. The tracer test apparatus was constructed with off-the-shelf components controlled with a PC-based data acquisition system. Non-disruptive hydrodynamic testing was obtained during normal operation of the FBBR. The conductivity of injected brine pulses was monitored at the reactor inlet and outlet. Dispersion numbers and detention times were computed by fitting the advection-dispersion model to the tracer curves. Typical dispersion numbers attributed to the fluidized-bed of bioparticles ranged from 0.07 to 0.11. In simplified modeling of the FBBR, dispersion was found to have little effect on TCE removal. Based on the dispersion of brine pulses, it was determined that phenol feed pulses injected at inhibitory concentrations over 2 g/L would be rapidly dispersed in the biological bed to non-inhibitory concentrations.

Leung, S.Y.; Segar, R.L. Jr. [Univ. of Missouri, Columbia, MO (United States). Dept. of Civil Engineering

1997-12-31T23:59:59.000Z

215

Fluidized-bed retrofit a practical alternative to FGD  

SciTech Connect

When SO/sub 2/ emissions from an existing utility boiler must be reduced, retrofitting for fluidized-bed combustion may be an attractive alternative. In addition to reducing atmospheric pollutants during combustion, FBC retrofits allow simultaneous burning of a wide range of low-cost fuels. Also, since new components are incorporated in the steam generator rather than added on as pollution-control equipment, they extend the use of the plant beyond its normal life expectancy. There are five types of fossil-fuel-fired boilers used by utilities (pulverized coal, cyclone, stoker, oil, and gas), and literally hundreds of designs. Not all of these designs lend themselves to FBC retrofit, and much depends on the size and age of the boiler. Units that are not structurally sound or that have extensive internal corrosion are generally not suitable. Boilers over 150 MW usually have complicated water circuitry and small furnace plan areas, and may not have enough space to accommodate the fluidized bed. Other important considerations are: Water/steam-circulation design, Furnace bottom-to-grade clearance, Air-heater type and arrangement, Boiler support, Type of particulate-control device, Fan capacity, Space available in the boiler island for alterations.

Stringfellow, T.E.; Nolte, F.S.; Sage, W.L.

1984-02-01T23:59:59.000Z

216

Tar Formation in Pressurized Fluidized Bed Air Gasification of Woody Biomass  

Science Journals Connector (OSTI)

Bark and sawdust with two different particle sizes were used during the gasification experiments. ... When some calcined dolomite (CaO·MgO) is used in the bed of a biomass gasifier of fluidized bed type the raw gas produced is cleaner than when only silica sand is used in it as fluidizing medium. ... The influence of freeboard temperature, fluidization velocity, and particle size on tar production and composition during the air gasification of dried sewage sludge has been researched using a bench-scale gasifier. ...

Nader Padban; Wuyin Wang; Zhicheng Ye; Ingemar Bjerle; Ingemar Odenbrand

2000-04-29T23:59:59.000Z

217

Steam Gasification of Cellulose with Cobalt Catalysts in a Fluidized Bed Reactor  

Science Journals Connector (OSTI)

The catalytic performance of Co/MgO catalysts for the treatment of tar derived from cellulose steam gasification in a bubbling fluidized bed gasifier of 22 mm i.d. and 500 mm height was investigated by means of two different methods:? hot gas cleaning in a fixed bed reactor after the fluidized bed gasifier (secondary method) and treatment inside the gasifier with catalyst as a fluidizing medium (primary method). ... From this perspective, developing a more effective catalyst is essential for scaling down the plant size while still facilitating high and stable catalytic performance. ... At 720-760°, space-times 0.10-0.20 s, catalyst sizes <1.0 ...

Kazuhiko Tasaka; Takeshi Furusawa; Atsushi Tsutsumi

2007-01-19T23:59:59.000Z

218

NETL: Oxy-Fired Pressurized Fluidized Bed Combustor (Oxy-PFBC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxy-Fired Pressurized Fluidized Bed Combustor (Oxy-PFBC) Oxy-Fired Pressurized Fluidized Bed Combustor (Oxy-PFBC) Project No.: DE-FE0009448 Oxy-PFBC Layout. Oxy-PFBC Layout. Pratt and Whitney Rocketdyne (PWR) is developing an oxy-fired pressurized fluidized bed combustor (Oxy-PFBC). Pressurized combustion with oxygen enables high efficiency through staged combustion, which results in reduced oxygen use, as well as through recovery of high quality heat from exhaust water vapor. In addition, the process can result in reduced costs for utilization or storage of CO2 because the CO2 is available at increased pressure, reducing compression requirements. Overall, pressurized fluidized bed combustion can result in electricity production from coal with near-zero emissions. PWR will be testing a novel process for pressurized oxy-combustion in a

219

FLUIDIZABLE CATALYSTS FOR PRODUCING HYDROGEN BY STEAM REFORMING BIOMASS PYROLYSIS LIQUIDS  

E-Print Network (OSTI)

FLUIDIZABLE CATALYSTS FOR PRODUCING HYDROGEN BY STEAM REFORMING BIOMASS PYROLYSIS LIQUIDS Kimberly established that biomass pyrolysis oil could be steam-reformed to generate hydrogen using non pyrolysis oil could be almost stoichiometrically converted to hydrogen. However, process performance

220

Design and Operation of a Circulating Fluidized Bed Gasifier for Wood Powders  

Science Journals Connector (OSTI)

This paper introduces a circulating fluidized bed gasifier (CFBG) with a diameter of 410mm,...2...h for wood powders. The CFBG has been operated in Press Wood Products factory, utilizing its wastes, for more than...

Xu Bingyan; Wu Jiagzhi; Luo Zengfen…

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fluidized solids technique" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

E-Print Network 3.0 - anaerobic fluidized bed Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

fluidized bed Page: << < 1 2 3 4 5 > >> 1 Assembly and Testing of an On-Farm Manure to Energy Conversion BMP for Animal Waste Pollution Control Summary: . Environmental chamber...

222

E-Print Network 3.0 - activated carbon fluidized-bed Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies 16 PRODUCTION OF MULTI-WALL CARBON NANOTUBES BY MEANS OF FLUIDIZED BED PYROLYSIS OF VIRGIN OR RECYCLED POLYMERS Summary: PRODUCTION OF MULTI-WALL CARBON NANOTUBES BY...

223

Gasification of Coffee Grounds in Dual Fluidized Bed:? Performance Evaluation and Parametric Investigation  

Science Journals Connector (OSTI)

Gasification of Coffee Grounds in Dual Fluidized Bed:? Performance Evaluation and Parametric Investigation ... Ishikawajima-Harima Heavy Industries Co., Ltd. ... With a national technical program, we recently worked on converting this biomass waste into middle-caloric product gas. ...

Guangwen Xu; Takahiro Murakami; Toshiyuki Suda; Yoshiaki Matsuzawa; Hidehisa Tani

2006-10-28T23:59:59.000Z

224

Simulation of Bio-syngas Production from Biomass Gasification via Pressurized Interconnected Fluidized Beds  

Science Journals Connector (OSTI)

Bio-syngas production from biomass gasification via pressurized interconnected fluidized...T g), gasification pressure (p g) and steam to biomass ratio (S/B) on bio-syngas production

Fei Feng; Guohui Song; Laihong Shen…

2014-01-01T23:59:59.000Z

225

Failure Analysis of Bed Coil Tube in an Atmospheric Fluidized Bed Combustion Boiler  

Science Journals Connector (OSTI)

The fluidized bed combustion (FBC) technology is being used in thermal power plants for steam generation. FBC plants are more flexible than conventional plants ... fuels may be used for firing. The FBC technology...

M. Venkateswara Rao; S. U. Pathak…

2014-06-01T23:59:59.000Z

226

Biomass combustion with in situ CO2 capture by CaO in a 300 kWth circulating fluidized bed facility  

Science Journals Connector (OSTI)

Abstract This paper reports experimental results from a new 300 kWth calcium looping pilot plant designed to capture CO2 “in situ” during the combustion of biomass in a fluidized bed. This novel concept relies on the high reactivity of biomass as a fuel, which allows for effective combustion around 700 °C in air at atmospheric pressure. In these conditions, CaO particles fed into the fluidized bed combustor react with the CO2 generated during biomass combustion, allowing for an effective CO2 capture. A subsequent step of regeneration of CaCO3 in an oxy-fired calciner is also needed to release a concentrated stream of CO2. This regeneration step is assumed to be integrated in a large scale oxyfired power plant and/or a larger scale post-combustion calcium looping system. The combustor-carbonator is the key reactor in this novel concept, and this work presents experimental results from a 300 kWth pilot to test such a reactor. The pilot involves two 12 m height interconnected circulating fluidized bed reactors. Several series of experiments to investigate the combustor-carbonator reactor have been carried out achieving combustion efficiencies close to 100% and CO2 capture efficiencies between 70 and 95% in dynamic and stationary state conditions, using wood pellets as a fuel. Different superficial gas velocities, excess air ratios above stoichiometric requirements, and solid circulating rates between combustor-carbonator and combustor-calciner have been tested during the experiments. Closure of the carbon and oxygen balances during the combustion and carbonation trials has been successful. A simple reactor model for combustion and CO2 capture in the combustor-carbonator has been applied to aid in the interpretation of results, which should facilitate the future scaling up of this process concept.

M. Alonso; M.E. Diego; C. Pérez; J.R. Chamberlain; J.C. Abanades

2014-01-01T23:59:59.000Z

227

Fluidizable particulate materials and methods of making same  

DOE Patents (OSTI)

The invention provides fluidizable, substantially spherical particulate material of improved attrition resistance having an average particle size from about 100 to about 400 microns useful as sorbents, catalysts, catalytic supports, specialty ceramics or the like. The particles are prepared by spray drying a slurry comprising inorganic starting materials and an organic binder. Exemplary inorganic starting materials include mixtures of zinc oxide with titanium dioxide, or with iron oxide, alumina or the like. Exemplary organic binders include polyvinyl alcohol, hydroxypropylemethyl cellulose, polyvinyl acetate and the like. The spray dried particles are heat treated at a first temperature wherein organic binder material is removed to thereby provide a porous structure to the particles, and thereafter the particles are calcined at a higher temperature to cause reaction of the inorganic starting materials and to thereby form the final inorganic particulate material.

Gupta, Raghubir P. (Durham, NC)

1999-01-01T23:59:59.000Z

228

Development of second-generation pressurized fluidized bed combustion process  

SciTech Connect

Under the sponsorship of the United States Department of Energy, Foster Wheeler Development Corporation, and its team members, Westinghouse, Gilbert/Commonwealth, and the Institute of Gas Technology are developing second-generation pressurized fluidized bed combustion technology capable of achieving net plant efficiency in excess of 45 percent based on the higher heating value of the coal. A three-phase program entails design and costing of a 500 MWe power plant and identification of developments needed to commercialize this technology (Phase 1), testing of individual components (Phase 2), and finally testing these components in an integrated mode (Phase 3). This paper briefly describes the results of the first two phases as well as the progress on the third phase. Since other projects which use the same technology are in construction or in negotiation stages -- namely, the Power System Development Facility and the Four Rivers Energy Modernization Projects -- brief descriptions of these are also included.

Wolowodiuk, W.; Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States); Bonk, D. [USDOE Morgantown Energy Technology Center, WV (United States)

1994-10-01T23:59:59.000Z

229

Characteristics of fluid flow and heat transfer in a fluidized heat exchanger with circulating solid particles  

Science Journals Connector (OSTI)

The commercial viability of heat exchanger is mainly dependent on its long- ... loss and degrades the thermal performance of a heat exchanger. An experimental study was performed to investigate the characteristic...

Soo Whan Ahn; ByungChang Lee; WonCheol Kim; Myung- Whan Bae…

2002-09-01T23:59:59.000Z

230

Fluidized Bed Combustion of Solid Biomass for Electricity and/or Heat Generation  

Science Journals Connector (OSTI)

Fluidised bed combustion (FBC) technology was developed in the ... . The FBC technology was soon expanded for biomass and other low-grade fuels, which have ... a definite trend to widen the range of biomass fuels...

Panagiotis Grammelis; Emmanouil Karampinis…

2011-01-01T23:59:59.000Z

231

Microsoft PowerPoint - Investigation of Gas Solid_Choudhuri_Love  

NLE Websites -- All DOE Office Websites (Extended Search)

INVESTIGATION OF GAS-SOLID FLUIDIZED BED INVESTIGATION OF GAS-SOLID FLUIDIZED BED DYNAMICS WITH NON-SPHERICAL PARTICLES PI - Ahsan Choudhuri, Co-PI - Norman Love Center for Space Exploration and Technology Research Department of Mechanical Engineering University of Texas at El Paso Presented by: Norman Love Project Participants * PI: Ahsan Choudhuri * Co-PI: Norman Love * Doctoral: MD Rashedul Sarker * Masters: ASM Raufur Chowdhury Graduates Mario Ruvalcaba- PhD - (Now at Federal Mogul) MD Rashedul Sarker- MS - (Continuing on at UTEP) MD Mahamudur Rahman- MS - (Now at Drexel Univ) cSETR POWERING INNOVATION THROUGH DIVERSITY * Gasifier:  Types of gasifiers used commercially: Introduction U.S. Department of Energy, Clean Coal & Natural Gas Power Systems,

232

Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System  

SciTech Connect

On February 14, 2002, President Bush announced the Clear Skies Initiative, a legislative proposal to control the emissions of nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), and mercury from power plants. In response to this initiative, the National Energy Technology Laboratory organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified multi-pollutant control; improved sorbents and catalysts; mercury monitoring and capture; and improved understanding of the underlying reaction chemistry occurring during combustion as the most pressing research needs related to controlling environmental emissions from fossil-fueled power plants. The Environmental Control Technology Laboratory will help meet these challenges and offer solutions for problems associated with emissions from fossil-fueled power plants. The goal of this project was to develop the capability and technology database needed to support municipal, regional, and national electric power generating facilities to improve the efficiency of operation and solve operational and environmental problems. In order to effectively provide the scientific data and the methodologies required to address these issues, the project included the following aspects: (1) Establishing an Environmental Control Technology Laboratory using a laboratory-scale, simulated fluidized-bed combustion (FBC) system; (2) Designing, constructing, and operating a bench-scale (0.6 MW{sub th}), circulating fluidized-bed combustion (CFBC) system as the main component of the Environmental Control Technology Laboratory; (3) Developing a combustion technology for co-firing municipal solid waste (MSW), agricultural waste, and refuse-derived fuel (RDF) with high sulfur coals; (4) Developing a control strategy for gaseous emissions, including NO{sub x}, SO{sub 2}, organic compounds, and heavy metals; and (5) Developing new mercury capturing sorbents and new particulate filtration technologies. Major tasks during this period of the funded project's timeframe included: (1) Conducting pretests on a laboratory-scale simulated FBC system; (2) Completing detailed design of the bench-scale CFBC system; (3) Contracting potential bidders to fabricate of the component parts of CFBC system; (4) Assembling CFBC parts and integrating system; (5) Resolving problems identified during pretests; (6) Testing with available Powder River Basin (PRB) coal and co-firing of PRB coal with first wood pallet and then chicken wastes; and (7) Tuning of CFBC load. Following construction system and start-up of this 0.6 MW CFBC system, a variety of combustion tests using a wide range of fuels (high-sulfur coals, low-rank coals, MSW, agricultural waste, and RDF) under varying conditions were performed to analyze and monitor air pollutant emissions. Data for atmospheric pollutants and the methodologies required to reduce pollutant emissions were provided. Integration with a selective catalytic reduction (SCR) slipstream unit did mimic the effect of flue gas composition, including trace metals, on the performance of the SCR catalyst to be investigated. In addition, the following activities were also conducted: (1) Developed advanced mercury oxidant and adsorption additives; (2) Performed laboratory-scale tests on oxygen-fuel combustion and chemical looping combustion; and (3) Conducted statistical analysis of mercury emissions in a full-scale CFBC system.

Wei-Ping Pan; Yan Cao; John Smith

2008-05-31T23:59:59.000Z

233

Fluidized-Bed Waste-Heat Recovery System development. Semiannual report, 1 August 1982-31 January 1983  

SciTech Connect

The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, a recirculating medium is heated by the flue gas in a fluidized bed. The hot medium is then removed from the bed and placed in a second fluidized bed where it is fluidized by the combustion air. Through this process, the combustion air is heated. The cooled medium is then returned to the first bed. Initial development of this concept is for the aluminum smelting industry.

Cole, W.E.; DeSaro, R.; Joshi, C.

1983-02-01T23:59:59.000Z

234

Fluidized-Bed Waste-Heat Recovery System development. Semiannual report, 1 August 1981-31 January 1982  

SciTech Connect

The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, a recirculating medium is heated by the flue gas in a fluidized bed. The hot medium is then removed from the bed and placed in a second fluidized bed where it is fluidized by the combustion air. Through this process, the combustion air is heated. The cooled medium is then returned to the first bed. Initial development of this concept is for the aluminum smelting industry.

Cole, W. E.; DeSaro, R.; Joshi, C.

1982-02-01T23:59:59.000Z

235

Solid Solubility in Laser Cladding  

Science Journals Connector (OSTI)

Laser cladding techniques have recently enjoyed attention in preparing ... solid solution formed due to rapid cooling in laser cladding. This model considers a diffusion mechanism for ... one-dimensional semi-inf...

J. Mazumder; A. Kar

1987-02-01T23:59:59.000Z

236

EMSL - solids  

NLE Websites -- All DOE Office Websites (Extended Search)

solids en Iodine Solubility in Low-Activity Waste Borosilicate Glass at 1000 °C. http:www.emsl.pnl.govemslwebpublicationsiodine-solubility-low-activity-waste-borosilicate-...

237

Solids Accumulation Scouting Studies  

SciTech Connect

The objective of Solids Accumulation activities was to perform scaled testing to understand the behavior of remaining solids in a Double Shell Tank (DST), specifically AW-105, at Hanford during multiple fill, mix, and transfer operations. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles containing plutonium could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste staging tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids: Gibbsite, Zirconia, Sand, and Stainless Steel, with stainless steel particles representing the heavier particles, e.g., plutonium, and supernatant were charged to the test tank and rotating liquid jets were used to mix most of the solids while the simulant was pumped out. Subsequently, the volume and shape of the mounds of residual solids and the spatial concentration profiles for the surrogate for heavier particles were measured. Several techniques were developed and equipment designed to accomplish the measurements needed and they included: 1. Magnetic particle separator to remove simulant stainless steel solids. A device was designed and built to capture these solids, which represent the heavier solids during a waste transfer from a staging tank. 2. Photographic equipment to determine the volume of the solids mounds. The mounds were photographed as they were exposed at different tank waste levels to develop a composite of topographical areas. 3. Laser rangefinders to determine the volume of the solids mounds. The mounds were scanned after tank supernatant was removed. 4. Core sampler to determine the stainless steel solids distribution within the solids mounds. This sampler was designed and built to remove small sections of the mounds to evaluate concentrations of the stainless steel solids at different special locations. 5. Computer driven positioner that placed the laser rangefinders and the core sampler in appropriate locations over solids mounds that accumulated on the bottom of a scaled staging tank where mixing is poor. These devices and techniques were effective to estimate the movement, location, and concentrations of the solids representing heavier particles and could perform well at a larger scale The experiment contained two campaigns with each comprised of ten cycles to fill and empty the scaled staging tank. The tank was filled without mixing, but emptied, while mixing, in seven batches; the first six were of equal volumes of 13.1 gallons each to represent the planned fullscale batches of 145,000 gallons, and the last, partial, batch of 6.9 gallons represented a full-scale partial batch of 76,000 gallons that will leave a 72-inch heel in the staging tank for the next cycle. The sole difference between the two campaigns was the energy to mix the scaled staging tank, i.e., the nozzle velocity and jet rotational speed of the two jet pumps. Campaign 1 used 22.9 ft/s, at 1.54 rpm based on past testing and Campaign 2 used 23.9 ft/s at 1.75 rpm, based on visual observation of minimum velocity that allowed fast settling solids, i.e., sand and stainless steel, to accumulate on the scaled tank bottom.

Duignan, M. R.; Steeper, T. J.; Steimke, J. L.

2012-09-26T23:59:59.000Z

238

ME 290D Solid Modeling, Fall 2014 http://www.me.berkeley.edu/~mcmains/290D/  

E-Print Network (OSTI)

-making/Casting Morphing 3D Printing Fixturing Tolerancing Tools & Techniques drawn from: Solid modeling Graph

McMains, Sara

239

In situ catalytic conversion of tar using rice husk char/ash supported nickel–iron catalysts for biomass pyrolytic gasification combined with the mixing-simulation in fluidized-bed gasifier  

Science Journals Connector (OSTI)

Abstract A catalytic gasification technology has been proposed for tar in situ conversion using the rice husk char (RHC) or rice husk ash (RHA) supported nickel–iron catalysts. Biomass tar could be converted effectively by co-pyrolysis with the RHC/RHA supported nickel–iron catalysts at 800 °C, simplifying the follow-up tar removal process. Under the optimized conditions, the tar conversion efficiency could reach about 92.3% by the RHC Ni–Fe, which exhibited more advantages of easy preparation and energy-saving. In addition, the tar conversion efficiency could reach about 93% by the RHA Ni. Significantly, partial metal oxides (e.g., NiO, Fe2O3) in the carbon matrix of RHC could be in-situ carbothermally reduced into the metallic state (e.g., Ni0) by reducing gases (e.g., CO) or carbon atom, thereby enhancing the catalytic performance of tar conversion. Furthermore, mixing with other solid particles such as sand and RHA Ni, can also improve biomass (e.g., RH) fluidization behavior by optimizing the operation parameters (e.g., particle size, mass fraction) in the mode of fluidized bed gasifier (FBG). After the solid–solid mixing simulation, the RH mass fraction of 0.5 and the particle diameter of 0.5 mm can be employed in the binary mixture of RH and RHA.

Yafei Shen; Peitao Zhao; Qinfu Shao; Fumitake Takahashi; Kunio Yoshikawa

2014-01-01T23:59:59.000Z

240

Fluidized Bed Steam Reforming of INEEL SBW Using THORsm Mineralizing Technology  

SciTech Connect

Sodium bearing waste (SBW) disposition is one of the U.S. Department of Energy (DOE) Idaho Operation Office’s (NE-ID) and State of Idaho’s top priorities at the Idaho National Engineering and Environmental Laboratory (INEEL). Many studies have resulted in the identification of five treatment alternatives that form a short list of perhaps the most appropriate technologies for the DOE to select from. The alternatives are (a) calcination with maximum achievable control technology (MACT) upgrade, (b) steam reforming, (c) cesium ion exchange (CsIX) with immobilization, (d) direct evaporation, and (e) vitrification. Each alternative has undergone some degree of applied technical development and preliminary process design over the past four years. DOE desired further experimental data, with regard to steam reforming technology, to make informed decisions concerning selection of treatment technology for SBW. Mineralizing steam reforming technology, offered by THOR Treatment Technologies, LLC would produce a denitrated, granular mineral waste form using a high-temperature fluidized bed process. A pilot scale demonstration of the technology was performed in a 15-cm-diameter reactor vessel September 27 through October 1, 2004. The pilot scale equipment is owned by the DOE, and located at the Science and Technology Applications Research (STAR) Center in Idaho Falls, ID. Flowsheet chemistry and operational parameters were defined through a collaborative effort involving Idaho National Engineering and Environmental Laboratory, Savannah River National Laboratory (SRNL), and THOR Treatment Technologies personnel. Personnel from Science Applications International Corporation, owners of the STAR Center, operated the pilot plant. The pilot scale test was terminated as planned after achieving a total of 100 hrs of cumulative/continuous processing operation. About 230 kg of SBW surrogate were processed that resulted in about 88 kg of solid product, a mass reduction of about 62%. The process achieved about a 90% turnover of the starting bed. Samples of mineralized solid product materials were analyzed for chemical/physical properties. Results of product performance testing conducted by SRNL will be reported separately by SRNL.

Arlin L. Olson; Nicholas R. Soelberg; Douglas W. Marshall; Gary L. Anderson

2004-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "fluidized solids technique" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS  

SciTech Connect

Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this study, ALSTOM Power Inc. (ALSTOM) has investigated several coal fired power plant configurations designed to capture CO{sub 2} from effluent gas streams for use or sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB units results in significant Boiler Island cost savings. Additionally, ALSTOM has identified several advanced/novel plant configurations, which improve the efficiency and cost of the CO{sub 2} product cleanup and compression process. These advanced/novel concepts require long development efforts. An economic analysis indicates that the proposed oxygen-firing technology in circulating fluidized boilers could be developed and deployed economically in the near future in enhanced oil recovery (EOR) applications or enhanced gas recovery (EGR), such as coal bed methane recovery. ALSTOM received a Cooperative Agreement from the US Department of Energy National Energy Technology Laboratory (DOE) in 2001 to carry out a project entitled ''Greenhouse Gas Emissions Control by Oxygen Firing in Circulating Fluidized Bed Boilers.'' This two-phased project is in effect from September 28, 2001, to October 27, 2004. (U.S. DOE NETL Cooperative Agreement No. DE-FC26-01NT41146). Phase I consisted of an evaluation of the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants, and supporting bench-scale testing. And Phase II consists of pilot-scale testing, supporting a refined performance and economic evaluation of the oxygen-fired AFC concept. Phase I, detailed in this report, entails a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants. Thirteen separate but related cases (listed below), representing various levels of technology development, were evaluated as described herein. The first seven cases represent coal combustion cases in CFB type equipment. The next four cases represent Integrated Gasification Combined Cycle (IGCC) systems. The last two cases represent advanced Chemical Looping systems, which were completely paid for by ALSTOM and included herein for completeness.

Nsakala ya Nsakala; Gregory N. Liljedahl

2003-05-15T23:59:59.000Z

242

Simulation of three-phase fluidized bioreactors for denitrification  

SciTech Connect

Fluidized-bed bioreactors were developed and operated at three scales (diameters of 0.1, 0.2, and 0.5 m) by the Chemical Technology Division. The performance of these reactors in denitrification was simulated using the following modified form of Monod kinetics to describe the reaction kinetics: rate = V/sub max/ (NO/sub 3//sup -//K/sub s/ + NO/sub 3//sup -/) (% biomass). In the fluids-movement portion of the simulation the tanks-in-series approximation to backmixing was used. This approach yielded a V/sub max/ of 3.5 g/m/sup 3/-min (% biomass) and a K/sub s/ of 163 g/m/sup 3/ for the 0.5-m bioreactor. Values of V/sub max/ and K/sub s/ were also determined for data derived from the 0.1-m bioreactor, but inadequate RTD data reduced the confidence level in these results. A complication in denitrification is the multi-step nature of the reduction from nitrate to nitrite to hyponitrite and finally to nitrogen. An experimental study of the effect of biomass loading upon denitrification was begun. It is recommended that the experimental work be continued.

Hamza, A.V.; Dolan, J.F.; Wong, E.W.

1981-03-01T23:59:59.000Z

243

Treatment of trichloroethene (TCE) with a fluidized-bed bioreactor  

SciTech Connect

Fluidized-bed bioreactors (FBBR`s) offer a promising alternative to existing treatment technologies for the treatment of water contaminated with chlorinated solvents. The objective of this research was to test a laboratory-scale FBBR for removal of trichloroethene (TCE) from groundwater and to study the FBBR kinetic behavior so that field-scale treatment systems could be designed. Phenol was selected as the growth substrate for biofilm-forming microorganisms enriched from activated-sludge because phenol induces enzymes capable of cometabolizing TCE and lesser chlorinated ethenes. The biofilm forming microorganisms were identified as Pseudomonas putida, a common soil bacterium. Experiments with a conventional, single-pass FBBR addressed TCE removal as effected by changes in TCE loading, phenol loading, and media type. In this study, TCE removal using quartz filter sand and garnet filter sand as the biofilm attachment media was measured. Removal ranged from 20 to 60% and was not affected by the media type. Also, removal was not affected by inlet TCE concentration over the range of 100 to 500 {micro}g/L provided the phenol loading was decreased with increasing TCE loading. The FBBR was capable of complete phenol removal at an inlet concentration of 20 to 25 mg/L and an empty-bed contact time of 2.7 minutes. However, the empty-bed contact time was insufficient to sustain greater than 40 to 50% removal of TCE in a nutrient-amended groundwater.

Foeller, J.R.; Segar, R.L. Jr. [Univ. of Missouri, Columbia, MO (United States). Dept. of Civil Engineering

1997-12-31T23:59:59.000Z

244

DURABILITY TESTING OF FLUIDIZED BED STEAM REFORMER (FBSR) WASTE FORMS  

SciTech Connect

Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium aqueous radioactive wastes. The addition of clay and a catalyst as co-reactants converts high sodium aqueous low activity wastes (LAW) such as those existing at the Hanford and Idaho DOE sites to a granular ''mineralized'' waste form that may be made into a monolith form if necessary. Simulant Hanford and Idaho high sodium wastes were processed in a pilot scale FBSR at Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low-activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium-bearing waste (SBW). The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The durability of the FBSR waste form products was tested in order to compare the measured durability to previous FBSR waste form testing on Hanford Envelope C waste forms that were made by THOR Treatment Technologies (TTT) and to compare the FBSR durability to vitreous LAW waste forms, specifically the Hanford low activity waste (LAW) glass known as the Low-activity Reference Material (LRM). The durability of the FBSR waste form is comparable to that of the LRM glass for the test responses studied.

Jantzen, C

2006-01-06T23:59:59.000Z

245

Fluidized Bed Technology - An R&D Success Story | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An R&D Success Story An R&D Success Story Fluidized Bed Technology - An R&D Success Story In the early 1990s, POWER magazine called the development of fluidized bed coal combustors "the commercial success story of the last decade in the power generation business." The success, perhaps the most significant advance in coal-fired boiler technology in a half century, was achieved largely through the technology program of the U.S. Department of Energy's Office of Fossil Energy (and its predecessors). The Interior Department's Office of Coal Research, one of the forerunners of the Energy Department, began studying the fluidized bed combustion concept in the early 1960s. The original goal was to develop a compact "package" coal boiler that could be pre-assembled at the factory and shipped to a plant site (a lower cost

246

Atmospheric fluidized bed combustion (AFBC) plants: an operations and maintenance study  

SciTech Connect

The authors analyzed data from a fluidized bed boiler survey distributed during the spring of 2003 to develop appropriate AFBC (Atmospheric Fluidized Bed Combustion) performance benchmarks. The survey was sent to members of CIBO (Council of Industrial Boiler Owners), who sponsored the survey, as well as to other firms who had an operating AFBC boiler on-site. There were three primary purposes for the collection and analysis of the data contained in this fluidized bed boiler survey: (1) To develop AFBC benchmarks on technical, cost, revenue, and environmental issues; (2) to inform AFBC owners and operators of contemporary concerns and issues in the industry; (3) to improve decision making in the industry with respect to current and future plant start-ups and ongoing operations.

Jack A. Fuller; Harvie Beavers; Robert Bessette [West Virginia University, Morgantown, WV (United States). College of Business and Economics

2006-06-15T23:59:59.000Z

247

The effect of cohesive forces on the fluidization of aeratable powders  

SciTech Connect

The effects of cohesive forces of van der Waals type in the fluidization/defluidization of aeratable type A powders in the Geldart classification are numerically investigated. The effects of friction and particle-size distribution (PSD) on some design-significant parameters, such as minimum fluidization and bubbling velocities, are also investigated. For these types of particles, cohesive forces are observed as necessary to fully exhibit the role friction plays in commonly observed phenomena, such as pressure overshoot and hysteresis around minimum fluidization. This study also shows that a full-experimental PSD consisting of a dozen particle sizes may be sufficiently represented by a few particle diameters. Reducing the number of particle types may benefit the continuum approach, which is based on the kinetic theory of granular flow, by reducing computational expense, while still maintaining the accuracy of the predictions.

Galvin, Janine F.; Benyahia, Sofiane

2014-01-01T23:59:59.000Z

248

Experimental research on combustion characteristics of pulverized-coal fluidized bed  

SciTech Connect

A new, efficient clean coal combustion method, pulverized-coal fluidized bed combustion (PC-FBC) is proposed firstly in this paper. Research has been conducted on the combustion characteristics of PC-FBC on an experimental rig with 0.3 MW heat input. PC-FBC uses pulverized-coal as its fuel and integrates the characters of the pulverized coal boiler and the fluidized bed boiler. In 850 to 880 C fluidized-bed combustion zone (FBCZ) of PC-FBC, the pulverized coal can be ignited stably and releases 57.7 to 84.2% volatile substance. Seventy (70%) of the released volatile and a part of carbon are burnt in FBCZ. The highest and average gas temperatures are 1100 C and 950 to 1000 C respectively in PC-FBC. A combustion efficiency of 98 to 99% can be reached.

Cheng, H. [North China Electric Power Univ., Baoding, Hebei (China); Jin, B.; Xu, Y. [Southeast Univ., Nanjing, Jiangshu (China)

1997-12-31T23:59:59.000Z

249

Modeling and simulation of co-gasification of coal and petcoke in a bubbling fluidized bed coal gasifier  

Science Journals Connector (OSTI)

In this work we discuss the modeling and simulation of a fluidized bed coal gasifier which uses a mixture of coal and petcoke as its feed. A two phase model consisting of the bubble phase and the emulsion phase is used to describe the coal gasification process. We consider a non-isothermal model taking into account the effect of four heterogeneous reactions and four homogeneous reactions. We analyse the effect of various operating parameters such as composition of feed, location of feed point and ash content on the performance of the gasifier. The results of predictions of the simulations have been found to be in good agreement with the experimental results in the literature. It has been found that increase in petcoke content in the feed mixture tends to lower the efficiency and carbon conversion but increases the amount of syngas produced. Also, from the simulations, it has been found that increase in ash content of coal decreases the carbon conversion. We have concluded that the feed point of the solids should be above the point where O2 that is present in the bed gets exhausted, in order to obtain the maximum carbon conversion and efficiency.

Anshul Goyal; S. Pushpavanam; Ravi Kumar Voolapalli

2010-01-01T23:59:59.000Z

250

Refractory experience in circulating fluidized bed combustors, Task 7. Final report  

SciTech Connect

This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE`s Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

Vincent, R.Q.

1989-11-01T23:59:59.000Z

251

Fluidized bed combustor 50 MW thermal power plant, Krabi, Thailand. Feasibility study. Export trade information  

SciTech Connect

The report presents the results of a study prepared by Burns and Roe for the Electricity Generating Authority of Thailand to examine the technical feasibility and economic attractiveness for building a 50 MW Atmospheric Fluidized Bed Combustion lignite fired power plant at Krabi, southern Thailand. The study is divided into seven main sections, plus an executive summary and appendices: (1) Introduction; (2) Atmospheric Fluidized Bed Combustion Technology Overview; (3) Fuel and Limestone Tests; (4) Site Evaluation; (5) Station Design and Arrangements; (6) Environmental Considerations; (7) Economic Analysis.

Not Available

1993-01-01T23:59:59.000Z

252

Transient Simulations of Spouted Fluidized Bed for Coal-Direct Chemical Looping Combustion  

Science Journals Connector (OSTI)

Transient Simulations of Spouted Fluidized Bed for Coal-Direct Chemical Looping Combustion ... Instead of having air to support the combustion process, an oxygen compound (metal or non-metal based) is used as an oxidizer in the fuel reactor; thus, the fuel is chemically combusted by the metal oxide than the oxygen present in air in case of standard power plants. ... The CFD/DEM simulation approach has been used in various applications which require the modeling of particle/fluid interaction;(19-23) however, its application in the context of close-loop spouted fluidized bed system has so far been quite limited and preliminary. ...

Zheming Zhang; Ling Zhou; Ramesh Agarwal

2014-01-28T23:59:59.000Z

253

Co-Gasification of Wood and Lignite in a Dual Fluidized Bed Gasifier  

Science Journals Connector (OSTI)

Mixts. of coal and biomass were co-gasified in a jetting, ash-agglomerating, fluidized-bed, pilot scale-sized gasifier to provide steady-state operating data for numerical simulation verification. ... Downstream cleaning of gas by catalytic cracking and/or scrubbing is complex and/or expensive for small to medium gasification plants, so conversion of tar within the gasifier is preferred. ... Kern, S.; Pfeifer, C.; Hofbauer, H. Gasification of lignite in a dual fluidized bed gasifier - Influence of bed material particle size and the amount of steam. ...

Stefan Kern; Christoph Pfeifer; Hermann Hofbauer

2013-01-15T23:59:59.000Z

254

Simulation of Pressurized Ash Agglomerating Fluidized Bed Gasifier Using ASPEN PLUS  

Science Journals Connector (OSTI)

The fluidized bed gasification is an effective means to convert small sized crushed coal into fuel or synthesis gas. ... Initially, the AFB gasifier was heated to 1073–1273 K by diesel oil; meanwhile the pressure was elevated to the required operating pressure, and then coal was fed into the gasifier by a screw feeder, while the gasifying agents as fluidizing medium were introduced from the jet orifice, annulus tube, and conical distributor at the bottom of the AFB gasifier. ... The particles are spherical, and any particle size reductions caused by friction among particles and particles with the walls of the gasifier are neglected. ...

Zheyu Liu; Yitian Fang; Shuping Deng; Jiejie Huang; Jiantao Zhao; Zhonghu Cheng

2011-12-28T23:59:59.000Z

255

Model-free adaptive control of supercritical circulating fluidized-bed boilers  

DOE Patents (OSTI)

A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

Cheng, George Shu-Xing; Mulkey, Steven L

2014-12-16T23:59:59.000Z

256

Atmospheric fluidized-bed combustion. Technology status report  

SciTech Connect

The goal of DOE/METC's AFBC activities is to establish an engineering technology base by 1990, from which the industrial, commercial, and residential sectors can build and operate coal-fired AFBC systems. These systems will be capable of economically generating process steam, direct and indirect heat, and onsite electric power from coals of all ranks and sulfur contents in an environmentally acceptable manner. First-generation atmospheric fluidized-bed technology is considered commercial; a number of US boiler manufacturers are offering commercial units. However, many of these first units are products of empirical design and offer marginal gains in economics, performance, and reliability over conventional systems. In order to resolve the remaining technical issues and to broaden the market, DOE is pursuing advanced concepts. Development of this second-generation AFBC technology is directed toward small industrial, commercial, and residential applications. Penetration of these potential markets will require: (1) a 20 to 30% reduction in capital and operating costs over first-generation technology; (2) significant improvements in performance and reliability; and (3) compliance with existing and proposed New Source Performance Standards for environmental emissions. Current AFBC activities address: industrial operations, advanced concepts, and technology development. Four AFBC demonstration projects were active in FY 1984. The development of AFBC technology is directly supported by the evaluation of five advanced concepts by the M.W. Kellogg Company (circulating-bed FBC), Battelle Columbus Laboratories (spouted-bed FBC), Aerojet Energy Conversion Company (moving-bed FBC), Howard University (staged cascade FBC), and Arthur D. Little, Inc. (pulsed-bed FBC). These concepts may improve the economics and performance. 13 refs., 11 figs.

Not Available

1984-10-01T23:59:59.000Z

257

Ash vaporization in circulating fluidized bed coal combustion  

SciTech Connect

In this work, the vaporization of the ash-forming constituents in circulating fluidized bed combustion (CFBC) in a full-scale 80 MW{sub th} unit was studied. Ash vaporization in CFBC was studied by measuring the fly ash aerosols in a full-scale boiler upstream of the electrostatic precipitator (ESP) at the flue gas temperature of 125{degree}C. The fly ash number size distributions showed two distinct modes in the submicrometer size range, at particle diameters 0.02 and 0.3 {mu}m. The concentration of the ultrafine 0.02-{mu}m mode showed a large variation with time and it decreased as the measurements advanced. The concentration of the 0.02-{mu}m mode was two orders of magnitude lower than in the submicrometer mode observed earlier in the bubbling FBC and up to three orders of magnitude lower than in the pulverized coal combustion. Scanning electron micrographs showed few ultrafine particles. The intermediate mode at 0.3 {mu}m consisted of particles irregular in shape, and hence in this mode the particles had not been formed via a gas to particle route. We propose that the 0.3-{mu}m mode had been formed from the partial melting of the very fine mineral particles in the coal. The mass size distribution in the size range 0.01-70 {mu}m was unimodal with maximum at 20 {mu}m. Less than 1% of the fly ash particles was found in the submicrometer size range. 35 refs., 8 figs., 3 tabs.

Lind, T.; Kauppinen, E.I.; Maenhaut, W. [Univ. of Gent (Belgium); Shah, A.; Huggins, F. [Univ. of Kentucky, Lexington, KY (United States)

1996-04-01T23:59:59.000Z

258

Investigation of heat transfer and combustion in the advanced fluidized bed combustor (FBC). Technical progress report No. 1, [October 1, 1993--December 31, 1993  

SciTech Connect

This technical report summarizes the research work performed and progress achieved during the period of October 1, 1993 to December 31, 1993. The newly-concept of exploratory fluidized bed based on the integrating the advantages of fluidized bed combustion (FBC) and cyclonic combustor was designed to study the gas and particle flows and to develop control techniques for gas-particle flow in the FBC. The test chamber was made of transparent acrylic tube with 6in. I.D. to facilitate visual observation. Eight nozzles (s) were made at the freeboard in different levels to provide secondary air, which will generate strong swirling flow field. The progress of this project has been on schedule. Design and fabrication of the exploratory cold test model will be continued with an arrangement of the auxiliary system. After completion of the design/fabrication of the system, the system test will be conducted for the overall system. Instrumentations for the gas/particle flow will be arranged with the auxiliary system. The electrostatic impact probe and associated signal processing units will be designed and fabricated for measuring particle mass flux.

Lee, S.W.

1994-01-01T23:59:59.000Z

259

Pneumatic conveying of coal and coal-limestone mixtures as applied to atmospheric fluidized-bed combustion. [Effects of moisture, velocity, particle size  

SciTech Connect

Pneumatic conveying experiments with coal and coal-limestone mixtures were performed on a conveying system designed to represent the feed lines in the Tennessee Valley Authority 20 MW atmospheric fluidized bed combustor. The experimental conditions were chosen to cover the anticipated combustor operating ranges. The results have led to a fundamental understanding of the operating limits associated with coal surface moisture, air velocity, coal and limestone fines, solids to air ratio, and limestone to coal ratio. Coal surface moisture was found to be the most important parameter affecting handling and transport. Specific upper limits for surface moisture were established. It was demonstrated that addition of dry limestone can reduce the conveying problems associated with wet coal. The air velocities causing saltation and surge flow were determined for a variety of conveying conditions. These velocities were related qualitatively to solids to air ratio, particle size, and surface moisture. Conveying pressure drop was also measured for a variety of conditions. In the absence of saltation, the horizontal, frictional pressure drop was only a function of the solids to air ratio and the air flow conditions. Comparison of the ORNL pressure drop data with the results of other investigators had led to the conclusion that there are two basic modes of flow in dilute-phase conveying; a primarily viscous mode and a primarily inertial mode. A general pressure drop model has been developed for the inertial mode.

Daw, C S; Thomas, J F

1982-01-01T23:59:59.000Z

260

Improving the performance of the Y-12 fluidized bed contactors: Final report on investigations at the University of Tennessee  

SciTech Connect

Recent tests at The University of Tennessee in Knoxville (UT) have demonstrated improved fluidization performance in a mockup of the Oak Ridge Y-12 Plant fluidized bed with a modified gas distributor. Combining the modified distributor with the recently developed fluidization intensity module is expected to result in substantial operational improvements for the fluidized beds in Building 9212 at Y-12. Important additional benefits coming from the improved operation of the Y-12 fluidized beds will be a reduction in the consumption of reactant gases, a reduction in scrubber waste production, and a reduced need for manual cleaning of the particulate removal system. UT tests have also demonstrated that the tapered wall design traditionally used for the Y-12 fluidized beds does not provide a sufficient improvement in fluidization quality to justify the continued use of this design in place of a more conventional straight-wall configuration. The straight-wall design for replacement beds is expected to result in substantial equipment cost savings. Other operating scenarios that could potentially be used to reduce reactant gas consumption and scrubber waste production have also been considered. These scenarios are documented here for future reference.

Daw, C.S.; Hawk, J.A. [Oak Ridge National Lab., TN (United States)

1993-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "fluidized solids technique" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Materials performance in coal-fired fluidized-bed combustion environments  

SciTech Connect

Development of cogeneration systems that involve combustion of coal in a fluidized bed for the generation of electricity and process heat has been in progress for a number of years. This paper addresses some of the key components in these systems, materials requirements/performance, and areas where additional effort is needed to improve the viability of these concepts for electric power generation.

Natesan, K.

1993-07-01T23:59:59.000Z

262

Experimental investigation of fluidized bed chemical looping combustion of Victorian brown coal using hematite  

Science Journals Connector (OSTI)

Abstract An experimental investigation on chemical looping combustion (CLC) of Victorian brown coal is carried out in a fluidized bed of hematite. The aim of this study is to understand the feasibility of Victorian brown coal CLC as very little technical information is currently available on the process using these coals. The in situ CLC experiments are first performed using a thermogravimetric analyzer (TGA). The TGA results show good performance of hematite as oxygen carrier over five multiple re-dox cycles under CO2 gasification environment. Therefore, further investigation is performed using a bench-scale fluidized bed that operates in a batch mode cyclically with reduction in CO2 environment, and oxidation in air. Several tests have been conducted to assess the impact of different temperatures, particle size of hematite and CO2 concentration in a flowing fluidizing gas medium. It is observed that the hematite particles of 100–150 ?m performed best with respect to carbon conversions that show an increasing trend with increasing temperature and CO2 concentration in the fluidizing gas.

Chiranjib Saha; Sankar Bhattacharya

2014-01-01T23:59:59.000Z

263

Modeling Process Characteristics and Performance of Fixed and Fluidized Bed Regenerative Thermal Oxidizer  

Science Journals Connector (OSTI)

Modeling Process Characteristics and Performance of Fixed and Fluidized Bed Regenerative Thermal Oxidizer ... (7)?Cheng, W.-H.; Chou, M.-S.; Lee, W.-S.; Huang, B.-J. Applications of Low-Temperature Regenerative Thermal Oxidizers to Treat Volatile Organic Compounds. ...

Pietropaolo Morrone; Francesco P. Di Maio; Alberto Di Renzo; Mario Amelio

2006-05-26T23:59:59.000Z

264

Coke deposits formation and products selectivities for the MTG process in a fluidized bed reactor  

Science Journals Connector (OSTI)

Experiments were carried out in a demonstrative scale fluidized bed reactor for methanol conversion to gasoline (MTG). We investigated the kinetics of the coke deposits formation and their influence on the products selectivities. New reaction indexes were advanced for on line monitoring of the catalyst activity.

Grigore Pop; Gavril Musca; Eleonora Chirila; Rodica Boeru; Gheorghe Niculae; Natalia Natu; Gheorghe Ignatescu; Sorin Straja

1989-01-01T23:59:59.000Z

265

Investigation of chemical looping combustion by solid fuels. 1. Process analysis  

SciTech Connect

This paper is the first in a series of two, where we present the concept of a CLC process of solid fuels using a circulating fluidized bed with three loop seals. The riser of this circulating fluidized bed was used as the oxidizer of the oxygen carrier; one of the loop seals was used as the reducer of the oxygen carrier and the separator for ash and oxygen carrier, and the other two loop seals were used for pressure balance in the solid recycle process. Pressure profiles of recycled solids using this process are presented in detail. For the development of an oxygen carrier, we focused on the establishment of a theoretical frame of oxygen transfer capability, reaction enthalpy, a chemical equilibrium, and kinetics. Analysis results indicated that Cu-, Ni-, and Co-based oxygen carriers may be the optimum oxygen carriers for the CLC of solid fuels. Thermodynamic analysis indicated that CO{sub 2} can be concentrated and purified to at least 99% purity for the gas-solid reaction mode or even higher for the solid-solid reaction mode on the basis of the selected oxygen carriers. A Cu-based oxygen carrier is the choice that has the potential to make the reducer self-sustaining or autothermal because of its exothermic nature during reduction. This would be beneficial for simplifying the operation of the reducer. The tendency of the Cu-based oxygen carriers to agglomerate can be eliminated by decreasing the operating temperature in the CLC system. In the second part of the series, we will evaluate the reduction kinetics of selected Cu-based oxygen carriers by coal and other 'opportunity solid fuels' using a simultaneous differential scanning calorimetry-thermogravimetric analysis to simulate a microreactor, using an X-ray diffractometer and a scanning electron microscope to characterize the solid residues, and a thermogravimetric analysis coupled with mass spectra to characterize the evolved gas compositions. 46 refs., 5 figs., 2 tabs.

Yan Cao; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

2006-10-15T23:59:59.000Z

266

Characterization of Biofilm in 200W Fluidized Bed Reactors  

SciTech Connect

Contaminated groundwater beneath the 200 West Area at the Hanford Site in Southeast Washington is currently being treated using a pump and treat system to remove organics, inorganics, radionuclides, and metals. A granular activated carbon-based fluidized bed reactor (FBR) has been added to remove nitrate, hexavalent chromium and carbon tetrachloride. Initial analytical results indicated the microorganisms effectively reduced many of the contaminants to less than cleanup levels. However shortly thereafter operational upsets of the FBR include carbon carry over, over production of microbial extracellular polymeric substance (biofilm) materials, and over production of hydrogen sulfide. As a result detailed investigations were undertaken to understand the functional diversity and activity of the microbial community present in the FBR over time. Molecular analyses including terminal restriction fragment length polymorphism analysis, quantitative polymerase chain reaction and fluorescent in situ hybridization analyses were performed on the microbial community extracted from the biofilm within the bed and from the inoculum, to determine functional dynamics of the FBR bed over time and following operational changes. Findings from these analyses indicated: 1) the microbial community within the bed was completely different than community used for inoculation, and was likely from the groundwater; 2) analyses early in the testing showed an FBR community dominated by a few Curvibacter and Flavobacterium species; 3) the final sample taken indicated that the microbial community in the FBR bed had become more diverse; and 4) qPCR analyses indicated that bacteria involved in nitrogen cycling, including denitrifiers and anaerobic ammonia oxidizing bacteria, were dominant in the bed. These results indicate that molecular tools can be powerful for determining functional diversity within FBR type reactors. Coupled with micronutrient, influent and effluent chemistry evaluations, a more complete understanding of the balance between system additions (nutrients, groundwater) and biology can be achieved, thus increasing long-term predictions of performance. These analyses uniquely provide information that can be used in optimizing the overall performance, efficiency, and stability of the system both in real time as well as over the long-term, as the system design is altered or improved and/or new streams are added.

Lee, Michelle H.; Saurey, Sabrina D.; Lee, Brady D.; Parker, Kent E.; Eisenhauer, Emalee ER; Cordova, Elsa A.; Golovich, Elizabeth C.

2014-09-29T23:59:59.000Z

267

The design of a fluidized bed for testing of a robotic burrowing device which mimics razor clams  

E-Print Network (OSTI)

This thesis reviews the design of a fluidized bed test setup for testing digging kinematics of RoboClam, a burrowing device based on Atlantic Razor Clams. This test bed allows for in-lab testing in an environment covered ...

Dorsch, Daniel Scott

2012-01-01T23:59:59.000Z

268

Calcined Dolomite, Magnesite, and Calcite for Cleaning Hot Gas from a Fluidized Bed Biomass Gasifier with Steam:? Life and Usefulness  

Science Journals Connector (OSTI)

Calcined Dolomite, Magnesite, and Calcite for Cleaning Hot Gas from a Fluidized Bed Biomass Gasifier with Steam:? Life and Usefulness ... About the temperature effect, at low (800 °C) and medium (840 °C) temperatures, the calcite is soon deactivated. ...

Jesús Delgado; María P. Aznar; José Corella

1996-10-08T23:59:59.000Z

269

Analysis/control of in-bed tube erosion phenomena in the fluidized bed combustion system. Final technical report  

SciTech Connect

Research is presented on erosion and corrosion of fluidized bed combustor component materials. The characteristics of erosion of in-bed tubes was investigated. Anti-corrosion measures were also evaluated.

Lee, Seong W.

1996-11-01T23:59:59.000Z

270

Novel, Magnetically Fluidized-Bed Reactor Development for the Looping Process: Coal to Hydrogen Production Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Novel, Magnetically Fluidized-Bed Novel, Magnetically Fluidized-Bed Reactor Development for the Looping Process: Coal to Hydrogen Production Research and Development Background The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is committed to improving methods for co-producing power and chemicals, fuels, and hydrogen (H2). Gasification is a process by which fuels such as coal can be used to produce synthesis gas (syngas), a mixture of H2, carbon monoxide (CO), and carbon

271

Investigation of chemical looping combustion by solid fuels. 2. redox reaction kinetics and product characterization with coal, biomass, and solid waste as solid fuels and CuO as an oxygen carrier  

SciTech Connect

This paper is the second in a series of two on the investigation of the chemical looping combustion (CLC) of solid fuels. The first paper put forward the concept of the CLC of solid fuels using a circulating fluidized bed as a reactor and Cu-CuO as the oxygen carrier, which was based on an analysis of oxygen transfer capability, reaction enthalpy, and chemical equilibrium. In this second paper, we report the results of the evaluation of the reduction of CuO reduced by solid fuels such as coal and some other 'opportunity' solid fuels. Tests on the reduction of CuO by the selected solid fuels were conducted using simultaneous differential scanning calorimetry and thermogravimetric analysis, which simulates a microreactor. An attached mass spectrometer (MS) was used for the characterization of evolved gaseous products. The X-ray diffractometer (XRD) and scanning electron microscope (SEM) were used for the characterization of the solid residues. Results strongly supported the feasibility of CuO reduction by selected solid fuels. CuO can be fully converted into Cu in a reduction process, either in a direct path by solid fuels, which was verified by MS analysis under a N{sub 2} atmosphere, or in an indirect path by pyrolysis and gasification products of solid fuels in the reducer. No Cu{sub 2}O exists in reducing atmospheres, which was characterized by an XRD analysis and mass balance calculations. No carbon deposit was found on the surface of the reduced Cu, which was characterized by SEM analysis. CuO reduction by solid fuels can start at temperatures as low as approximately 500 C. Tests indicated that the solid fuels with higher reactivity (higher volatile matter) would be desirable for the development of the chemical looping combustion process of solid fuels, such as sub-bituminous Powder River Basin coal and solid waste and biomass. 4 refs., 12 figs., 3 tabs.

Yan Cao; Bianca Casenas; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

2006-10-15T23:59:59.000Z

272

Air–steam gasification of biomass in fluidized bed with CO2 absorption: A kinetic model for performance prediction  

Science Journals Connector (OSTI)

Abstract Significance of decarbonized energy production in the context of a foreseeable hydrogen economy has called for the need of extensive research in biomass gasification-carbon dioxide capture technique. The feasibility of calcium oxide as a sorbent for CO2 in syngas is studied for air–steam fluidized bed (FB) gasification through a reaction kinetic modeling approach. Arrhenius rate equations are employed for primary and secondary pyrolysis, gasification and carbonation reactions. Devolatilization product yields are predicted using available correlations for FB gasification and cracking of tar is incorporated. Parametric performance analysis is carried out highlighting the significance of equivalence ratio (ER), gasification temperature, steam to biomass ratio (SBR) and sorbent to biomass ratio (SOBR). The effects of various gasifying media on H2 concentration and performance indicators such as heating value and efficiencies are analyzed. The simulation results are validated with the reported experimental results. The kinetic study reveals that air–steam gasification significantly reduces the unreacted steam but at a lower H2 concentration than steam gasification. A maximum of 53% hydrogen rich gas mixture is predicted at ER = 0.25, SBR = 1.5, SOBR = 2.7 and 1000 K. Against fossil fuel expended steam gasification, pure oxygen gasification is suggested by the study.

C.C. Sreejith; C. Muraleedharan; P. Arun

2015-01-01T23:59:59.000Z

273

Study of the hydrothermal treatments of residues from fluidized bed combustors for the manufacture of ettringite-based building elements  

Science Journals Connector (OSTI)

Abstract Fluidized bed combustion (FBC) waste is generally unsuitable for making ordinary cements and concretes, and its alternative uses are therefore worthy of consideration. In the present work, FBC waste is investigated as a potentially suitable single raw material for the manufacture of building components based on ettringite, a compound characterized by low density, high fire resistance, significant mechanical strength and usefulness as the main component of preformed lightweight building materials. The hydration behaviour of two FBC waste samples (a fly and a bottom ash) was explored within curing periods comprised between 2 and 24 h at 55 °C, 70 °C and 85 °C. X-ray diffraction and differential thermal analysis were employed as main experimental techniques in order to evaluate the distribution of the hydration products. The role of the raw ash chemical and mineralogical composition, operating temperature and time in the ettringite formation was highlighted. The fly ash was more prone to generate ettringite which, after 2 h-curing time, tended to form and decompose earlier, as the curing temperature and time were further increased. The selectivity of the reactants toward ettringite can be enhanced by the addition of blending components.

Antonio Telesca; Daniela Calabrese; Milena Marroccoli; Gian Lorenzo Valenti; Fabio Montagnaro

2014-01-01T23:59:59.000Z

274

Theoretical and numerical studies on the flow multiplicity phenomenon for gas–solids two-phase flows in CFB risers  

Science Journals Connector (OSTI)

The dependence of the fully-developed flow profiles on the inlet flow conditions for gas–solids two-phase flows, i.e. the flow multiplicity phenomenon, in circulating fluidized bed (CFB) risers was proposed and discussed in this article. The flow multiplicity phenomenon for gas–solids two-phase flows was first proved mathematically based on the conservation equations of mass and momentum. Then the CFD model using Eulerian–Eulerian approach with k–? turbulence model for each phase was further adopted to analyze the details of this flow multiplicity phenomenon. It is theoretically and numerically revealed that for gas–solids two-phase flows, the flow profiles in the fully-developed region are always dominated by the flow profiles at the inlet. The solids concentration profile is closely coupled with the velocity profile, and the inlet solids concentration and velocity profiles can largely influence the fully-developed concentration and velocity profiles.

B. Peng; C. Zhang; J. Zhu

2011-01-01T23:59:59.000Z

275

Syngas methanation for substitute natural gas over Ni–Mg/Al2O3 catalyst in fixed and fluidized bed reactors  

Science Journals Connector (OSTI)

Abstract A comparative study was conducted for laboratory syngas methanation over a self-made Ni–Mg/Al2O3 catalyst to demonstrate the technical advantages of fluidized bed over fixed bed reactor. At different reaction temperatures, gas velocities and pressures, the CO conversion and selectivity to CH4 in fluidized bed were shown to be higher than in fixed bed, and much closer to the thermodynamic equilibriums. The spent catalysts from fluidized bed methanation had distinctively low and easy-oxidizing deposited carbon in comparison with that from fixed bed. The results were attributed to the bigger effective catalytic surface, better heat and mass transfer in fluidized bed reactor.

Jiao Liu; Wenlong Shen; Dianmiao Cui; Jian Yu; Fabing Su; Guangwen Xu

2013-01-01T23:59:59.000Z

276

The O{sub 2}-enriched air gasification of coal, plastics and wood in a fluidized bed reactor  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer The effect of the O{sub 2} in the gasification stream of a BFB gasifier has been studied. Black-Right-Pointing-Pointer Main advantage of the O{sub 2}-enriched air is the increasing of the bed temperature. Black-Right-Pointing-Pointer No remarkable effects on tar reduction. Decreasing of recognized PAHs. Black-Right-Pointing-Pointer Gasification reactions completed inside the dense bed and splashing zone. Black-Right-Pointing-Pointer Polycondensation reactions occur mainly in the freeboard region. - Abstract: The effect of oxygen-enriched air during fluidized bed co-gasification of a mixture of coal, plastics and wood has been investigated. The main components of the obtained syngas were measured by means of on-line analyzers and a gas chromatograph while those of the condensate phase were off-line analysed by means of a gas chromatography-mass spectrometer (GC-MS). The characterization of condensate phase as well as that of the water used as scrubbing medium completed the performed diagnostics. The experimental results were further elaborated in order to provide material and substances flow analyses inside the plant boundaries. These analyses allowed to obtain the main substance distribution between solid, gaseous and condensate phases and to estimate the conversion efficiency of carbon and hydrogen but also to easily visualise the waste streams produced by the process. The process performance was then evaluated on the basis of parameters related to the conversion efficiency of fuels into valuable products (i.e. by considering tar and particulate as process losses) as well as those related to the energy recovery.

Mastellone, Maria Laura, E-mail: mlaura.mastellone@unina2.it [Department of Environmental Sciences-Second University of Naples, Via Vivaldi, 43 81100 Caserta (Italy); Zaccariello, Lucio; Santoro, Donato; Arena, Umberto [Department of Environmental Sciences-Second University of Naples, Via Vivaldi, 43 81100 Caserta (Italy)

2012-04-15T23:59:59.000Z

277

Proceedings of the sixth international conference on fluidized bed combustion. Volume II. Technical sessions  

SciTech Connect

The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. The papers covered recent developments in atmospheric and pressurized fluidized-bed combustion, especially the design, operation and control of pilot and demonstration plants. The cleanup of combustion products and the erosion, corrosion and fouling of gas turbines was emphasized also. Fifty-five papers from Volume 2 of the proceedings have been entered individually into EDB and ERA; five papers had been entered previously from other sources. (LTN)

none,

1980-08-01T23:59:59.000Z

278

Development of a topping combustor for advanced concept pressurized fluidized-bed combustion systems  

SciTech Connect

A project team consisting of Foster Wheeler Development Corporation, Westinghouse Electric Corporation, Gilbert/Commonwealth and the Institute of Gas Technology, are developing a Second Generation Pressurized Fluidized Bed System. Foster Wheeler is developing a carbonizer (a partial gasifier) and a pressurized fluidized bed combustor. Both these units operate at a nominal 1600{degrees}F (870{degrees}C) for optimal sulfur capture. Since this temperature is well below the current combustion turbine combustor outlet operating temperature of 2350{degrees}F (1290{degrees}C), to reach commercialization, a topping combustor and hot gas cleanup (HGCU) equipment must be developed. Westinghouse`s efforts are focused on the development of the high temperature gas cleanup equipment and the topping combustor. This paper concentrates on the design and test of the topping combustor, which must use a low heating value syngas from the carbonizer at approximately 1600{degrees}F and 150 to 210 psi.

Domeracki, W.F.; Dowdy, T.E.; Bachovchin, D.

1995-11-01T23:59:59.000Z

279

Air-blown gasification of woody biomass in a bubbling fluidized bed gasifier  

Science Journals Connector (OSTI)

Abstract Air-blown gasification of woody biomass was investigated in a pilot-scale bubbling fluidized bed gasifier. Air was used as the gasifying agent as well as a fluidizing gas. Fuel was fed into the top of the gasifier and air was introduced from the bottom through a distributor. In order to control the composition of the product gas, the amounts of feedstock and gasifying agent being fed into the gasifier were varied, and the temperature distribution in the gasifier and the composition of the syngas were monitored. It was shown that the distribution of the reaction zones in the gasifier could be controlled by the air injection rate, and the composition of the syngas by the equivalence ratio of the reactants. Although the obtained syngas had a low caloric value, its heating value is adequate for power generation using a syngas engine.

Young Doo Kim; Chang Won Yang; Beom Jong Kim; Kwang Su Kim; Jeung Woo Lee; Ji Hong Moon; Won Yang; Tae U Yu; Uen Do Lee

2013-01-01T23:59:59.000Z

280

Catalyst deactivation by coking in the MTG process in fixed and fluidized bed reactors  

Science Journals Connector (OSTI)

The validity of a kinetic model for describing the deactivation of a catalyst based on a HZSM5 zeolite has been studied by carrying out reaction in fixed and fluidized bed reactors. The kinetic model takes into account that activity is dependent on the concentration of the lumps of oxygenates, of light olefins and of the remaining products and shows that coke formation capability follows this order. The difference between the deactivation kinetic constants calculated for the fixed and fluidized bed reactors is explained by the effect of the steam produced in the reaction, where coke stripping attenuates deactivation. Future improvements in the deactivation kinetic model must take into account coke stripping by the steam produced in the reaction.

Andrés T. Aguayo; Ana G. Gayubo; JoséM. Ortega; Martin Olazar; Javier Bilbao

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fluidized solids technique" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Bed material agglomeration during fluidized bed combustion. Technical progress report, September 30, 1992--December 31, 1992  

SciTech Connect

The purpose of this project is to determine the physical and chemical reactions which led to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. Survey of industrial-scale fluidized bed combustors is being conducted to determine the occurrence of bed agglomeration and the circumstances under which agglomeration took place. This task should be finished by the end of February. Samples of bed material, agglomerate material, and boiler deposits are being requested from boiler operators as part of the survey. Once received, these sample will be analyzed to determine chemical and mineralogic composition. The bulk chemical determination will be performed using x-ray fluorescence and inductively coupled plasma-optical emission (ICP). Mineralogy will be detected by x-ray diffraction (XRD). Chemical and mineral reactions will be determined by scanning electron microscopy, optical microscopy, and electron microprobe.

Brown, R.C.; Dawson, M.R.; Noble, S.

1993-02-01T23:59:59.000Z

282

User converts gas boiler to fluidized bed to save $1. 5M  

SciTech Connect

Retrofitting a fluidized bed combustion (FBC) system may allow Clayton Foods Inc. to reduce its annual fuel bill by $1.5 million when the system comes on line in 1986. The system will burn low-grade, high-sulfur coal instead of natural gas, and should pay back the $4.1 million investment in under five years. The dual bed design separates the chemical processes of combustion and desulfurization into two chambers, which allows smaller-sized combustors that achieve high efficiencies in less time than conventional, single-bed fluidized bed boilers. Possible limitations prevent other manufacturers from making the dual-bed system. The Wormser unit is the only retrofit application of this technology in an industrial setting.

Springer, N.

1985-07-29T23:59:59.000Z

283

Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System  

SciTech Connect

This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2006 through March 31, 2006. Work was performed on the following activities. First, the fabrication and manufacture of the CFBC Facility were completed. The riser, primary cyclone and secondary cyclone of Circulating Fluidized Bed (CFB) Combustor have been erected. Second, the Mercury Control Workshop and the Grand Opening of Institute for Combustion Science and Environmental Technology (ICSET) were successfully held on February 22 and 23, 2006, respectively. Third, effects of hydrogen chlorine (HCl) and sulfur dioxide (SO{sub 2}) on mercury oxidation were studied in a drop tube reactor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

Wei-Ping Pan; Yan Cao; Songgeng Li

2006-04-01T23:59:59.000Z

284

Fluidized bed combustion of a high-sulphur eastern Canadian coal  

SciTech Connect

A high-sulphur bituminous coal from Nova Scotia has been tested in a pilot scale FBC (Fluidized Bed Combustor) and an industrial FBC boiler. A comprehensive pilot plant program involved 28 tests at a nominal bed temperature of 850/sup 0/C (1560/sup 0/F) and fluidizing velocities of 1.2, 2.1 and 3 m/s (4,7 and 10 ft/sec) with and without fly ash recycle. Two different sizes of limestone were used for sulphur sorption. The industrial boiler trials involved two tests at 65% and 100% MCR (Maximum Continuous Rating). Pilot scaling results indicate that high combustion efficiencies are achievable. Sulphur capture of over 80% (meeting the SO/sub 2/ emission standard of 705 ng/J or 1.64 lbs/MBTU input) is possible with a Ca/S molar ratio <3 with fly ash recycle.

Desai, D.L.; Anthony, E.J.; Friedrich, F.D.; Razbin, V.V.

1986-01-01T23:59:59.000Z

285

Effects of scale-up on oil and gas yields in a solid-recycle bed oil shale retorting process  

SciTech Connect

Fluidized bed pyrolysis of oil shale in a non-hydrogen atmosphere has been shown to significantly increase oil yield in laboratory-scale reactors compared to the Fischer assay by many workers. The enhancement in oil yield by this relatively simple and efficient thermal technique has led to the development of several oil shale retorting processes based on fluidized bed and related technologies over the past fifteen years. Since 1986, the Center for Applied Energy Research (CAER) has been developing one such process, KENTORT II, which is mainly tailored for the Devonian oil shales that occur in the eastern U.S. The process contains three main fluidized bed zones to pyrolyze, gasify, and combust the oil shale. A fourth fluidized bed zone serves to cool the spent shale prior to exiting the system. The autothermal process utilizes processed shale recirculation to transfer heat from the combustion to the gasification and pyrolysis zones. The CAER is currently testing the KENTORT II process in a 22.7-kg/hr process-development unit (PDU).

Carter, S.D.; Taulbee, D.N.; Vego, A. [Univ. of Kentucky, Lexington, KY (United States)

1994-12-31T23:59:59.000Z

286

Operating Experience with a Large Fluidized-Bed Gasifier of Woodwaste  

E-Print Network (OSTI)

OPERATING EXPERIENCE WITH A LARGE FLUIDIZED-BED GASIFIER OF WOODWASTE Robin F.W. Guard Omnifuel Gasification Systems Toronto, Ontario ABSTRACT The town of Hearst in northern Ontario is the lo cation of many forest product industries. One... Houston, TX, April 4-7, 1982 energy recovery systems before choosing gasification. The main reason for the choice was the need to be able to distribute the energy to four existing boilers in different locations, all working on natural gas. A secondary...

Guard, R. F. W.

1982-01-01T23:59:59.000Z

287

Power plant computer aided design software char properties generated by a fluidized bed gasifier  

E-Print Network (OSTI)

and process steam. The most reliable way to convert cotton gin trash to energy is through gasification. The carbon conversion of the fluidized bed gasification system developed by TAES is not efficient. The char collected by the cleanup subsystem contains... to thermochemical conversion of cotton gin waste including fuel analyses (Schacht ~ 1978), fuel feed, combustion (LePori et a 1. , 1981), gasification (Groves, 1979; Craig, 1980; LePori et al. , 1981), gas cleanup (Datin, 1983; Jones et al. , 1984) low energy...

Siebold, Walter Joachim

2012-06-07T23:59:59.000Z

288

High gradient magnetic beneficiation of dry pulverized coal via upwardly directed recirculating fluidization  

DOE Patents (OSTI)

This invention relates to an improved device and method for the high gradient magnetic beneficiation of dry pulverized coal, for the purpose of removing sulfur and ash from the coal whereby the product is a dry environmentally acceptable, low-sulfur fuel. The process involves upwardly directed recirculating air fluidization of selectively sized powdered coal in a separator having sections of increasing diameters in the direction of air flow, with magnetic field and flow rates chosen for optimum separations depending upon particulate size.

Eissenberg, David M. (Oak Ridge, TN); Liu, Yin-An (Opelika, AL)

1980-01-01T23:59:59.000Z

289

Proceedings of the Sixth International Conference on Fluidized Bed Combustion. Volume 1. Plenary sessions  

SciTech Connect

The Sixth International Conference on Fluidized Bed Combustion was held at the Atlanta Hilton, Atlanta, Georgia, April 9-11, 1980. The papers in this volume involved presentation of the research and development programs of the US (US DOE, TVA, EPRI and US EPA), United Kingdom, Federal Republic of Germany and the People's Republic of China. Eight papers from Vol. 1 (Plenary Sessions) of the proceedings have been entered individually into EDB and ERA. (LTN)

none,

1980-08-01T23:59:59.000Z

290

Gasification Characteristics of Coal/Biomass Blend in a Dual Circulating Fluidized Bed Reactor  

Science Journals Connector (OSTI)

circulating flow/forestry, agricultural waste, industry wastes + coalcoke ... Whereas, a dual fluidized bed gasification technology enables production of the medium calorific value gas (12?18 MJ/Nm3) by separating the combustion and gasification zones in which steam is used as a gasifying agent. ... Since Quercus acutissima is widely used in building, pulp, and shipping industries, its demand and supply in Korea is high. ...

Myung Won Seo; Jeong Hoi Goo; Sang Done Kim; See Hoon Lee; Young Chan Choi

2010-04-23T23:59:59.000Z

291

Analysis and optimized design of airlocks for fluidized bed gasifier fuel feed systems  

E-Print Network (OSTI)

into the bottom center of a fluidized bed. A feed hopper with a feeder assembly, two pressure sealing rotary valves and an injector feeder were used, Problems experienced included uneven metering of the trash into the gasifier. In a report prepared... of cotton gin trash and the fact that feeding this material will be without preprocessing, the decision was made to study devices that provide mechanical pressure seals. Three concepts were chosen, lock hopper with door valves, lock hopper with knife gate...

Nuboer, Benito Frans

1991-01-01T23:59:59.000Z

292

Erosion of heat exchanger tubes in fluidized beds. Annual report, 1990  

SciTech Connect

This final report describes the activities of the 3-year project entitled ``Erosion of Heat Exchanger Tubes In Fluidized Beds.`` which was completed at the end of 1990. Project accomplishments include the collection of a substantial body of wear data In a 24in. {times} 24in. fluidized bed, comparative wear results In a 6in. {times} 6in. fluidized bed, the development of a dragometer and the collection of a comprehensive set of drag force data in the 24in. {times} 24in. bed, Fast Fourier Transform (FFT) analysis of bubble probe data to establish dominant bubble frequencies in the 24in. {times} 24in. bed, the use of a heat flux gauge for measurement of heat transfer coefficients in the 24in. {times} 24in. bed and the modeling of the tube wear in the 24in. {times} 24in. bed. Analysis of the wear data from the 24in. square bed indicates that tube wear increases with increase in superficial velocity, and with increase in tube height. The latter effect is a result of the tubes higher up in the bed seeing greater movement of dense phase than tubes lower down In the bed. In addition, tube wear was found to decrease with increase in particle size, for constant superficial velocity. Three models of tube wear were formulated and provided acceptable prediction of wear when compared with the experimental data.

Johnson, E.K.; Flemmer, R.L.C.

1991-01-01T23:59:59.000Z

293

Fluidized-bed waste-heat recovery system development: Final report  

SciTech Connect

A major energy loss in industry is the heat content of the flue gases from industrial process heaters. One effective way to utilize the energy, which is applicable to all processes, is to preheat the combustion air for the process heater. Although recuperators are available to preheat this air when the flue gases are clean, recuperators to recover the heat from dirty and corrosive flue gases do not exist. The Fluidized-Bed Waste-Heat Recovery (FBWHR) system is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, recirculating alumina particles are heated by the flue gas in a raining bed. The hot particles are then removed from the bed and placed in a fluidized bed where they are fluidized by the combustion air. Through this process, the combustion air is preheated. The cooled particles are then returned to the raining bed. Initial development of this concept is for the aluminum smelting industry. In this final report, the design, development, fabrication, and installation of a full-scale FBWHR system is detailed.

Patch, K.D.; Cole, W.E.

1988-06-01T23:59:59.000Z

294

An innovative bed temperature-oriented modeling and robust control of a circulating fluidized bed combustor  

Science Journals Connector (OSTI)

Circulating fluidized bed (CFB) combustion systems are increasingly used as superior coal burning systems in power generation due to their higher efficiency and lower emissions. However, because of their non-linearity and complex behavior, it is difficult to build a comprehensive model that incorporates all the system dynamics. In this paper, a mathematical model of the circulating fluidized bed combustion system based on mass and energy conservation equations was successfully extracted. Using these correlations, a state space dynamical model oriented to bed temperature has been obtained based on subspace method. Bed temperature, which influences boiler overall efficiency and the rate of pollutants emission, is one of the most significant parameters in the operation of these types of systems. Having dynamic and parametric uncertainties in the model, a robust control algorithm based on linear matrix inequalities (LMI) have been applied to control the bed temperature by input parameters, i.e. coal feed rate and fluidization velocity. The controller proposed properly sets the temperature to our desired range with a minimum tracking error and minimizes the sensitivity of the closed-loop system to disturbances caused by uncertainties such as change in feeding coal, while the settling time of the system is significantly decreased.

Aboozar Hadavand; Ali Akbar Jalali; Parviz Famouri

2008-01-01T23:59:59.000Z

295

Test study of salty paper mill waste in a bubbling fluidized bed combustor  

SciTech Connect

Foster Wheeler Pyropower Inc. has supplied a 73.7 kg/s bubbling fluidized bed boiler to MacMillan Bloedel's Powell River paper mill (now Pacifica Paper). The BFB boiler was designed to fire a fuel mixture of a mill effluent sludge and a hog fuel (bark) that is contaminated with seawater. Due to its very high alkali content and low ash content, the fuel is prone to cause problems such as agglomeration in the fluidized bed. Foster Wheeler and MacMillan Bloedel took a proactive approach to quantify likely problems and to identify solutions. A 200 hour-long test program was carried out at Foster Wheeler Development Corporation in Livingston, New Jersey with the Powell River feedstock. This paper provides the project background, an outline of the test facility, test matrix, fuel and bed material characteristics, followed by a test process overview. A summary of fuel alkali related agglomeration mechanism in fluidized bed is also included. The paper offers further observations on in-bed alkali accumulation as well as examinations of different types of bed material agglomerates found during the tests. A recommended boiler operating strategy for preventing agglomeration in the BFB boiler developed based on the test results is described. These recommendations have been successfully implemented during the start up of the boiler. The boiler has been in operation since November 1997. Boiler performance tests completed in April 1998 have demonstrated all guaranteed process conditions.

Wu, S.; Sellakumar, K.M.; Chelian, P.K.; Bleice, C.; Shaw, I.

1999-07-01T23:59:59.000Z

296

Development of an advanced process for drying fine coal in an inclined fluidized bed  

SciTech Connect

The objective of this research project was to demonstrate a technically feasible and economically viable process for drying and stabilizing high-moisture subbituminous coal. Controlled thermal drying of coal fines was achieved using the inclined fluidized-bed drying and stabilization process developed by the Western Research Institute. The project scope of work required completion of five tasks: (1) project planning, (2) characterization of two feed coals, (3) bench-scale inclined fluidized-bed drying studies, (4) product characterization and testing, and (5) technical and economic evaluation of the process. High moisture subbituminous coals from AMAX Eagle Butte mine located in the Powder River Basin of Wyoming and from Usibelli Coal Mine, Inc. in Healy, Alaska were tested in a 10-lb/hr bench-scale inclined fluidized-bed. Experimental results show that the dried coal contains less than 1.5% moisture and has a heating value over 11,500 Btu/lb. The coal fines entrainment can be kept below 15 wt % of the feed. The equilibrium moisture of dried coal was less than 50% of feed coal equilibrium moisture. 7 refs., 60 figs., 47 tabs.

Boysen, J.E.; Cha, C.Y.; Barbour, F.A.; Turner, T.F.; Kang, T.W.; Berggren, M.H.; Hogsett, R.F.; Jha, M.C.

1990-02-01T23:59:59.000Z

297

ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM  

SciTech Connect

This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2005 through March 31, 2005. The following tasks have been completed. First, the renovation of the new Combustion Laboratory is nearly complete, and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building is in the final stages. Second, the fabrication and manufacture of the CFBC Facility is being discussed with a potential contractor. Discussions with potential contactor regarding the availability of materials and current machining capabilities have resulted in the modification of the original designs. The selection of the fabrication contractor for the CFBC Facility is expected during the next quarter. Third, co-firing experiments conducted with coal and chicken waste have been initiated in the laboratory-scale simulated fluidized-bed facility. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

Wei-Ping Pan; Andy Wu; John T. Riley

2005-04-30T23:59:59.000Z

298

ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM  

SciTech Connect

This purpose of this report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period April 1, 2005 through June 30, 2005. The following tasks have been completed. First, the new Combustion Laboratory was occupied on June 15, 2005, and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building is in the final painting stage. Second, the fabrication and manufacturing contract for the CFBC Facility was awarded to Sterling Boiler & Mechanical, Inc. of Evansville, Indiana. Sterling is manufacturing the assembly and component parts of the CFBC system. The erection of the CFBC system is expected to start September 1, 2005. Third, mercury emissions from the cofiring of coal and chicken waste was studied experimentally in the laboratory-scale simulated fluidized-bed combustion facility. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described.

Wei-Ping Pan; Andy Wu; John T. Riley

2005-07-30T23:59:59.000Z

299

Solid-Liquid Separation of Animal Manure and Wastewater  

E-Print Network (OSTI)

Solid-liquid separation is an alternative treatment for animal manure and process-generated wastewater. This publication explains the techniques, equipment, performance and economics of separators....

Mukhtar, Saqib; Sweeten, John M.; Auvermann, Brent W.

1999-10-19T23:59:59.000Z

300

Neural Network Based Montioring and Control of Fluidized Bed.  

SciTech Connect

The goal of this project was to develop chaos analysis and neural network-based modeling techniques and apply them to the pressure-drop data obtained from the Fluid Bed Combustion (FBC) system (a small scale prototype model) located at the Federal Energy Technology Center (FETC)-Morgantown. The second goal was to develop neural network-based chaos control techniques and provide a suggestive prototype for possible real-time application to the FBC system. The experimental pressure data were collected from a cold FBC experimental set-up at the Morgantown Center. We have performed several analysis on these data in order to unveil their dynamical and chaotic characteristics. The phase-space attractors were constructed from the one dimensional time series data, using the time-delay embedding method, for both normal and abnormal conditions. Several identifying parameters were also computed from these attractors such as the correlation dimension, the Kolmogorov entropy, and the Lyapunov exponents. These chaotic attractor parameters can be used to discriminate between the normal and abnormal operating conditions of the FBC system. It was found that, the abnormal data has higher correlation dimension, larger Kolmogorov entropy and larger positive Lyapunov exponents as compared to the normal data. Chaotic system control using neural network based techniques were also investigated and compared to conventional chaotic system control techniques. Both types of chaotic system control techniques were applied to some typical chaotic systems such as the logistic, the Henon, and the Lorenz systems. A prototype model for real-time implementation of these techniques has been suggested to control the FBC system. These models can be implemented for real-time control in a next phase of the project after obtaining further measurements from the experimental model. After testing the control algorithms developed for the FBC model, the next step is to implement them on hardware and link them to the experimental system. In this report, the hardware implementation issues of the control algorithms are also discussed.

Bodruzzaman, M.; Essawy, M.A.

1996-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "fluidized solids technique" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Effect of temperature on reduction of CaSO{sub 4} oxygen carrier in chemical-looping combustion of simulated coal gas in a fluidized bed reactor  

SciTech Connect

Chemical-looping combustion (CLC) is a promising combustion technology for gaseous and solid fuel with efficient use of energy and inherent separation of CO{sub 2}. The concept of a coal-fueled CLC system using, calcium sulfate (CaSO{sub 4}) as oxygen carrier is proposed in this study. Reduction tests of CaSO{sub 4} oxygen carrier with simulated coal gas were performed in a laboratory-scale fluidized bed reactor in the temperature range of 890-950{degree}C. A high concentration of CO{sub 2} was obtained at the initial reduction period. CaSO{sub 4} oxygen carrier exhibited high reactivity initially and decreased gradually at the late period of reduction. The sulfur release during the reduction of CaSO{sub 4} as oxygen carrier was also observed and analyzed. H{sub 2} and CO{sub 2} conversions were greatly influenced by reduction temperature. The oxygen carrier conversion and mass-based reaction rates during the reduction at typical temperatures were compared. Higher temperatures would enhance reaction rates and result in high conversion of oxygen carrier. An XRD patterns study indicated that CaS was the dominant product of reduction and the variation of relative intensity with temperature is in agreement with the solid conversion. ESEM analysis indicated that the surface structure of oxygen carrier particles changed significantly from impervious to porous after reduction. EDS analysis also demonstrated the transfer of oxygen from the oxygen carrier to the fuel gas and a certain amount of sulfur loss and CaO formation on the surface at higher temperatures. The reduction kinetics of CaSO{sub 4} oxygen carrier was explored with the shrinking unreacted-core model. The apparent kinetic parameters were obtained, and the kinetic equation well predicted the experimental data. Finally, some basic considerations on the use of CaSO{sub 4} oxygen carrier in a CLC system for solid fuels were discussed.

Song, Q.L.; Xiao, R.; Deng, Z.Y.; Shen, L.H.; Xiao, J.; Zhang, M.Y. [Southeast University, Nanjing (China)

2008-12-15T23:59:59.000Z

302

The Evaluation of the Mechanical Strength of Epoxy-Based Resin as a Plugging Material, and the Development of a Novel Plug and Abandon Technique Using Vitrified Solid Epoxy-Based Resin Beads  

E-Print Network (OSTI)

window in the cure process where the curing process can be suspended by quenching the partially cured liquid epoxy in water at room temperature, thereby changing the liquid epoxy into solid beads. The beads can then be pumped into the wellbore, where...

Abuelaish, Ahmed

2012-07-16T23:59:59.000Z

303

Field study of disposed solid wastes from advanced coal processes  

SciTech Connect

Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid waste produced by advanced coal processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites have been selected for the field studies: Colorado Ute's fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison's limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United's site using waste from Midwest Grain's FBC unit in central Illinois. A fourth site is under consideration at the Dakota Gasification Company in North Dakota. The first two tasks of this project involved the development of test plans and obtaining site access.

Not Available

1990-01-01T23:59:59.000Z

304

Solid–Solid Interactions on Active Adsorbents  

Science Journals Connector (OSTI)

... on the different grades of alumina provide a measure of the relative activities of such adsorbents. When the solid-solid adsorption processes were essentially complete, the absorbance maxima were virtually ...

PHILIP ANTHONY; HARRY ZEITLIN

1960-09-10T23:59:59.000Z

305

Amorphous LLZO sol gel solid electrolyte  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Novel Li Conducting Solid State Novel Li Conducting Solid State Electrolyte by Sol Gel Technique Davorin Babic, Ph. D. Excellatron Solid State LLC 263 Decatur St Atlanta, GA 30312 (404) 584-2475 dbabic@excellatron.com Objective Develop novel inorganic solid state lithium ion conductor: a) high Li ion conductivity b) transport number of ~1 c) stable with Li metal d) thermally stable e) adequate electrochemical window of stability Construct and test a battery that contains the novel electrolyte Novel sol gel solid electrolyte (NSGSE) In contact with Li metal: Organic electrolytes (liquid/polymer) get reduced: HAZARDS Most oxide solid electrolytes become mixed conductor: SHORTS NSGSE by sol gel process, spin coated: an oxide & stable with Li !! -100000 0 100000 200000 300000 400000 -400000

306

Development of Pressurized Circulating Fluidized Bed Partial Gasification Module (PGM)  

SciTech Connect

Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the July 1-September 30, 2002 time period.

A. Robertson

2002-09-30T23:59:59.000Z

307

DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)  

SciTech Connect

Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the October 1--December 31, 2002 time period.

Unknown

2003-01-30T23:59:59.000Z

308

DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)  

SciTech Connect

Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the April 1--June 30, 2003 time period.

Archie Robertson

2003-07-23T23:59:59.000Z

309

DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)  

SciTech Connect

Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the July 1--September 30, 2003 time period.

Archie Robertson

2003-10-29T23:59:59.000Z

310

Development of Pressurized Circulating Fluidized Bed Partial Gasification Module (PGM)  

SciTech Connect

Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the October 1 - December 31, 2003 time period.

A. Robertson

2003-12-31T23:59:59.000Z

311

Preparation and orientation of solid  

Science Journals Connector (OSTI)

We have prepared solid 3He crystals under constant volume conditions and characterized them by neutron diffraction and transmission. The ultimate aim of the work was the preparation of samples suitable for neutron diffraction investigations of the antiferromagnetic nuclear ordering of solid 3He below 1 mK. We describe results from different sample cells, and we have derived the relevant design parameters with respect to (a) the neutron signal and background requirements, (b) the requirements of experiments at ultra-low temperature and (c) the mechanical properties for work at high pressure. The techniques of the 3He crystal growth at pressure between 4 and 6 MPa and at low temperature are described, together with a strategy for the crystal orientation and background reduction. As a result, large 3He single crystals of good quality were obtained. With such samples, neutron experiments on magnetic order in solid 3He at ultra-low temperature shift to the experimentally feasible regime.

V Boiko; S Matas; K Siemensmeyer

2008-01-01T23:59:59.000Z

312

CPFD simulation of solids residence time and back-mixing in CFB risers  

Science Journals Connector (OSTI)

Abstract A Computational Particle Fluid Dynamics (CPFD) approach was applied to investigate the solids residence time distribution (RTD) and back-mixing behavior in a circulating fluidized bed (CFB) riser. The comparison between the simulation results and the experimental data indicates that the CPFD method was capable to predict the hydrodynamics and solids mean residence time. It was found that the solids residence time exhibited a non-uniform distribution both in the axial and in the radial directions of the riser. Even in the dilute phase transport (DPT) regime, the predicted solids RTD curves had the feature of an early peak and an extended tail, indicating that the solids flow deviates from plug flow and exhibits back-mixing. The solids back-mixing mainly occurred in the lower part of the riser, which provided significant implications for the industrial applications of the CFB reactors since most of the chemical reactions and heat/mass transport processes occur at the lower part of the riser. It is important to minimize the solids back-mixing at the lower part of the riser for the industrial CFB applications like the FCC.

Xiaogang Shi; Renjin Sun; Xingying Lan; Feng Liu; Yinghui Zhang; Jinsen Gao

2014-01-01T23:59:59.000Z

313

DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)  

SciTech Connect

Foster Wheeler Power Group, Inc. is working under US Department of Energy Contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. Under this contract a series of pilot plant tests are being conducted to ascertain PGM performance with a variety of fuels. The performance and economics of a PGM based plant designed for the co-production of hydrogen and electricity will also be determined. This report describes the work performed during the April-June 30, 2004 time period.

Archie Robertson

2004-07-01T23:59:59.000Z

314

Co-gasification of Plastics and Biomass in a Dual Fluidized-Bed Steam Gasifier: Possible Interactions of Fuels  

Science Journals Connector (OSTI)

Co-gasification of Plastics and Biomass in a Dual Fluidized-Bed Steam Gasifier: Possible Interactions of Fuels ... Temperatures of up to 1000 °C were measured with high-temperature thermocouples, while high-quality flow meters (Krohne) were employed for the adjustment of process media inputs, such as the fluidization agents, steam and air. ... A GC–MS device (gas chromatograph with a mass spectrometer) was used to measure the content of 50 different tar species of medium molecular weight in the product gas. ...

Veronika Wilk; Hermann Hofbauer

2013-04-25T23:59:59.000Z

315

Circulating fluidized bed tehnology in biomass combustion-performance, advances and experiences  

SciTech Connect

Development of fluidized bed combustion (FBC) was started both in North America and in Europe in the 1960`s. In Europe and especially in Scandinavia the major driving force behind the development was the need to find new more efficient technologies for utilization of low-grade fuels like different biomasses and wastes. Both bubbling fluidized bed (BFB) and circulating fluidized bed (CFB) technologies were under intensive R&D,D efforts and have now advanced to dominating role in industrial and district heating power plant markets in Europe. New advanced CFB designs are now entering the markets. In North America and especially in the US the driving force behind the FBC development was initially the need to utilize different types of coals in a more efficient and environmentally acceptable way. The present and future markets seem to be mainly in biomass and multifuel applications where there is benefit from high combustion efficiency, high fuel flexibility and low emissions such as in the pulp and paper industry. The choice between CFB technology and BFB technology is based on selected fuels, emission requirements, plant size and on technical and economic feasibility. Based on Scandinavian experience there is vast potential in the North American industry to retrofit existing oil fired, pulverized coal fired, chemical recovery or grate fired boilers with FBC systems or to build a new FBC based boiler plant. This paper will present the status of CFB technologies and will compare technical and economic feasibility of CFB technology to CFB technology to BFB and also to other combustion methods. Power plant projects that are using advanced CFB technology e.g. Ahlstrom Pyroflow Compact technology for biomass firing and co-firing of biomass with other fuels will also be introduced.

Mutanen, K.I. [A. Ahlstrom Corporation, Varkaus (Finland)

1995-11-01T23:59:59.000Z

316

PSNH's Northern Wood power project repowers coal-fired plant with new fluidized-bed combustor  

SciTech Connect

The Northern Wood Power project permanently replaced a 50-MW coal-burning boiler (Unit 5) at Public Service of New Hampshire's Schiller station with a state-of-the-art circulating fluidized bed wood-burning boiler of the same capacity. The project, completed in December 2006, reduced emissions and expanded the local market for low-grade wood. For planning and executing the multiyear, $75 million project at no cost to its ratepayers, PSNH wins Power's 2007 Marmaduke Award for excellence in O & M. The award is named for Marmaduke Surfaceblow, the fictional marine engineer/plant troubleshoot par excellence. 7 figs., 1 tab.

Peltier, R.

2007-08-15T23:59:59.000Z

317

In-bed tube bank for a fluidized-bed combustor  

DOE Patents (OSTI)

An in-bed tube bank (10) for a fluidized bed combustor. The tube bank (10) of the present invention comprises one or more fluid communicating boiler tubes (30) which define a plurality of selectively spaced boiler tube sections (32). The tube sections (32) are substantially parallel to one another and aligned in a common plane. The tube bank (10) further comprises support members (34) for joining adjacent tube sections (32), the support members (34) engaging and extending along a selected length of the tube sections (32) and spanning the preselected space therebetween.

Hemenway, Jr., Lloyd F. (Morgantown, WV)

1990-01-01T23:59:59.000Z

318

Update of waste fuel firing experience in Foster Wheeler circulating fluidized bed boilers  

SciTech Connect

As the costs and availability of more conventional fuels continue to escalate, more and more customers are investigating and choosing operation with lower cost waste or alternative fuels. Details of units firing waste or alternative fuels which have been in active service for many years are summarized, and the fuel analyses are given. This chapter gives a general overview of the projects that are or will be firing waste or alternative fuels, namely, the Mt. Carmel Manitowoc, NISCO and HUNOSA units. The experience of the four operating units has demonstrated that waste and alternative fuels can be successfully and economically burned in an atmosphere circulating fluidized bed unit while meeting permitted emission requirements.

Abdulally, I.F.; Reed, K.A.

1993-12-31T23:59:59.000Z

319

Fluidizable zinc titanate materials with high chemical reactivity and attrition resistance  

DOE Patents (OSTI)

Highly durable and chemically reactive zinc titanate materials are prepared in a particle size range of 50 to 400 .mu.m suitable for a fluidized-bed reactor for removing reduced sulfur species in a gaseous form by granulating a mixture of fine zinc oxide and titanium oxide with inorganic and organic binders and by optional additions of small amounts of activators such as CoO and MoO.sub.3 ; and then indurating it at 800.degree. to 900.degree. C. for a time sufficient to produce attrition-resistant granules.

Gupta, Raghubir P. (Durham, NC); Gangwal, Santosh K. (Durham, NC); Jain, Suresh C. (Morgantown, WV)

1993-01-01T23:59:59.000Z

320

A simplified model for the combustion of coal in a continuous flow fluidized bed  

E-Print Network (OSTI)

specific heat of char (J/g K) 0 specific heat of the fluidizing gas (J/g K) domain over which the interval is defined particle diameter (cm) molecular gas diffusion coefficient (cm /s) intraparticle diffusion coefficient through the ash layer (cm /s... particle (N) weight of an individual particle (N) number of times a bubble is flushed ratio of the volume of ash formed to char burnt z-coordinate of the lower boundary (m) z-coordinate of the upper boundary (m) ~GkS b 1 s/K convective heat transfer...

Richardson, Thomas Wade

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fluidized solids technique" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Behavior of Inorganic Matter in a Dual Fluidized Steam Gasification Plant  

Science Journals Connector (OSTI)

The principle of DFB steam gasification is based on the separation of the endothermic gasification process and the external heat supply from a separate combustion chamber. ... The precoat material described in Table 8 shows a typical composition of the natural mineral dolomite, whose main components are calcium and magnesium oxide, with a high ignition loss at 1050 °C, when the carbonates are released. ... On the basis of a dual fluidized bed system, steam gasification of biomass is coupled with in situ CO2 absorption to enhance the formation of hydrogen. ...

Friedrich Kirnbauer; Markus Koch; Reinhard Koch; Christian Aichernig; Hermann Hofbauer

2013-05-29T23:59:59.000Z

322

MTG process in a fluidized bed with catalyst circulation: Operation and simulation of an experimental unit  

SciTech Connect

The simulation of the MTG process has been studied in a fluidized bed with circulation of the catalyst (prepared based on a HZSM-5 zeolite). The simulation has been carried out by taking into account the activity distribution of the catalyst particles in the bed and by using experimentally determined kinetic models for the reaction at zero time on stream and for the catalyst deactivation. The results of the simulation have been proven in an experimental laboratory unit by operating in the range between 380 and 420 C, with different values of space time and of average residence time of the catalyst.

Ortega, J.M.; Gayubo, A.G.; Aguayo, A.T.; Olazar, M.; Bilbao, J. [Univ. del Pais Vasco, Bilbao (Spain). Dept. de Ingenieria Quimica] [Univ. del Pais Vasco, Bilbao (Spain). Dept. de Ingenieria Quimica

1998-11-01T23:59:59.000Z

323

Simulation and modeling of atmospheric fluidized bed combustors for high sulfur coals  

SciTech Connect

The principal issues in modeling atmospheric fluidized bed combustors (AFBC) are described using the Oak Ridge National Laboratory (ORNL) - Tennessee Valley Authority (TVA) steady state AFBC model as an example. Comparisons are made between model predictions of boiler performance with experimental data from the TVA 20 MW(e) AFBC pilot plant data. Recent FBC models are briefly reviewed and compared with the ORNL-TVA model. The paper also describes the ongoing effort at TVA on transient modeling of AFBC and presents some preliminary results from the TVA AFBC transient model.

Krishnan, R.P.; Daw, C.S.; Byrd, J.; Zielke, R.; Wells, J.W.

1986-01-01T23:59:59.000Z

324

An investigation of steam production in chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU) for solid fuels  

Science Journals Connector (OSTI)

Abstract Chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU) are being actively explored as solid fuel combustion technologies that have the potential to facilitate CO2 capture. While CLC and CLOU have similarities operationally, there are some key differences. In particular, the CLC process requires a coal gasification step where coal is first broken down into a syngas with the use of steam or CO2. The resulting syngas is then oxidized with the metal oxide to release energy. In the CLOU process the metal oxide releases oxygen that combusts the solid fuel, resulting in a lower residence time, as the coal gasification reactions are avoided. The CLC and CLOU systems were modeled with ASPEN Plus at a 10 \\{MWth\\} scale, and the process streams were analyzed by ASPEN Energy Analyzer to determine the amount of industrial process steam that could be generated from CLC or CLOU. Both the air and fuel reactor were analyzed as two circulating fluidized beds, with metal oxide circulating between the two reactors. The air reactor, where metal oxide is oxidized, was fluidized with air. The fuel reactor, where the metal oxide is reduced, was fluidized with steam for CLC and recirculated CO2 for CLOU. It was identified that the CLOU process had the potential to produce more steam, approximately 7920 kg/hr, as compared to CLC (6910 kg/hr).

J.K. Dansie; A.H. Sahir; M.A. Hamilton; J.S. Lighty

2014-01-01T23:59:59.000Z

325

Two stage, low temperature, catalyzed fluidized bed incineration with in situ neutralization for radioactive mixed wastes  

SciTech Connect

A two stage, low temperature, catalyzed fluidized bed incineration process is proving successful at incinerating hazardous wastes containing nuclear material. The process operates at 550{degrees}C and 650{degrees}C in its two stages. Acid gas neutralization takes place in situ using sodium carbonate as a sorbent in the first stage bed. The feed material to the incinerator is hazardous waste-as defined by the Resource Conservation and Recovery Act-mixed with radioactive materials. The radioactive materials are plutonium, uranium, and americium that are byproducts of nuclear weapons production. Despite its low temperature operation, this system successfully destroyed poly-chlorinated biphenyls at a 99.99992% destruction and removal efficiency. Radionuclides and volatile heavy metals leave the fluidized beds and enter the air pollution control system in minimal amounts. Recently collected modeling and experimental data show the process minimizes dioxin and furan production. The report also discusses air pollution, ash solidification, and other data collected from pilot- and demonstration-scale testing. The testing took place at Rocky Flats Environmental Technology Site, a US Department of Energy facility, in the 1970s, 1980s, and 1990s.

Wade, J.F.; Williams, P.M.

1995-05-17T23:59:59.000Z

326

Correlations describing the pressurized fluidized-bed hydroretorting carbon conversions of six Eastern oil shales  

SciTech Connect

A set of correlations has been developed to describe the pressurized fluidized-bed hydroretorting carbon conversion of six Eastern oil shales. Laboratory scale fluidized bed and thermogravimetric data were used to relate hydroretorting conditions and organic carbon conversions to oil, gas, and residue. Conversions have been found to depend on temperature, hydrogen pressure, and residence time over the ranges studied of 750 to 865 K, 0 to 7 MPa H{sub 2}, and 0 to 30 minutes, respectively. Gas yield increases with increasing temperature but is independent of changes in hydrogen pressure. Oil yield increases with increasing hydrogen pressure and has different relationships to temperature for the various shales. A single mechanism has been used to describe the carbon conversions of Alabama and Tennessee Chattanooga, Indiana and Kentucky, New Albany, Michigan Antrim, and Ohio Cleveland shales under PFH conditions. The mechanism includes the simultaneous conversion of carbon to gas, oil, and an active carbon species which can form oil or remain as residue carbon. Yields are predicted over the temperature, hydrogen pressure, and residence time ranges used to PFH processing.

Rue, D.M.

1991-01-01T23:59:59.000Z

327

Correlations describing the pressurized fluidized-bed hydroretorting carbon conversions of six Eastern oil shales  

SciTech Connect

A set of correlations has been developed to describe the pressurized fluidized-bed hydroretorting carbon conversion of six Eastern oil shales. Laboratory scale fluidized bed and thermogravimetric data were used to relate hydroretorting conditions and organic carbon conversions to oil, gas, and residue. Conversions have been found to depend on temperature, hydrogen pressure, and residence time over the ranges studied of 750 to 865 K, 0 to 7 MPa H{sub 2}, and 0 to 30 minutes, respectively. Gas yield increases with increasing temperature but is independent of changes in hydrogen pressure. Oil yield increases with increasing hydrogen pressure and has different relationships to temperature for the various shales. A single mechanism has been used to describe the carbon conversions of Alabama and Tennessee Chattanooga, Indiana and Kentucky, New Albany, Michigan Antrim, and Ohio Cleveland shales under PFH conditions. The mechanism includes the simultaneous conversion of carbon to gas, oil, and an active carbon species which can form oil or remain as residue carbon. Yields are predicted over the temperature, hydrogen pressure, and residence time ranges used to PFH processing.

Rue, D.M.

1991-12-31T23:59:59.000Z

328

An examination of the exothermic nature of fluidized bed combustion (FBC) residues  

Science Journals Connector (OSTI)

Circulating fluidized bed combustion (CFBC) ashes from nine operational periods at the 183 \\{MWe\\} CFBC boiler at Point Aconi were examined for exothermic behaviour. Bed ashes and fly ashes were investigated using a Parr 1455 solution calorimeter. Limited tests were also carried out with additional samples from Point Aconi and from the 160 \\{MWe\\} TVA Bubbling Fluidized Bed Combustion boiler to evaluate the effects of particle size and aging on exothermic behaviour. For the Point Aconi ashes, heat release from the bed ash ranged from 11 to 52 J/g, and the maximum heat release rates ranged from 0.06 to 0.17 J/g/s. For the fly ash heat release varied from 114 to 187 J/g and the maximum heat release rates ranged from 0.8 to 1.9 J/g/s. In the fly ash samples, 50% or more of available CaO was converted to Ca(OH)2, while for the bed ash a third or less of the CaO was converted to Ca(OH)2. The exothermicity of the bed ash is directly proportional to the CaO content of the ash. However, this is not true for the fly ash. The exothermic behaviour of fresh FBC ash appeared to be greatly reduced by exposure in air over a 48-h period. Another conclusion of this work is that particle size effects the exothermic behaviour.

E.J Anthony; L Jia; M Caris; F Preto; S Burwell

1999-01-01T23:59:59.000Z

329

An examination of the exothermic nature of fluidized bed combustion (FBC) residues  

SciTech Connect

Circulating fluidized bed combustion (CFBC) ashes from nine operational periods at the 183 MWe CFBC boiler at Point Aconi were examined for exothermic behavior. Bed ashes and fly ashes were investigated using a Parr 1455 solution calorimeter. Limited tests were also carried out with additional samples from Point Aconi and from the 160 MWe TVA Bubbling Fluidized Bed Combustion boiler to evaluate the effects of particle size and aging on exothermic behavior. For the Point Aconi ashes, heat release from the bed ash ranged from 11 to 52 J/g, and the maximum heat release rates ranged from 0.06 to 0.17 g/s. For the fly ash heat release varied from 114 to 187 J/g and the maximum heat release rates ranged from 0.8 to 1.9 J/s. In the fly ash samples, 50% or more of available CaO was converted to Ca(OH)[sub 2], while for the bed ash a third or less of the CaO was converted to Ca(OH)[sub 2]. The exothermicity of the bed ash is directly proportional to the CaO content of the ash. However, this is not true for the fly ash. The exothermic behavior of fresh FBC ash appeared to be greatly reduced by exposure in air over a 48-h period. Another conclusion of this work is that particle size effects the exothermic behavior.

Anthony, E.J.; Jia, L.; Caris, M.; Preto, F.; Burwell, S. (Natural Resources Canada, Nepean, Ontario (Canada). CANMET Energy Technology Centre)

1999-01-01T23:59:59.000Z

330

Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System  

SciTech Connect

This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2005 through September 30, 2005. The following tasks have been completed. First, the construction of the Circulating Fluidized-Bed (CFB) Combustor Building was completed. The experimental facilities have been moved into the CFB Combustor Building. Second, the fabrication and manufacture of the CFBC Facility is in the final stage and is expected to be completed before November 30, 2005. Third, the drop tube reactor has been remodeled and installed to meet the specific requirements for the investigation of the effects of flue gas composition on mercury oxidation. This study will start in the next quarter. Fourth, the effect of sulfur dioxide on molecular chlorine via the Deacon reaction was investigated. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

Wei-Ping Pan; Songgeng Li; John T. Riley

2005-10-01T23:59:59.000Z

331

Solid-State Lighting: Solid-State Lighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid-State Lighting Search Solid-State Lighting Search Search Help Solid-State Lighting HOME ABOUT THE PROGRAM R&D PROJECTS MARKET-BASED PROGRAMS SSL BASICS INFORMATION RESOURCES FINANCIAL OPPORTUNITIES EERE » Building Technologies Office » Solid-State Lighting Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting to someone by E-mail Share Solid-State Lighting: Solid-State Lighting on Facebook Tweet about Solid-State Lighting: Solid-State Lighting on Twitter Bookmark Solid-State Lighting: Solid-State Lighting on Google Bookmark Solid-State Lighting: Solid-State Lighting on Delicious Rank Solid-State Lighting: Solid-State Lighting on Digg Find More places to share Solid-State Lighting: Solid-State Lighting on AddThis.com... Pause/Resume Photo of a large room with people standing around poster boards.

332

Fluidized-bed waste-heat recovery system development. Semiannual report, February 1, 1983-July 31, 1983  

SciTech Connect

A major energy loss in industry is the heat content of the flue gases from industrial process heaters. One effective way to utilize this energy, which is applicable to all processes, is to preheat the combustion air from the process heater. Although recuperators are available to preheat this air when the flue gases are clean, recuperators to recover the heat from dirty and corrosive flue gases do not exist. The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, a recirculating medium is heated by the flue gas in a fluidized bed. The hot medium is then removed from the bed and placed in a second fluidized bed where it is fluidized by the combustion air. Through this process, the combustion air is heated. The cooled medium is then returned to the first bed. Initial development of this concept is for the aluminum smelting industry. In this report, the accomplishments of the proceeding six-month period are described.

Cole, W. E.; De Saro, R.; Joshi, C.

1983-08-01T23:59:59.000Z

333

arXiv:cond-mat/0511322v114Nov2005 Glass transition in a fluidized bed of hard spheres  

E-Print Network (OSTI)

. Fluid flow rate fluctuations are smaller than 0.3%. To obtain a uniform flow, fluid passes. Goldman and Harry L. Swinney Center for Nonlinear Dynamics and Department of Physics, The University motion arrested) by application of a small increase in flow rate. Thus a fluidized bed can serve

Weeks, Eric R.

334

Nitrogen Oxides, Sulphur Trioxide and Mercury Emissions during Oxy-Fuel Fluidized Bed Combustion of Victorian Brown Coal  

Science Journals Connector (OSTI)

This study investigates, for the first time, the NOX, N2O, SO3 and Hg emissions from combustion of a Victorian brown coal in a 10 kWth fluidized bed unit under oxy-fuel combustion conditions. Compared to air combustion, lower NOX emissions and higher N2O ...

Bithi Roy; Luguang Chen; Sankar Bhattacharya

2014-11-17T23:59:59.000Z

335

In Situ Catalytic Ceramic Candle Filtration for Tar Reforming and Particulate Abatement in a Fluidized-Bed Biomass Gasifier  

Science Journals Connector (OSTI)

In Situ Catalytic Ceramic Candle Filtration for Tar Reforming and Particulate Abatement in a Fluidized-Bed Biomass Gasifier ... In fact, the complications resulting from the requirement to obtain a tar-free product often contribute significantly to the overall investment and operating costs of small- to medium-scale gasification units. ...

Sergio Rapagnà; Katia Gallucci; Manuela Di Marcello; Pier Ugo Foscolo; Manfred Nacken; Steffen Heidenreich

2009-06-23T23:59:59.000Z

336

Simulation on Operating Conditions of Chemical Looping Combustion of Methane in a Continuous Bubbling Fluidized-Bed Process  

Science Journals Connector (OSTI)

Simulation on Operating Conditions of Chemical Looping Combustion of Methane in a Continuous Bubbling Fluidized-Bed Process ... Lyon, R. K.; Cole, J. A. Combust. ... Industrial & Engineering Chemistry Research (1996), 35 (7), 2469-2472 CODEN: IECRED; ISSN:0888-5885. ...

Djamila Brahimi; Jeong-Hoo Choi; Pil Sang Youn; Young-Wook Jeon; Sang Done Kim; Ho-Jung Ryu

2012-01-04T23:59:59.000Z

337

Deposition of high-density silicon carbide coatings by fluidized-bed pyrolysis of chlorinated silane derivatives  

Science Journals Connector (OSTI)

Comparative analysis of the processes for preparation of high-density silicon carbide coatings by the fluidized-bed pyrolysis of the SiCl4 + CH4 + H2 + Ar and CH3SiCl3 + H2 + Ar mixtures on pyrocarboncoated zirco...

S. D. Kurbakov; T. A. Mireev

2009-04-01T23:59:59.000Z

338

Dynamic Tests and Results in an Oxy-fuel Circulating Fluidized Bed Combustor with Warm Flue Gas Recycle  

Science Journals Connector (OSTI)

Dynamic Tests and Results in an Oxy-fuel Circulating Fluidized Bed Combustor with Warm Flue Gas Recycle ... Dynamic step change tests concerning the coal feed rate and coal type were conducted. ... In the dynamic tests, the oxygen concentration in the flue gas fluctuates in the form of a sinusoidal wave because of the fast volatile combustion and the delay in the char ignition. ...

Jian-xin Zhou; Zhuang Shao; Feng-qi Si; Zhi-gao Xu

2014-11-17T23:59:59.000Z

339

Calculation and modelling to the brown coal drying fluidized bed specialized for Greek lignite of west Macedonia  

Science Journals Connector (OSTI)

Brown coal is considered to be a competitive primary energy source for power generation in parts of Central and Eastern Europe due to the economically recoverable reserves of this fuel in these regions. Specifically for Greece lignites is the main fuel ... Keywords: brown coal, electric energy, energy source, fluidized bed, lignites

John Karmalis; Nikolaos Asimopoulos; Dimitrios Zissopoulos; Natsos Kouvatsis

2010-07-01T23:59:59.000Z

340

Method of and apparatus for preheating pressurized fluidized bed combustor and clean-up subsystem of a gas turbine power plant  

DOE Patents (OSTI)

In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.

Cole, Rossa W. (E. Rutherford, NJ); Zoll, August H. (Cedar Grove, NJ)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fluidized solids technique" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

REMOTE DETECTION OF INTERNAL PIPELINE CORROSION USING FLUIDIZED SENSORS  

SciTech Connect

Pipelines present a unique challenge to monitoring because of the great geographical distances they cover, their burial depth, their age, and the need to keep the product flowing without much interruption. Most other engineering structures that require monitoring do not pose such combined challenges. In this regard, a pipeline system can be considered analogous to the blood vessels in the human body. The human body has an extensive ''pipeline'' through which blood and other fluids are transported. The brain can generally sense damage to the system at any location and alert the body to provide temporary repair, unless the damage is severe. This is accomplished through a vast network of fixed and floating sensors combined with a vast and extremely complex communication/decision making system. The project described in this report mimics the distributed sensor system of our body, albeit in a much more rudimentary fashion. Internal corrosion is an important factor in pipeline integrity management. At present, the methods to assess internal corrosion in pipelines all have certain limitations. In-line inspection tools are costly and cannot be used in all pipelines. Because there is a significant time interval between inspections, any impact due to upsets in pipeline operations can be missed. Internal Corrosion Direct Assessment (ICDA) is a procedure that can be used to identify locations of possible internal corrosion. However, the uncertainties in the procedure require excavation and location of damage using more detailed inspection tools. Non-intrusive monitoring techniques can be used to monitor internal corrosion, but these tools also require pipeline excavation and are limited in the spatial extent of corrosion they can examine. Therefore, a floating sensor system that can deposit at locations of water accumulation and communicate the corrosion information to an external location is needed. To accomplish this, the project is divided into four main tasks related to wireless data transmission, corrosion sensor development, sensor system motion and delivery, and consideration of other pipeline operations issues. In the first year of the program, focus was on sensor development and wireless data transmission. The second year of the program, which was discontinued due to funding shortfall, would have focused on further wireless transmission development, packaging of sensor on wireless, and other operational issues. Because, the second year funding has been discontinued, recommendations are made for future studies.

Narasi Sridhar; Garth Tormoen; Ashok Sabata

2005-10-31T23:59:59.000Z

342

Solid Oxide Fuel Cells  

Science Journals Connector (OSTI)

A Solid Oxide Fuel Cell (SOFC) is typically composed of two porous electrodes, interposed between an electrolyte made of a particular solid oxide ceramic material. The system originates from the work of Nernst...

Nigel M. Sammes; Roberto Bove; Jakub Pusz

2006-01-01T23:59:59.000Z

343

Laser cooling of solids  

SciTech Connect

We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

2008-01-01T23:59:59.000Z

344

Dismantling techniques  

SciTech Connect

Most of the dismantling techniques used in a Decontamination and Dismantlement (D and D) project are taken from conventional demolition practices. Some modifications to the techniques are made to limit exposure to the workers or to lessen the spread of contamination to the work area. When working on a D and D project, it is best to keep the dismantling techniques and tools as simple as possible. The workers will be more efficient and safer using techniques that are familiar to them. Prior experience with the technique or use of mock-ups is the best way to keep workers safe and to keep the project on schedule.

Wiese, E.

1998-03-13T23:59:59.000Z

345

Improved solid aerosol generator  

DOE Patents (OSTI)

An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

Prescott, D.S.; Schober, R.K.; Beller, J.

1988-07-19T23:59:59.000Z

346

A study of cellulose gasification in a fluidized bed using a high-temperature solar furnace  

SciTech Connect

A 4.2-meter solar furnace was used to study the gasification of cellulose with steam in a fluidized bed. The heating value of the high-temperature equilibrium products is about twenty percent higher than that of the reactants. The increase represents stored solar energy; and the product, synthesis gas, is valuable as a chemical feedstock or pipeline gas. All experiments were performed at atmospheric pressure. Pure tabular alumina as well as crushed automotive exhaust was used as a bed material. Microcrystalline {alpha}-cellulose, entrained in argon, entered the fluidized bed just above the distributor. Steam heated to the operating temperature in a 10 cm packed bed section below the fluidized bed. In all cases, the process ran with more steam than required to produce an equimolar mixture of carbon monoxide and hydrogen. We used a quartz reactor between 1100 and 1430 K; a steel reactor at 1500 K and an Inconel reactor at 1600 K. Reactor inside diameter, nominally 5 cm, varied slightly; the bed height was adjusted to keep the gas residence time constant. Hydrogen production rate was measured before and after experiments with steam alone, with this amount subtracted. Equilibrium mixtures were not achieved. Catalysts improved hydrogen yields with higher than expected concentrations of carbon monoxide, methane and lighter hydrocarbons such as ethylene and acetylene. Experiments performed without catalyst at 1300 K, achieved a mixture (dry, argon-free) of 46 mole% CO, 30% H{sub 2} 14% CH{sub 4} 5% CO{sub 2} and 5% C{sub 2}H{sub 4}. An equilibrium mixture at this temperature would have contained 39% CO, 30% H{sub 2} 7% CO{sub 2} and no CH{sub 4} or C{sub 2}H{sub 4}. With the catalyst, the CO and CH{sub 4} decreased to 40% and 2% respectively, the H{sub 2} increased to 47%, and CO{sub 2} remained the same. No ethylene was formed. The hydrocarbon-rich mixtures achieved are typical of rapid-pyrolysis processes.

Murray, J.P.

1989-01-01T23:59:59.000Z

347

Solid-State Lighting: Solid-State Lighting Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Lighting Videos to Solid-State Lighting Videos to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Videos on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Videos on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Videos on Google Bookmark Solid-State Lighting: Solid-State Lighting Videos on Delicious Rank Solid-State Lighting: Solid-State Lighting Videos on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Videos on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools Solid-State Lighting Videos On this page you can access DOE Solid-State Lighting (SSL) Program videos. Photo of a museum art gallery with LED lights in track fixtures overhead. The City of Los Angeles LED Streetlight Program

348

Solid-State Lighting: Solid-State Lighting Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

About the About the Program Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting Contacts to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Contacts on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Contacts on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Contacts on Google Bookmark Solid-State Lighting: Solid-State Lighting Contacts on Delicious Rank Solid-State Lighting: Solid-State Lighting Contacts on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Contacts on AddThis.com... Contacts Partnerships Solid-State Lighting Contacts For information about Solid-State Lighting, contact James Brodrick Lighting Program Manager Building Technologies Office U.S. Department of Energy

349

A cold model experimental study on the flow characteristics of bed material in a fluidized bed bottom ash cooler in a CFB boiler  

Science Journals Connector (OSTI)

A cold model experimental study on the flowing characteristics of bed material between a fluidized bed ash cooler and a furnace of CFB boiler were discussed in this paper. The research results showed that flowing...

Xiaofeng Lu; Yourong Li

2000-12-01T23:59:59.000Z

350

Laboratory-Scale Burning and Characterizing of Composite Solid Propellant for Studying Novel Nanoparticle Synthesis Methods  

E-Print Network (OSTI)

This thesis examines the effects of nanoparticle, metal-oxide additives on the burning rate of composite solid propellants. Recent advancements in chemical synthesis techniques have allowed for the production of improved solid rocket propellant nano...

Allen, Tyler Winston

2013-04-29T23:59:59.000Z

351

Liquid-Phase Combinatorial Synthesis Technique Could Ease Automation  

Science Journals Connector (OSTI)

A liquid-phase combinatorial synthesis technique developed by researchers at Scripps Research Institute, La Jolla, Calif., could provide advantages over existing solid-phase technology and ease automation of combinatorial techniques.Combinatorial ...

STU BORMAN

1995-07-31T23:59:59.000Z

352

Advanced Circulating Pressurized Fluidized Bed Combustion (APFBC) Repowering Concept Assessment at Duke Energy's Dan River Station  

NLE Websites -- All DOE Office Websites (Extended Search)

Wolfmeyer et al. APFBC Repowering Assessment at Duke Energy's Dan River Station Wolfmeyer et al. APFBC Repowering Assessment at Duke Energy's Dan River Station paper 970561 Page 1 of 36 Advanced Circulating Pressurized Fluidized Bed Combustion (APFBC) Repowering Concept Assessment at Duke Energy's Dan River Station John C. Wolfmeyer, P.E., and Cal Jowers, P.E. Duke Energy / Charlotte, North Carolina Richard E. Weinstein, P.E., Harvey N. Goldstein, P.E., and Jay S. White Parsons Power Group Inc. / Reading, Pennsylvania Robert W. Travers, P.E. U.S. Department of Energy Office of Fossil Energy / Germantown, Maryland electronic mail addresses/phone no. electronic mail addresses/phone no. Wolfmeyer { JCWolfme@Duke-Energy.COM 704 / 382-4017 Goldstein { Harvey_N_Goldstein@Parsons.COM 610 / 855-3281 Jowers { -- 704 / 382-9577 White { Jay_S_White@Parsons.COM

353

Radioactive Demonstrations Of Fluidized Bed Steam Reforming (FBSR) With Hanford Low Activity Wastes  

SciTech Connect

Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One immobilization technology being considered is Fluidized Bed Steam Reforming (FBSR) which offers a low temperature (700-750?C) continuous method by which wastes high in organics, nitrates, sulfates/sulfides, or other aqueous components may be processed into a crystalline ceramic (mineral) waste form. The granular waste form produced by co-processing the waste with kaolin clay has been shown to be as durable as LAW glass. The FBSR granular product will be monolithed into a final waste form. The granular component is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals such as sodalite. Production of the FBSR mineral product has been demonstrated both at the industrial, engineering, pilot, and laboratory scales on simulants. Radioactive testing at SRNL commenced in late 2010 to demonstrate the technology on radioactive LAW streams which is the focus of this study.

Jantzen, C. M.; Crawford, C. L.; Burket, P. R.; Bannochie, C. J.; Daniel, W. G.; Nash, C. A.; Cozzi, A. D.; Herman, C. C.

2012-10-22T23:59:59.000Z

354

Pressurized fluidized-bed hydroretorting of raw and beneficiated Eastern oil shales  

SciTech Connect

The Institute of Gas Technology (IGT) with US Department of Energy (DOE) support has developed a pressurized fluidized-bed hydroretorting (PFH) process for Eastern oil shales. Bench-scale tests have been conducted with raw and beneficiated shales in an advanced multipurpose research reactor (AMRR). Raw Alabama shale and raw and beneficiated Indiana shales were retorted at 515{degrees}C using hydrogen pressures of 4 and 7 MPa. Shale feed rates to the AMRR were 15 to 34 kg/h. High oils yields and carbon conversions were achieved in all tests. Oil yield from Alabama shale hydroretorted at 7 MPa was 200% of Fischer Assay. Raw and beneficiated Indiana shales hydroretorted at 7 MPa produced oil yields of 170% to 195% of Fischer Assay, respectively. Total carbon conversions were greater than 70% for all tests conducted at 7 MPa.

Roberts, M.J.; Rue, D.M.; Lau, F.S.

1991-01-01T23:59:59.000Z

355

Pressurized fluidized-bed hydroretorting of raw and beneficiated Eastern oil shales  

SciTech Connect

The Institute of Gas Technology (IGT) with US Department of Energy (DOE) support has developed a pressurized fluidized-bed hydroretorting (PFH) process for Eastern oil shales. Bench-scale tests have been conducted with raw and beneficiated shales in an advanced multipurpose research reactor (AMRR). Raw Alabama shale and raw and beneficiated Indiana shales were retorted at 515{degrees}C using hydrogen pressures of 4 and 7 MPa. Shale feed rates to the AMRR were 15 to 34 kg/h. High oils yields and carbon conversions were achieved in all tests. Oil yield from Alabama shale hydroretorted at 7 MPa was 200% of Fischer Assay. Raw and beneficiated Indiana shales hydroretorted at 7 MPa produced oil yields of 170% to 195% of Fischer Assay, respectively. Total carbon conversions were greater than 70% for all tests conducted at 7 MPa.

Roberts, M.J.; Rue, D.M.; Lau, F.S.

1991-12-31T23:59:59.000Z

356

Pressurized fluidized-bed hydroretorting of Indiana New Albany shale in batch and continuous units  

SciTech Connect

Work is being conducted at the Institute of Gas Technology (IGT) to develop a pressurized fluidized-bed hydroretorting (PFH) process for the production of oil from Eastern oil shales. The PFH process, using smaller particle sizes than the moving-bed hydroretorting process, offers higher oil yields and greater reactor mass fluxes through higher selectivity of organic carbon to oil and shorter residence times, respectively. Batch PFH tests have been conducted to study the effects of shale preheat time (15 to 30 min) and temperature (25{degree} to 320{degree}C), retorting temperature (450{degree} to 710{degree}C), hydrogen pressure (2.8 to 7.0 MPa), particle size (65 to 330 microns), and residence time (5 to 30 min) on the product yields from Indiana New Albany shale. Oil yield has been found to increase with increasing hydrogen pressure. Results are discussed. 10 refs., 14 figs., 3 tabs.

Roberts, M.J.; Rue, D.M.; Lau, F.S. (Institute of Gas Technology, Chicago, IL (USA)); Roosmagi, C. (USDOE Laramie Energy Technology Center, WY (USA))

1989-01-01T23:59:59.000Z

357

Experimental–numerical design of a biomass bubbling fluidized bed gasifier for paper sludge energy recovery  

Science Journals Connector (OSTI)

This paper presents the application of a comprehensive approach to the design of small scale sustainable distributed generation systems with special focus on energy recovery from paper production process sludge. The methodology integrates a detailed fluid-dynamic analysis tool with preliminary experimental analysis on a laboratory scale to guide the design of a prototype bubbling fluidized bed gasifier in the 85 kW power range fitting with small and medium size paper production industries. Preliminary tests show stable operation even for this rather small power scale, and deviation from chemical equilibrium concentration in agreement with literature available data. Energy content in the sludge may be recovered along with a significant reduction of residual volume and mass. The concept may then be used to increase the overall sustainability of paper production.

S. Cordiner; G. De Simone; V. Mulone

2012-01-01T23:59:59.000Z

358

Attrition of coal ash particles in a fluidized-bed reactor  

SciTech Connect

Experimental data of ash-particles attrition in a fluidized bed is presented, and also the results of modeling. Five sizes of ash particles (1.02-1.25; 1.25-1.6; 1.6-2.0; 2.0-5.0; 5.0-10.0 mm) produced in an industrial CFB boiler were examined. A new model of mechanical attrition has been proposed which incorporates new parameters: the shape factor of particles and the ratio of the bed height to bed diameter, strongly influencing the rate of bed mass loss. The model describes very well experimental data for coal-ash particles attrition. The attrition-rate coefficient for ash particles was evaluated.

Tomeczek, J.; Mocek, P. [Silesian Technical University, Katowice (Poland)

2007-05-15T23:59:59.000Z

359

Process for generating electricity in a pressurized fluidized-bed combustor system  

DOE Patents (OSTI)

A process and apparatus for generating electricity using a gas turbine as part of a pressurized fluidized-bed combustor system wherein coal is fed as a fuel in a slurry in which other constituents, including a sulfur sorbent such as limestone, are added. The coal is combusted with air in a pressurized combustion chamber wherein most of the residual sulfur in the coal is captured by the sulfur sorbent. After particulates are removed from the flue gas, the gas expands in a turbine, thereby generating electric power. The spent flue gas is cooled by heat exchange with system combustion air and/or system liquid streams, and the condensate is returned to the feed slurry.

Kasper, Stanley (Pittsburgh, PA)

1991-01-01T23:59:59.000Z

360

Investigation of Multistage Circulating Fast Fluidized Bed Membrane Reformers for Production of Ultraclean Hydrogen and Syngas  

Science Journals Connector (OSTI)

Investigation of Multistage Circulating Fast Fluidized Bed Membrane Reformers for Production of Ultraclean Hydrogen and Syngas ... In order to distinguish between the two catalysts employed in this study, the catalyst over which the CSRM and CPOM reactions take place is considered catalyst 1 and that over which the CDRM reaction takes place is considered catalyst 2. The physical significance of catalyst 1 is that both reaction schemes of the CSRM and CPOM are catalyzed by this catalyst to produce hydrogen and syngas and to supply the necessary energy for the heat integration, though catalyst 2 plays an important role to steer the quality of the syngas and to enhance the hydrogen yield. ... In order to check the quality of the corresponding syngas produced in the reaction side, the hydrogen to carbon monoxide feed ratio (H2/CO) profile is presented in Figure 15. ...

Mohamed E. E. Abashar; Said S. E. H. Elnashaie

2014-03-05T23:59:59.000Z

Note: This page contains sample records for the topic "fluidized solids technique" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Fluidized bed combustion of low-rank coals: (Task 4. 1)  

SciTech Connect

Results obtained in the second year of a second three-year program are described. Two 1000-hour tests were completed to evaluate corrosion/erosion effects on boiler materials. The coals tested were Kentucky {number sign}9 from the Pyro mine and Gibbons Creek, Texas, lignite. Of the variety of stainless and carbon steels tested, several meet commercial requirements despite a wide range in ash compositions of the test coals. In Fluidized Bed Combustion characterization, the River King Illinois {number sign}6 and Jacobs Ranch, Wyoming, subbituminous coals were extensively tested under a wide range of operating conditions and with and without limestone addition. The Jacobs Ranch coal was also successfully and satisfactorily fired as a coal/water fuel slurry. The low-rank coal slurry provided excellent ignition and combustion efficiency, and without ash agglomeration or accumulation. Continued progress was made in expanding the data base on FBC of low- rank coals. 11 refs., 59 figs., 22 tabs.

Mann, M.D.; Hajicek, D.R.; Zobeck, B.J.; Kalmanovitch, D.P.; Potas, T.A.

1988-04-01T23:59:59.000Z

362

Fluidized-bed boiler assessment for Navy applications. Final report, October 1983-September 1985  

SciTech Connect

This report discusses the assessment of one of the most-promising coal-firing technologies - Fluidized-Bed Combustion(FBC) - for Navy stationary boilers. The working principles, physical construction, major and auxiliary components, and system performance of an FBC boiler are described and compared with the conventional stoker and pulverized-coal fired boilers. The advantages of the FBC boiler based on fuel flexibility, operational reliability, economic feasibility, and environmental acceptability are identified, state-of-development and FBC manufacturers are also noted. The problems with the Great Lakes FBC boiler plant were studied and possible remedial measures are given. Considerations for FBC retrofitting have been examined based on boiler size, age, configuration, accessory components, and available space. Recommendations on how to achieve the Navy's goal of coal utilization by the FBC approach are outlined.

Fu, T.T.; Maga, G.F.

1986-11-01T23:59:59.000Z

363

Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System  

SciTech Connect

This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period October 1, 2005 through December 31, 2005. Work was performed on the following activities. First, the fabrication and manufacture of the CFBC Facility is nearly completed. The erection of the CFBC facility is expected to start in the second week of February, 2006. Second, effect of flue gas components on mercury oxidation was investigated in a drop tube reactor. As a first step, experiment for mercury oxidation by chlorine was investigated. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

Wei-Ping Pan; Songgeng Li

2006-01-01T23:59:59.000Z

364

Solid-State Lighting: Solid-State Lighting Manufacturing Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Lighting Solid-State Lighting Manufacturing Workshop to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Google Bookmark Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Delicious Rank Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools Solid-State Lighting Manufacturing Workshop Nearly 200 lighting industry leaders, chip makers, fixture and component

365

Performance Characteristics of Fluidized Bed Syngas Methanation over Ni-Mg/Al2O3 Catalyst  

Science Journals Connector (OSTI)

Abstract The performance characteristics of isothermal fluidized bed syngas methanation for substitute natural gas is investigated over a self-made Ni-Mg/Al2O3 catalyst. Via atmospheric methanation in a laboratory fluidized bed reactor it was clarified that the CO conversion varied in 5% when changing the space velocity in 40-120 L · g- 1 · h- 1 but the conversion increased obviously by raising the superficial gas velocity from 4 to 12.4 cm · s- 1. The temperature 823 K is suitable for syngas methanation while obvious deposition of uneasy-oxidizing C? occurs on the catalyst at temperatures around 873 K. From kinetic aspect, the lowest reaction temperature is suggested to be 750 K when the space velocity is 60 L · g- 1 · h- 1. Raising the H2/CO ratio of the syngas increased proportionally the CO conversion and CH4 selectivity, showing that at enough high H2/CO ratios the active sites on the catalyst are sufficient for CO adsorption and in turn the reaction with H2 for forming CH4. Introducing CO2 into the syngas feed increased H2 consumption but suppressed water gas shift and Boudouard reactions. The ratio of CO2/CO in syngas should be better below 0.52 because varying the ratio from 0.52 to 0.92 resulted in negligible increases in the H2 conversion and CH4 selectivity but decreased the CH4 yield. Introducing steam into the feed gas affected little the CO conversion but decreased the selectivity to CH4. The tested Ni-Mg/Al2O3 catalyst manifested good stability in structure and activity even in syngas containing water vapor.

Jiao Liu; Dianmiao Cui; Jian Yu; Fabing Su; Guangwen Xu

2014-01-01T23:59:59.000Z

366

Contamination and solid state welds.  

SciTech Connect

Since sensitivity to contamination is one of the verities of solid state joining, there is a need for assessing contamination of the part(s) to be joined, preferably nondestructively while it can be remedied. As the surfaces that are joined in pinch welds are inaccessible and thus provide a greater challenge, most of the discussion is of the search for the origin and effect of contamination on pinch welding and ways to detect and mitigate it. An example of contamination and the investigation and remediation of such a system is presented. Suggestions are made for techniques for nondestructive evaluation of contamination of surfaces for other solid state welds as well as for pinch welds. Surfaces that have good visual access are amenable to inspection by diffuse reflection infrared Fourier transform (DRIFT) spectroscopy. Although other techniques are useful for specific classes of contaminants (such as hydrocarbons), DRIFT can be used most classes of contaminants. Surfaces such as the interior of open tubes or stems that are to be pinch welded can be inspected using infrared reflection spectroscopy. It must be demonstrated whether or not this tool can detect graphite based contamination, which has been seen in stems. For tubes with one closed end, the technique that should be investigated is emission infrared spectroscopy.

Mills, Bernice E.

2007-05-01T23:59:59.000Z

367

Solid-State Lighting: Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting Lighting Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting to someone by E-mail Share Solid-State Lighting: Solid-State Lighting on Facebook Tweet about Solid-State Lighting: Solid-State Lighting on Twitter Bookmark Solid-State Lighting: Solid-State Lighting on Google Bookmark Solid-State Lighting: Solid-State Lighting on Delicious Rank Solid-State Lighting: Solid-State Lighting on Digg Find More places to share Solid-State Lighting: Solid-State Lighting on AddThis.com... Pause/Resume Photo of a large room with people standing around poster boards. Register Now for DOE's 11th Annual SSL R&D Workshop January 28-30, join other SSL R&D professionals from industry, government, and academia to learn, share, and shape the future of lighting.

368

DOE/EIS-0289, Final Environmental Impact Statement for the JEA Circulating Fluidized Bed Combustor Project (June 1, 2000)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINAL FINAL ENVIRONMENTAL IMPACT STATEMENT FOR THE JEA CIRCULATING FLUIDIZED BED COMBUSTOR PROJECT JACKSONVILLE, FLORIDA June 2000 U.S. DEPARTMENT OF ENERGY COVER SHEET June 2000 RESPONSIBLE AGENCY U.S. Department of Energy (DOE) TITLE Final Environmental Impact Statement for the JEA Circulating Fluidized Bed Combustor Project; Jacksonville, Duval County, Florida CONTACT Additional copies or information concerning this final environmental impact statement (EIS) can be obtained from Ms. Lisa K. Hollingsworth, National Environmental Policy Act (NEPA) Document Manager, U.S. Department of Energy, National Energy Technology Laboratory, 3610 Collins Ferry Road, P. O. Box 880, Morgantown, WV 26507-0880. Telephone: (304) 285-4992. Fax: (304) 285-4403. E-mail: lisa.hollingsworth@netl.doe.gov.

369

DOE/EIS-0289; Draft Environmental Impact Statement for the JEA Circulating Fluidized Bed Combustor Project, August 1999  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Draft ENVIRONMENTAL IMPACT STATEMENT FOR THE JEA CIRCULATING FLUIDIZED BED COMBUSTOR PROJECT JACKSONVILLE, FLORIDA August 1999 U.S. DEPARTMENT OF ENERGY COVER SHEET August 1999 RESPONSIBLE AGENCY U.S. Department of Energy (DOE) TITLE Draft Environmental Impact Statement for the JEA Circulating Fluidized Bed Combustor Project; Jacksonville, Duval County, Florida CONTACT Additional copies or information concerning this draft environmental impact statement (EIS) can be obtained from Ms. Lisa K. Hollingsworth, National Environmental Policy Act (NEPA) Document Manager, U.S. Department of Energy, Federal Energy Technology Center, 3610 Collins Ferry Road, P. O. Box 880, Morgantown, WV 26507-0880. Telephone: (304) 285-4992. Fax: (304) 285-4403. E-mail: lisa.hollingsworth@fetc.doe.gov.

370

Hanford Low Activity Waste (LAW) Fluidized Bed Steam Reformer (FBSR) Na-Al-Si (NAS) Waste Form Qualification  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Low Activity Waste (LAW) Fluidized Bed Steam Hanford Low Activity Waste (LAW) Fluidized Bed Steam Reformer (FBSR) Na-Al-Si (NAS) Waste Form Qualification C.M. Jantzen and E.M. Pierce November 18, 2010 2 Participating Organizations 3 Incentive and Objectives FBSR sodium-aluminosilicate (NAS) waste form has been identified as a promising supplemental treatment technology for Hanford LAW Objectives: Reduce the risk associated with implementing the FBSR NAS waste form as a supplemental treatment technology for Hanford LAW Conduct test with actual tank wastes Use the best science to fill key data gaps Linking previous and new results together 4 Outline FBSR NAS waste form processing scales FBSR NAS waste form data/key assumptions FBSR NAS key data gaps FBSR NAS testing program 5 FBSR NAS Waste Form Processing

371

Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LWO-SPT-2007-00249 LWO-SPT-2007-00249 Rev. 1 Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) For Tank 48H Treatment Project (TTP) November, 2007 Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) LWO-SPT-2007-00249 Rev. 1 DISCLAIMER This report was prepared by Washington Savannah River Company (WSRC) for the United States Department of Energy under Contract No. DEA-AC09-96SR18500 and is an account of work performed under that contract. Neither the United States Department of Energy, nor WSRC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, or product or process

372

Development of methods to predict agglomeration and deposition in fluidized-bed combustion systems (FBCS). Topical report  

SciTech Connect

The successful design and operation of advanced combustion systems require the ability to control and mitigate ash-related problems. The major ash-related problems are slag flow control, slag attack on the refractory, ash deposition on heat-transfer surfaces, corrosion and erosion of equipment materials, and emissions control. These problems are the result of physical and chemical interactions of the fuels, bed materials, and system components. The interactions that take place and ultimately control ash behavior in fluidized-bed combustion (FBC) systems are controlled by the abundance and association of the inorganic components in coal and by the system conditions. Because of the complexity of the materials and processes involved, the design and operations engineer often lacks the information needed to predict ash behavior and reduce ash-related problems. The deposition of ashes from the fluidized bed combustion of lignite and petroleum coke is described in this paper.

Mann, M.D.; Henderson, A.K.; Swanson, M.L.; Allan, S.E.

1996-02-01T23:59:59.000Z

373

FBC (fluidized-bed combustors) engineering correlations for estimating the combustion efficiency of a range of fuels  

SciTech Connect

Simplified engineering correlations are presented for estimating the combustion efficiency of a wide range of fuel types in fluidized bed boilers. The correlations are presented in such a way that they can be applied to various boiler designs, including both bubbling and circulating beds. Major emphasis is placed on minimizing the boiler design and operating details required, thereby enhancing the usefulness of these methods as screening tools. The impact of fuel type is addressed by making use of the fuel characterization parameters measured by the Babcock and Wilcox Company for the Electric Power Research Institute. It is demonstrated that the methods described give combustion efficiency estimates that agree well with typical observations from some well-documented fluidized bed combustion test facilities. 16 refs., 9 figs., 1 tab.

Daw, C.S.; Chandran, R.R.; Duqum, J.N.; Perna, M.A.; Petrill, E.M.

1989-01-01T23:59:59.000Z

374

3D Computational Fluid Dynamics Simulation of Natural Coke Steam Gasification in General and Improved Fluidized Beds  

Science Journals Connector (OSTI)

The thermal characteristics of natural coke steam gasification in a fluidized bed were three-dimensionally (3D) simulated based on the computational fluid dynamics (CFD) method using Fluent code. ... However, this technology seems difficult to carry out due to its abradability, hard ignition, hot burst, and so on. ... In short, all the results in this work have a significance to provide the theoretical basis for the design, operational optimization, and scale-up of the natural coke steam gasification process. ...

Ya-li Tang; Dai-jun Liu; Yu-hong Liu; Qian Luo

2010-09-30T23:59:59.000Z

375

Measuring Densities of Solids and Liquids Using Magnetic Levitation: Fundamentals  

Science Journals Connector (OSTI)

Measuring Densities of Solids and Liquids Using Magnetic Levitation: Fundamentals ... This article also describes the fundamental limitations of this technique. ... The Measurement, Instrumentation, and Sensors Handbook; CRC Press and IEEE Press: Boca Raton, FL, 1999. ...

Katherine A. Mirica; Sergey S. Shevkoplyas; Scott T. Phillips; Malancha Gupta; George M. Whitesides

2009-07-02T23:59:59.000Z

376

Co-combustion of biomass and gaseous fuel in a novel configuration of fluidized bed: Thermal characteristics  

Science Journals Connector (OSTI)

Abstract Experimental study on co-combustion of rice straw and natural gas has been performed in a fluidized bed. The used combustor allows the novel, jetting-fountain configuration and the conventional operation as well. In the jetting-fountain configuration, natural gas premixed with the air sufficient for combustion proceeds through the jet pipe to create a jetting-fountain zone. Whereas only the air required for rice straw combustion passes through the gas distributor. The experiments show that smooth combustion of natural gas with rice straw can be performed in the jetting-fountain fluidized bed avoiding acoustic effects and explosions of burning bubbles that occurs in conventional operation. The jetting-fountain fluidized bed is shown to dampen greatly the freeboard overheating at particularly lower bed temperatures. This is because the fountain-particles absorb a great part of heat released in the freeboard and recover it back to the bed. It is confirmed by measuring the in-bed cooling load that was found to increase considerably at lower bed temperatures. The natural gas contribution is found to play a major role when applying the jetting-fountain configuration. Increasing the natural gas contribution enlarges the fountain zone that causes greater reduction in the freeboard overheating and recovers more heat back to the bed. Measuring the in-bed cooling also approves the later conclusion.

F. Okasha; G. Zaater; S. El-Emam; M. Awad; E. Zeidan

2014-01-01T23:59:59.000Z

377

Direct Carbon Fuel Cell System Utilizing Solid Carbonaceous Fuels  

SciTech Connect

This 1-year project has achieved most of its objective and successfully demonstrated the viability of the fluidized bed direct carbon fuel cell (FB-DCFC) approach under development by Direct Carbon technologies, LLC, that utilizes solid carbonaceous fuels for power generation. This unique electrochemical technology offers high conversion efficiencies, produces proportionately less CO{sub 2} in capture-ready form, and does not consume or require water for gasification. FB-DCFC employs a specialized solid oxide fuel cell (SOFC) arrangement coupled to a Boudouard gasifier where the solid fuel particles are fluidized and reacted by the anode recycle gas CO{sub 2}. The resulting CO is electrochemically oxidized at the anode. Anode supported SOFC structures employed a porous Ni cermet anode layer, a dense yttria stabilized zirconia membrane, and a mixed conducting porous perovskite cathode film. Several kinds of untreated solid fuels (carbon and coal) were tested in bench scale FBDCFC prototypes for electrochemical performance and stability testing. Single cells of tubular geometry with active areas up to 24 cm{sup 2} were fabricated. The cells achieved high power densities up to 450 mW/cm{sup 2} at 850 C using a low sulfur Alaska coal char. This represents the highest power density reported in the open literature for coal based DCFC. Similarly, power densities up to 175 mW/cm{sup 2} at 850 C were demonstrated with carbon. Electrical conversion efficiencies for coal char were experimentally determined to be 48%. Long-term stability of cell performance was measured under galvanostatic conditions for 375 hours in CO with no degradation whatsoever, indicating that carbon deposition (or coking) does not pose any problems. Similar cell stability results were obtained in coal char tested for 24 hours under galvanostatic conditions with no sign of sulfur poisoning. Moreover, a 50-cell planar stack targeted for 1 kW output was fabricated and tested in 95% CO (balance CO{sub 2}) that simulates the composition of the coal syngas. At 800 C, the stack achieved a power density of 1176 W, which represents the largest power level demonstrated for CO in the literature. Although the FB-DCFC performance results obtained in this project were definitely encouraging and promising for practical applications, DCFC approaches pose significant technical challenges that are specific to the particular DCFC scheme employed. Long term impact of coal contaminants, particularly sulfur, on the stability of cell components and cell performance is a critically important issue. Effective current collection in large area cells is another challenge. Lack of kinetic information on the Boudouard reactivity of wide ranging solid fuels, including various coals and biomass, necessitates empirical determination of such reaction parameters that will slow down development efforts. Scale up issues will also pose challenges during development of practical FB-DCFC prototypes for testing and validation. To overcome some of the more fundamental problems, initiation of federal support for DCFC is critically important for advancing and developing this exciting and promising technology for third generation electricity generation from coal, biomass and other solid fuels including waste.

Turgut Gur

2010-04-30T23:59:59.000Z

378

Three-dimensional particle scale modeling of heat transfer in fluidized beds.  

E-Print Network (OSTI)

??Heat transfer between particle-fluid media and solid surfaces has wide applications in industries such as power plant, steel heat treatment, and chemical processes. One of… (more)

Wahyudi, Hadi

2014-01-01T23:59:59.000Z

379

Numerical and experimental studies on the flow multiplicity phenomenon for gas–solids two-phase flows in CFB risers  

Science Journals Connector (OSTI)

The flow multiplicity phenomenon in circulating fluidized bed (CFB) risers, i.e. under the same superficial gas velocity and solids circulation rate, the CFB risers may sometimes exhibit multiple flow structures, was numerically and experimentally investigated in this study. To investigate the flow multiplicity phenomenon, the experiments of gas–solids two-phase flows in a 2-D CFB riser with different flow profiles at the inlet of the CFB riser were conducted. Specially designed gas inlet distributors with add-ons are used to generate different flow profiles at the inlet of the CFB rise. The CFD model using Eulerian–Eulerian approach with k–? turbulence model for each phase was employed to numerically analyze the flow multiplicity phenomenon. It is experimentally and numerically proved that for gas–solids two-phase flows, the flow profiles in the fully-developed region are dominated by the flow profiles at the inlet. The solids concentration profile is closely coupled with the velocity profile, and the inlet solids concentration and velocity profiles can largely influence the fully-developed solids concentration and velocity profiles.

B. Peng; J. Xu; J. Zhu; C. Zhang

2011-01-01T23:59:59.000Z

380

Process and technological aspects of municipal solid waste gasification. A review  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Critical assessment of the main commercially available MSW gasifiers. Black-Right-Pointing-Pointer Detailed discussion of the basic features of gasification process. Black-Right-Pointing-Pointer Description of configurations of gasification-based waste-to-energy units. Black-Right-Pointing-Pointer Environmental performance analysis, on the basis of independent sources data. - Abstract: The paper proposes a critical assessment of municipal solid waste gasification today, starting from basic aspects of the process (process types and steps, operating and performance parameters) and arriving to a comparative analysis of the reactors (fixed bed, fluidized bed, entrained bed, vertical shaft, moving grate furnace, rotary kiln, plasma reactor) as well as of the possible plant configurations (heat gasifier and power gasifier) and the environmental performances of the main commercially available gasifiers for municipal solid wastes. The analysis indicates that gasification is a technically viable option for the solid waste conversion, including residual waste from separate collection of municipal solid waste. It is able to meet existing emission limits and can have a remarkable effect on reduction of landfill disposal option.

Arena, Umberto, E-mail: umberto.arena@unina2.it [Department of Environmental Sciences, Second University of Naples, Via A. Vivaldi, 43, 81100 Caserta (Italy)

2012-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "fluidized solids technique" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Rapid pyrolysis of Green River and New Albany oil shales in solid-recycle systems  

SciTech Connect

We are studying second generation oil shale retorting by a combined laboratory and modeling program coupled with operation of a 1 tonne-per-day solid-recycle pilot retorting facility. In the retort, we have measured oil yields equal to Fischer assay for Western, Green River shale and Eastern, New Albany shale. Laboratory experiments have measured yields of 125% of Fischer assay under ideal conditions in sand fluidized beds. However, when oxidized (or spent) shale is present in the bed, a decline in yield is observed along with increased coke formation. Recycling clay catalysts may improve oil yield by olefin absorption on active sites, preventing coke formation on these sites and allowing olefin incorporation into the oil. We studied the solid mixing limits in solid-recycle systems and conclude that nearly intimate mixing is required for adequate heat transfer and to minimize oil coke formation. Recycling oxidized shale has shown to self-scrub H/sub 2/S and SO/sub 2/ when processing Western shale. Cooling of spent shale with water from 500/degree/C releases H/sub 2/S. We describe an apparatus which uses solid-recycle to reduce the temperature before water spray to cool the shale without H/sub 2/S release. 6 refs., 5 figs., 2 tabs.

Cena, R.J.

1988-07-01T23:59:59.000Z

382

Closures for Course-Grid Simulation of Fluidized Gas-Particle Flows  

SciTech Connect

Gas-particle flows in fluidized beds and riser reactors are inherently unstable, and they manifest fluctuations over a wide range of length and time scales. Two-fluid models for such flows reveal unstable modes whose length scale is as small as ten particle diameters. Yet, because of limited computational resources, gas-particle flows in large fluidized beds are invariably simulated by solving discretized versions of the two-fluid model equations over a coarse spatial grid. Such coarse-grid simulations do not resolve the small-scale spatial structures which are known to affect the macroscale flow structures both qualitatively and quantitatively. Thus there is a need to develop filtered two-fluid models which are suitable for coarse-grid simulations and capturing the effect of the small-scale structures through closures in terms of the filtered variables. The overall objective of the project is to develop validated closures for filtered two-fluid models for gas-particle flows, with the transport gasifier as a primary, motivating example. In this project, highly resolved three-dimensional simulations of a kinetic theory based two-fluid model for gas-particle flows have been performed and the statistical information on structures in the 100-1000 particle diameters length scale has been extracted. Based on these results, closures for filtered two-fluid models have been constructed. The filtered model equations and closures have been validated against experimental data and the results obtained in highly resolved simulations of gas-particle flows. The proposed project enables more accurate simulations of not only the transport gasifier, but also many other non-reacting and reacting gas-particle flows in a variety of chemical reactors. The results of this study are in the form of closures which can readily be incorporated into existing multi-phase flow codes such as MFIX (www.mfix.org). Therefore, the benefits of this study can be realized quickly. The training provided by this project has prepared a PhD student to enter research and development careers in DOE laboratories or chemicals/energy-related industries.

Sankaran Sundaresan

2010-02-14T23:59:59.000Z

383

Proposed replacement and operation of the anhydrous hydrogen fluoride supply and fluidized-bed chemical processing systems at Building 9212, Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect

The US Department of Energy (DOE) proposes to replace the existing anhydrous hydrogen fluoride (AHF) supply and fluidized-bed reactor systems for the Weapons Grade Highly Enriched Uranium Chemical Recovery and Recycle Facility, Building 9212, which is located within the Y-12 Plant on DOE`s Oak Ridge Reservation in Oak Ridge, Tennessee. The proposed replacement system would be based upon modern design criteria and safety analyses. The replacement AHF supply and distribution system equipment would be located on the existing Dock 8/8A at Building 9212. Utilities would be extended to the dock to service the process equipment. The following process equipment modules would be prefabricated for installation at the modified dock: an AHF cylinder enclosure, an AHF supply manifold and vaporizer module, an AHF sump tank and transfer skid, and an AHF supply off-gas scrubber assembly module. The fluidized-bed reactor system would be constructed in an area adjacent to the existing system in Building 9212. The replacement equipment would consist of a new reduction fluidized-bed reactor, a hydrofluorination fluidized-bed reactor, and associated air emission control equipment. The no-action alternative, which is the continued operation of the existing AHF supply and fluidized-bed reactor systems, was also evaluated.

NONE

1995-09-01T23:59:59.000Z

384

Model building techniques for analysis.  

SciTech Connect

The practice of mechanical engineering for product development has evolved into a complex activity that requires a team of specialists for success. Sandia National Laboratories (SNL) has product engineers, mechanical designers, design engineers, manufacturing engineers, mechanical analysts and experimentalists, qualification engineers, and others that contribute through product realization teams to develop new mechanical hardware. The goal of SNL's Design Group is to change product development by enabling design teams to collaborate within a virtual model-based environment whereby analysis is used to guide design decisions. Computer-aided design (CAD) models using PTC's Pro/ENGINEER software tools are heavily relied upon in the product definition stage of parts and assemblies at SNL. The three-dimensional CAD solid model acts as the design solid model that is filled with all of the detailed design definition needed to manufacture the parts. Analysis is an important part of the product development process. The CAD design solid model (DSM) is the foundation for the creation of the analysis solid model (ASM). Creating an ASM from the DSM currently is a time-consuming effort; the turnaround time for results of a design needs to be decreased to have an impact on the overall product development. This effort can be decreased immensely through simple Pro/ENGINEER modeling techniques that summarize to the method features are created in a part model. This document contains recommended modeling techniques that increase the efficiency of the creation of the ASM from the DSM.

Walther, Howard P.; McDaniel, Karen Lynn; Keener, Donald; Cordova, Theresa Elena; Henry, Ronald C.; Brooks, Sean; Martin, Wilbur D.

2009-09-01T23:59:59.000Z

385

Chebyshev super spectral viscosity method for a fluidized Scott A. Sarra  

E-Print Network (OSTI)

beds are used in the chemical and fossil fuel processing industries to mix particulate solids of par- ticulate solids, and a fluid flow distributor at the bottom the chamber. The fluid flows upward which may be used with or without the knowledge of edge locations. However, it will only recover

Tadmor, Eitan

386

New source performance standards for industrial boilers. Volume 5. Analysis of solid waste impacts  

SciTech Connect

This study provides an analysis of the impacts of emission controls on disposal of solid wastes from coal-fired industrial boilers. Examination is made of boiler systems, coal types, emission control alternatives, waste streams, waste disposal and utilization alternatives, and pertinent Federal regulations. Twenty-four representative model case scenarios are studied in detail. Expected disposal/utilization alternatives and disposal costs are developed. Comparison of the systems studied indicates that the most cost-effective SO/sub 2/ control technologies from the perspective of waste disposal cost per unit SO/sub 2/ control are, in decreasing order: physically cleaned coal/double alkali combination; double alkali; lime/limestone; spray drying; fluidized-bed combustion; and sodium throwaway.

Boldt, K.; Davis, H.; Delaney, B.; Grundahl, N.; Hyde, R.; Malloch, R.; Tusa, W.

1980-09-01T23:59:59.000Z

387

Pressurized Fluidized-Bed Hydroretorting of eastern oil shales. Final report, June 1992--January 1993  

SciTech Connect

The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in September 1987 by the US Department of Energy was to perform the research necessary to develop the pressurized fluidized-bed hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation and upgrading, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The program was divided into the following active tasks: Task 3 -- Testing of Process Improvement Concepts; Task 4 -- Beneficiation Research; Task 6 -- Environmental Data and Mitigation Analyses; and Task 9 -- Information Required for the National Environmental Policy Act. In order to accomplish all of the program objectives, tho Institute of Gas Technology (ICT), the prime contractor, worked with four other institutions: The University of Alabama/Mineral Resources Institute (MRI), the University of Alabama College of Engineering (UA), University of Kentucky Center for Applied Energy Research (UK-CAER), and Tennessee Technological University (TTU). This report presents the work performed by IGT from June 1, 1992 through January 31, 1993.

Roberts, M.J.; Mensinger, M.C.; Erekson, E.J.; Rue, D.M.; Lau, F.S. [Institute of Gas Technology, Chicago, IL (United States); Schultz, C.W.; Hatcher, W.E. [Alabama Univ., University, AL (United States). Mineral Resources Inst.; Parekh, B.K. [Kentucky Univ., Lexington, KY (United States). Center for Applied Energy Research; Bonner, W.P. [Tennessee Technological Univ., Cookeville, TN (United States)

1993-03-01T23:59:59.000Z

388

Air and steam coal partial gasification in an atmospheric fluidized bed  

SciTech Connect

Using the mixture of air and steam as gasification medium, three different rank coal partial gasification studies were carried out in a bench-scale atmospheric fluidized bed with the various operating parameters. The effects of air/coal (Fa/Fc) ratio, steam/coal (Fs/Fc) ratio, bed temperature, and coal rank on the fuel gas compositions and the high heating value (HHV) were reported in this paper. The results show that there is an optimal Fa/Fc ratio and Fs/Fc ratio for coal partial gasification. A rise of bed temperature favors the semigasification reaction of coal, but the concentrations of carbon monoxide and methane and the HHV decrease with the rise of bed temperature, except hydrogen. In addition, the gas HHVs are between 2.2 and 3.4 MJ/Nm{sup 3}. The gas yield and carbon conversion increase with Fa/Fc ratio, Fs/Fc ratio, and bed temperature, while they decrease with the rise of the rank of coal. 7 refs., 9 figs., 2 tabs.

Hongcang Zhou; Baosheng Jing; Zhaoping Zhong; Yaji Huang; Rui Xiao [Nanjing University of Information Science & Technology, Nanjing (China). Department of Environmental Science & Engineering

2005-08-01T23:59:59.000Z

389

Market Assessment and Technical Feasibility Study of Pressurized Fluidized Bed Combustion Ash Use  

SciTech Connect

Western Research Institute in conjunction with the Electric Power Research Institute, Foster Wheeler Energy International, Inc. and the U.S. Department of Energy Technology Center (METC), has undertaken a research and demonstration program designed to examine the market potential and the technical feasibility of ash use options for pressurized fluidized bed combustion (PFBC) ashes. The assessment is designed to address six applications, including: (1) structural fill, (2) road base construction, (3) supplementary cementing materials in portland cement, (4) synthetic aggregate, and (5) agricultural/soil amendment applications. Ash from low-sulfur subbituminous coal-fired Foster Wheeler Energia Oy pilot circulating PFBC tests in Karhula, Finland, and ash from the high-sulfur bituminous coal-fired American Electric Power (AEP) bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing. This paper addresses the technical feasibility of ash use options for PFBC unit using low- sulfur coal and limestone sorbent (karhula ash) and high-sulfur coal and dolomite sorbents (AEP Tidd ash).

Bland, A.E.; Brown, T.H. [Western Research Inst., Laramie, WY (United States)

1996-12-31T23:59:59.000Z

390

Pressurized fluidized bed reactor and a method of operating the same  

DOE Patents (OSTI)

A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

Isaksson, J.

1996-02-20T23:59:59.000Z

391

Cofiring lignite with hazelnut shell and cotton residue in a pilot-scale fluidized bed combustor  

SciTech Connect

In this study, cofiring of high ash and sulfur content lignite with hazelnut shell and cotton residue was investigated in 0.3 MWt METU Atmospheric Bubbling Fluidized Bed Combustion (ABFBC) Test Rig in terms of combustion and emission performance of different fuel blends. The results reveal that cofiring of hazelnut shell and cotton residue with lignite increases the combustion efficiency and freeboard temperatures compared to those of lignite firing with limestone addition only. CO{sub 2} emission is not found sensitive to increase in hazelnut shell and cotton residue share in fuel blend. Cofiring lowers SO{sub 2} emissions considerably. Cofiring of hazelnut shell reduces NO and N{sub 2}O emissions; on the contrary, cofiring cotton residue results in higher NO and N{sub 2}O emissions. Higher share of biomass in the fuel blend results in coarser cyclone ash particles. Hazelnut shell and cotton residue can be cofired with high ash and sulfur-containing lignite without operational problems. 32 refs., 12 figs., 11 tabs.

Zuhal Gogebakan; Nevin Selcuk [Middle East Technical University, Ankara (Turkey). Department of Chemical Engineering

2008-05-15T23:59:59.000Z

392

ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM  

SciTech Connect

The purpose of this report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the quarter January--March 2004. The following tasks have been completed. First, plans for the renovation of space for a new Combustion Laboratory for the CFBC Facility have progressed smoothly. Second, the design calculations, including the mass balances, energy balances, heat transfer, and strength calculations have been completed. Third, considerable modifications have been made on the draft design of the CFBC Facility based on discussions conducted during the project kick-off meeting held on January 13, 2004 at the National Energy Technology Laboratory (NETL). Comments received from various experts were also used to improve the design. Finally, the drawings of all assembly parts have been completed in order to develop specifications for the fabrication of individual parts. At the same time, the proposed work for the next quarter has been outlined in this report.

Wei-Ping Pan; Kunlei Liu; John T. Riley

2004-04-01T23:59:59.000Z

393

Pressurized Fluidized-Bed Hydroretorting of Eastern Oil Shales. Progress report, July--September 1989  

SciTech Connect

The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the 3-year program, initiated in October 1987 is to perform the research necessary to develop the pressurized fluidized-bed hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The program is divided into the following eight tasks: Task 1, PFH Scoping Studies; Task 2, PFH Optimization Tests; Task 3, Testing of Process Improvement Concepts; Task 4, Beneficiation Research; Task 5, Operation of PFH on Beneficiated Shale; Task 6, Environmental Data and Mitigation Analyses; Task 7, Sample Procurement, Preparation, and Characterization; Task 8, Project Management and Reporting. In order to accomplish all the program objectives, the Institute of Gas Technology, the prime contractor, is working with seven other institutions; the University of Alabama/Mineral Resources Institute, Illinois Institute of Technology, the University of Michigan, the University of Nevada, Ohio State University, Tennessee Technological University and the University of Pittsburgh. This report presents the work performed during the eighth program quarter from July 1 through September 30, 1989.

Punwani, D.V.; Lau, F.S.; Knowlton, T.M. [and others

1989-12-01T23:59:59.000Z

394

Pressurized Fluidized-Bed Hydroretorting of Eastern Oil Shales. Progress report, October--December 1988  

SciTech Connect

The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the 3-year program, initiated in October 1987 is to perform the research necessary to develop the pressurized fluidized-bed hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The program is divided into the following eight tasks: Task 1, PFH Scoping Studies; Task 2, PFH Optimization Tests; Task 3, Testing of Process Improvement Concepts; Task 4, Beneficiation Research; Task 5, Operation of PFH on Beneficiated Shale; Task 6, Environmental Data and Mitigation Analyses; Task 7, Sample Procurement, Preparation, and Characterization; Task 8, Project Management and Reporting. In order to accomplish all the program objectives, the Institute of Gas Technology, the prime contractor, is working with seven other institutions; the University of Alabama/Mineral Resources Institute, Illinois Institute of Technology, the University of Michigan, the University of Nevada, Ohio State University, Tennessee Technological University and the University of Pittsburgh. This report presents the work performed during the fifth program quarter from October 1 through December 31, 1988.

Punwani, D.V.; Lau, F.S.; Knowlton, T.M. [and others

1989-02-01T23:59:59.000Z

395

Performance of the Fluidized Bed Steam Reforming Product Under Hydraulically Unsaturated Conditions  

SciTech Connect

Currently, several candidates for secondary waste immobilization at the Hanford site in the State of Washington, USA are being considered. To demonstrate the durability of the product in the unsaturated Integrated Disposal Facility (IDF) at the site, a series of tests have been performed one of the candidate materials using the Pressurized Unsaturated Flow (PUF) system. The material that was tested was the Fluidized Bed Steam Reformer (FBSR) granular product and the granular product encapsulated in a geopolymer matrix. The FBSR product is composed primarily of an insoluble sodium aluminosilicate matrix with the dominant phases being feldspathoid minerals mostly nepheline, sodalite, and nosean. The PUF test method allows for the accelerated weathering of materials, including radioactive waste forms, under hydraulically unsaturated conditions, thus mimicking the open-flow and transport properties that most likely will be present at the IDF. The experiments show a trend of decreasing tracer release as a function of time for several of the elements released from the material including Na, Si, Al, and Cs. However, some of the elements, notably I and Re, show a steady release throughout the yearlong test. This result suggests that the release of these minerals from the sodalite cage occurs at a different rate compared with the dissolution of the predominant nepheline phase.

Neeway, James J.; Qafoku, Nikolla; Williams, Benjamin D.; Rod, Kenton A.; Bowden, Mark E.; Brown, Christopher F.; Pierce, Eric M.

2014-05-01T23:59:59.000Z

396

Bed material agglomeration during fluidized bed combustion. Technical progress report, October 1, 1993--December 31, 1993  

SciTech Connect

During this quarter, agglomerates which formed in the FBC at Montana-Dakota Utilities (Heskett Station Unit 2 located in Bismarck, ND) were analyzed by x-ray diffraction analyses (XRD) for mineral determination; bulk chemical composition was determined by inductively coupled plasma spectroscopy; and polished sections were made for optical and scanning electron microscopy. Polarized-light microscopy was performed using a Zeiss research microscope. Individual mineral grains were analyzed using an ARL electron microprobe and a JOEL 840 scanning electron microscope. The agglomerate was found in the mechanical dust collector and was about ten centimeters in diameter with a dark-colored core and a greenish rim. The sample had voids up to ten millimeters in size; however, the agglomerate was hard to break apart. Bulk compositionally, the agglomerate consists primarily of calcium, silica, and alumina with relatively high abundances of iron (8 to 9 wt %), magnesium (5 to 9 wt %) and sodium (3 to 4 wt %). It is likely that the ``root`` cause of this agglomerate originated in the dense phase of the FBC bed. Because fluidized bed combustors work below the ash fusion temperature of coal ash, aluminosilicates (clays) in the ash probably became ``sticky`` due to fluxing reactions with pyrite (FeS{sub 2}) and perhaps alkalies (Na). This is indicated by the high amounts of iron, silica, and alumina in the agglomerate. Because of the size of the deposit, the bed particles probably agglomerated in the dust collector.

Brown, R.C.; Dawson, M.R.; Smeenk, J.L.

1994-01-01T23:59:59.000Z

397

Commercialization of fluidized bed combustion systems in urban areas: The local government role  

SciTech Connect

The purpose of this project was two-fold: to review the critical technical and institutional considerations which must underlie any decision to invest in Fluidized-Bed Combustion technology and to gauge the market for FBC technology within the City of Indianapolis. To achieve these purposes extensive research into the state-of-the-art of FBC technology was performed, including a review of alternate design configurations and an assessment of the remaining technical and operational difficulties associated with this new technology. At the same time a number of key financing and regulatory issues were investigated which directly affect the marketability of FBC boilers to local industries and institutions. Some of the largest Indianapolis energy users were surveyed to determine their long-term thermal energy requirements and whether FBC technology could help to meet these requirements. On the basis of this survey data, a comparative cost-benefit analysis of investment in a FBC boiler compared with investment in other types of boilers was undertaken. The analysis was done for specific Indianapolis industries and institutions. This report summarizes the project activities and makes specific recommendations that should help to facilitate the commercialization of FBC boilers in Indianapolis.

Jacobs, L.

1983-04-01T23:59:59.000Z

398

Extractors manual for Fluidized-Bed Combustion Data Base System: Test Data Data Base. [FBC; planning  

SciTech Connect

Fluidized-bed combustion (FBC) technology is rapidly emerging as an acceptable alternative to conventional coal-fired boiler technology. To satisfy the engineering public's need for experimental data and to assist in the study of technical uncertainties in FBC technology, the Department of Energy (DOE) has initiated the development of a data system to store the results of Government-sponsored research. To capture the results of Government-sponsored FBC research programs, documents have been written for the TDDB and MPDB to specify the data that contractors need to report and the procedures for reporting them. The FBC documents identify and define the data that need to be reported for FBC projects so that the data entered into the TDDB and MPDB will meet the needs of the users of the FBC data system. This document addresses what information is needed and how it must be formatted so that it can be entered into the TDDB for FBC. The level of detail needed to satisfy the wide variety of potential users' needs is the primary consideration in determining the types and amounts of data to be stored. The TDDB was designed so that data could be stored at any level of detail. 3 figs., 26 tabs.

Not Available

1986-09-01T23:59:59.000Z

399

Solid Waste Rules (New Hampshire)  

Energy.gov (U.S. Department of Energy (DOE))

The solid waste statute applies to construction and demolition debris, appliances, recyclables, and the facilities that collect, process, and dispose of solid waste. DES oversees the management of...

400

Solid Waste Management (North Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

The Solid Waste Program regulates safe management of solid waste through guidance, technical assistance, regulations, permitting, environmental monitoring, compliance evaluation and enforcement....

Note: This page contains sample records for the topic "fluidized solids technique" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Biofuels : Upgraded New Solids  

Science Journals Connector (OSTI)

The main historical keywords for the three pathways are: Agglomeration: Briquettes are long-established upgraded solid fuels, especially based on coal. 1970s: first small scale pellet heating units build in t...

Dr. Marco Klemm; Ralf Schmersahl…

2012-01-01T23:59:59.000Z

402

Biofuels : Upgraded New Solids  

Science Journals Connector (OSTI)

The main historical keywords for the three pathways are: Agglomeration: Briquettes are long-established upgraded solid fuels, especially based on coal. 1970s: first small scale pellet heating units build in t...

Dr. Marco Klemm; Ralf Schmersahl; Dr. Claudia Kirsten…

2013-01-01T23:59:59.000Z

403

Solid Cold - F  

NLE Websites -- All DOE Office Websites (Extended Search)

F. Progress in science F. Progress in science Aside from what it tells us about the thermodynamics of solids, this analysis by Einstein illustrates some important things about the way scientific progress is made. For one, it serves as a typical example of how discoveries about one phenomenon often help us understand others that had no obvious relation to it earlier. In this case, newly discovered properties of light suggested significant facts about solids-and about whether or not solids were made of atoms. Einstein thus found another significant relation between thermodynamics and optics besides the ones already known earlier. Another point this work illustrates is that progress doesn't always require understanding everything at once. It turned out that solids do act like

404

Solid state switch  

DOE Patents (OSTI)

A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1500 A peak, 1.0 .mu.s pulsewidth, and 4500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry.

Merritt, Bernard T. (Livermore, CA); Dreifuerst, Gary R. (Livermore, CA)

1994-01-01T23:59:59.000Z

405

Data summary of municipal solid waste management alternatives  

SciTech Connect

This appendix provides information on fluidized-bed combustion (FBC) technology as it has been applied to municipal waste combustion (MWC). A review of the literature was conducted to determine: (1) to what extent FBC technology has been applied to MWC, in terms of number and size of units was well as technology configuration; (2) the operating history of facilities employing FBC technology; and (3) the cost of these facilities as compared to conventional MSW installations. Where available in the literature, data on operating and performance characteristics are presented. Tabular comparisons of facility operating/cost data and emissions data have been complied and are presented. The literature review shows that FBC technology shows considerable promise in terms of providing improvements over conventional technology in areas such as NOx and acid gas control, and ash leachability. In addition, the most likely configuration to be applied to the first large scale FBC dedicated to municipal solid waste (MSW) will employ circulating bed (CFB) technology. Projected capital costs for the Robbins, Illinois 1600 ton per day CFB-based waste-to-energy facility are competitive with conventional systems, in the range of $125,000 per ton per day of MSW receiving capacity.

Not Available

1992-10-01T23:59:59.000Z

406

Sulfur removal in advanced two stage pressurized fluidized bed combustion. Technical report, 1 March--31 May 1994  

SciTech Connect

The objective of this study is to obtain data on the rates of reaction between hydrogen sulfide (H{sub 2}S) and uncalcined calcium-based sorbents under operating conditions relevant to first stage (carbonizer) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors (PFBC). In these systems the CO{sub 2} partial pressure in the first stage generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, removal of sulfur compounds takes place through the reaction between H{sub 2}S and calcium carbonate. To achieve this objective, the rates of reaction between hydrogen sulfide and uncalcined calcium-based sorbents will be determined by conducting tests in pressurized thermogravimetric analyzer (TGA) and high-pressure/high-temperature fluidized-bed reactor (HPTR) units. The effects of sorbent type, sorbent particle size, reactor temperature and pressure, and CO{sub 2} and H{sub 2}S partial pressures on the sulfidation reaction rate will be determined. During this quarter a series of sulfidation tests were conducted in the high-pressure/high-temperature fluidized-bed reactor (HPTR) units. The effects of sorbent type, sorbent particle size, reactor temperature and pressure, and CO{sub 2} and H{sub 2}S partial pressures on the sulfidation reaction rate will be determined. During this quarter a series of sulfidation tests were conducted in the high-pressure high-temperature thermogravimetric analyzer (HPTGA unit) using limestone and dolomite. The results suggest that half-calcined dolomite is much more reactive than uncalcined limestone. Also, temperature in the range of 800 to 950 C did not significantly affect the sulfidation reaction rates for both limestone and dolomite.

Abbasian, J.; Chowdiah, P.; Hill, A.H.; Rue, D.M. [Inst. of Gas Technology, Chicago, IL (United States)

1994-09-01T23:59:59.000Z

407

Measuring the Kinetics of the Reduction of Iron Oxide with Carbon Monoxide in a Fluidized Bed  

Science Journals Connector (OSTI)

Combusting a solid fuel in the presence of a metal oxide rather than air, chemical looping combustion, generates CO2suitable for sequestration and the reduced metal. For the case of iron, the reduced oxide can be...

C. D. Bohnt; J. P. Cleeton; C. M. Miiller…

2010-01-01T23:59:59.000Z

408

Numerical and experimental studies of IFE target layering in a cryogenic fluidized bed  

E-Print Network (OSTI)

layer in reactor-size cryogenic inertial fusion targets”.Harding et al. , “Forming cryogenic targets for direct-drivea solid fuel layer inside a cryogenic target for inertial

Boehm, Kurt Julian

2009-01-01T23:59:59.000Z

409

Cogasification of Polyethylene and Lignite in a Dual Fluidized Bed Gasifier  

Science Journals Connector (OSTI)

(20) There were two types of plastics used, a shredder light fraction (SLF) from end-of-life vehicles and pellets made of selected plastics from municipal solid waste. ... Shredder-light fraction ...

Stefan J. Kern; Christoph Pfeifer; Hermann Hofbauer

2013-02-22T23:59:59.000Z

410

Gasification and Chemical-Looping Combustion of a Lignite Char in a Fluidized Bed of Iron Oxide  

Science Journals Connector (OSTI)

Gasification and Chemical-Looping Combustion of a Lignite Char in a Fluidized Bed of Iron Oxide ... Taking reactions R1 and R2 together, the fuel has been combusted but resulting CO2 has been separated from N2 in the air, while the total heat evolved is the same as for the direct combustion of the fuel in air. ... The amount of carbon in the bed at the end of each feeding period could then be determined by combusting the char in air and measuring the total amount of CO2 and CO produced. ...

T. A. Brown; J. S. Dennis; S. A. Scott; J. F. Davidson; A. N. Hayhurst

2010-05-06T23:59:59.000Z

411

Steam Gasification of Bio-Oil and Bio-Oil/Char Slurry in a Fluidized Bed Reactor  

Science Journals Connector (OSTI)

In the present study, the steam gasification of bio-oil/char slurry was investigated using a lab-scale fluidized bed reactor filled with either Ni-based naphtha steam reforming catalyst or silica sand. ... LOI: Loss on ignition after a 30 min fusion at 1000 °C. ... Table 5. Product Gas Composition (in Mol %) and Heating Value from Steam Gasification of the Bio-Oil and the Slurry with the Catalyst and the Sand at T ? 800°C, H2O/C ? 5.5, and GC1HSV ? 340 h?1; Wet with Nitrogen and Dry Nitrogen Free Basisa ...

Masakazu Sakaguchi; A. Paul Watkinson; Naoko Ellis

2010-08-23T23:59:59.000Z

412

ADVANCED SORBENT DEVELOPMENT PROGRAM DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS  

SciTech Connect

The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 C (900-1000 F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.'s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 C (650 F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 C (650-1000 F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment and a market plan for large-scale fabrication of sorbents were developed. As an optional task, long-term bench-scale tests of the best moving-bed sorbents were conducted. Starting from thermodynamic calculations, several metal oxides were identified for potential use as hot gas cleanup sorbents using constructed phase stability diagrams and laboratory screening of various mixed-metal oxide formulations. Modified zinc titanates and other proprietary metal oxide formulations were evaluated at the bench scale and many of them found to be acceptable for operation in the target desulfurization temperature range of 370 C (700 F) to 538 C (1000 F) and regeneration temperatures up to 760 C (1400 F). Further work is still needed to reduce the batch-to-batch repeatability in the fabrication of modified zinc titanates for larger scale applications. The information presented in this Volume 1 report contains the results of moving-bed sorbent development at General Electric's Corporate Research and Development (GE-CRD). A separate Volume 2 report contains the results of the subcontract on fluidized-bed sorbent development at the Institute of Gas Technology (IGT).

R.E Ayala; V.S. Venkataramani; Javad Abbasian; Rachid B. Slimane; Brett E. Williams; Minoo K. Zarnegar; James R. Wangerow; Andy H. Hill

2000-03-31T23:59:59.000Z

413

ADVANCED SORBENT DEVELOPMENT PROGRAM; DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS  

SciTech Connect

The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 °C (900-1000 °F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.?s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 °C (650 °F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 °C (650-1000 °F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment and a market plan for large-scale fabrication of sorbents were developed. As an optional task, long-term bench-scale tests of the best moving-bed sorbents were conducted. Starting from thermodynamic calculations, several metal oxides were identified for potential use as hot gas cleanup sorbents using constructed phase stability diagrams and laboratory screening of various mixed-metal oxide formulations. Modified zinc titanates and other proprietary metal oxide formulations were evaluated at the bench scale and many of them found to be acceptable for operation in the target desulfurization temperature range of 370 °C (700 °F) to 538 °C (1000 °F) and regeneration tempera-tures up to 760 °C (1400 °F). Further work is still needed to reduce the batch-to-batch repeatability in the fabrication of modified zinc titanates for larger scale applications. The information presented in this Volume 1 report contains the results of moving-bed sorbent develop-ment at General Electric?s Corporate Research and Development (GE-CRD). A separate Volume 2 report contains the results of the subcontract on fluidized-bed sorbent development at the Institute of Gas Technology (IGT).

R.E. AYALA; V.S. VENKATARAMANI

1998-09-30T23:59:59.000Z

414

CFD study of mixing and segregation in CFB risers: Extension of EMMS drag model to binary gas–solid flow  

Science Journals Connector (OSTI)

Abstract The Energy Minimization Multi-Scale (EMMS) drag model, using Sauter mean particle diameter to represent real particle size distribution, has proven to be effective in improving the accuracy of continuum modeling of gas–solid flow. Nevertheless, mixing and segregation characteristics in circulating fluidized bed (CFB) risers are very important in many situations, which necessitates the explicit consideration of the effects of particle size distribution on the bed hydrodynamics. To this end, an attempt is made to extend the EMMS drag model to binary gas–solid system, where four input parameters that can be obtained from computational fluid dynamics (CFD) simulation, including two slip velocities between gas and each particle phase and two particle concentrations of each phase, are used to solve the proposed EMMS drag model. Heterogeneous indexes, which are used to modify the drag correlation obtained from homogeneous fluidization, are then predicted and fed into multifluid model (MFM) to predict the dynamical behavior of mixing and segregation of binary gas–solid flow in a CFB riser. The effects of different drag force models, kinetic theories and particle–particle drag force models are also systematically evaluated. It was shown that (i) MFM with the proposed EMMS drag model and the kinetic theory developed by Chao et al. (Chemical Engineering Science 2011, 66: 3605–3616) is able to correctly predict the mixing and segregation pattern in the studied riser, while MFM with homogenous drag forces and the simplified kinetic theory available in commercial software FLUENT completely fails; and (ii) with or without particle–particle drag force has a substantial influence upon the particle behavior.

Quan Zhou; Junwu Wang

2015-01-01T23:59:59.000Z

415

Evaluation of a fluidized-bed waste-heat recovery system. A technical case study  

SciTech Connect

The US DOE Office of Industrial Technologies (OIT) sponsors research and development (R&D) to improve the energy efficiency of American industry and to provide for fuel flexibility. Large amounts of heat escape regularly through the waste-gas streams of industrial processes, particularly those processes that use furnaces, kilns, and calciners. Recovering this waste heat will conserve energy; however, the extremely high temperatures and corrosive nature of many flue and exhaust gases make conventional heat recovery difficult. One solution is a waste-heat recovery system that can withstand the high temperatures and rids itself of corrosion-causing particulates. OIT and Aerojet Energy Conversion Company recently completed a joint project to develop just such a system and to evaluate its long-term operation. This technology, called fluidized-bed waste-heat recovery (FBWHR), offers several advantages over conventional heat recovery, including high gas-side heat-transfer coefficients and a self-cleaning capability. The FBWHR system can recover heat from high-temperature, dirty waste-gas streams, such as those found in the metals, glass, cement, chemical, and petroleum-refining industries. In this multiyear R&D project, Aerojet designed and fabricated an FBWHR system that recovers heat from the corrosive flue gases of aluminum melt furnaces to produce process steam for the plant. The system was installed on a 34-million-Btu/h furnace used to melt aluminum scrap at ALCOA`s Massena, New York plant. During a successful one-year field test, the system produced 26 million lb of 175-psig saturated steam, recovering as much as 28% of the fuel energy input to the furnace.

Not Available

1992-04-01T23:59:59.000Z

416

Evaluation of a fluidized-bed waste-heat recovery system  

SciTech Connect

The US DOE Office of Industrial Technologies (OIT) sponsors research and development (R D) to improve the energy efficiency of American industry and to provide for fuel flexibility. Large amounts of heat escape regularly through the waste-gas streams of industrial processes, particularly those processes that use furnaces, kilns, and calciners. Recovering this waste heat will conserve energy; however, the extremely high temperatures and corrosive nature of many flue and exhaust gases make conventional heat recovery difficult. One solution is a waste-heat recovery system that can withstand the high temperatures and rids itself of corrosion-causing particulates. OIT and Aerojet Energy Conversion Company recently completed a joint project to develop just such a system and to evaluate its long-term operation. This technology, called fluidized-bed waste-heat recovery (FBWHR), offers several advantages over conventional heat recovery, including high gas-side heat-transfer coefficients and a self-cleaning capability. The FBWHR system can recover heat from high-temperature, dirty waste-gas streams, such as those found in the metals, glass, cement, chemical, and petroleum-refining industries. In this multiyear R D project, Aerojet designed and fabricated an FBWHR system that recovers heat from the corrosive flue gases of aluminum melt furnaces to produce process steam for the plant. The system was installed on a 34-million-Btu/h furnace used to melt aluminum scrap at ALCOA's Massena, New York plant. During a successful one-year field test, the system produced 26 million lb of 175-psig saturated steam, recovering as much as 28% of the fuel energy input to the furnace.

Not Available

1992-04-01T23:59:59.000Z

417

Stabilization of Savannah River National Laboartory (SRNL) Aqueous Waste by Fluidized Bed Steam Reforming (FBSR)  

SciTech Connect

The Savannah River National Laboratory (SRNL) is a multidisciplinary laboratory operated by Westinghouse Savannah River Company (WSRC) in Aiken, South Carolina. Research and development programs have been conducted at SRNL for {approx}50 years generating non-radioactive (hazardous and non-hazardous) and radioactive aqueous wastes. Typically the aqueous effluents from the R&D activities are disposed of from each laboratory module via the High Activity Drains (HAD) or the Low Activity Drains (LAD) depending on whether they are radioactive or not. The aqueous effluents are collected in holding tanks, analyzed and shipped to either H-Area (HAD waste) or the F/H Area Effluent Treatment Facility (ETF) (LAD waste) for volume reduction. Because collection, analysis, and transport of LAD and HAD waste is cumbersome and since future treatment of this waste may be curtailed as the F/H-Area evaporators and waste tanks are decommissioned, SRNL laboratory operations requested several proof of principle demonstrations of alternate technologies that would define an alternative disposal path for the aqueous wastes. Proof of principle for the disposal of SRNL HAD waste using a technology known as Fluidized Bed Steam Reforming (FBSR) is the focus of the current study. The FBSR technology can be performed either as a batch process, e.g. in each laboratory module in small furnaces with an 8'' by 8'' footprint, or in a semi-continuous Bench Scale Reformer (BSR). The proof of principle experiments described in this study cover the use of the FBSR technology at any scale (pilot or full scale). The proof of principle experiments described in this study used a non-radioactive HAD simulant.

Jantzen, C

2004-11-01T23:59:59.000Z

418

Extractors manual for Fluidized-Bed Combustion Data Base System: Major Plants Data Base. [FBC; planning  

SciTech Connect

Fluidized-bed combustion (FBC) technology is rapidly emerging as an acceptable alternative to conventional coal-fired boiler technology. To satisfy the engineering public's need for experimental data and to assist in the study of technical uncertainties in FBC technology, the Department of Energy (DOE) has initiated the development of a data system to store the results of Government-sponsored research. The FBC Data System consists of FBC data stored in the MPDB, TDDB, and MMDB; it will contain both atmospheric and pressurized FBC facilities. To capture the results of Government-sponsored FBC programs, documents have been written for the MPDB and TDDB to specify the data that contractors need to report and the procedures for reporting them. The FBC documents identify and define the data that need to be reported for FBC projects so that the data entered into the MPDB and TDDB will meet the needs of the users of the FBC Data System. This document identifies what information is needed and how it must be formatted so that it can be entered into the MPDB for FBC demonstration and commercial plants. The structure of the MPDB is shown in Figure 1-1. Section 2.0 describes the needs of potential users of the FBC Data System. Section 3.0 explains how the contractor should report and format this data so that it can be entered into the MPDB. Section 4.0 explains the quality control procedures that should be used to ensure the integrity of the data that is stored in the MPDB. 2 figs., 28 tabs.

Not Available

1986-09-01T23:59:59.000Z

419

DOE cost comparison study: industrial fluidized bed combustion vs conventional coal technology  

SciTech Connect

This study compares the capital and operating costs of two different industrial boiler technologies, each producing 250,000 lbs steam/hr: Fluidized Bed Combustion (FBC) and Pulverized Coal (PC) combustion used in conjunction with a limestone Flue Gas Desulfurization (FGD) system. Three separate turnkey plant designs have been completed. Two of these plant designs incorporate FBC technology and have been designated FBA-16 and FBV-16. The first FBC design (FBA-16) contains two shop assembled, rail-shippable, fluid-bed boilers capable of producing 125,000 lbs/h each. The second plant design (FBV-16) utilizes a single fluid bed boiler shipped by rail in large sections for field assembly. This single unit is capable of producing 250,000 lbs/h. The third plant design utilizes a conventional pulverized coal (PC) boiler used in conjunction with a C-E Air Quaity Control System (AQCS) limestone scrubber. The FBA-16 and FBV-16 fluid bed designs were found to be competitive with the conventional unit. Capital costs were generated for the three turnkey plant designs just described. The FBA-16, FBV-16, and Conventional Unit plant designs have associated capital costs of $24.4, $22.8, and $24.7 million, respectively. A substantial cost reduction can be realized for plant capacities less than 180,000 lbs steam/h by incorporating a single FBA-16 type boiler. The operating costs for the bed designs are close enough to be considered similar when considering the nature of the study. The efficiency of the fluid bed plant designs can be increased and required capital equipment reduced by improvements to the plant design. Some potential design modifications are outlined. Extensive design and background research was prformed to increase the validity and relevance of this report.

Myrick, D.T.

1980-01-02T23:59:59.000Z

420

DOE cost comparison study industrial fluidized bed combustion vs conventional coal technology  

SciTech Connect

This study compares the capital and operating costs of two different industrial boiler technologies, each producing 250,000 lbs steam/hr. These technologies are: Fluidized Bed Combustion (FBC) and Pulverized Coal (PC) combustion used in conjunction with a limestone Flue Gas Desulfurization (FGD) system. Three separate turnkey plant designs have been completed. Two of these plant designs incorporate FBC technology and have been designated FBA-16 and FBV-16. The first FBC design (FBA-16) contains two shop assembled, rail shippable fluid bed boilers capable of producing 125,000 lbs/hr each. The second plant design (FBV-16) utilizes a single 250,000 lbs/hr fluid bed boiler shipped by rail in large sections for field assembly. The third plant design utilizes a conventional pulverized coal (PC) boiler in conjunction with a C-E Air Quality Control System (AQCS) limestone scrubber. Capital costs were generated for the three turnkey plant designs just described. The FBA-16, FBV-16, and Conventional Unit plant designs have associated capital costs of $24.4, $22.8, and $24.7 million, respectively. Comparisons between plant capital cost estimates are valid and informative. The total operational costs, which include contingencies on new product design for the Fluid Bed Units, were found to vary between four and seven percent higher than the Conventional Unit. When contingencies are not included, the operating costs were found to be between one and three percent higher than the Conventional Unit. As can be seen, the operating costs for the bed designs are close enough to be considered similar when considering the nature of the study. The efficiency of the fluid bed plant designs can be increased and required capital equipment reduced by improvements to the plant design with time and more development. Some potential design modifications are outlined.

Myrick, D.T.

1980-01-02T23:59:59.000Z

Note: This page contains sample records for the topic "fluidized solids technique" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Assessment of atmospheric fluidized-bed combustion recycle systems. Final report  

SciTech Connect

This report presents a technical and economic evaluation of AFBC power plants with recycle systems, and a comparison of these plants with AFBC power plants with carbon burnup beds (CBB) and with pulverized coal-fired (PCF) power plants with flue gas desulfurization (FGD) systems. The analysis considers 1000 MWe plants burning both eastern and western coals. The capital and operating cost estimates are based on boiler designs developed by Babcock and Wilcox, Inc., and on sorbent requirements estimated by Burns and Roe, Inc. The economic analyses are based on a plant located in the East Central region of the United States with a 30-year life and a 70 percent capacity factor. The eastern coal-fired plants are designed to burn Illinois bituminous coal with a higher heating value of 10,100 Btu/lb and a sulfur content of 4%. The required calcium to sulfur mole ratios for the eastern plants are 3.8:1 and 2.5:1 for the AFBC/CBB and AFBC/recycle plants, respectively. The western coal-fired plants are designed to burn Wyoming subbituminous coal with a higher heating value of 8,020 Btu/lb and a sulfur content of 0.48%. The required calcium to sulfur mole ratios for the western plants are 0.7:1 and 0.4:1 for the AFBC/CBB and AFBC/recycle plants, respectively. These Ca/S mole ratios allow for 30 percent utilization of the alkaline coal ash to reduce sorbent requirements to the fluidized bed combustor. The analyses indicate that the AFBC/recycle plants have an economic advantage over the AFBC/CBB plants and over the PCF/FGD plants for both eastern and western coal.

Rogali, R.; Wysocki, J.; Kursman, S.

1981-10-01T23:59:59.000Z

422

CO-PRODUCTION OF HYDROGEN AND ELECTRICITY USING PRESSURIZED CIRCULATING FLUIDIZED BED GASIFICATION TECHNOLOGY  

SciTech Connect

Foster Wheeler has completed work under a U.S. Department of Energy cooperative agreement to develop a gasification equipment module that can serve as a building block for a variety of advanced, coal-fueled plants. When linked with other equipment blocks also under development, studies have shown that Foster Wheeler's gasification module can enable an electric generating plant to operate with an efficiency exceeding 60 percent (coal higher heating value basis) while producing near zero emissions of traditional stack gas pollutants. The heart of the equipment module is a pressurized circulating fluidized bed (PCFB) that is used to gasify the coal; it can operate with either air or oxygen and produces a coal-derived syngas without the formation of corrosive slag or sticky ash that can reduce plant availabilities. Rather than fuel a gas turbine for combined cycle power generation, the syngas can alternatively be processed to produce clean fuels and or chemicals. As a result, the study described herein was conducted to determine the performance and economics of using the syngas to produce hydrogen for sale to a nearby refinery in a hydrogen-electricity co-production plant setting. The plant is fueled with Pittsburgh No. 8 coal, produces 99.95 percent pure hydrogen at a rate of 260 tons per day and generates 255 MWe of power for sale. Based on an electricity sell price of $45/MWhr, the hydrogen has a 10-year levelized production cost of $6.75 per million Btu; this price is competitive with hydrogen produced by steam methane reforming at a natural gas price of $4/MMBtu. Hence, coal-fueled, PCFB gasifier-based plants appear to be a viable means for either high efficiency power generation or co-production of hydrogen and electricity. This report describes the PCFB gasifier-based plant, presents its performance and economics, and compares it to other coal-based and natural gas based hydrogen production technologies.

Zhen Fan

2006-05-30T23:59:59.000Z

423

Multicycle study on chemical-looping combustion of simulated coal gas with a CaSO{sub 4} oxygen carrier in a fluidized bed reactor  

SciTech Connect

The cyclic test of a CaSO{sub 4}-based oxygen carrier (natural anhydrite) in alternating reducing simulated coal gas and oxidizing conditions was performed at 950{degree}C in a fluidized bed reactor at atmospheric pressure. A high concentration of CO{sub 2} was obtained in the reduction. The H{sub 2} and CO conversions and CO{sub 2} yield increased initially and final decreased significantly. The release of SO{sub 2} and H{sub 2}S during the cyclic test was found to be responsible for the decrease of reactivity of a CaSO{sub 4} oxygen carrier. The oxygen carrier conversion after the reduction reaction decreased gradually in the cyclic test. Through the comparison of mass-based reaction rates as a function of mass conversion at typical cycles, it was also evident that the reactivity of a CaSO{sub 4} oxygen carrier increased for the initial cycles but finally decreased after around 15 cycles. X-ray diffraction analysis revealed that the presence and intensity of the reduction sulfur species was in accordance with the results of gas conversion. The content of CaO was higher than expected, suggesting the formation of SO{sub 2} and H{sub 2}S during the cycles. Surface morphology analysis demonstrates that the natural anhydrite particle surface varied from impervious to porous after the cyclic test. It was also observed that the small grains on the surface of the oxygen carrier sintered in the cyclic tests. Energy-dispersive spectrum analysis also demonstrated the decrease of oxygen intensity after reduction, and CaO became the main component after the 20th oxidation. Pore structure analysis suggested that the particles agglomerated or sintered in the cyclic tests. The possible method for sulfur mitigation is proposed. Finally, some basic consideration on the design criteria of a CLC system for solid fuels using a CaSO{sub 4} oxygen carrier is discussed by the references and provides direction for future work. 49 refs., 10 figs., 5 tabs.

Qilei Song; Rui Xiao; Zhongyi Deng; Wenguang Zheng; Laihong Shen; Jun Xiao [Southeast University, Nanjing (China). Thermoenergy Engineering Research Institute

2008-11-15T23:59:59.000Z

424

CT Scan Not Only a Medical Technique NETL Wins Two 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

on Materials for CO 2 Capture and Conversions 5 Coal Seam Carbon Sequestration Simulation 6 Fluidized-Bed Combustion Testing...

425

Solid state switch  

DOE Patents (OSTI)

A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1,500 A peak, 1.0 [mu]s pulsewidth, and 4,500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry. 6 figs.

Merritt, B.T.; Dreifuerst, G.R.

1994-07-19T23:59:59.000Z

426

Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Solid Waste Management 0: Solid Waste Management Facilities (New York) Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities (New York) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Institutional Investor-Owned Utility Multi-Family Residential Municipal/Public Utility Rural Electric Cooperative Transportation Utility Program Info State New York Program Type Environmental Regulations Provider NY Department of Environmental Conservation These regulations apply to all solid wastes with the exception of hazardous or radioactive waste. Proposed solid waste processing facilities are required to obtain permits prior to construction, and the regulations provide details about permitting, construction, registration, and operation requirements. The regulations contain specific guidance for land

427

Distribution of polycyclic aromatic hydrocarbons in fly ash during coal and residual char combustion in a pressurized fluidized bed  

SciTech Connect

To investigate the distribution of polycyclic aromatic hydrocarbons (PAHs) in fly ash, the combustion of coal and residual char was performed in a pressurized spouted fluidized bed. After Soxhlet extraction and Kuderna-Danish (K-D) concentration, the contents of 16 PAHs recommended by the United States Environmental Protection Agency (U.S. EPA) in coal, residual char, and fly ash were analyzed by a high-performance liquid chromatography (HPLC) coupled with fluorescence and diode array detection. The experimental results show that the combustion efficiency is lower and the carbon content in fly ash is higher during coal pressurized combustion, compared to the residual char pressurized combustion at the pressure of 0.3 MPa. Under the same pressure, the PAH amounts in fly ash produced from residual char combustion are lower than that in fly ash produced from coal combustion. The total PAHs in fly ash produced from coal and residual char combustion are dominated by three- and four-ring PAHs. The amounts of PAHs in fly ash produced from residual char combustion increase and then decrease with the increase of pressure in a fluidized bed. 21 refs., 1 fig., 4 tabs.

Hongcang Zhou; Baosheng Jin; Rui Xiao; Zhaoping Zhong; Yaji Huang [Nanjing University of Information Science and Technology, Nanjing (China)

2009-04-15T23:59:59.000Z

428

Sulfur removal in advanced two-staged pressurized fluidized-bed combustion; [Quarterly] report, September 1--November 1993  

SciTech Connect

The objective of this study is to obtain data on the rates of reaction between hydrogen sulfide (H{sub 2}S) and uncalcined calcium-based sorbents under operating conditions relevant to first stage (carbonizer) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors (PFBC). In these systems the CO{sub 2} partial pressure in the first stage generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, removal of sulfur compounds takes place through the reaction between H{sub 2}S and calcium carbonate. To achieve this objective, the rates of reaction between hydrogen sulfide and uncalcined calcium-based sorbents will be determined by conducting tests in pressurized thermogravimetric analyzer (TGA) and high-pressure/high-temperature fluidized-bed reactor (HPTR) units. The effects of sorbent type, sorbent particle size, reactor temperature and pressure, and CO{sub 2} and H{sub 2}S partial pressures on the sulfidation reaction rate will be determined. A pressurized TGA unit has been purchased by IGT for use in this project.

Abbasian, J.; Hill, A.H.; Wangerow, J.R.; Rue, D.M.

1994-03-01T23:59:59.000Z

429

Sulfur removal in advanced two-stage fluidized-bed combustion. [Quarterly] technical report, December 1, 1993--February 28, 1994  

SciTech Connect

The objective of this study is to obtain data on the rates of reaction between, hydrogen sulfide (H{sub 2}S) and uncalcined calcium-based sorbents under operating conditions relevant to first stage (carbonizer) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors (PFBC). In these systems the CO{sub 2} partial pressure in the first stage generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, removal of sulfur compounds takes place through the reaction between H{sub 2}S and calcium carbonate. To achieve this objective the rates of reaction between hydrogen sulfide and uncalcined calcium-based sorbents will be determined by conducting tests in pressurized thermogravimetric analyzer (TGA) and high-pressure/high-temperature fluidized-bed reactor (HPTR) units. The effects of sorbent type, sorbent particle size, reactor temperature and pressure, and CO{sub 2} and H{sub 2}S partial pressures on the sulfidation reaction rate will be determined. During this quarter, the high-pressure thermogravimetric analyzer (HPTGA) unit was installed and the shakedown process was completed. Several tests were conducted in the HPTGA unit to establish the operating procedure and the repeatability of the experimental results. Sulfidation by conducting the baseline sulfidation tests. The results are currently being analyzed.

Abbasian, J.; Hill, A.H.; Wangerow, J.R.; Rue, D.M. [Inst. of Gas Technology, Chicago, IL (United States)

1994-06-01T23:59:59.000Z

430

Co-combustion of biomass and gaseous fuel in a novel configuration of fluidized bed: Combustion characteristics  

Science Journals Connector (OSTI)

Abstract Experimental study on co-combustion of rice straw and natural gas has been performed in a bubbling fluidized bed. The used combustor allows a novel jetting-fountain configuration and the conventional operation as well. In the jetting-fountain configuration, natural gas premixed with the air sufficient for combustion proceeds through the jet pipe to create a jet-fountain zone. Whereas only the air required for rice straw combustion passes through the gas distributor. The findings of the experiments confirm that smooth combustion of natural gas with rice straw can be performed in the novel jetting-fountain fluidized bed. This avoids acoustic effects and explosions of burning bubbles that occurs in the conventional operation. Natural gas contribution had a major impact on combustion characteristics and the performance of the combustor has been found to be much better when applying the jetting-fountain configuration. There are considerable reductions (up to 64%, 28% and 34%) in CO, \\{NOx\\} and SO2 emissions, respectively. The fixed carbon loss reduces (up to 65%) as well. Combustion efficiency records generally higher values with the jetting-fountain configuration. Combustion efficiency steadily improves with increasing natural gas contribution (up to 99.8%). Increasing bed temperature (up to 900 °C) is beneficial for reducing CO, decreasing fixed carbon loss and improving combustion efficiency. The existence of an optimum bed temperature for sulfur retention has been confirmed. As normal, \\{NOx\\} increases with bed temperature.

F. Okasha; G. Zaater; S. El-Emam; M. Awad; E. Zeidan

2014-01-01T23:59:59.000Z

431

Thermodynamic and economic analysis of polygeneration system integrating atmospheric pressure coal pyrolysis technology with circulating fluidized bed power plant  

Science Journals Connector (OSTI)

Abstract Lignite-based polygeneration system has been considered as a feasible technology to realize clean and efficient utilization of coal resources. A newly polygeneration system has been proposed, featuring the combination of a 2 × 300 MW circulating fluidized bed (CFB) power plant and atmospheric pressure fluidized bed pyrolyzers. Xiaolongtan lignite is pyrolyzed in pyrolyzers. Pyrolyzed volatiles are further utilized for the co-generation of methanol, oil, and electricity, while char residues are fired in CFB boilers to maintain the full load condition of boilers. Detailed system models were built, and the optimum operation parameters of the polygeneration plant were sought. Technical and economic performances of optimum design of the polygeneration plant were analyzed and compared with those of the conventional CFB power plant based on the evaluation of energy and exergy efficiency, internal rate of return (IRR), and payback period. Results revealed that system efficiency and the IRR of the polygeneration plant are ca. 9% and 14% points higher than those of the power plant, respectively. The study also analyzed the effects of market fluctuations on the economic condition of the polygeneration plant, and found that prices of fuel, material, and products have great impacts on the economic characteristics of the polygeneration plant. Polygeneration plant is more economic than CFB power plant even when prices fluctuate within a wide range. This paper provides a thorough evaluation of the polygeneration plant, and the study indicates that the proposed polygeneration plant has a bright prospect.

Zhihang Guo; Qinhui Wang; Mengxiang Fang; Zhongyang Luo; Kefa Cen

2014-01-01T23:59:59.000Z

432

Numerical study of hydrogen production by the sorption-enhanced steam methane reforming process with online CO2 capture as operated in fluidized bed reactors  

Science Journals Connector (OSTI)

A three-dimensional (3D) Eulerian two-fluid model with an in-house code was developed to simulate the gas-particle two-phase flow in the fluidized bed reactors. The CO2 capture with Ca-based sorbents in the steam

Yuefa Wang; Zhongxi Chao; Hugo A. Jakobsen

2011-08-01T23:59:59.000Z

433

Role of Ettringite in the Reuse of Hydrated Fly Ash from Fluidized-Bed Combustion as a Sulfur Sorbent:? A Hydration Study  

Science Journals Connector (OSTI)

Waste from fluidized-bed combustion (FBC) has a low potential for reuse. One possibility for its recycling lies in a hydration process aimed at reactivating the SO2 sorption ability of the unconverted lime. The formation of ettringite, as well as calcium ...

Graziella Bernardo; Antonio Telesca; Gian Lorenzo Valenti; Fabio Montagnaro

2004-06-15T23:59:59.000Z

434

Japan still solid market  

Science Journals Connector (OSTI)

Japan still solid market ... Japan will continue to present a number of chemical marketing opportunities for U.S. companies, according to a study made for the U.S. Embassy in Tokyo. ... The share of imports of synthetic rubber in Japan's net supply has been dropping steadily since 1962, corresponding to rapidly rising local capacity. ...

1967-01-02T23:59:59.000Z

435

Leachability of automotive shredder residues burned in a fluidized bed system  

Science Journals Connector (OSTI)

This paper presents the results of the study of a combustible fraction of automotive shredder residues (CASRs) and the corresponding ashes generated by combustion on a fluidized bed pilot with the aim to understand the influence of thermal treatment regarding properties for final disposal, such as landfilling. The chemical composition was evaluated and the leachability behaviour of ashes and CASR was investigated using the three more commonly used tests: the European Standard EN 12457, the US TCLP-EPA 1311 and the Dutch availability test EA NEN 7371. Different results were obtained depending on the specific conditions of the methods employed. It was found that both the CASR and the ashes contained large amounts of toxic metals and other undesirable elements, such as Cl and S. For the CASR, in addition to the leachability of organic matter above the limit set for hazardous materials, the release of heavy metals, either under alkaline and acidic conditions was significant, revealing the serious risks associated to the landfilling practices still being undertaken worldwide. Release of organic matter from ashes was insignificant, but solubility of sulphates increased and chlorides exceed the hazardous limits in the case of fly ashes. Toxic metals were found to leach from the ashes only under acidic conditions, except Pb and Cu which also leached from finer ashes at alkaline pH. Cr also leached from ashes at alkaline pH values. Both the Dutch availability and TCLP revealed much higher leaching intensities than the European Standard due to the acidity of leachants. However, it was found that ashes may be more resistant to acidification because they exhibit much higher acid neutralization capacity (ANC) than the untreated CASR. The study undertaken shows that thermal valorisation of the combustible fraction of ASR may avoid the risks associated with their landfilling; however, care has to be taken with the ashes because they also behave as hazardous residues. Although, the mass reduction provided by thermal treatment may make landfilling less expensive, a more profitable reutilization of the ashes should be developed.

M.H. Lopes; M. Freire; M. Galhetas; I. Gulyurtlu; I. Cabrita

2009-01-01T23:59:59.000Z

436

Acidic soil amendment with a magnesium-containing fluidized bed combustion by-product  

SciTech Connect

Removal of SO{sub 2} from the emissions of coal-fired boilers produces by-products that often consist of CaSO{sub 4}, residual alkalinity, and coal ash. These by-products could be beneficial to acidic soils because of their alkalinity and the ability of gypsum (CaSO{sub 4}{center{underscore}dot}2H{sub 2}O) to reduce Al toxicity in acidic subsoils. A 3-yr field experiment was conducted to determine the liming efficacy of a fluidized bed combustion boiler by-product (FBC) that contained 129 g Mg kg{sup {minus}1} as CaMg(CO{sub 3}){sub 2} and MgO and its effects on surface and subsurface soil chemistry. The FBC was mixed in the surface 10 cm of two acidic soils (Wooster silt loam, an Oxyaquic Fragiudalf, and Coshocton silt loam, an Aquultic Hapludalf) at rates of 0, 0.5, 1, and 2 times each soil's lime requirement (LR). Soils were sampled in 10-cm increments to depths ranging from 20 to 110 cm, and corn (Zea mays L.) and alfalfa (Medicago sativa L.) were grown. Application of Mg-FBC increased alfalfa yields in all six site-years, whereas it had no effect on corn grain yield in five site-years and decreased grain yield in one site-year. Plant tissue concentrations of Mg, S, and Mo were increased by Mg-FBC, while most trace elements were either unaffected or decreased. Application of Mg-FBC at one or two times LR increased surface soil pH to near 7 within 1 wk. Although surface soil pH remained near 7 for 2 yr, there was minimal effect on subjacent soil pH. Application of Mg-FBC increased surface soil concentrations of Ca, Mg, and S, which promoted downward movement of Mg and SO{sub 4}. This had different effects on subsoil chemistry in the two soils: in the high-Ca-status Wooster subsoil, exchangeable Ca was decreased and exchangeable Al was increased, whereas in the high-Al-status Coshocton subsoil, exchangeable Al was decreased and exchangeable Mg was increased. The Mg-FBC was an effective liming material and, because of the presence of both Mg and SO{sub 4}, may be more effective than gypsum in ameliorating subsoil Al phytotoxicity.

Stehouwer, R.C.; Dick, W.A.; Sutton, P.

1999-02-01T23:59:59.000Z

437

SOLID OXIDE PLANAR AND TUBULAR SOLID OXIDE FUEL  

E-Print Network (OSTI)

SOLID OXIDE PLANAR AND TUBULAR SOLID OXIDE FUEL CELLS Dynamic Simulation Approach Modular Approach · Parallel planes: PSOFC · Other: combustor, reformer Solid Oxide Fuel Cell Electrochemistry Cell Reactions · Slow pressure transients #12;Fuel Cell Assumptions · H2 electrochemically oxidized only · CO consumed

Mease, Kenneth D.

438

Solid-State Lighting: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Contacts Printable Version Share this resource Send a link to Solid-State Lighting: Contacts to someone by E-mail Share Solid-State Lighting: Contacts on Facebook Tweet about Solid-State Lighting: Contacts on Twitter Bookmark Solid-State Lighting: Contacts on Google Bookmark Solid-State Lighting: Contacts on Delicious Rank Solid-State Lighting: Contacts on Digg Find More places to share Solid-State Lighting: Contacts on AddThis.com... Contacts Web site and program contacts are provided below. Website Contact Send us your comments, report problems, and/or ask questions about information on this site. Program Contacts Contact information for the Solid-State Lighting Program. Contacts | Web Site Policies | U.S. Department of Energy | USA.gov Content Last Updated: 02/14

439

Delaware Solid Waste Authority (Delaware)  

Energy.gov (U.S. Department of Energy (DOE))

The Delaware Solid Waste Authority (DSWA) runs three landfills, all of which recover methane and generate electricity with a total capacity of 24 MWs. The DSWA Solid Waste Plan includes goals,...

440

Applications of CFB technology to gas—solid reactions  

Science Journals Connector (OSTI)

The aim of this chapter is to provide the reader with some insight into the procedure for determining whether a circulating fluidized bed (CFB) system is appropriate for a given process ... and to explore the fea...

Rodney J. Dry; Colin J. Beeby

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fluidized solids technique" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Field study of disposed solid wastes from advanced coal processes. Annual report, October 1, 1992--September 30, 1993  

SciTech Connect

Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute`s fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison`s limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United`s mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the three landfill test cases constructed in 1989 were completed. Monitoring continued at Test Case Four. Two cells for Test Case Five were constructed in Illinois.

Not Available

1993-10-01T23:59:59.000Z

442

Municipal Solid Waste:  

U.S. Energy Information Administration (EIA) Indexed Site

Methodology for Allocating Municipal Solid Waste Methodology for Allocating Municipal Solid Waste to Biogenic and Non-Biogenic Energy May 2007 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy of the Department of Energy or any other organization. Contact This report was prepared by staff of the Renewable Information Team, Coal, Nuclear, and Renewables Division, Office of Coal, Nuclear, Electric and Alternate Fuels.

443

Solid Cold - A  

NLE Websites -- All DOE Office Websites (Extended Search)

By the early 20th century, the way in which temperatures of solid objects changed as they absorbed heat was considered strong evidence that matter was not made of atoms. Einstein used some recent discoveries about light to turn this assessment around. A B C D E F A. A puzzle, and a surprising solution Take equal masses of lead and aluminum. Heat them until their temperatures are both 10 degrees higher. Will it take the same amount of heat for each? Back in the 18th century, the chemist Joseph Black discovered that different materials required different amounts of heat to raise their temperatures by equal amounts. The amount by which the temperature of a material changes as it absorbs or gives off heat can even be used to help identify the material. Among solid materials near room temperature,

444

journal Solid State Ionics  

NLE Websites -- All DOE Office Websites (Extended Search)

Structural and transport properties of Nafion in hydrobromic Structural and transport properties of Nafion in hydrobromic acid solutions journal Solid State Ionics year month abstract p Proton exchange membranes are key solid state ion carriers in many relevant energy technologies including flow batteries fuel cells and solar fuel generators In many of these systems the membranes are in contact with electrolyte solutions In this paper we focus on the impact of different HBr a flow battery and exemplary acid electrolyte external concentrations on the conductivity of Nafion a perfluorosulfonic acid membrane that is commonly used in many energy related applications The peak and then decrease in conductivity is correlated with measured changes in the water and HBr content within the membrane In addition small angle x ray scattering is used to probe the nanostructure to

445

Solar solids reactor  

DOE Patents (OSTI)

A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

Yudow, Bernard D. (Chicago, IL)

1987-01-01T23:59:59.000Z

446

Solar solids reactor  

DOE Patents (OSTI)

A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

Yudow, B.D.

1986-02-24T23:59:59.000Z

447

Single Pass Flow-Through (SPFT) Test Results of Fluidized Bed Steam Reforming (FBSR) Waste Forms used for LAW Immobilization  

SciTech Connect

Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One such immobilization technology being considered is the Fluidized Bed Steam Reforming (FBSR) granular product. The FBSR granular product is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals. Production of the FBSR mineral product has been demonstrated both at the industrial and laboratory scale. Single-Pass Flow-Through (SPFT) tests at various flow rates have been conducted with the granular products fabricated using these two methods. Results show that the materials exhibit a relatively low forward dissolution rate on the order of 10-3 g/(m2d) with the material made in the laboratory giving slightly higher values.

Neeway, James J.; Qafoku, Nikolla; Williams, Benjamin D.; Valenta, Michelle M.; Cordova, Elsa A.; Strandquist, Sara C.; Dage, DeNomy C.; Brown, Christopher F.

2012-03-20T23:59:59.000Z

448

MTG fluidized bed reactor–regenerator unit with catalyst circulation: process simulation and operation of an experimental setup  

Science Journals Connector (OSTI)

Simulation of the MTG process carried out in a fluidized bed reactor–regenerator system with catalyst circulation is studied by using the kinetic results obtained in an experimental unit. Data considered covered a wide range of operating conditions including temperature, space time and average residence times in both reactor and regenerator. This simulation is based on the use of adequate kinetic equations for the main MTG reaction, for the catalyst deactivation and for catalyst regeneration. In addition, a third stage in the process allowing for coke equilibration, prior to its combustion, is also included. Catalyst loss due to attrition has also been taken into account. An objective function based on relative production rate is optimized by changing systematically the process parameters such as temperature, space time and catalyst activity. Results are also validated in the experimental unit and demonstrate the simplicity of the reactor–regenerator system with catalyst circulation and the versatility of this configuration for carrying out the MTG process.

Ana G. Gayubo; Jose M. Ortega; Andres T. Aguayo; Jose M. Arandes; Javier Bilbao

2000-01-01T23:59:59.000Z

449

(Fluidized bed combustion of high-ash Indian coals): Foreign trip report, January 5, 1988--March 16, 1988  

SciTech Connect

The foreign research assignment at BHEL, Trichy, was undertaken to participate in the ongoing USAID/BHEL joint program in fluidized bed combustion (FBC). As part of this program, an experimental FBC research test facility has been designed, erected and commissioned at BHEL, Trichy, to conduct experiments on the combustion of high-ash Indian coals and coal washery rejects. The data will be used to optimize the design and to select the operational parameters for large scale industrial and utility FBC boilers. ORNL has been providing technical assistance to BHEL since the initiation of the project in November 1983. The US team visited at 10 MW(e) FBC boiler fired with coal washery rejects at the Tata Iron and Steel Company (supplied by BHEL). The tour was very informative and gave the US team a good first-hand perspective of the Indian experience and concerns with FBC technology.

Krishnan, R.P.; Daw, C.S.

1988-03-01T23:59:59.000Z

450

The atmospheric bubbling fluidized bed combustion of coal in the Netherlands, cleaner it can't be  

SciTech Connect

The use of coal in atmospheric bubbling fluidized bed combustors for the generation of process steam is still a viable option for industrial applications world wide but interest in this as and electricity generation technology has also grown. The general advantages of AB-FBC are environmental acceptability and great fuel flexibility. As will be shown in this paper, it has a great potential for meeting possible future, even more stringent, regulations. Since 1979, Stork Boilers, TNO and Twente University have been carrying out a joint national research programme aimed at the design of industrial installations operating to stringent emission standards. This has led to the demonstration of a 90 MWth industrial boiler at the AKZO Chemical Works. The work has been under the control of NOVEM, the Netherlands Agency of Energy and the Environment. This body provides the financial resources on behalf of the Dutch Ministry of Economic Affairs by awarding annual contracts.

van Gasselt, M.L.G. (TNO-Apeldoorn, P.O. Box 342,7300 AH Apeldoorn (NL))

1991-01-01T23:59:59.000Z

451

Solid-State Lighting: Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications to someone by Publications to someone by E-mail Share Solid-State Lighting: Publications on Facebook Tweet about Solid-State Lighting: Publications on Twitter Bookmark Solid-State Lighting: Publications on Google Bookmark Solid-State Lighting: Publications on Delicious Rank Solid-State Lighting: Publications on Digg Find More places to share Solid-State Lighting: Publications on AddThis.com... Conferences & Meetings Presentations Publications Postings Articles Program Fact Sheets Technology Fact Sheets CALiPER Reports GATEWAY Reports LED Lighting Facts Reports Project Reports Studies and Reports Technology Roadmaps Product Performance Guides Webcasts Videos Tools Publications The Solid-State Lighting (SSL) program produces a comprehensive portfolio of publications, ranging from overviews of the program's research

452

Solid-State Lighting: Presentations  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentations to someone by Presentations to someone by E-mail Share Solid-State Lighting: Presentations on Facebook Tweet about Solid-State Lighting: Presentations on Twitter Bookmark Solid-State Lighting: Presentations on Google Bookmark Solid-State Lighting: Presentations on Delicious Rank Solid-