National Library of Energy BETA

Sample records for fluidized solids technique

  1. Solids fluidizer-injector

    DOE Patents [OSTI]

    Bulicz, Tytus R. (Hickory Hills, IL)

    1990-01-01

    An apparatus and process for fluidizing solid particles by causing rotary motion of the solid particles in a fluidizing chamber by a plurality of rotating projections extending from a rotatable cylinder end wall interacting with a plurality of fixed projections extending from an opposite fixed end wall and passing the solid particles through a radial feed orifice open to the solids fluidizing chamber on one side and a solid particle utilization device on the other side. The apparatus and process are particularly suited for obtaining intermittent feeding with continual solids supply to the fluidizing chamber. The apparatus and process are suitable for injecting solid particles, such as coal, to an internal combustion engine.

  2. Solids fluidizer-injector

    DOE Patents [OSTI]

    Bulicz, T.R.

    1990-04-17

    An apparatus and process are described for fluidizing solid particles by causing rotary motion of the solid particles in a fluidizing chamber by a plurality of rotating projections extending from a rotatable cylinder end wall interacting with a plurality of fixed projections extending from an opposite fixed end wall and passing the solid particles through a radial feed orifice open to the solids fluidizing chamber on one side and a solid particle utilization device on the other side. The apparatus and process are particularly suited for obtaining intermittent feeding with continual solids supply to the fluidizing chamber. The apparatus and process are suitable for injecting solid particles, such as coal, to an internal combustion engine. 3 figs.

  3. Chaos suppression in gas-solid fluidization

    SciTech Connect (OSTI)

    Pence, D.V.; Beasley, D.E.

    1997-07-01

    The present study examines the effect of an opposing oscillatory flow on local, instantaneous heat transfer and pressure in a laboratory scale gas-fluidized bed. The experimental facility models a Pulsed Atmospheric Fluidized Bed Combustor (PAFBC), a hybrid combustor concept that couples a pulsed combustor with an atmospheric bubbling fluidized bed. Time-varying data were acquired at eight angular positions around a horizontal cylinder submerged in a monodisperse distribution of particles having a weight mean diameter of 345 {micro}m. Total flow rates employed in the present study ranged from 10 to 40% greater than the flow required for minimum fluidization. Spectral analyses of local, instantaneous heat flux and pressure clearly indicate that the bed hydrodynamics were significantly altered by the opposing secondary flow. The behavior of time-varying local pressure and heat transfer in fluidized beds in the absence of a secondary flow is consistent with deterministic chaos. Kolmogorov entropy estimates from local, instantaneous pressure suggest that the degree of chaotic behavior was substantially suppressed for operating conditions with low primary and secondary flow rates, and a secondary flow forcing frequency of 15 Hz. In contrast, entropy estimates from measurements of local, instantaneous heat transfer suggest no clear indication of chaos suppression for these operating conditions.

  4. MODELING AND SIMULATION OF SOLID FLUIDIZATION IN A RESIN COLUMN

    SciTech Connect (OSTI)

    Lee, S.

    2014-06-24

    The objective of the present work is to model the resin particles within the column during fluidization and sedimentation processes using computation fluid dynamics (CFD) approach. The calculated results will help interpret experimental results, and they will assist in providing guidance on specific details of testing design and establishing a basic understanding of particle’s hydraulic characteristics within the column. The model is benchmarked against the literature data and the test data (2003) conducted at Savannah River Site (SRS). The paper presents the benchmarking results and the modeling predictions of the SRS resin column using the improved literature correlations applicable for liquid-solid granular flow.

  5. Fundamentals of fluidized bed chemical processes

    SciTech Connect (OSTI)

    Yates, J.G.

    1983-01-01

    Chemical processes based on the use of fluidized solids, although widely used on an industrial scale for some four decades, are currently increasing in importance as industry looks for improved methods for handling and reacting solid materials. This book provides background necessary for an understanding of the technique of gas-solid fluidization. Contents: Some Fundamental Aspects of Fluidization-General Features of Gas-Solid Fluidization; Minimum Fluidization Velocity; Inter-particle forces; Liquid-Solid Fluidization; Bubbles; Slugging; Entrainment and Elutriation; Particle Movement; Bed Viscosity; Fluidization Under Pressure. Fluidized-Bed Reactor Models-ome Individual Models; Model Comparisons; Multiple Region Models. Catalytic Cracking-Process Developments Riser Cracking; Catalysis; Process Chemistry; Kinetics; Process Models. Combustion and Gasification-Plant Developments; Oil and Gas Combustion; Desulphurization; No/sub x/ Emissions; Coal Gassification. Miscellaneous Processes-Phthalic Anhydride (1,3-isobezofurandione); Acrylonitrile (prop-3-enenitrile); Vinyl Chloride (chloroethene); Titanium Dioxide; Uranium Processing; Sulphide Roasting; Indexes.

  6. Reducing the environmental impact on solid wastes from a fluidized...

    Office of Scientific and Technical Information (OSTI)

    Subject: 01 COAL, LIGNITE, AND PEAT; COAL; FLUIDIZED-BED COMBUSTION; WASTE MANAGEMENT; AIR POLLUTION ABATEMENT; ALUMINIUM OXIDES; CALCIUM OXIDES; CHEMICAL ACTIVATION;...

  7. Experimental development of a multi-solid fluidized bed reactor concept

    SciTech Connect (OSTI)

    Litt, R.D.; Paisley, M.A.; Tewksbury, T.L.

    1990-02-01

    Battelle's Columbus Division is developing a coal mild gasification process based upon the Multi-Solid Fluidized bed reactor system to produce high quality liquid and gaseous products. This process uses 2-stages to gasify coal at high throughputs to produce a range of products in compact reactors without requiring an oxygen plant. 8 refs., 14 figs., 12 tabs.

  8. Investigation of Gas Solid Fluidized Bed Dynamics with Non-Spherical Particles

    SciTech Connect (OSTI)

    Choudhuri, Ahsan

    2013-06-30

    One of the largest challenges for 21st century is to fulfill global energy demand while also reducing detrimental impacts of energy generation and use on the environment. Gasification is a promising technology to meet the requirement of reduced emissions without compromising performance. Coal gasification is not an incinerating process; rather than burning coal completely a partial combustion takes place in the presence of steam and limited amounts of oxygen. In this controlled environment, a chemical reaction takes place to produce a mixture of clean synthetic gas. Gas-solid fluidized bed is one such type of gasification technology. During gasification, the mixing behavior of solid (coal) and gas and their flow patterns can be very complicated to understand. Many attempts have taken place in laboratory scale to understand bed hydrodynamics with spherical particles though in actual applications with coal, the particles are non-spherical. This issue drove the documented attempt presented here to investigate fluidized bed behavior using different ranges of non-spherical particles, as well as spherical. For this investigation, various parameters are controlled that included particle size, bed height, bed diameter and particle shape. Particles ranged from 355 µm to 1180 µm, bed diameter varied from 2 cm to 7 cm, two fluidized beds with diameters of 3.4 cm and 12.4 cm, for the spherical and non-spherical shaped particles that were taken into consideration. Pressure drop was measured with increasing superficial gas velocity. The velocity required in order to start to fluidize the particle is called the minimum fluidization velocity, which is one of the most important parameters to design and optimize within a gas-solid fluidized bed. This minimum fluidization velocity was monitored during investigation while observing variables factors and their effect on this velocity. From our investigation, it has been found that minimum fluidization velocity is independent of bed height for both spherical and non-spherical particles. Further, it decrease with decreasing particle size and decreases with decreasing bed diameter. Shadow sizing, a non-intrusive imaging and diagnostic technology, was also used to visualize flow fields inside fluidized beds for both spherical and non- spherical particles and to detect the particle sizes.

  9. Fine and ultrafine particles generated during fluidized bed combustion of different solid fuels

    SciTech Connect (OSTI)

    Urciuolo, M.; Barone, A.; D'Alessio, A.; Chirone, R.

    2008-12-15

    The paper reports an experimental study carried out with a 110-mm ID fluidized bed combustor focused on the characterization of particulates formation/emission during combustion of coal and non-fossil solid fuels. Fuels included: a bituminous coal, a commercial predried and granulated sludge (GS), a refuse-derived fuel (RDF), and a biomass waste (pine seed shells). Stationary combustion experiments were carried out analyzing the fate of fuel ashes. Fly ashes collected at the combustor exhaust were characterized both in terms of particle size distribution and chemical composition, with respect to both trace and major elements. Tapping-Mode Atomic Force Microscopy (TM-AFM) technique and high-efficiency cyclone-type collector devices were used to characterize the size and morphology of the nanometric-and micronic-size fractions of fly ash emitted at the exhaust respectively. Results showed that during the combustion process: I) the size of the nanometric fraction ranges between 2 and 65 nm; ii) depending on the fuel tested, combustion-assisted attrition or the production of the primary ash particles originally present in the fuel particles, are responsible of fine particle generation. The amount in the fly ash of inorganic compounds is larger for the waste-derived fuels, reflecting the large inherent content of these compounds in the parent fuels.

  10. Solids circulation around a jet in a fluidized bed gasifier. Final technical report, September 1, 1978-September 30, 1980

    SciTech Connect (OSTI)

    Gidaspow, D.; Ettehadieh, B.; Lin, C.; Goyal, A.; Lyczkowski, R.W.

    1980-01-01

    The object of this investigation was to develop an experimentally verified hydrodynamic model to predict solids circulation around a jet in a fluidized bed gasifier. Hydrodynamic models of fluidization use the principles of conservation of mass, momentum and energy. To account for unequal velocities of solid and fluid phases, separate phase momentum balances are developed. Other fluid bed models used in the scale-up of gasifiers do not employ the principles of conservation of momentum. Therefore, these models cannot predict fluid and particle motion. In such models solids mixing is described by means of empirical transfer coefficients. A two dimensional unsteady state computer code was developed to give gas and solid velocities, void fractions and pressure in a fluid bed with a jet. The growth, propagation and collapse of bubbles was calculated. Time-averaged void fractions were calculated that showed an agreement with void fractions measured with a gamma ray densitometer. Calculated gas and solid velocities in the jet appeared to be reasonable. Pressure and void oscillations also appear to be reasonable. A simple analytical formula for the rate of solids circulation was developed from the equations of change. It agrees with Westinghouse fluidization data in a bed with a draft tube. One dimensional hydrodynamic models were applied to modeling of entrained-flow coal gasification reactors and compared with data. Further development of the hydrodynamic models should make the scale-up and simulation of fluidized bed reactors a reality.

  11. Data summary of municipal solid waste management alternatives. Volume 5, Appendix C, Fluidized-bed combustion

    SciTech Connect (OSTI)

    1992-10-01

    This appendix provides information on fluidized-bed combustion (FBC) technology as it has been applied to municipal waste combustion (MWC). A review of the literature was conducted to determine: (1) to what extent FBC technology has been applied to MWC, in terms of number and size of units was well as technology configuration; (2) the operating history of facilities employing FBC technology; and (3) the cost of these facilities as compared to conventional MSW installations. Where available in the literature, data on operating and performance characteristics are presented. Tabular comparisons of facility operating/cost data and emissions data have been complied and are presented. The literature review shows that FBC technology shows considerable promise in terms of providing improvements over conventional technology in areas such as NOx and acid gas control, and ash leachability. In addition, the most likely configuration to be applied to the first large scale FBC dedicated to municipal solid waste (MSW) will employ circulating bed (CFB) technology. Projected capital costs for the Robbins, Illinois 1600 ton per day CFB-based waste-to-energy facility are competitive with conventional systems, in the range of $125,000 per ton per day of MSW receiving capacity.

  12. Hybrid fluidized bed combuster

    DOE Patents [OSTI]

    Kantesaria, Prabhudas P. (Windsor, CT); Matthews, Francis T. (Poquonock, CT)

    1982-01-01

    A first atmospheric bubbling fluidized bed furnace is combined with a second turbulent, circulating fluidized bed furnace to produce heat efficiently from crushed solid fuel. The bed of the second furnace receives the smaller sizes of crushed solid fuel, unreacted limestone from the first bed, and elutriated solids extracted from the flu gases of the first bed. The two-stage combustion of crushed solid fuel provides a system with an efficiency greater than available with use of a single furnace of a fluidized bed.

  13. Development of algorithms for capacitance imaging techniques for fluidized bed flow fields

    SciTech Connect (OSTI)

    Loudin, W.J.

    1991-01-01

    The objective of this research is to provide support for the instrumentation concept of a High Resolution Capacitance Imaging System (HRCIS). The work involves the development and evaluation of the mathematical theory and associated models and algorithms which reduce the electronic measurements to valid physical characterizations. The research and development require the investigation of techniques to solve large systems of equations based on capacitance measurements for various electrode configurations in order to estimate densities of materials in a cross-section of a fluidized bed. Capacitance measurements are made for 400 connections of the 32-electrode system; 400 corresponding electric-field curves are constructed by solving a second order partial differential equation. These curves are used to partition the circular disk into 193 regions called pixels, and the density of material in each pixel is to be estimated. Two methods of approximating densities have been developed and consideration of a third method has been initiated. One method (Method 1) is based on products of displacement currents for intersecting electric-field curves on a cross section. For each pixel one point of intersection is chosen, and the product of the capacitance measurements is found. Both the product and the square-root-of-product seem to yield good relative distribution of densities.

  14. Development of algorithms for capacitance imaging techniques for fluidized bed flow fields. 1990 Annual report

    SciTech Connect (OSTI)

    Loudin, W.J.

    1991-01-01

    The objective of this research is to provide support for the instrumentation concept of a High Resolution Capacitance Imaging System (HRCIS). The work involves the development and evaluation of the mathematical theory and associated models and algorithms which reduce the electronic measurements to valid physical characterizations. The research and development require the investigation of techniques to solve large systems of equations based on capacitance measurements for various electrode configurations in order to estimate densities of materials in a cross-section of a fluidized bed. Capacitance measurements are made for 400 connections of the 32-electrode system; 400 corresponding electric-field curves are constructed by solving a second order partial differential equation. These curves are used to partition the circular disk into 193 regions called pixels, and the density of material in each pixel is to be estimated. Two methods of approximating densities have been developed and consideration of a third method has been initiated. One method (Method 1) is based on products of displacement currents for intersecting electric-field curves on a cross section. For each pixel one point of intersection is chosen, and the product of the capacitance measurements is found. Both the product and the square-root-of-product seem to yield good relative distribution of densities.

  15. Apparatus for controlling fluidized beds

    DOE Patents [OSTI]

    Rehmat, A.G.; Patel, J.G.

    1987-05-12

    An apparatus and process are disclosed for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance. 2 figs.

  16. Apparatus for controlling fluidized beds

    DOE Patents [OSTI]

    Rehmat, Amirali G. (Westmont, IL); Patel, Jitendra G. (Bolingbrook, IL)

    1987-05-12

    An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

  17. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 8, NO. 2, MARCH 2000 247 A Model of a Bubbling Fluidized Bed Combustor

    E-Print Network [OSTI]

    Campi, Marco

    Prandoni Abstract--Fluidized bed techniques are employed in coal com- bustion power plants, because an appearance in the power plant realm. Compared to a conventional power plant equipped with pollutant abatement, because of the wide contact surface between solid and gas. Known since the 1920's, fluidized bed

  18. Apparatus and process for controlling fluidized beds

    DOE Patents [OSTI]

    Rehmat, Amirali G. (Westmont, IL); Patel, Jitendra G. (Bolingbrook, IL)

    1985-10-01

    An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

  19. Dynamic Modeling and Control Studies of a Two-Stage Bubbling Fluidized Bed Adsorber-Reactor for Solid-Sorbent CO{sub 2} Capture

    SciTech Connect (OSTI)

    Modekurti, Srinivasarao; Bhattacharyya, Debangsu; Zitney, Stephen E.

    2013-07-31

    A one-dimensional, non-isothermal, pressure-driven dynamic model has been developed for a two-stage bubbling fluidized bed (BFB) adsorber-reactor for solid-sorbent carbon dioxide (CO{sub 2}) capture using Aspen Custom Modeler® (ACM). The BFB model for the flow of gas through a continuous phase of downward moving solids considers three regions: emulsion, bubble, and cloud-wake. Both the upper and lower reactor stages are of overflow-type configuration, i.e., the solids leave from the top of each stage. In addition, dynamic models have been developed for the downcomer that transfers solids between the stages and the exit hopper that removes solids from the bottom of the bed. The models of all auxiliary equipment such as valves and gas distributor have been integrated with the main model of the two-stage adsorber reactor. Using the developed dynamic model, the transient responses of various process variables such as CO{sub 2} capture rate and flue gas outlet temperatures have been studied by simulating typical disturbances such as change in the temperature, flowrate, and composition of the incoming flue gas from pulverized coal-fired power plants. In control studies, the performance of a proportional-integral-derivative (PID) controller, feedback-augmented feedforward controller, and linear model predictive controller (LMPC) are evaluated for maintaining the overall CO{sub 2} capture rate at a desired level in the face of typical disturbances.

  20. Low temperature SO{sub 2} removal with solid sorbents in a circulating fluidized bed absorber. Final report

    SciTech Connect (OSTI)

    Lee, S.K.; Keener, T.C.

    1994-10-10

    A novel flue gas desulfurization technology has been developed at the University of Cincinnati incorporating a circulating fluidized bed absorber (CFBA) reactor with dry sorbent. The main features of CFBA are high sorbent/gas mixing ratios, excellent heat and mass transfer characteristics, and the ability to recycle partially utilized sorbent. Subsequently, higher SO{sub 2} removal efficiencies with higher overall sorbent utilization can be realized compared with other dry sorbent injection scrubber systems.

  1. Fischer-Tropsch synthesis from a low H/sub 2/:CO gas in a dry fluidized-bed system. Volume 3. Heat transfer between a supernatant gas and a flowing shallow fluidized bed of solids. Final technical report, October 1, 1986

    SciTech Connect (OSTI)

    Boyd, J.H.; Liu, Y.A.; Squires, A.M.

    1986-10-01

    Volume II describes the details of heat-transfer studies in a dry fluidized-bed system (called ''heat tray''), which has been proposed for heat recovery from hot gases and for heat management in exothermic reactions. In particular, this report presents the results of bench-scale and pilot-scale experimental studies which quantify heat transfer between a hot supernatant gas (S-gas) and a flowing shallow fluidized bed of solids. A fractional-factorial design of experiments has been performed on two heat-tray systems using three different solids. The results show that fine fluid cracking catalyst (FCC) particles out-perform larger alumina spheres as a fluidized solid. Heat transfer coefficients between the supernatant gas and the shallow fluidized bed approaches 440 W/m/sup 2/-K using FCC with a heat-exchange area of 0.124 m/sup 2/. Various S-gas inlet nozzle configurations have been studied, with a nozzle height equal to one-half of the static bed height (0.051 m) giving the best results. The study shows that short heat-tray lengths (< 0.8 m) are desirable and that S-gas redistributors are needed to compartmentalize the unit. An economic analysis shows that the proposed heat tray would be economically feasible for adaption as a boiler feedwater preheater in a small steam-generation facility, using boiler combustion gases as the S-gas. The payback time for the system would be as short as 1.9 years when used continuously. The heat transfer results from a supernatant gas to a flowing shallow fluidized bed represent the only data reported thus far, and have led to a better understanding of the heat management in the proposed ''heat-tray'' reactor for Fischer-Tropsch synthesis. 20 refs., 46 figs., 15 tabs.

  2. Combined fluidized bed retort and combustor

    DOE Patents [OSTI]

    Shang, Jer-Yu (Fairfax, VA); Notestein, John E. (Morgantown, WV); Mei, Joseph S. (Morgantown, WV); Zeng, Li-Wen (Morgantown, WV)

    1984-01-01

    The present invention is directed to a combined fluidized bed retorting and combustion system particularly useful for extracting energy values from oil shale. The oil-shale retort and combustor are disposed side-by-side and in registry with one another through passageways in a partition therebetween. The passageways in the partition are submerged below the top of the respective fluid beds to preclude admixing or the product gases from the two chambers. The solid oil shale or bed material is transported through the chambers by inclining or slanting the fluidizing medium distributor so that the solid bed material, when fluidized, moves in the direction of the downward slope of the distributor.

  3. Method and apparatus for the separation of a gas-solids mixture in a circulating fluidized bed reactor

    DOE Patents [OSTI]

    Vimalchand, Pannalal (Birmingham, AL); Liu, Guohai (Birmingham, AL); Peng, WanWang (Birmingham, AL)

    2010-08-10

    The system of the present invention includes a centripetal cyclone for separating particulate material from a particulate laden gas solids stream. The cyclone includes a housing defining a conduit extending between an upstream inlet and a downstream outlet. In operation, when a particulate laden gas-solids stream passes through the upstream housing inlet, the particulate laden gas-solids stream is directed through the conduit and at least a portion of the solids in the particulate laden gas-solids stream are subjected to a centripetal force within the conduit.

  4. Fluidization quality analyzer for fluidized beds

    DOE Patents [OSTI]

    Daw, C. Stuart (Knoxville, TN); Hawk, James A. (Oak Ridge, TN)

    1995-01-01

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence.

  5. Fluidization quality analyzer for fluidized beds

    DOE Patents [OSTI]

    Daw, C.S.; Hawk, J.A.

    1995-07-25

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence. 9 figs.

  6. Hydrodynamic aspects of a circulating fluidized bed with internals

    SciTech Connect (OSTI)

    Balasubramanian, N.; Srinivasakannan, C.

    1998-06-01

    An attempt is made to examine the influence of internals (baffles) in the riser of the circulating fluidized bed. Experiments are conducted in a circulating fluidized bed, having perforated plates with different free areas. It is noticed from the present work that a circulating fluidized bed having 45% free area gives uniform solids concentration and pressure drop along the length of the riser. In addition to the uniformity, the circulating fluidized bed with internals gives higher pressure drop (solids concentration) compared to a conventional circulating fluidized bed. For internals having 67.6% free area the pressure drop is higher at the lower portion of the riser compared to the upper portion, similar to a conventional circulating fluidized bed. For 30% free area plates the solids concentration varies axially within the stage and remains uniform from stage to stage.

  7. Structures and fabrication techniques for solid state electrochemical devices

    DOE Patents [OSTI]

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2006-10-10

    Low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures provide solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one aspect the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another aspect, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe and Cu, or alloys thereof.

  8. Structures And Fabrication Techniques For Solid State Electrochemical Devices

    DOE Patents [OSTI]

    Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (El Cerrito, CA); DeJonghe, Lutgard C. (Lafayette, CA)

    2005-12-27

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  9. Structures and fabrication techniques for solid state electrochemical devices

    DOE Patents [OSTI]

    Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (El Cerrito, CA); DeJonghe, Lutgard C. (Lafayette, CA)

    2003-08-12

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for co-firing of device substrate (often an electrode) with an electrolyte or membrane layer to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  10. Fluidized bed catalytic coal gasification process

    DOE Patents [OSTI]

    Euker, Jr., Charles A. (15163 Dianna La., Houston, TX 77062); Wesselhoft, Robert D. (120 Caldwell, Baytown, TX 77520); Dunkleman, John J. (3704 Autumn La., Baytown, TX 77520); Aquino, Dolores C. (15142 McConn, Webster, TX 77598); Gouker, Toby R. (5413 Rocksprings Dr., LaPorte, TX 77571)

    1984-01-01

    Coal or similar carbonaceous solids impregnated with gasification catalyst constituents (16) are oxidized by contact with a gas containing between 2 volume percent and 21 volume percent oxygen at a temperature between 50.degree. C. and 250.degree. C. in an oxidation zone (24) and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone (44) at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

  11. COMPUTATIONAL MODELING OF CIRCULATING FLUIDIZED BED REACTORS

    SciTech Connect (OSTI)

    Ibrahim, Essam A

    2013-01-09

    Details of numerical simulations of two-phase gas-solid turbulent flow in the riser section of Circulating Fluidized Bed Reactor (CFBR) using Computational Fluid Dynamics (CFD) technique are reported. Two CFBR riser configurations are considered and modeled. Each of these two riser models consist of inlet, exit, connecting elbows and a main pipe. Both riser configurations are cylindrical and have the same diameter but differ in their inlet lengths and main pipe height to enable investigation of riser geometrical scaling effects. In addition, two types of solid particles are exploited in the solid phase of the two-phase gas-solid riser flow simulations to study the influence of solid loading ratio on flow patterns. The gaseous phase in the two-phase flow is represented by standard atmospheric air. The CFD-based FLUENT software is employed to obtain steady state and transient solutions for flow modulations in the riser. The physical dimensions, types and numbers of computation meshes, and solution methodology utilized in the present work are stated. Flow parameters, such as static and dynamic pressure, species velocity, and volume fractions are monitored and analyzed. The differences in the computational results between the two models, under steady and transient conditions, are compared, contrasted, and discussed.

  12. Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Quarterly report, quarter ending December 31, 1995

    SciTech Connect (OSTI)

    NONE

    1996-01-01

    The objective of this project is to demonstrate that cocombustion of municipal solid waste and oil shale can reduce emissions of gaseous pollutants (SO{sub 2} and HCl) to acceptable levels. Tests in 6- and 15-inch units showed that the oil shale absorbs acid gas pollutants and produces an ash which could be, at the least, disposed of in a normal landfill. Further analysis of the results are underway to estimate scale-up to commercial size. Additional work will be done to evaluate the cementitious properties of oil shale ash.

  13. Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Quarterly report, quarter ending 31 December 1994

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    The test plan is designed to demonstrate that oil shale co-combusted with municipal solid waste (MSW) can reduce gaseous pollutants (SO{sub 2}, CO) to acceptable levels (90%+ reduction) and produce a cementitious ash which will, at a minimum, be acceptable in normal land fills. The small-scale combustion testing will be accomplished in a 6-in. circulating fluid bed combustor (CFBC) at Hazen Research Laboratories. This work will be patterned after the study the authors conducted in 1988 when coal and oil shale were co-combusted in a program sponsored by the Electric Power Research Institute. The specific purpose of the test program will be to: determine the required ratio of oil shale to MSW by determining the ratio of absorbent to pollutant (A/P); determine the effect of temperature and resident time in the reactor; and determine if kinetic model developed for coal/oil shale mixture is applicable.

  14. Apparatus and method for controlling heat transfer between a fluidized bed and tubes immersed therein

    DOE Patents [OSTI]

    Hodges, James L. (3 Hilltop Ave., Vernon, CT 06066); Cerkanowicz, Anthony E. (8 Fieldstone Dr., Livingston, NJ 07039)

    1982-01-01

    In a fluidized bed of solid particles having one or more heat exchange tubes immersed therein, the rate of heat transfer between the fluidized particles and a fluid flowing through the immersed heat exchange tubes is controlled by rotating an arcuate shield apparatus about each tube to selectively expose various portions of the tube to the fluidized particles.

  15. Apparatus and method for controlling heat transfer between a fluidized bed and tubes immersed therein

    DOE Patents [OSTI]

    Hodges, James L. (3 Hilltop Ave., Vernon, CT 06066); Cerkanowicz, Anthony E. (8 Fieldstone Dr., Livingston, NJ 07039)

    1983-01-01

    In a fluidized bed of solid particles having one or more heat exchange tubes immersed therein, the rate of heat transfer between the fluidized particles and a fluid flowing through the immersed heat exchange tubes is controlled by rotating an arcuate shield apparatus about each tube to selectively expose various portions of the tube to the fluidized particles.

  16. Numerical and experimental studies of IFE target layering in a cryogenic fluidized bed

    E-Print Network [OSTI]

    Boehm, Kurt Julian

    2009-01-01

    most gas-solid fluidized beds show a bubbling or chuggingfluidized state which is governed by bubbling behavior, the prediction of the bed

  17. Pulse enhanced fluidized bed combustion

    SciTech Connect (OSTI)

    Mueller, B.

    1996-12-31

    Information is outlined on pulse enhanced fluidized bed combustion. The following topics are discussed: what is pulse enhanced fluidized bed combustion?; pulse combustors; pulsed atmospheric fluidized bed combustor (PAFBC); advantages of PAFBC; performance advantages; PAFBC facts; and PAFBC contact points.

  18. Staged fluidized bed

    DOE Patents [OSTI]

    Mallon, R.G.

    1983-05-13

    The invention relates to oil shale retorting and more particularly to staged fluidized bed oil shale retorting. Method and apparatus are disclosed for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.

  19. Fluidized bed gasification of extracted coal

    DOE Patents [OSTI]

    Aquino, Dolores C. (Houston, TX); DaPrato, Philip L. (Westfield, NJ); Gouker, Toby R. (Baton Rouge, LA); Knoer, Peter (Houston, TX)

    1986-01-01

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone (12) with an aqueous solution having a pH above 12.0 at a temperature between 65.degree. C. and 110.degree. C. for a period of time sufficient to remove bitumens from the coal into said aqueous solution and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m.sup.3. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step.

  20. Fluidized bed gasification of extracted coal

    DOE Patents [OSTI]

    Aquino, D.C.; DaPrato, P.L.; Gouker, T.R.; Knoer, P.

    1984-07-06

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone with an aqueous solution having a pH above 12.0 at a temperature between 65/sup 0/C and 110/sup 0/C for a period of time sufficient to remove bitumens from the coal into said aqueous solution, and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m/sup 3/. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step. 2 figs., 1 tab.

  1. Solid-Cryogen Cooling Technique for Superconducting Magnets of NMR and MRI

    E-Print Network [OSTI]

    Iwasa, Yukikazu

    This paper describes a solid-cryogen cooling technique currently being developed at the M.I.T. Francis Bitter Magnet Laboratory for application to superconducting magnets of NMR and MRI. The technique is particularly ...

  2. Fluidized bed calciner apparatus

    DOE Patents [OSTI]

    Owen, Thomas J. (West Richland, WA); Klem, Jr., Michael J. (Richland, WA); Cash, Robert J. (Richland, WA)

    1988-01-01

    An apparatus for remotely calcining a slurry or solution feed stream of toxic or hazardous material, such as ammonium diurante slurry or uranyl nitrate solution, is disclosed. The calcining apparatus includes a vertical substantially cylindrical inner shell disposed in a vertical substantially cylindrical outer shell, in which inner shell is disposed a fluidized bed comprising the feed stream material to be calcined and spherical beads to aid in heat transfer. Extending through the outer and inner shells is a feed nozzle for delivering feed material or a cleaning chemical to the beads. Disposed in and extending across the lower portion of the inner shell and upstream of the fluidized bed is a support member for supporting the fluidized bed, the support member having uniform slots for directing uniform gas flow to the fluidized bed from a fluidizing gas orifice disposed upstream of the support member. Disposed in the lower portion of the inner shell are a plurality of internal electric resistance heaters for heating the fluidized bed. Disposed circumferentially about the outside length of the inner shell are a plurality of external heaters for heating the inner shell thereby heating the fluidized bed. Further, connected to the internal and external heaters is a means for maintaining the fluidized bed temperature to within plus or minus approximately 25.degree. C. of a predetermined bed temperature. Disposed about the external heaters is the outer shell for providing radiative heat reflection back to the inner shell.

  3. Stability of Gas-Fluidized Beds

    E-Print Network [OSTI]

    Mandich, Kevin Matthew

    Temperature in a Bubbling Fluidized Bed, To Be Submitted tomechanisms of bubbling in fluidized beds. A simpler analysiswith the nature of bubbling in fluidized beds. When bubbles

  4. Pyrolysis reactor and fluidized bed combustion chamber

    DOE Patents [OSTI]

    Green, Norman W. (Upland, CA)

    1981-01-06

    A solid carbonaceous material is pyrolyzed in a descending flow pyrolysis reactor in the presence of a particulate source of heat to yield a particulate carbon containing solid residue. The particulate source of heat is obtained by educting with a gaseous source of oxygen the particulate carbon containing solid residue from a fluidized bed into a first combustion zone coupled to a second combustion zone. A source of oxygen is introduced into the second combustion zone to oxidize carbon monoxide formed in the first combustion zone to heat the solid residue to the temperature of the particulate source of heat.

  5. Structures and fabrication techniques for solid state electrochemical devices

    DOE Patents [OSTI]

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2012-10-09

    Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.

  6. Structures and fabrication techniques for solid state electrochemical devices

    DOE Patents [OSTI]

    Visco, Steven J. (Berkeley, CA); Jacobson, Craig P. (El Cerrito, CA); DeJonghe, Lutgard C. (Lafayette, CA)

    2008-04-01

    Porous substrates and associated structures for solid-state electrochemical devices, such as solid-oxide fuel cells (SOFCs), are low-cost, mechanically strong and highly electronically conductive. Some preferred structures have a thin layer of an electrocatalytically active material (e.g., Ni--YSZ) coating a porous high-strength alloy support (e.g., SS-430) to form a porous SOFC fuel electrode. Electrode/electrolyte structures can be formed by co-firing or constrained sintering processes.

  7. Experimental and computational studies of hydrodynamics in three-phase and two-phase fluidized beds

    SciTech Connect (OSTI)

    Bahary, M.

    1994-12-01

    The objective of the present study was to investigate the hydrodynamics of three-phase fluidized beds, their rheology, and experimentally verify a predictive three fluid hydrodynamic model developed at the Illinois Institute of Technology, Chicago. The recent reviews show that there exist no such models in the literature. The IIT hydrodynamic model computes the phase velocities and the volume fractions of gas, liquid, and particulate phases. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. In this thesis, a three fluid model is presented. The input into the model can be particulate viscosities either measured with a Brookfield viscometer or derived using the mathematical techniques of kinetic theory of granular flows pioneered by Savage and others. The computer simulation of a three-phase fluidized bed in an asymmetric mode qualitatively predicts the gas, liquid and solid hold-ups (volume fractions) and flow patterns in the industrially important churn-turbulent (bubbly coalesced) regimes. The computations in a fluidized bed with a symmetric distributor incorrectly showed no bubble coalescence. A combination of X-ray and {gamma}-ray densitometers was used to measure the solids and the liquid volume fractions in a two dimensional bed in the bubble coalesced regime. There is a good agreement between the theory for an asymmetric distributor and the experiments.

  8. Application of Verified Optimization Techniques to Parameter Identification for Solid Oxide Fuel Cells

    E-Print Network [OSTI]

    Damm, Werner

    Application of Verified Optimization Techniques to Parameter Identification for Solid Oxide Fuel at the latest, design and development of solid oxide fuel cells (SOFC) have been in the focus of research electrochemical reactions in each individual fuel cell. We consider different model dimensions resulting

  9. Fluidized wall for protecting fusion chamber walls

    DOE Patents [OSTI]

    Maniscalco, James A. (Danville, CA); Meier, Wayne R. (Livermore, CA)

    1982-01-01

    Apparatus for protecting the inner wall of a fusion chamber from microexplosion debris, x-rays, neutrons, etc. produced by deuterium-tritium (DT) targets imploded within the fusion chamber. The apparatus utilizes a fluidized wall similar to a waterfall comprising liquid lithium or solid pellets of lithium-ceramic, the waterfall forming a blanket to prevent damage of the structural materials of the chamber.

  10. Synthetic aperture focusing techniques for ultrasonic imaging of solid objects.

    E-Print Network [OSTI]

    technique (SAFT) has been used in non-destructive testing mainly in its simplest form that mimics acoustic a review of SAFT algorithms applied for post-processing of ultrasonic data acquired in non-destructive obtained from the ultrasonic inspection of test specimens with artificial defects (side drilled holes). 1

  11. Production of activated carbon from coconut shell char in a fluidized bed reactor

    SciTech Connect (OSTI)

    Sai, P.M.S.; Ahmed, J. [Bhabha Atomic Research Centre, Kalpakkam (India). Centralised Waste Management Facility; Krishnaiah, K. [Indian Inst. of Tech., Madras (India). Dept. of Chemical Engineering

    1997-09-01

    Activated carbon is produced from coconut shell char using steam or carbon dioxide as the reacting gas in a 100 mm diameter fluidized bed reactor. The effect of process parameters such as reaction time, fluidizing velocity, particle size, static bed height, temperature of activation, fluidizing medium, and solid raw material on activation is studied. The product is characterized by determination of iodine number and BET surface area. The product obtained in the fluidized bed reactor is much superior in quality to the activated carbons produced by conventional processes. Based on the experimental observations, the optimum values of process parameters are identified.

  12. Fluidized-bed combustion fuel

    SciTech Connect (OSTI)

    Rich, J.W. Jr.

    1990-10-09

    This patent describes a process for producing from a solid carbonaceous refuse a high ash fuel for use in a circulating fluidized-bed combustion chamber. It comprises separating from the refuse a carbonaceous portion having an ash content in a selected range percent by weight; separating the carbonaceous portion into first and second fractions, the first fraction being at or above a selected size; crushing the first fraction; and combining the crushed first fraction with the second fraction. Also described is a process wherein the selected ash content range is between about 30 percent and about 50 percent, by weight. Also described is a process wherein the selected size is above about 1/4 inch.

  13. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN); Marasco, Joseph A. (Kingston, TN)

    1995-01-01

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  14. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN)

    1993-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  15. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN); Marasco, Joseph A. (Kingston, TN)

    1996-01-01

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves.

  16. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, C.D.; Marasco, J.A.

    1995-04-25

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.

  17. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, C.D.

    1993-12-14

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.

  18. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, C.D.; Marasco, J.A.

    1996-02-27

    A fluidized bed reactor system is described which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves. 3 figs.

  19. Fluidized bed boiler feed system

    DOE Patents [OSTI]

    Jones, Brian C. (Windsor, CT)

    1981-01-01

    A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

  20. Development of a concentrating solar power system using fluidized-bed technology for thermal energy conversion and solid particles for thermal energy storage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, Z.; Mehos, M.; Glatzmaier, G.; Sakadjian, B. B.

    2015-05-01

    Concentrating solar power (CSP) is an effective way to convert solar energy into electricity with an economic energy-storage capability for grid-scale, dispatchable renewable power generation. However, CSP plants need to reduce costs to be competitive with other power generation methods. Two ways to reduce CSP cost are to increase solar-to-electric efficiency by supporting a high-efficiency power conversion system, and to use low-cost materials in the system. The current nitrate-based molten-salt systems have limited potential for cost reduction and improved power-conversion efficiency with high operating temperatures. Even with significant improvements in operating performance, these systems face challenges in satisfying the costmore »and performance targets. This paper introduces a novel CSP system with high-temperature capability that can be integrated into a high-efficiency CSP plant and that meets the low-cost, high-performance CSP targets. Unlike a conventional salt-based CSP plant, this design uses gas/solid, two-phase flow as the heat-transfer fluid (HTF); separated solid particles as storage media; and stable, inexpensive materials for the high-temperature receiver and energy storage containment. We highlight the economic and performance benefits of this innovative CSP system design, which has thermal energy storage capability for base-load power generation.« less

  1. Pulsed atmospheric fluidized bed combustion

    SciTech Connect (OSTI)

    Not Available

    1992-08-01

    The general specifications for a Pulsed Atmospheric Fluidized Bed Combustor Design Report (PAFBC) plant are presented. The design tasks for the PAFBC are described in the following areas: Coal/Limestone preparation and feed system; pulse combustor; fluidized bed; boiler parts; and ash handling system.

  2. Method for using fast fluidized bed dry bottom coal gasification

    DOE Patents [OSTI]

    Snell, George J. (Fords, NJ); Kydd, Paul H. (Lawrenceville, NJ)

    1983-01-01

    Carbonaceous solid material such as coal is gasified in a fast fluidized bed gasification system utilizing dual fluidized beds of hot char. The coal in particulate form is introduced along with oxygen-containing gas and steam into the fast fluidized bed gasification zone of a gasifier assembly wherein the upward superficial gas velocity exceeds about 5.0 ft/sec and temperature is 1500.degree.-1850.degree. F. The resulting effluent gas and substantial char are passed through a primary cyclone separator, from which char solids are returned to the fluidized bed. Gas from the primary cyclone separator is passed to a secondary cyclone separator, from which remaining fine char solids are returned through an injection nozzle together with additional steam and oxygen-containing gas to an oxidation zone located at the bottom of the gasifier, wherein the upward gas velocity ranges from about 3-15 ft/sec and is maintained at 1600.degree.-200.degree. F. temperature. This gasification arrangement provides for increased utilization of the secondary char material to produce higher overall carbon conversion and product yields in the process.

  3. Fluidized-bed catalytic coal-gasification process. [US patent; pretreatment to minimize agglomeration

    DOE Patents [OSTI]

    Euker, C.A. Jr.; Wesselhoft, R.D.; Dunkleman, J.J.; Aquino, D.C.; Gouker, T.R.

    1981-09-14

    Coal or similar carbonaceous solids impregnated with gasification catalyst constituents are oxidized by contact with a gas containing between 2 vol % and 21 vol % oxygen at a temperature between 50 and 250/sup 0/C in an oxidation zone and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

  4. Valve for controlling solids flow

    DOE Patents [OSTI]

    Staiger, M.D.

    1982-09-29

    A valve for controlling the flow of solids comprises a vessel having an overflow point, an inlet line for discharging solids into the vessel positioned within the vessel such that the inlet line's discharge point is lower than the vessel's overflow point, and means for introducing a fluidizing fluid into the vessel. The fluidizing fluid fluidizes the solids within the vessel so that they overflow at the vessel's overflow point. For the removal of nuclear waste product the vessel may be placed within a sealed container having a bottom connected transport line for transporting the solids to storage or other sites. The rate of solids flow is controlled by the flow rate of the fluidizing fluid and by V-notch weirs of different sizes spaced about the top of the vessel.

  5. Evaluation of wall boundary condition parameters for gas-solids...

    Office of Scientific and Technical Information (OSTI)

    predictions of various gas-solids fluidized beds. Several models for the granular flow wall boundary condition are available in the open literature for numerical modeling of...

  6. Fluidized bed combustion

    SciTech Connect (OSTI)

    Sowards, N.K.; Murphy, M.L.

    1991-10-29

    This patent describes a vessel. It comprises a fluid bed for continuously incinerating fuel comprising tire segments and the like which comprise metallic wire tramp and for concurrently removing tramp and bed materials at a bottom effluent exit means of the vessel, the vessel further comprising static air distributor means at the periphery of the bed comprising a substantially centrally unobstructed relatively large central region in which the fluid bed and fuel only are disposed and through which bed material and tramp migrate without obstruction to and through the effluent exit means, downwardly and inwardly stepped lower vessel wall means and a plurality of peripherally located centrally directed vertically and horizontally offset spaced air influent means surrounding the central region and associated with the stepped lower vessel wall means by which the bed is supported and fluidized.

  7. Pulse enhanced fluidized bed combustion

    SciTech Connect (OSTI)

    Mueller, B.; Golan, L. [South Carolina Energy Research and Development Center, Clemson, SC (United States); Toma, M.; Mansour, M. [Manufacturing and Technology Conversion International, Inc., Columbia, MD (United States)

    1996-12-31

    Various technologies are available for the combustion of high-sulfur, high-ash fuels, particularly coal. From performance, economic and environmental standpoints, fluidized bed combustion (FBC) is the leading candidate for utilization of high sulfur coals. ThermoChem, Inc., and the South Carolina Energy Research and Development Center (SCERDC) are installing a hybrid fluidized bed combustion system at Clemson University. This hybrid system, known as the Pulsed Atmospheric Fluidized Bed Combustor (PAFBC), will augment the University`s steam system by providing 50--60,000 lbs/hr of saturated process steam. The PAFBC, developed by Manufacturing and Technology Conversion International, Inc., (MTCI), integrates a pulse combustor with a bubbling-bed-type atmospheric fluidized bed coal combustor. The pulse combustion system imparts an acoustic effect that enhances combustion efficiency, SO{sub 2} capture, low NO{sub x} emissions, and heat transfer efficiency in the fluidized bed. These benefits of pulse combustion result in modestly sized PAFBC units with high throughput rates and lower costs when compared to conventional fluidized bed units.

  8. Predictive models of circulating fluidized bed combustors

    SciTech Connect (OSTI)

    Gidaspow, D.

    1992-07-01

    Steady flows influenced by walls cannot be described by inviscid models. Flows in circulating fluidized beds have significant wall effects. Particles in the form of clusters or layers can be seen to run down the walls. Hence modeling of circulating fluidized beds (CFB) without a viscosity is not possible. However, in interpreting Equations (8-1) and (8-2) it must be kept in mind that CFB or most other two phase flows are never in a true steady state. Then the viscosity in Equations (8-1) and (8-2) may not be the true fluid viscosity to be discussed next, but an Eddy type viscosity caused by two phase flow oscillations usually referred to as turbulence. In view of the transient nature of two-phase flow, the drag and the boundary layer thickness may not be proportional to the square root of the intrinsic viscosity but depend upon it to a much smaller extent. As another example, liquid-solid flow and settling of colloidal particles in a lamella electrosettler the settling process is only moderately affected by viscosity. Inviscid flow with settling is a good first approximation to this electric field driven process. The physical meaning of the particulate phase viscosity is described in detail in the chapter on kinetic theory. Here the conventional derivation resented in single phase fluid mechanics is generalized to multiphase flow.

  9. Pressurized fluidized bed reactor

    DOE Patents [OSTI]

    Isaksson, J.

    1996-03-19

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  10. Pressurized fluidized bed reactor

    DOE Patents [OSTI]

    Isaksson, Juhani (Karhula, FI)

    1996-01-01

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  11. Enhanced Productivity of Chemical Processes Using Dense Fluidized Beds

    SciTech Connect (OSTI)

    Sibashis Banerjee; Alvin Chen; Rutton Patel; Dale Snider; Ken Williams; Timothy O'Hern; Paul Tortora

    2008-02-29

    The work detailed in this report addresses Enabling Technologies within Computational Technology by integrating a “breakthrough” particle-fluid computational technology into traditional Process Science and Engineering Technology. The work completed under this DOE project addresses five major development areas 1) gas chemistry in dense fluidized beds 2) thermal cracking of liquid film on solids producing gas products 3) liquid injection in a fluidized bed with particle-to-particle liquid film transport 4) solid-gas chemistry and 5) first level validation of models. Because of the nature of the research using tightly coupled solids and fluid phases with a Lagrangian description of the solids and continuum description of fluid, the work provides ground-breaking advances in reactor prediction capability. This capability has been tested against experimental data where available. The commercial product arising out of this work is called Barracuda and is suitable for a wide (dense-to-dilute) range of industrial scale gas-solid flows with and without reactions. Commercial applications include dense gas-solid beds, gasifiers, riser reactors and cyclones.

  12. A NEW INTERPHASE FORCE IN TWO-PHASE FLUIDIZED BEDS

    SciTech Connect (OSTI)

    D. ZHANG; W. VANDERHEYDEN

    2001-05-01

    Mesoscale structures such as particle clusters have been observed both in experiments and in numerical simulations of circulating fluidized beds. In a numerical simulation, in order to account for the effects of such mesoscale structures, the computational grids have to be fine enough. The use of such fine grids is impractical in engineering applications due to excessive computational costs. To predict the macroscopic behavior of a fluidized bed with reasonable computation cost, they perform a second average over the averaged equations for two-phase flows. A mesoscale inter-phase exchange force is found to be the correlation of the particle volume fraction and the pressure gradient. This force is related to the mesoscale added mass of the two-phase flow. Typically, added mass for particle scale interactions is negligible in gas-solid flows since the gas density is small compared to density of solid particles. However, for a mesoscale structure, such as a bubble, the surrounding media is the mixture of gas and particles. The surrounding fluid density experienced by the mesoscale structure is the density of the surrounding mixture. Therefore, the added mass of a mesoscale structure, such as bubbles, cannot be neglected. The property of this new force is studied based on the numerical simulation of a fluidized bed using high grid resolution. It is shown that this force is important in the region where the particle volume fraction is high. The effects of the inhomogeneity to the interphase drag are also studied.

  13. Current state of atmospheric fluidized-bed combustion technology

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    This paper examines atmospheric fluidized-bed combustion (AFBC) technology, a coal burning method that has several environmental and technical advantages over the more conventional technologies, such as pulverized-coal methods. The AFBC approach injects an air stream into a boiler in such a way that it mixes with solid fuel and sorbent to create a dense phase region or fluidized bed. This method makes it possible to use a much wider range of low-quality fuels and to burn them at lower temperatures with less pollutant by-product. The paper presents a comprehensive overview of AFBC technology to date. It includes worldwide development of this technology since the 1950s necessary to meet ever-stricter emissions requirements while providing greater fuel flexibility.

  14. Combustion of refuse derived fuel in a fluidized bed

    SciTech Connect (OSTI)

    Piao, Guilin; Aono, Shigeru; Mori, Shigekatsu; Deguchi, Seiichi; Fujima, Yukihisa; Kondoh, Motohiro; Yamaguchi, Masataka

    1998-12-31

    Power generation from Refuse Derived Fuel (RDF) is an attractive utilization technology of municipal solid waste. To explain the behavior of RDF-fired fluidized bed incinerator, the commercial size RDF was continuously burnt in a 30 x 30 cm bubbling type fluidized-bed combustor. It was found that 12 kg/h of RDF feed rate was too high feed for this test unit and the Co level was higher than 500 ppm. However, 10 kg/h of RDF was a proper feed rate and the Co level was kept under 150 ppm. Secondary air injection and changing air ratio from the pipe grid were effective for the complete combustion of RDE. It was also found that HCl concentration in flue gas was controlled by the calcium component contained in RDF and its level was decreased with decreasing the combustor temperature.

  15. Initial Design of a Dual Fluidized Bed Reactor

    E-Print Network [OSTI]

    Yun, Minyoung

    2014-01-01

    fast bed and (b) the bubbling fluidized bed on gas mixingflow regimes. (A) A bubbling fluidized bed, (B) turbulent1.5, 1.6. 1. Bubbling fluidized bed gasifiers (BFB) (Figure

  16. Fluidized bed injection assembly for coal gasification

    DOE Patents [OSTI]

    Cherish, Peter (Bethel Park, PA); Salvador, Louis A. (Hempfield Township, Westmoreland County, PA)

    1981-01-01

    A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

  17. Experimental study of the hydrodynamics and cluster formation in a Circulating Fluidized Bed

    SciTech Connect (OSTI)

    Gautam, M.; Johnson, E.

    1991-01-01

    A novel non-invasive gas-solid flow measuring technique being developed and tested for studying the hydrodynamics inside the riser of a Circulating Fluidized Bed (CFB). First of the two aims of the overall program, namely, design, development and testing of the technique to characterize the particle and gas velocities in two-phase flows was accomplished in the past year. The fringe-model'' laser Doppler anemometry concept has been modified and extended by using particles coated with a fluorescent dye and introducing a narrow band pass filter in the receiving optics. The technique permits optical discrimination between the scattered light (laser wavelength from undyed particles) and the fluorescence emission (longer wavelength). Results from extensive testing of various dye-solvent combinations, counter processor settings, signal-to noise optimization and subsequent flow measurements in the test section have shown that the technique can effectively discriminate between two classes of particles--the smaller seed particles for the gas phase data and the larger bed particles. Use of a two-watt Argon-Ion laser assisted in the non-intrusive probing of the gas-solid flow and in enhancing the signal-to-noise ratio. An uncertainty analysis of LDA measurements is presented. Design of the cold flow CFB model, presently under fabrication, is outlined in this report. The Plexiglas CFB model will be employed for the riser core-annular flow studies using the fluorescence-emission based laser-Doppler anemometry. The results from this study will present a unique detailed description of the complex gas-solid behavior in the CFB riser.

  18. Pulsed atmospheric fluidized bed combustion

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    The design of the Pulsed Atmospheric Fluidized Bed Combustor (PAFBC) as described in the Quarterly Report for the period April--June, 1992 was reviewed and minor modifications were included. The most important change made was in the coal/limestone preparation and feed system. Instead of procuring pre-sized coal for testing of the PAFBC, it was decided that the installation of a milling system would permit greater flexibility in the testing with respect to size distributions and combustion characteristics in the pulse combustor and the fluid bed. Particle size separation for pulse combustor and fluid bed will be performed by an air classifier. The modified process flow diagram for the coal/limestone handling system is presented in Figure 1. The modified process flow diagrams of the fluidized bed/steam cycle and ash handling systems are presented in Figures 2 and 3, respectively.

  19. Pulsed atmospheric fluidized bed combustion

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    During this first quarter, a lab-scale water-cooled pulse combustor was designed, fabricated, and integrated with old pilot-scale PAFBC test systems. Characterization tests on this pulse combustor firing different kinds of fuel -- natural gas, pulverized coal and fine coal -- were conducted (without fluidized bed operation) for the purpose of finalizing PAFBC full-scale design. Steady-state tests were performed. Heat transfer performance and combustion efficiency of a coal-fired pulse combustor were evaluated.

  20. Fluidized-bed combustion of scrap tires: Technical note

    SciTech Connect (OSTI)

    Shang, J.Y.; Mei, J.S.; Notestein, J.E.

    1981-10-01

    An introduction to fluidized-bed combustion (FBC) is presented in Section 2.0. Based on this discussion of its technical development, FBC is then presented as a means of scrap tire disposal. In Section 3.0, scrap tire disposal is reviewed in the categories of (1) physical applications, (2) chemical applications, (3) pyrolysis, and (4) incineration for thermal energy recovery. Scrap tire disposal is reviewed on the basis of (1) environmental acceptability, (2) conservation of resources, (3) impact on existing industries, (4) operational feasibility, and (5) special features. The focus of this report is the fluidized-bed incineration of scrap tires for thermal energy recovery. The factors that affect scrap tire combustion are discussed in Section 4.0. These factors are (1) agitation, (2) temperature, (3) excess air, (4) residence time, (5) feed uniformity, (6) solid waste handling, and (7) pollutants emission control. In reviewing these incineration processes, (1) fuel flexibility, (2) environmental acceptability, (3) combustion efficiency, and (4) operational reliability are discussed. The results from a tire incineration experiment conducted at the Morgantown Energy Technology Center are presented in Section 5.0, and a conceptual fluidized-bed combustor is discussed in Section 6.0. Future considerations in the FBC of scrap tires are discussed in Section 7.0. 8 refs., 6 figs., 6 tabs.

  1. Fluidized-bed copper oxide process

    SciTech Connect (OSTI)

    Shah, P.P.; Takahashi, G.S.; Leshock, D.G.

    1991-10-14

    The fluidized-bed copper oxide process was developed to simultaneously remove sulfur dioxide and nitrogen oxide contaminants from the flue gas of coal-fired utility boilers. This dry and regenerable process uses a copper oxide sorbent in a fluidized-bed reactor. Contaminants are removed without generating waste material. (VC)

  2. Application of Verified Optimization Techniques to Parameter Identification for Solid Oxide Fuel Cells

    E-Print Network [OSTI]

    Appelrath, Hans-Jürgen

    at the latest, design and development of solid oxide fuel cells (SOFC) have been in the focus of research electrochemical reactions in each individual fuel cell. We consider different model dimensions resulting of High-Temperature Fuel Cell Stacks.

  3. Stereological techniques for synthesizing solid textures from images of aggregate materials

    E-Print Network [OSTI]

    Jagnow, Robert Carl, 1976-

    2005-01-01

    When creating photorealistic digital scenes, textures are commonly used to depict complex variation in surface appearance. For materials that have spatial variation in three dimensions, such as wood or marble, solid textures ...

  4. High temperature degradation by erosion-corrosion in bubbling fluidized bed combustors

    E-Print Network [OSTI]

    Hou, Peggy Y.; MacAdam, S.; Niu, Y.; Stringer, J.

    2003-01-01

    a Laboratory Simulated Bubbling Fluidized Bed", Wear. 235,Tube Wastage in Bubbling Fluidized Bed, a Laboratory StudyWheeldon, "Wastage in bubbling fluidized-bed combustors: an

  5. Attrition resistant fluidizable reforming catalyst

    DOE Patents [OSTI]

    Parent, Yves O. (Golden, CO); Magrini, Kim (Golden, CO); Landin, Steven M. (Conifer, CO); Ritland, Marcus A. (Palm Beach Shores, FL)

    2011-03-29

    A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.

  6. Pulsed atmospheric fluidized bed combustion

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Design and Engineering of most components in the Pulsed Atmospheric Fluidized Bed System was completed prior to September 1992. The components remaining to be designed at that time were: Aerovalves for the Pulse Combustor; Gas and coal injectors for the Pulse Combustor; Lines for PC tailpipes; Air plenum and inlet silencer; Refractory lined hot gas duct connecting outlet hot cyclone to boiler; Structure and platforms, and ladders around PAFBC vessel access and major equipment. Design work is currently in progress on all of the above components. Items 1, 2, 3 and 4 are 50% completed, and items 5 6 are 75% complete.

  7. Method of burning sulfur-containing fuels in a fluidized bed boiler

    DOE Patents [OSTI]

    Jones, Brian C. (Windsor, CT)

    1982-01-01

    A method of burning a sulfur-containing fuel in a fluidized bed of sulfur oxide sorbent wherein the overall utilization of sulfur oxide sorbent is increased by comminuting the bed drain solids to a smaller average particle size, preferably on the order of 50 microns, and reinjecting the comminuted bed drain solids into the bed. In comminuting the bed drain solids, particles of spent sulfur sorbent contained therein are fractured thereby exposing unreacted sorbent surface. Upon reinjecting the comminuted bed drain solids into the bed, the newly-exposed unreacted sorbent surface is available for sulfur oxide sorption, thereby increasing overall sorbent utilization.

  8. MFIX simulation of NETL/PSRI challenge problem of circulating fluidized bed

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Tingwen; Dietiker, Jean-Franēois; Shahnam, Mehrdad

    2012-12-01

    In this paper, numerical simulations of NETL/PSRI challenge problem of circulating fluidized bed (CFB) using the open-source code Multiphase Flow with Interphase eXchange (MFIX) are reported. Two rounds of simulation results are reported including the first-round blind test and the second-round modeling refinement. Three-dimensional high fidelity simulations are conducted to model a 12-inch diameter pilot-scale CFB riser. Detailed comparisons between numerical results and experimental data are made with respect to axial pressure gradient profile, radial profiles of solids velocity and solids mass flux along different radial directions at various elevations for operating conditions covering different fluidization regimes. Overall, the numericalmore »results show that CFD can predict the complex gas–solids flow behavior in the CFB riser reasonably well. In addition, lessons learnt from modeling this challenge problem are presented.« less

  9. MFIX simulation of NETL/PSRI challenge problem of circulating fluidized bed

    SciTech Connect (OSTI)

    Li, Tingwen; Dietiker, Jean-Franēois; Shahnam, Mehrdad

    2012-12-01

    In this paper, numerical simulations of NETL/PSRI challenge problem of circulating fluidized bed (CFB) using the open-source code Multiphase Flow with Interphase eXchange (MFIX) are reported. Two rounds of simulation results are reported including the first-round blind test and the second-round modeling refinement. Three-dimensional high fidelity simulations are conducted to model a 12-inch diameter pilot-scale CFB riser. Detailed comparisons between numerical results and experimental data are made with respect to axial pressure gradient profile, radial profiles of solids velocity and solids mass flux along different radial directions at various elevations for operating conditions covering different fluidization regimes. Overall, the numerical results show that CFD can predict the complex gas–solids flow behavior in the CFB riser reasonably well. In addition, lessons learnt from modeling this challenge problem are presented.

  10. Results obtained by both techniques show a good correlation (three maxima are observed) and thus provide a study of cement microstructure

    E-Print Network [OSTI]

    Walsworth, Ronald L.

    , a parameter crucial in many models of bubble behavior in fluidized beds [1,2]. More chaotic and random motion.01.071 NMR measurement of gas-phase dynamics in a gas-fluidized particle bed using laser-polarized xenon NMR in a fluidized bed. Previous NMR measurements studied the solid particles, which give strong conventional NMR

  11. Packed fluidized bed blanket for fusion reactor

    DOE Patents [OSTI]

    Chi, John W. H. (Mt. Lebanon, PA)

    1984-01-01

    A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

  12. Fluidized Bed Technology - Overview | Department of Energy

    Energy Savers [EERE]

    fluidized bed boilers as a standard package. This success is largely due to the Clean Coal Technology Program and the Energy Department's Fossil Energy and industry partners R&D....

  13. Particle withdrawal from fluidized bed systems

    DOE Patents [OSTI]

    Salvador, Louis A. (Greensburg, PA); Andermann, Ronald E. (Arlington Heights, IL); Rath, Lawrence K. (Mt. Pleasant, PA)

    1982-01-01

    Method and apparatus for removing ash formed within, and accumulated at the lower portion of, a fluidized bed coal gasification reactor vessel. A supplemental fluidizing gas, at a temperature substantially less than the average fluidized bed combustion operating temperature, is injected into the vessel and upwardly through the ash so as to form a discrete thermal interface region between the fluidized bed and the ash. The elevation of the interface region, which rises with ash accumulation, is monitored by a thermocouple and interrelated with a motor controlled outlet valve. When the interface rises above the temperature indicator, the valve opens to allow removal of some of the ash, and the valve is closed, or positioned at a minimum setting, when the interface drops to an elevation below that of the thermocouple.

  14. Fluidized bed heat treating system

    DOE Patents [OSTI]

    Ripley, Edward B; Pfennigwerth, Glenn L

    2014-05-06

    Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

  15. Advanced Fluidized Bed Waste Heat Recovery Systems 

    E-Print Network [OSTI]

    Peterson, G. R.

    1988-01-01

    BED WASTE HEAT RECOVERY SYSTEMS G. R. PETERSON Project Manager U.S. Department of Energy, Idaho Operations Office Idaho Falls, Idaho ABSTRACT The U.S. Department of Energy, Office of Industri al Programs, has sponsored the development of a... Fluidized Bed Waste Heat Recovery System (FBWHRS) and a higher temperature variant, the Ceramic Tubular Distributor Plate (CTOP) Fluidized Bed Heat Exchanger (FBHX) system. Both systems recover energy from high-temperature flue gases and produce steam...

  16. Assessment of Drag Models for Geldart A Particles in Bubbling Fluidized Beds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Estejab, Bahareh; Battaglia, Francine

    2015-10-08

    In order to accurately predict the hydrodynamic behavior of gas and solid phases using an Eulerian–Eulerian approach, it is crucial to use appropriate drag models to capture the correct physics. In this study, the performance of seven drag models for fluidization of Geldart A particles of coal, poplar wood, and their mixtures was assessed. In spite of the previous findings that bode badly for using predominately Geldart B drag models for fine particles, the results of our study revealed that if static regions of mass in the fluidized beds are considered, these drag models work well with Geldart A particles.more »It was found that drag models derived from empirical relationships adopt better with Geldart A particles compared to drag models that were numerically developed. Overall, the Huilin–Gidaspow drag model showed the best performance for both single solid phases and binary mixtures, however, for binary mixtures, Wen–Yu model predictions were also accurate.« less

  17. Rivesville multicell fluidized bed boiler

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    One objective of the experimental MFB at Rivesville, WV, was the evaluation of alternate feed systems for injecting coal and limestone into a fluidized bed. A continuous, uniform feed flow to the fluid bed is essential in order to maintain stable operations. The feed system originally installed on the MFB was a gravity feed system with an air assist to help overcome the back pressure created by the fluid bed. The system contained belt, vibrating, and rotary feeders which have been proven adequate in other material handling applications. This system, while usable, had several operational and feeding problems during the MFB testing. A major portion of these problems occurred because the coal and limestone feed control points - a belt feeder and rotary feeder, respectively - were pressurized in the air assist system. These control points were not designed for pressurized service. An alternate feed system which could accept feed from the two control points, split the feed into six equal parts and eliminate the problems of the pressurized system was sought. An alternate feed system designed and built by the Fuller Company was installed and tested at the Rivesville facility. Fuller feed systems were installed on the north and south side of C cell at the Rivesville facility. The systems were designed to handle 10,000 lb/hr of coal and limestone apiece. The systems were installed in late 1979 and evaluated from December 1979 to December 1980. During this time period, nearly 1000 h of operating time was accumulated on each system.

  18. Solid oxide fuel cell processing using plasma arc spray deposition techniques. Final report

    SciTech Connect (OSTI)

    Ray, E.R.; Spengler, C.J.; Herman, H.

    1991-07-01

    The Westinghouse Electric Corporation, in conjunction with the Thermal Spray Laboratory of the State University of New York, Stony Brook, investigated the fabrication of a gas-tight interconnect layer on a tubular solid oxide fuel cell with plasma arc spray deposition. The principal objective was to determine the process variables for the plasma spray deposition of an interconnect with adequate electrical conductivity and other desired properties. Plasma arc spray deposition is a process where the coating material in powder form is heated to or above its melting temperature, while being accelerated by a carrier gas stream through a high power electric arc. The molten powder particles are directed at the substrate, and on impact, form a coating consisting of many layers of overlapping, thin, lenticular particles or splats. The variables investigated were gun power, spray distance, powder feed rate, plasma gas flow rates, number of gun passes, powder size distribution, injection angle of powder into the plasma plume, vacuum or atmospheric plasma spraying, and substrate heating. Typically, coatings produced by both systems showed bands of lanthanum rich material and cracking with the coating. Preheating the substrate reduced but did not eliminate internal coating cracking. A uniformly thick, dense, adherent interconnect of the desired chemistry was finally achieved with sufficient gas- tightness to allow fabrication of cells and samples for measurement of physical and electrical properties. A cell was tested successfully at 1000{degree}C for over 1,000 hours demonstrating the mechanical, electrical, and chemical stability of a plasma-arc sprayed interconnect layer.

  19. Solid oxide fuel cell processing using plasma arc spray deposition techniques

    SciTech Connect (OSTI)

    Ray, E.R.; Spengler, C.J.; Herman, H.

    1991-07-01

    The Westinghouse Electric Corporation, in conjunction with the Thermal Spray Laboratory of the State University of New York, Stony Brook, investigated the fabrication of a gas-tight interconnect layer on a tubular solid oxide fuel cell with plasma arc spray deposition. The principal objective was to determine the process variables for the plasma spray deposition of an interconnect with adequate electrical conductivity and other desired properties. Plasma arc spray deposition is a process where the coating material in powder form is heated to or above its melting temperature, while being accelerated by a carrier gas stream through a high power electric arc. The molten powder particles are directed at the substrate, and on impact, form a coating consisting of many layers of overlapping, thin, lenticular particles or splats. The variables investigated were gun power, spray distance, powder feed rate, plasma gas flow rates, number of gun passes, powder size distribution, injection angle of powder into the plasma plume, vacuum or atmospheric plasma spraying, and substrate heating. Typically, coatings produced by both systems showed bands of lanthanum rich material and cracking with the coating. Preheating the substrate reduced but did not eliminate internal coating cracking. A uniformly thick, dense, adherent interconnect of the desired chemistry was finally achieved with sufficient gas- tightness to allow fabrication of cells and samples for measurement of physical and electrical properties. A cell was tested successfully at 1000{degree}C for over 1,000 hours demonstrating the mechanical, electrical, and chemical stability of a plasma-arc sprayed interconnect layer.

  20. Innovative Coal Solids-Flow Monitoring and Measurement Using Phase-Doppler and Mie Scattering Techniques

    SciTech Connect (OSTI)

    Stephen Seong Lee

    2010-01-19

    Fuel flow to individual burners is complicated and difficult to determine on coal fired boilers, since coal solids were transported in a gas suspension that is governed by the complex physics of two-phase flow. The objectives of the project were the measurements of suspended coal solids-flows in the simulated test conditions. Various extractive methods were performed manually and can give only a snapshot result of fuel distribution. In order to measure particle diameter & velocity, laser based phase-Doppler particle analyzer (PDPA) and particle image velocimetry (PIV) were carefully applied. Statistical methods were used to analyze particle characteristics to see which factors have significant effect. The transparent duct model was carefully designed and fabricated for the laser-based-instrumentation of solids-flow monitoring (LISM). The experiments were conducted with two different kinds of particles with four different particle diameters. The particle types were organic particles and saw dust particles with the diameter range of 75-150 micron, 150-250 micron, 250-355 micron and 355-425 micron. The densities of the particles were measured to see how the densities affected the test results. Also the experiment was conducted with humid particles and fog particles. To generate humid particles, the humidifier was used. A pipe was connected to the humidifier to lead the particle flow to the intersection of the laser beam. The test results of the particle diameter indicated that, the mean diameter of humid particles was between 6.1703 microns and 6.6947 microns when the humid particle flow was low. When the humid particle flow was high, the mean diameter was between 6.6728 microns and 7.1872 microns. The test results of the particle mean velocity indicated that the mean velocity was between 1.3394 m/sec and 1.4556 m/sec at low humid particle flow. When the humid particle flow was high, the mean velocity was between 1.5694 m/sec and 1.7856 m/sec. The Air Flow Module, TQ AF 17 and shell ondina oil were used to generate fog particles. After the oil was heated inside the fog generator, the blower was used to generate the fog. The fog flew along the pipe to the intersection of the laser beam. The mean diameter of the fog particles was 5.765 microns. Compared with the humid particle diameter, we observed that the mean diameter of the fog particles was smaller than the humid particles. The test results of particle mean velocity was about 3.76 m/sec. Compared with the mean velocity of the humid particles, we can observed the mean velocity of fog particles were greater than humid particles. The experiments were conducted with four different kinds of particles with five different particle diameters. The particle types were organic particles, coal particles, potato particles and wheat particles with the diameter range of 63-75 micron, less than 150 micron, 150-250 micron, 250-355 micron and 355-425 micron. To control the flow rate, the control gate of the particle dispensing hopper was adjusted to 1/16 open rate, 1/8 open rate and 1/4 open rate. The captured image range was 0 cm to 5 cm from the control gate, 5 cm to 10 cm from the control gate and 10 cm to 15 cm from the control gate. Some of these experiments were conducted under both open environment conditions and closed environment conditions. Thus these experiments had a total of five parameters which were type of particles, diameter of particles, flow rate, observation range, and environment conditions. The coal particles (diameter between 63 and 75 microns) tested under the closed environment condition had three factors that were considered as the affecting factors. They were open rate, observation range, and environment conditions. In this experiment, the interaction of open rate and observation range had a significant effect on the lower limit. On the upper limit, the open rate and environment conditions had a significant effect. In addition, the interaction of open rate and environment conditions had a significant effect. The coal particles tested (diameter between 63 and 75

  1. Fluidized bed selective pyrolysis of coal

    DOE Patents [OSTI]

    Shang, J.Y.; Cha, C.Y.; Merriam, N.W.

    1992-12-15

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyses the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step. 9 figs.

  2. Fluidized bed selective pyrolysis of coal

    DOE Patents [OSTI]

    Shang, Jer Y. (McLean, VA); Cha, Chang Y. (Golden, CO); Merriam, Norman W. (Laramie, WY)

    1992-01-01

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyzes the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step.

  3. Behavior of fluidized beds similar to equilibrium states

    E-Print Network [OSTI]

    Kengo Ichiki; Hisao Hayakawa

    1997-04-25

    Systematic simulations are carried out based on the model of fluidized beds proposed by the present authors [K.Ichiki and H.Hayakawa, Phys. Rev. E vol.52, 658 (1995)]. From our simulation, we confirm that fluidization is a continuous transition. We also confirm the existence of two types of fluidized phases, the channeling phase and the bubbling phase. We find the close relations between the averaged behaviors in fluidized beds and quasi equilibrium states in dense liquids. In fluidized beds, (i) the flow rate plays the role of the effective temperature, and (ii) the existence of a kind of the fluctuation-dissipation relation is suggested.

  4. Fluidized bed pyrolysis to gases containing olefins

    SciTech Connect (OSTI)

    Kuester, J.L.

    1980-01-01

    Recent gasification data are presented for a system designed to produce liquid hydrocarbon fuel from various biomass feedstocks. The factors under investigation were feedstock type, fluidizing gas type, residence time, temperature and catalyst usage. The response was gas phase composition. A fluidized bed system was utilized with a separate regenerator-combustor. An olefin content as high as 39 mole % was achieved. Hydrogen/carbon monoxide ratios were easily manipulated via steam addition over a broad range with an autocatalytic effect apparent for most feedstocks.

  5. Fluidized bed electrowinning of copper. Final report

    SciTech Connect (OSTI)

    1997-07-01

    The objectives of the study were to: design and construct a 10,000- amp fluidized bed electrowinning cell for the recovery of copper from acidic sulfate solutions; demonstrate the technical feasibility of continuous particle recirculation from the electrowinning cell with the ultimate goal of continuous particle removal; and measure cell efficiency as a function of operating conditions.

  6. Particle pressures in fluidized beds. Final report

    SciTech Connect (OSTI)

    Campbell, C.S.; Rahman, K.; Jin, C.

    1996-09-01

    This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction), they impart to the bed. So rather than directly measure the particle pressure, the authors inferred the values of the elasticity from measurements of instability growth in liquid beds; the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined) and then working backwards to determine the unknown coefficients, including the elasticity.

  7. Particle Pressures in Fluidized Beds. Final report

    SciTech Connect (OSTI)

    Campbell, C.S.; Rahman, K.; Jin, C.

    1996-09-01

    This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction): they impart to the bed. So rather than directly measure the particle pressure, we inferred the values of the elasticity from measurements of instability growth in liquid beds the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined)and then working backwards to determine the unknown coefficients, including the elasticity.

  8. 138 Chemical Engineering Education FLUIDIZED BED

    E-Print Network [OSTI]

    Hesketh, Robert

    138 Chemical Engineering Education FLUIDIZED BED POLYMER COATING EXPERIMENT ROBERT P. HESKETH, C,2] and is a highly visual experiment in chemical engineering pro- cesses and experimentation. In addition for the chemical engineering profession. The field encom- passes many technologies, ranging from polymerization

  9. High-pressure three-phase fluidization: Hydrodynamics and heat transfer

    SciTech Connect (OSTI)

    Luo, X.; Jiang, P.; Fan, L.S.

    1997-10-01

    High-pressure operations are common in industrial applications of gas-liquid-solid fluidized-bed reactors for resid hydrotreating, Fischer-Tropsch synthesis, coal methanation, methanol synthesis, polymerization, and other reactions. The phase holdups and the heat-transfer behavior were studied experimentally in three-phase fluidized beds over a pressure range of 0.1--15.6 MPa. Bubble characteristics in the bed are examined by direct flow visualization. Pressure effects on the bubble coalescence and breakup are analyzed mechanistically. The study indicates that the pressure affects the hydrodynamics and heat-transfer properties of a three-phase fluidized bed significantly. The average bubble size decreases and the bubble-size distribution becomes narrower with an increase in pressure. The bubble-size reduction leads to an increase in the transition gas velocity from the dispersed bubble regime to the coalesced bubble regime, an increase in the gas holdup, and a decrease in the liquid and solids holdups. The pressure effect is insignificant above 6 MPa. The heat-transfer coefficient between an immersed surface and the bed increases to a maximum at pressure 6--8 MPa and then decreases with an increase in pressure at a given gas and liquid flow rate. This variation is attributed to the pressure effects on phase holdups and physical properties of the gas and liquid phases. A mechanistic analysis revealed that the major heat-transfer resistance in high-pressure three-phase fluidized beds resides in a liquid film surrounding the heat-0transfer surface. An empirical correlation is proposed to predict the heat-transfer coefficient under high-pressure conditions.

  10. Continuous Operation of Spray-Dried Zinc Based Sorbent in a Hot Gas Desulfurization Process Consisting of a Transport Desulfurizer and a Fluidized Regenerator

    SciTech Connect (OSTI)

    Yi, C-K.; Jo, S-H.; Jin, G-T.; Son, J-E.; Han, M-H.; Ryu, C-K.

    2002-09-19

    We see the sorbent reaction performance in a HGD process consisting of a transport desulfurizer and a fluidized regenerator in this study. We have obtained the solid hold-up and solid circulation rate necessary to reach the target desulfurization efficiency. A major obstacle for fluidized- or transport bed sorbent developments is sorbent durability withstanding attrition. Continuous operation only makes similar conditions of real processes such as rapid temperature swing, chemical transformations between sulfidation and regeneration, stresses induced by fluidization and continuous particle circulation between two reactors. Therefore, an integrated system of transport desulfurizer and bubbling regenerator is operated continuously more than 150 hours to see system reliability, sorbent reaction characteristics, sorbent morphology before and after test.

  11. Durability Testing of Fluidized Bed Steam Reforming Products

    SciTech Connect (OSTI)

    JANTZEN, CAROL M.; PAREIZS, JOHN M.; LORIER, TROY H.; MARRA, JAMES C.

    2005-07-01

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of radioactive wastes but especially aqueous high sodium wastes at the Hanford site, at the Idaho National Laboratory (INL), and at the Savannah River Site (SRS). The FBSR technology converts organic compounds to CO{sub 2} and H{sub 2}O, converts nitrate/nitrite species to N{sub 2}, and produces a solid residue through reactions with superheated steam, the fluidizing media. If clay is added during processing a ''mineralized'' granular waste form can be produced. The mineral components of the waste form are primarily Na-Al-Si (NAS) feldspathoid minerals with cage-like and ring structures and iron bearing spinel minerals. The cage and ring structured minerals atomically bond radionuclides like Tc{sup 99} and Cs{sup 137} and anions such as SO{sub 4}, I, F, and Cl. The spinel minerals appear to stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Durability testing of the FBSR products was performed using ASTM C1285 (Product Consistency Test) and the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP). The FBSR mineral products (bed and fines) evaluated in this study were found to be two orders of magnitude more durable than the Hanford Low Activity Waste (LAW) glass requirement of 2 g/m{sup 2} release of Na{sup +}. The PCT responses for the FBSR samples tested were consistent with results from previous FBSR Hanford LAW product testing. Differences in the response can be explained by the minerals formed and their effects on PCT leachate chemistry.

  12. Apparatus for high flux photocatalytic pollution control using a rotating fluidized bed reactor

    DOE Patents [OSTI]

    Tabatabaie-Raissi, Ali; Muradov, Nazim Z.; Martin, Eric

    2003-06-24

    An apparatus based on optimizing photoprocess energetics by decoupling of the process energy efficiency from the DRE for target contaminants. The technique is applicable to both low- and high-flux photoreactor design and scale-up. An apparatus for high-flux photocatalytic pollution control is based on the implementation of multifunctional metal oxide aerogels and other media in conjunction with a novel rotating fluidized particle bed reactor.

  13. Reducing the environmental impact on solid wastes from a fluidized...

    Office of Scientific and Technical Information (OSTI)

    systems has been experimentally examined. The three options are: (1) the use of chemical reactivity enhancement agents, such as NaCl, (2) the regeneration and reuse of the...

  14. Ind. Eng. Chem.Res. 1990, 29, 2339-2346 2339 Lewis, W. K.; Gilliland, E. R. Glass Werner, Solid-catalyzedreaction

    E-Print Network [OSTI]

    Skogestad, Sigurd

    , R.; Kojima, H.; Nagai, Y.; Nakagawa, K.; Yu, S. Behavior of bubbles in the gas-solid fluidized bed-catalyzedreaction in a fluidized bed. AIChE J. 1959,5(4), 419. McFatter, W. E.; Resen, F. L. Technical data of cat cracker Model 11 Cracker. Pet. Refin. 1956,35(4), 201. May, W. G. Fluidized-bed reactor studies. Chem.Eng. Prog. 1959, 55

  15. Control of bed height in a fluidized bed gasification system

    DOE Patents [OSTI]

    Mehta, Gautam I. (Greensburg, PA); Rogers, Lynn M. (Export, PA)

    1983-12-20

    In a fluidized bed apparatus a method for controlling the height of the fdized bed, taking into account variations in the density of the bed. The method comprises taking simultaneous differential pressure measurements at different vertical elevations within the vessel, averaging the differential pressures, determining an average fluidized bed density, then periodically calculating a weighting factor. The weighting factor is used in the determination of the actual bed height which is used in controlling the fluidizing means.

  16. An experimental study of a vertical tube gas-fluidized bed

    E-Print Network [OSTI]

    Mandich, Kevin Matthew

    2010-01-01

    Temperature in a Bubbling Fluidized Bed: Simulations andfluidized bed of hollow microparticles prior to onset of bubbling.to the bubbling regime of the fluidized bed, while the

  17. Fluidized Bed Technology - An R&D Success Story | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    line. The Nucla fluidized bed power plant in Colorado was operated in DOE's Clean Coal Technology Program. The technology progressed into larger scale utility applications...

  18. Coal-Fired Fluidized Bed Combustion Cogeneration 

    E-Print Network [OSTI]

    Thunem, C.; Smith, N.

    1985-01-01

    BED COMBUSTION COGENERATION Cabot Thunem, P.E Norm Smith, P.E. Stanley Consultants, Inc. Muscatine, Iowa ABSTRACT The availability of an environmentally accep table multifuel technology, such as fluidized bed combustion, has encouraged many... steam producers/ users to investigate switching from oil or gas to coal. Changes in federal regulations encouraging cogeneration have further enhanced the economic incentives for primary fuel switching. However, this addition of cogeneration...

  19. Pulsed atmospheric fluidized bed combustor apparatus

    DOE Patents [OSTI]

    Mansour, Momtaz N. (Columbia, MD)

    1993-10-26

    A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g., organic and medical waste, drying materials, heating air, calcining and the like.

  20. Gas distributor for fluidized bed coal gasifier

    DOE Patents [OSTI]

    Worley, Arthur C. (Mt. Tabor, NJ); Zboray, James A. (Irvine, CA)

    1980-01-01

    A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

  1. Status of the fluidized bed unit

    SciTech Connect (OSTI)

    Williams, P.M.; Wade, J.F.

    1994-06-01

    Rocky Flats has a serious mixed waste problem. No technology or company has a license and available facilities to remedy this dilemma. One solution under study is to use a catalytic fluidized bed unit to destroy the combustible portion of the mixed waste. The fluidized bed thermal treatment program at Rocky Flats is building on knowledge gained over twenty years of successful development activity. The FBU has numerous technical advantages over other thermal technologies to treat Rocky Flats` mixed waste, the largest being the lower temperature (700{degrees}C versus 1000{degrees}C) which reduces acid corrosion and mechanical failures and obviates the need for ceramic lining. Successful demonstrations have taken place on bench, pilot, and full-scale tests using radioactive mixed wastes. The program is approaching implementation and licensing of a production-scale fluidized bed system for the safe treatment of mixed waste. The measure for success on this project is the ability to work closely with the community to jointly solve problems and respond to concerns of mixed waste treatment at Rocky Flats.

  2. Method for fluidizing and coating ultrafine particles, device for fluidizing and coating ultrafine particles

    DOE Patents [OSTI]

    Li, Jie; Liu, Yung Y

    2015-01-20

    The invention provides a method for dispersing particles within a reaction field, the method comprising confining the particles to the reaction field using a standing wave. The invention also provides a system for coating particles, the system comprising a reaction zone; a means for producing fluidized particles within the reaction zone; a fluid to produce a standing wave within the reaction zone; and a means for introducing coating moieties to the reaction zone. The invention also provides a method for coating particles, the method comprising fluidizing the particles, subjecting the particles to a standing wave; and contacting the subjected particles with a coating moiety.

  3. Dynamics of Air-Fluidized Granular System Measured by the Modulated Gradient Spin-echo

    E-Print Network [OSTI]

    Janez Stepisnik; Samo Lasic; Igor Sersa; Ales Mohoric; Gorazd Planinsic

    2005-10-05

    The power spectrum of displacement fluctuation of beads in the air-fluidized granular system is measured by a novel NMR technique of modulated gradient spin-echo. The results of measurement together with the related spectrum of the velocity fluctuation autocorrelation function fit well to an empiric formula based on to the model of bead caging between nearest neighbours; the cage breaks up after a few collisions \\cite{Menon1}. The fit yields the characteristic collision time, the size of bead caging and the diffusion-like constant for different degrees of system fluidization. The resulting mean squared displacement increases proportionally to the second power of time in the short-time ballistic regime and increases linearly with time in the long-time diffusion regime as already confirmed by other experiments and simulations.

  4. Concept for a super-clean super-efficient pressurized fluidized-bed combustion system

    SciTech Connect (OSTI)

    Mollott, D.J.; Reed, M.

    1994-12-31

    A paper study for a highly efficient, environmentally benign, coal-fired electric power generation system, is presented. This system falls in the category of pressurized fluidized-bed combustion (PFBC) systems which has been dubbed super-clean super-efficient PFBC`s. The system presented starts with the second-generation PFBC concept and adds on advanced gas turbine, a solid oxide fuel cell, a supercritical steam cycle, a second low-temperature rankine cycle which pulls energy from the steam condenser, and inlet air cooling. The thermodynamic efficiency of the system is calculated to be 61.8 percent based on higher heating value (HHV).

  5. Development of an advanced process for drying fine coal in an inclined fluidized bed

    SciTech Connect (OSTI)

    Boysen, J.E.; Kang, T.W.; Cha, C.Y.; Berggren, M.H.; Jha, M.C.; AMAX Research and Development Center, Golden, CO )

    1989-10-01

    The main objective of this research is to develop a thermal process for drying fine coal that (1) reduces explosion potential, (2) uses a fluidized bed with minimum elutriation, (3) produces a stable dry coal by preventing moisture reabsorption and autogeneous heating, (4) reduces fugitive dust emissions, and (5) is technically and economically feasible. The project scope of work requires completion of five tasks: (1) project planning, (2) characterization of the two feed coals, (3) bench-scale IFB drying studies, (4) product characterization and testing, and (5) technical and economic process evaluation. The project technical achievements are primarily related to understanding of the behavior of the two coals in the IFB reactor. Solids residence time and solids entrainment can be correlated using the Reynolds number. Gas produced from the coal during drying and the product composition can be correlated to the average dryer temperature. A dry product with minimal proximate moisture and substantially increased heating value can be produced from either of these coals under a wide variety of fluidizing gas-to-solids ratios and IFB operating temperatures. Product characterization indicates that moisture reabsorption can be significantly reduced and that fugitive dust contents can be almost completely reduced. 4 refs., 19 figs., 24 tabs.

  6. Flow Mapping in a Gas-Solid Riser via Computer Automated Radioactive Particle Tracking (CARPT)

    SciTech Connect (OSTI)

    Muthanna Al-Dahhan; Milorad P. Dudukovic; Satish Bhusarapu; Timothy J. O'hern; Steven Trujillo; Michael R. Prairie

    2005-06-04

    Statement of the Problem: Developing and disseminating a general and experimentally validated model for turbulent multiphase fluid dynamics suitable for engineering design purposes in industrial scale applications of riser reactors and pneumatic conveying, require collecting reliable data on solids trajectories, velocities ? averaged and instantaneous, solids holdup distribution and solids fluxes in the riser as a function of operating conditions. Such data are currently not available on the same system. Multiphase Fluid Dynamics Research Consortium (MFDRC) was established to address these issues on a chosen example of circulating fluidized bed (CFB) reactor, which is widely used in petroleum and chemical industry including coal combustion. This project addresses the problem of lacking reliable data to advance CFB technology. Project Objectives: The objective of this project is to advance the understanding of the solids flow pattern and mixing in a well-developed flow region of a gas-solid riser, operated at different gas flow rates and solids loading using the state-of-the-art non-intrusive measurements. This work creates an insight and reliable database for local solids fluid-dynamic quantities in a pilot-plant scale CFB, which can then be used to validate/develop phenomenological models for the riser. This study also attempts to provide benchmark data for validation of Computational Fluid Dynamic (CFD) codes and their current closures. Technical Approach: Non-Invasive Computer Automated Radioactive Particle Tracking (CARPT) technique provides complete Eulerian solids flow field (time average velocity map and various turbulence parameters such as the Reynolds stresses, turbulent kinetic energy, and eddy diffusivities). It also gives directly the Lagrangian information of solids flow and yields the true solids residence time distribution (RTD). Another radiation based technique, Computed Tomography (CT) yields detailed time averaged local holdup profiles at various planes. Together, these two techniques can provide the needed local solids flow dynamic information for the same setup under identical operating conditions, and the data obtained can be used as a benchmark for development, and refinement of the appropriate riser models. For the above reasons these two techniques were implemented in this study on a fully developed section of the riser. To derive the global mixing information in the riser, accurate solids RTD is needed and was obtained by monitoring the entry and exit of a single radioactive tracer. Other global parameters such as Cycle Time Distribution (CTD), overall solids holdup in the riser, solids recycle percentage at the bottom section of the riser were evaluated from different solids travel time distributions. Besides, to measure accurately and in-situ the overall solids mass flux, a novel method was applied.

  7. Heat exchanger support apparatus in a fluidized bed

    DOE Patents [OSTI]

    Lawton, Carl W. (West Hartford, CT)

    1982-01-01

    A heat exchanger is mounted in the upper portion of a fluidized combusting bed for the control of the temperature of the bed. A support, made up of tubes, is extended from the perforated plate of the fluidized bed up to the heat exchanger. The tubular support framework for the heat exchanger has liquid circulated therethrough to prevent deterioration of the support.

  8. Development and Implementation of 3-D, High Speed Capacitance Tomography for Imaging Large-Scale, Cold-Flow Circulating Fluidized Bed

    SciTech Connect (OSTI)

    Qussai Marashdeh

    2012-09-30

    A detailed understanding of multiphase flow behavior inside a Circulating Fluidized Bed (CFB) requires a 3-D technique capable of visualizing the flow field in real-time. Electrical Capacitance Volume Tomography (ECVT) is a newly developed technique that can provide such measurements. The attractiveness of the technique is in its low profile sensors, fast imaging speed and scalability to different section sizes, low operating cost, and safety. Moreover, the flexibility of ECVT sensors enable them to be designed around virtually any geometry, rendering them suitable to be used for measurement of solid flows in exit regions of the CFB. Tech4Imaging LLC has worked under contract with the U.S. Department of Energyā??s National Energy Technology Laboratory (DOE NETL) to develop an ECVT system for cold flow visualization and install it on a 12 inch ID circulating fluidized bed. The objective of this project was to help advance multi-phase flow science through implementation of an ECVT system on a cold flow model at DOE NETL. This project has responded to multi-phase community and industry needs of developing a tool that can be used to develop flow models, validate computational fluid dynamics simulations, provide detailed real-time feedback of process variables, and provide a comprehensive understating of multi-phase flow behavior. In this project, a complete ECVT system was successfully developed after considering different potential electronics and sensor designs. The system was tested at various flow conditions and with different materials, yielding real-time images of flow interaction in a gas-solid flow system. The system was installed on a 12 inch ID CFB of the US Department of Energy, Morgantown Labs. Technical and economic assessment of Scale-up and Commercialization of ECVT was also conducted. Experiments conducted with larger sensors in conditions similar to industrial settings are very promising. ECVT has also the potential to be developed for imaging multi-phase flow systems in high temperature and high pressure conditions, typical in many industrial applications.

  9. Pulsed atmospheric fluidized bed combustion. Final report

    SciTech Connect (OSTI)

    NONE

    1998-03-01

    ThermoChem, under contract to the Department of Energy, conducted extensive research, development and demonstration work on a Pulsed Atmospheric Fluidized Bed Combustor (PAFBC) to confirm that advanced technology can meet these performance objectives. The ThermoChem/MTCI PAFBC system integrates a pulse combustor with an atmospheric bubbling-bed type fluidized bed combustor (BFBC) In this modular configuration, the pulse combustor burns the fuel fines (typically less than 30 sieve or 600 microns) and the fluidized bed combusts the coarse fuel particles. Since the ThermoChem/MTCI PAFBC employs both the pulse combustor and the AFBC technologies, it can handle the full-size range of coarse and fines. The oscillating flow field in the pulse combustor provides for high interphase and intraparticle mass transfer rates. Therefore, the fuel fines essentially burn under kinetic control. Due to the reasonably high temperature (>1093 C but less than the temperature for ash fusion to prevent slagging), combustion of fuel fines is substantially complete at the exit of the pulse combustor. The additional residence time of 1 to 2 seconds in the freeboard of the PAFBC unit then ensures high carbon conversion and, in turn, high combustion efficiency. A laboratory unit was successfully designed, constructed and tested for over 600 hours to confirm that the PAFBC technology could meet the performance objectives. Subsequently, a 50,000 lb/hr PAFBC demonstration steam boiler was designed, constructed and tested at Clemson University in Clemson, South Carolina. This Final Report presents the detailed results of this extensive and successful PAFBC research, development and demonstration project.

  10. Wood fuel in fluidized bed boilers

    SciTech Connect (OSTI)

    Virr, M.J.

    1982-01-01

    Development of fluidized bed fire-tube and water-tube boilers for the burning of wood, gas, and refuse-derived fuel will be reviewed. Experience gained in already installed plants will be outlined. Research experiments results on the use of various forms of wood and other biomass fuels, such as wood chips, pellets, peach pits, nut shells and kernels and refuse-derived fuels, will be described for small and medium sized fire-tube boilers, and for larger water-tube boilers for co-generation. (Refs. 4).

  11. Circulating fluidized-bed boiler makes inroads for waste recycling

    SciTech Connect (OSTI)

    1995-09-01

    Circulating fluidized-bed (CFB) boilers have ben used for years in Scandinavia to burn refuse-derived fuel (RDF). Now, Foster Wheeler Power Systems, Inc., (Clinton, N.J.) is bringing the technology to the US. Touted as the world`s largest waste-to-energy plant to use CFB technology, the Robbins (III.) Resource Recovery Facility will have the capacity to process 1,600 tons/d of municipal solid waste (MSW) when it begins operation in early 1997. The facility will have two materials-separation and RDF-processing trains, each with dual trommel screens, magnetic and eddy current separators, and shredders. About 25% of the incoming MSW will be sorted and removed for recycling, while 75% of it will be turned into fuel, with a heat value of roughly 6,170 btu/lb. Once burned in the twin CFB boilers the resulting steam will be routed through a single turbine generator to produce 50,000 mW of electric power.

  12. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect (OSTI)

    Wei-Ping Pan, Kunlei Liu; John T. Riley

    2004-07-30

    This report presents the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the quarter April 1--June 30, 2004. The following tasks have been completed. First, the final specifications for the renovation of the new Combustion Laboratory and the construction of the CFB Combustor Building have been delivered to the architect, and invitations for construction bids for the two tasks have been released. Second, the component parts of the CFBC system have been designed after the design work for assembly parts of the CFBC system was completed. Third, the literature pertaining to Polychlorinated Dibenzo-p-Dioxins (PCDD) and Polychlorinated Dibenzofurans (PCDF) released during the incineration of solid waste, including municipal solid waste (MSW) and refuse-derived fuel (RDF) have been reviewed, and an experimental plan for fundamental research of MSW incineration on a simulated fluidized-bed combustion (FBC) facility has been prepared. Finally, the proposed work for the next quarter has been outlined in this report.

  13. Coal-feeding mechanism for a fluidized bed combustion chamber

    DOE Patents [OSTI]

    Gall, Robert L. (Morgantown, WV)

    1981-01-01

    The present invention is directed to a fuel-feeding mechanism for a fluidized bed combustor. In accordance with the present invention a perforated conveyor belt is utilized in place of the fixed grid normally disposed at the lower end of the fluidized bed combustion zone. The conveyor belt is fed with fuel, e.g. coal, at one end thereof so that the air passing through the perforations dislodges the coal from the belt and feeds the coal into the fluidized zone in a substantially uniform manner.

  14. The backflow cell model for fluidized bed catalytic reactors 

    E-Print Network [OSTI]

    Ganapathy, E. V

    1967-01-01

    that the backmixing of gas in a small fluidized bed with high length to diameter rati. o is relatively small. Hence, it was recommended. that reaction rate studies in fluidized bed reactors be correlated on the basis oi' piston flow~ neglecting mixing. Nay (19... Major Subject Chemical En ineerin THE BACKFLOW CELL MODEL FOR FLUIDIZED BED CATALYTIC REACTORS A Thesis E. V. Ganapathy Approved as to style and content by: chairman of Committee ~H+d d D p t t Member Member) May 1967 SO THE BACKFLOW CELL...

  15. Solid fuel combustion system for gas turbine engine

    DOE Patents [OSTI]

    Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN)

    1993-01-01

    A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

  16. Gas phase hydrodynamics inside a circulating fluidized bed

    E-Print Network [OSTI]

    Moran, James C. (James Christopher)

    2001-01-01

    Circulating Fluidized Beds (CFB's) offer many advantages over traditional pulverized coal burners in the power generation industry. They operate at lower temperatures, have better environmental emissions and better fuel ...

  17. EA-0575: Fundamental Fluidization Research Project, Morgantown, West Virginia

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to design, construct, and operate a 2-foot diameter, 50-foot high pressurized fluidization with particular emphasis on operation in the...

  18. Fluidized bed boiler having a segmented grate

    DOE Patents [OSTI]

    Waryasz, Richard E. (Longmeadow, MA)

    1984-01-01

    A fluidized bed furnace (10) is provided having a perforate grate (9) within a housing which supports a bed of particulate material including some combustibles. The grate is divided into a plurality of segments (E2-E6, SH1-SH5, RH1-RH5), with the airflow to each segment being independently controlled. Some of the segments have evaporating surface imbedded in the particulate material above them, while other segments are below superheater surface or reheater surface. Some of the segments (E1, E7) have no surface above them, and there are ignitor combustors (32, 34) directed to fire into the segments, for fast startup of the furnace without causing damage to any heating surface.

  19. Inclined fluidized bed system for drying fine coal

    DOE Patents [OSTI]

    Cha, Chang Y. (Golden, CO); Merriam, Norman W. (Laramie, WY); Boysen, John E. (Laramie, WY)

    1992-02-11

    Coal is processed in an inclined fluidized bed dryer operated in a plug-flow manner with zonal temperature and composition control, and an inert fluidizing gas, such as carbon dioxide or combustion gas. Recycled carbon dioxide, which is used for drying, pyrolysis, quenching, and cooling, is produced by partial decarboxylation of the coal. The coal is heated sufficiently to mobilize coal tar by further pyrolysis, which seals micropores upon quenching. Further cooling with carbon dioxide enhances stabilization.

  20. Development and applications of clean coal fluidized bed technology

    SciTech Connect (OSTI)

    Eskin, N.; Hepbasli, A. [Ege University, Izmir (Turkey). Faculty of Engineering

    2006-09-15

    Power generation in Europe and elsewhere relies heavily on coal and coal-based fuels as the source of energy. The reliance will increase in the future due to the decreasing stability of price and security of oil supply. In other words, the studies on fluidized bed combustion systems, which is one of the clean coal technologies, will maintain its importance. The main objective of the present study is to introduce the development and the applications of the fluidized bed technology (FBT) and to review the fluidized bed combustion studies conducted in Turkey. The industrial applications of the fluidized bed technology in the country date back to the 1980s. Since then, the number of the fluidized bed boilers has increased. The majority of the installations are in the textile sector. In Turkey, there is also a circulating fluidized bed thermal power plant with a capacity of 2 x 160 MW under construction at Can in Canakkale. It is expected that the FBT has had, or will have, a significant and increasing role in dictating the energy strategies for Turkey.

  1. Data summary of municipal solid waste management alternatives

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

  2. X-Ray Spectroscopy: An Experimental Technique to Measure Charge State Distribution Right at the Ion-Solid Interaction

    E-Print Network [OSTI]

    Sharma, Prashant

    2015-01-01

    Charge state distributions of $^{56}$Fe and $^{58}$Ni projectile ions passing through thin carbon foils have been studied in the energy range of 1.44 - 2.69 MeV/u using a novel method from the x-ray spectroscopy technique. Interestingly the charge state distribution in the bulk show Lorentzian behavior instead of usual Gaussian distribution. Further, different parameters of charge state distribution like mean charge state, distribution width and asymmetric parameter are determined and compared with the empirical calculations and ETACHA predictions. It is found that the x-ray measurement technique is appropriate to determine the mean charge state right at the interaction zone or in the bulk. Interestingly, empirical formalism predicts much lower projectile mean charge states compare to x-ray measurements which clearly indicate multi-electron capture from the target surface. The ETACHA predictions and experimental results are found to be comparable for energies $\\geq$ 2 MeV/u.

  3. Predictive models of circulating fluidized bed combustors. 12th technical progress report

    SciTech Connect (OSTI)

    Gidaspow, D.

    1992-07-01

    Steady flows influenced by walls cannot be described by inviscid models. Flows in circulating fluidized beds have significant wall effects. Particles in the form of clusters or layers can be seen to run down the walls. Hence modeling of circulating fluidized beds (CFB) without a viscosity is not possible. However, in interpreting Equations (8-1) and (8-2) it must be kept in mind that CFB or most other two phase flows are never in a true steady state. Then the viscosity in Equations (8-1) and (8-2) may not be the true fluid viscosity to be discussed next, but an Eddy type viscosity caused by two phase flow oscillations usually referred to as turbulence. In view of the transient nature of two-phase flow, the drag and the boundary layer thickness may not be proportional to the square root of the intrinsic viscosity but depend upon it to a much smaller extent. As another example, liquid-solid flow and settling of colloidal particles in a lamella electrosettler the settling process is only moderately affected by viscosity. Inviscid flow with settling is a good first approximation to this electric field driven process. The physical meaning of the particulate phase viscosity is described in detail in the chapter on kinetic theory. Here the conventional derivation resented in single phase fluid mechanics is generalized to multiphase flow.

  4. Comminution phenomena during the fluidized bed combustion of a commercial refuse-derived fuel

    SciTech Connect (OSTI)

    Arena, U.; Cammarota, A.; Chirone, R.; D`Anna, G.

    1995-12-31

    A commercial densified refuse-derived fuel (RDF), obtained as pellets from municipal solid wastes, was burned in two laboratory scale bubbling fluidized bed combustors, having an internal diameter of 41 mm. The apparatus were both batchwise operated at 850 C by injecting batches of RDF particles into a bed of silica sand (300--400 {micro}m as size range) fluidized at a superficial gas velocity of 0.8 m/s. RDF particles with equivalent mean diameter ranging from 4 to 9 mm were used. Different experimental procedures were set up to separately investigate comminution phenomena of fuel particles. Results were compared with those obtained burning a South African bituminous coal. Results pointed out that RDF particles undergo a strong primary fragmentation phenomenon, with a probability of particle breakage equal to 1 for fuel particles larger than 6 mm. Attrition and char fragmentation phenomena are particularly relevant under both inert and oxidizing conditions, generating a large amount of unburned fines which may affect overall combustion efficiency.

  5. An Analysis of the Use of Fluidized-Bed Heat Exchangers for Heat Recovery 

    E-Print Network [OSTI]

    Vogel, G. J.; Grogan, P. J.

    1980-01-01

    The principles of fluidized-bed operation and the factors affecting the performance of a fluidized-bed waste heat boiler (FBWHB) are discussed in detail. Factors included in the discussion are bed temperature and pressure, heat transfer coefficient...

  6. Pulsed atmospheric fluidized bed combustion. Technical progress report, January 1995--April 1995

    SciTech Connect (OSTI)

    NONE

    1995-05-31

    Progress is reported on the design of a pulsed fluidized bed combustor and component, fabrication, and construction site activities.

  7. Wavy Instability in Liquid-Fluidized Beds Maxime Nicolas, John Hinch, and E lisabeth Guazzelli*,

    E-Print Network [OSTI]

    Hinch, John

    . Gas-fluidized beds are very unstable and rapidly attain a bubbling regime. In this regime, bubblesWavy Instability in Liquid-Fluidized Beds Maxime Nicolas, John Hinch, and EÄ lisabeth Guazzelli. The validity of the two-phase Newtonian model is then questioned. 1. Introduction To fluidize a bed

  8. Emergent Behavior in a Low-Order Fluidized-Bed Bubble Model

    E-Print Network [OSTI]

    Tennessee, University of

    Emergent Behavior in a Low-Order Fluidized-Bed Bubble Model John S. Halow National Energy of this type of model to describe the dynamics of voids in bubbling fluidized beds. The model considers vertical interactions between neighboring bubbles in fluidized beds. Emergent collective behavior is shown

  9. Contributed papers Study of gas-fluidization dynamics with laser-polarized 129

    E-Print Network [OSTI]

    Walsworth, Ronald L.

    commercial fluidized beds operate in the bubbling fluidization regime, in which gas-filled particle, Amherst, MA 01003, USA Abstract We report initial NMR studies of gas dynamics in a particle bed fluidized characteristics: gas exchange between the bubble and emulsion phases and the gas velocity distribution in the bed

  10. Characterizing the Hydrodynamics of Bubbling Fluidized Beds with Multivariate Pressure Measurements

    E-Print Network [OSTI]

    Tennessee, University of

    Characterizing the Hydrodynamics of Bubbling Fluidized Beds with Multivariate Pressure Measurements mounted on the walls of a bubbling fluidized bed. Our objective was to identify multivariate dynamic of bubbling fluidized beds with multivariate pressure measurements. 2000 AIChE Annual Meeting (Los Angeles

  11. Foam Control using a Fluidized Bed of Hydrophobic Particles by Clara Mata*

    E-Print Network [OSTI]

    Joseph, Daniel D.

    Foam Control using a Fluidized Bed of Hydrophobic Particles by Clara Mata* & D. D. Joseph may be strongly suppressed by fluidizing hydrophilic particles in the bubbly mixture below the foam different tests (particle-induced film rupture and foam shake test), but they did not use a fluidized bed

  12. Materials performance in fluidized-bed air heaters

    SciTech Connect (OSTI)

    Natesan, K.; Podolski, W.

    1991-12-01

    Development of cogeneration systems that involve combustion of coal in a fluidized bed and use of air heaters to generate hot air for turbine systems has been in progress for a number of years. The US Department of Energy (DOE) sponsored the Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) to assess the performance of various heat exchanger materials and establish confidence in the resultant designs of fluidized-bed-combustion air heater systems. Westinghouse Electric Corporation, in association with Babcock Wilcox, Foster Wheeler, and ABB/Combustion Engineering, prepared specifications and hardware for the ACAHE. Argonne National Laboratory, through a contract with the Rocketdyne Division of Rockwell International, conducted tests in the DOE 1.8 {times} 1.8 m atmospheric fluidized-bed combustion facility in El Segundo, California. This paper presents an assessment of the materials performance in fluidized bed environments and examines guidelines for materials selection on the basis of corrosion resistance in air and in combustion environments, mechanical properties, fabricability/thermal stability, and cost.

  13. Materials performance in fluidized-bed air heaters

    SciTech Connect (OSTI)

    Natesan, K.; Podolski, W.

    1991-12-01

    Development of cogeneration systems that involve combustion of coal in a fluidized bed and use of air heaters to generate hot air for turbine systems has been in progress for a number of years. The US Department of Energy (DOE) sponsored the Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) to assess the performance of various heat exchanger materials and establish confidence in the resultant designs of fluidized-bed-combustion air heater systems. Westinghouse Electric Corporation, in association with Babcock & Wilcox, Foster Wheeler, and ABB/Combustion Engineering, prepared specifications and hardware for the ACAHE. Argonne National Laboratory, through a contract with the Rocketdyne Division of Rockwell International, conducted tests in the DOE 1.8 {times} 1.8 m atmospheric fluidized-bed combustion facility in El Segundo, California. This paper presents an assessment of the materials performance in fluidized bed environments and examines guidelines for materials selection on the basis of corrosion resistance in air and in combustion environments, mechanical properties, fabricability/thermal stability, and cost.

  14. Fluidized bed pyrolysis of terrestrial biomass feedstocks

    SciTech Connect (OSTI)

    Besler, S.; Agblevor, F.A.; Davis, M.F. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1994-12-31

    Hybrid poplar, switchgrass, and corn stover were pyrolyzed in a bench scale fluidized-bed reactor to examine the influence of storage time on thermochemical converting of these materials. The influence of storage on the thermochemical conversion of the biomass feedstocks was assessed based on pyrolysis product yields and chemical and instrumental analyses of the pyrolysis products. Although char and gas yields from corn stover feedstock were influenced by storage time, hybrid poplar and switchgrass were not significantly affected. Liquid, char, and gas yields were feedstock dependent. Total liquid yields (organic+water) varied from 58%-73% depending on the feedstock. Char yields varied from 14%-19% while gas yields ranged from 11%-15%. The chemical composition of the pyrolysis oils from hybrid polar feedstock was slightly changed by storage, however, corn stover and switchgrass feedstock showed no significant changes. Additionally, stored corn stover and hybrid poplar pyrolysis oils showed a significant decrease in their higher heating values compared to the fresh material.

  15. COAL CLEANING VIA LIQUID-FLUIDIZED CLASSIFICAITON (LFBC) WITH SELECTIVE SOLVENT SWELLING

    SciTech Connect (OSTI)

    J. M. Calo

    2000-12-01

    The concept of coal beneficiation due to particle segregation in water-fluidized beds, and its improvement via selective solvent-swelling of organic material-rich coal particles, was investigated in this study. Particle size distributions and their behavior were determined using image analysis techniques, and beneficiation effects were explored via measurements of the ash content of segregated particle samples collected from different height locations in a 5 cm diameter liquid-fluidized bed column (LFBC). Both acetone and phenol were found to be effective swelling agents for both Kentucky No.9 and Illinois No.6 coals, considerably increasing mean particle diameters, and shifting particle size distributions to larger sizes. Acetone was a somewhat more effective swelling solvent than phenol. The use of phenol was investigated, however, to demonstrate that low cost, waste solvents can be effective as well. For unswollen coal particles, the trend of increasing particle size from top to bottom in the LFBC was observed in all cases. Since the organic matter in the coal tends to concentrate in the smaller particles, the larger particles are typically denser. Consequently, the LFBC naturally tends to separate coal particles according to mineral matter content, both due to density and size. The data for small (40-100 {micro}m), solvent-swollen particles clearly showed improved beneficiation with respect to segregation in the water-fluidized bed than was achieved with the corresponding unswollen particles. This size range is quite similar to that used in pulverized coal combustion. The original process concept was amply demonstrated in this project. Additional work remains to be done, however, in order to develop this concept into a full-scale process.

  16. Task 3.8 - pressurized fluidized-bed combustion

    SciTech Connect (OSTI)

    NONE

    1995-03-01

    The focus of this work on pressurized fluidized-bed combustion (PFBC) is the development of sorbents for in-bed alkali control. The goal is to generate fundamental process information for development of a second-generation PFBC. Immediate objectives focus on the performance of sulfur sorbents, fate of alkali, and the Resource Conservation and Recovery Act (RCRA) heavy metals. The studies reported here focus on emission control strategies applied in the bed. Data from shakedown testing, alkali sampling, sulfur sorbent performance tests, and refuse-derived fuel (RDF) and lignite combustion tests are presented in detail. Initial results from the characterization of alkali gettering indicate that in-bed getters can remove a significant amount of alkali from the bed. Using kaolin as a sorbent, sodium levels in the flue gas were reduced from 3.6 ppm to less than 0.22 ppm. Sulfur was also reduced by 60% using the kaolin sorbent. Preliminary sulfur sorbent testing, which was designed to develop a reliable technique to predice sorbent performance, indicate that although the total sulfur capture is significantly lower than that observed in a full-scale PFBC, the emission trends are similar. RDF and RDF-lignite fuels had combustion efficiencies exceeding 99.0% in all test cases. Sulfur dioxide emission was significantly lower for the RDF fuels than for lignite fuel alone. Nitrogen oxide emission was also lower for the RDF-based fuels than for the lignite fuel. Both emission gases were well below current regulatory limits. Carbon monoxide and hydrocarbon emissions appeared to be slightly higher for the fuels containing RDF, but were below 9 ppm for the worst case. Analysis of volatile organic compound emission does not indicate an emission problem for these fuels. Chromium appears to be the only RCRA metal that might present some disposal problem; however, processing of the RDF with the wet resource recovery method should reduce chromium levels. 2 refs., 13 figs., 15 tabs.

  17. Computational fluid dynamic modeling of fluidized-bed polymerization reactors

    SciTech Connect (OSTI)

    Rokkam, Ram

    2012-11-02

    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

  18. Regeneration of lime from sulfates for fluidized-bed combustion

    DOE Patents [OSTI]

    Yang, Ralph T. (Middle Island, NY); Steinberg, Meyer (Huntington Station, NY)

    1980-01-01

    In a fluidized-bed combustor the evolving sulfur oxides are reacted with CaO to form calcium sulfate which is then decomposed in the presence of carbonaceous material, such as the fly ash recovered from the combustion, at temperatures of about 900.degree. to 1000.degree. C., to regenerate lime. The regenerated lime is then recycled to the fluidized bed combustor to further react with the evolving sulfur oxides. The lime regenerated in this manner is quite effective in removing the sulfur oxides.

  19. Pressurized fluidized-bed combustion technology exchange workshop

    SciTech Connect (OSTI)

    ,

    1980-04-01

    The pressurized fluidized-bed combustion technology exchange workshop was held June 5 and 6, 1979, at The Meadowlands Hilton Hotel, Secaucus, New Jersey. Eleven papers have been entered individually into EDB and ERA. The papers include reviews of the US DOE and EPRI programs in this area and papers by Swedish, West German, British and American organizations. The British papers concern the joint program of the USA, UK and FRG at Leatherhead. The key factor in several papers is the use of fluidized bed combustors, gas turbines, and steam turbines in combined-cycle power plants. One paper examines several combined-cycle alternatives. (LTN)

  20. Fluidized-Bed Waste-Heat Recovery System Advances 

    E-Print Network [OSTI]

    Patch, K. D.; Cole, W. E.

    1986-01-01

    stream_source_info ESL-IE-86-06-09.pdf.txt stream_content_type text/plain stream_size 23561 Content-Encoding ISO-8859-1 stream_name ESL-IE-86-06-09.pdf.txt Content-Type text/plain; charset=ISO-8859-1 FLUIDIZED-BED WASTE-HEAT... RECOVERY SYSTEM ADVANCES Keith D. Patch William E. Cole Thermo Electron Corporation Waltham, Massachusetts ABSTRACT The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is a combustion air preheater designed for existing unrecuperated...

  1. Fluidized bed combustor and coal gun-tube assembly therefor

    DOE Patents [OSTI]

    Hosek, William S. (Mt. Tabor, NJ); Garruto, Edward J. (Wayne, NJ)

    1984-01-01

    A coal supply gun assembly for a fluidized bed combustor which includes heat exchange elements extending above the bed's distributor plate assembly and in which the gun's nozzles are disposed relative to the heat exchange elements to only discharge granular coal material between adjacent heat exchange elements and in a path which is substantially equidistant from adjacent heat exchange elements.

  2. Local, instantaneous heat transfer in pulse-stabilized fluidization

    SciTech Connect (OSTI)

    Pence, D.V. [Univ. of Rhode Island, Kingston, RI (United States). Dept. of Mechanical Engineering and Applied Mechanics; Beasley, D.E. [Clemson Univ., SC (United States). Dept. of Mechanical Engineering

    1996-12-31

    The Pulsed Atmospheric Fluidized Bed Combustor (PAFBC), a hybrid combustor concept that couples a pulsed combustor with an atmospheric bubbling fluidized bed, has technical advantages in energy efficiency and emissions. The present study examines the effect of an opposing oscillatory flow on the local, instantaneous heat transfer in a laboratory scale bubbling gas-fluidized bed. This opposing secondary flow consisted of a steady mean component and an oscillating component thereby modeling the flow in the tailpipe of a pulsed combustor. Spectral and contact time analyses of local, instantaneous heat flux measurements from a heated, submerged horizontal cylinder clearly indicate that the bed hydrodynamics were significantly altered by the opposing secondary flow. These heat flux measurements were accomplished by employing an isothermal platinum film heat flux gage. For the present investigation, data were acquired for a monodisperse distribution of particles with a mean diameter of 345 {micro}m and total fluidization ratios ranging from 1.1 through 2.7. Heat transfer observed under conditions of secondary flows with a superimposed waveform exhibit characteristics of globally dominated, as opposed to locally dominated, hydrodynamics. For low primary and secondary flow rates and a forcing frequency of 5 Hz, a substantial enhancement in heat transfer was observed. Increases in the bubble phase and emulsion phase heat transfer coefficients were identified as the primary contributors to the observed increases in time-averaged local heat transfer coefficients.

  3. Plant response to FBC waste-coal slurry solid mixtures. [Quarterly] technical report, September 1--November 30, 1993

    SciTech Connect (OSTI)

    Darmody, R.G.; Dunker, R.E. [Illinois Univ., Urbana, IL (United States); Dreher, G.B.; Roy, W.R.; Steel, J.D. [Illinois State Geological Survey, Urbana, IL (United States)

    1994-03-01

    The goal of this project is to test the feasibility of stabilizing coal slurry solids (CSS) wastes by directly seeding plants into the waste. This is not done conventionally because the waste can generate toxic amounts of sulfuric acid. Our approach is to neutralize the potential acidity by mixing fluidized bed combustion (FBC) waste into the slurry. If successful, this approach would both help dispose of FBC wastes while providing a more economical slurry stabilization technique. The project involves growing forage plants in CSS-FBC mixtures in the greenhouse. This is the first quarter of the project. We have designed the experiment, secured greenhouse space, purchased the seeds, collected and dried the FBC and CSS samples. The samples represent a typical range of properties. We retrieved two FBC and two CSS samples. One CSS sample appears to have a higher pyrite content than the other.

  4. Synthetic aggregate compositions derived from spent bed materials from fluidized bed combustion and fly ash

    DOE Patents [OSTI]

    Boyle, Michael J. (Aston, PA)

    1994-01-01

    Cementitious compositions useful as lightweight aggregates are formed from a blend of spent bed material from fluidized bed combustion and fly ash. The proportions of the blend are chosen so that ensuing reactions eliminate undesirable constituents. The blend is then mixed with water and formed into a shaped article. The shaped article is preferably either a pellet or a "brick" shape that is later crushed. The shaped articles are cured at ambient temperature while saturated with water. It has been found that if used sufficiently, the resulting aggregate will exhibit minimal dimensional change over time. The aggregate can be certified by also forming standardized test shapes, e.g., cylinders while forming the shaped articles and measuring the properties of the test shapes using standardized techniques including X-ray diffraction.

  5. Fluidized-bed bioreactor process for the microbial solubiliztion of coal

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN); Strandberg, Gerald W. (Farragut, TN)

    1989-01-01

    A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor.

  6. Fluidized-bed bioreactor system for the microbial solubilization of coal

    DOE Patents [OSTI]

    Scott, C.D.; Strandberg, G.W.

    1987-09-14

    A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor. 2 figs.

  7. Bed-inventory Overturn Mechanism for Pant-leg Circulating Fluidized Bed Boilers

    E-Print Network [OSTI]

    Wang, Zhe; Yang, Zhiwei; West, Logan; Li, Zheng

    2011-01-01

    A numerical model was established to investigate the lateral mass transfer as well as the mechanism of bed-inventory overturn inside a pant-leg circulating fluidized bed (CFB), which are of great importance to maintain safe and efficient operation of the CFB. Results show that the special flow structure in which the solid particle volume fraction along the central line of the pant-leg CFB is relative high enlarges the lateral mass transfer rate and make it more possible for bed inventory overturn. Although the lateral pressure difference generated from lateral mass transfer inhibits continuing lateral mass transfer, providing the pant-leg CFB with self-balancing ability to some extent, the primary flow rate change due to the outlet pressure change often disable the self-balancing ability by continually enhancing the flow rate difference. As the flow rate of the primary air fan is more sensitive to its outlet pressure, it is easier to lead to bed inventory overturn. While when the solid particle is easier to c...

  8. Design considerations and operating experience in firing refuse derived fuel in a circulating fluidized bed combustor

    SciTech Connect (OSTI)

    Piekos, S.J.; Matuny, M.

    1997-12-31

    The worldwide demand for cleaner, more efficient methods to dispose of municipal solid waste has stimulated interest in processing solid waste to produce refuse derived fuel (RDF) for use in circulating fluidized bed (CFB) boilers. The combination of waste processing and materials recovery systems and CFB boiler technology provides the greatest recovery of useful resources from trash and uses the cleanest combustion technology available today to generate power. Foster Wheeler Power Systems along with Foster Wheeler Energy Corporation and several other Foster Wheeler sister companies designed, built, and now operates a 1600 tons per day (TPD) (1450 metric tons) municipal waste-to-energy project located in Robbins, Illinois, a suburb of Chicago. This project incorporates waste processing systems to recover recyclable materials and produce RDF. It is the first project in the United States to use CFB boiler technology to combust RDF. This paper will provide an overview of the Robbins, Illinois waste-to-energy project and will examine the technical and environmental reasons for selecting RDF waste processing and CFB combustion technology. Additionally, this paper will present experience with handling and combusting RDF and review the special design features incorporated into the CFB boiler and waste processing system that make it work.

  9. State of Industrial Fluidized Bed Combustion 

    E-Print Network [OSTI]

    Mesko, J. E.

    1982-01-01

    A new combustion technique has been developed in the last decade that permits the burning of low quality coal, lignite and other fuels, while maintaining stack emissions within State and Federal limits. Low quality fuels can be burned directly...

  10. Circulating Fluidized Bed Combustion Boiler Project 

    E-Print Network [OSTI]

    Farbstein, S. B.; Moreland, T.

    1984-01-01

    the bottom of the combustion chamber as bottom ash and from the baghouse as fly ash. A portion of the heat is absorbed in the combustion chamber, and the remaining heat is recovered in the convection section of the boiler. There are no tubes...-sulfur Illinois coal. Limestone use is projected at 11-14.000 tons per year. Solid residue (ash, spent limestone and calcium sulfate) to be disposed will be 15-22,000 tons per year. This projected use of limestone is based on the use of Illinois No. 6 coal...

  11. Data summary of municipal solid waste management alternatives. Volume 12, Numerically indexed bibliography

    SciTech Connect (OSTI)

    1992-10-01

    This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

  12. Pulsed atmospheric fluidized bed combustor apparatus and process

    DOE Patents [OSTI]

    Mansour, Momtaz N. (Columbia, MD)

    1992-01-01

    A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g. organic and medical waste, drying, calcining and the like.

  13. Instantaneous pressure and heat transfer in pulse-stabilized fluidization

    SciTech Connect (OSTI)

    Beasley, D.E.; Postle, M.C. [Clemson Univ., SC (United States). Dept. of Mechanical Engineering; Pence, D.V. [Univ. of Rhode Island, Kingston, RI (United States). Dept. of Mechanical Engineering and Applied Mechanics

    1996-12-31

    A hybrid combustor concept that couples a pulsed combustor with an atmospheric bubbling fluidized bed was developed by Manufacturing Technology Conversion International, Inc. (MTCI, Inc.) and licensed to Thermo-Chem, Inc. This Pulsed Atmospheric Fluidized Bed technology has technical advantages in energy efficiency and emissions and is currently in pilot scale demonstration on the campus of Clemson University. The present study examines the effect of an opposing oscillatory flow on the pressure and overall heat transfer in a bubbling gas-fluidized bed. This opposing flow models the flow in the tailpipe of a pulsed combustor. Pressure measurements at the wall and on a submerged horizontal cylinder clearly indicate that the bed hydrodynamics are significantly altered by the opposing secondary flow. Under operating conditions of low secondary flow rates and pulse frequencies, the dominant frequency of the pressure fluctuations measured in the bed shifts from the natural, unforced response of the bed to the imposed frequency. For higher fluidization and secondary flow rates both the natural and forced response of the bed are present. Overall and time-averaged local heat transfer measurements from a submerged horizontal cylinder clearly indicate that the heat transfer rates are significantly altered by the opposing secondary flow. The most dramatic increases in heat transfer, on the order of 12%, were identified with operating conditions with low primary and secondary flow rates and pulse frequencies near the natural frequency of the bed. The local heat transfer was most significantly altered at the stagnation point. A modified form of the Strouhal number is shown to effectively describe the effect of pulse stabilization on overall heat transfer.

  14. Method of feeding particulate material to a fluidized bed

    DOE Patents [OSTI]

    Borio, Richard W. (Somers, CT); Goodstine, Stephen L. (Windsor, CT)

    1984-01-01

    A centrifugal spreader type feeder that supplies a mixture of particulate limestone and coal to the top of a fluidized bed reactor having a flow of air upward therethrough. Large particles of particulate matter are distributed over the upper surface of the bed to utilize the natural mixing within the bed, while fine particles are adapted to utilize an independent feeder that separates them from the large particles and injects them into the bed.

  15. Fluidized bed gasification ash reduction and removal system

    DOE Patents [OSTI]

    Schenone, Carl E. (Madison, PA); Rosinski, Joseph (Vanderbilt, PA)

    1984-02-28

    In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  16. Fluidized bed gasification ash reduction and removal process

    DOE Patents [OSTI]

    Schenone, Carl E. (Madison, PA); Rosinski, Joseph (Vanderbilt, PA)

    1984-12-04

    In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  17. Co-firing a pressurized fluidized-bed combustion system with coal and refuse derived fuels and/or sludges. Task 16

    SciTech Connect (OSTI)

    DeLallo, M.; Zaharchuk, R.

    1994-01-01

    The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal waste. Leading this approach, the atmospheric fluidized-bed combustor (AFBC) has demonstrated its commercial acceptance in the utility market as a reliable source of power burning a variety of waste and alternative fuels. The fluidized bed, with its stability of combustion, reduces the amount of thermochemical transients and provides for easier process control. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economic feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Wastes considered for co-firing include municipal solid waste (MSW), tire-derived fuel (TDF), sewage sludge, and industrial de-inking sludge. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

  18. Air fluidized balls in a background of smaller beads

    E-Print Network [OSTI]

    M. E. Beverland; L. J. Daniels; D. J. Durian

    2010-12-02

    We report on quasi-two-dimensional granular systems in which either one or two large balls is fluidized by an upflow of air in the presence of a background of several hundred smaller beads. A single large ball is observed to propel ballistically in nearly circular orbits, in direct contrast to the Brownian behavior of a large ball fluidized in the absence of this background. Further, the large ball motion satisfies a Langevin equation with an additional speed-dependent force acting in the direction of motion. This results in a non-zero average speed of the large ball that is an order of magnitude faster than the root mean square speed of the background balls. Two large balls fluidized in the absence of the small-bead background experience a repulsive force depending only on the separation of the two balls. With the background beads present, by contrast, the ball-ball interaction becomes velocity-dependent and attractive. The attraction is long-ranged and inconsistent with a depletion model; instead, it is mediated by local fluctuations in the density of the background beads which depends on the large balls' motion.

  19. Propagating Waves in a Monolayer of Gas-Fluidized Rods

    E-Print Network [OSTI]

    L. J. Daniels; D. J. Durian

    2010-11-12

    We report on an observation of propagating compression waves in a quasi-two-dimensional monolayer of apolar granular rods fluidized by an upflow of air. The collective wave speed is an order of magnitude faster than the speed of the particles. This gives rise to anomalously large number fluctuations dN ~ $N^{0.72 \\pm 0.04}$, which are greater than ordinary number fluctuations of N^{1/2}. We characterize the waves by calculating the spatiotemporal power spectrum of the density. The position of observed peaks, as a function of frequency w and wavevector k, yields a linear dispersion relationship in the long-time, long-wavelength limit and a wavespeed c = w/k. Repeating this analysis for systems at different densities and air speeds, we observe a linear increase in the wavespeed with increasing packing fraction with no dependence on the airflow. Although air-fluidized rods self-propel individually or in dilute collections, the parallel and perpendicular root-mean-square speeds of the rods indicate that they no longer self-propel when propagating waves are present. Based on this mutual exclusivity, we map out the phase behavior for the existence of waves vs self-propulsion as a function of density and fluidizing airflow.

  20. Sulfur removal in advanced two stage pressurized fluidized bed combustion. Technical report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Abbasian, J.; Hill, A.; Wangerow, J.R. [Inst. of Gas Technology, Chicago, IL (United States)

    1994-12-31

    The objective of this study is to obtain data on the rates and the extent of sulfation reactions involving partially sulfided calcium-based sorbents, and oxygen as well as sulfur dioxide, at operating conditions closely simulating those prevailing in the second stage (combustor) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors (PFBC). In these systems the CO{sub 2} partial pressure generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, calcium sulfate is produced through the reactions between SO{sub 2} and calcium carbonate as well as the reaction between calcium sulfide and oxygen. To achieve this objective, the rates of reaction involving SO{sub 2} and oxygen (gaseous reactant); and calcium sulfide and calcium carbonate (solid reactants), will be determined by conducting tests in a pressurized thermogravimetric analyzer (HPTGA) unit. The effects of sorbent type, sorbent particle size, reactor temperature and pressure; and O{sub 2} as well as SO{sub 2} partial pressures on the sulfation reactions rate will be determined. During this quarter, samples of the selected limestone and dolomite were sulfided in the fluidized-bed reactor. These tests were conducted in both calcining and non-calcining operating conditions to produce partially-sulfided sorbents containing calcium oxide and calcium carbonate, respectively. These samples which represent the carbonizer discharge material, will be used as the feed material in the sulfation tests to be conducted in the HPTGA unit during the next quarter.

  1. Design of a Low Energy, Self Contained Subsea Burrowing Robot Based on Localized Fluidization Exhibited by Atlantic Razor Clams

    E-Print Network [OSTI]

    Dorsch, Daniel S.

    The Atlantic razor clam (Ensis directus) burrows by contracting its valves, fluidizing the surrounding soil and reducing burrowing drag. Moving through a fluidized, rather than static, soil requires energy that scales ...

  2. Fluidized Bed Steam Reforming of Hanford LAW Using THORsm Mineralizing Technology

    SciTech Connect (OSTI)

    Olson, Arlin L.; Nicholas R Soelberg; Douglas W. Marshall; Gary L. Anderson

    2004-11-01

    The U.S. Department of Energy (DOE) documented, in 2002, a plan for accelerating cleanup of the Hanford Site, located in southeastern Washington State, by at least 35 years. A key element of the plan was acceleration of the tank waste program and completion of ''tank waste treatment by 2028 by increasing the capacity of the planned Waste Treatment Plant (WTP) and using supplemental technologies for waste treatment and immobilization.'' The plan identified steam reforming technology as a candidate for supplemental treatment of as much as 70% of the low-activity waste (LAW). Mineralizing steam reforming technology, offered by THOR Treatment Technologies, LLC would produce a denitrated, granular mineral waste form using a high-temperature fluidized bed process. A pilot scale demonstration of the technology was completed in a 15-cm-diameter reactor vessel. The pilot scale facility was equipped with a highly efficient cyclone separator and heated sintered metal filters for particulate removal, a thermal oxidizer for reduced gas species and NOx destruction, and a packed activated carbon bed for residual volatile species capture. The pilot scale equipment is owned by the DOE, but located at the Science and Technology Applications Research (STAR) Center in Idaho Falls, ID. Pilot scale testing was performed August 2–5, 2004. Flowsheet chemistry and operational parameters were defined through a collaborative effort involving Idaho National Engineering and Environmental Laboratory, Savannah River National Laboratory (SRNL), and THOR Treatment Technologies personnel. Science Application International Corporation, owners of the STAR Center, personnel performed actual pilot scale operation. The pilot scale test achieved a total of 68.7 hrs of cumulative/continuous processing operation before termination in response to a bed de-fluidization condition. 178 kg of LAW surrogate were processed that resulted in 148 kg of solid product, a mass reduction of about 17%. The process achieved essentially complete bed turnover within approximately 40 hours. Samples of mineralized solid product materials were analyzed for chemical/physical properties. SRNL will report separately the results of product performance testing that were accomplished.

  3. Pulsed atmospheric fluidized bed combustion. Technical progress report, April 1992--June 1992

    SciTech Connect (OSTI)

    Not Available

    1992-08-01

    The general specifications for a Pulsed Atmospheric Fluidized Bed Combustor Design Report (PAFBC) plant are presented. The design tasks for the PAFBC are described in the following areas: Coal/Limestone preparation and feed system; pulse combustor; fluidized bed; boiler parts; and ash handling system.

  4. Operation of a steam hydro-gasifier in a fluidized bed reactor

    E-Print Network [OSTI]

    Park, Chan Seung; Norbeck, Joseph N.

    2008-01-01

    OF A S T E A M HYDRO-GASIFIER IN A FLUIDIZED BED REACTOROF A S T E A M HYDRO-GASIFIER IN A FLUIDIZED BED REACTOR F Iis fed into a hydro-gasifier reactor. One such process was

  5. Zevenhoven & Kilpinen NITROGEN 13.4.2002 4-34 4.11 Chemistry of nitrogen oxides at atmospheric fluidized bed

    E-Print Network [OSTI]

    Laughlin, Robert B.

    : - Bubbling fluidized bed combustion (BFBC) is a combustion method where the velocity of the gasflow upwards fluidized bed combustion, where the interaction between gas and particles is more intensive than in bubbling fluidized bed combustion In fluidized bed combustion, the combustion takes place in a bed of particles

  6. Enhanced durability of desulfurization sorbents for fluidized-bed applications

    SciTech Connect (OSTI)

    Gupta, R.P.; Gangwal, S.K.

    1992-11-01

    To extend the operating temperature range and further improve the durability of fluidizable sorbents, zinc titanate, another leading regenerable sorbent, was selected for development in the later part of this project. A number of zinc titanate formulations were prepared in the 50 to 300 [mu]m range using granulation and spray drying methods. Important sorbent preparation variables investigated included zinc to titanium ratio, binder type, binder amount, and various chemical additives such as cobalt and molybdenum. A number of sorbents selected on the basis of screening tests were subjected to bench-scale testing for 10 cycles at high temperature, high pressure (HTHP) conditions using the reactor system designed and constructed during the base program. This reactor system is capable of operation either as a 2.0 in. or 3.0 in. I.D. bubbling bed and is rated up to 20 atm operation at 871[degrees]C. Bench-scale testing variables included sorbent type, temperature (550 to 750[degrees]C), gas type (KRW or Texaco gasifier gas), steam content of coal gas, and fluidizing gas velocity (6 to 15 cm/s). The sorbents prepared by spray drying showed poor performance in terms of attrition resistance and chemical reactivity. On the other hand, the granulation method proved to be very successful. For example, a highly attrition-resistant zinc titanate formulation, ZT-4, prepared by granulation exhibited virtually no zinc loss and demonstrated a constant high reactivity and sulfur capacity over 10 cycles, i.e., approximately a 60 percent capacity utilization, with Texaco gas at 750[degrees]C, 15 cm/s fluidizing velocity and 15 atm pressure. The commercial potential of the granulation method for zinc titanate manufacture was demonstrated by preparing two 80 lb batches of sorbent with zinc to titanium mol ratios of 0.8 and 1.5.

  7. Enhanced durability of desulfurization sorbents for fluidized-bed applications

    SciTech Connect (OSTI)

    Gupta, R.P.; Gangwal, S.K.

    1992-11-01

    To extend the operating temperature range and further improve the durability of fluidizable sorbents, zinc titanate, another leading regenerable sorbent, was selected for development in the later part of this project. A number of zinc titanate formulations were prepared in the 50 to 300 {mu}m range using granulation and spray drying methods. Important sorbent preparation variables investigated included zinc to titanium ratio, binder type, binder amount, and various chemical additives such as cobalt and molybdenum. A number of sorbents selected on the basis of screening tests were subjected to bench-scale testing for 10 cycles at high temperature, high pressure (HTHP) conditions using the reactor system designed and constructed during the base program. This reactor system is capable of operation either as a 2.0 in. or 3.0 in. I.D. bubbling bed and is rated up to 20 atm operation at 871{degrees}C. Bench-scale testing variables included sorbent type, temperature (550 to 750{degrees}C), gas type (KRW or Texaco gasifier gas), steam content of coal gas, and fluidizing gas velocity (6 to 15 cm/s). The sorbents prepared by spray drying showed poor performance in terms of attrition resistance and chemical reactivity. On the other hand, the granulation method proved to be very successful. For example, a highly attrition-resistant zinc titanate formulation, ZT-4, prepared by granulation exhibited virtually no zinc loss and demonstrated a constant high reactivity and sulfur capacity over 10 cycles, i.e., approximately a 60 percent capacity utilization, with Texaco gas at 750{degrees}C, 15 cm/s fluidizing velocity and 15 atm pressure. The commercial potential of the granulation method for zinc titanate manufacture was demonstrated by preparing two 80 lb batches of sorbent with zinc to titanium mol ratios of 0.8 and 1.5.

  8. Dynamical Simulation of Fluidized Beds --- Hydrodynamically Interacting Granular Particles

    E-Print Network [OSTI]

    Kengo Ichiki; Hisao Hayakawa

    1995-03-01

    A numerical simulation of a gas-fluidized bed is performed without introduction of any empirical parameters. Realistic bubbles and slugs are observed in our simulation. It is found that the convective motion of particles is important for the bubbling phase and there is no convection in the slugging phase. From the simulation results, non-Gaussian distributions are found in the particle velocities and the relation between the deviation from Gaussian and the local density of particles is suggested. It is also shown that the power spectra of particle velocities obey power laws. A brief explanation on the relationship between the simulation results and the Kolmogorov scaling argument is discussed.

  9. Standby cooling system for a fluidized bed boiler

    DOE Patents [OSTI]

    Crispin, Larry G. (Akron, OH); Weitzel, Paul S. (Canal Fulton, OH)

    1990-01-01

    A system for protecting components including the heat exchangers of a fluidized bed boiler against thermal mismatch. The system includes an injection tank containing an emergency supply of heated and pressurized feedwater. A heater is associated with the injection tank to maintain the temperature of the feedwater in the tank at or about the same temperature as that of the feedwater in the heat exchangers. A pressurized gas is supplied to the injection tank to cause feedwater to flow from the injection tank to the heat exchangers during thermal mismatch.

  10. Multiphase flow simulations of a moving fluidized bed regenerator in a carbon capture unit

    SciTech Connect (OSTI)

    Sarkar, Avik; Pan, Wenxiao; Suh, Dong-Myung; Huckaby, E. D.; Sun, Xin

    2014-10-01

    To accelerate the commercialization and deployment of carbon capture technologies, computational fluid dynamics (CFD)-based tools may be used to model and analyze the performance of carbon capture devices. This work presents multiphase CFD-based flow simulations for the regeneration device responsible for extracting CO2 from CO2-loaded sorbent particles before the particles are recycled. The use of solid particle sorbents in this design is a departure from previously reported systems, where aqueous sorbents are employed. Another new feature is the inclusion of a series of perforated plates along the regenerator height. The influence of these plates on sorbent distribution is examined for varying sorbent holdup, fluidizing gas velocity, and particle size. The residence time distribution of sorbents is also measured to classify the low regime as plug flow or well-mixed flow. The purpose of this work is to better understand the sorbent flow characteristics before reaction kinetics of CO2 desorption can be implemented.

  11. Engineering systems analysis of pressurized fluidized-bed-combustion power systems

    SciTech Connect (OSTI)

    Graves, R.L.; Griffin, F.P.; Lackey, M.E.

    1982-04-01

    This effort was conducted to provde supporting data for the research and development program on pressurized fluidized bed combustor (PFBC) systems being continued under the auspices of the Office of Coal Utilization of DOE. This report deals with the first phase of the effort, designated Task 1, which was scoped to be a somewhat broad review of PFBC technology and an analysis to determine its potential and sensitivity to key development needs. Background information pertaining to the application of PFBC to the market for coal-fired technology is included. The status of development is reviewed and the deficiencies in data are identified. Responses to a survey of PFBC developers are reviewed with emphasis on the high risk areas of the PFBC concept. Some of these problems are: uncertainty of life of gas turbine components; lack of demonstration of load following; and hot solids handling. Some high risk areas, such as the gas cleanup or gas turbine systems, can be relieved by reducing the severity of design conditions such as the turbine inlet temperature. Alternate turbine designs or plant configurations are also possible solutions. Analyses were performed to determine whether the advantages held by PFBC systems in cost, efficiency, and emissions would be nullified by measures taken to reduce risk. In general, the results showed that the attractive features of the PFBC could be preserved.

  12. Post-Combustion and Pre-Combustion CO2 Capture Solid Sorbents

    SciTech Connect (OSTI)

    Siriwardane, R.V.; Stevens, R.W.; Robinson, Clark

    2007-11-01

    Combustion of fossil fuels is one of the major sources of the greenhouse gas CO2. Pressure swing adsorption/sorption (PSA/PSS) and temperature swing adsorption/sorption (TSA/TSS) are some of the potential techniques that could be utilized for removal of CO2 from fuel gas streams. It is very important to develop sorbents to remove CO2 from fuel gas streams that are applicable for a wide range of temperatures. NETL researchers have developed novel CO2 capture sorbents for low, moderate, and high temperature applications. A novel liquid impregnated solid sorbent was developed for CO2 removal in the temperature range of ambient to 60 °C. The sorbent is regenerable at 60 – 80 °C. The sorbent formulations were prepared to be suitable for various reactor configurations (i.e., fixed and fluidized bed). Minimum fluidization gas velocities were also determined. Multi-cycle tests conducted in an atmospheric bench scale reactor with simulated flue gas indicated that the sorbent retains its CO2 sorption capacity with a CO2 removal efficiency of approximately 99% and was unaffected by presence of water vapor. The sorbent was subsequently commercially prepared by Süd Chemie to determine the viability of the sorbent for mass production. Subsequent testing showed that the commercially-synthesized sorbent possesses the same properties as the lab-synthesized equivalent. An innovative solid sorbent containing mixture of alkali earth and alkali compounds was developed for CO2 removal at 200 – 315°C from high pressure gas streams suitable for IGCC systems. The sorbent showed very high capacity for CO2 removal from a gas streams containing 28% CO2 at 200 °C and at 20 atm during a lab scale reactor test. This sorbent can be regenerated at 20 atm and at 375 °C utilizing a gas stream containing steam. High pressure enhanced the CO2 sorption process. Bench scale testing showed consistent capacities and regenerability. A unique high temperature solid sorbent was developed for CO2 capture at temperatures of 500 – 700°C. Bench scale testing of the sorbent yielded very high CO2 capture capacity from a gas stream containing 10% CO2, 30% H2, 15% H2O, and 25% He. Regeneration of the sorbent is possible at 800 – 900 °C.

  13. Interaction of water waves with fluidized mud in a rectangular trench 

    E-Print Network [OSTI]

    Lemasson, Wilfrid Joel Christian

    1994-01-01

    The dynamic response of fluidized mud in a rectangular trench to water waves propagating over the trench was studied experimentally. It was shown that the motion of the fluid mud became large compared to the surface wave ...

  14. Method and apparatus for improving heat transfer in a fluidized bed

    DOE Patents [OSTI]

    Lessor, Delbert L. (Richland, WA); Robertus, Robert J. (Richland, WA)

    1990-01-01

    An apparatus contains a fluidized bed that includes particles of different triboelectrical types, each particle type acquiring an opposite polarity upon contact. The contact may occur between particles of the two types or between particles of etiher type and structure or fluid present in the apparatus. A fluidizing gas flow is passed through the particles to produce the fluidized bed. Immersed within the bed are electrodes. An alternating EMF source connected to the electrodes applies an alternating electric field across the fluidized bed to cause particles of the first type to move relative to particles of the second type and relative to the gas flow. In a heat exchanger incorporating the apparatus, the electrodes are conduits conveying a fluid to be heated. The two particle types alternately contact each conduit to transfer heat from a hot gas flow to the second fluid within the conduit.

  15. Particle simulation of vibrated gas-fluidized beds of cohesive fine powders

    E-Print Network [OSTI]

    Sung Joon Moon; I. G. Kevrekidis; S. Sundaresan

    2006-08-09

    We use three-dimensional particle dynamics simulations, coupled with volume-averaged gas phase hydrodynamics, to study vertically vibrated gas-fluidized beds of fine, cohesive powders. The volume-averaged interstitial gas flow is restricted to be one-dimensional (1D). This simplified model captures the spontaneous development of 1D traveling waves, which corresponds to bubble formation in real fluidized beds. We use this model to probe the manner in which vibration and gas flow combine to influence the dynamics of cohesive particles. We find that as the gas flow rate increases, cyclic pressure pulsation produced by vibration becomes more and more significant than direct impact, and in a fully fluidized bed this pulsation is virtually the only relevant mechanism. We demonstrate that vibration assists fluidization by creating large tensile stresses during transient periods, which helps break up the cohesive assembly into agglomerates.

  16. Empirical models of emissions and energy efficiencies of coal-fired fluidized bed power plants

    E-Print Network [OSTI]

    Gruhl, Jim

    Mass and energy balances of fluidized bed energy technologies are to a significant degree dependent upon the specific design being investigated. It is difficult to make any generally accurate comments. about these balances. ...

  17. Design and performance of a high-pressure Fischer-Tropsch fluidized bed reactor

    SciTech Connect (OSTI)

    Weimer, A.W.; Quarderer, G.J.; Cochran, G.A.; Conway, M.M. )

    1988-01-01

    A 900 kg/day, CO/H/sub 2/, high-pressure, fluidized bed, pilot reactor was designed from first principles to achieve high reactant conversions and heat removal rates for the Fischer-Tropsch (F-T) synthesis of liquefied petroleum gases (LPG's). Suppressed bubble growth at high pressure allowed high reactant conversions which nearly matched those obtained at identical conditions in a lab scale fixed bed reactor. For GHSV approximately 1400 hr/sup -1/ and T = 658 {Kappa} at P approximately 7000 {kappa}Pa, reactant conversion exceeded 75%. The reactor heat removal capability exceeded twice design performance with the fluidized bed easily operating under thermally stable conditions. The fluidized catalyst was a potassium promoted, molybdenum on carbon (Mo/{Kappa}/C) catalyst which did not produce any detrimental waxy products. Long catalyst lifetimes of 1000 hrs on steam between regenerations allowed the fluidized bed to be operated in a batch mode.

  18. Operation of a steam hydro-gasifier in a fluidized bed reactor

    E-Print Network [OSTI]

    Park, Chan Seung; Norbeck, Joseph N.

    2008-01-01

    OPERATION OF A S T E A M HYDRO-GASIFIER IN A FLUIDIZED BEDMaterial Using Self-Sustained Hydro- Gasification." [0011]the process, using a steam hydro-gasification reactor (SHR)

  19. Modeling of char oxidation in fluidized bed biomass gasifiers : effects of transport and chemical kinetics

    E-Print Network [OSTI]

    Brooks, Amelia (Amelia Samek)

    2015-01-01

    Technologies for the conversion of biomass to liquid fuels are important to develop because the demand for liquid fuels remains unchanged even with the necessity of limiting dependence on fossil fuels. Fluidized Bed Biomass ...

  20. Operating Experience of a Coal Fired Fluidized Bed at Georgetown University 

    E-Print Network [OSTI]

    Lutes, I. G.; Gamble, R. L.

    1980-01-01

    Operation of the 100,000 lb/hr capacity, coal fired fluidized bed steam generator at Georgetown University began in July 1979. This project, which was co-funded by Georgetown University and the U. S. Department of Energy, ...

  1. Continuous fluidized-bed contactor with recycle of sorbent

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN); Petersen, James N. (Moscow, ID); Davison, Brian H. (Knoxville, TN)

    1996-01-01

    A continuous fluidized-bed contactor containing sorbent particles is used to remove solutes from liquid solvents. As the sorbent particles, for example gel beads, sorb the solute, for example metal ion species, the sorbent particles tend to decrease in diameter. These smaller loaded sorbent particles rise to the top of the contactor, as larger sorbent particles remain at the bottom of the contactor as a result of normal hydraulic forces. The smaller loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. Alternatively, the loaded sorbent particles may also slightly increase in diameter, or exhibit no change in diameter but an increase in density. As a result of normal hydraulic forces the larger loaded sorbent particles fall to the bottom of the contactor. The larger loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor.

  2. Continuous fluidized-bed contactor with recycle of sorbent

    DOE Patents [OSTI]

    Scott, C.D.; Petersen, J.N.; Davison, B.H.

    1996-07-09

    A continuous fluidized-bed contactor containing sorbent particles is used to remove solutes from liquid solvents. As the sorbent particles, for example gel beads, sorb the solute, for example metal ion species, the sorbent particles tend to decrease in diameter. These smaller loaded sorbent particles rise to the top of the contactor, and larger sorbent particles remain at the bottom of the contactor as a result of normal hydraulic forces. The smaller loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. Alternatively, the loaded sorbent particles may also slightly increase in diameter, or exhibit no change in diameter but an increase in density. As a result of normal hydraulic forces the larger loaded sorbent particles fall to the bottom of the contactor. The larger loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. 8 figs.

  3. Evaluation of wall boundary condition parameters for gas-solids fluidized

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) | SciTech(Journal(Patent)pressure in Ba (bed simulations (Journal

  4. Evaluation of wall boundary condition parameters for gas-solids fluidized

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) | SciTech(Journal(Patent)pressure in Ba (bed simulations (Journalbed

  5. Fluidized-bed technology enabling the integration of high temperature solar receiver CSP systems with steam and advanced power cycles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sakadjian, B.; Hu, S.; Maryamchik, M.; Flynn, T.; Santelmann, K.; Ma, Z.

    2015-05-01

    Solar Particle Receivers (SPR) are under development to drive concentrating solar plants (CSP) towards higher operating temperatures to support higher efficiency power conversion cycles. The novel high temperature SPR-based CSP system uses solid particles as the heat transfer medium (HTM) in place of the more conventional fluids such as molten salt or steam used in current state-of-the-art CSP plants. The solar particle receiver (SPR) is designed to heat the HTM to temperatures of 800 °C or higher which is well above the operating temperatures of nitrate-based molten salt thermal energy storage (TES) systems. The solid particles also help overcome somemore »of the other challenges associated with molten salt-based systems such as freezing, instability and degradation. The higher operating temperatures and use of low cost HTM and higher efficiency power cycles are geared towards reducing costs associated with CSP systems. This paper describes the SPR-based CSP system with a focus on the fluidized-bed (FB) heat exchanger and its integration with various power cycles. The SPR technology provides a potential pathway to achieving the levelized cost of electricity (LCOE) target of $0.06/kWh that has been set by the U.S. Department of Energy's SunShot initiative.« less

  6. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect (OSTI)

    Wei-Ping Pan; Yan Cao; John Smith

    2008-05-31

    On February 14, 2002, President Bush announced the Clear Skies Initiative, a legislative proposal to control the emissions of nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), and mercury from power plants. In response to this initiative, the National Energy Technology Laboratory organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified multi-pollutant control; improved sorbents and catalysts; mercury monitoring and capture; and improved understanding of the underlying reaction chemistry occurring during combustion as the most pressing research needs related to controlling environmental emissions from fossil-fueled power plants. The Environmental Control Technology Laboratory will help meet these challenges and offer solutions for problems associated with emissions from fossil-fueled power plants. The goal of this project was to develop the capability and technology database needed to support municipal, regional, and national electric power generating facilities to improve the efficiency of operation and solve operational and environmental problems. In order to effectively provide the scientific data and the methodologies required to address these issues, the project included the following aspects: (1) Establishing an Environmental Control Technology Laboratory using a laboratory-scale, simulated fluidized-bed combustion (FBC) system; (2) Designing, constructing, and operating a bench-scale (0.6 MW{sub th}), circulating fluidized-bed combustion (CFBC) system as the main component of the Environmental Control Technology Laboratory; (3) Developing a combustion technology for co-firing municipal solid waste (MSW), agricultural waste, and refuse-derived fuel (RDF) with high sulfur coals; (4) Developing a control strategy for gaseous emissions, including NO{sub x}, SO{sub 2}, organic compounds, and heavy metals; and (5) Developing new mercury capturing sorbents and new particulate filtration technologies. Major tasks during this period of the funded project's timeframe included: (1) Conducting pretests on a laboratory-scale simulated FBC system; (2) Completing detailed design of the bench-scale CFBC system; (3) Contracting potential bidders to fabricate of the component parts of CFBC system; (4) Assembling CFBC parts and integrating system; (5) Resolving problems identified during pretests; (6) Testing with available Powder River Basin (PRB) coal and co-firing of PRB coal with first wood pallet and then chicken wastes; and (7) Tuning of CFBC load. Following construction system and start-up of this 0.6 MW CFBC system, a variety of combustion tests using a wide range of fuels (high-sulfur coals, low-rank coals, MSW, agricultural waste, and RDF) under varying conditions were performed to analyze and monitor air pollutant emissions. Data for atmospheric pollutants and the methodologies required to reduce pollutant emissions were provided. Integration with a selective catalytic reduction (SCR) slipstream unit did mimic the effect of flue gas composition, including trace metals, on the performance of the SCR catalyst to be investigated. In addition, the following activities were also conducted: (1) Developed advanced mercury oxidant and adsorption additives; (2) Performed laboratory-scale tests on oxygen-fuel combustion and chemical looping combustion; and (3) Conducted statistical analysis of mercury emissions in a full-scale CFBC system.

  7. Solids Accumulation Scouting Studies

    SciTech Connect (OSTI)

    Duignan, M. R.; Steeper, T. J.; Steimke, J. L.

    2012-09-26

    The objective of Solids Accumulation activities was to perform scaled testing to understand the behavior of remaining solids in a Double Shell Tank (DST), specifically AW-105, at Hanford during multiple fill, mix, and transfer operations. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles containing plutonium could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste staging tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids: Gibbsite, Zirconia, Sand, and Stainless Steel, with stainless steel particles representing the heavier particles, e.g., plutonium, and supernatant were charged to the test tank and rotating liquid jets were used to mix most of the solids while the simulant was pumped out. Subsequently, the volume and shape of the mounds of residual solids and the spatial concentration profiles for the surrogate for heavier particles were measured. Several techniques were developed and equipment designed to accomplish the measurements needed and they included: 1. Magnetic particle separator to remove simulant stainless steel solids. A device was designed and built to capture these solids, which represent the heavier solids during a waste transfer from a staging tank. 2. Photographic equipment to determine the volume of the solids mounds. The mounds were photographed as they were exposed at different tank waste levels to develop a composite of topographical areas. 3. Laser rangefinders to determine the volume of the solids mounds. The mounds were scanned after tank supernatant was removed. 4. Core sampler to determine the stainless steel solids distribution within the solids mounds. This sampler was designed and built to remove small sections of the mounds to evaluate concentrations of the stainless steel solids at different special locations. 5. Computer driven positioner that placed the laser rangefinders and the core sampler in appropriate locations over solids mounds that accumulated on the bottom of a scaled staging tank where mixing is poor. These devices and techniques were effective to estimate the movement, location, and concentrations of the solids representing heavier particles and could perform well at a larger scale The experiment contained two campaigns with each comprised of ten cycles to fill and empty the scaled staging tank. The tank was filled without mixing, but emptied, while mixing, in seven batches; the first six were of equal volumes of 13.1 gallons each to represent the planned fullscale batches of 145,000 gallons, and the last, partial, batch of 6.9 gallons represented a full-scale partial batch of 76,000 gallons that will leave a 72-inch heel in the staging tank for the next cycle. The sole difference between the two campaigns was the energy to mix the scaled staging tank, i.e., the nozzle velocity and jet rotational speed of the two jet pumps. Campaign 1 used 22.9 ft/s, at 1.54 rpm based on past testing and Campaign 2 used 23.9 ft/s at 1.75 rpm, based on visual observation of minimum velocity that allowed fast settling solids, i.e., sand and stainless steel, to accumulate on the scaled tank bottom.

  8. Methods for Increasing Sensitivity and Throughput of Solid-State NMR Spectroscopy of Pharmaceutical Solids

    E-Print Network [OSTI]

    Schieber, Loren

    2010-01-22

    Solid-state nuclear magnetic resonance (SSNMR) spectroscopy has been demonstrated to be a powerful technique for investigating solid dosage formulations. SSNMR has the ability to determine physical form, molecular structure, ...

  9. ME 290D Solid Modeling, Fall 2014 http://www.me.berkeley.edu/~mcmains/290D/

    E-Print Network [OSTI]

    McMains, Sara

    -making/Casting Morphing 3D Printing Fixturing Tolerancing Tools & Techniques drawn from: Solid modeling Graph

  10. FLUIDIZED BED STEAM REFORMING ENABLING ORGANIC HIGH LEVEL WASTE DISPOSAL

    SciTech Connect (OSTI)

    Williams, M

    2008-05-09

    Waste streams planned for generation by the Global Nuclear Energy Partnership (GNEP) and existing radioactive High Level Waste (HLW) streams containing organic compounds such as the Tank 48H waste stream at Savannah River Site have completed simulant and radioactive testing, respectfully, by Savannah River National Laboratory (SRNL). GNEP waste streams will include up to 53 wt% organic compounds and nitrates up to 56 wt%. Decomposition of high nitrate streams requires reducing conditions, e.g. provided by organic additives such as sugar or coal, to reduce NOX in the off-gas to N2 to meet Clean Air Act (CAA) standards during processing. Thus, organics will be present during the waste form stabilization process regardless of the GNEP processes utilized and exists in some of the high level radioactive waste tanks at Savannah River Site and Hanford Tank Farms, e.g. organics in the feed or organics used for nitrate destruction. Waste streams containing high organic concentrations cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by pretreatment. The alternative waste stabilization pretreatment process of Fluidized Bed Steam Reforming (FBSR) operates at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). The FBSR process has been demonstrated on GNEP simulated waste and radioactive waste containing high organics from Tank 48H to convert organics to CAA compliant gases, create no secondary liquid waste streams and create a stable mineral waste form.

  11. Treating exhaust gas from a pressurized fluidized bed reaction system

    DOE Patents [OSTI]

    Isaksson, J.; Koskinen, J.

    1995-08-22

    Hot gases from a pressurized fluidized bed reactor system are purified. Under super atmospheric pressure conditions hot exhaust gases are passed through a particle separator, forming a filtrate cake on the surface of the separator, and a reducing agent--such as an NO{sub x} reducing agent (like ammonia)--is introduced into the exhaust gases just prior to or just after particle separation. The retention time of the introduced reducing agent is enhanced by providing a low gas velocity (e.g. about 1--20 cm/s) during passage of the gas through the filtrate cake while at super atmospheric pressure. Separation takes place within a distinct pressure vessel, the interior of which is at a pressure of about 2--100 bar, and introduction of reducing agent can take place at multiple locations (one associated with each filter element in the pressure vessel), or at one or more locations just prior to passage of clean gas out of the pressure vessel (typically passed to a turbine). 8 figs.

  12. Treating exhaust gas from a pressurized fluidized bed reaction system

    DOE Patents [OSTI]

    Isaksson, Juhani (Karhula, FI); Koskinen, Jari (Karhula, FI)

    1995-01-01

    Hot gases from a pressurized fluidized bed reactor system are purified. Under superatmospheric pressure conditions hot exhaust gases are passed through a particle separator, forming a flitrate cake on the surface of the separator, and a reducing agent--such as an NO.sub.x reducing agent (like ammonia), is introduced into the exhaust gases just prior to or just after particle separation. The retention time of the introduced reducing agent is enhanced by providing a low gas velocity (e.g. about 1-20 cm/s) during passage of the gas through the filtrate cake while at superatmospheric pressure. Separation takes place within a distinct pressure vessel the interior of which is at a pressure of about 2-100 bar, and-introduction of reducing agent can take place at multiple locations (one associated with each filter element in the pressure vessel), or at one or more locations just prior to passage of clean gas out of the pressure vessel (typically passed to a turbine).

  13. Repowering with pressurized fluidized-bed combustion units

    SciTech Connect (OSTI)

    Goidich, S.J. ); Rubow, L.N. ); Kumar, S. . Environmental Services and Technologies Div.); Mukherjee, D. ); Childress, N.B. )

    1991-05-01

    Turbocharged pressurized fluidized bed combustion (PFBC) power plants operating with a gas turbine inlet temperature lower than 800{degrees}F can produce electricity more efficiently (34.2 vs. 33.5% net plant efficiency) and at a lower cost of electricity (87.8 vs. 96. 6 mill/kWh over 30 years) than conventional pulverized-coal-fired plants with scrubbers. Since the PFBC process produces lower NO{sub x} emissions than conventional pulverized-coal combustion systems and captures sulfur as part of the combustion process, and since major equipment components can be shop-assembled and shipped by barge, retrofit of an existing unit with a turbocharged PFBC boiler can be a cost-effective means for extending the life of the unit and meeting NSPS without retrofitting flue gas desulfurization systems. Using the Wisconsin Electric Power Company's Port Washington Unit 5 as an example, preliminary engineering and economic evaluations were made to investigate the merits of turbocharged PFBC retrofits. This report describes the conceptual designs of the new, major plant components; discusses how the new components are integrated with the existing balance-of-plant equipment; describes the proposed plant control system; and presents an overall economic evaluation. Because design and economic evaluations were prepared on the basis of a commercial design, first-of-a-kind costs and test programs are not included. 5 refs., 58 figs., 55 tabs.

  14. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS

    SciTech Connect (OSTI)

    Nsakala ya Nsakala; Gregory N. Liljedahl

    2003-05-15

    Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this study, ALSTOM Power Inc. (ALSTOM) has investigated several coal fired power plant configurations designed to capture CO{sub 2} from effluent gas streams for use or sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB units results in significant Boiler Island cost savings. Additionally, ALSTOM has identified several advanced/novel plant configurations, which improve the efficiency and cost of the CO{sub 2} product cleanup and compression process. These advanced/novel concepts require long development efforts. An economic analysis indicates that the proposed oxygen-firing technology in circulating fluidized boilers could be developed and deployed economically in the near future in enhanced oil recovery (EOR) applications or enhanced gas recovery (EGR), such as coal bed methane recovery. ALSTOM received a Cooperative Agreement from the US Department of Energy National Energy Technology Laboratory (DOE) in 2001 to carry out a project entitled ''Greenhouse Gas Emissions Control by Oxygen Firing in Circulating Fluidized Bed Boilers.'' This two-phased project is in effect from September 28, 2001, to October 27, 2004. (U.S. DOE NETL Cooperative Agreement No. DE-FC26-01NT41146). Phase I consisted of an evaluation of the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants, and supporting bench-scale testing. And Phase II consists of pilot-scale testing, supporting a refined performance and economic evaluation of the oxygen-fired AFC concept. Phase I, detailed in this report, entails a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants. Thirteen separate but related cases (listed below), representing various levels of technology development, were evaluated as described herein. The first seven cases represent coal combustion cases in CFB type equipment. The next four cases represent Integrated Gasification Combined Cycle (IGCC) systems. The last two cases represent advanced Chemical Looping systems, which were completely paid for by ALSTOM and included herein for completeness.

  15. Numerical Analysis of using a Fluidized Bed as a Prototypic Mass Production Device for IFE Target Layering

    E-Print Network [OSTI]

    Raffray, A. René

    of the target to reduce the heat transfer onto the target during injection into the reactor chamber1 . After several topics, including the effect of unbalanced spheres on the bed behavior and ultimately for the fluidized bed model, as it affects the unbalance of the individual spheres. Keywords- Fluidized bed, IFE

  16. Decompaction and fluidization of a saturated and confined granular medium by injection of a viscous liquid or gas

    E-Print Network [OSTI]

    Schmittbuhl, Jean

    in fluidized beds under gravity is perhaps the most studied issue related to this case 26­37 . NeverthelessDecompaction and fluidization of a saturated and confined granular medium by injection of a viscous rely, are rather poorly understood and their study is in its infancy. The case of bubbling instability

  17. Limitations on fluid grid sizing for using volume-averaged fluid equations in discrete element models of fluidized beds

    E-Print Network [OSTI]

    Boyce, Christopher M.; Holland, Daniel; Dennis, John S.; Scott, Stuart A.

    2015-10-13

    Bubbling and slugging fluidization were simulated in 3D cylindrical fluidized beds using a discrete element model with computational fluid dynamics (DEM-CFD). A CFD grid was used in which the volume of all fluid cells was equal. Ninety simulations...

  18. Atmospheric fluidized bed combustion (AFBC) plants: an operations and maintenance study

    SciTech Connect (OSTI)

    Jack A. Fuller; Harvie Beavers; Robert Bessette [West Virginia University, Morgantown, WV (United States). College of Business and Economics

    2006-06-15

    The authors analyzed data from a fluidized bed boiler survey distributed during the spring of 2003 to develop appropriate AFBC (Atmospheric Fluidized Bed Combustion) performance benchmarks. The survey was sent to members of CIBO (Council of Industrial Boiler Owners), who sponsored the survey, as well as to other firms who had an operating AFBC boiler on-site. There were three primary purposes for the collection and analysis of the data contained in this fluidized bed boiler survey: (1) To develop AFBC benchmarks on technical, cost, revenue, and environmental issues; (2) to inform AFBC owners and operators of contemporary concerns and issues in the industry; (3) to improve decision making in the industry with respect to current and future plant start-ups and ongoing operations.

  19. Initial Design of a Dual Fluidized Bed Reactor

    E-Print Network [OSTI]

    Yun, Minyoung

    2014-01-01

    the gasification processes in a BFB coal gasifier, chemicalby a partition wall in the BFB reactor. Solid and gas mixingand right compartment in the BFB reactor. A larger space is

  20. Exploratory and basic fluidized-bed combustion studies. Quarterly report, January-March 1980

    SciTech Connect (OSTI)

    Johnson, I.; Myles, K.M.; Swift, W.M.

    1980-12-01

    This work supports development studies for both atmospheric and pressurized fluidized-bed coal combustion. Laboratory and process development studies are aimed at providing needed information on limestone utilization, removal of particulates and alkali metal compounds from the flue gas, control of SO/sub 2/ and trace pollutants emissions, and other aspects of fluidized-bed combustion. This report presents information on: (1) the development of a limestone utilization predictive methodology, (2) studies of particle breakup and elutriation, (3) basic studies on limestone sulfation enhancement by hydration, (4) studies of the kinetics of the hydration process, and (5) an investigation of various hydration process concepts.

  1. A simplified model for the combustion of coal in a continuous flow fluidized bed 

    E-Print Network [OSTI]

    Richardson, Thomas Wade

    1982-01-01

    Calibration Numbers. 120 LIST OF FIGURES ~Fi ure ~Pa e 1 Modes of Fluidization. 2 Liquidlike Behavior of Fluidized Beds. 3 Continuous Reaction Model. 12 4 Shrinking Core Model 5 Two-Film Model. 6 Differential Control Volume. 13 14 34 7 Proximate... for approximating polynomial outside surface area (m ), (chapter 3 only) cross-sectional Area of the bed (cml), (chapter 4 only) surface area normal to the direction of heat flow (mt) boundary within which the element is defined frequency factor constant molar...

  2. Model-free adaptive control of supercritical circulating fluidized-bed boilers

    DOE Patents [OSTI]

    Cheng, George Shu-Xing; Mulkey, Steven L

    2014-12-16

    A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  3. A Fluidized Bed Chiller: A New Approach in Making Slush-Ice 

    E-Print Network [OSTI]

    Klaren, D. G.; Van Der Meer, J. S.

    1991-01-01

    stream_source_info ESL-IE-91-06-05.pdf.txt stream_content_type text/plain stream_size 29778 Content-Encoding ISO-8859-1 stream_name ESL-IE-91-06-05.pdf.txt Content-Type text/plain; charset=ISO-8859-1 A FLUIDIZED BED... CHILLER: A NEW APPROACH IN MAKING SLUSH-ICE Dr.Ir. D.G. Klaren M.Sc. Technical Director Gebr. Scheffers B.V. Schiedam, The Netherlands ABSTRACT A fluidized bed heat exchanger already successfully applied for heat transfer applications involving...

  4. Evaluation of models for the prediction of fluidized-bed reactor performance 

    E-Print Network [OSTI]

    Frederick, John Michael

    1980-01-01

    of typical gas bubble L4] Fig. 8 Sketch of two bubbles coalescing in a fluidized bed L4] presence of splitting, the coalescence quality tends to produce a wide d1stribution of bubble sizes throughout the reactor. A parameter has been dev1sed that 1s... reactor Modes of fluidizaiton Geldhart's classification of fluidized bed particles . Distributors commonly used in industry Stages of bubble formation Idealised jet-to-bubble emergance pattern Sketch of a typical gas bubble ~Pa e 13 18 Sketch...

  5. A comparison of observables for solid-solid phase transitions

    SciTech Connect (OSTI)

    Smilowitz, Laura B [Los Alamos National Laboratory; Henson, Bryan F [Los Alamos National Laboratory; Romero, Jerry J [Los Alamos National Laboratory

    2009-01-01

    The study of solid-solid phase transformations is hindered by the difficulty of finding a volumetric probe to use as a progress variable. Solids are typically optically opaque and heterogeneous. Over the past several years, second harmonic generation (SHG) has been used as a kinetic probe for a solid-solid phase transition in which the initial and final phases have different symmetries. Bulk generation of SHG is allowed by symmetry only in noncentrosymmetric crystallographic space groups. For the organic energetic nitramine octahydro-1,3 ,5,7 -tetranitro-1,3 ,5,7 -tatrazocine (HMX), the beta phase is centro symmetric (space group P2{sub 1}/c) and the delta phase iS noncentrosymmetric (space group P6{sub 1}22) making SHG an extremely sensitive, essentially zero background probe of the phase change progress. We have used SHG as a tool to follow the progress of the transformation from beta to delta phase during the solid-solid transformation. However, kinetic models of the transformation derived using different observables from several other groups have differed, showing later onset for the phase change and faster progression to completion. In this work, we have intercompared several techniques to understand these differences. The three techniques discussed are second harmonic generation, Raman spectroscopy, and differential scanning calorimetry (DSC). The progress of the beta to delta phase transition in HMX observed with each of these different probes will be discussed and advantages and disadvantages of each technique described. This paper compares several different observables for use in measuring the kinetics of solid-solid phase transitions. Relative advantages and disadvantages for each technique are described and a direct comparison of results is made for the beta to delta polymorphic phase transition of the energetic nitramine, octahydro-1,3,5,7-tetranitro-1,3,5,7-tatrazocine.

  6. Energy and environmental research emphasizing low-rank coal -- Task 3.8, Pressurized fluidized-bed combustion

    SciTech Connect (OSTI)

    Mann, M.D.; Henderson, A.K.; Swanson, M.L.

    1995-03-01

    The goal of the PFBC activity is to generate fundamental process information that will further the development of an economical and environmentally acceptable second-generation PFBC. The immediate objectives focus on generic issues, including the performance of sulfur sorbents, fate of alkali, and the Resource Conservation and Recovery Act (RCRA) heavy metals in PFBC. A great deal of PFBC performance relates to the chemistry of the bed and the contact between gas and solids that occurs during combustion. These factors can be studied in a suitably designed bench-scale reactor. The present studies are focusing on the emission control strategies applied in the bed, rather than in hot-gas cleaning. Emission components include alkali and heavy metals in addition to SO{sub 2}, NO{sub x}, N{sub 2}O, and CO. The report presents: a description of the pressurized fluidized-bed reactor (PFBR); a description of the alkali sampling probe; shakedown testing of the bench-scale PFBR; results from alkali sampling; results from sulfur sorbent performance tests; and results from refuse-derived fuel and lignite combustion tests.

  7. Plant response to FBC waste-coal slurry solid mixtures. [Quarterly] technical report, December 1--February 28, 1994

    SciTech Connect (OSTI)

    Darmody, R.G. [Illinois Univ., Urbana, IL (United States); Dunker, R.E. [Illinois Univ., Urbana, IL (United States). Dept. of Agronomy; Dreher, G.B.; Roy, W.R.; Steel, J.D. [Illinois State Geological Survey, Champaign, IL (United States)

    1994-06-01

    The goal of this project is to test the feasibility of stabilizing coal slurry solids (CSS) wastes by directly seeding plants into the waste. This is not done conventionally because the waste can generate toxic amounts of sulfuric acid. Our approach is to neutralize the potential acidity by mixing fluidized bed combustion (FBC) waste into the slurry. If successful this approach would both help dispose of FBC wastes while providing a more economical slurry stabilization technique. The project involves growing forage plants in CSS-FBC mixtures in the greenhouse. This is the second quarter of the project. We have designed the experiment, secured greenhouse space, purchased the seeds, collected, dried, and are analyzing the FBC and CSS samples. The samples represent a typical range of properties. We retrieved two FBC and two CSS samples. One CSS sample had a relatively high CaCO{sub 3} content relative to the pyrite content and will require no FBC to neutralize the potential acidity. The other CSS sample will require from 4.2 to 2.7% FBC material to neutralize its potential acidity.

  8. Solid electrolytes

    DOE Patents [OSTI]

    Abraham, Kuzhikalail M. (Needham, MA); Alamgir, Mohamed (Dedham, MA)

    1993-06-15

    This invention pertains to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized (encapsulated) in a solid organic polymer matrix. In particular, this invention relates to solid polymer electrolytes derived by immobilizing complexes (solvates) formed between a Li salt such as LiAsF.sub.6, LiCF.sub.3 SO.sub.3 or LiClO.sub.4 and a mixture of aprotic organic solvents having high dielectric constants such as ethylene carbonate (EC) (dielectric constant=89.6) and propylene carbonate (PC) (dielectric constant=64.4) in a polymer matrix such as polyacrylonitrile, poly(tetraethylene glycol diacrylate), or poly(vinyl pyrrolidinone).

  9. Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial

    E-Print Network [OSTI]

    . Stabilization of excess activated and EBPR sludge in an anaerobic digester results in significant releases of nuElectrochemical struvite precipitation from digestate with a fluidized bed cathode microbial conditions. Soluble phosphorus removal using digester effluent ranged from 70 to 85% with current generation

  10. How Bubbly Mixtures Foam and Foam Control Using a Fluidized Bed

    E-Print Network [OSTI]

    Joseph, Daniel D.

    How Bubbly Mixtures Foam and Foam Control Using a Fluidized Bed by Jos e Guiti anz Daniel Joseph to the top because it has a higher gas fraction than the bubbly mixture from which it comes. The high gas slit bubble reactor which when used with aqueous anionic surfactants gives rise to foam. This reactor

  11. Investigation of heat transfer and combustion in the advanced fluidized bed combustor (FBC)

    SciTech Connect (OSTI)

    Dr. Seong W. Lee

    1998-10-01

    The objective of this project is to predict the heat transfer and combustion performance in newly-designed fluidized bed combustor (FBC) and to provide the design guide lines and innovative concept for small-scale boiler and furnace. The major accomplishments are summarized.

  12. FLUIDIZED BED STEAM REFORMING FOR TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    SciTech Connect (OSTI)

    HEWITT WM

    2011-04-08

    This report is one of four reports written to provide background information regarding immobilization technologies remaining under consideration for supplemental immobilization of Hanford's low-activity waste. This paper provides the reader a general understanding of fluidized bed steam reforming and its possible application to treat and immobilize Hanford low-activity waste.

  13. Characterization of Biofilm in 200W Fluidized Bed Reactors

    SciTech Connect (OSTI)

    Lee, Michelle H.; Saurey, Sabrina D.; Lee, Brady D.; Parker, Kent E.; Eisenhauer, Emalee ER; Cordova, Elsa A.; Golovich, Elizabeth C.

    2014-09-29

    Contaminated groundwater beneath the 200 West Area at the Hanford Site in Southeast Washington is currently being treated using a pump and treat system to remove organics, inorganics, radionuclides, and metals. A granular activated carbon-based fluidized bed reactor (FBR) has been added to remove nitrate, hexavalent chromium and carbon tetrachloride. Initial analytical results indicated the microorganisms effectively reduced many of the contaminants to less than cleanup levels. However shortly thereafter operational upsets of the FBR include carbon carry over, over production of microbial extracellular polymeric substance (biofilm) materials, and over production of hydrogen sulfide. As a result detailed investigations were undertaken to understand the functional diversity and activity of the microbial community present in the FBR over time. Molecular analyses including terminal restriction fragment length polymorphism analysis, quantitative polymerase chain reaction and fluorescent in situ hybridization analyses were performed on the microbial community extracted from the biofilm within the bed and from the inoculum, to determine functional dynamics of the FBR bed over time and following operational changes. Findings from these analyses indicated: 1) the microbial community within the bed was completely different than community used for inoculation, and was likely from the groundwater; 2) analyses early in the testing showed an FBR community dominated by a few Curvibacter and Flavobacterium species; 3) the final sample taken indicated that the microbial community in the FBR bed had become more diverse; and 4) qPCR analyses indicated that bacteria involved in nitrogen cycling, including denitrifiers and anaerobic ammonia oxidizing bacteria, were dominant in the bed. These results indicate that molecular tools can be powerful for determining functional diversity within FBR type reactors. Coupled with micronutrient, influent and effluent chemistry evaluations, a more complete understanding of the balance between system additions (nutrients, groundwater) and biology can be achieved, thus increasing long-term predictions of performance. These analyses uniquely provide information that can be used in optimizing the overall performance, efficiency, and stability of the system both in real time as well as over the long-term, as the system design is altered or improved and/or new streams are added.

  14. Analysis/control of in-bed tube erosion phenomena in the fluidized bed combustion system. Final technical report

    SciTech Connect (OSTI)

    Lee, Seong W.

    1996-11-01

    Research is presented on erosion and corrosion of fluidized bed combustor component materials. The characteristics of erosion of in-bed tubes was investigated. Anti-corrosion measures were also evaluated.

  15. The design of a fluidized bed for testing of a robotic burrowing device which mimics razor clams

    E-Print Network [OSTI]

    Dorsch, Daniel Scott

    2012-01-01

    This thesis reviews the design of a fluidized bed test setup for testing digging kinematics of RoboClam, a burrowing device based on Atlantic Razor Clams. This test bed allows for in-lab testing in an environment covered ...

  16. The development of a cyclonic combustor for high particulate, low caloric value gas produced by a fluidized bed 

    E-Print Network [OSTI]

    Cardenas, Manuel Moises

    1985-01-01

    THE DEVELOPMENT OF A CYCLONIC COMBUSTOR FOR HIGH PARTICULATE, LOW CALORIC VALUE GAS PRODUCED BY A FLUIDIZED BED A Thesis by MANUEL MOISES CARDENAS JR. Submitted to the Graduate College of Texas ALM University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1985 Major Subject: Mechanical Engineering THE DEVELOPMENT OF A CYCLONIC COMBUSTOR FOR HIGH PARTICULATE, LOW CALORIC VALUE GAS PRODUCED BY A FLUIDIZED BED A Thesis MANUEL MOISES CARDENAS JR...

  17. Chaotic behavior control in fluidized bed systems using artificial neural network. Quarterly progress report, April 1, 1996--June 30, 1996

    SciTech Connect (OSTI)

    Bodruzzaman, M.; Essawy, M.A.

    1996-07-30

    We have developed techniques to control the chaotic behavior in the Fluidized Bed (FBC) Systems using Artificial Neural Networks (ANNs). For those techniques to cross from theory to implementation, the computer programs we are developing have to be interfaced with the outside world, as a necessary step towards the actual interface with an FBC system or its experimental mock up. For this reason we are working on a Data Acquisition Board setup that will enable communication between our programs and external systems. Communication is planned to be enabled in both ways to deliver feedback signals from a system to the control programs in one way, and the control signals from the control programs to the controlled system in the other way. On the other hand, since most of our programs are PC based, they have to follow the revolutionary progress in the PC technology. Our programs were developed in the DOS environment using an early version of Microsoft C compiler. For those programs to meet the current needs of most PC users, we are working on converting those programs to the Windows environment, using a very advanced and up to date C++ compiler. This compiler is known as the Microsoft Visual C++ Version 4.0. This compiler enables the implementation of very professional and sophisticated Windows 95, 32 bit applications. It also allows a simple utilization of the Object Oriented Programming (OOP) techniques, and lots of powerful graphical and communication tools known as the Microsoft Foundation Classes (MFC). This compiler also allows creating Dynamic Link Libraries (DLLS) that can be liked together or with other Windows programs. These two main aspects, the computer-system interface and the DOS-Windows migration will give our programs a leap frog towards their real implementation.

  18. The Evaluation of the Mechanical Strength of Epoxy-Based Resin as a Plugging Material, and the Development of a Novel Plug and Abandon Technique Using Vitrified Solid Epoxy-Based Resin Beads 

    E-Print Network [OSTI]

    Abuelaish, Ahmed

    2012-07-16

    OF SOLID EPOXY BEADS AS A PLACEMENT METHOD ................................................................... 63 Background .......................................................................................................... 63 Vitrification... ..................................................................................................... 62 Fig. 57?An isothermal time-temperature-transformation (TTT) diagram showing the onset of gelation, vitrification, and full cure for a thermosetting epoxy (after Gillham 1985...

  19. The O{sub 2}-enriched air gasification of coal, plastics and wood in a fluidized bed reactor

    SciTech Connect (OSTI)

    Mastellone, Maria Laura, E-mail: mlaura.mastellone@unina2.it [Department of Environmental Sciences-Second University of Naples, Via Vivaldi, 43 81100 Caserta (Italy); Zaccariello, Lucio; Santoro, Donato; Arena, Umberto [Department of Environmental Sciences-Second University of Naples, Via Vivaldi, 43 81100 Caserta (Italy)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer The effect of the O{sub 2} in the gasification stream of a BFB gasifier has been studied. Black-Right-Pointing-Pointer Main advantage of the O{sub 2}-enriched air is the increasing of the bed temperature. Black-Right-Pointing-Pointer No remarkable effects on tar reduction. Decreasing of recognized PAHs. Black-Right-Pointing-Pointer Gasification reactions completed inside the dense bed and splashing zone. Black-Right-Pointing-Pointer Polycondensation reactions occur mainly in the freeboard region. - Abstract: The effect of oxygen-enriched air during fluidized bed co-gasification of a mixture of coal, plastics and wood has been investigated. The main components of the obtained syngas were measured by means of on-line analyzers and a gas chromatograph while those of the condensate phase were off-line analysed by means of a gas chromatography-mass spectrometer (GC-MS). The characterization of condensate phase as well as that of the water used as scrubbing medium completed the performed diagnostics. The experimental results were further elaborated in order to provide material and substances flow analyses inside the plant boundaries. These analyses allowed to obtain the main substance distribution between solid, gaseous and condensate phases and to estimate the conversion efficiency of carbon and hydrogen but also to easily visualise the waste streams produced by the process. The process performance was then evaluated on the basis of parameters related to the conversion efficiency of fuels into valuable products (i.e. by considering tar and particulate as process losses) as well as those related to the energy recovery.

  20. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect (OSTI)

    Wei-Ping Pan; Yan Cao; Songgeng Li

    2006-04-01

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2006 through March 31, 2006. Work was performed on the following activities. First, the fabrication and manufacture of the CFBC Facility were completed. The riser, primary cyclone and secondary cyclone of Circulating Fluidized Bed (CFB) Combustor have been erected. Second, the Mercury Control Workshop and the Grand Opening of Institute for Combustion Science and Environmental Technology (ICSET) were successfully held on February 22 and 23, 2006, respectively. Third, effects of hydrogen chlorine (HCl) and sulfur dioxide (SO{sub 2}) on mercury oxidation were studied in a drop tube reactor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  1. Proceedings of the sixth international conference on fluidized bed combustion. Volume II. Technical sessions

    SciTech Connect (OSTI)

    1980-08-01

    The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. The papers covered recent developments in atmospheric and pressurized fluidized-bed combustion, especially the design, operation and control of pilot and demonstration plants. The cleanup of combustion products and the erosion, corrosion and fouling of gas turbines was emphasized also. Fifty-five papers from Volume 2 of the proceedings have been entered individually into EDB and ERA; five papers had been entered previously from other sources. (LTN)

  2. Pulsed atmospheric fluidized bed combustion. Quarterly technical progress report, July 1992--September 1992

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    The design of the Pulsed Atmospheric Fluidized Bed Combustor (PAFBC) as described in the Quarterly Report for the period April--June, 1992 was reviewed and minor modifications were included. The most important change made was in the coal/limestone preparation and feed system. Instead of procuring pre-sized coal for testing of the PAFBC, it was decided that the installation of a milling system would permit greater flexibility in the testing with respect to size distributions and combustion characteristics in the pulse combustor and the fluid bed. Particle size separation for pulse combustor and fluid bed will be performed by an air classifier. The modified process flow diagram for the coal/limestone handling system is presented in Figure 1. The modified process flow diagrams of the fluidized bed/steam cycle and ash handling systems are presented in Figures 2 and 3, respectively.

  3. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect (OSTI)

    Wei-Ping Pan; Kunlei Liu; John T. Riley

    2004-01-01

    The purpose of this report is to summarize the progress made on the project ''Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion (CFBC) System'' in this quarter (September-December of 2003). The main tasks in this quarter consisted of the following four parts. First, all documents for managing this project have been prepared and sent to the Office of Project Management at the US Department of Energy's (DOE's) National Energy Technology Laboratory (NETL). Second, plans for the renovation of space for a new combustion laboratory for the CFBC system has progressed smoothly. Third, considerable progress in the design of the CFBC system has been made. Finally, a lab-scale simulated fluidized-bed combustion facility has been set up in order to make some fundamental investigations of the co-firing of coal with waste materials in the next quarter. Proposed work for the next quarter has been outlined in this report.

  4. Design and performance of a fluidized-bed incinerator for TRU combustible wastes

    SciTech Connect (OSTI)

    Meile, L.J.; Meyer, F.G.

    1982-01-01

    Problems encountered in the incineration of glovebox generated waste at Rocky Flats Plant (RFP) led to the development of a fluidized-bed incineration (FBI) system for transuranic (TRU) combustible wastes. Laboratory and pilot-scale testing of the process preceded the installation of an 82-kg/h production demonstration incinerator at RFP. The FBI process is discussed, and the design of the demonstration incinerator is described. Operating experience and process performance for both the pilot and demonstration units are presented.

  5. High gradient magnetic beneficiation of dry pulverized coal via upwardly directed recirculating fluidization

    DOE Patents [OSTI]

    Eissenberg, David M. (Oak Ridge, TN); Liu, Yin-An (Opelika, AL)

    1980-01-01

    This invention relates to an improved device and method for the high gradient magnetic beneficiation of dry pulverized coal, for the purpose of removing sulfur and ash from the coal whereby the product is a dry environmentally acceptable, low-sulfur fuel. The process involves upwardly directed recirculating air fluidization of selectively sized powdered coal in a separator having sections of increasing diameters in the direction of air flow, with magnetic field and flow rates chosen for optimum separations depending upon particulate size.

  6. Power plant computer aided design software char properties generated by a fluidized bed gasifier 

    E-Print Network [OSTI]

    Siebold, Walter Joachim

    1987-01-01

    POWER PLANT COMPUTER AIDED DESIGN SOFTWARE CHAR PROPERTIES GENERATED BY A FLUIDIZED BED GASIFIER A Thesis by WALTER JOACHIM SIEBOLD Submitted to the Graduate College of Texas ASM University In partial fulfillment of the requirements... incorporates the application of many engineering disciplines. Some of the design parameters are company's well kept secrets. However, using basic engineering fundamentals, a rough power plant layout can be designed. The power plant design shoul d star...

  7. Pulsed atmospheric fluidized bed combustion. Technical progress report, January 1992--March 1992

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    During this first quarter, a lab-scale water-cooled pulse combustor was designed, fabricated, and integrated with old pilot-scale PAFBC test systems. Characterization tests on this pulse combustor firing different kinds of fuel -- natural gas, pulverized coal and fine coal -- were conducted (without fluidized bed operation) for the purpose of finalizing PAFBC full-scale design. Steady-state tests were performed. Heat transfer performance and combustion efficiency of a coal-fired pulse combustor were evaluated.

  8. Proceedings of the sixth international conference on fluidized bed combustion. Volume III. Technical sessions

    SciTech Connect (OSTI)

    1980-08-01

    The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. Forty-five papers from Vol. III of the proceedings have been entered individually into EDB and ERA. Two papers had been entered previously from other sources. (LTN)

  9. Automatic control of air to fuel ratio in a fluidized bed gasifier 

    E-Print Network [OSTI]

    Ling, Peter P.

    1984-01-01

    Co. , 1982). In the past decade digital computers have been produced which can improve the performance of electromechanical system for complex processes. Control in Gasifier Operation In a coal gasification system, although no automatic A/F ratio... in the gasifier/combustor furnace were computed. However, no A/F ratio control was attempted in their study. ln Exxon's batch fluidized bed combustion unit (Yaverbaum, 1977), pulverized coal was pneumatically injected into the unit. The fuel rate...

  10. Analysis and optimized design of airlocks for fluidized bed gasifier fuel feed systems 

    E-Print Network [OSTI]

    Nuboer, Benito Frans

    1991-01-01

    influence the total cost of the conversion system. Based on the experience gained in the design and operation of five feeding systems for gasifiers, Miles concluded that three individual operations are required: a) introduction of the feed stock into a...ANALYSIS AND OPTIMIZED DESIGN OF AIRLOCKS FOR FLUIDIZED BED GASIFIER FUEL FEED SYSTEMS A Thesis by BENITO FRANS NUBOER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements...

  11. Proceedings of the Sixth International Conference on Fluidized Bed Combustion. Volume 1. Plenary sessions

    SciTech Connect (OSTI)

    1980-08-01

    The Sixth International Conference on Fluidized Bed Combustion was held at the Atlanta Hilton, Atlanta, Georgia, April 9-11, 1980. The papers in this volume involved presentation of the research and development programs of the US (US DOE, TVA, EPRI and US EPA), United Kingdom, Federal Republic of Germany and the People's Republic of China. Eight papers from Vol. 1 (Plenary Sessions) of the proceedings have been entered individually into EDB and ERA. (LTN)

  12. High Extraction Phosphors for Solid State Lighting

    SciTech Connect (OSTI)

    Chris Summers; Hisham Menkara; Brent Wagner

    2011-09-30

    We have developed high-index, high efficiency bulk luminescent materials and novel nano-sized phosphors for improved solid-state white LED lamps. These advances can potentially contribute to reducing the loss in luminous efficiencies due to scattering, re-absorption, and thermal quenching. The bulk and nanostructured luminescent materials investigated are index matched to GaN and have broad and size-tunable absorption bands, size and impurity tuned emission bands, size-driven elimination of scattering effects, and a separation between absorption and emission bands. These innovations were accomplished through the use of novel synthesis techniques suitable for high volume production for LED lamp applications. The program produced a full-color set of high quantum yield phosphors with high chemical stability. In the bulk phosphor study, the ZnSeS:Cu,Ag phosphor was optimized to achieve >91% efficiency using erbium (Er) and other activators as sensitizers. Detailed analysis of temperature quenching effects on a large number of ZnSeS:Cu,Ag,X and strontium- and calcium-thiogallate phosphors lead to a breakthrough in the understanding of the ā??anti-quenchingā?¯ behavior and a physical bandgap model was developed of this phenomena. In a follow up to this study, optimized phosphor blends for high efficiency and color performance were developed and demonstrated a 2-component phosphor system with good white chromaticity, color temperature, and high color rendering. By extending the protocols of quantum dot synthesis, ā??largeā?¯ nanocrystals, greater than 20 nm in diameter were synthesized and exhibited bulk-like behavior and blue light absorption. The optimization of ZnSe:Mn nanophosphors achieved ~85% QE The limitations of core-shell nanocrystal systems were addressed by investigating alternative deltadoped structures. To address the manufacturability of these systems, a one-pot manufacturing protocol was developed for ZnSe:Mn nanophosphors. To enhance the stability of these material systems, the encapsulation of ZnSeS particle phosphors and ZnSeS screens with Al{sub 2}O{sub 3} and TiO{sub 2} using ALD was shown to improve the stability by >8X and also increased the luminescence efficiency due to improved surface passivation and optical coupling. A large-volume fluidized bed ALD system was designed that can be adapted to a commercial ALD or vapor deposition system. Throughout the program, optical simulations were developed to evaluate and optimize various phosphor mixtures and device configurations. For example, to define the scattering properties of nanophosphors in an LED device or in a stand-off screen geometry. Also this work significantly promoted and assisted in the implementation of realistic phosphor material models into commercial modeling programs.

  13. Development of an advanced process for drying fine coal in an inclined fluidized bed

    SciTech Connect (OSTI)

    Boysen, J.E.; Cha, C.Y.; Barbour, F.A.; Turner, T.F.; Kang, T.W.; Berggren, M.H.; Hogsett, R.F.; Jha, M.C.

    1990-02-01

    The objective of this research project was to demonstrate a technically feasible and economically viable process for drying and stabilizing high-moisture subbituminous coal. Controlled thermal drying of coal fines was achieved using the inclined fluidized-bed drying and stabilization process developed by the Western Research Institute. The project scope of work required completion of five tasks: (1) project planning, (2) characterization of two feed coals, (3) bench-scale inclined fluidized-bed drying studies, (4) product characterization and testing, and (5) technical and economic evaluation of the process. High moisture subbituminous coals from AMAX Eagle Butte mine located in the Powder River Basin of Wyoming and from Usibelli Coal Mine, Inc. in Healy, Alaska were tested in a 10-lb/hr bench-scale inclined fluidized-bed. Experimental results show that the dried coal contains less than 1.5% moisture and has a heating value over 11,500 Btu/lb. The coal fines entrainment can be kept below 15 wt % of the feed. The equilibrium moisture of dried coal was less than 50% of feed coal equilibrium moisture. 7 refs., 60 figs., 47 tabs.

  14. Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine induustrial plant study

    SciTech Connect (OSTI)

    Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

    1992-07-01

    Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100[degrees]F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600[degrees]F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

  15. Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine industrial plant study

    SciTech Connect (OSTI)

    Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

    1992-07-01

    Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100{degrees}F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600{degrees}F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

  16. Materials performance in the atmospheric fluidized-bed cogeneration air heater experiment

    SciTech Connect (OSTI)

    Natesan, K.; Podolski, W.; Wang, D.Y.; Teats, F.G.; Gerritsen, W.; Stewart, A.; Robinson, K.

    1991-02-01

    The Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) sponsored by the US Department of Energy (DOE) was initiated to assess the performance of various heat-exchanger materials to be used in fluidized-bed combustion air heater systems. Westinghouse Electric Corporation, through subcontracts with Babcock & Wilcox, Foster Wheeler, and ABB Combustion Engineering Systems, prepared specifications and hardware for the ACAHE tests. Argonne National Laboratory contracted with Rockwell International to conduct tests in the DOE atmospheric fluidized-bed combustion facility. This report presents an overview of the project, a description of the facility and the test hardware, the test operating conditions, a summary of the operation, and the results of analyzing specimens from several uncooled and cooled probes exposed in the facility. Extensive microstructural analyses of the base alloys, claddings, coatings, and weldments were performed on specimens exposed in several probes for different lengths of time. Alloy penetration data were determined for several of the materials as a function of specimen orientation and the exposure location in the combustor. Finally, the data were compared with earlier laboratory test data, and the long-term performance of candidate materials for air-heater applications was assessed.

  17. Materials performance in the atmospheric fluidized-bed cogeneration air heater experiment

    SciTech Connect (OSTI)

    Natesan, K.; Podolski, W.; Wang, D.Y.; Teats, F.G. ); Gerritsen, W.; Stewart, A.; Robinson, K. )

    1991-02-01

    The Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) sponsored by the US Department of Energy (DOE) was initiated to assess the performance of various heat-exchanger materials to be used in fluidized-bed combustion air heater systems. Westinghouse Electric Corporation, through subcontracts with Babcock Wilcox, Foster Wheeler, and ABB Combustion Engineering Systems, prepared specifications and hardware for the ACAHE tests. Argonne National Laboratory contracted with Rockwell International to conduct tests in the DOE atmospheric fluidized-bed combustion facility. This report presents an overview of the project, a description of the facility and the test hardware, the test operating conditions, a summary of the operation, and the results of analyzing specimens from several uncooled and cooled probes exposed in the facility. Extensive microstructural analyses of the base alloys, claddings, coatings, and weldments were performed on specimens exposed in several probes for different lengths of time. Alloy penetration data were determined for several of the materials as a function of specimen orientation and the exposure location in the combustor. Finally, the data were compared with earlier laboratory test data, and the long-term performance of candidate materials for air-heater applications was assessed.

  18. Neural Network Based Montioring and Control of Fluidized Bed.

    SciTech Connect (OSTI)

    Bodruzzaman, M.; Essawy, M.A.

    1996-04-01

    The goal of this project was to develop chaos analysis and neural network-based modeling techniques and apply them to the pressure-drop data obtained from the Fluid Bed Combustion (FBC) system (a small scale prototype model) located at the Federal Energy Technology Center (FETC)-Morgantown. The second goal was to develop neural network-based chaos control techniques and provide a suggestive prototype for possible real-time application to the FBC system. The experimental pressure data were collected from a cold FBC experimental set-up at the Morgantown Center. We have performed several analysis on these data in order to unveil their dynamical and chaotic characteristics. The phase-space attractors were constructed from the one dimensional time series data, using the time-delay embedding method, for both normal and abnormal conditions. Several identifying parameters were also computed from these attractors such as the correlation dimension, the Kolmogorov entropy, and the Lyapunov exponents. These chaotic attractor parameters can be used to discriminate between the normal and abnormal operating conditions of the FBC system. It was found that, the abnormal data has higher correlation dimension, larger Kolmogorov entropy and larger positive Lyapunov exponents as compared to the normal data. Chaotic system control using neural network based techniques were also investigated and compared to conventional chaotic system control techniques. Both types of chaotic system control techniques were applied to some typical chaotic systems such as the logistic, the Henon, and the Lorenz systems. A prototype model for real-time implementation of these techniques has been suggested to control the FBC system. These models can be implemented for real-time control in a next phase of the project after obtaining further measurements from the experimental model. After testing the control algorithms developed for the FBC model, the next step is to implement them on hardware and link them to the experimental system. In this report, the hardware implementation issues of the control algorithms are also discussed.

  19. Experimental equilibrium structures of solids and gases 

    E-Print Network [OSTI]

    Reilly, Anthony M.

    In the past sixty years, X-ray, neutron and electron dffraction have emerged as the structural techniques of choice in the solid state. However, despite many advances in theory and instrumentation, these diffraction ...

  20. JV Task 108 - Circulating Fluidized-Bed Combustion and Combustion Testing of Turkish Tufanbeyli Coal

    SciTech Connect (OSTI)

    Douglas Hajicek; Jay Gunderson; Ann Henderson; Stephen Sollom; Joshua Stanislowski

    2007-08-15

    Two combustion tests were performed at the Energy & Environmental Research Center (EERC) using Tufanbeyli coal from Turkey. The tests were performed in a circulating fluidized-bed combustor (CFBC) and a pulverized coal-fired furnace, referred to as the combustion test facility (CTF). One of the goals of the project was to determine the type of furnace best suited to this coal. The coal is high in moisture, ash, and sulfur and has a low heating value. Both the moisture and the sulfur proved problematic for the CTF tests. The fuel had to be dried to less than 37% moisture before it could be pulverized and further dried to about 25% moisture to allow more uniform feeding into the combustor. During some tests, water was injected into the furnace to simulate the level of flue gas moisture had the fuel been fed without drying. A spray dryer was used downstream of the baghouse to remove sufficient sulfur to meet the EERC emission standards permitted by the North Dakota Department of Health. In addition to a test matrix varying excess air, burner swirl, and load, two longer-term tests were performed to evaluate the fouling potential of the coal at two different temperatures. At the lower temperature (1051 C), very little ash was deposited on the probes, but deposition did occur on the walls upstream of the probe bank, forcing an early end to the test after 2 hours and 40 minutes of testing. At the higher temperature (1116 C), ash deposition on the probes was significant, resulting in termination of the test after only 40 minutes. The same coal was burned in the CFBC, but because the CFBC uses a larger size of material, it was able to feed this coal at a higher moisture content (average of 40.1%) compared to the CTF (ranging from 24.2% to 26.9%). Sulfur control was achieved with the addition of limestone to the bed, although the high calcium-to-sulfur rate required to reduce SO{sub 2} emissions resulted in heat loss (through limestone calcination) and additional ash handling. A more efficient downstream sulfur scrubber capable of operation at a much lower Ca/S ratio would result in significantly higher boiler efficiency for this coal. At the operating temperature of a typical CFBC, bed agglomeration and convective pass fouling are not likely to be significant problems with this fuel. Compared to pulverized coal-firing, CFBC technology is clearly the better choice for this fuel. It provides more efficient sulfur capture, lower NO{sub x} emissions, better solids-handling capability, and can utilize a wetter feedstock, requiring less crushing and sizing. The lower operating temperature of CFBC boilers (820 C) reduces the risk of fouling and agglomeration. Care must be taken to minimize heat loss in the system to accommodate the low heating value of the coal.

  1. Solid-Liquid Separation of Animal Manure and Wastewater 

    E-Print Network [OSTI]

    Mukhtar, Saqib; Sweeten, John M.; Auvermann, Brent W.

    1999-10-19

    Solid-liquid separation is an alternative treatment for animal manure and process-generated wastewater. This publication explains the techniques, equipment, performance and economics of separators....

  2. The yield of Amorphous Solids Under Stress Control at Low Temperatures

    E-Print Network [OSTI]

    Valery Ilyin; Itamar Procaccia; Carmel Shor; Murari Singh

    2015-04-21

    The yield of amorphous solids like metallic glasses under external stress was discussed asserting that it is related to the glass transition by increasing temperature, or that it can be understood using statistical theories of various sorts. Here we study the approach to stress-controlled yield and argue that neither assertions can be supported, at least at low temperatures. The yield of amorphous solids at low temperatures is a highly structured phenomenon, characterized by a specific series of mechanical instabilities, and having no similarity at all to fluidization by increased temperature, real or fictive. The series of instabilities followed by stress controlled yield at low but finite temperature protocols can be predicted by analyzing athermal quasi-static strain controlled protocols, making the latter highly relevant for the deep understanding of the mechanical properties of amorphous solids.

  3. Review article Components manufacturing for solid oxide fuel cells

    E-Print Network [OSTI]

    Gleixner, Stacy

    of solid oxide fuel cell (SOFC) components is given and the fabrication techniques of ceramic components Elsevier Science B.V. All rights reserved. Keywords: Solid oxide fuel cell (SOFC); Components manufacturingReview article Components manufacturing for solid oxide fuel cells F. Tietz *, H.-P. Buchkremer, D

  4. Technical and economic assessment of fluidized bed augmented compressed air energy storage system. Volume III. Preconceptual design

    SciTech Connect (OSTI)

    Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

    1981-09-01

    A technical and economic assessment of fluidized bed combustion augmented compressed air energy storage systems is presented. The results of this assessment effort are presented in three volumes. Volume III - Preconceptual Design contains the system analysis which led to the identification of a preferred component configuration for a fluidized bed combustion augmented compressed air energy storage system, the results of the effort which transformed the preferred configuration into preconceptual power plant design, and an introductory evaluation of the performance of the power plant system during part-load operation and while load following.

  5. Method of removing sulfur emissions from a fluidized-bed combustion process

    DOE Patents [OSTI]

    Vogel, Gerhard John (Elmhurst, IL); Jonke, Albert A. (Elmhurst, IL); Snyder, Robert B. (Naperville, IL)

    1978-01-01

    Alkali metal or alkaline earth metal oxides are impregnated within refractory support material such as alumina and introduced into a fluidized-bed process for the combustion of coal. Sulfur dioxide produced during combustion reacts with the metal oxide to form metal sulfates within the porous support material. The support material is removed from the process and the metal sulfate regenerated to metal oxide by chemical reduction. Suitable pore sizes are originally developed within the support material by heat-treating to accommodate both the sulfation and regeneration while still maintaining good particle strength.

  6. Fluidizable zinc titanate materials with high chemical reactivity and attrition resistance

    DOE Patents [OSTI]

    Gupta, Raghubir P. (Durham, NC); Gangwal, Santosh K. (Durham, NC); Jain, Suresh C. (Morgantown, WV)

    1993-01-01

    Highly durable and chemically reactive zinc titanate materials are prepared in a particle size range of 50 to 400 .mu.m suitable for a fluidized-bed reactor for removing reduced sulfur species in a gaseous form by granulating a mixture of fine zinc oxide and titanium oxide with inorganic and organic binders and by optional additions of small amounts of activators such as CoO and MoO.sub.3 ; and then indurating it at 800.degree. to 900.degree. C. for a time sufficient to produce attrition-resistant granules.

  7. Pulsed atmospheric fluidized bed combustion. Quarterly technical progress report, October 1992--December 1992

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Design and Engineering of most components in the Pulsed Atmospheric Fluidized Bed System was completed prior to September 1992. The components remaining to be designed at that time were: Aerovalves for the Pulse Combustor; Gas and coal injectors for the Pulse Combustor; Lines for PC tailpipes; Air plenum and inlet silencer; Refractory lined hot gas duct connecting outlet hot cyclone to boiler; Structure and platforms, and ladders around PAFBC vessel access and major equipment. Design work is currently in progress on all of the above components. Items 1, 2, 3 and 4 are 50% completed, and items 5 & 6 are 75% complete.

  8. Fluidized bed heat exchanger with water cooled air distributor and dust hopper

    DOE Patents [OSTI]

    Jukkola, Walfred W. (Westport, CT); Leon, Albert M. (Mamaroneck, NY); Van Dyk, Jr., Garritt C. (Bethel, CT); McCoy, Daniel E. (Williamsport, PA); Fisher, Barry L. (Montgomery, PA); Saiers, Timothy L. (Williamsport, PA); Karstetter, Marlin E. (Loganton, PA)

    1981-11-24

    A fluidized bed heat exchanger is provided in which air is passed through a bed of particulate material containing fuel. A steam-water natural circulation system is provided for heat exchange and the housing of the heat exchanger has a water-wall type construction. Vertical in-bed heat exchange tubes are provided and the air distributor is water-cooled. A water-cooled dust hopper is provided in the housing to collect particulates from the combustion gases and separate the combustion zone from a volume within said housing in which convection heat exchange tubes are provided to extract heat from the exiting combustion gases.

  9. Performance and gas cleanup criterion for a cotton gin waste fluidized-bed gasifier 

    E-Print Network [OSTI]

    Craig, Joe David

    1980-01-01

    to gasify cottin gin waste. General objectives are: 1) Design and construct a fluidized-bed gasification reactor based on results of a study by Groves (1979). 2) Evaluate performance of the scaled up reactor based on Groves' empirical prediction equation... of Groves (1979). A gasifier of this type would supply about 238 megajoules of heat per hour based on converting 90 percent of the produced gas to heat. If the produced gas were used in an internal combustion engine with 20 per- e nt conversion effic...

  10. Fluidizable zinc titanate materials with high chemical reactivity and attrition resistance

    DOE Patents [OSTI]

    Gupta, R.P.; Gangwal, S.K.; Jain, S.C.

    1993-10-19

    Highly durable and chemically reactive zinc titanate materials are prepared in a particle size range of 50 to 400 [mu]m suitable for a fluidized-bed reactor for removing reduced sulfur species in a gaseous form by granulating a mixture of fine zinc oxide and titanium oxide with inorganic and organic binders and by optional additions of small amounts of activators such as CoO and MoO[sub 3]; and then indurating it at 800 to 900 C for a time sufficient to produce attrition-resistant granules.

  11. In-bed tube bank for a fluidized-bed combustor

    DOE Patents [OSTI]

    Hemenway, Jr., Lloyd F. (Morgantown, WV)

    1990-01-01

    An in-bed tube bank (10) for a fluidized bed combustor. The tube bank (10) of the present invention comprises one or more fluid communicating boiler tubes (30) which define a plurality of selectively spaced boiler tube sections (32). The tube sections (32) are substantially parallel to one another and aligned in a common plane. The tube bank (10) further comprises support members (34) for joining adjacent tube sections (32), the support members (34) engaging and extending along a selected length of the tube sections (32) and spanning the preselected space therebetween.

  12. Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer

    SciTech Connect (OSTI)

    Kevin Whitty

    2007-06-30

    University of Utah's project entitled 'Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer' (DOE Cooperative Agreement DE-FC26-02NT41490) was developed in response to a solicitation released by the U.S. Department of Energy in December 2001, requesting proposals for projects targeted towards black liquor/biomass gasification technology support research and development. Specifically, the solicitation was seeking projects that would provide technical support for Department of Energy supported black liquor and biomass gasification demonstration projects under development at the time.

  13. Fast Solid State Gas Sensor Characterization Ruby N. Ghosh1

    E-Print Network [OSTI]

    Ghosh, Ruby N.

    Fast Solid State Gas Sensor Characterization Technique Ruby N. Ghosh1 , Peter Tobias1# , Hui Hu2@egr.msu.edu Abstract---- We describe a new technique for character- izing fast solid state planar gas sensors. Using can capture the fast com- ponent of the sensor response as well as the steady state value in a single

  14. Heavy oil upgrading via fluidized bed processing and hydrogenation processing

    SciTech Connect (OSTI)

    Dawson, F.N. Jr. [California Synfuels Research Corp., Palos Verdes, CA (United States)

    1995-09-01

    California is the second largest crude oil producer in the lower 48 states. Nearly half of its production is heavy oil, difficult to transport and costly to refine. Given better methods of processing, production could be expanded. Likewise, huge worldwide reserves of heavy oils could be better exploited if more attractive processing methods were available. Midway Sunset crude at 11.8 API gravity, is a fairly difficult crude to process. It has about 1.5 percent sulfur, a very high nitrogen content, in the range of 0.7--0.8%, and metals of approximately 120--170 ppm, vanadium plus nickel. The authors will be reporting here results of the pilot plant testing to see whether non-catalytic fluid bed cracking technology, operated at low conversion, followed by hydrogenation would be economically attractive. Results suggest that this approach is competitive with delayed coking and with atmospheric resid desulfurization. This approach successfully combines carbon removal and hydrogen addition techniques for heavy oil upgrading. Comparative yields, product quality and economic considerations are reviewed in this study.

  15. Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system. Quarterly progress report, April 1-June 30, 1982

    SciTech Connect (OSTI)

    1982-10-21

    The overall objective of the Westinghouse coal gasification program is to demonstrate the viability of the Westinghouse pressurized, fluidized bed, gasification system for the production of medium-Btu fuel gas for syngas, electrical power generation, chemical feedstocks, or industrial fuels and to obtain performance and scaleup data for the process and hardware. Progress reports are presented for the following tasks: (1) operation and maintenance of the process development unit (PDU); (2) process analysis; (3) cold flow scaleup facility; (4) process and component engineering and design; and (5) laboratory support studies. Some of the highlights for this period are: TP-032-1, a single stage, oxygen-steam blown gasifier test was conducted in three operational phases from March 30, 1982 through May 2, 1982; TP-032-2 was conducted in two operational phases from May 20, 1982 through May 27, 1982; TP-032-1 and TP-032-2 successfully served as shakedown and demonstrations of the full cyclone cold wall; no visible deposits were found on the cold wall after processing highly fouling coals; samples of product gas produced during TP-032-1, were passed through four different scrubbing solutions and analyzed for 78 EPA primary organic pollutants, all of which were found to be below detection limits; TP-M004, a CO/sub 2/ tracer gas test, was initiated and completed; data analysis of test TP-M002-2 was completed and conclusions are summarized in this report; design, procurement and fabrication of the solids injection device were completed; laboratory studies involved gas-solids flow modeling and coal/ash behavior. 2 references, 11 figures, 39 tables.

  16. Atmospheric fluidized bed combustion for small scale market sectors. Final report

    SciTech Connect (OSTI)

    Ashworth, R.A.; Plessinger, D.A.; Sommer, T.M. [Energy and Environmental Research Corp., Orville, OH (United States); Keener, H.M. [Ohio Agricultural Research and Development Center, OH (United States); Webner, R.L. [Will-Burt Co., Orrville, OH (United States)

    1997-03-31

    The objective of this project was to demonstrate and promote the commercialization of coal-fired atmospheric fluidized bed combustion (AFBC) systems, with limestone addition for SO{sub 2} emissions control and a baghouse for particulate emissions control. This AFBC system was targeted for small scale industrial-commercial-institutional space and process heat applications. A cost effective and environmentally acceptable AFBC technology in this size range would displace a considerable amount of gas/oil with coal while resulting in significant total cost savings to the owner/operators. In the Proof-of-Concept Phase, a 2.2 x 10{sup 6} Btu/hr unit was installed and successfully operated at Cedar Lane Farms (CLF), a commercial nursery in Ohio. The heat from the fluidized bed was used to heat hot water which was recirculated through greenhouses for cool weather heating. The system was designed to be fully automated with minimal operator attention required. The AFBC system installed at CLF was an improved design that incorporated flyash/sorbent reinjection and an underbed feed system to improve limestone utilization. With these additions it was possible to lower the Ca/S ratio from {approximately} 3.0 to 2.0, and still maintain an SO{sub 2} emissions level of 1.2 lb/10{sup 6} Btu when burning the same high sulfur Ohio coal tested at OARDC.

  17. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect (OSTI)

    Wei-Ping Pan; Songgeng Li; John T. Riley

    2005-10-01

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2005 through September 30, 2005. The following tasks have been completed. First, the construction of the Circulating Fluidized-Bed (CFB) Combustor Building was completed. The experimental facilities have been moved into the CFB Combustor Building. Second, the fabrication and manufacture of the CFBC Facility is in the final stage and is expected to be completed before November 30, 2005. Third, the drop tube reactor has been remodeled and installed to meet the specific requirements for the investigation of the effects of flue gas composition on mercury oxidation. This study will start in the next quarter. Fourth, the effect of sulfur dioxide on molecular chlorine via the Deacon reaction was investigated. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  18. Simulation of NOx emission in circulating fluidized beds burning low-grade fuels

    SciTech Connect (OSTI)

    Afsin Gungor

    2009-05-15

    Nitrogen oxides are a major environmental pollutant resulting from combustion. This paper presents a modeling study of pollutant NOx emission resulting from low-grade fuel combustion in a circulating fluidized bed. The simulation model accounts for the axial and radial distribution of NOx emission in a circulating fluidized bed (CFB). The model results are compared with and validated against experimental data both for small-size and industrial-size CFBs that use different types of low-grade fuels given in the literature. The present study proves that CFB combustion demonstrated by both experimental data and model predictions produces low and acceptable levels of NOx emissions resulting from the combustion of low-grade fuels. Developed model can also investigate the effects of different operational parameters on overall NOx emission. As a result of this investigation, both experimental data and model predictions show that NOx emission increases with the bed temperature but decreases with excess air if other parameters are kept unchanged. 37 refs., 5 figs., 5 tabs.

  19. Pressurized Fluidized Bed Combustion Second-Generation System Research and Development

    SciTech Connect (OSTI)

    A. Robertson; D. Horazak; R. Newby; H. Goldstein

    2002-11-01

    Research is being conducted under United States Department of Energy (DOE) Contract DE-AC21-86MC21023 to develop a new type of coal-fired plant for electric power generation. This new type of plant--called a Second-Generation or Advanced Pressurized Circulating Fluidized Bed Combustion (APCFB) plant--offers the promise of efficiencies greater than 45% (HHV), with both emissions and a cost of electricity that are significantly lower than conventional pulverized-coal-fired plants with scrubbers. The APCFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized bed boiler (PCFB), and the combustion of carbonizer syngas in a topping combustor to achieve gas turbine inlet temperatures of 2300 F and higher. A conceptual design was previously prepared for this new type of plant and an economic analysis presented, all based on the use of a Siemens Westinghouse W501F gas turbine with projected carbonizer, PCFB, and topping combustor performance data. Having tested these components at the pilot plant stage, the referenced conceptual design is being updated to reflect more accurate performance predictions together with the use of the more advanced Siemens Westinghouse W501G gas turbine and a conventional 2400 psig/1050 F/1050 F/2-1/2 in. steam turbine. This report describes the updated plant which is projected to have an HHV efficiency of 48% and identifies work completed for the October 2001 through September 2002 time period.

  20. The development of a 20-inch indirect fired fluidized bed gasifier

    SciTech Connect (OSTI)

    Flanigan, V.J.; Sitton, O.C.; Huang, W.E

    1988-03-01

    This report discusses the design, fabrication and operation of a 20'' I.D. fluidized bed gasifier producing medium Btu gas. The reactor is indirectly heated using 30 x 1-inch U-tubes inserted in the inert bed. The U-tubes are heated using flue gases produced from a propane burner system located at the bottom of the reactor. The feed material was dry wood chips fed into the bed with a 6in. auger. The reactor was fed both into the bed and at the top of the bed. The fluidizing medium was superheated steam which was superheated to 1000/degree/F. The gas produced from the reactor was passed through a cyclone for char removal and routed to the flare for combustion and disposal. The parameters measured during the experimental runs were wood feed rate, steam flow rate, steam temperatures, bed temperatures, free board temperatures, product gas temperatures, bed differential pressures, char production, gas production, gas analyses, and tar production. The parameters measured in the laboratory were moisture contents (wood and char), ash contents (wood and char), and tar content. 9 refs., 19 figs., 11 tabs.

  1. Two stage, low temperature, catalyzed fluidized bed incineration with in situ neutralization for radioactive mixed wastes

    SciTech Connect (OSTI)

    Wade, J.F.; Williams, P.M.

    1995-05-17

    A two stage, low temperature, catalyzed fluidized bed incineration process is proving successful at incinerating hazardous wastes containing nuclear material. The process operates at 550{degrees}C and 650{degrees}C in its two stages. Acid gas neutralization takes place in situ using sodium carbonate as a sorbent in the first stage bed. The feed material to the incinerator is hazardous waste-as defined by the Resource Conservation and Recovery Act-mixed with radioactive materials. The radioactive materials are plutonium, uranium, and americium that are byproducts of nuclear weapons production. Despite its low temperature operation, this system successfully destroyed poly-chlorinated biphenyls at a 99.99992% destruction and removal efficiency. Radionuclides and volatile heavy metals leave the fluidized beds and enter the air pollution control system in minimal amounts. Recently collected modeling and experimental data show the process minimizes dioxin and furan production. The report also discusses air pollution, ash solidification, and other data collected from pilot- and demonstration-scale testing. The testing took place at Rocky Flats Environmental Technology Site, a US Department of Energy facility, in the 1970s, 1980s, and 1990s.

  2. Co-firing coal and municipal solid waste

    SciTech Connect (OSTI)

    Demirbas, A.

    2008-07-01

    The aim of this study was to experimentally investigate how different the organic fraction of municipal solid waste (OFMSW) or municipal solid waste (MSW) utilizing strategies affects the gas emission in simple fluidized bed combustion (FBC) of biomass. In this study, ground OFMSW and pulverized coal (PC) were used for co-firing tests. The tests were carried out in a bench-scale bubbling FBC. Coal and bio-waste fuels are quite different in composition. Ash composition of the bio-waste fuels is fundamentally different from ash composition of the coal. Chlorine (Cl) in the MSW may affect operation by corrosion. Ash deposits reduce heat transfer and also may result in severe corrosion at high temperatures. Nitrogen (N) and carbon ) assessments can play an important role in a strategy to control carbon dioxide (CO{sub 2}) and nitrogen oxide (NOx) emissions while raising revenue. Regulations such as subsidies for oil, liquid petroleum gas (LPG) for natural gas powered vehicles, and renewables, especially biomass lines, to reduce emissions may be more cost-effective than assessments. Research and development (RD) resources are driven by energy policy goals and can change the competitiveness of renewables, especially solid waste. The future supply of co-firing depends on energy prices and technical progress, both of which are driven by energy policy priorities.

  3. Solids mass flow determination

    DOE Patents [OSTI]

    Macko, Joseph E. (Hempfield Township, Westmoreland County, PA)

    1981-01-01

    Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

  4. Plant response to FBC waste-coal slurry solid mixtures. Technical report, 1 March--31 May 1994

    SciTech Connect (OSTI)

    Darmody, R.G.; Dunker, R.E. [Univ. of Illinois, Urbana, IL (United States); Dreher, G.B.; Roy, W.R.; Steel, J.D. [Illinois State Geological Survey, Champaign, IL (United States)

    1994-09-01

    The goal of this project is to test the feasibility of stabilizing coal slurry solids (CSS) wastes by directly seeding plants into the waste. This is not done conventionally because the waste can generate toxic amounts of sulfuric acid. The approach is to neutralize the potential acidity by mixing fluidized bed combustion (FBC) waste into the slurry. If successful, this approach would both help dispose of FBC wastes while providing a more economical slurry stabilization technique. The project involves growing forage plants in CSS-FBC mixtures in the greenhouse. In the first two quarters the authors designed the experiment, secured greenhouse space, purchased the seeds, collected, dried, analyzed the FBC and CSS samples. The samples represent a typical range of properties. They retrieved two FBC and two CSS samples. One CSS sample had a relatively high CaCO{sub 3} content relative to the pyrite content and required no FBC to neutralize the potential acidity. The other CSS sample required from 4.2 to 2.7% FBC material to neutralize its potential acidity. This report covers the third quarter of the project. The authors produced the CSS-FBC mixtures, analyzed the soil fertility parameters of the mixtures,, planted the crops, and monitored their growth. All mixtures support at least some plant growth, although some plants did better than others. It is too early to analyze the results statistically. Next quarter the plants will be harvested, yields calculated, mineral uptake evaluated, and a final report will be written on plant response to CSS-FBC mixtures.

  5. REMOTE DETECTION OF INTERNAL PIPELINE CORROSION USING FLUIDIZED SENSORS

    SciTech Connect (OSTI)

    Narasi Sridhar; Garth Tormoen; Ashok Sabata

    2005-10-31

    Pipelines present a unique challenge to monitoring because of the great geographical distances they cover, their burial depth, their age, and the need to keep the product flowing without much interruption. Most other engineering structures that require monitoring do not pose such combined challenges. In this regard, a pipeline system can be considered analogous to the blood vessels in the human body. The human body has an extensive ''pipeline'' through which blood and other fluids are transported. The brain can generally sense damage to the system at any location and alert the body to provide temporary repair, unless the damage is severe. This is accomplished through a vast network of fixed and floating sensors combined with a vast and extremely complex communication/decision making system. The project described in this report mimics the distributed sensor system of our body, albeit in a much more rudimentary fashion. Internal corrosion is an important factor in pipeline integrity management. At present, the methods to assess internal corrosion in pipelines all have certain limitations. In-line inspection tools are costly and cannot be used in all pipelines. Because there is a significant time interval between inspections, any impact due to upsets in pipeline operations can be missed. Internal Corrosion Direct Assessment (ICDA) is a procedure that can be used to identify locations of possible internal corrosion. However, the uncertainties in the procedure require excavation and location of damage using more detailed inspection tools. Non-intrusive monitoring techniques can be used to monitor internal corrosion, but these tools also require pipeline excavation and are limited in the spatial extent of corrosion they can examine. Therefore, a floating sensor system that can deposit at locations of water accumulation and communicate the corrosion information to an external location is needed. To accomplish this, the project is divided into four main tasks related to wireless data transmission, corrosion sensor development, sensor system motion and delivery, and consideration of other pipeline operations issues. In the first year of the program, focus was on sensor development and wireless data transmission. The second year of the program, which was discontinued due to funding shortfall, would have focused on further wireless transmission development, packaging of sensor on wireless, and other operational issues. Because, the second year funding has been discontinued, recommendations are made for future studies.

  6. Fluidized bed steam reformed mineral waste form performance testing to support Hanford Supplemental Low Activity Waste Immobilization Technology Selection

    SciTech Connect (OSTI)

    Jantzen, C. M.; Pierce, E. M.; Bannochie, C. J.; Burket, P. R.; Cozzi, A. D.; Crawford, C. L.; Daniel, W. E.; Fox, K. M.; Herman, C. C.; Miller, D. H.; Missimer, D. M.; Nash, C. A.; Williams, M. F.; Brown, C. F.; Qafoku, N. P.; Neeway, J. J.; Valenta, M. M.; Gill, G. A.; Swanberg, D. J.; Robbins, R. A.; Thompson, L. E.

    2015-10-01

    This report describes the benchscale testing with simulant and radioactive Hanford Tank Blends, mineral product characterization and testing, and monolith testing and characterization. These projects were funded by DOE EM-31 Technology Development & Deployment (TDD) Program Technical Task Plan WP-5.2.1-2010-001 and are entitled “Fluidized Bed Steam Reformer Low-Level Waste Form Qualification”, Inter-Entity Work Order (IEWO) M0SRV00054 with Washington River Protection Solutions (WRPS) entitled “Fluidized Bed Steam Reforming Treatability Studies Using Savannah River Site (SRS) Low Activity Waste and Hanford Low Activity Waste Tank Samples”, and IEWO M0SRV00080, “Fluidized Bed Steam Reforming Waste Form Qualification Testing Using SRS Low Activity Waste and Hanford Low Activity Waste Tank Samples”. This was a multi-organizational program that included Savannah River National Laboratory (SRNL), THOR® Treatment Technologies (TTT), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), Office of River Protection (ORP), and Washington River Protection Solutions (WRPS). The SRNL testing of the non-radioactive pilot-scale Fluidized Bed Steam Reformer (FBSR) products made by TTT, subsequent SRNL monolith formulation and testing and studies of these products, and SRNL Waste Treatment Plant Secondary Waste (WTP-SW) radioactive campaign were funded by DOE Advanced Remediation Technologies (ART) Phase 2 Project in connection with a Work-For-Others (WFO) between SRNL and TTT.

  7. A Two-Stage Microbial Fuel Cell and Anaerobic Fluidized Bed Membrane Bioreactor (MFC-AFMBR) System for Effective Domestic

    E-Print Network [OSTI]

    interest in the use of wastewater as a source of renewable energy.1 Microbial fuel cells (MFCs) are beingA Two-Stage Microbial Fuel Cell and Anaerobic Fluidized Bed Membrane Bioreactor (MFC-AFMBR) System, Pennsylvania 16802, United States *S Supporting Information ABSTRACT: Microbial fuel cells (MFCs

  8. Method of and apparatus for preheating pressurized fluidized bed combustor and clean-up subsystem of a gas turbine power plant

    DOE Patents [OSTI]

    Cole, Rossa W. (E. Rutherford, NJ); Zoll, August H. (Cedar Grove, NJ)

    1982-01-01

    In a gas turbine power plant having a pressurized fluidized bed combustor, gas turbine-air compressor subsystem and a gas clean-up subsystem interconnected for fluid flow therethrough, a pipe communicating the outlet of the compressor of the gas turbine-air compressor subsystem with the interior of the pressurized fluidized bed combustor and the gas clean-up subsystem to provide for flow of compressed air, heated by the heat of compression, therethrough. The pressurized fluidized bed combustor and gas clean-up subsystem are vented to atmosphere so that the heated compressed air flows therethrough and loses heat to the interior of those components before passing to the atmosphere.

  9. A study of cellulose gasification in a fluidized bed using a high-temperature solar furnace

    SciTech Connect (OSTI)

    Murray, J.P.

    1989-01-01

    A 4.2-meter solar furnace was used to study the gasification of cellulose with steam in a fluidized bed. The heating value of the high-temperature equilibrium products is about twenty percent higher than that of the reactants. The increase represents stored solar energy; and the product, synthesis gas, is valuable as a chemical feedstock or pipeline gas. All experiments were performed at atmospheric pressure. Pure tabular alumina as well as crushed automotive exhaust was used as a bed material. Microcrystalline {alpha}-cellulose, entrained in argon, entered the fluidized bed just above the distributor. Steam heated to the operating temperature in a 10 cm packed bed section below the fluidized bed. In all cases, the process ran with more steam than required to produce an equimolar mixture of carbon monoxide and hydrogen. We used a quartz reactor between 1100 and 1430 K; a steel reactor at 1500 K and an Inconel reactor at 1600 K. Reactor inside diameter, nominally 5 cm, varied slightly; the bed height was adjusted to keep the gas residence time constant. Hydrogen production rate was measured before and after experiments with steam alone, with this amount subtracted. Equilibrium mixtures were not achieved. Catalysts improved hydrogen yields with higher than expected concentrations of carbon monoxide, methane and lighter hydrocarbons such as ethylene and acetylene. Experiments performed without catalyst at 1300 K, achieved a mixture (dry, argon-free) of 46 mole% CO, 30% H{sub 2} 14% CH{sub 4} 5% CO{sub 2} and 5% C{sub 2}H{sub 4}. An equilibrium mixture at this temperature would have contained 39% CO, 30% H{sub 2} 7% CO{sub 2} and no CH{sub 4} or C{sub 2}H{sub 4}. With the catalyst, the CO and CH{sub 4} decreased to 40% and 2% respectively, the H{sub 2} increased to 47%, and CO{sub 2} remained the same. No ethylene was formed. The hydrocarbon-rich mixtures achieved are typical of rapid-pyrolysis processes.

  10. Economic Evaluation of By-Product Power/Co-Generation Systems for Industrial Plants with Fluidized-Bed Coal Burning Facilities 

    E-Print Network [OSTI]

    Mesko, J. E.

    1980-01-01

    . The plants analyzed employ fluidized bed boilers for generation of steam for process and building/heating/cooling demands, in conjunction with electric power co-generation. Results of the analysis are presented, using life cycle costs and investment payback...

  11. Rotary bulk solids divider

    DOE Patents [OSTI]

    Maronde, Carl P. (McMurray, PA); Killmeyer, Jr., Richard P. (Pittsburgh, PA)

    1992-01-01

    An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

  12. Laser cooling of solids

    SciTech Connect (OSTI)

    Epstein, Richard I; Sheik-bahae, Mansoor

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  13. Operating costs and plant options analysis for the Shamokin fluidized bed boiler

    SciTech Connect (OSTI)

    Klett, M.G.; Dowdy, T.E.; Litman, R.

    1984-03-01

    This report presents the results of a study that examined the operating costs and options to improve the Shamokin Atmospheric Fluidized Bed Combustion Demonstration Plant located near Shamokin, Pennsylvania. The purpose of this study was to perform an operating cost analysis and compare the results with projected operating costs. An analysis was also made to identify possible cost savings options. Two base case scenarios were developed for this study: the first scenario assumed that the plant operated in a manner similar to operations during the extended test program; and the second scenario was concerned with two options. One option assumed upgrading the plant to achieve continuous full load operation, restarting, and used revised costs and revenues. The second assumed reconfiguring the plant for cogeneration.

  14. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect (OSTI)

    Wei-Ping Pan; Zhongxian Cheng; Yan Cao; John Smith

    2006-09-30

    This report is to present the progress made on the project entitled ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2006 through September 30, 2006. The following activities have been completed: the steel floor grating around the riser in all levels and the three-phase power supply for CFBC System was installed. Erection of downcomers, loop seals, ash bunker, thermal expansion joints, fuel and bed material bunkers with load cells, rotary air-lock valves and fuel flow monitors is underway. Pilot-scale slipstream tests conducted with bromine compound addition were performed for two typical types of coal. The purposes of the tests were to study the effect of bromine addition on mercury oxidization. From the test results, it was observed that there was a strong oxidization effect for Powder River Basin (PRB) coal. The proposed work for next quarter and project schedule are also described.

  15. Rocky Flats Plant fluidized-bed incinerator. Engineering design and reference manual

    SciTech Connect (OSTI)

    Meile, L.J.

    1982-11-05

    The information in this manual is being presented to complete the documentation of the fluidized-bed incineration (FBI) process development at the Rocky Flats Plant. The information pertains to the 82-kg/hour demonstration unit at the Rocky Flats Plant. This document continues the presentation of design reference material in the aeas of equipment drawings, space requirements, and unit costs. In addition, appendices contain an operating procedure and an operational safety analysis of the process. The cost figures presented are based on 1978 dollars and have not been converted to a current dollar value. Also, the cost of modifications are not included, since they would be insignificant if they were incorporated into a new installation.

  16. Development of a trial burn plan for a mixed waste fluidized bed incinerator

    SciTech Connect (OSTI)

    Kabot, F.J.; Ziegler, D.L.

    1988-01-01

    One of the more important elements of the incinerator permitting process under RCRA is the development of the Trial Burn Plan. This document describes the incinerator and defines the incinerator's process envelope within which the trial burns will be conducted. The data obtained during the trial burns will be the basis for the incinerator's operating permit. This paper describes the development of the Trial Burn Plan for a unique fluidized bed incinerator to be used for the incineration of hazardous and mixed wastes at the Department of Energy's Rocky Flats Plant. It describes a review process of the Trial Burn Plan involving a public comment period that actually preceded the trial burns. 2 refs., 1 fig.

  17. Continuous Ethanol Production Using Immobilized-Cell/Enzyme Biocatalysts in Fluidized-Bed Bioreactor (FBR)

    SciTech Connect (OSTI)

    Nghiem, NP

    2003-11-16

    The immobilized-cell fluidized-bed bioreactor (FBR) was developed at Oak Ridge National Laboratory (ORNL). Previous studies at ORNL using immobilized Zymomonas mobilis in FBR at both laboratory and demonstration scale (4-in-ID by 20-ft-tall) have shown that the system was more than 50 times as productive as industrial benchmarks (batch and fed-batch free cell fermentations for ethanol production from glucose). Economic analysis showed that a continuous process employing the FBR technology to produce ethanol from corn-derived glucose would offer savings of three to six cents per gallon of ethanol compared to a typical batch process. The application of the FBR technology for ethanol production was extended to investigate more complex feedstocks, which included starch and lignocellulosic-derived mixed sugars. Economic analysis and mathematical modeling of the reactor were included in the investigation. This report summarizes the results of these extensive studies.

  18. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect (OSTI)

    Wei-Ping Pan; Songgeng Li

    2006-01-01

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period October 1, 2005 through December 31, 2005. Work was performed on the following activities. First, the fabrication and manufacture of the CFBC Facility is nearly completed. The erection of the CFBC facility is expected to start in the second week of February, 2006. Second, effect of flue gas components on mercury oxidation was investigated in a drop tube reactor. As a first step, experiment for mercury oxidation by chlorine was investigated. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  19. Pulsed atmospheric fluidized bed combustion. Technical progress report, April--June, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-07-27

    This report of activities for the second quarter of 1994 is arranged in the following order: (1) Design Activities, including Process, Mechanical, Civil and Structural, and Electrical and Instrumentation; (2) Fabrication Activities; (3) Site Construction Activities; (4) Planned Activities for Next Quarter; and (5) Schedule. In order to achieve higher horizontal penetration of the flue gases from the pulse combustor, a conical deflector must be introduced under the exit of the pulse combustor. The conical surface of the deflector will be optimally shaped to maximize redirection of the flue gases as desired. The paper discusses the design of the fluidized bed, feed system, and ash system. Drawings are included of many of the subsystems and of the auxiliary systems required at the construction site, e.g. electrical system, lighting system, and control room lay out.

  20. Process for generating electricity in a pressurized fluidized-bed combustor system

    DOE Patents [OSTI]

    Kasper, Stanley (Pittsburgh, PA)

    1991-01-01

    A process and apparatus for generating electricity using a gas turbine as part of a pressurized fluidized-bed combustor system wherein coal is fed as a fuel in a slurry in which other constituents, including a sulfur sorbent such as limestone, are added. The coal is combusted with air in a pressurized combustion chamber wherein most of the residual sulfur in the coal is captured by the sulfur sorbent. After particulates are removed from the flue gas, the gas expands in a turbine, thereby generating electric power. The spent flue gas is cooled by heat exchange with system combustion air and/or system liquid streams, and the condensate is returned to the feed slurry.

  1. Radioactive Demonstrations Of Fluidized Bed Steam Reforming (FBSR) With Hanford Low Activity Wastes

    SciTech Connect (OSTI)

    Jantzen, C. M.; Crawford, C. L.; Burket, P. R.; Bannochie, C. J.; Daniel, W. G.; Nash, C. A.; Cozzi, A. D.; Herman, C. C.

    2012-10-22

    Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One immobilization technology being considered is Fluidized Bed Steam Reforming (FBSR) which offers a low temperature (700-750?C) continuous method by which wastes high in organics, nitrates, sulfates/sulfides, or other aqueous components may be processed into a crystalline ceramic (mineral) waste form. The granular waste form produced by co-processing the waste with kaolin clay has been shown to be as durable as LAW glass. The FBSR granular product will be monolithed into a final waste form. The granular component is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals such as sodalite. Production of the FBSR mineral product has been demonstrated both at the industrial, engineering, pilot, and laboratory scales on simulants. Radioactive testing at SRNL commenced in late 2010 to demonstrate the technology on radioactive LAW streams which is the focus of this study.

  2. Solid aerosol generator

    DOE Patents [OSTI]

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1992-03-17

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration is disclosed. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  3. Improved solid aerosol generator

    DOE Patents [OSTI]

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  4. Solid State Division

    SciTech Connect (OSTI)

    Green, P.H.; Watson, D.M.

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  5. Carbon attrition during the circulating fluidized bed combustion of a packaging-derived fuel

    SciTech Connect (OSTI)

    Mastellone, M.L.; Arena, U.

    1999-05-01

    Cylindrical pellets of a market-available packaging-derived fuel, obtained from a mono-material collection of polyethylene terephthalate (PET) bottles, were batchwise fed to a laboratory scale circulating fluidized bed (CFB) combustor. The apparatus, whose riser was 41 mm ID and 4 m high, was operated under both inert and oxidizing conditions to establish the relative importance of purely mechanical attrition and combustion-assisted attrition in generating carbon fines. Silica sand particles of two size distributions were used as inert materials. For each run, carbon load and carbon particle size distribution in the riser and rates of attrited carbon fines escaping the combustor were determined as a function of time. A parallel investigation was carried out with a bubbling fluidized bed (BFB) combustor to point out peculiarities of attrition in CFB combustors. After devolatilization, PET pellets generated fragile aggregates of char and sand, which easily crumbled, leading to single particles, partially covered by a carbon-rich layer. The injected fixed carbon was therefore present in the bed in three phases: an A-phase, made of aggregates of sand and char, an S-phase, made of individual carbon-covered sand particles and an F-phase, made of carbon fines, abraded by the surfaces of the A- and S-phases. The effects of the size of inert material on the different forms under which fixed carbon was present in the bed and on the rate of escape of attrited carbon fines from the combustor were investigated. Features of carbon attrition in CFB and BFB combustors are discussed.

  6. Contamination and solid state welds.

    SciTech Connect (OSTI)

    Mills, Bernice E.

    2007-05-01

    Since sensitivity to contamination is one of the verities of solid state joining, there is a need for assessing contamination of the part(s) to be joined, preferably nondestructively while it can be remedied. As the surfaces that are joined in pinch welds are inaccessible and thus provide a greater challenge, most of the discussion is of the search for the origin and effect of contamination on pinch welding and ways to detect and mitigate it. An example of contamination and the investigation and remediation of such a system is presented. Suggestions are made for techniques for nondestructive evaluation of contamination of surfaces for other solid state welds as well as for pinch welds. Surfaces that have good visual access are amenable to inspection by diffuse reflection infrared Fourier transform (DRIFT) spectroscopy. Although other techniques are useful for specific classes of contaminants (such as hydrocarbons), DRIFT can be used most classes of contaminants. Surfaces such as the interior of open tubes or stems that are to be pinch welded can be inspected using infrared reflection spectroscopy. It must be demonstrated whether or not this tool can detect graphite based contamination, which has been seen in stems. For tubes with one closed end, the technique that should be investigated is emission infrared spectroscopy.

  7. Structural studies of amyloid fibrils using solid-state NMR

    E-Print Network [OSTI]

    Caporini, Marc Anthony

    2008-01-01

    he development of solid-state NMR techniques and application to amyloid fibrils are presented. In addition, a new method of selective inversion based on chemical shift anisotropy is presented. An improved method for highly ...

  8. ADVANCING THE FUNDAMENTAL UNDERSTANDING AND SCALE-UP OF TRISO FUEL COATERS VIA ADVANCED MEASUREMENT AND COMPUTATIONAL TECHNIQUES

    SciTech Connect (OSTI)

    Biswas, Pratim; Al-Dahhan, Muthanna

    2012-11-01

    Tri-isotropic (TRISO) fuel particle coating is critical for the future use of nuclear energy produced byadvanced gas reactors (AGRs). The fuel kernels are coated using chemical vapor deposition in a spouted fluidized bed. The challenges encountered in operating TRISO fuel coaters are due to the fact that in modern AGRs, such as High Temperature Gas Reactors (HTGRs), the acceptable level of defective/failed coated particles is essentially zero. This specification requires processes that produce coated spherical particles with even coatings having extremely low defect fractions. Unfortunately, the scale-up and design of the current processes and coaters have been based on empirical approaches and are operated as?black boxes¯. Hence, a voluminous amount of experimental development and trial and error work has been conducted. It has been clearly demonstrated that the quality of the coating applied to the fuel kernels is impacted by the hydrodynamics, solids flow field, and flow regime characteristics of the spouted bed coaters, which themselves are influenced by design parameters and operating variables. Further complicating the outlook for future fuel-coating technology and nuclear energy production is the fact that a variety of new concepts will involve fuel kernels of different sizes and with compositions of different densities. Therefore, without a fundamental understanding the underlying phenomena of the spouted bed TRISO coater, a significant amount of effort is required for production of each type of particle with a significant risk of not meeting the specifications. This difficulty will significantly and negatively impact the applications of AGRs for power generation and cause further challenges to them as an alternative source of commercial energy production. Accordingly, the proposed work seeks to overcome such hurdles and advance the scale-up, design, and performance of TRISO fuel particle spouted bed coaters. The overall objectives of the proposed work are to advance the fundamental understanding of the hydrodynamics by systematically investigating the effect of design and operating variables, to evaluate the reported dimensionless groups as scaling factors, and to establish a reliable scale-up methodology for the TRISO fuel particle spouted bed coaters based on hydrodynamic similarity via advanced measurement and computational techniques. An additional objective is to develop an on-line non-invasive measurement technique based on gamma ray densitometry (i.e. Nuclear Gauge Densitometry) that can be installed and used for coater process monitoring to ensure proper performance and operation and to facilitate the developed scale-up methodology. To achieve the objectives set for the project, the work will use optical probes and gamma ray computed tomography (CT) (for the measurements of solids/voidage holdup cross-sectional distribution and radial profiles along the bed height, spouted diameter, and fountain height) and radioactive particle tracking (RPT) (for the measurements of the 3D solids flow field, velocity, turbulent parameters, circulation time, solids lagrangian trajectories, and many other of spouted bed related hydrodynamic parameters). In addition, gas dynamic measurement techniques and pressure transducers will be utilized to complement the obtained information. The measurements obtained by these techniques will be used as benchmark data to evaluate and validate the computational fluid dynamic (CFD) models (two fluid model or discrete particle model) and their closures. The validated CFD models and closures will be used to facilitate the developed methodology for scale-up, design and hydrodynamic similarity. Successful execution of this work and the proposed tasks will advance the fundamental understanding of the coater flow field and quantify it for proper and safe design, scale-up, and performance. Such achievements will overcome the barriers to AGR applications and will help assure that the US maintains nuclear energy as a feasible option to meet the nationĆ?Ā?Ć?Ā?Ć

  9. Solid Waste Management (Indiana)

    Broader source: Energy.gov [DOE]

    The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Indiana Department of...

  10. Mixed oxide solid solutions

    DOE Patents [OSTI]

    Magno, Scott (Dublin, CA); Wang, Ruiping (Fremont, CA); Derouane, Eric (Liverpool, GB)

    2003-01-01

    The present invention is a mixed oxide solid solution containing a tetravalent and a pentavalent cation that can be used as a support for a metal combustion catalyst. The invention is furthermore a combustion catalyst containing the mixed oxide solid solution and a method of making the mixed oxide solid solution. The tetravalent cation is zirconium(+4), hafnium(+4) or thorium(+4). In one embodiment, the pentavalent cation is tantalum(+5), niobium(+5) or bismuth(+5). Mixed oxide solid solutions of the present invention exhibit enhanced thermal stability, maintaining relatively high surface areas at high temperatures in the presence of water vapor.

  11. Design of slurry bubble column reactors: novel technique for optimum catalyst size selection contractual origin of the invention

    DOE Patents [OSTI]

    Gamwo, Isaac K. (Murrysville, PA); Gidaspow, Dimitri (Northbrook, IL); Jung, Jonghwun (Naperville, IL)

    2009-11-17

    A method for determining optimum catalyst particle size for a gas-solid, liquid-solid, or gas-liquid-solid fluidized bed reactor such as a slurry bubble column reactor (SBCR) for converting synthesis gas into liquid fuels considers the complete granular temperature balance based on the kinetic theory of granular flow, the effect of a volumetric mass transfer coefficient between the liquid and the gas, and the water gas shift reaction. The granular temperature of the catalyst particles representing the kinetic energy of the catalyst particles is measured and the volumetric mass transfer coefficient between the gas and liquid phases is calculated using the granular temperature. Catalyst particle size is varied from 20 .mu.m to 120 .mu.m and a maximum mass transfer coefficient corresponding to optimum liquid hydrocarbon fuel production is determined. Optimum catalyst particle size for maximum methanol production in a SBCR was determined to be in the range of 60-70 .mu.m.

  12. Closures for Course-Grid Simulation of Fluidized Gas-Particle Flows

    SciTech Connect (OSTI)

    Sankaran Sundaresan

    2010-02-14

    Gas-particle flows in fluidized beds and riser reactors are inherently unstable, and they manifest fluctuations over a wide range of length and time scales. Two-fluid models for such flows reveal unstable modes whose length scale is as small as ten particle diameters. Yet, because of limited computational resources, gas-particle flows in large fluidized beds are invariably simulated by solving discretized versions of the two-fluid model equations over a coarse spatial grid. Such coarse-grid simulations do not resolve the small-scale spatial structures which are known to affect the macroscale flow structures both qualitatively and quantitatively. Thus there is a need to develop filtered two-fluid models which are suitable for coarse-grid simulations and capturing the effect of the small-scale structures through closures in terms of the filtered variables. The overall objective of the project is to develop validated closures for filtered two-fluid models for gas-particle flows, with the transport gasifier as a primary, motivating example. In this project, highly resolved three-dimensional simulations of a kinetic theory based two-fluid model for gas-particle flows have been performed and the statistical information on structures in the 100-1000 particle diameters length scale has been extracted. Based on these results, closures for filtered two-fluid models have been constructed. The filtered model equations and closures have been validated against experimental data and the results obtained in highly resolved simulations of gas-particle flows. The proposed project enables more accurate simulations of not only the transport gasifier, but also many other non-reacting and reacting gas-particle flows in a variety of chemical reactors. The results of this study are in the form of closures which can readily be incorporated into existing multi-phase flow codes such as MFIX (www.mfix.org). Therefore, the benefits of this study can be realized quickly. The training provided by this project has prepared a PhD student to enter research and development careers in DOE laboratories or chemicals/energy-related industries.

  13. Development and Testing of the Advanced CHP System Utilizing the Off-Gas from the Innovative Green Coke Calcining Process in Fluidized Bed

    SciTech Connect (OSTI)

    Chudnovsky, Yaroslav; Kozlov, Aleksandr

    2013-08-15

    Green petroleum coke (GPC) is an oil refining byproduct that can be used directly as a solid fuel or as a feedstock for the production of calcined petroleum coke. GPC contains a high amount of volatiles and sulfur. During the calcination process, the GPC is heated to remove the volatiles and sulfur to produce purified calcined coke, which is used in the production of graphite, electrodes, metal carburizers, and other carbon products. Currently, more than 80% of calcined coke is produced in rotary kilns or rotary hearth furnaces. These technologies provide partial heat utilization of the calcined coke to increase efficiency of the calcination process, but they also share some operating disadvantages. However, coke calcination in an electrothermal fluidized bed (EFB) opens up a number of potential benefits for the production enhancement, while reducing the capital and operating costs. The increased usage of heavy crude oil in recent years has resulted in higher sulfur content in green coke produced by oil refinery process, which requires a significant increase in the calcinations temperature and in residence time. The calorific value of the process off-gas is quite substantial and can be effectively utilized as an “opportunity fuel” for combined heat and power (CHP) production to complement the energy demand. Heat recovered from the product cooling can also contribute to the overall economics of the calcination process. Preliminary estimates indicated the decrease in energy consumption by 35-50% as well as a proportional decrease in greenhouse gas emissions. As such, the efficiency improvement of the coke calcinations systems is attracting close attention of the researchers and engineers throughout the world. The developed technology is intended to accomplish the following objectives: - Reduce the energy and carbon intensity of the calcined coke production process. - Increase utilization of opportunity fuels such as industrial waste off-gas from the novel petroleum coke calcination process. - Increase the opportunity of heat (chemical and physical) utilization from process off-gases and solid product. - Develop a design of advanced CHP system utilizing off-gases as an “opportunity fuel” for petroleum coke calcinations and sensible heat of calcined coke. A successful accomplishment of the aforementioned objectives will contribute toward the following U.S. DOE programmatic goals: - Drive a 25% reduction in U. S. industrial energy intensity by 2017 in support of EPAct 2005; - Contribute to an 18% reduction in U.S. carbon intensity by 2012 as established by the Administration’s “National Goal to Reduce Emissions Intensity.” 8

  14. Direct Carbon Fuel Cell System Utilizing Solid Carbonaceous Fuels

    SciTech Connect (OSTI)

    Turgut Gur

    2010-04-30

    This 1-year project has achieved most of its objective and successfully demonstrated the viability of the fluidized bed direct carbon fuel cell (FB-DCFC) approach under development by Direct Carbon technologies, LLC, that utilizes solid carbonaceous fuels for power generation. This unique electrochemical technology offers high conversion efficiencies, produces proportionately less CO{sub 2} in capture-ready form, and does not consume or require water for gasification. FB-DCFC employs a specialized solid oxide fuel cell (SOFC) arrangement coupled to a Boudouard gasifier where the solid fuel particles are fluidized and reacted by the anode recycle gas CO{sub 2}. The resulting CO is electrochemically oxidized at the anode. Anode supported SOFC structures employed a porous Ni cermet anode layer, a dense yttria stabilized zirconia membrane, and a mixed conducting porous perovskite cathode film. Several kinds of untreated solid fuels (carbon and coal) were tested in bench scale FBDCFC prototypes for electrochemical performance and stability testing. Single cells of tubular geometry with active areas up to 24 cm{sup 2} were fabricated. The cells achieved high power densities up to 450 mW/cm{sup 2} at 850 C using a low sulfur Alaska coal char. This represents the highest power density reported in the open literature for coal based DCFC. Similarly, power densities up to 175 mW/cm{sup 2} at 850 C were demonstrated with carbon. Electrical conversion efficiencies for coal char were experimentally determined to be 48%. Long-term stability of cell performance was measured under galvanostatic conditions for 375 hours in CO with no degradation whatsoever, indicating that carbon deposition (or coking) does not pose any problems. Similar cell stability results were obtained in coal char tested for 24 hours under galvanostatic conditions with no sign of sulfur poisoning. Moreover, a 50-cell planar stack targeted for 1 kW output was fabricated and tested in 95% CO (balance CO{sub 2}) that simulates the composition of the coal syngas. At 800 C, the stack achieved a power density of 1176 W, which represents the largest power level demonstrated for CO in the literature. Although the FB-DCFC performance results obtained in this project were definitely encouraging and promising for practical applications, DCFC approaches pose significant technical challenges that are specific to the particular DCFC scheme employed. Long term impact of coal contaminants, particularly sulfur, on the stability of cell components and cell performance is a critically important issue. Effective current collection in large area cells is another challenge. Lack of kinetic information on the Boudouard reactivity of wide ranging solid fuels, including various coals and biomass, necessitates empirical determination of such reaction parameters that will slow down development efforts. Scale up issues will also pose challenges during development of practical FB-DCFC prototypes for testing and validation. To overcome some of the more fundamental problems, initiation of federal support for DCFC is critically important for advancing and developing this exciting and promising technology for third generation electricity generation from coal, biomass and other solid fuels including waste.

  15. High solids fermentation reactor

    DOE Patents [OSTI]

    Wyman, Charles E. (Lakewood, CO); Grohmann, Karel (Littleton, CO); Himmel, Michael E. (Littleton, CO); Richard, Christopher J. (Lakewood, CO)

    1993-01-01

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  16. High solids fermentation reactor

    DOE Patents [OSTI]

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-03-02

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  17. Managing America's solid waste

    SciTech Connect (OSTI)

    Phillips, J. A.

    1998-09-15

    This report presents an historical overview of the federal role in municipal solid waste management from 1965 to approximately 1995. Attention is focuses on the federal role in safeguarding public health, protecting the environment, and wisely using material and energy resources. It is hoped that this report will provide important background for future municipal solid waste research and development initiatives.

  18. Teaching Techniques 

    E-Print Network [OSTI]

    Howard, Jeff W.

    2005-05-10

    with others such as a small group discussion or the question-answer technique to al- low the 4-H?ers to express their opinion. 2. Illustrated talk This method is an offshoot of the lecture technique, in which the teacher supports the talk with such things... as drawings, posters, copies of articles and other materials. The drawings or posters need not be professional art pieces, they need only be interesting and clear. For ex- ample, in entomology, rather than just talking about the various shapes...

  19. Proposed replacement and operation of the anhydrous hydrogen fluoride supply and fluidized-bed chemical processing systems at Building 9212, Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1995-09-01

    The US Department of Energy (DOE) proposes to replace the existing anhydrous hydrogen fluoride (AHF) supply and fluidized-bed reactor systems for the Weapons Grade Highly Enriched Uranium Chemical Recovery and Recycle Facility, Building 9212, which is located within the Y-12 Plant on DOE`s Oak Ridge Reservation in Oak Ridge, Tennessee. The proposed replacement system would be based upon modern design criteria and safety analyses. The replacement AHF supply and distribution system equipment would be located on the existing Dock 8/8A at Building 9212. Utilities would be extended to the dock to service the process equipment. The following process equipment modules would be prefabricated for installation at the modified dock: an AHF cylinder enclosure, an AHF supply manifold and vaporizer module, an AHF sump tank and transfer skid, and an AHF supply off-gas scrubber assembly module. The fluidized-bed reactor system would be constructed in an area adjacent to the existing system in Building 9212. The replacement equipment would consist of a new reduction fluidized-bed reactor, a hydrofluorination fluidized-bed reactor, and associated air emission control equipment. The no-action alternative, which is the continued operation of the existing AHF supply and fluidized-bed reactor systems, was also evaluated.

  20. Desulfurization of fuel gases in fluidized bed gasification and hot fuel gas cleanup systems

    DOE Patents [OSTI]

    Steinberg, M.; Farber, G.; Pruzansky, J.; Yoo, H.J.; McGauley, P.

    1983-08-26

    A problem with the commercialization of fluidized bed gasification is that vast amounts of spent sorbent are generated if the sorbent is used on a once-through basis, especially if high sulfur coals are burned. The requirements of a sorbent for regenerative service in the FBG process are: (1) it must be capable of reducing the sulfur containing gas concentration of the FBG flue gas to within acceptable environmental standards; (2) it must not lose its reactivity on cyclic sulfidation and regeneration; (3) it must be capable of regeneration with elimination of substantially all of its sulfur content; (4) it must have good attrition resistance; and, (5) its cost must not be prohibitive. It has now been discovered that calcium silicate pellets, e.g., Portland cement type III pellets meet the criteria aforesaid. Calcium silicate removes COS and H/sub 2/S according to the reactions given to produce calcium sulfide silicate. The sulfur containing product can be regenerated using CO/sub 2/ as the regenerant. The sulfur dioxide can be conveniently reduced to sulfur with hydrogen or carbon for market or storage. The basic reactions in the process of this invention are the reactions with calcium silicate given in the patent. A convenient and inexpensive source of calcium silicate is Portland cement. Portland cement is a readily available, widely used construction meterial.

  1. Characterization and Leaching Tests of the Fluidized Bed Steam Reforming (FBSR) Waste Form for LAW Immobilization

    SciTech Connect (OSTI)

    Neeway, James J.; Qafoku, Nikolla; Brown, Christopher F.; Peterson, Reid A.

    2013-10-01

    Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) have been evaluated. One such immobilization technology is the Fluidized Bed Steam Reforming (FBSR) granular product. The FBSR granular product is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals. Production of the FBSR mineral product has been demonstrated both at the industrial and laboratory scale. Pacific Northwest National Laboratory (PNNL) was involved in an extensive characterization campaign. This goal of this campaign was study the durability of the FBSR mineral product and the mineral product encapsulated in a monolith to meet compressive strength requirements. This paper gives an overview of results obtained using the ASTM C 1285 Product Consistency Test (PCT), the EPA Test Method 1311 Toxicity Characteristic Leaching Procedure (TCLP), and the ASTMC 1662 Single-Pass Flow-Through (SPFT) test. Along with these durability tests an overview of the characteristics of the waste form has been collected using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), microwave digestions for chemical composition, and surface area from Brunauer, Emmett, and Teller (BET) theory.

  2. Pressurized fluidized bed reactor and a method of operating the same

    DOE Patents [OSTI]

    Isaksson, J.

    1996-02-20

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  3. Pressurized fluidized bed reactor and a method of operating the same

    DOE Patents [OSTI]

    Isaksson, Juhani (Karhula, FI)

    1996-01-01

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  4. Performance of the Fluidized Bed Steam Reforming Product Under Hydraulically Unsaturated Conditions

    SciTech Connect (OSTI)

    Neeway, James J.; Qafoku, Nikolla; Williams, Benjamin D.; Rod, Kenton A.; Bowden, Mark E.; Brown, Christopher F.; Pierce, Eric M.

    2014-05-01

    Currently, several candidates for secondary waste immobilization at the Hanford site in the State of Washington, USA are being considered. To demonstrate the durability of the product in the unsaturated Integrated Disposal Facility (IDF) at the site, a series of tests have been performed one of the candidate materials using the Pressurized Unsaturated Flow (PUF) system. The material that was tested was the Fluidized Bed Steam Reformer (FBSR) granular product and the granular product encapsulated in a geopolymer matrix. The FBSR product is composed primarily of an insoluble sodium aluminosilicate matrix with the dominant phases being feldspathoid minerals mostly nepheline, sodalite, and nosean. The PUF test method allows for the accelerated weathering of materials, including radioactive waste forms, under hydraulically unsaturated conditions, thus mimicking the open-flow and transport properties that most likely will be present at the IDF. The experiments show a trend of decreasing tracer release as a function of time for several of the elements released from the material including Na, Si, Al, and Cs. However, some of the elements, notably I and Re, show a steady release throughout the yearlong test. This result suggests that the release of these minerals from the sodalite cage occurs at a different rate compared with the dissolution of the predominant nepheline phase.

  5. Radionuclide and contaminant immobilization in the fluidized bed steam reforming waste products

    SciTech Connect (OSTI)

    Neeway, James J.; Qafoku, Nikolla; Westsik, Joseph H.; Brown, Christopher F.; Jantzen, Carol; Pierce, Eric M.

    2012-05-01

    The goal of this chapter is to introduce the reader to the Fluidized Bed Steam Reforming (FBSR) process and resulting waste form. The first section of the chapter gives an overview of the potential need for FBSR processing in nuclear waste remediation followed by an overview of the engineering involved in the process itself. This is followed by a description of waste form production at a chemical level followed by a section describing different process streams that have undergone the FBSR process. The third section describes the resulting mineral product in terms of phases that are present and the ability of the waste form to encapsulate hazardous and radioactive wastes from several sources. Following this description is a presentation of the physical properties of the granular and monolith waste form product including and contaminant release mechanisms. The last section gives a brief summary of this chapter and includes a section on the strengths associated with this waste form and the needs for additional data and remaining questions yet to be answered. The reader is directed elsewhere for more information on other waste forms such as Cast Stone (Lockrem, 2005), Ceramicrete (Singh et al., 1997, Wagh et al., 1999) and geopolymers (Kyritsis et al., 2009; Russell et al., 2006).

  6. Process and technological aspects of municipal solid waste gasification. A review

    SciTech Connect (OSTI)

    Arena, Umberto

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Critical assessment of the main commercially available MSW gasifiers. Black-Right-Pointing-Pointer Detailed discussion of the basic features of gasification process. Black-Right-Pointing-Pointer Description of configurations of gasification-based waste-to-energy units. Black-Right-Pointing-Pointer Environmental performance analysis, on the basis of independent sources data. - Abstract: The paper proposes a critical assessment of municipal solid waste gasification today, starting from basic aspects of the process (process types and steps, operating and performance parameters) and arriving to a comparative analysis of the reactors (fixed bed, fluidized bed, entrained bed, vertical shaft, moving grate furnace, rotary kiln, plasma reactor) as well as of the possible plant configurations (heat gasifier and power gasifier) and the environmental performances of the main commercially available gasifiers for municipal solid wastes. The analysis indicates that gasification is a technically viable option for the solid waste conversion, including residual waste from separate collection of municipal solid waste. It is able to meet existing emission limits and can have a remarkable effect on reduction of landfill disposal option.

  7. Management of Solid Waste (Oklahoma)

    Broader source: Energy.gov [DOE]

    The Solid Waste Management Division of the Department of Environmental Quality regulates solid waste disposal or any person who generates, collects, transports, processes, and/or disposes of solid...

  8. Proceedings: 1989 conference on municipal solid waste as a utility fuel

    SciTech Connect (OSTI)

    Not Available

    1991-02-01

    This volume contains papers presented at the 1989 Electric Power Research Institute (EPRI) Conference on Municipal Solid Waste as a Utility Fuel. The subject areas included are: Utility cofiring experience, refuse-derived fuel production, firing 100% refuse-derived fuel, mass burn technology, fluidized bed combustion, research reports, environmental control technology, and papers on permitting, environmental risk assessment, and the impact of recycling. The conference was held on October 10--12, 1989, and was proceeded by similar conferences held 11/85 (EPRI publication CS-4900-SR, 1986); 1/82 (EPRI publication CS-2723, 1982) and 1/80 (EPRI Publication WS-79-225, 1980). Individual projects are processed separately for on the databases. (MHB)

  9. Electrochemical Techniques

    SciTech Connect (OSTI)

    Chen, Gang; Lin, Yuehe

    2008-07-20

    Sensitive and selective detection techniques are of crucial importance for capillary electrophoresis (CE), microfluidic chips, and other microfluidic systems. Electrochemical detectors have attracted considerable interest for microfluidic systems with features that include high sensitivity, inherent miniaturization of both the detection and control instrumentation, low cost and power demands, and high compatibility with microfabrication technology. The commonly used electrochemical detectors can be classified into three general modes: conductimetry, potentiometry, and amperometry.

  10. Measurement techniques

    SciTech Connect (OSTI)

    Willis, W.L.

    1980-10-01

    The discussion will be restricted to measurements of voltage and current. Also, although the measurements themselves should be as quantitative as possible, the discussion is rather nonquantitative. Emphasis is on types of instruments, how they may be used, and the inherent advantages and limitations of a given technique. A great deal of information can be obtained from good, clean voltage and current data. Power and impedance are obviously inherent if the proper time relationships are preserved. Often an associated, difficult-to-determine, physical event can be evaluated from the V-I data, such as a time-varying load characteristic, or the time of light emission, etc. The lack of active high voltage devices, such as 50-kV operational amplifiers, restricts measurement devices to passive elements, primarily R and C. There are a few more exotic techniques that are still passive in nature. There are several well-developed techniques for voltage measurements. These include: spark gaps; electrostatic meters; capacitive dividers; mixed RC dividers; and the electro-optic effect. Current is measured by either direct measurement of charge flow or by measuring the resulting magnetic field.

  11. Solid Waste Management (North Carolina)

    Broader source: Energy.gov [DOE]

    The Solid Waste Program regulates safe management of solid waste through guidance, technical assistance, regulations, permitting, environmental monitoring, compliance evaluation and enforcement....

  12. Sulfur removal in advanced two stage pressurized fluidized bed combustion. Technical report, 1 March--31 May 1994

    SciTech Connect (OSTI)

    Abbasian, J.; Chowdiah, P.; Hill, A.H.; Rue, D.M. [Inst. of Gas Technology, Chicago, IL (United States)

    1994-09-01

    The objective of this study is to obtain data on the rates of reaction between hydrogen sulfide (H{sub 2}S) and uncalcined calcium-based sorbents under operating conditions relevant to first stage (carbonizer) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors (PFBC). In these systems the CO{sub 2} partial pressure in the first stage generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, removal of sulfur compounds takes place through the reaction between H{sub 2}S and calcium carbonate. To achieve this objective, the rates of reaction between hydrogen sulfide and uncalcined calcium-based sorbents will be determined by conducting tests in pressurized thermogravimetric analyzer (TGA) and high-pressure/high-temperature fluidized-bed reactor (HPTR) units. The effects of sorbent type, sorbent particle size, reactor temperature and pressure, and CO{sub 2} and H{sub 2}S partial pressures on the sulfidation reaction rate will be determined. During this quarter a series of sulfidation tests were conducted in the high-pressure/high-temperature fluidized-bed reactor (HPTR) units. The effects of sorbent type, sorbent particle size, reactor temperature and pressure, and CO{sub 2} and H{sub 2}S partial pressures on the sulfidation reaction rate will be determined. During this quarter a series of sulfidation tests were conducted in the high-pressure high-temperature thermogravimetric analyzer (HPTGA unit) using limestone and dolomite. The results suggest that half-calcined dolomite is much more reactive than uncalcined limestone. Also, temperature in the range of 800 to 950 C did not significantly affect the sulfidation reaction rates for both limestone and dolomite.

  13. Solid Waste Management (Kansas)

    Broader source: Energy.gov [DOE]

    This act aims to establish and maintain a cooperative state and local program of planning and technical and financial assistance for comprehensive solid waste management. No person shall construct,...

  14. Solid State Lighting Reliability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid State Lighting Reliability 2015Building Technologies Office Peer Review Lynn Davis, PhD RTI International ldavis@rti.org --- 919-316-3325 Project Summary Timeline: Start...

  15. Solid polymer electrolytes

    DOE Patents [OSTI]

    Abraham, K.M.; Alamgir, M.; Choe, H.S.

    1995-12-12

    This invention relates to Li ion (Li{sup +}) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF{sub 3}SO{sub 2}){sub 2}, LiAsF{sub 6}, and LiClO{sub 4}. 2 figs.

  16. Solid polymer electrolytes

    DOE Patents [OSTI]

    Abraham, Kuzhikalail M. (Needham, MA); Alamgir, Mohamed (Dedham, MA); Choe, Hyoun S. (Waltham, MA)

    1995-01-01

    This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.

  17. Functionalization of polymers using an atmospheric plasma jet in a fluidized bed reactor and the impact on SLM-processes

    SciTech Connect (OSTI)

    Sachs, M. Schmitt, A. Schmidt, J. Peukert, W. Wirth, K-E

    2014-05-15

    In order to improve thermoplastics (e.g. Polyamide, Polypropylene and Polyethylene) for Selective Laser Beam Melting (SLM) processes a new approach to functionalize temperature sensitive polymer powders in a large scale is investigated. This is achieved by combining an atmospheric pressure plasma jet and a fluidized bed reactor. Using pressurized air as the plasma gas, radicals like OH* are created. The functionalization leads to an increase of the hydrophilicity of the treated polymer powder without changing the bulk properties. Using the polymers in a SLM process to build single layers of melted material leads to an improvement of the melted layers.

  18. A One-Dimensional (1-D) Three-Region Model for a Bubbling Fluidized-Bed Adsorber

    SciTech Connect (OSTI)

    Lee, Andrew; Miller, David C.

    2012-01-01

    A general one-dimensional (1-D), three-region model for a bubbling fluidized-bed adsorber with internal heat exchangers has been developed. The model can predict the hydrodynamics of the bed and provides axial profiles for all temperatures, concentrations, and velocities. The model is computationally fast and flexible and allows for any system of adsorption and desorption reactions to be modeled, making the model applicable to any adsorption process. The model has been implemented in both gPROMS and Aspen Custom Modeler, and the behavior of the model has been verified.

  19. Combustion of liquid paint wastes in fluidized bed boiler as element of waste management system in the paint factory

    SciTech Connect (OSTI)

    Soko, W.A.; Biaecka, B.

    1998-12-31

    In this paper the solution to waste problems in the paint industry is presented by describing their combustion in a fluidized bed boiler as a part of the waste management system in the paint factory. Based on the Cleaner Production idea and concept of integration of design process with a future exploitation of equipment, some modifications of the waste management scheme in the factory are discussed to reduce the quantity of toxic wastes. To verify this concept combustion tests of paint production wastes and cocombustion of paint wastes with coal in an adopted industrial boiler were done. Results of these tests are presented in the paper.

  20. ADVANCED SORBENT DEVELOPMENT PROGRAM; DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS

    SciTech Connect (OSTI)

    R.E. AYALA; V.S. VENKATARAMANI

    1998-09-30

    The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 °C (900-1000 °F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.?s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 °C (650 °F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 °C (650-1000 °F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment and a market plan for large-scale fabrication of sorbents were developed. As an optional task, long-term bench-scale tests of the best moving-bed sorbents were conducted. Starting from thermodynamic calculations, several metal oxides were identified for potential use as hot gas cleanup sorbents using constructed phase stability diagrams and laboratory screening of various mixed-metal oxide formulations. Modified zinc titanates and other proprietary metal oxide formulations were evaluated at the bench scale and many of them found to be acceptable for operation in the target desulfurization temperature range of 370 °C (700 °F) to 538 °C (1000 °F) and regeneration tempera-tures up to 760 °C (1400 °F). Further work is still needed to reduce the batch-to-batch repeatability in the fabrication of modified zinc titanates for larger scale applications. The information presented in this Volume 1 report contains the results of moving-bed sorbent develop-ment at General Electric?s Corporate Research and Development (GE-CRD). A separate Volume 2 report contains the results of the subcontract on fluidized-bed sorbent development at the Institute of Gas Technology (IGT).

  1. ADVANCED SORBENT DEVELOPMENT PROGRAM DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS

    SciTech Connect (OSTI)

    R.E Ayala; V.S. Venkataramani; Javad Abbasian; Rachid B. Slimane; Brett E. Williams; Minoo K. Zarnegar; James R. Wangerow; Andy H. Hill

    2000-03-31

    The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 C (900-1000 F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.'s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 C (650 F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 C (650-1000 F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment and a market plan for large-scale fabrication of sorbents were developed. As an optional task, long-term bench-scale tests of the best moving-bed sorbents were conducted. Starting from thermodynamic calculations, several metal oxides were identified for potential use as hot gas cleanup sorbents using constructed phase stability diagrams and laboratory screening of various mixed-metal oxide formulations. Modified zinc titanates and other proprietary metal oxide formulations were evaluated at the bench scale and many of them found to be acceptable for operation in the target desulfurization temperature range of 370 C (700 F) to 538 C (1000 F) and regeneration temperatures up to 760 C (1400 F). Further work is still needed to reduce the batch-to-batch repeatability in the fabrication of modified zinc titanates for larger scale applications. The information presented in this Volume 1 report contains the results of moving-bed sorbent development at General Electric's Corporate Research and Development (GE-CRD). A separate Volume 2 report contains the results of the subcontract on fluidized-bed sorbent development at the Institute of Gas Technology (IGT).

  2. Data summary of municipal solid waste management alternatives

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This appendix provides information on fluidized-bed combustion (FBC) technology as it has been applied to municipal waste combustion (MWC). A review of the literature was conducted to determine: (1) to what extent FBC technology has been applied to MWC, in terms of number and size of units was well as technology configuration; (2) the operating history of facilities employing FBC technology; and (3) the cost of these facilities as compared to conventional MSW installations. Where available in the literature, data on operating and performance characteristics are presented. Tabular comparisons of facility operating/cost data and emissions data have been complied and are presented. The literature review shows that FBC technology shows considerable promise in terms of providing improvements over conventional technology in areas such as NOx and acid gas control, and ash leachability. In addition, the most likely configuration to be applied to the first large scale FBC dedicated to municipal solid waste (MSW) will employ circulating bed (CFB) technology. Projected capital costs for the Robbins, Illinois 1600 ton per day CFB-based waste-to-energy facility are competitive with conventional systems, in the range of $125,000 per ton per day of MSW receiving capacity.

  3. Characterization of a fluidized-bed combustion ash to determine potential for environmental impact. Final report

    SciTech Connect (OSTI)

    Hassett, D.J.; Henderson, A.K.; Pflughoeft-Hassett, D.F.; Mann, M.D.; Eylands, K.E.

    1997-10-01

    A 440-megawatt, circulating fluidized-bed combustion (CFBC), lignite-fired power plant is planned for construction in Choctaw County north of Ackerman, Mississippi. This power plant will utilize Mississippi lignite from the first lignite mine in that state. Malcolm Pirnie, Inc., is working with the power plant developer in the current planning and permitting efforts for this proposed construction project. In order to accommodate Mississippi state regulatory agencies and meet appropriate permit requirements, Malcolm Pirnie needed to provide an indication of the characteristics of the by-products anticipated to be produced at the proposed plant. Since the Mississippi lignite is from a newly tapped mine and the CFBC technology is relatively new, Malcolm Pirnie contacted with the Energy and Environmental Research Center (EERC) to develop and perform a test plan for the production and characterization of ash similar to ash that will be eventually produced at the proposed power plant. The work performed at the EERC included two primary phases: production of by-products in a bench-scale CFBC unit using lignite provided by Malcolm Pirnie with test conditions delineated by Malcolm Pirnie to represent expected operating conditions for the full-scale plant; and an extensive characterization of the by-products produced, focusing on Mississippi regulatory requirements for leachability, with the understanding that return of the by-product to the mine site was an anticipated by-product management plan. The overall focus of this project was the environmental assessment of the by-product expected to be produced at the proposed power plant. Emphasis was placed on the leachability of potentially problematic trace elements in the by-products. The leaching research documented in this report was performed to determine trends of leachability of trace elements under leaching conditions appropriate for evaluating land disposal in monofills, such as returning the by-products to the mine site.

  4. A field study on the trace metal behavior in atmospheric circulating fluidized-bed coal combustion

    SciTech Connect (OSTI)

    Lind, T.; Kauppinen, E.I.; Jokiniemi, J.K.; Maenhaut, W.

    1994-12-31

    Trace element behavior in atmospheric circulating fluidized-bed combustion (CFBC) of Venezuelan bituminous coal was studied by determining particle size distributions in the CFBC flue gas. The size distributions of calcium, iron, aluminium, and 21 trace elements, Sc, V, Cr, Mn, Co, Ni, Zn, Ga, As, Se, Sr, Cd, Sb, Cs, Ba, La, Ce, Sm, Lu, Pb, and Th, in the size range 0.01--70{micro}m, were determined by collecting aerosols with a low-pressure impactor-cyclone sampling train from the flue gases of an 80-MW(th) CFBC boiler upstream of the electrostatic precipitator. The collected samples were analyzed gravimetrically and with instrumental neutron activation analysis (INAA), particle-induced X-ray emission analysis (PIXE), and inductively coupled plasma mass spectrometry (ICP-MS). The number size distributions of the aerosols were determined with a differential electrical mobility method in the size range 0.01--0.8 {micro}m. In the ultrafine particle mode, i.e., D{sub p} < 0.1 {micro}m, the CFBC number concentrations varied strongly during the experiments, being one to two orders of magnitude lower than those observed in pulverized coal combustion. For all of the elements studied, 75% or more were found in particles larger than 5{micro}m. None of the studied elements showed significant vaporization and subsequent chemical surface reaction or condensation in the CFBC. The Sr, Se, V, Zn, Ga, Cs, Ba, La, Sm, Lu, and Th size distributions resembled those of aluminium, suggesting their occurrence in aluminosilicate-rich particles in the fly ash. The association of the trace elements with aluminium in the fly ash particles may result from reactions of the trace elements with the aluminosilicate mineral particles inside the burning coal particles, or their initial occurrence in association with these minerals.

  5. Novel fluidized bed reactor for integrated NOx adsorption-reduction with hydrocarbons

    SciTech Connect (OSTI)

    Terris T. Yang; Hsiaotao T. Bi [University of British Columbia, Vancouver, BC (Canada). Department of Chemical & Biological Engineering

    2009-07-01

    In order to avoid the negative impact of excessive oxygen in the combustion flue gases on the selectivity of most hydrocarbon selective catalytic reduction (HC-SCR) catalysts, an integrated NOx adsorption-reduction process has been proposed in this study for the treatment of flue gases under lean burn conditions by decoupling the adsorption and reduction into two different zones. The hypothesis has been validated in a novel internal circulating fluidized bed (ICFB) reactor using Fe/ZSM-5 as the catalyst and propylene as the reducing agent. Effects of propylene to the NOx molar ratio, flue gas oxygen concentration, and gas velocity on NOx conversion were studied using simulated flue gases. The results showed that increasing the ratio of HC:NO improved the reduction performance of Fe/ZSM-5 in the ICFB reactor. NOx conversion decreased with an increasing flue gas flow velocity in the annulus U{sub A} but increased with an increasing reductant gas flow velocity in the draft tube U{sub D}. The NOx adsorption ratio decreased with increasing U{sub A}. In most cases, NOx conversion was higher than the adsorption ratio due to the relatively poor adsorption performance of the catalyst. Fe/ZSM-5 showed a promising reduction performance and a strong inhibiting ability on the negative impact of excessive O{sub 2} in the ICFB reactor, proving that such an ICFB reactor possessed the ability to overcome the negative impact of excessive O{sub 2} in the flue gas using Fe/ZSM-5 as the deNOx catalyst. 22 refs., 10 figs.

  6. Fluidized-bed retorting of Colorado oil shale: Topical report. [None

    SciTech Connect (OSTI)

    Albulescu, P.; Mazzella, G.

    1987-06-01

    In support of the research program in converting oil shale into useful forms of energy, the US Department of Energy is developing systems models of oil shale processing plants. These models will be used to project the most attractive combination of process alternatives and identify future direction for R and D efforts. With the objective of providing technical and economic input for such systems models, Foster Wheeler was contracted to develop conceptual designs and cost estimates for commercial scale processing plants to produce syncrude from oil shales via various routes. This topical report summarizes the conceptual design of an integrated oil shale processing plant based on fluidized bed retorting of Colorado oil shale. The plant has a nominal capacity of 50,000 barrels per operating day of syncrude product, derived from oil shale feed having a Fischer Assay of 30 gallons per ton. The scope of the plant encompasses a grassroots facility which receives run of the mine oil shale, delivers product oil to storage, and disposes of the processed spent shale. In addition to oil shale feed, the battery limits input includes raw water, electric power, and natural gas to support plant operations. Design of the individual processing units was based on non-confidential information derived from published literature sources and supplemented by input from selected process licensors. The integrated plant design is described in terms of the individual process units and plant support systems. The estimated total plant investment is similarly detailed by plant section and an estimate of the annual operating requirements and costs is provided. In addition, the process design assumptions and uncertainties are documented and recommendations for process alternatives, which could improve the overall plant economics, are discussed.

  7. FLUIDIZED BED STEAM REFORMED MINERAL WASTE FORMS: CHARACTERIZATION AND DURABILITY TESTING

    SciTech Connect (OSTI)

    Jantzen, C; Troy Lorier, T; John Pareizs, J; James Marra, J

    2006-12-06

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium low activity wastes (LAW) such as those existing at the Hanford site, at the Idaho National Laboratory (INL), and the Savannah River Site (SRS). The addition of clay, charcoal, and a catalyst as co-reactants with the waste denitrates the aqueous wastes and forms a granular mineral waste form that can subsequently be made into a monolith for disposal if necessary. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage and ring structures and iron bearing spinel minerals. The mineralization occurs at moderate temperatures between 650-750 C in the presence of superheated steam. The cage and ring structured feldspathoid minerals atomically bond radionuclides like Tc-99 and Cs-137 and anions such as SO{sub 4}, I, F, and Cl. The spinel minerals stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium bearing waste (SBW) in pilot scale facilities at the Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The results of the SPFT testing and the activation energies for dissolution are discussed in this study.

  8. FLUIDIZED BED STEAM REFORMED MINERAL WASTE FORMS: CHARACTERIZATION AND DURABILITY TESTING

    SciTech Connect (OSTI)

    Jantzen, C; Troy Lorier, T; John Pareizs, J; James Marra, J

    2007-03-31

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium low activity wastes (LAW) such as those existing at the Hanford site, at the Idaho National Laboratory (INL), and the Savannah River Site (SRS). The addition of clay, charcoal, and a catalyst as co-reactants with the waste denitrates the aqueous wastes and forms a granular mineral waste form that can subsequently be made into a monolith for disposal if necessary. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage and ring structures and iron bearing spinel minerals. The mineralization occurs at moderate temperatures between 650-750 C in the presence of superheated steam. The cage and ring structured feldspathoid minerals atomically bond radionuclides like Tc-99 and Cs-137 and anions such as SO4, I, F, and Cl. The spinel minerals stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low-activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium bearing waste (SBW) in pilot scale facilities at the Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The results of the SPFT testing and the activation energies for dissolution are discussed in this study.

  9. EXPERIMENTAL METHODS TO ESTIMATE ACCUMULATED SOLIDS IN NUCLEAR WASTE TANKS

    SciTech Connect (OSTI)

    Duignan, M.; Steeper, T.; Steimke, J.

    2012-12-10

    The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream; Magnetic wand used to manually remove stainless steel solids from samples and the tank heel; Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas; Laser rangefinders to determine the volume and shape of the solids mounds; Core sampler to determine the stainless steel solids distribution within the solids mounds; Computer driven positioner that placed the laser rangefinders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet velocities were low. These devices and techniques were very effective to estimate the movement, location, and concentrations of the solids representing plutonium and are expected to perform well at a larger scale. The operation of the techniques and their measurement accuracies will be discussed as well as the overall results of the accumulated solids test.

  10. Flow Solution-Liquid-Solid Technique: Novel Approach for Synthesis...

    Office of Scientific and Technical Information (OSTI)

    prepared. Authors: Palaniappan, Kumaranand 1 ; Hollingsworth, Jennifer A. 1 ; Smith, Nickolaus A. 1 ; Casson, Joanna L. 1 ; Baldwin, Jon K. 1 ; Dickerson, Robert M....

  11. An adaptive mesh refinement technique for dynamics of solids

    E-Print Network [OSTI]

    Trivedi, Abhishek

    2007-01-01

    Waves based Non Destructive Testing,” Ph.D. Dissertation,inspection,” INSIGHT – Non-Destructive Testing and Conditionvalidate non destructive evaluation and testing experiments

  12. An adaptive mesh refinement technique for dynamics of solids

    E-Print Network [OSTI]

    Trivedi, Abhishek

    2007-01-01

    adaptations; right: cut-off grid with a solution contour.adaptations; right: cut-off grid with a solution contour.

  13. An adaptive mesh refinement technique for dynamics of solids

    E-Print Network [OSTI]

    Trivedi, Abhishek

    2007-01-01

    Amitav Majumdar at San Diego super computer center for thereadvantage of the San Diego super computer center’s hardware.

  14. The use of FBC wastes in the reclamation of coal slurry solids

    SciTech Connect (OSTI)

    Dreher, G.B.

    1991-01-01

    Fluidized bed combustion (FBC) is a relatively new technology that is used commercially for the combustion of coal. In Illinois, this technology is valuable because it allows the combustion of Illinois high sulfur coal without pollution of the atmosphere with vast quantities of sulfur oxides. In FBC, coal is mixed with limestone or dolomite either before injection into the combustion chamber or in the combustion chamber. As the coal burns, sulfur in the coal is oxidized to SO{sub 2} and this is trapped by reaction with the limestone or dolomite to form gypsum (CaSO{sub 4}{center dot}2H{sub 2}O). Solid by-products from FBC are generally a mixture of calcium oxide, gypsum, coal ash, and unburned coal. The present research project is designed to provide initial data on one possible use of FBC waste. FBC wastes from five different locations in the Illinois are mixed with coal slurry solids from two different coal preparation plants at Illinois coal mines. In mixtures of FBC waste and coal slurry solids, the alkaline components of the FBC waste are expected to react with acid produced by the oxidation of pyrite in the coal slurry solid. An objective of this research is to determine the chemical composition of aqueous leachates from mixtures of FBC wastes, generated under various operating conditions, and the coal slurry solids. These data will be used in future research into the ability of such mixtures to support seed germination and plant growth. The ultimate of this and future research is to determine whether mixed FBC waste and coal slurry solids can be slurry pond reclamation.

  15. Performance and economics of co-firing a coal/waste slurry in advanced fluidized-bed combustion

    SciTech Connect (OSTI)

    DeLallo, M.R.; Zaharchuk, R.; Reuther, R.B.; Bonk, D.L.

    1996-09-01

    This study`s objective was to investigate co-firing a pressurized fluidized-bed combustor with coal and refuse-derived fuel for the production of electricity and the efficient disposal of waste. Performance evaluation of the pressurized fluidized-bed combustor (PFBC) power plant co-fired with refuse-derived fuel showed only slightly lower overall thermal efficiency than similar sized plants without waste co-firing. Capital costs and costs of electricity are within 4.2 percent and 3.2 percent, respectively, of waste-free operation. The results also indicate that there are no technology barriers to the co-firing of waste materials with coal in a PFBC power plant. The potential to produce cost-competitive electrical power and support environmentally acceptable waste disposal exists with this approach. However, as part of technology development, there remain several design and operational areas requiring data and verification before this concept can realize commercial acceptance. 3 refs., 3 figs., 4 tabs.

  16. Distribution of polycyclic aromatic hydrocarbons in fly ash during coal and residual char combustion in a pressurized fluidized bed

    SciTech Connect (OSTI)

    Hongcang Zhou; Baosheng Jin; Rui Xiao; Zhaoping Zhong; Yaji Huang

    2009-04-15

    To investigate the distribution of polycyclic aromatic hydrocarbons (PAHs) in fly ash, the combustion of coal and residual char was performed in a pressurized spouted fluidized bed. After Soxhlet extraction and Kuderna-Danish (K-D) concentration, the contents of 16 PAHs recommended by the United States Environmental Protection Agency (U.S. EPA) in coal, residual char, and fly ash were analyzed by a high-performance liquid chromatography (HPLC) coupled with fluorescence and diode array detection. The experimental results show that the combustion efficiency is lower and the carbon content in fly ash is higher during coal pressurized combustion, compared to the residual char pressurized combustion at the pressure of 0.3 MPa. Under the same pressure, the PAH amounts in fly ash produced from residual char combustion are lower than that in fly ash produced from coal combustion. The total PAHs in fly ash produced from coal and residual char combustion are dominated by three- and four-ring PAHs. The amounts of PAHs in fly ash produced from residual char combustion increase and then decrease with the increase of pressure in a fluidized bed. 21 refs., 1 fig., 4 tabs.

  17. Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques

    E-Print Network [OSTI]

    Doeff, Marca M.

    2013-01-01

    Alternatives to Current Lithium-Ion Batteries. Adv. EnergyElectrode Materials for Lithium Ion Batteries. MaterialsTechniques to the Study of Lithium Ion Batteries. J. Solid

  18. Zevenhoven & Kilpinen NITROGEN 18.1.2004 4-35 4.11 Chemistry of nitrogen oxides at atmospheric fluidized bed

    E-Print Network [OSTI]

    Zevenhoven, Ron

    oxide by air staging, and reduction of nitric oxide with char. In circulating fluidized bed combustion reactions between gas and particles become important, e.g., reduction of nitric oxide with char, which or noncatalytic. For example, the reduction of nitric oxide with char #12;Zevenhoven & Kilpinen NITROGEN 18

  19. Overall and average local heat transfer from a horizontal cylinder in a gas-fluidized bed with an opposing oscillatory flow

    SciTech Connect (OSTI)

    Pence, D.V. [Univ. of Rhode Island, Kingston, RI (United States). Dept. of Mechanical Engineering and Applied Mechanics; Beasley, D.E. [Clemson Univ., SC (United States). Dept. of Mechanical Engineering

    1996-12-31

    The Pulsed Atmospheric Fluidized Bed Combustor (PAFBC), a hybrid combustor concept that couples a pulsed combustor with an atmospheric bubbling fluidized bed, has technical advantages in energy efficiency and emissions. The present study examines fundamental aspects of heat transfer in this hybrid combustor by measuring the effect of an opposing oscillatory flow on the overall and time-averaged local heat transfer in a laboratory scale bubbling gas-fluidized bed. This opposing secondary flow consisted of a steady mean component and an oscillating component thereby modeling the flow in the tailpipe of a pulsed combustor. Data were acquired for a monodisperse distribution of particles with a mean diameter of 345 {micro}m and total fluidization ratios ranging from 1.1 through 2.7. Overall and time-averaged local heat flux measurements from the surface of a submerged horizontal cylinder show that heat transfer characteristics are significantly altered by an opposing oscillatory flow. Increases in overall heat transfer on the order of 12% were identified for operating conditions with low primary and secondary flow rates and low pulse frequencies. These enhancements were identified to be a consequence of significant localized enhancements. The fundamental trends and magnitude of the particle Nusselt number are effectively characterized by a modified form of the Strouhal number.

  20. CT Scan Not Only a Medical Technique NETL Wins Two 2008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on Materials for CO 2 Capture and Conversions 5 Coal Seam Carbon Sequestration Simulation 6 Fluidized-Bed Combustion Testing...

  1. Solid state switch

    DOE Patents [OSTI]

    Merritt, B.T.; Dreifuerst, G.R.

    1994-07-19

    A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1,500 A peak, 1.0 [mu]s pulsewidth, and 4,500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry. 6 figs.

  2. Meeting Department of Defense non-hazardous solid waste goals

    SciTech Connect (OSTI)

    Eakes, W.S.; Comstock, J.

    1999-07-01

    This paper will discuss the previous and present Department of Defense (DOD) non-hazardous solid waste goals and how Navy and Marine Corps installation collect solid waste data and measure the goals. The installation and central data collection systems used, data collection problems and solutions, data quality, and the yearly measure. The paper will also discuss the original solid waste reduction and diversion goal and how the Navy and Marine Corps performed. The new DOD landfill and incineration diversion goal will be discussed and some techniques the Navy will use to meet the new goals.

  3. Solid State Lighting

    SciTech Connect (OSTI)

    Hastbacka, Mildred; Dieckmann, John; Bouza, Antonio

    2013-03-30

    The article discusses solid state lighting technologies. This topic was covered in two previous ASHRAE Journal columns (2010). This article covers advancements in technologies and the associated efficacies. The life-cycle, energy savings and market potential of these technologies are addressed as well.

  4. Solid polymer electrolyte compositions

    DOE Patents [OSTI]

    Garbe, James E. (Stillwater, MN); Atanasoski, Radoslav (Edina, MN); Hamrock, Steven J. (St. Paul, MN); Le, Dinh Ba (St. Paul, MN)

    2001-01-01

    An electrolyte composition is featured that includes a solid, ionically conductive polymer, organically modified oxide particles that include organic groups covalently bonded to the oxide particles, and an alkali metal salt. The electrolyte composition is free of lithiated zeolite. The invention also features cells that incorporate the electrolyte composition.

  5. Solid Phase Characterization of Solids Recovered from Failed Sluicer Arm

    SciTech Connect (OSTI)

    Cooke, Gary A.

    2015-03-09

    The Enclosure to this memo discusses the solid phase characterization of a solid sample that was retrieved from the single-shell Tank 241-C-111 extended reach sluicer #2. This sluicer, removed from riser #3 on September 25, 2014, was found to have approximately 0.4 gallons of solid tank waste adhering to the nozzle area.

  6. Development of MELCOR Input Techniques for High Temperature Gas-Cooled Reactor Analysis 

    E-Print Network [OSTI]

    Corson, James

    2011-08-08

    and other HTGRs. In the present study, new input techniques have been developed for MELCOR HTGR analysis. These new techniques include methods for modeling radiation heat transfer between solid surfaces in an HTGR, calculating fuel and cladding geometric...

  7. The use of FBC wastes in the reclamation of coal slurry solids. Technical report, March 1, 1992--May 31, 1992

    SciTech Connect (OSTI)

    Dreher, G.B.; Roy, W.R.; Steele, J.D. [Illinois State Geological Survey, Champaign, IL (United States)

    1992-10-01

    Fluidized bed combustion (FBC) is a relatively new technology that is used commercially for the combustion of coal. In Illinois, this technology is valuable because it allows the combustion of Illinois high sulfur coal without pollution of the atmosphere with vast quantities of sulfur oxides. In FBC, coal is mixed with limestone or dolomite either before injection into the combustion chamber or in the combustion chamber. As the coal burns, sulfur in the coal is oxidized to S0{sub 2} and this is trapped by reaction with the limestone or dolomite to form gypsum (CaSO{sub 4} {center_dot} 2H{sub 2}O). Solid by-products from FBC are generally a mixture of calcium oxide, gypsum, coal ash, and unburned coal. The present research project is designed to provide initial data on one possible use of FBC waste. FBC wastes from five different locations in Illinois are mixed with coal slurry solids (CSS) from two different coal preparation plants at Illinois coal mines. In mixtures of FBC waste and coal slurry solids, the alkaline components of the FBC waste are expected to react with acid produced by the oxidation of pyrite in the coal slurry solid. An objective of this research is to determine the chemical composition of aqueous leachates from mixtures of FBC wastes, generated under various operating conditions, and the coal slurry solids. These data will be used in future research into the ability of such mixtures to support seed germination and plant growth. The final goal of this and future research is to determine whether mixed FBC waste and coal slurry solids can be used as a satisfactory growing medium in slurry pond reclamation. The chemical analyses of the 8 starting solids (5 FBC wastes, 2 Css samples, and 1 agricultural limestone sample) were completed.

  8. Interface Engineering of Garnet Solid Electrolytes

    E-Print Network [OSTI]

    Cheng, Lei

    2015-01-01

    A commercial lithium ion battery uses solid electrodes withsolution in the lithium ion battery with a solid electrolytesolid-state lithium ion conductors for solid-state battery

  9. TRANSPORT NUMBER GRADIENTS AND SOLID ELECTROLYTE DEGRADATION

    E-Print Network [OSTI]

    De Jonghe, Lutgard C.

    2014-01-01

    NUMBER GRADIENTS AND SOLID ELECTROLYTE DEGRADATION LutgardNUMBER GRADIENTS AND SOLID ELECTROLYTE DEGRADATION LutgardNUMBER GRADIENTS AND SOLID ELECTROLYTE DEGRADATION Lutgard

  10. TRANSPORT NUMBER GRADIENTS AND SOLID ELECTROLYTE DEGRADATION

    E-Print Network [OSTI]

    De Jonghe, Lutgard C.

    2012-01-01

    NUMBER GRADIENTS AND SOLID ELECTROLYTE DEGRADATION LutgardNUMBER GRADIENTS AND SOLID ELECTROLYTE DEGRADATION LutgardNUMBER GRADIENTS AND SOLID ELECTROLYTE DEGRADATION Lutgard

  11. Heat Recovery From Solid Waste 

    E-Print Network [OSTI]

    Underwood, O. W.

    1981-01-01

    areas of evaluation, including the cost of fuel, cost of solid waste disposal, plant energy requirements, available technology, etc....

  12. Solid state electrochemical current source

    DOE Patents [OSTI]

    Potanin, Alexander Arkadyevich (Sarov, RU); Vedeneev, Nikolai Ivanovich (Sarov, RU)

    2002-04-30

    A cathode and a solid state electrochemical cell comprising said cathode, a solid anode and solid fluoride ion conducting electrolyte. The cathode comprises a metal oxide and a compound fluoride containing at least two metals with different valences. Representative compound fluorides include solid solutions of bismuth fluoride and potassium fluoride; and lead fluoride and potassium fluoride. Representative metal oxides include copper oxide, lead oxide, manganese oxide, vanadium oxide and silver oxide.

  13. Long cycle life solid-state solid polymer electrolyte cells

    SciTech Connect (OSTI)

    Sammells, A.F.

    1988-02-02

    This patent describes a rechargeable solid-state lithium conducting solid polymer electrolyte electrochemical cell comprising: a lithium intercalation compound negative electrode selected from the group consisting of: MoO/sub 2/; RuO/sub 2/; WO; OsO/sub 2/; IrO/sub 2/; and Mo1/2V1/2O/sub 2/; a lithium ion conducting solid polymer electrolyte comprising a lithium ion conducting supporting electrolyte complexed with a solid polymer contacting the negative electrode on one side; and a lithium intercalation compound positive electrode contacting the opposite side of the solid polymer electrolyte.

  14. Solid waste handling

    SciTech Connect (OSTI)

    Parazin, R.J.

    1995-05-31

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.).

  15. Solid phase extraction membrane

    DOE Patents [OSTI]

    Carlson, Kurt C [Nashville, TN; Langer, Roger L [Hudson, WI

    2002-11-05

    A wet-laid, porous solid phase extraction sheet material that contains both active particles and binder and that possesses excellent wet strength is described. The binder is present in a relatively small amount while the particles are present in a relatively large amount. The sheet material is sufficiently strong and flexible so as to be pleatable so that, for example, it can be used in a cartridge device.

  16. Solid State Lighting Reliability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4EnergySolid State Lighting Reliability 2014 Building

  17. Final Environmental Impact Statement for the JEA Circulating Fluidized Bed Combustor Project

    SciTech Connect (OSTI)

    N /A

    2000-06-30

    This EIS assesses environmental issues associated with constructing and demonstrating a project that would be cost-shared by DOE and JEA (formerly the Jacksonville Electric Authority) under the Clean Coal Technology Program. The project would demonstrate circulating fluidized bed (CFB) combustion technology at JEA's existing Northside Generating Station in Jacksonville, Florida, about 9 miles northeast of the downtown area of Jacksonville. The new CFB combustor would use coal and petroleum coke to generate nearly 300 MW of electricity by repowering the existing Unit 2 steam turbine, a 297.5-MW unit that has been out of service since 1983. The proposed project is expected to demonstrate emission levels of sulfur dioxide (SO{sub 2}), oxides of nitrogen (NO{sub x}), and particulate matter that would be lower than Clean Air Act limits while at the same time producing power more efficiently and at less cost than conventional coal utilization technologies. At their own risk, JEA has begun initial construction activities without DOE funding. Construction would take approximately two years and, consistent with the original JEA schedule, would be completed in December 2001. Demonstration of the proposed project would be conducted during a 2-year period from March 2002 until March 2004. In addition, JEA plans to repower the currently operating Unit 1 steam turbine about 6 to 12 months after the Unit 2 repowering without cost-shared funding from DOE. Although the proposed project consists of only the Unit 2 repowering, this EIS analyzes the Unit 1 repowering as a related action. The EIS also considers three reasonably foreseeable scenarios that could result from the no-action alternative in which DOE would not provide cost-shared funding for the proposed project. The proposed action, in which DOE would provide cost-shared finding for the proposed project, is DOE's preferred alternative. The EIS evaluates the principal environmental issues, including air quality, traffic, noise, and ecological resources, that could result from construction and operation of the proposed project. Key findings include that maximum modeled increases in ground-level concentrations of SO{sub 2} nitrogen dioxide (NO{sub 2}), and particulate matter (for the proposed project alone or in conjunction with the related action) would always be less than 10% of their corresponding standards for increases in pollutants. For potential cumulative air quality impacts, results of modeling regional sources and the proposed project indicate that the maximum 24-hour average SO{sub 2} concentration would closely approach (i.e., 97%) but not exceed the corresponding Florida standard. After the Unit 1 repowering, results indicate that the maximum 24-hour average SO{sub 2} concentration would be 91% of the Florida standard. Concentrations for other averaging periods and pollutants would be lower percentages of their standards. Regarding toxic air pollutants from the proposed project, the maximum annual cancer risk to a member of the public would be approximately 1 in 1 million; given the conservative assumptions in the estimate, the risk would probably be less. With regard to threatened and endangered species, impacts to manatees, gopher tortoises, and other species would be negligible or non-existent. Construction-induced traffic would result in noticeable congestion. In the unlikely event that all coal were transported by rail, up to 3 additional trains per week would exacerbate impacts associated with noise, vibration, and blocked roads at on-grade rail crossings. Additional train traffic could be minimized by relying more heavily on barges and ships for coal transport, which is likely to be a more economic fuel delivery mode. During construction of the proposed project, noise levels would increase from the current operational levels. Except possibly during steam blowouts and possibly during operation of equipment used to construct a nearby segment of a conveyor, construction noise should not appreciably affect the background noise of nearby residences or exceed local nois

  18. Nuclear Instruments and Methods in Physics Research A 562 (2006) 380388 Modeling solid-state boron carbide low energy neutron detectors

    E-Print Network [OSTI]

    2006-01-01

    Nuclear Instruments and Methods in Physics Research A 562 (2006) 380­388 Modeling solid-state boron Available online 10 March 2006 Abstract Two independent techniques for modeling boron-based solid

  19. Solar solids reactor

    DOE Patents [OSTI]

    Yudow, B.D.

    1986-02-24

    A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

  20. Solar solids reactor

    DOE Patents [OSTI]

    Yudow, Bernard D. (Chicago, IL)

    1987-01-01

    A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

  1. Near-neutral oxidation of pyrite in coal slurry solids. [Quarterly] technical report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Frost, J.K.; Dreher, G.B. [Illinois State Geological Survey (United States)

    1994-12-31

    In this research project we plan to determine the rate of oxidation of pyrite associated with coaly particles (coal slurry solid) when the pH of the surrounding environment is held at approximately 7.8. Coaly particles that contain pyrite are generated during the preparation of Illinois Basin coal for market. These particles are discharged to an impoundment, which eventually must be reclaimed. The purpose for reclamation is either to prevent the generation of acidic solution as the pyrite in the coal slurry solid reacts with air, or to prevent the migration of the acidic solution to a groundwater aquifer. The reclamation is usually accomplished by covering the impoundment with a four-foot-thick layer of topsoil. One possible alternative method for reclamation of a coal slurry impoundment is to mix in alkaline residue from the fluidized-bed combustion of coal. This codisposal would slow the production of acid and would also neutralize any acid produced. If the codisposal method is found to be environmentally acceptable, it will save the coal mining companies part of their cost of reclamation, and also provide a safe and useful disposal outlet for a portion of the residue that is generated by the fluidized-bed combustion of coal. During this quarter we purchased and set up two automatic titrators, which will be used in determining the rate of pyrite oxidation at nearly neutral pH. The titrators will provide a means for maintaining the pH at the desired level. The rate at which sulfate ion is produced as a result of pyrite oxidation will be used to measure the amount of pyrite oxidized over time.

  2. Packaging of solid state devices

    DOE Patents [OSTI]

    Glidden, Steven C.; Sanders, Howard D.

    2006-01-03

    A package for one or more solid state devices in a single module that allows for operation at high voltage, high current, or both high voltage and high current. Low thermal resistance between the solid state devices and an exterior of the package and matched coefficient of thermal expansion between the solid state devices and the materials used in packaging enables high power operation. The solid state devices are soldered between two layers of ceramic with metal traces that interconnect the devices and external contacts. This approach provides a simple method for assembling and encapsulating high power solid state devices.

  3. Test Plan - Solids Accumulation Scouting Studies

    SciTech Connect (OSTI)

    Duignan, M. R.; Steeper, T. J.; Steimke, J. L.; Fowley, M. D.

    2012-05-10

    This plan documents the highlights of the Solids Accumulations Scouting Studies test; a project, from Washington River Protection Solutions (WRPS), that began on February 1, 2012. During the last 12 weeks considerable progress has been made to design and plan methods that will be used to estimate the concentration and distribution of heavy fissile solids in accumulated solids in the Hanford double-shell tank (DST) 241-AW-105 (AW-105), which is the primary goal of this task. This DST will be one of the several waste feed delivery staging tanks designated to feed the Pretreatment Facility (PTF) of the Waste Treatment and Immobilization Plant (WTP). Note that over the length of the waste feed delivery mission AW-105 is currently identified as having the most fill empty cycles of any DST feed tanks, which is the reason for modeling this particular tank. At SRNL an existing test facility, the Mixing Demonstration Tank, which will be modified for the present work, will use stainless steel particles in a simulant that represents Hanford waste to perform mock staging tanks transfers that will allow solids to accumulate in the tank heel. The concentration and location of the mock fissile particles will be measured in these scoping studies to produce information that will be used to better plan larger scaled tests. Included in these studies is a secondary goal of developing measurement methods to accomplish the primary goal. These methods will be evaluated for use in the larger scale experiments. Included in this plan are the several pretest activities that will validate the measurement techniques that are currently in various phases of construction. Aspects of each technique, e.g., particle separations, volume determinations, topographical mapping, and core sampling, have been tested in bench-top trials, as discussed herein, but the actual equipment to be employed during the full test will need evaluation after fabrication and integration into the test facility.

  4. Study of granular temperature in dense fluidized beds by diffusing wave spectroscopy 

    E-Print Network [OSTI]

    Zivkovic, Vladimir

    2009-01-01

    Diffusing wave spectroscopy (DWS), a non-intrusive multiple scattering technique, can be used to study the fundamentals of particle motion in dynamic dense granular media and measure the mean of the square of the particle ...

  5. Low Energy Electrodynamics in Solids (LEES) 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low Energy Electrodynamics in Solids (LEES) 2012 Low Energy Electrodynamics in Solids (LEES) 2012 July 22-27, 2012; Napa...

  6. Fischer-Tropsch synthesis from a low H/sub 2/:CO gas in a dry fluidized-bed system. Volume 2. Development of microreactor systems for unsteady-state Fischer-Tropsch synthesis. Final technical report. [408 references

    SciTech Connect (OSTI)

    Whiting, G.K.; Liu, Y.A.; Squires, A.M.

    1986-10-01

    Vibrofluidized microreactor systems have been developed for studies of unsteady-state Fischer-Tropsch synthesis. This development is aimed at preventing carbon deposition on a fused-iron catalyst in a novel reactor called the ''heat tray.'' This reactor involves a supernatant gas flowing over a shallow fluidized bed of catalyst particles. Three systems were built: (1) a vibrofluidized-bed microreactor system for obtaining baseline carbon deposition information under industrially important reaction conditions; (2) a sliding-plug vibrofluidized-bed microreactor system for rapid switching of feed gases in the F-T synthesis; and (3) a cold-flow microreactor model for studying the gas mixing characteristics of the sliding-plug vibrofluidized-bed microreactor. The results show that catalyst defluidization occurred under steady-state synthesis conditions below 395 C using a feed gas of H/sub 2//CO ratio of 2:1 or less. Above 395 C, the probability of hydrocarbon chain growth (..cap alpha.. < 0.50 to prevent accumulation of high-molecular-weight species that cause defluidization. Carbon deposition was rapid above 395 C when a feed gas of H/sub 2//CO ratio of 2:1 or less was used. Cold-flow microreactor model studies show that rapid (on the order of seconds), quantitative switching of feed gases over a vibrofluidized bed of catalyst could be achieved. Vibrofluidization of the catalyst bed induced little backmixing of feed gas over the investigated flow-rate range of 417 to 1650 actual mm/sup 3//s. Further, cold-flow microreactor model studies showed intense solid mixing when a bed of fused-iron catalyst (150 to 300 microns) was vibrofluidized at 24 cycles per second with a peak-to-peak amplitude of 4 mm. The development of the microreactor systems provided an easy way of accurately determining integral fluid-bed kinetics in a laboratory reactor. 408 refs., 156 figs., 27 tabs.

  7. Air flow characteristics of dry and liquid loaded packed and fluidized systems 

    E-Print Network [OSTI]

    Millsap, George Wayne

    1958-01-01

    flowing fluid, the pressure drop across the bed is equivalent to the weight of solids per unit area contained in the bed and corrected for buoyancy oi the supporting fluid is given by: 15 DP g = (V/A) (1 -() (~ -P)g Noting that the voids fraction, g... with the countercurrent flow conditions utilising the 0. 0743 and 0. 1101-inch diameter particles indicate two difierent trends in observed pressure drop data. Results, therefore, are presented as a plot of [EP g~ /h&) ( p - p) g] vs 0, the gas mass velocity...

  8. The use of FBC wastes in the reclamation of coal slurry solids. Technical report, September 1--November 30, 1991

    SciTech Connect (OSTI)

    Dreher, G.B.

    1991-12-31

    Fluidized bed combustion (FBC) is a relatively new technology that is used commercially for the combustion of coal. In Illinois, this technology is valuable because it allows the combustion of Illinois high sulfur coal without pollution of the atmosphere with vast quantities of sulfur oxides. In FBC, coal is mixed with limestone or dolomite either before injection into the combustion chamber or in the combustion chamber. As the coal burns, sulfur in the coal is oxidized to SO{sub 2} and this is trapped by reaction with the limestone or dolomite to form gypsum (CaSO{sub 4}{center_dot}2H{sub 2}O). Solid by-products from FBC are generally a mixture of calcium oxide, gypsum, coal ash, and unburned coal. The present research project is designed to provide initial data on one possible use of FBC waste. FBC wastes from five different locations in the Illinois are mixed with coal slurry solids from two different coal preparation plants at Illinois coal mines. In mixtures of FBC waste and coal slurry solids, the alkaline components of the FBC waste are expected to react with acid produced by the oxidation of pyrite in the coal slurry solid. An objective of this research is to determine the chemical composition of aqueous leachates from mixtures of FBC wastes, generated under various operating conditions, and the coal slurry solids. These data will be used in future research into the ability of such mixtures to support seed germination and plant growth. The ultimate of this and future research is to determine whether mixed FBC waste and coal slurry solids can be slurry pond reclamation.

  9. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke

    2001-07-13

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences, Foster Wheeler Energy Services, Inc., Parsons Energy and Chemicals Group, Inc., and Cofiring Alternatives. During this reporting period, work focused on completing the biofuel characterization and the design of the conceptual fluidized bed system.

  10. Mild hydrocracking of an unstable feedstock in a three-phase fluidized-bed reactor; Behavior of the process and of the chemical compounds

    SciTech Connect (OSTI)

    Souza, G.L.M.; Afonso, J.C.; Schmal, M.; Cordoso, J.N. (Universidade Federal, Rio de Janeiro, RJ (Brazil))

    1992-09-01

    The mild hydrocracking (400[degrees]C, 125 atm) of an unstable feedstock (shale oil) was performed in a three-phase fluidized-bed reactor with a commercial sulfided Ni-Mo catalyst. The hydroprocessing was monitored with respect to the physicochemical properties and the chemical composition of the natural and treated oil. The unit attained steady state after 36 h on stream for almost all parameters (viscosity, density, conversion, selectivity, etc.). Chemical composition data of the feedstock and the treated oil were, in general, in good agreement with the physicochemical characterizations. In this paper the mild hydrocracking in a three-phase fluidized-bed reactor is shown to be an alternative process for the treatment of unstable feedstocks.

  11. Field study of disposed solid wastes from advanced coal processes

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute's fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison's limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United's mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells.

  12. Solid state oxygen sensor

    DOE Patents [OSTI]

    Garzon, F.H.; Chung, B.W.; Raistrick, I.D.; Brosha, E.L.

    1996-08-06

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer. 4 figs.

  13. Solid state oxygen sensor

    DOE Patents [OSTI]

    Garzon, Fernando H. (Sante Fe, NM); Chung, Brandon W. (Los Alamos, NM); Raistrick, Ian D. (Los Alamos, NM); Brosha, Eric L. (Los Alamos, NM)

    1996-01-01

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer.

  14. Solid state thermal engine

    SciTech Connect (OSTI)

    Wayman, C.M.

    1981-01-27

    An improved solid state thermal engine utilizes as a drive member a braided belt fabricated from a memory alloy such as nickel-titanium and nickel-titanium ternary alloys, copper-zinc and copper-zinc ternary alloys, and the like. The braided belt is mounted on a set of pulleys to provide passage through a hot zone where the belt contracts and develops tension, and through a cold zone where it relaxes and stretches. Since more energy is delivered by contraction than is required for relaxation, positive work output results with an efficiency of between onefifth and one-third of the carnot cycle.

  15. TL and TSC Solid State Detectors in Proton Therapy

    SciTech Connect (OSTI)

    Cirrone, G.A.P.; Sabini, M.G.; Bruzzi, M.; Bucciolini, M.; Cuttone, G.; Guasti, A.; Lo Nigro, S.; Mazzocchi, S.; Pirollo, S.; Raffaele, L.; Sciortino, S.

    2000-12-31

    The necessity to develop methods and techniques for a better determination of absorbed dose in the radiotherapy field stimulates new clinical applications of solid state detectors. In this work we have studied the possibility to use of TLD-100 and synthetic CVD diamond detectors as dosimeters for high-energy proton beams.

  16. Solid state heat engine

    SciTech Connect (OSTI)

    Cory, J.S.

    1981-12-15

    A compact solid state turbine heat engine can be devised by pairing the nitinol elements. Each element is characterized by being in thermal contact with at least one hot water and one cold water bath and mechanically coupled to at least one driven pulley and driver pulley. A second nitinol element is similarly configured with a driver pulley, driven pulley, hot and cold water bath. The driver pulley associated with the first nitinol element is mechanically coupled to the driven pulley of the second nitinol element. Similarly, the driver pulley of the second nitinol element is mechanically coupled to the driven pulley of the first nitinol element. The paired nitinol elements form a compound solid state turbine engine wherein each nitinol element lies in a single plane and wherein the engine may be combined with a plurality of such pairs for increased power output. The nitinol elements may also incorporate a snubber to limit the strain on the element and the engine may further incorporate a variable radius pulley to increase the efficiency of mechanical conversion.

  17. Method and system for making integrated solid-state fire-sets and detonators

    DOE Patents [OSTI]

    O'Brien, Dennis W. (Livermore, CA); Druce, Robert L. (Union City, CA); Johnson, Gary W. (Livermore, CA); Vogtlin, George E. (Fremont, CA); Barbee, Jr., Troy W. (Palo Alto, CA); Lee, Ronald S. (Livermore, CA)

    1998-01-01

    A slapper detonator comprises a solid-state high-voltage capacitor, a low-jitter dielectric breakdown switch and trigger circuitry, a detonator transmission line, an exploding foil bridge, and a flier material. All these components are fabricated in a single solid-state device using thin film deposition techniques.

  18. Method and system for making integrated solid-state fire-sets and detonators

    DOE Patents [OSTI]

    O`Brien, D.W.; Druce, R.L.; Johnson, G.W.; Vogtlin, G.E.; Barbee, T.W. Jr.; Lee, R.S.

    1998-03-24

    A slapper detonator comprises a solid-state high-voltage capacitor, a low-jitter dielectric breakdown switch and trigger circuitry, a detonator transmission line, an exploding foil bridge, and a flier material. All these components are fabricated in a single solid-state device using thin film deposition techniques. 13 figs.

  19. Advantages of Microwave Sintering in Manufacturing of Anode Support Solid Oxide Fuel Cell

    E-Print Network [OSTI]

    Kasagi, Nobuhide

    and facile method in the manufacturing of anode support solid oxide fuel cell(1). Two anode support SOFCsPage 5-211 Advantages of Microwave Sintering in Manufacturing of Anode Support Solid Oxide Fuel oxide fuel cell (SOFC, hereafter) has been identified as an attractive technique in the recent few

  20. Methods for measuring work surface illuminance in adaptive solid state lighting networks

    E-Print Network [OSTI]

    Lee, Byungkun

    The inherent control flexibility implied by solid-state lighting - united with the rich details offered by sensor networks - prompts us to rethink lighting control. In this research, we propose several techniques for ...

  1. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, M.; Abraham, K.M.

    1993-10-12

    This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

  2. Solid polymer electrolyte lithium batteries

    DOE Patents [OSTI]

    Alamgir, Mohamed (Dedham, MA); Abraham, Kuzhikalail M. (Needham, MA)

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  3. 2009 PILOT SCALE FLUIDIZED BED STEAM REFORMING TESTING USING THE THOR (THERMAL ORGANIC REDUCTION) PROCESS: ANALYTICAL RESULTS FOR TANK 48H ORGANIC DESTRUCTION - 10408

    SciTech Connect (OSTI)

    Williams, M.; Jantzen, C.; Burket, P.; Crawford, C.; Daniel, G.; Aponte, C.; Johnson, C.

    2009-12-28

    The Savannah River Site (SRS) must empty the contents of Tank 48H, a 1.3 million gallon Type IIIA HLW storage tank, to return this tank to service. The tank contains organic compounds, mainly potassium tetraphenylborate that cannot be processed downstream until the organic components are destroyed. The THOR{reg_sign} Treatment Technologies (TTT) Fluidized Bed Steam Reforming (FBSR) technology, herein after referred to as steam reforming, has been demonstrated to be a viable process to remove greater than 99.9% of the organics from Tank 48H during various bench scale and pilot scale tests. These demonstrations were supported by Savannah River Remediation (SRR) and the Department of Energy (DOE) has concurred with the SRR recommendation to proceed with the deployment of the FBSR technology to treat the contents of Tank 48H. The Savannah River National Laboratory (SRNL) developed and proved the concept with non-radioactive simulants for SRR beginning in 2003. By 2008, several pilot scale campaigns had been completed and extensive crucible testing and bench scale testing were performed in the SRNL Shielded Cells using Tank 48H radioactive sample. SRNL developed a Tank 48H non-radioactive simulant complete with organic compounds, salt, and metals characteristic of those measured in a sample of the radioactive contents of Tank 48H. FBSR Pilot Scaled Testing with the Tank 48H simulant has demonstrated the ability to remove greater than 98% of the nitrites and greater than 99.5% of the nitrates from the Tank 48H simulant, and to form a solid product that is primarily alkali carbonate. The alkali carbonate is soluble and, thus, amenable to pumping as a liquid to downstream facilities for processing. The FBSR technology was demonstrated in October of 2006 in the Engineering Scale Test Demonstration (ESTD) pilot scale steam reformer at the Hazen Research Inc. (HRI) facility in Golden, CO. Additional ESTD tests were completed in 2008 and in 2009 that further demonstrated the TTT steam reforming process ability to destroy organics in the Tank 48 simulant and produce a soluble carbonate waste form. The ESTD was operated at varying feed rates and Denitration and Mineralization Reformer (DMR) temperatures, and at a constant Carbon Reduction Reformer (CRR) temperature of 950 C. The process produced a dissolvable carbonate product suitable for processing downstream. ESTD testing was performed in 2009 at the Hazen facility to demonstrate the long term operability of an integrated FBSR processing system with carbonate product and carbonate slurry handling capability. The final testing demonstrated the integrated TTT FBSR capability to process the Tank 48 simulant from a slurry feed into a greater than 99.9% organic free and primarily dissolved carbonate FBSR product slurry. This paper will discuss the SRNL analytical results of samples analyzed from the 2008 and 2009 THOR{reg_sign} steam reforming ESTD performed with Tank 48H simulant at HRI in Golden, Colorado. The final analytical results will be compared to prior analytical results from samples in terms of organic, nitrite, and nitrate destruction.

  4. High power density solid oxide fuel cells

    DOE Patents [OSTI]

    Pham, Ai Quoc; Glass, Robert S.

    2004-10-12

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O (LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  5. Solid Waste Management Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This Act provides for the planning and regulation of solid waste storage, collection, transportation, processing, treatment, and disposal. It requires that municipalities submit plans for municipal...

  6. Solid Waste Management (South Dakota)

    Broader source: Energy.gov [DOE]

    This statute contains provisions for solid waste management systems, groundwater monitoring, liability for pollution, permitting, inspections, and provisions for waste reduction and recycling...

  7. Effect of fuel properties on the bottom ash generation rate by a laboratory fluidized bed combustor

    SciTech Connect (OSTI)

    Rozelle, P.L.; Pisupati, S.V.; Scaroni, A.W.

    2007-06-15

    The range of fuels that can be accommodated by an FBC boiler system is affected by the ability of the fuel, sorbent, and ash-handling equipment to move the required solids through the boiler. Of specific interest is the bottom ash handling equipment, which must have sufficient capacity to remove ash from the system in order to maintain a constant bed inventory level, and must have sufficient capability to cool the ash well below the bed temperature. Quantification of a fuel's bottom ash removal requirements can be useful for plant design. The effect of fuel properties on the rate of bottom ash production in a laboratory FBC test system was examined. The work used coal products ranging in ash content from 20 to 40+ wt. %. The system's classification of solids by particle size into flyash and bottom ash was characterized using a partition curve. Fuel fractions in the size range characteristic of bottom ash were further analyzed for distributions of ash content with respect to specific gravity, using float sink tests. The fuel fractions were then ashed in a fixed bed. In each case, the highest ash content fraction produced ash with the coarsest size consist (characteristic of bottom ash). The lower ash content fractions were found to produce ash in the size range characteristic of flyash, suggesting that the high ash content fractions were largely responsible for the production of bottom ash. The contributions of the specific gravity fractions to the composite ash in the fuels were quantified. The fuels were fired in the laboratory test system. Fuels with higher amounts of high specific gravity particles, in the size ranges characteristic of bottom ash, were found to produce more bottom ash, indicating the potential utility of float sink methods in the prediction of bottom ash removal requirements.

  8. Solid state rapid thermocycling

    DOE Patents [OSTI]

    Beer, Neil Reginald; Spadaccini, Christopher

    2014-05-13

    The rapid thermal cycling of a material is targeted. A solid state heat exchanger with a first well and second well is coupled to a power module. A thermoelectric element is coupled to the first well, the second well, and the power module, is configured to transfer thermal energy from the first well to the second well when current from the power module flows through the thermoelectric element in a first direction, and is configured to transfer thermal energy from the second well to the first well when current from the power module flows through the thermoelectric element in a second direction. A controller may be coupled to the thermoelectric elements, and may switch the direction of current flowing through the thermoelectric element in response to a determination by sensors coupled to the wells that the amount of thermal energy in the wells falls below or exceeds a pre-determined threshold.

  9. SOLID MECHANICS James R. Rice

    E-Print Network [OSTI]

    1 SOLID MECHANICS James R. Rice School of Engineering and Applied Sciences, and Department of Earth: February 2010 Downloadable at: http://esag.harvard.edu/rice/e0_Solid_Mechanics_94_10.pdf TABLE OF CONTENTS provided on last three pages, pp. 87-89 INTRODUCTION The application of the principles of mechanics to bulk

  10. Stargate: Energy Management Techniques

    E-Print Network [OSTI]

    Vijay Raghunathan; Mani Srivastava; Trevor Pering; Roy Want

    2004-01-01

    Stargate: Energy Management Techniques Vijay Raghunathan,Platform specific energy management is crucial for longSolution: System level energy management techniques and

  11. Secondary Waste Form Screening Test Results—THOR® Fluidized Bed Steam Reforming Product in a Geopolymer Matrix

    SciTech Connect (OSTI)

    Pires, Richard P.; Westsik, Joseph H.; Serne, R. Jeffrey; Mattigod, Shas V.; Golovich, Elizabeth C.; Valenta, Michelle M.; Parker, Kent E.

    2011-07-14

    Screening tests are being conducted to evaluate waste forms for immobilizing secondary liquid wastes from the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Plans are underway to add a stabilization treatment unit to the Effluent Treatment Facility to provide the needed capacity for treating these wastes from WTP. The current baseline is to use a Cast Stone cementitious waste form to solidify the wastes. Through a literature survey, DuraLith alkali-aluminosilicate geopolymer, fluidized-bed steam reformation (FBSR) granular product encapsulated in a geopolymer matrix, and a Ceramicrete phosphate-bonded ceramic were identified both as candidate waste forms and alternatives to the baseline. These waste forms have been shown to meet waste disposal acceptance criteria, including compressive strength and universal treatment standards for Resource Conservation and Recovery Act (RCRA) metals (as measured by the toxicity characteristic leaching procedure [TCLP]). Thus, these non-cementitious waste forms should also be acceptable for land disposal. Information is needed on all four waste forms with respect to their capability to minimize the release of technetium. Technetium is a radionuclide predicted to be in the secondary liquid wastes in small quantities, but the Integrated Disposal Facility (IDF) risk assessment analyses show that technetium, even at low mass, produces the largest contribution to the estimated IDF disposal impacts to groundwater.

  12. Analysis/control of in-bed tube erosion phenomena in the fluidized bed combustion (FBC) system. Quarterly report

    SciTech Connect (OSTI)

    Lee, Seong W.

    1996-01-01

    This technical report summarizes the research work performed and progress achieved during the period of October 1, 1995 to December 31, 1995. A series of material wastage tests was carried out on cooled AISI 1018 steel and three thermal-sprayed coating specimens at an elevated environmental temperature (3000{degrees}C) using a nozzle type erosion tester. Test conditions simulated the erosion conditions at the in-bed tubes of fluidized combustors (FBCs). Angular silica quartz particles of average size 742 {micro}m were used for erodent particles for tests at an impact angle of 30{degrees}, at a particle velocity of 2.5 m/s for exposure periods up to 96 hours. The specimens were water-cooled on backside. Material wastage rates were determined from thickness loss measurements of specimens. Test results were compared with material wastage test results from testing isothermal specimens. The morphology of specimens was examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). It was found that the cooled specimens had greater material wastage than that of the isothermal specimens. The material wastage rate of cooling specimen for AISI 1018 was greater than that for thermal- sprayed coatings. The success in reduction of erosion wastage by cooled-coating specimens was related to the coatings, composition and morphology.

  13. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer

    SciTech Connect (OSTI)

    Chindaprasirt, Prinya; Rattanasak, Ubolluk

    2010-04-15

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na{sub 2}SiO{sub 3}) and 10 M sodium hydroxide (NaOH) solutions at mass ratio of Na{sub 2}SiO{sub 3}/NaOH of 1.5 and curing temperature of 65 deg. C for 48 h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0 MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.

  14. Technical and economic assessment of fluidized bed augmented compressed air energy-storage system. Volume II. Introduction and technology assessment

    SciTech Connect (OSTI)

    Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

    1981-09-01

    The results are described of a study subcontracted by PNL to the United Technologies Research Center on the engineering feasibility and economics of a CAES concept which uses a coal fired, fluidized bed combustor (FBC) to heat the air being returned from storage during the power production cycle. By burning coal instead of fuel oil, the CAES/FBC concept can completely eliminate the dependence of compressed air energy storage on petroleum fuels. The results of this assessment effort are presented in three volumes. Volume II presents a discussion of program background and an in-depth coverage of both fluid bed combustion and turbomachinery technology pertinent to their application in a CAES power plant system. The CAES/FBC concept appears technically feasible and economically competitive with conventional CAES. However, significant advancement is required in FBC technology before serious commercial commitment to CAES/FBC can be realized. At present, other elements of DOE, industrial groups, and other countries are performing the required R and D for advancement of FBC technology. The CAES/FBC will be reevaluated at a later date when FBC technology has matured and many of the concerns now plaguing FBC are resolved. (LCL)

  15. Environmental assessment of the atlas bio-energy waste wood fluidized bed gasification power plant. Final report

    SciTech Connect (OSTI)

    Holzman, M.I.

    1995-08-01

    The Atlas Bio-Energy Corporation is proposing to develop and operate a 3 MW power plant in Brooklyn, New York that will produce electricity by gasification of waste wood and combustion of the produced low-Btu gas in a conventional package steam boiler coupled to a steam-electric generator. The objectives of this project were to assist Atlas in addressing the environmental permit requirements for the proposed power plant and to evaluate the environmental and economic impacts of the project compared to more conventional small power plants. The project`s goal was to help promote the commercialization of biomass gasification as an environmentally acceptable and economically attractive alternative to conventional wood combustion. The specific components of this research included: (1) Development of a permitting strategy plan; (2) Characterization of New York City waste wood; (3) Characterization of fluidized bed gasifier/boiler emissions; (4) Performance of an environmental impact analysis; (5) Preparation of an economic evaluation; and (6) Discussion of operational and maintenance concerns. The project is being performed in two phases. Phase I, which is the subject of this report, involves the environmental permitting and environmental/economic assessment of the project. Pending NYSERDA participation, Phase II will include development and implementation of a demonstration program to evaluate the environmental and economic impacts of the full-scale gasification project.

  16. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Sulfur control

    SciTech Connect (OSTI)

    Roberts, M.J.; Abbasian, J.; Akin, C.; Lau, F.S.; Maka, A.; Mensinger, M.C.; Punwani, D.V.; Rue, D.M. ); Gidaspow, D.; Gupta, R.; Wasan, D.T. ); Pfister, R.M.: Krieger, E.J. )

    1992-05-01

    This topical report on Sulfur Control'' presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite) for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT's electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.

  17. Solid Xenon Project

    SciTech Connect (OSTI)

    Balakishiyeva, Durdana N.; Saab, Tarek [University of Florida (United States); Mahapatra, Rupak [Texas A and M University (United States); Yoo, Jonghee [FNAL (United States)

    2010-08-30

    Crystals like Germanium and Silicon need to be grown in specialized facilities which is time and money costly. It takes many runs to test the detector once it's manufactured and mishaps are very probable. It is of a great challenge to grow big germanium crystals and that's why stacking them up in a tower is the only way at the moment to increase testing mass. Liquid Noble gas experiments experiencing contamination problems, their predicted energy resolution at 10 keV and lower energy range is not as good as predicted. Every experiment is targeting one specific purpose, looking for one thing. Why not to design an experiment that is diverse and build a detector that can search for Dark Matter, Solar Axions, Neutrinoless Double Beta decay, etc. Solid Xenon detector is such detector. We designed a simple Xenon crystal growing chamber that was put together at Fermi National Accelerator Laboratory. The first phase of this experiment was to demonstrate that a good, crack free Xenon crystal can be grown (regardless of many failed attempts by various groups) and our first goal, 1 kg crystal, was successful.

  18. AIR INFILTRATION MEASUREMENT TECHNIQUES

    E-Print Network [OSTI]

    Sherman, M.H.

    2013-01-01

    serious study of research problems in infiltration. THEORYInfiltration Measurement Techniques REFERENCES J .B. Dick, "Experimental Studies

  19. Stiffening solids with liquid inclusions

    E-Print Network [OSTI]

    Robert W. Style; Rostislav Boltyanskiy; Benjamin Allen; Katharine E. Jensen; Henry P. Foote; John S. Wettlaufer; Eric R. Dufresne

    2014-07-24

    From bone and wood to concrete and carbon fibre, composites are ubiquitous natural and engineering materials. Eshelby's inclusion theory describes how macroscopic stress fields couple to isolated microscopic inclusions, allowing prediction of a composite's bulk mechanical properties from a knowledge of its microstructure. It has been extended to describe a wide variety of phenomena from solid fracture to cell adhesion. Here, we show experimentally and theoretically that Eshelby's theory breaks down for small liquid inclusions in a soft solid. In this limit, an isolated droplet's deformation is strongly size-dependent with the smallest droplets mimicking the behaviour of solid inclusions. Furthermore, in opposition to the predictions of conventional composite theory, we find that finite concentrations of small liquid inclusions enhance the stiffness of soft solids. A straight-forward extension of Eshelby's theory, accounting for the surface tension of the solid-liquid interface, explains our experimental observations. The counterintuitive effect of liquid-stiffening of solids is expected whenever droplet radii are smaller than an elastocapillary length, given by the ratio of the surface tension to Young's modulus of the solid matrix.

  20. Tribological Characterization of Carbon Based Solid Lubricants 

    E-Print Network [OSTI]

    Sanchez, Carlos Joel

    2012-10-19

    High performance machines such as gas turbine engines demand efficient solid lubricants at high temperature and in vacuum. The current conventional solid lubricants need to be further improved. This research evaluates carbon based solid lubricants...

  1. THE INSTITUTE FOR SOLID STATE PHYSICS 2006 THE INSTITUTE FOR SOLID STATE PHYSICS 2006

    E-Print Network [OSTI]

    Katsumoto, Shingo

    #12;#12;#12;2 THE INSTITUTE FOR SOLID STATE PHYSICS 2006 #12;3 THE INSTITUTE FOR SOLID STATE PHYSICS 2006 #12;4 THE INSTITUTE FOR SOLID STATE PHYSICS 2006 #12;5 THE INSTITUTE FOR SOLID STATE PHYSICS 2006 #12;6 THE INSTITUTE FOR SOLID STATE PHYSICS 2006 #12;7 THE INSTITUTE FOR SOLID STATE PHYSICS 2006

  2. Secondary Waste Form Down-Selection Data Package—Fluidized Bed Steam Reforming Waste Form

    SciTech Connect (OSTI)

    Qafoku, Nikolla; Westsik, Joseph H.; Strachan, Denis M.; Valenta, Michelle M.; Pires, Richard P.

    2011-09-12

    The Hanford Site in southeast Washington State has 56 million gallons of radioactive and chemically hazardous wastes stored in 177 underground tanks (ORP 2010). The U.S. Department of Energy (DOE), Office of River Protection (ORP), through its contractors, is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to convert the radioactive and hazardous wastes into stable glass waste forms for disposal. Within the WTP, the pretreatment facility will receive the retrieved waste from the tank farms and separate it into two treated process streams. These waste streams will be vitrified, and the resulting waste canisters will be sent to offsite (high-level waste [HLW]) and onsite (immobilized low-activity waste [ILAW]) repositories. As part of the pretreatment and ILAW processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility (ETF) on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed of in the Integrated Disposal Facility (IDF). To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is developing data packages to support that down-selection. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilizing and solidifying the liquid secondary wastes. At the Hanford Site, the FBSR process is being evaluated as a supplemental technology for treating and immobilizing Hanford LAW radioactive tank waste and for treating secondary wastes from the WTP pretreatment and LAW vitrification processes.

  3. Solid flexible electrochemical supercapacitor using Tobacco mosaic...

    Office of Scientific and Technical Information (OSTI)

    Solid flexible electrochemical supercapacitor using Tobacco mosaic virus nanostructures and ALD ruthenium oxide Citation Details In-Document Search Title: Solid flexible...

  4. Solid Waste Management Act (West Virginia)

    Broader source: Energy.gov [DOE]

    In addition to establishing a comprehensive program of controlling all phases of solid waste management and assigning responsibilities for solid waste management to the Secretary of Department of...

  5. Solid Solution Lithium Alloy Cermet Anodes

    E-Print Network [OSTI]

    Richardson, Thomas J.; Chen, Guoying

    2006-01-01

    Solid Solution Lithium Alloy Cermet Anodes Thomas J.94720 USA Abstract Lithium-magnesium solid solution alloysHeating mixtures of lithium nitride and magnesium provides a

  6. Solid electrolyte material manufacturable by polymer processing...

    Office of Scientific and Technical Information (OSTI)

    Patent: Solid electrolyte material manufacturable by polymer processing methods Citation Details In-Document Search Title: Solid electrolyte material manufacturable by polymer...

  7. Composite solid polymer electrolyte membranes

    DOE Patents [OSTI]

    Formato, Richard M. (Shrewsbury, MA); Kovar, Robert F. (Wrentham, MA); Osenar, Paul (Watertown, MA); Landrau, Nelson (Marlborough, MA); Rubin, Leslie S. (Newton, MA)

    2001-06-19

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  8. Composite solid polymer electrolyte membranes

    DOE Patents [OSTI]

    Formato, Richard M.; Kovar, Robert F.; Osenar, Paul; Landrau, Nelson; Rubin, Leslie S.

    2006-05-30

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  9. Cogeneration/Cogeneration - Solid Waste 

    E-Print Network [OSTI]

    Pyle, F. B.

    1980-01-01

    This paper reviews the rationale for cogeneration and basic turbine types available. Special considerations for cogeneration in conjunction with solid waste firing are outlined. Optimum throttle conditions for cogeneration are significantly...

  10. Solid State Photovoltaic Research Branch

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

  11. On-line instrumentation for the real-time monitoring of polynuclear aromatic hydrocarbons in the effluents from a fluidized bed combustor - a feasibility study

    SciTech Connect (OSTI)

    D'Silva, A.P.; Iles, M.; Rice, G.; Fassel, V.A.

    1984-04-01

    When polynuclear aromatic hydrocargons in the vapor phase are diluted preferably in a rare gas and undergo supersonic jet expansion, rotationally cooled molecules with absorption bandwidths of the order of 0.01 nm (FWHM) are obtained. Selective excitation with a tunable dye laser into such narrow absorption bands leads to the observation of highly specific luminescence spectra. Such an approach has been utilized for the on-line, real-time monitoring of polynuclear aromatic hydrocarbons in the effluents from a fluidized bed combustor.

  12. IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 2, FEBRUARY 2005 559 Correspondence________________________________________________________________________

    E-Print Network [OSTI]

    Galton, Ian

    IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 2, FEBRUARY 2005 559 Correspondence Pamarti, Member, IEEE, Lars Jansson, Member, IEEE, and Ian Galton, Member, IEEE A technique was presented techniques," in Proc. IEEE Custom Integrated Circuits Conf., Sep. 2003, pp. 463­466. [2] S. Pamarti, L

  13. Multi-Phase CFD Modeling of Solid Sorbent Carbon Capture System

    SciTech Connect (OSTI)

    Ryan, Emily M.; DeCroix, David; Breault, Ronald W.; Xu, Wei; Huckaby, E. D.; Saha, Kringan; Darteville, Sebastien; Sun, Xin

    2013-07-30

    Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian-Eulerian and Eulerian-Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capture reactors. The results of the simulations show that the FLUENT® Eulerian-Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian-Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian-Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.

  14. Multi-phase CFD modeling of solid sorbent carbon capture system

    SciTech Connect (OSTI)

    Ryan, E. M.; DeCroix, D.; Breault, Ronald W.; Xu, W.; Huckaby, E. David

    2013-01-01

    Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian–Eulerian and Eulerian–Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capture reactors. The results of the simulations show that the FLUENT® Eulerian–Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian–Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian–Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.

  15. Geochemistry of FBC waste-coal slurry solid mixtures. [Quarterly] technical report, March 1--May 31, 1993

    SciTech Connect (OSTI)

    Dreher, G.B.; Roy, W.R.; Steele, J.D.; Heidari, M. [Illinois State Geological Survey, Champaign, IL (United States)

    1993-09-01

    Three tasks are being conducted in this research project, all related to understanding the chemistry and mineralogy of the co-disposal of fluidized bed combustion (FBC) wastes with coal slurry solid (CSS) from a coal preparation plant. During coal cleaning, pyrite, other heavy minerals, and rock materials are rejected from the coal and discharged in an aqueous slurry to a slurry pond. After dewatering and abandonment of the pond, the pyrite may oxidize and produce acid that may migrate into the underlying groundwater system. If an alkaline product, such as FBC waste, is mixed with the CSS, then the acid will be effectively neutralized as it is produced. In Task 1, soluble components and acid-base reaction products from mixtures of FBC waste and CSS are being extracted for up to 180 days in a series of aqueous batch experiments. The final two sets of extractions, 90- and 180-days, were completed. The extracts and solids from these experiments were submitted for analysis of cations, anions, and mineralogy. In Task 2, 10 L of extracts from three mixtures of FBC waste and CSS were prepared for use in experiments to determine the adsorption/desorption reactions that occur between components of the extracts and three commonly occurring Illinois soils.

  16. Ethanol Production from Rice-Straw Hydrolysate Using Zymomonas Mobilis in a Continuous Fluidized-Bed Reactor (FBR)

    SciTech Connect (OSTI)

    deJesus, D.; Nghiem, N.P.

    2001-01-01

    Rice-straw hydrolysate obtained by the Arkenol's concentrated acid hydrolysis process was fermented to ethanol using a recombinant Zymomonas mobilis strain capable of utilizing both glucose and xylose in a continuous fluidized-bed reactor (FBR). The parameters studied included biocatalyst stability with and without antibiotic, feed composition, and retention time. Xylose utilization in the presence of tetracycline remained stable for at least 17 days. This was a significant improvement over the old strain, Z. mobilis CP4 (pZB5), which started to lose xylose utilization capability after seven days. In the absence of tetracycline, the xylose utilization rate started to decrease almost immediately. With tetracycline in the feed for the first six days, stability of xylose utilization was maintained for four days after the antibiotic was removed from the feed. The xylose utilization rate started to decrease on day 11. In the presence of tetracycline using the Arkenol's hydrolysate diluted to 48 g/L glucose and 13 g/L xylose at a retention time of 4.5 h, 95% xylose conversion and complete glucose conversion occurred. The ethanol concentration was 29 g/L, which gave a yield of 0.48 g/g sugar consumed or 94% of the theoretical yield. Using the Arkenol's hydrolysate diluted to 83 g/L glucose and 28 g/L xylose, 92% xylose conversion and complete glucose conversion were obtained. The ethanol concentration was 48 g/L, which gave a yield of 0.45 g/ g sugar consumed or 88% of the theoretical yield. Maximum productivity of 25.5 g/L-h was obtained at a retention time of 1.9 h. In this case, 84% xylose conversion was obtained.

  17. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING WITH ACUTAL HANFORD LOW ACTIVITY WASTES VERIFYING FBSR AS A SUPPLEMENTARY TREATMENT

    SciTech Connect (OSTI)

    Jantzen, C.; Crawford, C.; Burket, P.; Bannochie, C.; Daniel, G.; Nash, C.; Cozzi, A.; Herman, C.

    2012-01-12

    The U.S. Department of Energy's Office of River Protection is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the cleanup mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA). Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. Fluidized Bed Steam Reforming (FBSR) is one of the supplementary treatments being considered. FBSR offers a moderate temperature (700-750 C) continuous method by which LAW and other secondary wastes can be processed irrespective of whether they contain organics, nitrates/nitrites, sulfates/sulfides, chlorides, fluorides, and/or radio-nuclides like I-129 and Tc-99. Radioactive testing of Savannah River LAW (Tank 50) shimmed to resemble Hanford LAW and actual Hanford LAW (SX-105 and AN-103) have produced a ceramic (mineral) waste form which is the same as the non-radioactive waste simulants tested at the engineering scale. The radioactive testing demonstrated that the FBSR process can retain the volatile radioactive components that cannot be contained at vitrification temperatures. The radioactive and nonradioactive mineral waste forms that were produced by co-processing waste with kaolin clay in an FBSR process are shown to be as durable as LAW glass.

  18. Fluidized Bed Steam Reforming (FBSR) Mineralization for High Organic and Nitrate Waste Streams for the Global Nuclear Energy Partnership (GNEP)

    SciTech Connect (OSTI)

    Jantzen, C.M.; Williams, M.R. [Savannah River National Laboratory, Aiken, SC (United States)

    2008-07-01

    Waste streams that may be generated by the Global Nuclear Energy Partnership (GNEP) Advanced Energy Initiative may contain significant quantities of organics (0-53 wt%) and/or nitrates (0-56 wt%). Decomposition of high nitrate streams requires reducing conditions, e.g. organic additives such as sugar or coal, to reduce the NOx in the off-gas to N{sub 2} to meet the Clean Air Act (CAA) standards during processing. Thus, organics will be present during waste form stabilization regardless of which GNEP processes are chosen, e.g. organics in the feed or organics for nitrate destruction. High organic containing wastes cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by preprocessing. Alternative waste stabilization processes such as Fluidized Bed Steam Reforming (FBSR) operate at moderate temperatures (650-750 deg. C) compared to vitrification (1150-1300 deg. C). FBSR converts organics to CAA compliant gases, creates no secondary liquid waste streams, and creates a stable mineral waste form that is as durable as glass. For application to the high Cs-137 and Sr-90 containing GNEP waste streams a single phase mineralized Cs-mica phase was made by co-reacting illite clay and GNEP simulated waste. The Cs-mica accommodates up to 30% wt% Cs{sub 2}O and all the GNEP waste species, Ba, Sr, Rb including the Cs-137 transmutation to Ba-137. For reference, the cesium mineral pollucite (CsAlSi{sub 2}O{sub 6}), currently being studied for GNEP applications, can only be fabricated at {>=}1000 deg. C. Pollucite mineralization creates secondary aqueous waste streams and NOx. Pollucite is not tolerant of high concentrations of Ba, Sr or Rb and forces the divalent species into different mineral host phases. The pollucite can accommodate up to 33% wt% Cs{sub 2}O. (authors)

  19. FLUIDIZED BED STEAM REFORMING MINERALIZATION FOR HIGH ORGANIC AND NITRATE WASTE STREAMS FOR THE GLOBAL NUCLEAR ENERGY PARTNERSHIP

    SciTech Connect (OSTI)

    Jantzen, C; Michael Williams, M

    2008-01-11

    Waste streams that may be generated by the Global Nuclear Energy Partnership (GNEP) Advanced Energy Initiative may contain significant quantities of organics (0-53 wt%) and/or nitrates (0-56 wt%). Decomposition of high nitrate streams requires reducing conditions, e.g. organic additives such as sugar or coal, to reduce the NO{sub x} in the off-gas to N{sub 2} to meet the Clean Air Act (CAA) standards during processing. Thus, organics will be present during waste form stabilization regardless of which GNEP processes are chosen, e.g. organics in the feed or organics for nitrate destruction. High organic containing wastes cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by preprocessing. Alternative waste stabilization processes such as Fluidized Bed Steam Reforming (FBSR) operate at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). FBSR converts organics to CAA compliant gases, creates no secondary liquid waste streams, and creates a stable mineral waste form that is as durable as glass. For application to the high Cs-137 and Sr-90 containing GNEP waste streams a single phase mineralized Cs-mica phase was made by co-reacting illite clay and GNEP simulated waste. The Cs-mica accommodates up to 30% wt% Cs{sub 2}O and all the GNEP waste species, Ba, Sr, Rb including the Cs-137 transmutation to Ba-137. For reference, the cesium mineral pollucite (CsAlSi{sub 2}O{sub 6}), currently being studied for GNEP applications, can only be fabricated at {ge} 1000 C. Pollucite mineralization creates secondary aqueous waste streams and NO{sub x}. Pollucite is not tolerant of high concentrations of Ba, Sr or Rb and forces the divalent species into different mineral host phases. The pollucite can accommodate up to 33% wt% Cs{sub 2}O.

  20. PFBC (pressurized fluidized bed combustion) turbocharged boiler design and economic study: Volume 1, Executive summary: Final report

    SciTech Connect (OSTI)

    Not Available

    1987-11-01

    A coal combustion technology that promises to reduce the cost of electrical power is pressurized fluidized bed combustion (PFBC). Since a PFBC boiler is physically smaller than a conventional pulverized coal fired boiler with a flue gas desulfurization system (PC/FGD) and the same power rating shop assembly and modularized shipment to the power plant site can be considered. Modular construction can substantially reduce the overall design/construction time. Emission controls are equivalent to, or better than, conventional PC/FGD units, and the PFBC combustor can tolerate coals with a wider range of characteristics. Two PFBC plants and the reference PC/FGD plant were each to have four nominal 250 MW(e) units to be completed for start-up at one year intervals. To establish a well defined consistent design basis for all units, the turbine-generator and steam cycle of a recently constructed 250 MW(e) unit (designed by Fluor and built under Fluor construction management) was selected and made the common element in both of the PFBC plants and the reference PC/FGD plant. Steam conditions of 2400 psia, 1000/sup 0/F were to be identical for all units as were the steam flows for the design load range of 50% to steam turbine valves-wide-open with inlet steam pressure 5% over design pressure (VWO 5% OP). The study produced three plant designs - a 4-unit turbocharged PFBC using bubbling bed technology, a 4-unit turbocharged PFBC using circulating bed technology, and a 4-unit PC/FGD reference plant using conventional pulverized coal technology coupled with wet limestone scrubber technology. The hot gas clean-up system, operating at these more modest temperatures, is capable of reducing the particulate in the gas to a level which meets EPA/NSPS standards without further cleanup. With this level of cleanup, service conditions for the turbocharger turbine are tolerable in commercially available designs and materials. 48 figs., 14 tabs.

  1. Chaotic behavior control in fluidized bed systems using artificial neural network. Quarterly progress report, October 1, 1996--December 31, 1996

    SciTech Connect (OSTI)

    Bodruzzaman, M.; Essawy, M.A.

    1996-02-27

    Pressurized fluidized-bed combustors (FBC) are becoming very popular, efficient, and environmentally acceptable replica for conventional boilers in Coal-fired and chemical plants. In this paper, we present neural network-based methods for chaotic behavior monitoring and control in FBC systems, in addition to chaos analysis of FBC data, in order to localize chaotic modes in them. Both of the normal and abnormal mixing processes in FBC systems are known to undergo chaotic behavior. Even though, this type of behavior is not always undesirable, it is a challenge to most types of conventional control methods, due to its unpredictable nature. The performance, reliability, availability and operating cost of an FBC system will be significantly improved, if an appropriate control method is available to control its abnormal operation and switch it to normal when exists. Since this abnormal operation develops only at certain times due to a sequence of transient behavior, then an appropriate abnormal behavior monitoring method is also necessary. Those methods has to be fast enough for on-line operation, such that the control methods would be applied before the system reaches a non-return point in its transients. It was found that both normal and abnormal behavior of FBC systems are chaotic. However, the abnormal behavior has a higher order chaos. Hence, the appropriate control system should be capable of switching the system behavior from its high order chaos condition to low order chaos. It is to mention that most conventional chaos control methods are designed to switch a chaotic behavior to a periodic orbit. Since this is not the goal for the FBC case, further developments are needed. We propose neural network-based control methods which are known for their flexibility and capability to control both non-linear and chaotic systems. A special type of recurrent neural network, known as Dynamic System Imitator (DSI), will be used for the monitoring and control purposes.

  2. Experimental Methods to Estimate Accumulated Solids in Nuclear Waste Tanks - 13313

    SciTech Connect (OSTI)

    Duignan, Mark R.; Steeper, Timothy J.; Steimke, John L. [Savannah River Nuclear Solutions, Savannah River National Laboratory, Aiken, SC 29808 (United States)] [Savannah River Nuclear Solutions, Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2013-07-01

    The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: - Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream. - Magnetic wand used to manually remove stainless steel solids from samples and the tank heel. - Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas. - Laser range finders to determine the volume and shape of the solids mounds. - Core sampler to determine the stainless steel solids distribution within the solids mounds. - Computer driven positioner that placed the laser range finders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet velocities were low. These devices and techniques were very effective to estimate the movement, location, and concentrations of the solids representing plutonium and are expected to perform well at a larger scale. The operation of the techniques and their measurement accuracies will be discussed as well as the overall results of the accumulated solids test. (authors)

  3. Assessor Training Assessment Techniques

    E-Print Network [OSTI]

    NVLAP Assessor Training Assessment Techniques: Communication Skills and Conducting an Assessment listener ·Knowledgeable Assessor Training 2009: Assessment Techniques: Communication Skills & Conducting, truthful, sincere, discrete · Diplomatic · Decisive · Selfreliant Assessor Training 2009: Assessment

  4. Tubular solid oxide fuel cell developments

    SciTech Connect (OSTI)

    Bratton, R.J.; Singh, P.

    1995-08-01

    An overview of the tubular solid oxide fuel cell (SOFC) development at Westinghouse is presented in this paper. The basic operating principles of SOFCs, evolution in tubular cell design and performance improvement, selection criteria for cell component materials, and cell processing techniques are discussed. The commercial goal is to develop a cell that can operate for 5 to 10 years. Results of cell test operated for more than 50,000 hours are presented. Since 1986, significant progress has been made in the evolution of cells with higher power, lower cost and improved thermal cyclic capability. Also in this period, successively larger multi-kilowatt electrical generators systems have been built and successfully operated for more than 7000 hours.

  5. Municipal Solid Waste in The United States

    E-Print Network [OSTI]

    Laughlin, Robert B.

    ...................................................................................................................... 17 The Solid Waste Management Hierarchy2007 Facts and Figures Municipal Solid Waste in The United States #12;United States Environmental Protection Agency Office of Solid Waste (5306P) EPA530-R-08-010 November 2008 www.epa.gov #12;MUNICIPAL SOLID

  6. Municipal Solid Waste in The United States

    E-Print Network [OSTI]

    Barlaz, Morton A.

    ...................................................................................................................18 The Solid Waste Management Hierarchy2011 Facts and Figures Municipal Solid Waste in The United States #12;United States Environmental Protection Agency Office of Solid Waste (5306P) EPA530-R-13-001 May 2013 www.epa.gov #12;MUNICIPAL SOLID

  7. Conversion of organic solids to hydrocarbons

    DOE Patents [OSTI]

    Greenbaum, E.

    1995-05-23

    A method of converting organic solids to liquid and gaseous hydrocarbons includes impregnating an organic solid with photosensitizing ions and exposing the impregnated solid to light in a non-oxidizing atmosphere for a time sufficient to photocatalytically reduce the solid to at least one of a liquid and a gaseous hydrocarbon. 5 Figs.

  8. ARTICLE IN PRESS Solid State Communications ( )

    E-Print Network [OSTI]

    Raychaudhuri, Pratap

    400005, India b Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore 425013

  9. Photon-pair source with controllable delay based on shaped inhomogeneous broadening of rare-earth-metal-doped solids

    SciTech Connect (OSTI)

    Sekatski, Pavel; Sangouard, Nicolas; Gisin, Nicolas; Afzelius, Mikael [Group of Applied Physics, University of Geneva, CH-1211 Geneva 4 (Switzerland); Riedmatten, Hugues de [Group of Applied Physics, University of Geneva, CH-1211 Geneva 4 (Switzerland); ICFO-Institute of Photonic Sciences, Mediterranean Technology Park, E-08860 Castelldefels (Barcelona) (Spain); ICREA-Institucio Catalana de Recerca i Estudis Avancats, E-08015 Barcelona (Spain)

    2011-05-15

    Spontaneous Raman emission in atomic gases provides an attractive source of photon pairs with a controllable delay. We show how this technique can be implemented in solid state systems by appropriately shaping the inhomogeneous broadening. Our proposal is eminently feasible with current technology and provides a realistic solution to entangle remote rare-earth-metal-doped solids in a heralded way.

  10. Solid oxide electrochemical reactor science.

    SciTech Connect (OSTI)

    Sullivan, Neal P.; Stechel, Ellen Beth; Moyer, Connor J.; Ambrosini, Andrea; Key, Robert J.

    2010-09-01

    Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

  11. Improving the reproducibility of pyrolysis MS techniques

    SciTech Connect (OSTI)

    Roussis, S.G.; Fedora, J.W. [Imperial Oil, Sarnia (Canada)

    1995-12-31

    The analysis of the majority of volatile samples is primarily accomplished with established techniques (EI, CI). These techniques are based on the direct vapourization of the sample, upon heating, in the ionization source of a mass spectrometer. Typical analytical techniques, able to analyze non-volatile samples are those that allow the desorption of components from the solid or liquid phase directly to the gas phase. Field Desorption (FD) and Desorption Chemical Ionization (DCI) are two of these techniques. Fast Atom Bombardment (FAB) has been more successful in analyzing polar samples than non-volatile hydrocarbon samples. Limited information is available for the capabilities of the newer ionization techniques (Electrospray Ionization, ESI; Matrix Assisted Laser Desorption Ionization, MALDI) to characterize the non-volatile hydrocarbon samples. ESI of mixtures of compounds produces complex mass spectra, consisting of multiply charged ion species, that may be difficult to interpret. MALDI has the potential for ionization of non-volatile hydrocarbon samples, but extensive research is required to determine the appropriate matrix compounds that will permit the unbiased desorption of all sample components. An important requirement in the characterization of the non-volatile samples using direct desorption techniques without prior chromatographic separation, is the use of ultra high resolution (>50,000), for the separation of high molecular weight isobaric peaks. In the present work, the experimental parameters affecting reproducibility have been studied, optimum conditions have been determined that permit reproducible analysis.

  12. Second generation pressurized fluidized-bed combustion (PFBC) research and development, Phase 2 -- Task 4, carbonizer testing. Volume 1, Test results

    SciTech Connect (OSTI)

    Froehlich, R.; Robertson, A.; Vanhook, J.; Goyal, A.; Rehmat, A.; Newby, R.

    1994-11-01

    During the period beginning November 1991 and ending September 1992, a series of tests were conducted at Foster Wheeler Development Corporation in a fluidized-bed coal carbonizer to determine its performance characteristics. The carbonizer was operated for 533 hours in a jetting fluidized-bed configuration during which 36 set points (steady-state periods) were achieved. Extensive data were collected on the feed and product stream compositions, heating values, temperatures, and flow rates. With these data, elemental and energy balances were computed to evaluate and confirm accuracy of the data. The carbonizer data were not as self-consistent as could be desired (balance closure imperfection). A software package developed by Science Ventures, Inc., of California, called BALAID, was used to reconcile the carbonizer data; the details of the reconciliation have been given in Volume 1 of this report. The reconciled data for the carbonizer were rigorously analyzed, correlations were developed, and the model was updated accordingly. The model was then used in simulating each of the 36 steady-state periods achieved in the pilot plant. The details are given in this Volume of the report.

  13. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; John Gaudlip; Matthew Lapinsky; Rhett McLaren; William Serencsits; Neil Raskin; Tom Steitz; Joseph J. Battista

    2003-03-26

    The Pennsylvania State University, utilizing funds furnished by the U.S. Department of Energy's Biomass Power Program, investigated the installation of a state-of-the-art circulating fluidized bed boiler at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring biofuels and coal-based feedstocks. The study was performed using a team that included personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Foster Wheeler Energy Corporation; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. The activities included assessing potential feedstocks at the University Park campus and surrounding region with an emphasis on biomass materials, collecting and analyzing potential feedstocks, assessing agglomeration, deposition, and corrosion tendencies, identifying the optimum location for the boiler system through an internal site selection process, performing a three circulating fluidized bed (CFB) boiler design and a 15-year boiler plant transition plan, determining the costs associated with installing the boiler system, developing a preliminary test program, determining the associated costs for the test program, and exploring potential emissions credits when using the biomass CFB boiler.

  14. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke; Joseph J. Battista

    2001-03-31

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute and the Office of Physical Plant, Foster Wheeler Energy Services, Inc., and Cofiring Alternatives.

  15. VOLUME 75, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 18 SEPTEMBER 1995 Self-Organization and Chaos in a Fluidized Bed

    E-Print Network [OSTI]

    Tennessee, University of

    flow tested, the behavior becomes extremely complex ("turbulent"). PACS numbers: 05.45.+b, 47.52.+j "fluidized"). This turbulence promotes heat and mass transfer as well as chemical reac- tions between. A schematic illustration of our experimental apparatus is shown in Fig. 1. The cylindrical vessel is 10.2 cm

  16. Towards standardizing the measurement of electrochemical properties of solid state electrolytes in lithium batteries.

    SciTech Connect (OSTI)

    Dees, D. W.; Henriksen, G. L.

    1999-05-06

    The purpose of this paper is to stimulate thought and discussion in the technical community on standardization of the experimental determination of the pertinent electrochemical properties of solid electrolytes in lithium batteries. This standardization is needed for comparison and modeling of solid electrolytes in a practical lithium battery. The appropriate electrochemical properties include transport, thermodynamic, and physical parameters that generally depend on concentration and temperature. While it is beyond the scope of this work to put forward definitive measurement techniques for all types of solid electrolytes, it is hoped that comparisons between various techniques to examine a dissolved binary lithium salt in a dry polymer solvent will lead to improved understanding and methodology for examining solid electrolytes.

  17. Data summary of municipal solid waste management alternatives

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This appendix contains the alphabetically indexed bibliography for the complete group of reports on municipal waste management alternatives. The references are listed for each of the following topics: mass burn technologies, RDF technologies, fluidized-bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting, and anaerobic digestion of MSW.

  18. Characterization of Amorphous Solid Dispersions of AMG 517 in HPMC-AS and Crystallization using Isothermal Microcalorimetry

    E-Print Network [OSTI]

    Calahan, Julie L.

    2011-04-26

    BN. Enhancement of solubility and dissolution of celecoxib by solid dispersion technique. J Pharm Sci Technol FIELD Full Journal Title:Journal of Pharmaceutical Science & Technology2009;1(2):63-8. 42. Broman E, Khoo C, Taylor LS. A comparison... BN. Enhancement of solubility and dissolution of celecoxib by solid dispersion technique. J Pharm Sci Technol FIELD Full Journal Title:Journal of Pharmaceutical Science & Technology2009;1(2):63-8. 42. Broman E, Khoo C, Taylor LS. A comparison...

  19. Solid-state lithium battery

    DOE Patents [OSTI]

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  20. Solid evacuated microspheres of hydrogen

    DOE Patents [OSTI]

    Turnbull, Robert J. (Urbana, IL); Foster, Christopher A. (Champaign, IL); Hendricks, Charles D. (Livermore, CA)

    1982-01-01

    A method is provided for producing solid, evacuated microspheres comprised of hydrogen. The spheres are produced by forming a jet of liquid hydrogen and exciting mechanical waves on the jet of appropriate frequency so that the jet breaks up into drops with a bubble formed in each drop by cavitation. The drops are exposed to a pressure less than the vapor pressure of the liquid hydrogen so that the bubble which is formed within each drop expands. The drops which contain bubbles are exposed to an environment having a pressure just below the triple point of liquid hydrogen and they thereby freeze giving solid, evacuated spheres of hydrogen.

  1. Solid-Liquid Interfacial Premelting

    E-Print Network [OSTI]

    Yang, Yang; Asta, Mark; Laird, Brian Bostian

    2013-02-28

    liquid-liquid miscibility gap, negligible solubility of Pb in the Al solid phase, and a large melting point separa- tion (600 K for Pb and 933 K for Al). We have previously reported results from MD simulations on this system at 625 K, a temperature just... undergoes a roughening transition about 100 K below the melting point of Al. Simulation details.—In our simulations of the Al-Pb solid-liquid interface, we employ a classical many-body potential developed by Landa et al. [42] to model the inter- atomic...

  2. TRANSITION PATH SAMPLING STUDIES OF SOLID-SOLID TRANSFORMATIONS

    E-Print Network [OSTI]

    Gruenwald, Michael

    isomerizations, or transport processes in solids, are characterized by widely disparate timescales. While. Many processes occurring in nature and technology such as the folding of a protein or the transport the freezing point, can remain in this supercooled state for hours or even days. Thus, the time scale

  3. High-temperature-staged fluidized-bed combustion (HITS), bench scale experimental test program conducted during 1980. Final report

    SciTech Connect (OSTI)

    Anderson, R E; Jassowski, D M; Newton, R A; Rudnicki, M L

    1981-04-01

    An experimental program was conducted to evaluate the process feasibility of the first stage of the HITS two-stage coal combustion system. Tests were run in a small (12-in. ID) fluidized bed facility at the Energy Engineering Laboratory, Aerojet Energy Conversion Company, Sacramento, California. The first stage reactor was run with low (0.70%) and high (4.06%) sulfur coals with ash fusion temperatures of 2450/sup 0/ and 2220/sup 0/F, respectively. Limestone was used to scavenge the sulfur. The produced low-Btu gas was burned in a combustor. Bed temperature and inlet gas percent oxygen were varied in the course of testing. Key results are summarized as follows: the process was stable and readily controllable, and generated a free-flowing char product using coals with low (2220/sup 0/F) and high (2450/sup 0/F) ash fusion temperatures at bed temperatures of at least 1700/sup 0/ and 1800/sup 0/F, respectively; the gaseous product was found to have a total heating value of about 120 Btu/SCF at 1350/sup 0/F, and the practicality of cleaning the hot product gas and delivering it to the combustor was demonstrated; sulfur capture efficiencies above 80% were demonstrated for both low and high sulfur coals with a calcium/sulfur mole ratio of approximately two; gasification rates of about 5,000 SCF/ft/sup 2/-hr were obtained for coal input rates ranging from 40 to 135 lbm/hr, as required to maintain the desired bed temperatures; and the gaseous product yielded combustion temperatures in excess of 3000/sup 0/F when burned with preheated (900/sup 0/F) air. The above test results support the promise of the HITS system to provide a practical means of converting high sulfur coal to a clean gas for industrial applications. Sulfur capture, gas heating value, and gas production rate are all in the range required for an effective system. Planning is underway for additional testing of the system in the 12-in. fluid bed facility, including demonstration of the second stage char burnup reactor.

  4. MINERALIZATION OF RADIOACTIVE WASTES BY FLUIDIZED BED STEAM REFORMING (FBSR): COMPARISONS TO VITREOUS WASTE FORMS, AND PERTINENT DURABILITY TESTING

    SciTech Connect (OSTI)

    Jantzen, C

    2008-12-26

    The Savannah River National Laboratory (SRNL) was requested to generate a document for the Washington State Department of Ecology and the U.S. Environmental Protection Agency that would cover the following topics: (1) A description of the mineral structures produced by Fluidized Bed Steam Reforming (FBSR) of Hanford type Low Activity Waste (LAW including LAWR which is LAW melter recycle waste) waste, especially the cage structured minerals and how they are formed. (2) How the cage structured minerals contain some contaminants, while others become part of the mineral structure (Note that all contaminants become part of the mineral structure and this will be described in the subsequent sections of this report). (3) Possible contaminant release mechanisms from the mineral structures. (4) Appropriate analyses to evaluate these release mechanisms. (5) Why the appropriate analyses are comparable to the existing Hanford glass dataset. In order to discuss the mineral structures and how they bond contaminants a brief description of the structures of both mineral (ceramic) and vitreous waste forms will be given to show their similarities. By demonstrating the similarities of mineral and vitreous waste forms on atomic level, the contaminant release mechanisms of the crystalline (mineral) and amorphous (glass) waste forms can be compared. This will then logically lead to the discussion of why many of the analyses used to evaluate vitreous waste forms and glass-ceramics (also known as glass composite materials) are appropriate for determining the release mechanisms of LAW/LAWR mineral waste forms and how the durability data on LAW/LAWR mineral waste forms relate to the durability data for LAW/LAWR glasses. The text will discuss the LAW mineral waste form made by FBSR. The nanoscale mechanism by which the minerals form will be also be described in the text. The appropriate analyses to evaluate contaminant release mechanisms will be discussed, as will the FBSR test results to date and how they compare to testing performed on LAW glasses. Other details about vitreous waste form durability and impacts of REDuction/OXidation (REDOX) on durability are given in Appendix A. Details about the FBSR process, various pilot scale demonstrations, and applications are given in Appendix B. Details describing all the different leach tests that need to be used jointly to determine the leaching mechanisms of a waste form are given in Appendix C. Cautions regarding the way in which the waste form surface area is measured and in the choice of leachant buffers (if used) are given in Appendix D.

  5. FTN4 OPTIMIZATION TECHNIQUES.

    E-Print Network [OSTI]

    Authors, Various

    2012-01-01

    3 1st Edition FTN4 OPTIMIZATION TECHNIQUES November 1979O. INTRODUCTION 1. COt1PILER OPTIMIZATIONS 2. SOURCE CODEcode. Most of these optimizations decrease central processor

  6. Characterization of polyxylylenes with solid state {sup 13}C nuclear magnetic resonance spectroscopy

    SciTech Connect (OSTI)

    Schneider, D.A.; Loy, D.A.; Assink, R.A. [Sandia National Labs., Albuquerque, NM (United States)] [and others

    1996-10-01

    Polyxylylenes are an important class of thermoplastics that are readily prepared by thermolysis of [2.2]paracyclophane or xylene precursors to afford xylylene monomers that condense and polymerize on solid surfaces to give polymer films. As most polyxylylenes are insoluble due to a high degree of crystallinity, characterization by solid state nuclear magnetic resonance spectroscopic techniques is necessary. In this paper we describe the preparation of polyxylylene, poly-2-ethylxylylene, poly-2-chloroxylylene, poly-2, 3-dichloroxylylene, and poly({alpha}, {alpha}, {alpha}{prime}, {alpha}{prime}-tetrafluoroxylylene) and their characterization using solid state {sup 13}C Cross Polarization Magic Angle Spinning Nuclear Magnetic Resonance (CP MAS NMR) spectroscopy.

  7. Solid-state radioluminescent compositions

    DOE Patents [OSTI]

    Clough, Roger L. (Albuquerque, NM); Gill, John T. (Miamisburg, OH); Hawkins, Daniel B. (Fairbanks, AK); Renschler, Clifford L. (Tijeras, NM); Shepodd, Timothy J. (Livermore, CA); Smith, Henry M. (Overland Park, KS)

    1991-01-01

    A solid state radioluminescent composition for light source comprises an optically clear polymer organic matrix containing tritiated organic materials and dyes capable of "red" shifting primary scintillation emissions from the polymer matrix. The tritiated organic materials are made by reducing, with tritium, an unsaturated organic compound that prior to reduction contains olefinic or alkynylic bonds.

  8. Solid lithium-ion electrolyte

    DOE Patents [OSTI]

    Zhang, J.G.; Benson, D.K.; Tracy, C.E.

    1998-02-10

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O--CeO{sub 2}--SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

  9. Solid oxide fuel cell generator

    DOE Patents [OSTI]

    Di Croce, A. Michael (Murrysville, PA); Draper, Robert (Churchill Boro, PA)

    1993-11-02

    A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row.

  10. Solid oxide fuel cell generator

    DOE Patents [OSTI]

    Di Croce, A.M.; Draper, R.

    1993-11-02

    A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row. 5 figures.

  11. Solid lithium-ion electrolyte

    DOE Patents [OSTI]

    Zhang, Ji-Guang (Golden, CO); Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

    1998-01-01

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

  12. Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities (New York)

    Broader source: Energy.gov [DOE]

    These regulations apply to all solid wastes with the exception of hazardous or radioactive waste. Proposed solid waste processing facilities are required to obtain permits prior to construction,...

  13. Contamination Control Techniques

    SciTech Connect (OSTI)

    EBY, J.L.

    2000-05-16

    Welcome to a workshop on contamination Control techniques. This work shop is designed for about two hours. Attendee participation is encouraged during the workshop. We will address different topics within contamination control techniques; present processes, products and equipment used here at Hanford and then open the floor to you, the attendees for your input on the topics.

  14. Low energy electron diffraction (LEED) and sum frequency generation (SFG) vibrational spectroscopy studies of solid-vacuum, solid-air and solid-liquid interfaces

    SciTech Connect (OSTI)

    Hoffer, Saskia

    2002-08-19

    Electron based surface probing techniques can provide detailed information about surface structure or chemical composition in vacuum environments. The development of new surface techniques has made possible in situ molecular level studies of solid-gas interfaces and more recently, solid-liquid interfaces. The aim of this dissertation is two-fold. First, by using novel sample preparation, Low Energy Electron Diffraction (LEED) and other traditional ultra high vacuum (UHV) techniques are shown to provide new information on the insulator/vacuum interface. The surface structure of the classic insulator NaCl has been determined using these methods. Second, using sum frequency generation (SFG) surface specific vibrational spectroscopy studies were performed on both the biopolymer/air and electrode/electrolyte interfaces. The surface structure and composition of polyetherurethane-silicone copolymers were determined in air using SFG, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). SFG studies of the electrode (platinum, gold and copper)/electrolyte interface were performed as a function of applied potential in an electrochemical cell.

  15. SYNERGIA Forum Integrated Municipal Solid Waste Management

    E-Print Network [OSTI]

    Columbia University

    2nd SYNERGIA Forum «Integrated Municipal Solid Waste Management: Recycling and Energy Change and Solid Waste Management" Anthony Mavropoulos President, Scientific Technical Committee, Chairman, SYNERGIA "Where Greece stands on the Ladder of Sustainable Waste Management " *Nikolaos

  16. Gaines County Solid Waste Management Act (Texas)

    Broader source: Energy.gov [DOE]

    This Act establishes the Gaines County Solid Waste Management District, a governmental body to develop and carry out a regional water quality protection program through solid waste management and...

  17. Solid Oxide Fuel Cell Manufacturing Overview

    E-Print Network [OSTI]

    Solid Oxide Fuel Cell Manufacturing Overview Hydrogen and Fuel Cell Technologies Manufacturing R Reserved. 3 The Solid Oxide Fuel Cell Electrochemistry #12;Copyright © 2011 Versa Power Systems. All Rights

  18. Nanostructured Solid Oxide Fuel Cell Electrodes

    E-Print Network [OSTI]

    Sholklapper, Tal Zvi

    2007-01-01

    post-Doping of Solid Oxide Fuel Cell Cathodes,? P.h.D.and Technology of Ceramic Fuel Cells, p. 209, Elsevier, NewI. Birss, in Solid Oxide Fuel Cells (SOFC IX), S. C. Singhal

  19. Nanostructured Solid Oxide Fuel Cell Electrodes

    E-Print Network [OSTI]

    Sholklapper, Tal Zvi

    2007-01-01

    in Solid Oxide Fuel Cells (SOFC IX), S. C. Singhal and J.create connected nanostructured SOFC electrodes is reviewed.of Solid Oxide Fuel Cells (SOFC) to directly and efficiently

  20. PHYSICS OF FLUIDS 26, 093302 (2014) The motion of solid spherical particles falling in a cellular

    E-Print Network [OSTI]

    Bergougnoux, Laurence

    2014-01-01

    in a fundamental way. Examples include fluidized-bed reactors, the treatment of waste materials in clarifiers) the surrounding fluid (R = 0) and on light gas bubbles (R = 2). A linear stability analysis of the equilibrium

  1. Sandia Energy - (Lighting and) Solid-State Lighting: Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Lighting and) Solid-State Lighting: Science, Technology, Economic Perspectives Home Energy Research EFRCs Solid-State Lighting Science EFRC (Lighting and) Solid-State Lighting:...

  2. Sandia Energy - Brief History of Solid-State Lighting Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brief History of Solid-State Lighting Technology Home Energy Research EFRCs Solid-State Lighting Science EFRC Overview Brief History of Solid-State Lighting Technology Brief...

  3. Something for Nothing: Solid-Oxide Fuel Cells

    E-Print Network [OSTI]

    Gururangan, Karthik

    2015-01-01

    would be using other solid electrolytes. (Steele, This valueanode, cathode, and electrolyte are solid and the rate ofBy choosing a solid oxide electrolyte, the much larger

  4. 2014 Solid-State Lighting Project Portfolio

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    White LED Light Engines ... A-23 Phosphor Systems for Illumination Quality Solid State Lighting Products ... A-24...

  5. Solid Waste Diversion Plan Fallen Star, 2012

    E-Print Network [OSTI]

    Aluwihare, Lihini

    2012 Prepared by: Facilities Management #12;UC San Diego Solid Waste Diversion Plan Table of Contents Overview Location and Areas Covered Recycling and Solid Waste Management Contact Campus/Medical Center Campus Recycling and Solid Waste Management Contact The Facilities Management department is responsible

  6. Suspended Solids Profiler Shop Test Report

    SciTech Connect (OSTI)

    STAEHR, T.W.

    2000-01-19

    The Suspended Solids Profiler (SSP) Instrument is planned to be installed in the AZ-101 tank to measure suspended solids concentrations during mixer pump testing. The SSP sensor uses a reflectance measurement principle to determine the suspended solids concentrations. The purpose of this test is to provide a documented means of verifying that the functional components of the SSP operate properly.

  7. Physics 480 Introduction to Solid State Physics

    E-Print Network [OSTI]

    Kioussis, Nicholas

    Physics 480 Introduction to Solid State Physics Spring 2012 Logistics Lecture Room: 1100 (Live Oak://www.csun.edu/~nkioussi Prerequisites Quantum Mechanics or Modern Physics at 375 level Textbook Introduction to Solid State Physics, Charles Kittel, Wiley, 8th Edition Reference: Neil W. Ashcroft and N. David Mermin, Solid State Physics

  8. Energy and solid/hazardous waste

    SciTech Connect (OSTI)

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

  9. Rechargeable solid polymer electrolyte battery cell

    DOE Patents [OSTI]

    Skotheim, Terji (East Patchoque, NY)

    1985-01-01

    A rechargeable battery cell comprising first and second electrodes sandwiching a solid polymer electrolyte comprising a layer of a polymer blend of a highly conductive polymer and a solid polymer electrolyte adjacent said polymer blend and a layer of dry solid polymer electrolyte adjacent said layer of polymer blend and said second electrode.

  10. Solid Waste Management Plan. Revision 4

    SciTech Connect (OSTI)

    1995-04-26

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  11. Development of an advanced process for drying fine coal in an inclined fluidized bed: Technical progress report for the second quarter, January 19--March 31, 1989

    SciTech Connect (OSTI)

    Boysen, J.E.; Cha, C.Y.; Berggren, M.H.; Jha, M.C.

    1989-05-01

    This research project is for the development of a technically and economically feasible process for drying and stabilizing of fine particles of high-moisture subbituminous coal. Research activities were initiated with efforts concentrating on characterization of the two feed coals: Eagle Butte coal from AMAX Coal Company's mine located in the Powder River Basin of Wyoming; and coal from Usibelli Coal Mine, Inc.'s mine located in central Alaska. Both of the feed coals are high-moisture subbituminous coals with ''as received'' moisture contents of 29% and 22% for the Eagle Butte and Usibelli coals, respectively. However, physical analyses of the crushed coal samples (--28-mesh particle size range) indicate many differences. The minimum fluidization velocity (MFV) of the feed coals were experimentally determined. The MFV for --28-mesh Eagle Butte coal is approximately 1 ft/min, and the MFV for --28-mesh Usibelli coal is approximately 3 ft/min. 2 refs., 16 figs., 3 tabs.

  12. The Lakeland McIntosh Unit 4 demonstration project utilizing Foster Wheeler`s pressurized circulating fluidized-bed combustion technology

    SciTech Connect (OSTI)

    McClung, J.D.; Provol, S.J.; Morehead, H.T.; Dodd, A.M.

    1997-12-31

    The City of Lakeland, Florida, Foster Wheeler and the Westinghouse Electric Corporation have embarked on the demonstration of a Clean Coal Technology at the City of Lakeland`s McIntosh Power Station in lakeland, Polk County, Florida. The project will demonstrate the Pressurized Circulating Fluidized Bed Combustion (PCFB) technology developed by Foster Wheeler and Westinghouse. The Lakeland McIntosh Unit 4 Project is a nominal 170 MW power plant designed to burn a range of low- to high-sulfur coals. The combined cycle plant employs a Westinghouse 251B12 gas turbine engine in conjunction with a steam turbine operating in a 2400/1000/1000 steam cycle. The plant will demonstrate both the PCFB and topped PCFB combustion technologies. This paper provides a process description of the Foster Wheeler PCFB and Topped PCFB technologies and their application to the Lakeland McIntosh Unit 4 Project.

  13. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Curtis Jawdy

    2000-10-09

    The Pennsylvania State University, under contract to the US Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal or coal refuse, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute and the Office of Physical Plant, Foster Wheeler Energy Corporation, Foster Wheeler Development Corporation, and Cofiring Alternatives. The major emphasis of work during this reporting period was to assess the types and quantities of potential feedstocks and collect samples of them for analysis. Approximately twenty different biomass, animal waste, and other wastes were collected and analyzed.

  14. Perovskite solid electrolytes for SOFC

    SciTech Connect (OSTI)

    Sammells, A.F.

    1993-11-01

    We have synthesized a new series of brownmillerite solid electrolyte phases Ba{sub 2}GdIn{sub 1-x}Ga{sub x}O{sub 5} (x = 0,0.2,0.4) with the x = 0.2 phase exhibiting an unusually low E. relative to both the observed ionic conductivity in this phase and to E{sub a}s observed in similar compounds. We attribute measured ionic conductivities to a lack of available charge carriers in Ba{sub 2}GdIn{sub 0.8}Ga{sub 0.2}O{sub 5}. However, the low E{sub a} supports the premise that brownmillerite solid electrolyte structures are suitable for supporting high ionic conductivity. Current work is focusing on enhancing the amount of charge carriers in these materials by systematically introducing disorder into the brownmillerite lattice.

  15. Solid-state membrane module

    DOE Patents [OSTI]

    Gordon, John Howard (Salt Lake City, UT); Taylor, Dale M. (Murray, UT)

    2011-06-07

    Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.

  16. Solid friction between soft filaments

    E-Print Network [OSTI]

    Andrew Ward; Feodor Hilitski; Walter Schwenger; David Welch; A. W. C. Lau; Vincenzo Vitelli; L. Mahadevan; Zvonimir Dogic

    2015-03-04

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments' overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes' drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament's elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.

  17. Perovskite solid electrolytes for SOFC

    SciTech Connect (OSTI)

    Sammells, A.F.

    1992-09-01

    Selected perovskite solid electrolytes incorporated into research size fuel cells have shown stability for > 4000 hours at 600{degrees}C. Perovskite lattice requirements which favor low E{sub a} for ionic conduction include (i) that the perovskite lattice possess a moderate enthalpy of formation, (ii) perovskite lattice possess large free volumes, (iii) that the lattice minimally polarizes the mobile ion and (iv) that the crystallographic saddle point r{sub c} for ionic conduction is {approx_equal} 1.

  18. Perovskite solid electrolytes for SOFC

    SciTech Connect (OSTI)

    Sammells, A.F.

    1992-01-01

    Selected perovskite solid electrolytes incorporated into research size fuel cells have shown stability for > 4000 hours at 600{degrees}C. Perovskite lattice requirements which favor low E{sub a} for ionic conduction include (i) that the perovskite lattice possess a moderate enthalpy of formation, (ii) perovskite lattice possess large free volumes, (iii) that the lattice minimally polarizes the mobile ion and (iv) that the crystallographic saddle point r{sub c} for ionic conduction is {approx equal} 1.

  19. Supercritical/Solid Catalyst (SSC)

    ScienceCinema (OSTI)

    None

    2013-05-28

    INL's patented, continuous-flow Supercritical/Solid Catalyst (SSC) produces the highest ASTM-quality B-100 biodiesel from waste fats, oils, and greases at the site of waste generation. SSC delivers low-cost transportation fuel, avoids significant landfill costs for municipalities, and reduces potent methane and other emissions produced in landfills from these wastes. You can learn more about INL's energy research programs at http://www.facebook.com/idahonationallaboratory.

  20. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING AS A SUPPLEMENTARY TREATMENT FOR HANFORD'S LOW ACTIVITY WASTE AND SECONDARY WASTES

    SciTech Connect (OSTI)

    Jantzen, C.; Crawford, C.; Cozzi, A.; Bannochie, C.; Burket, P.; Daniel, G.

    2011-02-24

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the Savannah River National Laboratory (SRNL) to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of I-125/129 and Tc-99 to chemically resemble WTP-SW. Ninety six grams of radioactive product were made for testing. The second campaign commenced using SRS LAW chemically trimmed to look like Hanford's LAW. Six hundred grams of radioactive product were made for extensive testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.