Sample records for fluidized bed solar

  1. Hybrid fluidized bed combuster

    DOE Patents [OSTI]

    Kantesaria, Prabhudas P. (Windsor, CT); Matthews, Francis T. (Poquonock, CT)

    1982-01-01T23:59:59.000Z

    A first atmospheric bubbling fluidized bed furnace is combined with a second turbulent, circulating fluidized bed furnace to produce heat efficiently from crushed solid fuel. The bed of the second furnace receives the smaller sizes of crushed solid fuel, unreacted limestone from the first bed, and elutriated solids extracted from the flu gases of the first bed. The two-stage combustion of crushed solid fuel provides a system with an efficiency greater than available with use of a single furnace of a fluidized bed.

  2. Fluidization quality analyzer for fluidized beds

    DOE Patents [OSTI]

    Daw, C. Stuart (Knoxville, TN); Hawk, James A. (Oak Ridge, TN)

    1995-01-01T23:59:59.000Z

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence.

  3. Staged fluidized bed

    DOE Patents [OSTI]

    Mallon, R.G.

    1983-05-13T23:59:59.000Z

    The invention relates to oil shale retorting and more particularly to staged fluidized bed oil shale retorting. Method and apparatus are disclosed for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.

  4. Apparatus for controlling fluidized beds

    DOE Patents [OSTI]

    Rehmat, A.G.; Patel, J.G.

    1987-05-12T23:59:59.000Z

    An apparatus and process are disclosed for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance. 2 figs.

  5. Fluidized-bed combustion

    SciTech Connect (OSTI)

    Botros, P E

    1990-04-01T23:59:59.000Z

    This report describes the activities of the Morgantown Energy Technology Center's research and development program in fluidized-bed combustion from October 1, 1987, to September 30, 1989. The Department of Energy program involves atmospheric and pressurized systems. Demonstrations of industrial-scale atmospheric systems are being completed, and smaller boilers are being explored. These systems include vortex, multi-solid, spouted, dual-sided, air-cooled, pulsed, and waste-fired fluidized-beds. Combustion of low-rank coal, components, and erosion are being studied. In pressurized combustion, first-generation, combined-cycle power plants are being tested, and second-generation, advanced-cycle systems are being designed and cost evaluated. Research in coal devolatilization, metal wastage, tube corrosion, and fluidization also supports this area. 52 refs., 24 figs., 3 tabs.

  6. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, C.D.; Marasco, J.A.

    1996-02-27T23:59:59.000Z

    A fluidized bed reactor system is described which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves. 3 figs.

  7. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN)

    1993-01-01T23:59:59.000Z

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  8. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN); Marasco, Joseph A. (Kingston, TN)

    1995-01-01T23:59:59.000Z

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.

  9. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN); Marasco, Joseph A. (Kingston, TN)

    1996-01-01T23:59:59.000Z

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves.

  10. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, C.D.

    1993-12-14T23:59:59.000Z

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.

  11. Biparticle fluidized bed reactor

    DOE Patents [OSTI]

    Scott, C.D.; Marasco, J.A.

    1995-04-25T23:59:59.000Z

    A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.

  12. Fluidized bed boiler feed system

    DOE Patents [OSTI]

    Jones, Brian C. (Windsor, CT)

    1981-01-01T23:59:59.000Z

    A fluidized bed boiler feed system for the combustion of pulverized coal. Coal is first screened to separate large from small particles. Large particles of coal are fed directly to the top of the fluidized bed while fine particles are first mixed with recycled char, preheated, and then fed into the interior of the fluidized bed to promote char burnout and to avoid elutriation and carryover.

  13. Fluidized-bed sorbents

    SciTech Connect (OSTI)

    Gangwal, S.K.; Gupta, R.P.

    1994-10-01T23:59:59.000Z

    The objectives of this project are to identify and demonstrate methods for enhancing long-term chemical reactivity and attrition resistance of zinc oxide-based mixed metal-oxide sorbents for desulfurization of hot coal-derived gases in a high-temperature, high-pressure (HTHP) fluidized-bed reactor. In this program, regenerable ZnO-based mixed metal-oxide sorbents are being developed and tested. These include zinc ferrite, zinc titanate, and Z-SORB sorbents. The Z-SORB sorbent is a proprietary sorbent developed by Phillips Petroleum Company (PPCo).

  14. Fluidized bed controls refinery emissions

    SciTech Connect (OSTI)

    Abdulally, I.F.; Kersey, B.R.

    1986-05-01T23:59:59.000Z

    In early 1983, two fluidized bed, waste heat boilers entered into service at the Ashland Petroleum Company refinery site in Ashland, Kentucky. These fluidized bed units are coupled to the regeneration end of a newly developed reduced crude conversion (RCC) process and served the purpose of reducing CO, SO/sub 2/ and NO/sub x/ emissions while recuperating waste heat from the regenerator process off gases.

  15. Pressurized fluidized bed reactor

    DOE Patents [OSTI]

    Isaksson, Juhani (Karhula, FI)

    1996-01-01T23:59:59.000Z

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  16. Pressurized fluidized bed reactor

    DOE Patents [OSTI]

    Isaksson, J.

    1996-03-19T23:59:59.000Z

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  17. Char binder for fluidized beds

    DOE Patents [OSTI]

    Borio, Richard W. (Somers, CT); Accortt, Joseph I. (Simsbury, CT)

    1981-01-01T23:59:59.000Z

    An arrangement that utilizes agglomerating coal as a binder to bond coal fines and recycled char into an agglomerate mass that will have suitable retention time when introduced into a fluidized bed 14 for combustion. The simultaneous use of coal for a primary fuel and as a binder effects significant savings in the elimination of non-essential materials and processing steps.

  18. Control of bed height in a fluidized bed gasification system

    DOE Patents [OSTI]

    Mehta, Gautam I. (Greensburg, PA); Rogers, Lynn M. (Export, PA)

    1983-12-20T23:59:59.000Z

    In a fluidized bed apparatus a method for controlling the height of the fdized bed, taking into account variations in the density of the bed. The method comprises taking simultaneous differential pressure measurements at different vertical elevations within the vessel, averaging the differential pressures, determining an average fluidized bed density, then periodically calculating a weighting factor. The weighting factor is used in the determination of the actual bed height which is used in controlling the fluidizing means.

  19. Fluidized bed gasification of agricultural residue

    E-Print Network [OSTI]

    Groves, John David

    1979-01-01T23:59:59.000Z

    and Kinetics Development of Gasification Systems Fixed Bed Gasifiers Fluidized Bed Gasifiers Fluidization 6 7 12 12 13 16 III DEVELOPMENT OF EXPERIMENTAL SYSTEM . . . 20 IV Feed Preparation and Analysis Experimental Apparatus Experimental Method..., wheat, and rice in Texas were produced at an average rate of 20 million tons (18 Tg) per year (LePori and Lacewell, 1977). The main impetus of the project being implemented is to design and build a fluidized bed combustion prototype with subsequent...

  20. Advanced Fluidized Bed Waste Heat Recovery Systems

    E-Print Network [OSTI]

    Peterson, G. R.

    ADVANCED FLUIDIZED BED WASTE HEAT RECOVERY SYSTEMS G. R. PETERSON Project Manager U.S. Department of Energy, Idaho Operations Office Idaho Falls, Idaho ABSTRACT The U.S. Department of Energy, Office of Industri al Programs, has sponsored... the development of a Fluidized Bed Waste Heat Recovery System (FBWHRS) and a higher temperature variant, the Ceramic Tubular Distributor Plate (CTOP) Fluidized Bed Heat Exchanger (FBHX) system. Both systems recover energy from high-temperature flue gases...

  1. Fluidized Bed Technology - Overview | Department of Energy

    Office of Environmental Management (EM)

    fluidized bed boilers as a standard package. This success is largely due to the Clean Coal Technology Program and the Energy Department's Fossil Energy and industry partners...

  2. The Anaerobic Fluidized Bed Membrane Bioreactor for Energy-Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Anaerobic Fluidized Bed Membrane Bioreactor for Energy-Efficient Wastewater Reuse The Anaerobic Fluidized Bed Membrane Bioreactor for Energy-Efficient Wastewater Reuse...

  3. Fluidized bed combustor and tube construction therefor

    DOE Patents [OSTI]

    De Feo, Angelo (Passaic, NJ); Hosek, William (Morris, NJ)

    1981-01-01T23:59:59.000Z

    A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

  4. Tube construction for fluidized bed combustor

    DOE Patents [OSTI]

    De Feo, Angelo (Totowa, NJ); Hosek, William (Mt. Tabor, NJ)

    1984-01-01T23:59:59.000Z

    A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.

  5. Scaling of pressurized fluidized beds

    SciTech Connect (OSTI)

    Guralnik, S.; Glicksman, L.R.

    1994-10-01T23:59:59.000Z

    The project has two primary objectives. The first is to verify a set of hydrodynamic scaling relationships for commercial pressurized fluidized bed combustors (PFBC). The second objective is to investigate solids mixing in pressurized bubbling fluidized beds. American Electric Power`s (AEP) Tidd combined-cycle demonstration plant will provide time-varying pressure drop data to serve as the basis for the scaling verification. The verification will involve demonstrating that a properly scaled cold model and the Tidd PFBC exhibit hydrodynamically similar behavior. An important issue in PFBC design is the spacing of fuel feed ports. The feed spacing is dictated by the fuel distribution and the mixing characteristics within the bed. After completing the scaling verification, the cold model will be used to study the characteristics of PFBCs. A thermal tracer technique will be utilized to study mixing both near the fuel feed region and in the far field. The results allow the coal feed and distributor to be designed for optimal heating.

  6. FLUIDIZED BED COMBUSTION UNIT FOR OIL SHALE

    E-Print Network [OSTI]

    M. Hammad; Y. Zurigat; S. Khzai; Z. Hammad; O. Mubydeem

    A fluidized bed combustion unit has been designed and installed to study the fluidized bed combustion performance using oil shale as fuel in direct burning process. It is a steel column of 18 cm inside diameter and 130 cm height fitted with a perforated plate air distributor of 611 holes, each of 1

  7. Fluidized bed injection assembly for coal gasification

    DOE Patents [OSTI]

    Cherish, Peter (Bethel Park, PA); Salvador, Louis A. (Hempfield Township, Westmoreland County, PA)

    1981-01-01T23:59:59.000Z

    A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

  8. Pulse atmospheric fluidized bed combustion

    SciTech Connect (OSTI)

    Not Available

    1989-03-01T23:59:59.000Z

    The overall objective of the program is the development of a pulsed atmospheric fluidized-bed combustion (PAFBC) technology to burn coal and to provide heat and steam to commercial, institutional, and small industrial applications at a reasonable price in an environmentally acceptable manner. During this reporting period, a total of eight shakedown and debugging coal combustion tests were performed in the AFBC. A start-up procedure was established, system improvements implemented, and preliminary material and heat balances made based on these tests. The pulse combustor for the AFBC system was fabricated and installed and a series of tests was conducted on the system. 17 figs., 5 tabs.

  9. Continuous austempering fluidized bed furnace. Final report

    SciTech Connect (OSTI)

    Srinivasan, M.N. [Lamar Univ., Beaumont, TX (United States). Dept. of Mechanical Engineering] [Lamar Univ., Beaumont, TX (United States). Dept. of Mechanical Engineering

    1997-09-23T23:59:59.000Z

    The intended objective of this project was to show the benefits of using a fluidized bed furnace for austenitizing and austempering of steel castings in a continuous manner. The division of responsibilities was as follows: (1) design of the fluidized bed furnace--Kemp Development Corporation; (2) fabrication of the fluidized bed furnace--Quality Electric Steel, Inc.; (3) procedure for austempering of steel castings, analysis of the results after austempering--Texas A and M University (Texas Engineering Experiment Station). The Department of Energy provided funding to Texas A and M University and Kemp Development Corporation. The responsibility of Quality Electric Steel was to fabricate the fluidized bed, make test castings and perform austempering of the steel castings in the fluidized bed, at their own expense. The project goals had to be reviewed several times due to financial constraints and technical difficulties encountered during the course of the project. The modifications made and the associated events are listed in chronological order.

  10. Packed fluidized bed blanket for fusion reactor

    DOE Patents [OSTI]

    Chi, John W. H. (Mt. Lebanon, PA)

    1984-01-01T23:59:59.000Z

    A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

  11. Combined fluidized bed retort and combustor

    DOE Patents [OSTI]

    Shang, Jer-Yu (Fairfax, VA); Notestein, John E. (Morgantown, WV); Mei, Joseph S. (Morgantown, WV); Zeng, Li-Wen (Morgantown, WV)

    1984-01-01T23:59:59.000Z

    The present invention is directed to a combined fluidized bed retorting and combustion system particularly useful for extracting energy values from oil shale. The oil-shale retort and combustor are disposed side-by-side and in registry with one another through passageways in a partition therebetween. The passageways in the partition are submerged below the top of the respective fluid beds to preclude admixing or the product gases from the two chambers. The solid oil shale or bed material is transported through the chambers by inclining or slanting the fluidizing medium distributor so that the solid bed material, when fluidized, moves in the direction of the downward slope of the distributor.

  12. Fluidized bed heat treating system

    DOE Patents [OSTI]

    Ripley, Edward B; Pfennigwerth, Glenn L

    2014-05-06T23:59:59.000Z

    Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

  13. Pulsed atmospheric fluidized bed combustion

    SciTech Connect (OSTI)

    Not Available

    1989-11-01T23:59:59.000Z

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  14. Circulating Fluidized Bed Combustion Boiler Project

    E-Print Network [OSTI]

    Farbstein, S. B.; Moreland, T.

    1984-01-01T23:59:59.000Z

    The project to build a PYROFLOW circulating fluidized bed combustion (FBC) boiler at the BFGoodrich Chemical Plant at Henry, Illinois, is described. This project is being partially funded by Illinois to demonstrate the feasibility of utilizing high...

  15. Coal-Fired Fluidized Bed Combustion Cogeneration

    E-Print Network [OSTI]

    Thunem, C.; Smith, N.

    COAL-FIRED FLUIDIZED BED COMBUSTION COGENERATION Cabot Thunem, P.E Norm Smith, P.E. Stanley Consultants, Inc. Muscatine, Iowa ABSTRACT The availability of an environmentally accep table multifuel technology, such as fluidized bed... combustion, has encouraged many steam producers/ users to investigate switching from oil or gas to coal. Changes in federal regulations encouraging cogeneration have further enhanced the economic incentives for primary fuel switching. However...

  16. Pressurized fluidized-bed combustion

    SciTech Connect (OSTI)

    Not Available

    1980-10-01T23:59:59.000Z

    The US DOE pressurized fluidized bed combustion (PFBC) research and development program is designed to develop the technology and data base required for the successful commercialization of the PFBC concept. A cooperative program with the US, West Germany, and the UK has resulted in the construction of the 25 MWe IEA-Grimethorpe combined-cycle pilot plant in England which will be tested in 1981. A 13 MWe coal-fired gas turbine (air cycle) at Curtis-Wright has been designed and construction scheduled. Start-up is planned to begin in early 1983. A 75 MWe pilot plant is planned for completion in 1986. Each of these PFBC combined-cycle programs is discussed. The current status of PFB technology may be summarized as follows: turbine erosion tolerance/hot gas cleanup issues have emerged as the barrier technology issues; promising turbine corrosion-resistant materials have been identified, but long-term exposure data is lacking; first-generation PFB combustor technology development is maturing at the PDU level; however, scale-up to larger size has not been demonstrated; and in-bed heat exchanger materials have been identified, but long-term exposure data is lacking. The DOE-PFB development plan is directed at the resolution of these key technical issues. (LCL)

  17. Particle withdrawal from fluidized bed systems

    DOE Patents [OSTI]

    Salvador, Louis A. (Greensburg, PA); Andermann, Ronald E. (Arlington Heights, IL); Rath, Lawrence K. (Mt. Pleasant, PA)

    1982-01-01T23:59:59.000Z

    Method and apparatus for removing ash formed within, and accumulated at the lower portion of, a fluidized bed coal gasification reactor vessel. A supplemental fluidizing gas, at a temperature substantially less than the average fluidized bed combustion operating temperature, is injected into the vessel and upwardly through the ash so as to form a discrete thermal interface region between the fluidized bed and the ash. The elevation of the interface region, which rises with ash accumulation, is monitored by a thermocouple and interrelated with a motor controlled outlet valve. When the interface rises above the temperature indicator, the valve opens to allow removal of some of the ash, and the valve is closed, or positioned at a minimum setting, when the interface drops to an elevation below that of the thermocouple.

  18. Particle Pressures in Fluidized Beds. Final report

    SciTech Connect (OSTI)

    Campbell, C.S.; Rahman, K.; Jin, C.

    1996-09-01T23:59:59.000Z

    This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction): they impart to the bed. So rather than directly measure the particle pressure, we inferred the values of the elasticity from measurements of instability growth in liquid beds the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined)and then working backwards to determine the unknown coefficients, including the elasticity.

  19. Particle pressures in fluidized beds. Final report

    SciTech Connect (OSTI)

    Campbell, C.S.; Rahman, K.; Jin, C.

    1996-09-01T23:59:59.000Z

    This project studies the particle pressure, which may be thought of as the force exerted by the particulate phase of a multiphase mixture, independently of that exerted by other phases. The project is divided into two parts, one concerning gas and the other liquid fluidized beds. Previous work on gas fluidized beds had suggested that the particle pressures are generated by bubbling action. Thus, for these gas fluidized bed studies, the particle pressure is measured around single bubbles generated in 2-D fluidized beds, using special probes developed especially for this purpose. Liquid beds are immune from bubbling and the particle pressures proved too small to measure directly. However, the major interest in particle pressures in liquid beds lies in their stabilizing effect that arises from the effective elasticity (the derivative of the particle pressure with respect to the void fraction), they impart to the bed. So rather than directly measure the particle pressure, the authors inferred the values of the elasticity from measurements of instability growth in liquid beds; the inference was made by first developing a generic stability model (one with all the normally modeled coefficients left undetermined) and then working backwards to determine the unknown coefficients, including the elasticity.

  20. Fluidized bed catalytic coal gasification process

    DOE Patents [OSTI]

    Euker, Jr., Charles A. (15163 Dianna La., Houston, TX 77062); Wesselhoft, Robert D. (120 Caldwell, Baytown, TX 77520); Dunkleman, John J. (3704 Autumn La., Baytown, TX 77520); Aquino, Dolores C. (15142 McConn, Webster, TX 77598); Gouker, Toby R. (5413 Rocksprings Dr., LaPorte, TX 77571)

    1984-01-01T23:59:59.000Z

    Coal or similar carbonaceous solids impregnated with gasification catalyst constituents (16) are oxidized by contact with a gas containing between 2 volume percent and 21 volume percent oxygen at a temperature between 50.degree. C. and 250.degree. C. in an oxidation zone (24) and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone (44) at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

  1. Advanced atmospheric fluidized-bed combustion design: the staged cascading fluidized-bed combustor

    SciTech Connect (OSTI)

    Not Available

    1985-02-19T23:59:59.000Z

    The distinctive features of the Staged Cascade Fluidized Bed Combustor (SCFBC) are: combustion is accomplished in two cascaded fluidized beds, with coal fed between the beds; sulfation occurs in two cascaded fluidized beds with the spent sorbent being reactivated between the beds; all heat exchange tubes are submerged in a series of cascaded fluidized beds to improve heat transfer efficiency; the lowest stage provides cooling of spent bed materials and preheating of incoming air; and all of the fluidized beds are shallow, roughly 4'' to 8'' expanded bed depth. The SCFBC does not require external convective section, economizer, air preheater, or spent solids cooling system, as does the AFBC. All the functions of those traditional components are performed within the SCFBC. The shallow beds and low pressure drop distributor plates of the SCFBC have cumulative pressure drop essentially equal to the pressure drop across the single deep bed of a conventional AFBC. Better fuel utilization is achieved in the SCFBC, which achieves a carbon burnout of 97.1% vs 95.0% for the AFBC. The SCFBC advantage is due to the staging of combustion in two beds. The thermal efficiency of the SCFBC is higher than that of the AFBC (85.4%) vs 31.65%). The SCFBC accomplishes the specified SO removal with a significantly reduced amount of limestone adsorbent. The SCFBC has several other technical advantages over the AFBC which are mentioned. 11 figs., 23 tabs.

  2. Gas distributor for fluidized bed coal gasifier

    DOE Patents [OSTI]

    Worley, Arthur C. (Mt. Tabor, NJ); Zboray, James A. (Irvine, CA)

    1980-01-01T23:59:59.000Z

    A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

  3. Waste Heat Recovery in Cement Plants By Fluidized Beds

    E-Print Network [OSTI]

    Fraley, L. D.; Ksiao, H. K.; Thunem, C. B.

    1984-01-01T23:59:59.000Z

    the alkali bypass gas stream with a specially designed fluidized bed cooler. The heat recovery tubes are kept clean by the scrubbing action of the fluidized bed. A circulating fluidized bed combustor utilizes hot air from the clinker cooler as preheated... combustion air. Air from the clinker cooler which is in excess of the combustion air required for the circulating fluidized bed, is used for preheating of boiler feedwater. A conventional economizer located in the gas stream is used for this service...

  4. Fluidized bed selective pyrolysis of coal

    DOE Patents [OSTI]

    Shang, Jer Y. (McLean, VA); Cha, Chang Y. (Golden, CO); Merriam, Norman W. (Laramie, WY)

    1992-01-01T23:59:59.000Z

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyzes the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step.

  5. Fluidized bed selective pyrolysis of coal

    DOE Patents [OSTI]

    Shang, J.Y.; Cha, C.Y.; Merriam, N.W.

    1992-12-15T23:59:59.000Z

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyses the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step. 9 figs.

  6. Initial Design of a Dual Fluidized Bed Reactor

    E-Print Network [OSTI]

    Yun, Minyoung

    2014-01-01T23:59:59.000Z

    bed, Chemical Engineering Research and Design, Volume 90,Design of a Dual Fluidized Bed Reactor by Minyoung Yun Master of Science, Graduate Program in Chemical and Environmental Engineering

  7. Bed drain cover assembly for a fluidized bed

    DOE Patents [OSTI]

    Comparato, Joseph R. (Bloomfield, CT); Jacobs, Martin (Hartford, CT)

    1982-01-01T23:59:59.000Z

    A loose fitting movable cover plate (36), suitable for the severe service encountered in a fluidized bed combustor (10), restricts the flow of solids into the combustor drain lines (30) during shutdown of the bed. This cover makes it possible to empty spent solids from the bed drain lines which would otherwise plug the piping between the drain and the downstream metering device. This enables use of multiple drain lines each with a separate metering device for the control of solids flow rate.

  8. Reversed flow fluidized-bed combustion apparatus

    DOE Patents [OSTI]

    Shang, Jer-Yu (Fairfax, VA); Mei, Joseph S. (Morgantown, WV); Wilson, John S. (Morgantown, WV)

    1984-01-01T23:59:59.000Z

    The present invention is directed to a fluidized-bed combustion apparatus provided with a U-shaped combustion zone. A cyclone is disposed in the combustion zone for recycling solid particulate material. The combustion zone configuration and the recycling feature provide relatively long residence times and low freeboard heights to maximize combustion of combustible material, reduce nitrogen oxides, and enhance sulfur oxide reduction.

  9. Fluidized bed electrowinning of copper. Final report

    SciTech Connect (OSTI)

    NONE

    1997-07-01T23:59:59.000Z

    The objectives of the study were to: design and construct a 10,000- amp fluidized bed electrowinning cell for the recovery of copper from acidic sulfate solutions; demonstrate the technical feasibility of continuous particle recirculation from the electrowinning cell with the ultimate goal of continuous particle removal; and measure cell efficiency as a function of operating conditions.

  10. Control of a Circulating Fluidized Bed

    SciTech Connect (OSTI)

    Shim, Hoowang; Rickards, Gretchen; Famouri, Parviz; Turton, Richard (WVU); Sams, W. Neal (EG& G); Koduro, Praveen; Patankar, Amol; Davari, Assad (WVUIT); Lawson, Larry; Boyle, Edward J. (DOE)

    2001-11-06T23:59:59.000Z

    Two methods for optimally controlling the operation of a circulating fluidized bed are being investigated, neural network control and Kalman filter control. The neural network controls the solids circulation rate by adjusting the flow of move air in the non-mechanical valve. Presented is the method of training the neural network from data generated by the circulating fluidized bed (CFB), the results of a sensitivity study indicating that adjusting the move air can control solids flow, and the results of controlling solids circulation rate. The Kalman filter approach uses a dynamic model and a measurement model of the standpipe section of the CFB. Presented are results showing that a Kalman filter can successfully find the standpipe bed height.

  11. Solids feed nozzle for fluidized bed

    DOE Patents [OSTI]

    Zielinski, Edward A. (Harwinton, CT)

    1982-01-01T23:59:59.000Z

    The vertical fuel pipe of a fluidized bed extends up through the perforated support structure of the bed to discharge granulated solid fuel into the expanded bed. A cap, as a deflecting structure, is supported above the discharge of the fuel pipe and is shaped and arranged to divert the carrier fluid and granulated fuel into the combusting bed. The diverter structure is spaced above the end of the fuel pipe and provided with a configuration on its underside to form a venturi section which generates a low pressure in the stream into which the granules of solid fuel are drawn to lengthen their residence time in the combustion zone of the bed adjacent the fuel pipe.

  12. Fluidized bed gasification of extracted coal

    DOE Patents [OSTI]

    Aquino, D.C.; DaPrato, P.L.; Gouker, T.R.; Knoer, P.

    1984-07-06T23:59:59.000Z

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone with an aqueous solution having a pH above 12.0 at a temperature between 65/sup 0/C and 110/sup 0/C for a period of time sufficient to remove bitumens from the coal into said aqueous solution, and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m/sup 3/. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step. 2 figs., 1 tab.

  13. Fluidized bed gasification of extracted coal

    DOE Patents [OSTI]

    Aquino, Dolores C. (Houston, TX); DaPrato, Philip L. (Westfield, NJ); Gouker, Toby R. (Baton Rouge, LA); Knoer, Peter (Houston, TX)

    1986-01-01T23:59:59.000Z

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone (12) with an aqueous solution having a pH above 12.0 at a temperature between 65.degree. C. and 110.degree. C. for a period of time sufficient to remove bitumens from the coal into said aqueous solution and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m.sup.3. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step.

  14. Heat exchanger support apparatus in a fluidized bed

    DOE Patents [OSTI]

    Lawton, Carl W. (West Hartford, CT)

    1982-01-01T23:59:59.000Z

    A heat exchanger is mounted in the upper portion of a fluidized combusting bed for the control of the temperature of the bed. A support, made up of tubes, is extended from the perforated plate of the fluidized bed up to the heat exchanger. The tubular support framework for the heat exchanger has liquid circulated therethrough to prevent deterioration of the support.

  15. Fluidized bed gasification of agricultural residue 

    E-Print Network [OSTI]

    Groves, John David

    1979-01-01T23:59:59.000Z

    is the only energy derived from such a system. The biomass energy project, of' which this re- search into gasification is a part, was designed to investi- gate both combustion and gasification as means to recover energy from agricultural wastes...FLUIDIZED BED GASIFICATION OF AGRICULTURAL RESIDUES A Thesis by JOHN DAVID GROVES Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1979 Major...

  16. Pulsed atmospheric fluidized bed combustor apparatus

    DOE Patents [OSTI]

    Mansour, Momtaz N. (Columbia, MD)

    1993-10-26T23:59:59.000Z

    A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g., organic and medical waste, drying materials, heating air, calcining and the like.

  17. Cluster Dynamics in a Circulating Fluidized Bed

    SciTech Connect (OSTI)

    Guenther, C.P.; Breault, R.W.

    2006-11-01T23:59:59.000Z

    A common hydrodynamic feature in industrial scale circulating fluidized beds is the presence of clusters. The continuous formation and destruction of clusters strongly influences particle hold-up, pressure drop, heat transfer at the wall, and mixing. In this paper fiber optic data is analyzed using discrete wavelet analysis to characterize the dynamic behavior of clusters. Five radial positions at three different axial locations under five different operating were analyzed using discrete wavelets. Results are summarized with respect to cluster size and frequency.

  18. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    SciTech Connect (OSTI)

    Not Available

    1992-02-01T23:59:59.000Z

    The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

  19. Status of the fluidized bed unit

    SciTech Connect (OSTI)

    Williams, P.M.; Wade, J.F.

    1994-06-01T23:59:59.000Z

    Rocky Flats has a serious mixed waste problem. No technology or company has a license and available facilities to remedy this dilemma. One solution under study is to use a catalytic fluidized bed unit to destroy the combustible portion of the mixed waste. The fluidized bed thermal treatment program at Rocky Flats is building on knowledge gained over twenty years of successful development activity. The FBU has numerous technical advantages over other thermal technologies to treat Rocky Flats` mixed waste, the largest being the lower temperature (700{degrees}C versus 1000{degrees}C) which reduces acid corrosion and mechanical failures and obviates the need for ceramic lining. Successful demonstrations have taken place on bench, pilot, and full-scale tests using radioactive mixed wastes. The program is approaching implementation and licensing of a production-scale fluidized bed system for the safe treatment of mixed waste. The measure for success on this project is the ability to work closely with the community to jointly solve problems and respond to concerns of mixed waste treatment at Rocky Flats.

  20. Fluidized bed boiler convective zone tube replacement

    SciTech Connect (OSTI)

    Not Available

    1991-03-21T23:59:59.000Z

    A major problem with the Georgetown University Atomspheric-Pressure, Fluidized-Bed Combustor-Boiler (GU AFBC) experienced during the first six years of operation was tube erosion. Previous corrective measures for in-bed tube erosion appeared to be effective, but excessive wear of the convective zone tubes was still occurring, and the entire heat transfer tube bundle in the boiler required replacement. In the planned project,the eroded tubes would be replaced, and the convective zone modified to eliminate the problem. Progress is discussed.

  1. Fluidized Bed Technology - An R&D Success Story | Department...

    Energy Savers [EERE]

    product line. The Nucla fluidized bed power plant in Colorado was operated in DOE's Clean Coal Technology Program. The technology progressed into larger scale utility applications...

  2. Advanced atmospheric fluidized-bed combustion design - spouted bed

    SciTech Connect (OSTI)

    Shirley, F.W.; Litt, R.D.

    1985-11-27T23:59:59.000Z

    This report describes the Spouted-Fluidized Bed Boiler that is an advanced atmospheric fluidized bed combustor (FBC). The objective of this system design study is to develop an advanced AFBC with improved performance and reduced capital and operating costs compared to a conventional AFBC and an oil-fired system. The Spouted-Fluidized Bed (SFB) system is a special type of FBC with a distinctive jet of air in the bed to establish an identifiable solids circulation pattern. This feature is expected to provide: reduced NO/sub x/ emissions because of the fuel rich spout zone; high calcium utilization, calcium-to-sulfur ratio of 1.5, because of the spout attrition and mixing; high fuel utilization because of the solids circulation and spout attrition; improved thermal efficiency because of reduced solids heat loss; and improved fuel flexibility because of the spout phenomena. The SFB was compared to a conventional AFBC and an oil-fired package boiler for 15,000 pound per hour system. The evaluation showed that the operating cost advantages of the SFB resulted from savings in fuel, limestone, and waste disposal. The relative levelized cost for steam from the three systems in constant 1985 dollars is: SFB - $10 per thousand pounds; AFBC - $11 per thousand pounds; oil-fired - $14 per thousand pounds. 18 refs., 5 figs., 11 tabs.

  3. Pulsed atmospheric fluidized bed combustion. Final report

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    ThermoChem, under contract to the Department of Energy, conducted extensive research, development and demonstration work on a Pulsed Atmospheric Fluidized Bed Combustor (PAFBC) to confirm that advanced technology can meet these performance objectives. The ThermoChem/MTCI PAFBC system integrates a pulse combustor with an atmospheric bubbling-bed type fluidized bed combustor (BFBC) In this modular configuration, the pulse combustor burns the fuel fines (typically less than 30 sieve or 600 microns) and the fluidized bed combusts the coarse fuel particles. Since the ThermoChem/MTCI PAFBC employs both the pulse combustor and the AFBC technologies, it can handle the full-size range of coarse and fines. The oscillating flow field in the pulse combustor provides for high interphase and intraparticle mass transfer rates. Therefore, the fuel fines essentially burn under kinetic control. Due to the reasonably high temperature (>1093 C but less than the temperature for ash fusion to prevent slagging), combustion of fuel fines is substantially complete at the exit of the pulse combustor. The additional residence time of 1 to 2 seconds in the freeboard of the PAFBC unit then ensures high carbon conversion and, in turn, high combustion efficiency. A laboratory unit was successfully designed, constructed and tested for over 600 hours to confirm that the PAFBC technology could meet the performance objectives. Subsequently, a 50,000 lb/hr PAFBC demonstration steam boiler was designed, constructed and tested at Clemson University in Clemson, South Carolina. This Final Report presents the detailed results of this extensive and successful PAFBC research, development and demonstration project.

  4. Characteristics of mixing of solid particles in a fluidized bed

    SciTech Connect (OSTI)

    Berg, B.V.; Rudenko, S.S.; Stepanov, L.V.

    1984-01-01T23:59:59.000Z

    Results of experimental investigations of the horizontal mixing of solid particles in a fluidized bed of fine-grain material fluidized by air are considered. It is found that the intensity of horizontal transport is substantially nonuniform over the height of the bed.

  5. Pressure Fluctuations as a Diagnostic Tool for Fluidized Beds

    SciTech Connect (OSTI)

    Ethan Bure; Joel R. Schroeder; Ramon De La Cruz; Robert C. Brown

    1998-05-01T23:59:59.000Z

    The purpose of this project was to investigate the origin of pressure fluctuations in fluidized bed systems. The study assessed the potential for using pressure fluctuations as an indicator of fluidized bed hydrodynamics in both laboratory scale cold-models and industrial scale boilers. Both bubbling fluidized beds and circulating fluidized beds were evaluated. Testing including both cold-flow models and laboratory and industrial-scale combustors operating at elevated temperatures. The study yielded several conclusions on the relationship of pressure fluctuations and hydrodynamic behavior in fluidized beds. The study revealed the importance of collecting sufficiently long data sets to capture low frequency (on the order of 1 Hz) pressure phenomena in fluidized beds. Past research has tended toward truncated data sets collected with high frequency response transducers, which miss much of the spectral structure of fluidized bed hydrodynamics. As a result, many previous studies have drawn conclusions concerning hydrodynamic similitude between model and prototype fluidized beds that is insupportable from the low resolution data presented.

  6. Second-generation pressurized fluidized bed combustion

    SciTech Connect (OSTI)

    Wolowodiuk, W.; Robertson, A.

    1992-05-01T23:59:59.000Z

    Under the sponsorship of the United States Department of Energy, Foster Wheeler Corporation is developing second-generation pressurized fluidized bed combustion (PFBC) power plant technology that will enable this type of plant to operate with net plant efficiencies in the range of 43 to 46 percent (based on the higher heating value of the coal), with a reduction in the cost of electricity of at least 20 percent. A three-phase program is under way. Its scope encompasses the conceptual design of a commercial plant through the process of gathering needed experimental test data to obtain design parameters.

  7. Second-generation pressurized fluidized bed combustion

    SciTech Connect (OSTI)

    Wolowodiuk, W.; Robertson, A.

    1992-01-01T23:59:59.000Z

    Under the sponsorship of the United States Department of Energy, Foster Wheeler Corporation is developing second-generation pressurized fluidized bed combustion (PFBC) power plant technology that will enable this type of plant to operate with net plant efficiencies in the range of 43 to 46 percent (based on the higher heating value of the coal), with a reduction in the cost of electricity of at least 20 percent. A three-phase program is under way. Its scope encompasses the conceptual design of a commercial plant through the process of gathering needed experimental test data to obtain design parameters.

  8. Syncrude coke burned in bubbling fluidized bed

    SciTech Connect (OSTI)

    Not Available

    1987-03-01T23:59:59.000Z

    Syncrude Canada Ltd.'s byproduct coke is high in sulfur (7%) and vanadium (0.2%), and moderate in ash (5.9%). It contains a high proportion of unreactive forms of carbon and is low in volatiles, 6.6%. It is unsuitable for combustion by established technologies, and at present the entire production of over 2000 tons per day is being stockpiled. Experiments with atmospheric fluidized bed combustion (AFBC) are described. The AFBC provides abatement of SO/sub 2/ emissions by means of limestone sorbent fed to the combustor together with the fuel. The pilot plant, combustion efficiency, and sulfur capture are discussed. 3 figures.

  9. Nucla circulating atmospheric fluidized bed demonstration project

    SciTech Connect (OSTI)

    Not Available

    1991-01-31T23:59:59.000Z

    During the fourth quarter of 1990, steady-state performance testing at the Nucla Circulating Fluidized Bed (CFB) resumed under sponsorship of the US Department of Energy. Co-sponsorship of the Demonstration Test Program by the Electric Power Research Institute (EPRI) was completed on June 15, 1990. From October through December, 1990, Colorado-Ute Electric Association (CUEA) completed a total of 23 steady-state performance tests, 4 dynamic tests, and set operating records during November and December as the result of improved unit operating reliability. Highlight events and achievements during this period of operation are presented.

  10. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This Annual Report on Colorado-Ute Electric Association's NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

  11. Fluidized bed boiler having a segmented grate

    DOE Patents [OSTI]

    Waryasz, Richard E. (Longmeadow, MA)

    1984-01-01T23:59:59.000Z

    A fluidized bed furnace (10) is provided having a perforate grate (9) within a housing which supports a bed of particulate material including some combustibles. The grate is divided into a plurality of segments (E2-E6, SH1-SH5, RH1-RH5), with the airflow to each segment being independently controlled. Some of the segments have evaporating surface imbedded in the particulate material above them, while other segments are below superheater surface or reheater surface. Some of the segments (E1, E7) have no surface above them, and there are ignitor combustors (32, 34) directed to fire into the segments, for fast startup of the furnace without causing damage to any heating surface.

  12. Advanced design for pulsed atmospheric fluidized bed combustion. Final report

    SciTech Connect (OSTI)

    Moussa, N.A.; Fowle, A.A.; Delichatsios, M.M.; Caron, R.N.; Wilson, R.P.

    1982-12-01T23:59:59.000Z

    In a pulsed bed, the fluidizing air is made to oscillate while flowing through the bed. The objectives of the work reported were to investigate the potential advantages and limitations of a pulsed atmospheric fluidized bed combustor, based on existing data and analyses, to develop conceptual bench-scale designs, and to formulate a research and development plan for experimental validation and development of the pulsation concept for improving the performance of an AFBC. (LEW)

  13. Bed material agglomeration during fluidized bed combustion. Final report

    SciTech Connect (OSTI)

    Brown, R.C.; Dawson, M.R.; Smeenk, J.L.

    1996-01-01T23:59:59.000Z

    The purpose of this project is to determine the physical and chemical reactions which lead to the undesired agglomeration of bed material during fluidized bed combustion of coal and to relate these reactions to specific causes. A survey of agglomeration and deposit formation in industrial fluidized bed combustors (FBCs) indicate that at least five boilers were experiencing some form of bed material agglomeration. Deposit formation was reported at nine sites with deposits most commonly at coal feed locations and in cyclones. Other deposit locations included side walls and return loops. Three general types of mineralogic reactions were observed to occur in the agglomerates and deposits. Although alkalies may play a role with some {open_quotes}high alkali{close_quotes} lignites, we found agglomeration was initiated due to fluxing reactions between iron (II) from pyrites and aluminosilicates from clays. This is indicated by the high amounts of iron, silica, and alumina in the agglomerates and the mineralogy of the agglomerates. Agglomeration likely originated in the dense phase of the FBC bed within the volatile plume which forms when coal is introduced to the boiler. Secondary mineral reactions appear to occur after the agglomerates have formed and tend to strengthen the agglomerates. When calcium is present in high amounts, most of the minerals in the resulting deposits are in the melilite group (gehlenite, melilite, and akermanite) and pyroxene group (diopside and augite). During these solid-phase reactions, the temperature of formation of the melilite minerals can be lowered by a reduction of the partial pressure of CO{sub 2} (Diopside + Calcite {r_arrow}Akermanite).

  14. Fluidized-Bed Waste-Heat Recovery System Advances

    E-Print Network [OSTI]

    Patch, K. D.; Cole, W. E.

    . The unit consists of a hot-stage raining bed (outside dimensions 5 ft in diameter and 8 ft high) mounted above a cold-stage fluidized bed (6 ft by 4 ft by 1-1/2 ft), a particle circulating sys tem, a burner system simulating a furnace, a com bustion... and the stability of the fluidized bed. From previous work, it was shown Figure 4. Predicted Design Flow Performance of that a 2: 1 turndown can be achieved with stable the FBWHR Laboratory System fluidization. EFFECT OF PARTICLE CIRCULATION RATE Five tests...

  15. Advanced control strategies for fluidized bed dryers

    SciTech Connect (OSTI)

    Siettos, C.I.; Kiranoudis, C.T.; Bafas, G.V.

    1999-11-01T23:59:59.000Z

    Generating the best possible control strategy comprises a necessity for industrial processes, by virtue of product quality, cost reduction and design simplicity. Three different control approaches, namely an Input-Output linearizing, a fuzzy logic and a PID controller, are evaluated for the control of a fluidized bed dryer, a typical non-linear drying process of wide applicability. Based on several closed loop characteristics such as settling times, maximum overshoots and dynamic performance criteria such as IAE, ISE and ITAE, it is shown that the Input-Output linearizing and the fuzzy logic controller exhibit a better performance compared to the PID controller tuned optimally with respect to IAE, for a wide range of disturbances; yet, the relevant advantage of the fuzzy logic over the conventional nonlinear controller issues upon its design simplicity. Typical load rejection and set-point tracking examples are given to illustrate the effectiveness of the proposed approach.

  16. Nucla circulating atmospheric fluidized bed demonstration project

    SciTech Connect (OSTI)

    Keith, Raymond E.

    1991-10-01T23:59:59.000Z

    Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute's decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

  17. Pulsed atmospheric fluidized bed combustion. Final report

    SciTech Connect (OSTI)

    Not Available

    1989-11-01T23:59:59.000Z

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  18. (Pulsed atmospheric fluidized bed combustion (PAFBC))

    SciTech Connect (OSTI)

    Not Available

    1988-10-01T23:59:59.000Z

    This first Quarterly Technical Progress Report presents the results of work accomplished during the period April 19 through July 24,1988. The overall objective of the program is the development of a pulsed atmospheric fluidized-bed combustion (PAFBC) technology to burn coal and to provide heat and steam to commercial, institutional, and small industrial applications at a reasonable price in an environmentally acceptable manner. the program scope consisted of two tasks; the first was to establish preliminary feasibility by the use of theoretical and state-of-the-art information. This task was completed during the first quarter of the contract period and a topical report entitled, Pulsed Atmospheric Fluidized Bed combustion (PAFBC) - Preliminary Feasibility Study'' was prepared as a decision point to proceed'' deliverable in accordance with the terms of the contract. This first quarterly progress report therefore covers the contract activities subsequent to the approval of the feasibility study and the decision to proceed with the Task 2 effort. As the initial quarterly technical progress report, this document includes a subsection on background which will be omitted in subsequent reports. All effort during this period was devoted to the design and analysis of the PAFBC. Design drawings were prepared and fabrication and procurement initiated. Quotations were evaluated and a fabrication contract awarded. A site adjacent to the MTCI building was chosen for the installation of the PAFBC. Some ancillary components were purchased, renovated, and tested. Some delays in delivery of components have resulted in some schedule delay. It is anticipated that the program pace will accelerate as soon as parts are received and installation and assembly are initiated. 10 figs.,1 tab.

  19. An Analysis of the Use of Fluidized-Bed Heat Exchangers for Heat Recovery

    E-Print Network [OSTI]

    Vogel, G. J.; Grogan, P. J.

    1980-01-01T23:59:59.000Z

    The principles of fluidized-bed operation and the factors affecting the performance of a fluidized-bed waste heat boiler (FBWHB) are discussed in detail. Factors included in the discussion are bed temperature and pressure, heat transfer coefficient...

  20. Gas phase hydrodynamics inside a circulating fluidized bed

    E-Print Network [OSTI]

    Moran, James C. (James Christopher)

    2001-01-01T23:59:59.000Z

    Circulating Fluidized Beds (CFB's) offer many advantages over traditional pulverized coal burners in the power generation industry. They operate at lower temperatures, have better environmental emissions and better fuel ...

  1. Dynamics of a shallow fluidized bed Lev S. Tsimring,1

    E-Print Network [OSTI]

    Hasty, Jeff

    Fluidized beds are widely used in industry for mixing solid particles with gases or liquids 1 . In most, and sliding back due to gravity. Near the threshold of instability, the system shows critical behavior

  2. Hanford Low Activity Waste (LAW) Fluidized Bed Steam Reformer...

    Office of Environmental Management (EM)

    Low Activity Waste (LAW) Fluidized Bed Steam Reformer (FBSR) Na-Al-Si (NAS) Waste Form Qualification C.M. Jantzen and E.M. Pierce November 18, 2010 2 Participating Organizations 3...

  3. Staged fluidized-bed combustion and filter system

    DOE Patents [OSTI]

    Mei, Joseph S. (Morgantown, WV); Halow, John S. (Waynesburg, PA)

    1994-01-01T23:59:59.000Z

    A staged fluidized-bed combustion and filter system for substantially reducing the quantity of waste through the complete combustion into ash-type solids and gaseous products. The device has two fluidized-bed portions, the first primarily as a combustor/pyrolyzer bed, and the second as a combustor/filter bed. The two portions each have internal baffles to define stages so that material moving therein as fluidized beds travel in an extended route through those stages. Fluidization and movement is achieved by the introduction of gases into each stage through a directional nozzle. Gases produced in the combustor/pyrolyzer bed are permitted to travel into corresponding stages of the combustor/filter bed through screen filters that permit gas flow but inhibit solids flow. Any catalyst used in the combustor/filter bed is recycled. The two beds share a common wall to minimize total volume of the system. A slightly modified embodiment can be used for hot gas desulfurization and sorbent regeneration. Either side-by-side rectangular beds or concentric beds can be used. The system is particularly suited to the processing of radioactive and chemically hazardous waste.

  4. Combustion of Cattle Manure in a Fluidized Bed Combustor

    E-Print Network [OSTI]

    Annamalai, K.; Colaluca, M. A.; Ibrahim, M. Y.; Sweeten, J. M.

    COMBUSTION OF CATTLE MANURE IN A FLUIDIZED BED COMBUSTOR K. ANNAMALAI M. A. COLALUCA Associate Professor Associate Professor Mechanical Engineering Mechanical Engineering Department Department Texas A&M University Texas A&M University College... combustion technology has been used for the energy conversion of marginal fuels, such a technology is being explored for the combustion of feedlot manure. A fluidized bed combustor of 0.15 m (6 in.) diameter was used for the combustion tests on manure...

  5. Experimental study of fluidized bed combustion of feedlot manure

    E-Print Network [OSTI]

    Madan, Ajit M.

    1984-01-01T23:59:59.000Z

    combustion experiments were conducted in a circulating mode in pilot plant fluidized bed combustion unit at York-Shipley (Sweeten, J. , et a1. , 1984). A total of four experimental runs were conducted. However, combustion effeciency based on these limited...EXPERIMENTAL STUDY OF FLUIDIZED BED COMBUSTION OF FEEDLOT MANURE A Thesis by Ajit M. Madan Submitted to the Braduate College of Texas ASM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December...

  6. Syngas combustor for fluidized bed applications

    SciTech Connect (OSTI)

    Brushwood, J.

    1999-07-01T23:59:59.000Z

    The Siemens Westinghouse Multi-Annular Swirl Burner (MASB) is a rich-quench-lean gas turbine combustor for use primarily on synthetic fuel gases made by gasifying solid fuels (coal or biomass). These fuels contain high amounts of fuel bound nitrogen, primarily as ammonia, which are converted to molecular nitrogen rather than to nitrogen oxides in the rich zone of this combustor. The combustor can operate in many modes. In second-generation pressurized fluidized bed combustion (PFBC) applications, the fuel gas is burned in a hot, depleted oxygen air stream generated in a fluid bed coal combustor. In 1-1/2 generation PFBC applications, natural gas is burned in this vitiated air stream. In an integrated gasification combined cycle (IGCC) application, the synthetic fuel gas is burned in turbine compressor air. In this paper, the MASB technology is described. Recent results of tests at the University of Tennessee Space Institute (UTSI) for these various operation modes on a full scale basket are summarized. The start-up and simple cycle operating experience on propane at the Wilsonville Power Systems Development Facility (PSDF) are also described. In addition, the design issues related to the integration of the MASB in the City of Lakeland PCFB Clean Coal Demonstration Project is summarized.

  7. Development and applications of clean coal fluidized bed technology

    SciTech Connect (OSTI)

    Eskin, N.; Hepbasli, A. [Ege University, Izmir (Turkey). Faculty of Engineering

    2006-09-15T23:59:59.000Z

    Power generation in Europe and elsewhere relies heavily on coal and coal-based fuels as the source of energy. The reliance will increase in the future due to the decreasing stability of price and security of oil supply. In other words, the studies on fluidized bed combustion systems, which is one of the clean coal technologies, will maintain its importance. The main objective of the present study is to introduce the development and the applications of the fluidized bed technology (FBT) and to review the fluidized bed combustion studies conducted in Turkey. The industrial applications of the fluidized bed technology in the country date back to the 1980s. Since then, the number of the fluidized bed boilers has increased. The majority of the installations are in the textile sector. In Turkey, there is also a circulating fluidized bed thermal power plant with a capacity of 2 x 160 MW under construction at Can in Canakkale. It is expected that the FBT has had, or will have, a significant and increasing role in dictating the energy strategies for Turkey.

  8. Coal-feeding mechanism for a fluidized bed combustion chamber

    DOE Patents [OSTI]

    Gall, Robert L. (Morgantown, WV)

    1981-01-01T23:59:59.000Z

    The present invention is directed to a fuel-feeding mechanism for a fluidized bed combustor. In accordance with the present invention a perforated conveyor belt is utilized in place of the fixed grid normally disposed at the lower end of the fluidized bed combustion zone. The conveyor belt is fed with fuel, e.g. coal, at one end thereof so that the air passing through the perforations dislodges the coal from the belt and feeds the coal into the fluidized zone in a substantially uniform manner.

  9. Methods of forming a fluidized bed of circulating particles

    DOE Patents [OSTI]

    Marshall, Douglas W. (Blackfoot, ID)

    2011-05-24T23:59:59.000Z

    There is disclosed an apparatus for forming a fluidized bed of circulating particles. In an embodiment, the apparatus includes a bottom portion having a sidewall, the sidewall defining a curvilinear profile, and the bottom portion configured to contain a bed of particles; and a gas inlet configured to produce a column of gas to carry entrained particles therein. There is disclosed a method of forming a fluidized bed of circulating particles. In an embodiment, the method includes positioning particles within a bottom portion having a sidewall, the sidewall defining a curvilinear profile; producing a column of gas directed upwardly through a gas inlet; carrying entrained particles in the column of gas to produce a fountain of particles over the fluidized bed of circulating particles and subside in the particle bed until being directed inwardly into the column of gas within the curvilinear profile.

  10. Method of feeding particulate material to a fluidized bed

    DOE Patents [OSTI]

    Borio, Richard W. (Somers, CT); Goodstine, Stephen L. (Windsor, CT)

    1984-01-01T23:59:59.000Z

    A centrifugal spreader type feeder that supplies a mixture of particulate limestone and coal to the top of a fluidized bed reactor having a flow of air upward therethrough. Large particles of particulate matter are distributed over the upper surface of the bed to utilize the natural mixing within the bed, while fine particles are adapted to utilize an independent feeder that separates them from the large particles and injects them into the bed.

  11. Application of a fluidized bed combustor to the DARS process

    SciTech Connect (OSTI)

    Scott-Young, R.E. [Australian Paper, Burnie, Tasmania (Australia). Pulp Mill and Services Unit

    1995-12-31T23:59:59.000Z

    Australian Paper has built the world`s first and only operational Direct Alkali Recovery System (DARS) to recover caustic soda for a soda AQ chemical pulp mill. At the heart of the DARS process, concentrated spent pulping liquor is burnt in a fluidized bed. The bed material is made up of coarse, dense iron oxide pellets which require a high fluidizing velocity. Bubbling is violent and gives robust fluidization of the iron and sodium compounds. The plant suffered a protracted startup because of equipment failures, air flow instability problems, and process and equipment design errors. A large amount of post construction development work was required. This paper discusses the experiences and knowledge gained in adapting a fluidized bed to the DARS process.

  12. Fluidized bed pyrolysis of terrestrial biomass feedstocks

    SciTech Connect (OSTI)

    Besler, S.; Agblevor, F.A.; Davis, M.F. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1994-12-31T23:59:59.000Z

    Hybrid poplar, switchgrass, and corn stover were pyrolyzed in a bench scale fluidized-bed reactor to examine the influence of storage time on thermochemical converting of these materials. The influence of storage on the thermochemical conversion of the biomass feedstocks was assessed based on pyrolysis product yields and chemical and instrumental analyses of the pyrolysis products. Although char and gas yields from corn stover feedstock were influenced by storage time, hybrid poplar and switchgrass were not significantly affected. Liquid, char, and gas yields were feedstock dependent. Total liquid yields (organic+water) varied from 58%-73% depending on the feedstock. Char yields varied from 14%-19% while gas yields ranged from 11%-15%. The chemical composition of the pyrolysis oils from hybrid polar feedstock was slightly changed by storage, however, corn stover and switchgrass feedstock showed no significant changes. Additionally, stored corn stover and hybrid poplar pyrolysis oils showed a significant decrease in their higher heating values compared to the fresh material.

  13. Solid fuel feed system for a fluidized bed

    DOE Patents [OSTI]

    Jones, Brian C. (Windsor, CT)

    1982-01-01T23:59:59.000Z

    A fluidized bed for the combustion of coal, with limestone, is replenished with crushed coal from a system discharging the coal laterally from a station below the surface level of the bed. A compartment, or feed box, is mounted at one side of the bed and its interior separated from the bed by a weir plate beneath which the coal flows laterally into the bed while bed material is received into the compartment above the plate to maintain a predetermined minimum level of material in the compartment.

  14. Erosion of heat exchanger tubes in fluidized beds

    SciTech Connect (OSTI)

    Johnson, E.K.; Flemmer, R.L.C.

    1991-01-01T23:59:59.000Z

    This final report describes the activities of the 3-year project entitled Erosion of Heat Exchanger Tubes In Fluidized Beds.'' which was completed at the end of 1990. Project accomplishments include the collection of a substantial body of wear data In a 24in. [times] 24in. fluidized bed, comparative wear results In a 6in. [times] 6in. fluidized bed, the development of a dragometer and the collection of a comprehensive set of drag force data in the 24in. [times] 24in. bed, Fast Fourier Transform (FFT) analysis of bubble probe data to establish dominant bubble frequencies in the 24in. [times] 24in. bed, the use of a heat flux gauge for measurement of heat transfer coefficients in the 24in. [times] 24in. bed and the modeling of the tube wear in the 24in. [times] 24in. bed. Analysis of the wear data from the 24in. square bed indicates that tube wear increases with increase in superficial velocity, and with increase in tube height. The latter effect is a result of the tubes higher up in the bed seeing greater movement of dense phase than tubes lower down In the bed. In addition, tube wear was found to decrease with increase in particle size, for constant superficial velocity. Three models of tube wear were formulated and provided acceptable prediction of wear when compared with the experimental data.

  15. Review of fluidized bed combustion technology in the United States

    SciTech Connect (OSTI)

    Krishnan, R.P.; Daw, C.S.; Jones, J.E. Jr.

    1984-01-01T23:59:59.000Z

    The United States (US) initiated work in fluidized bed combustion (FBC) in the mid-1960s, with primary emphasis on industrial applications. With passage of the Clean Air Act in 1970, the environmental benefits of the technology soon attracted interest. This provided the impetus for expanded effort focused on the reduced NO/sub x/ emissions resulting from lower combustion temperature and SO/sub 2/ capture by means of chemical reaction with limestone or dolomite in the fluidized bed. The oil embargo in 1973 further stimulated interest in FBC technology. Several manufacturers presently offer atmospheric fluidized bed combustion (AFBC) and circulating fluidized bed combustion (CFBC) units for industrial application in the United States. However, FBC for electric power generation remains in the development and demonstration phase. The Tennessee Valley Authority (TVA) and Electric Power Research Institute (EPRI) are operating a 20-MW AFBC utility pilot plant and are proceeding with plans for a 160-MW(e) demonstration plant with other participants. Research has been under way on pressurized fluidized bed combustion (PFBC) at Grimethorpe in South Yorkshire, England, and within the United States at the Curtiss-Wright Pilot Plant, and at other smaller test facilities. An emerging turbocharged PFBC concept will likely stimulate more near-term interest in PFBC technology for both industrial and utility applications. The major US programs and test facilities are described; remaining technical uncertainties are discussed, and the future outlook for the technology is assessed.

  16. Materials performance in fluidized-bed air heaters

    SciTech Connect (OSTI)

    Natesan, K.; Podolski, W.

    1991-12-01T23:59:59.000Z

    Development of cogeneration systems that involve combustion of coal in a fluidized bed and use of air heaters to generate hot air for turbine systems has been in progress for a number of years. The US Department of Energy (DOE) sponsored the Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) to assess the performance of various heat exchanger materials and establish confidence in the resultant designs of fluidized-bed-combustion air heater systems. Westinghouse Electric Corporation, in association with Babcock & Wilcox, Foster Wheeler, and ABB/Combustion Engineering, prepared specifications and hardware for the ACAHE. Argonne National Laboratory, through a contract with the Rocketdyne Division of Rockwell International, conducted tests in the DOE 1.8 {times} 1.8 m atmospheric fluidized-bed combustion facility in El Segundo, California. This paper presents an assessment of the materials performance in fluidized bed environments and examines guidelines for materials selection on the basis of corrosion resistance in air and in combustion environments, mechanical properties, fabricability/thermal stability, and cost.

  17. Materials performance in fluidized-bed air heaters

    SciTech Connect (OSTI)

    Natesan, K.; Podolski, W.

    1991-12-01T23:59:59.000Z

    Development of cogeneration systems that involve combustion of coal in a fluidized bed and use of air heaters to generate hot air for turbine systems has been in progress for a number of years. The US Department of Energy (DOE) sponsored the Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) to assess the performance of various heat exchanger materials and establish confidence in the resultant designs of fluidized-bed-combustion air heater systems. Westinghouse Electric Corporation, in association with Babcock Wilcox, Foster Wheeler, and ABB/Combustion Engineering, prepared specifications and hardware for the ACAHE. Argonne National Laboratory, through a contract with the Rocketdyne Division of Rockwell International, conducted tests in the DOE 1.8 {times} 1.8 m atmospheric fluidized-bed combustion facility in El Segundo, California. This paper presents an assessment of the materials performance in fluidized bed environments and examines guidelines for materials selection on the basis of corrosion resistance in air and in combustion environments, mechanical properties, fabricability/thermal stability, and cost.

  18. Operation of a steam hydro-gasifier in a fluidized bed reactor

    E-Print Network [OSTI]

    Park, Chan Seung; Norbeck, Joseph N.

    2008-01-01T23:59:59.000Z

    GASIFIER IN A FLUIDIZED BED REACTOR Inventors: Joseph M .a steam hydro-gasification reactor (SHR) the carbonaceous0012] Fluidized bed reactors are well known and used in a

  19. Inclined fluidized bed system for drying fine coal

    DOE Patents [OSTI]

    Cha, Chang Y. (Golden, CO); Merriam, Norman W. (Laramie, WY); Boysen, John E. (Laramie, WY)

    1992-02-11T23:59:59.000Z

    Coal is processed in an inclined fluidized bed dryer operated in a plug-flow manner with zonal temperature and composition control, and an inert fluidizing gas, such as carbon dioxide or combustion gas. Recycled carbon dioxide, which is used for drying, pyrolysis, quenching, and cooling, is produced by partial decarboxylation of the coal. The coal is heated sufficiently to mobilize coal tar by further pyrolysis, which seals micropores upon quenching. Further cooling with carbon dioxide enhances stabilization.

  20. Computational fluid dynamic modeling of fluidized-bed polymerization reactors

    SciTech Connect (OSTI)

    Rokkam, Ram [Ames Laboratory

    2012-11-02T23:59:59.000Z

    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

  1. Stability of flows in fluidized beds

    SciTech Connect (OSTI)

    Rajagopal, C.

    1992-01-01T23:59:59.000Z

    In this paper we carry out a systematic linearized stability analysis of the state of uniform fluidization for a fluid infused with granular particles. We carry out an interesting optimization procedure which leads to bounds for certain parameters, within which the state of uniform fluidization is stable. We find that this stability depends critically on the structure of the pressure-like term. (VC)

  2. Atmospheric fluidized-bed combustion performance guidelines

    SciTech Connect (OSTI)

    Sotelo, E. (Sotelo (Ernest), Berkeley, CA (USA))

    1991-03-01T23:59:59.000Z

    Performance specifications for conventional coal-fired boilers typically call for tests to be conducted in accordance with the ASME Performance Test Code for Steam Generating Units, PTC 4.1. The Code establishes procedures for conducting performance tests primarily to determine efficiency and capacity. The current edition of the PTC 4.1 is not entirely applicable to atmospheric fluidized-bed combustion boilers, however. AFBC boilers typically are equipped with integral sulfur capture through the addition of a sorbent material along with the fuel feed to the combustor, and this new technology introduces heat losses and credits that are not described in PTC 4.1. These heat losses and credits include combustion heat loss due to the calcination of the sorbent, heat credit due to sulfation, and the effects of calcination and sulfation on the dry flue gas flow, all of which significantly affect boiler efficiency calculations. The limitations of the current issue of the PTC 4.1 is recognized and the Code is now being reviewed to include heat losses and credits common to AFBC boilers. While this work will take some time, there is an immediate need for procedures for performance testing of AFBC boilers. These Guidelines are prepared to meet that need in the interim. The Guidelines detail procedures for boiler efficiency tests. They introduce technical and economic issues that may influence the test level of detail and accuracy. Methods of identifying required measurements, selection of measurement schemes, and assessment of measured versus estimated values are presented. A case study is used to illustrate the procedures and indicate which are the major credits and losses in the efficiency of a typical AFBC boiler. 6 figs., 8 tabs.

  3. FLUIDIZED BED STEAM REFORMER MONOLITH FORMATION

    SciTech Connect (OSTI)

    Jantzen, C

    2006-12-22T23:59:59.000Z

    Fluidized Bed Steam Reforming (FBSR) is being considered as an alternative technology for the immobilization of a wide variety of aqueous high sodium containing radioactive wastes at various DOE facilities in the United States. The addition of clay, charcoal, and a catalyst as co-reactants converts aqueous Low Activity Wastes (LAW) to a granular or ''mineralized'' waste form while converting organic components to CO{sub 2} and steam, and nitrate/nitrite components, if any, to N{sub 2}. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage-like structures that atomically bond radionuclides like Tc-99 and anions such as SO{sub 4}, I, F, and Cl. The granular product has been shown to be as durable as LAW glass. Shallow land burial requires that the mineralized waste form be able to sustain the weight of soil overburden and potential intrusion by future generations. The strength requirement necessitates binding the granular product into a monolith. FBSR mineral products were formulated into a variety of monoliths including various cements, Ceramicrete, and hydroceramics. All but one of the nine monoliths tested met the <2g/m{sup 2} durability specification for Na and Re (simulant for Tc-99) when tested using the Product Consistency Test (PCT; ASTM C1285). Of the nine monoliths tested the cements produced with 80-87 wt% FBSR product, the Ceramicrete, and the hydroceramic produced with 83.3 wt% FBSR product, met the compressive strength and durability requirements for an LAW waste form.

  4. Combustion of waste fuels in a fluidized-bed boiler

    SciTech Connect (OSTI)

    Zylkowski, J.; Ehrlich, S.

    1983-01-01T23:59:59.000Z

    This paper reports on a project whose objectives are to determine the impact of the waste fuels on Atmospheric Fluidized Bed Combustion (AFBC) operating procedures, boiler performance, and emissions and to assess the potential for fuel-specific operating problems. The low-grade waste fuels investigated are hogged railroad ties, shredded rubber tires, peat, refuse-derived fuel, and one or more agricultiral wastes. The Northern States Power (NSP) Company converted their French Island Unit No. 2 stoker-fired boiler to a fluidized-bed combustor designed to burn wood waste. NSP and EPRI are investigating cofiring other waste fuels with wood waste. Topics considered include fluidized-bed boiler conversion, fuel resources, economic justification, environmental considerations, the wood-handling system, an auxiliary fuel system, the air quality control system, ash handling and disposal, and the alternate fuels test program.

  5. Performance and gas cleanup criterion for a cotton gin waste fluidized-bed gasifier 

    E-Print Network [OSTI]

    Craig, Joe David

    1980-01-01T23:59:59.000Z

    . The basic results of Groves (1979) gave strong incentives to des1gn a scaled up fluidized-bed gasifier. High heat transfer rates from bed to fore1gn particles, the thermal flywheel characteristic of the bed, and the violent mixing and agitation occuring... fluidized beds. Among the advantages are high heat transfer rates from bed to foreign particles, the bed acts as a thermal flywheel and violent mixing and agitation occur. The fluidized-bed unit 13 )ur Fluidized Sand Bed Ll pright Cylinder A...

  6. Refractory experience in circulating fluidized bed combustors, Task 7

    SciTech Connect (OSTI)

    Vincent, R.Q.

    1989-11-01T23:59:59.000Z

    This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE's Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

  7. Regeneration of lime from sulfates for fluidized-bed combustion

    DOE Patents [OSTI]

    Yang, Ralph T. (Middle Island, NY); Steinberg, Meyer (Huntington Station, NY)

    1980-01-01T23:59:59.000Z

    In a fluidized-bed combustor the evolving sulfur oxides are reacted with CaO to form calcium sulfate which is then decomposed in the presence of carbonaceous material, such as the fly ash recovered from the combustion, at temperatures of about 900.degree. to 1000.degree. C., to regenerate lime. The regenerated lime is then recycled to the fluidized bed combustor to further react with the evolving sulfur oxides. The lime regenerated in this manner is quite effective in removing the sulfur oxides.

  8. (Pulsed atmospheric fluidized-bed combustion). [Installation of the pulsed atmospheric fluidized-bed combustion components

    SciTech Connect (OSTI)

    Not Available

    1988-10-01T23:59:59.000Z

    This second Quarterly Technical Progress Report presents the results of work accomplished during the period July 25 through October 30, 1988. The overall objective of the program is the development of a pulsed atmospheric fluidized-bed combustion (PAFBC) technology to burn coal and to provide heat and steam to commercial, institutional, and small industrial applications at a reasonable price in environmentally acceptable manner. Progress during this period accelerated rapidly. The site for the installation of the PAFBC was completed. All of the system components, including the fabrication of the furnace, were also completed. Additional component testing and inspection was also completed. By the end of this period the AFBC was completely assembled and installed at the site adjacent to the MTCI facility and shakedown tests were initiated. 20 figs., 2 tabs.

  9. Stability of Gas-Fluidized Beds

    E-Print Network [OSTI]

    Mandich, Kevin Matthew

    pressure drop through fixed beds of a fixed length andidization velocity, a fixed bed (2.1a) increases in meanpressure drop through a fixed bed of height h: ?P g µ g U ?

  10. Stability of Gas-Fluidized Beds

    E-Print Network [OSTI]

    Mandich, Kevin Matthew

    R. The mechanics of fluidised beds: Part I: The stability ofR. The mechanics of fluidised beds: Part I: The stability ofof an Inclined Fluidised Bed. Kagaku Kogaku Ronbunshu, 15 (

  11. Description of emission control using fluidized-bed, heat-exchange technology

    SciTech Connect (OSTI)

    Vogel, G.J.; Grogan, P.J.

    1980-06-01T23:59:59.000Z

    Environmental effects of fluidized-bed, waste-heat recovery technology are identified. The report focuses on a particular configuration of fluidized-bed, heat-exchange technology for a hypothetical industrial application. The application is a lead smelter where a fluidized-bed, waste-heat boiler (FBWHB) is used to control environmental pollutants and to produce steam for process use. Basic thermodynamic and kinetic information for the major sulfur dioxide (SO/sub 2/) and NO/sub x/ removal processes is presented and their application to fluidized-bed, waste heat recovery technology is discussed. Particulate control in fluidized-bed heat exchangers is also discussed.

  12. DMEC-1 Pressurized Circulating Fluidized-Bed Demonstration Project

    SciTech Connect (OSTI)

    Kruempel, G.E.; Ambrose, S.J. [Midwest Power, Des Moines, IA (United States); Provol, S.J. [Pyropower Corp., San Diego, CA (United States)

    1992-12-01T23:59:59.000Z

    The DMEC-1 project will demonstrate the use of Pyropower`s PYROFLOW pressurized circulating fluidized bed technology to repower an existing coal fired generating station. This will be the first commercial application of this technology in the world. The project is now in budget period 1, the preliminary design phase.

  13. Method for using fast fluidized bed dry bottom coal gasification

    DOE Patents [OSTI]

    Snell, George J. (Fords, NJ); Kydd, Paul H. (Lawrenceville, NJ)

    1983-01-01T23:59:59.000Z

    Carbonaceous solid material such as coal is gasified in a fast fluidized bed gasification system utilizing dual fluidized beds of hot char. The coal in particulate form is introduced along with oxygen-containing gas and steam into the fast fluidized bed gasification zone of a gasifier assembly wherein the upward superficial gas velocity exceeds about 5.0 ft/sec and temperature is 1500.degree.-1850.degree. F. The resulting effluent gas and substantial char are passed through a primary cyclone separator, from which char solids are returned to the fluidized bed. Gas from the primary cyclone separator is passed to a secondary cyclone separator, from which remaining fine char solids are returned through an injection nozzle together with additional steam and oxygen-containing gas to an oxidation zone located at the bottom of the gasifier, wherein the upward gas velocity ranges from about 3-15 ft/sec and is maintained at 1600.degree.-200.degree. F. temperature. This gasification arrangement provides for increased utilization of the secondary char material to produce higher overall carbon conversion and product yields in the process.

  14. Advanced atmospheric fluidized-bed combustion design: the staged cascading fluidized-bed combustor

    SciTech Connect (OSTI)

    Not Available

    1985-04-05T23:59:59.000Z

    Better fuel utilization is achieved in the SCFBC, which achieves a carbon burnout of 97.1% versus 95.0% for the AFBC. The SCFBC advantage is due to the staging of combustion in two beds. The thermal efficiency of the SCFBC is higher than that of the AFBC (85.4% versus 81.65%) due to two factors. First, the better fuel efficiency mentioned above contributes to this advantage. Second, the spent solids leaving the lowest combustion stage of the SCFBC are cooled by the incoming air, reducing heat loss with the spent solids. The SCFBC accomplishes the specified SO/sub 2/ removal with a significantly reduced amount of limestone adsorbent. The SCFBC achieved a sulfur capture efficiency of 81.6% with a calcium to sulfur ratio of 2.05, while the AFBC capture efficiency was 90% with a calcium to sulfur ratio of 3.5. The SCFBC has several other technical advantages over the AFBC. Stages of combustion air in the SCFBC can reduce NOx emissions to one-half to one-third of that achievable with the AFBC. The SCFBC achieves a higher volumetric heat release than the conventional AFBC by a factor of three to one. The SCFBC can achieve higher turndown ratios than the AFBC by changing fluidized bed depths to tailor heat transfer rates to the turned down condition. Turndown ratios of 7 to 1 are possible with the SCFBC compared with a ratio of 3 to 1 achievable in a single bed conventional AFBC. The capitol cost of the SCFBC is 24.0% lower than that of the AFBC and the annual operating cost is 7.4% lower.

  15. Decontamination of combustion gases in fluidized bed incinerators

    DOE Patents [OSTI]

    Leon, Albert M. (Mamaroneck, NY)

    1982-01-01T23:59:59.000Z

    Sulfur-containing atmospheric pollutants are effectively removed from exit gas streams produced in a fluidized bed combustion system by providing a fluidized bed of particulate material, i.e. limestone and/or dolomite wherein a concentration gradient is maintained in the vertical direction. Countercurrent contacting between upwardly directed sulfur containing combustion gases and descending sorbent particulate material creates a concentration gradient across the vertical extent of the bed characterized in progressively decreasing concentration of sulfur, sulfur dioxide and like contaminants upwardly and decreasing concentration of e.g. calcium oxide, downwardly. In this manner, gases having progressively decreasing sulfur contents contact correspondingly atmospheres having progressively increasing concentrations of calcium oxide thus assuring optimum sulfur removal.

  16. Numerical and experimental studies of IFE target layering in a cryogenic fluidized bed

    E-Print Network [OSTI]

    Boehm, Kurt Julian

    2009-01-01T23:59:59.000Z

    and the heat transfer for a fixed bed with large isometricis fixed and homogeneous over the entire bed domain. Thus,fixed, Cartesian coordinate system described in the fluidized bed

  17. Studies with a laboratory atmospheric fluidized bed combustor system

    SciTech Connect (OSTI)

    Orndorff, W.W.; Su, Shi; Napier, J. [Western Kentucky Univ., Bowling Green, KY (United States)] [and others

    1996-12-31T23:59:59.000Z

    Growing public concerns over acid rain and municipal solid waste problems have created interest in the development of atmospheric fluidized bed combustion systems. A computer controlled 12-inch laboratory atmospheric fluidized bed combustor (AFBC) system has been developed at Western Kentucky University. On-line analysis by gas chromatography, Fourier-transform infrared (FTIR) spectrometry, and mass spectrometry (MS) allows extensive analysis of the flux gases. Laboratory experiments with a thermogravimetric analyzer (TGA) interfaced with FTIR and MS systems are used to screen fuel blends for runs in the AFBC system. Current experiments being conducted include co-firing blends of refuse derived fuels with coal and extended burns with coals containing different levels of chlorine.

  18. An Analysis of the Use of Fluidized-Bed Heat Exchangers for Heat Recovery 

    E-Print Network [OSTI]

    Vogel, G. J.; Grogan, P. J.

    1980-01-01T23:59:59.000Z

    . the Fifth International Conf. on Fluidized Bed Combustion, Washington, D.C., Dec. 1977, MITRE Corp., M78-68 (Dec. 1978). 11. 3. Virr, M.J., "Commercialization of Small Scale Fluidized Combustion Techniques," Proc. of the Fourth International Conf.... on Fluidized-Bed Com- 12. bustion, McLean, Va., Dec. 1975,MITRE Corp., M76-36 (1976). 4. Elliott, D.E., and M.J. Virr, "Small-Scale 13. Applications of Fluidized-Bed Combustion and Heat Transfer," Proc. of the Third International Conf. on Fluidized...

  19. Pulsed atmospheric fluidized bed combustor apparatus and process

    DOE Patents [OSTI]

    Mansour, Momtaz N. (Columbia, MD)

    1992-01-01T23:59:59.000Z

    A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g. organic and medical waste, drying, calcining and the like.

  20. Four Rivers second generation Pressurized Circulating Fluidized Bed Combustion Project

    SciTech Connect (OSTI)

    Holley, E.P.; Lewnard, J.J. [Air Products and Chemicals, Inc. (United States); von Wedel, G. [LLB Lurgi Lentjes Babcock Energietechnik (GmbH); Richardson, K.W. [Foster Wheeler Energy Corp. (United States); Morehead, H.T. [Westinghouse Electric Corp. (United States)

    1995-04-01T23:59:59.000Z

    Air Products has been selected in the DOE Clean Coal Technology Round V program to build, own, and operate the first commercial power plant using second generation Pressurized Circulating Fluidized Bed (PCFB) combustion technology. The four Rivers Energy Project (Four Rivers) will produce up to 400,000 lb/hr steam, or an equivalent gross capacity of 95 MWe. The unit will be used to repower an Air Products chemicals manufacturing facility in Calvert City, Kentucky.

  1. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project. 1990 Annual report

    SciTech Connect (OSTI)

    Not Available

    1992-02-01T23:59:59.000Z

    The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

  2. Fluidized bed gasification ash reduction and removal process

    DOE Patents [OSTI]

    Schenone, Carl E. (Madison, PA); Rosinski, Joseph (Vanderbilt, PA)

    1984-12-04T23:59:59.000Z

    In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  3. Fluidized bed gasification ash reduction and removal system

    DOE Patents [OSTI]

    Schenone, Carl E. (Madison, PA); Rosinski, Joseph (Vanderbilt, PA)

    1984-02-28T23:59:59.000Z

    In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  4. Spectral methods applied to fluidized bed combustors. Final report

    SciTech Connect (OSTI)

    Brown, R.C.; Christofides, N.J.; Junk, K.W.; Raines, T.S.; Thiede, T.D.

    1996-08-01T23:59:59.000Z

    The objective of this project was to develop methods for characterizing fuels and sorbents from time-series data obtained during transient operation of fluidized bed boilers. These methods aimed at determining time constants for devolatilization and char burnout using carbon dioxide (CO{sub 2}) profiles and from time constants for the calcination and sulfation processes using CO{sub 2} and sulfur dioxide (SO{sub 2}) profiles.

  5. Pulsed atmospheric fluidized-bed combustor development. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-05-01T23:59:59.000Z

    Pulsed atmospheric fluidized-bed combustion (PAFBC) is a unique and innovative coal-fueled technology that has the potential to meet these conditions and provide heat and/or process steam to small industrial, commercial, institutional and residential complexes. The potential of Pulse Atmospheric Fluidized Bed Combustion (PAFBC) technology has been amply demonstrated under the sponsorship of a previous DOE/METC contract (DE-AC21-88MC25069). The environmental performance of a coal-fired laboratory-scale system (1.5 million British Thermal Units per hour) (MMBtu/hr) significantly surpassed that of conventional bubbling and circulating fluidized-bed combustion units (see Table 1 for performance comparison). Prompted by these encouraging results in combustion, sulfur capture, emissions control, and enhanced heat transfer, Island Creek Coal Company (ICC) and Baltimore Thermal Energy Corporation expressed interest in the technology and offered to participate by providing host sites for field testing. EA`s have been submitted independently for each of these field test sites. This submission addresses the preliminary testing of the PAFBC unit at Manufacturing and Technology Conversion International`s (MTCI) Baltimore, MD facility.

  6. State of the art of pressurized fluidized bed combustion systems

    SciTech Connect (OSTI)

    Graves, R.L.

    1980-09-01T23:59:59.000Z

    This report was prepared at the request of the Tennessee Valley Authority (TVA) to clarify the development status of the pressurized fluidized bed combustor (PFBC) and to place in perspective the problems which are yet to be solved before commercialization of the concept is practical. This report, in essence, supersedes the interim report published in 1979, Assessment of the State of the Art of Pressurized Fluidized Bed Combustion Systems. A brief overview of the PFBC concept is included citing potential advantages and disadvantages relative to atmospheric fluidized bed combustion (AFBC) and conventional pulverized coal plants. A survey of existing and developing PFBC experimental facilities is presented in some detail which includes the major accomplishments at the respective facilities. Recent data on plant emissions, turbine/gas cleanup systems, and overall efficiency are provided. Findings of several design studies are also discussed. The results of recent gas turbine and cascade tests have been encouraging although the full assessment of the accomplishments have not been made. The delay in construction of the Grimethorpe plant causes further delay in proof-testing full-size, rotating turbomachinery. Several parameters are recommended for further assessment in design studies including: (1) effect of turbine life on cost of power; and (2) effect of reduced gas turbine inlet temperature and pressure on cost of power.

  7. A NEW INTERPHASE FORCE IN TWO-PHASE FLUIDIZED BEDS

    SciTech Connect (OSTI)

    D. ZHANG; W. VANDERHEYDEN

    2001-05-01T23:59:59.000Z

    Mesoscale structures such as particle clusters have been observed both in experiments and in numerical simulations of circulating fluidized beds. In a numerical simulation, in order to account for the effects of such mesoscale structures, the computational grids have to be fine enough. The use of such fine grids is impractical in engineering applications due to excessive computational costs. To predict the macroscopic behavior of a fluidized bed with reasonable computation cost, they perform a second average over the averaged equations for two-phase flows. A mesoscale inter-phase exchange force is found to be the correlation of the particle volume fraction and the pressure gradient. This force is related to the mesoscale added mass of the two-phase flow. Typically, added mass for particle scale interactions is negligible in gas-solid flows since the gas density is small compared to density of solid particles. However, for a mesoscale structure, such as a bubble, the surrounding media is the mixture of gas and particles. The surrounding fluid density experienced by the mesoscale structure is the density of the surrounding mixture. Therefore, the added mass of a mesoscale structure, such as bubbles, cannot be neglected. The property of this new force is studied based on the numerical simulation of a fluidized bed using high grid resolution. It is shown that this force is important in the region where the particle volume fraction is high. The effects of the inhomogeneity to the interphase drag are also studied.

  8. The backflow cell model for fluidized bed catalytic reactors

    E-Print Network [OSTI]

    Ganapathy, E. V

    1967-01-01T23:59:59.000Z

    THE BACKFLOW CELL MODEL FOR FLUIDI2ED BED CATALYTIC REACTORS A Thesis By E. V. Ganapathy Submitted to the Graduate College of the Texas A&M University in partial fulfillment of' the requirements for the degree of MASTER OF SCIENCE May 1967... Major Subject Chemical En ineerin THE BACKFLOW CELL MODEL FOR FLUIDIZED BED CATALYTIC REACTORS A Thesis E. V. Ganapathy Approved as to style and content by: chairman of Committee ~H+d d D p t t Member Member) May 1967 SO THE BACKFLOW CELL...

  9. Pressure Fluctuations as a Disgnostic Tool for Fluidized Beds.

    SciTech Connect (OSTI)

    Brown, R.C.; Schroeder, J.R.

    1997-10-28T23:59:59.000Z

    The validity of using bubbling fluidized bed (BFB) similitude parameters to match a hot BFB to a cold BFB is being studied. Sand in a BFB combustor and copper powder in cold BFB model have been analyzed and found to be out of similitude. In the analysis process, it was determined that the condition of the screen covering the pressure tap affects the quality of pressure data recorded. In addition, distributor plate design and condition will affect the hydrodynamics of the bed. Additional tests are planned to evaluate the validity of similitude concepts in BFB.

  10. Analysis/control of in-bed tube erosion phenomena in the fluidized bed combustion system. Final technical report

    SciTech Connect (OSTI)

    Lee, Seong W.

    1996-11-01T23:59:59.000Z

    Research is presented on erosion and corrosion of fluidized bed combustor component materials. The characteristics of erosion of in-bed tubes was investigated. Anti-corrosion measures were also evaluated.

  11. Fluidized-bed bioreactor process for the microbial solubiliztion of coal

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN); Strandberg, Gerald W. (Farragut, TN)

    1989-01-01T23:59:59.000Z

    A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor.

  12. Fluidized-bed bioreactor system for the microbial solubilization of coal

    DOE Patents [OSTI]

    Scott, C.D.; Strandberg, G.W.

    1987-09-14T23:59:59.000Z

    A fluidized-bed bioreactor system for the conversion of coal into microbially solubilized coal products. The fluidized-bed bioreactor continuously or periodically receives coal and bio-reactants and provides for the production of microbially solubilized coal products in an economical and efficient manner. An oxidation pretreatment process for rendering coal uniformly and more readily susceptible to microbial solubilization may be employed with the fluidized-bed bioreactor. 2 figs.

  13. Factors affecting the performance of a codisposal atmospheric fluidized-bed combustor

    SciTech Connect (OSTI)

    Huang, W.C.

    1982-01-01T23:59:59.000Z

    The paper describes the operation of the codisposal atmospheric fluidized-bed combustor (AFBC) installed at Duluth, Minnesota. The facility utilizes refuse-derived fuel to codispose sewage sludge without auxiliary fuel. Operating parameters affecting the combustor performance are discussed with emphasis on temperature distribution, bed fluidization, residence time, freeboard height and flyash properties. Optimum operating conditions are presented and some new concepts and trends of future development in fluidized bed technology are touched on.

  14. Scaled-bed modeling for fluidized-bed combustors. Semi-annual report, October 1, 1980-March 31, 1981

    SciTech Connect (OSTI)

    Fitzgerald, T.J.; Crane, S.D.

    1981-03-01T23:59:59.000Z

    Progress is reported in developing scaled models of coal-fired fluidized-bed combustors which can be used with confidence to obtain performance data for predicting the performance of full scale units. Construction of two 1/4 scale atmospheric pressure fluidized bed combustors is nearing completion. (LCL)

  15. Incineration of biological sludge in a fluidized bed

    SciTech Connect (OSTI)

    Ku, W.C.P.

    1988-01-01T23:59:59.000Z

    Incineration rate, ash properties, and percentage destruction of the combustible material were evaluated under different operating conditions. Experimental measurements were made for temperature, air flow rate, sludge size, ash size and sludge composition. A model based on the heat transfer consideration was derived to describe the drying and devolatilization process during sludge incineration. The model assumes that the drying and devolatilization of a sludge particle is manly caused by the heat flowing into the sludge particle from the bed. Parameters affecting the simulation results included sludge size, inert particle size, sludge heat capacity, sludge heat conductivity, operating flow rate and incinerator temperature. A model developed to simulate a batch type air-sand fluidized bed considered the incineration process as being composed of three consecutive operations, namely, drying, devolatilization, and char combustion. The simulation model predicted the dynamic characteristics of sludge incineration in the bed including its percentage completion and the incinerator temperature. The effects of sludge moisture level, sludge size and incinerator operating conditions on the incinerator behavior were also evaluated. The model developed to simulate the behavior of a fluidized bed incinerator under continuous operation was capable of predicting the time to reach steady state, the stack gas composition, the percentage combustion and the auxiliary heat required under various operating conditions, including sludge feed rate and size, air feed rate, and incinerator temperature.

  16. Performance simulation of fluidized-bed coal combustors

    SciTech Connect (OSTI)

    Chandran, R.R.; Sutherland, D.D. (The Babcock and Wilcox Co., R and D Div., Alliance, OH (US))

    1988-06-01T23:59:59.000Z

    A code, referred to as FBCSIM, is being developed to predict large-scale atmospheric fluidized-bed combustor (AFBC) performance with fundamental fuel data from bench-scale test units as input. This work is carried out as a part of AFBC fuels characterization program sponsored by the Electric Power Research Institute (EPRI). The code accounts for the physics of fluidization, which is unit specific, and the chemistry of combustion, which is fuel specific. The code includes a 3-D model and modules on bed hydrodynamics, chemical kinetics, solid distribution, and transport phenomena. The model for in-bed combustion incorporates a two-region particle mixing formulation. The code for in-bed combustion has been validated for different AFBC unit sizes (0.1, 2, and 20 MW) and different coals (two bituminous and a lignite). Sensitivity analyses have been carried out to identify the controlling variables and guide experimental work. Computer simulations have also been performed to delineate system response to operational parameters.

  17. Performance simulation of fluidized-bed coal combustors

    SciTech Connect (OSTI)

    Chandran, R.R.; Sutherland, D.D. (Babcock Wilcox Company, Alliance, OH (USA))

    1988-01-01T23:59:59.000Z

    A code, referred to as FBCSIM, is being developed to predict large-scale atmospheric fluidized-bed combustor (AFBC) performance with fundamental fuel data from bench-scale test units as input. This work is carried out as a part of AFBC fuels characterization program sponsored by the Electric Power Research Institute (EPRI). The code accounts for the physics of fluidization, which is unit specific, and the chemistry of combustion, which is fuel specific. The code includes a 3-D model and modules on bed hydrodynamics, chemical kinetics, solid distribution, and transport phenomena. The model for in-bed combustion incorporates a two-region particle mixing formulation. The code for in-bed combustion has been validated for different AFBC unit sizes (0.1, 2, and 20 MW) and different coals (two bituminous and a lignite). Sensitivity analyses have been carried out to identify the controlling variables and guide experimental work. Computer simulations have also been performed to delineate system response to operational parameters.

  18. Apparatus and method for controlling heat transfer between a fluidized bed and tubes immersed therein

    DOE Patents [OSTI]

    Hodges, James L. (3 Hilltop Ave., Vernon, CT 06066); Cerkanowicz, Anthony E. (8 Fieldstone Dr., Livingston, NJ 07039)

    1983-01-01T23:59:59.000Z

    In a fluidized bed of solid particles having one or more heat exchange tubes immersed therein, the rate of heat transfer between the fluidized particles and a fluid flowing through the immersed heat exchange tubes is controlled by rotating an arcuate shield apparatus about each tube to selectively expose various portions of the tube to the fluidized particles.

  19. Apparatus and method for controlling heat transfer between a fluidized bed and tubes immersed therein

    DOE Patents [OSTI]

    Hodges, James L. (3 Hilltop Ave., Vernon, CT 06066); Cerkanowicz, Anthony E. (8 Fieldstone Dr., Livingston, NJ 07039)

    1982-01-01T23:59:59.000Z

    In a fluidized bed of solid particles having one or more heat exchange tubes immersed therein, the rate of heat transfer between the fluidized particles and a fluid flowing through the immersed heat exchange tubes is controlled by rotating an arcuate shield apparatus about each tube to selectively expose various portions of the tube to the fluidized particles.

  20. Zevenhoven & Kilpinen NITROGEN 13.4.2002 4-34 4.11 Chemistry of nitrogen oxides at atmospheric fluidized bed

    E-Print Network [OSTI]

    Laughlin, Robert B.

    the nitric oxide emission, the laughing gas emission at fluidized bed combustion must be accounted for too fluidized bed combustion, where the interaction between gas and particles is more intensive than in bubbling fluidized bed combustion In fluidized bed combustion, the combustion takes place in a bed of particles

  1. Zevenhoven & Kilpinen NITROGEN 18.1.2004 4-35 4.11 Chemistry of nitrogen oxides at atmospheric fluidized bed

    E-Print Network [OSTI]

    Zevenhoven, Ron

    the nitric oxide emission, the laughing gas emission at fluidized bed combustion must be accounted for too fluidized bed combustion, where the interaction between gas and particles is more intensive than in bubbling fluidized bed combustion In fluidized bed combustion, the combustion takes place in a bed of particles

  2. Enhanced Productivity of Chemical Processes Using Dense Fluidized Beds

    SciTech Connect (OSTI)

    Sibashis Banerjee; Alvin Chen; Rutton Patel; Dale Snider; Ken Williams; Timothy O'Hern; Paul Tortora

    2008-02-29T23:59:59.000Z

    The work detailed in this report addresses Enabling Technologies within Computational Technology by integrating a “breakthrough” particle-fluid computational technology into traditional Process Science and Engineering Technology. The work completed under this DOE project addresses five major development areas 1) gas chemistry in dense fluidized beds 2) thermal cracking of liquid film on solids producing gas products 3) liquid injection in a fluidized bed with particle-to-particle liquid film transport 4) solid-gas chemistry and 5) first level validation of models. Because of the nature of the research using tightly coupled solids and fluid phases with a Lagrangian description of the solids and continuum description of fluid, the work provides ground-breaking advances in reactor prediction capability. This capability has been tested against experimental data where available. The commercial product arising out of this work is called Barracuda and is suitable for a wide (dense-to-dilute) range of industrial scale gas-solid flows with and without reactions. Commercial applications include dense gas-solid beds, gasifiers, riser reactors and cyclones.

  3. Polycyclic aromatic compounds in fluidized bed combustion of coal

    SciTech Connect (OSTI)

    Walsh, P.M.; Beer, J.M.; Biermann, K.; Chiu, K.S.

    1983-08-01T23:59:59.000Z

    Polycyclic aromatic compounds (PAC) have been determined in the gas and particulate effluents from fluidized bed combustion of coal, lignite, and oil shale by a number of investigators. A bibliography of the reports of these investigations is contained in a paper by Chiu, Walsh, Beer, and Biemann (1983). The concentrations of PAC in the effluents are often quite low, but depend upon the combustor configuration and operating conditions. The goal of the present investigation is to develop a mechanism consistent with measured rates of formation and destruction of PAC in atmospheric pressure fluidized bed combustion (AFBC), so that a rational approach may be taken to adjustment of conditions for minimization of PAC in the effluents. PAC are determined in samples taken from the freeboard (space above the bed), rather than from the exhaust, to observe the evolution of the PAC distribution within the combustor. Mass fractions of the most abundant PAC observed in the freeboard during AFBC of high volatile bituminous coal were reported by Chiu, et al (1983). Some correlation of the rates of disappearance of PAC with particle concentration was noted by Dutta, Chiu, Walsh, Beer, and Biemann (1983). In the present paper theoretical estimates of the rates at which PAC might be consumed by heterogeneous reactions are compared with experimental rates estimated from PAC profiles determined by Chiu et al (1983).

  4. INVESTIGATION OF FUEL CHEMISTRY AND BED PERFORMANCE IN A FLUIDIZED BED BLACK LIQUOR STEAM REFORMER

    SciTech Connect (OSTI)

    Kevin Whitty

    2003-12-01T23:59:59.000Z

    The University of Utah project ''Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer'' (DOE award number DE-FC26-02NT41490) was developed in response to a solicitation for projects to provide technical support for black liquor and biomass gasification. The primary focus of the project is to provide support for a DOE-sponsored demonstration of MTCI's black liquor steam reforming technology at Georgia-Pacific's paper mill in Big Island, Virginia. A more overarching goal is to improve the understanding of phenomena that take place during low temperature black liquor gasification. This is achieved through five complementary technical tasks: (1) construction of a fluidized bed black liquor gasification test system, (2) investigation of bed performance, (3) evaluation of product gas quality, (4) black liquor conversion analysis and modeling and (5) computational modeling of the Big Island gasifier. Four experimental devices have been constructed under this project. The largest facility, which is the heart of the experimental effort, is a pressurized fluidized bed gasification test system. The system is designed to be able to reproduce conditions near the black liquor injectors in the Big Island steam reformer, so the behavior of black liquor pyrolysis and char gasification can be quantified in a representative environment. The gasification test system comprises five subsystems: steam generation and superheating, black liquor feed, fluidized bed reactor, afterburner for syngas combustion and a flue gas cooler/condenser. The three-story system is located at University of Utah's Industrial Combustion and Gasification Research Facility, and all resources there are available to support the research.

  5. Pressurized circulating fluidized-bed combustion for power generation

    SciTech Connect (OSTI)

    Weimer, R.F.

    1995-08-01T23:59:59.000Z

    Second-generation Pressurized Circulating Fluidized Bed Combustion (PCFBC) is the culmination of years of effort in the development of a new generation of power plants which can operate on lower-quality fuels with substantially improved efficiencies, meet environmental requirements, and provide a lower cost of electricity. Air Products was selected in the DOE Clean Coal Technology Round V program to build, own, and operate the first commercial power plant using second-generation PCFBC technology, to be located at an Air Products chemicals manufacturing facility in Calvert City, Kentucky. This paper describes the second-generation PCFBC concept and its critical technology components.

  6. Four Rivers second generation pressurized circulating fluidized bed combustion project

    SciTech Connect (OSTI)

    Holley, E.P.; Lewnard, J.J. [Air Products and Chemicals, Inc., Allentown, PA (United States); Wedel, G. von; Richardson, K.W.; Morehead, H.T.

    1995-12-31T23:59:59.000Z

    Air Products has been selected in the DOE Clean Coal Technology Round 5 program to build, own, and operate the first commercial power plant using second generation Pressurized Circulating Fluidized Bed (PCFB) combustion technology. The Four Rivers Energy Project (Four Rivers) will produce approximately 70 MW electricity, and will produce up to 400,000 lb/hr steam, or an equivalent gross capacity of 95 MWe. The unit will be used to repower an Air Products chemicals manufacturing facility in Calvert City, Kentucky.

  7. Standby cooling system for a fluidized bed boiler

    DOE Patents [OSTI]

    Crispin, Larry G. (Akron, OH); Weitzel, Paul S. (Canal Fulton, OH)

    1990-01-01T23:59:59.000Z

    A system for protecting components including the heat exchangers of a fluidized bed boiler against thermal mismatch. The system includes an injection tank containing an emergency supply of heated and pressurized feedwater. A heater is associated with the injection tank to maintain the temperature of the feedwater in the tank at or about the same temperature as that of the feedwater in the heat exchangers. A pressurized gas is supplied to the injection tank to cause feedwater to flow from the injection tank to the heat exchangers during thermal mismatch.

  8. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project. Annual report, 1988

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This Annual Report on Colorado-Ute Electric Association`s NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

  9. Georgetown University atmospheric fluidized bed boiler cogeneration system

    SciTech Connect (OSTI)

    Podbielski, V.; Shaff, D.P.

    1991-08-01T23:59:59.000Z

    This report presents the results of one year of operation of the cogeneration system capability of the Georgetown University coal- fired, atmospheric fluidized-bed (AFB) boiler. The AFB was designed and installed under a separate contract with the US Department of Energy. The AFB project funded by DOE to demonstrate that high sulfur coal could be burned in an environmentally acceptable manner in a urban environment such as Georgetown. In addition, operational data from the unit would assist the industry in moving directly into design and construction of commercially warranted industrial size AFB boilers. 9 figs., 3 tabs.

  10. Bed material agglomeration during fluidized bed combustion. Technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect (OSTI)

    Brown, R.C.; Dawson, M.R.; Noble, S.D.

    1993-04-01T23:59:59.000Z

    The purpose of this project is to determine the physical and chemical reactions which lead to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. A survey of agglomeration and deposit formation in industrial fluidized bed boilers is in progress. Preliminary results indicate that at least five boilers were experiencing some form of bed material agglomeration. In these instances it was observed that large particles were forming within the bed which were larger that the feed. Four operators could confirm that the larger bed particles had formed due to bed particles sticking together or agglomerating. Deposit formation was reported at nine sites with these deposits being found most commonly at coal feed locations and in cyclones. Other deposit locations included side walls and return loops. Examples of these agglomerates and deposits have been received from five of the surveyed facilities. Also during this quarter, a bulk sample of Illinois No. 6 coal was obtained from the Fossil Energy Program at Ames Laboratory here at Iowa State University and prepared for combustion tests. This sample was first ground to a top-size of 3/8`` using a jaw crusher then a size fraction of 3/8`` {times} 8 (US mesh) was then obtained by sieving using a Gilson Test-Master. This size fraction was selected for the preliminary laboratory-scale experiments designed to simulate the dense bed conditions that exist in the bottom of CFB combustors. To ensure uniformity of fuel composition among combustion runs, the sized coal was riffled using, a cone and long row method and stored in bags for each experiment. During this quarter additional modifications were made to achieve better control of fluidization regimes and to aid in monitoring the hydrodynamic and chemical conditions within the reactor.

  11. Sulfur capture in an atmospheric fluidized-bed combustor

    SciTech Connect (OSTI)

    Baars, D.M.; Hunter, C.A.; Keitelman, E.N.

    1981-06-01T23:59:59.000Z

    Sulfur capture in an atmospheric fluidized-bed combustor (AFBC) both with and without recycle of fines elutriated from the bed was studied. Two empirical correlations, one by Babcock and Wilcox and the other by Westinghouse, correlate sulfur capture as a function of the calcium-to-sulfur mole ratio and gas residence time. Both correlations fit the experimental no-recycle results quite well. Of the limestones tested with no recycle, Vulcan Materials exhibits the best sulfur-capture performance. Data collected with Reed limestone indicates that recycle improves sulfur-capture compared with once-through performance. However, there is a decreasing effect on sulfur capture as the recycle rate is increased to large values. At 90% sulfur capture, the fractional reduction of fresh limestone feed attributable to recycle is 24 to 35% over a gas-residence time range of 0.7 to 0.4 s.

  12. Atmospheric fluidized bed combustor development program. Final report

    SciTech Connect (OSTI)

    Ashworth, R.A.; Melick, T.A.; Plessinger, D.A.; Sommer, T.M. [Energy and Environmental Research Corp., Orville, OH (United States); Keener, H.M. [Ohio State Univ., Columbus, OH (United States). Ohio Agricultural Research and Development Center; Webner, R.L. [Will-Burt, Orrville, OH (United States)

    1995-12-01T23:59:59.000Z

    The objective of this project was to demonstrate and promote the commercialization of a coal-fired atmospheric fluidized bed combustion (AFBC) system, with limestone addition for SO{sub 2} emissions control and a baghouse for particulate emissions control. This AFBC system was targeted for small scale industrial-commercial-institutional space and process heat applications in the 1 x 10{sup 6} to 10 x 10{sup 6} Btu/hr capacity range. A cost effective and environmentally acceptable AFBC technology in this size range would displace a considerable amount of gas/oil with coal while resulting in significant total cost savings to the owner/operators. The project itself was separated into three levels: (1) feasibility, (2--3) subsystem development and integration, and (4) proof-of-concept. In Level (1), the technical and economic feasibility of a 1 million Btu/hr coal-fired AFBC air heater was evaluated. In Level (2--3), the complete EER fluidized bed combustor (1.5 million Btu/hr) system was developed and tested. The goal or reducing SO{sub 2} emissions to 1.2 lb/10{sup 6} Btu, from high sulfur Ohio coal, was achieved by adding limestone with a Ca/S (coal) ratio of {approximately} 3.0. Finally, in Level (4), the proof-of-concept system, a 2.2 million Btu/hr unit was installed and successfully operated at Cedar Lane Farms, a commercial nursery in Ohio.

  13. Fluidized bed combustion of alternate fuels. Final report

    SciTech Connect (OSTI)

    Howe, W.C.; Divilio, R.J. [Combustion Systems, Inc., Aptos, CA (United States)

    1993-12-01T23:59:59.000Z

    Fluidized bed combustion (FBC) technology offers the opportunity combust a broader range of fuels than previously possible with other technologies. FBC boilers are currently being used throughout the world to dispose of a wide range of solid and semi-solid waste fuels, including municipal and industrial solid wastes and sludges, agricultural wastes, and coal mining or cleaning wastes. FBCs can also accommodate cofiring waste fuels in units designed for coal or other solid fuels with relative ease compared to conventional technology. The capacity and experience base for coal-fired FBCs has increased in recent years so that utility-scale reheat units of 200-300 MWe in size are now commercially available, and larger units are now being considered. As utilities install fluidized bed boilers to generate power, it is anticipated that many will at some point consider cofiring one or more waste fuels either together or with coal to reduce the quantity and cost of the primary fuel, and in many cases, help offset the environmental impact of other disposal options such as landfills. In order to assist the industry in their evaluations, this report summarizes the fuel characteristics, experience base, and technical issues associated with burning selected fuels using FBC technology, including: Municipal Solid Wastes; Biomass; Sewage Sludge; Paper Manufacturing and Recycling Wastes; Scrap Tires; and Automobile Wastes.

  14. Evaluation of models for the prediction of fluidized-bed reactor performance

    E-Print Network [OSTI]

    Frederick, John Michael

    1980-01-01T23:59:59.000Z

    on surface tension. The mechanism behind the formation of fluidized bed bubbles is strictly the circulation of the fluidizing gas within the bed material (See Fig. 5, p. 11). Eventhough there exist mechanical differences in the formation of the bubbles... of the bubble and changes in bubble rise velocity often result in bubble coalescence. In a fluidised bed the phenomena may be roughly explained by considering the wake traveling behind the bubble and coalescence occurs when the trailing bubble moves...

  15. Development of a fluidized bed air heater. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-11-01T23:59:59.000Z

    The development and design of a coal-fired atmospheric fluidized bed combustion (AFBC) air heater is described. Clean air at low pressure is heated by passing it through tubes placed in the bed of the combustor. The purpose of the program was to develop coal-fired equipment that could provide clean hot air for industrial process applications. Development was carried out using two AFBC test units. The first had a bed of 2.25 ft/sup 2/ and the second a bed of 18 ft/sup 2/. The latter incorporated full-scale components applicable to a system of 28 x 10/sup 6/ Btu/hr output. Approximately 180 runs for a total of 2000 hours of operation were made. The delivered air temperature was 800/sup 0/F with heat exchanger tubes operated at 1300/sup 0/F. Results of the test program and a description of the design concepts are presented. A heating system design was carried out for a specific manufacturing plant located in Minnesota. The system would furnish hot air at 800/sup 0/F and hot water at 250/sup 0/F for process and space heating needs. Results of this design study are summarized. 56 figs., 26 tabs.

  16. (Pulsed atmospheric fluidized bed combustion (PAFBC)). [Comparing PAFBC vs. AFBC

    SciTech Connect (OSTI)

    Not Available

    1989-05-01T23:59:59.000Z

    The fourth Quarterly Technical Progress Report presents the results of work accomplished during the period February 6 through April 30, 1989. the overall objective of the program is the development of a pulsed atmospheric, fluidized bed combustion (PAFBC) technology to burn coal and to provide heat and steam to commercial, institutional, and small industrial applications at a reasonable price in an environmentally acceptable manner. During this past quarter, a baseline for comparing PAFBC vs. AFBC performance was established and the initial series of PAFBC coal-fired combustion tests was completed. The AFBC baseline was representative of bubbling bed units with the exception of emissions which were somewhat higher and attributable to the size constraints of the AFBC unit. However, it still provided a valid baseline for referencing and optimizing PAFBC performance. Initial coal combustion tests in the pulsed fluid-bed verified enhanced performance in comparison to the non-pulsed beds, providing reduced NO{sub x}, CO, and SO{sub 2} emissions as well as higher steam generation rates and considerably lower entrainment losses. 9 figs., 4 tabs.

  17. Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer

    SciTech Connect (OSTI)

    Kevin Whitty

    2007-06-30T23:59:59.000Z

    University of Utah's project entitled 'Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer' (DOE Cooperative Agreement DE-FC26-02NT41490) was developed in response to a solicitation released by the U.S. Department of Energy in December 2001, requesting proposals for projects targeted towards black liquor/biomass gasification technology support research and development. Specifically, the solicitation was seeking projects that would provide technical support for Department of Energy supported black liquor and biomass gasification demonstration projects under development at the time.

  18. The effect of bed temperature on oxygen partial pressures in an atmospheric fluidized bed combustor

    SciTech Connect (OSTI)

    Malik, S.R. [PCSIR, Karachi (Pakistan). Fuel Research Centre; Gibbs, B.M. [Univ. of Leeds (United Kingdom). Dept. of Fuel and Energy

    1996-12-31T23:59:59.000Z

    One of the factors which cause corrosion of in-bed material is the existence of low oxygen levels. Therefore, oxygen`s partial pressure measurements are important for corrosion studies in atmospheric fluidized bed combustor (AFBC). The effect of bed temperature on oxygen levels has been discussed in this paper. The experiments were conducted on a 0.3 meters square combustor. In-bed oxygen partial pressures were measured using zirconia oxygen probes and recorded on a computerized data logging system. Detail statistical analysis of the data has been presented. The probability density function (PDF) was the most important statistical parameter which reveals not only how long environment is exposed to oxidizing reducing conditions but also the probability whether corrosion could occur.

  19. Bed material agglomeration during fluidized bed combustion. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect (OSTI)

    Brown, R.C.; Dawson, M.R.; Smeenk, J.L.

    1995-04-01T23:59:59.000Z

    Experiments performed support the hypothesis that a reducing atmosphere during fluidized bed coal combustion contributes to the formation of agglomerates. Reducing conditions are imposed by controlling the amount of combustion air supplied to the combustor, 50% of theoretical in these experiments. These localized reducing conditions may arise from either poor lateral bed mixing or oxygen-starved conditions due to the coal feed locations. Deviations from steady-state operating conditions in bed pressure drop may be used to detect agglomerate formation. Interpretation of the bed pressure drop was made more straightforward by employing a moving average difference method. During steady-state operation, the difference between the moving point averages should be close to zero, within {plus_minus}0.03 inches of water. Instability within the combustor, experienced once agglomerates begin to form, can be recognized as larger deviations from zero, on the magnitude of {plus_minus}0.15 inches of water.

  20. Agglomeration of sorbent and ash carry-over for use in atmospheric fluidized-bed combustors

    SciTech Connect (OSTI)

    Rohargi, N.D.T.

    1983-04-01T23:59:59.000Z

    Agglomeration of elutriated sorbent, ash and char from a fluidized-bed boiler, with spent bed overflow material and water, has been identified as a potentially attractive technique for reducing sorbent consumption in atmospheric fluidized-bed combustors. The agglomerated products are returned to the combustor to improve the calcium utilization of the sorbent and to complete the combustion of elutriated carbon material. In this experimental programme, agglomerates were collected during test runs on the 1.8 m x 1.8 m fluidized-bed combustor. Agglomerate characteristics, such as handling strength, sulfur capture activity carbon utilization and resistance to attrition, were determined as functions of agglomeration processing variables. These variables include feed composition, feed particle size, amount of water addition, curing time, and curing atmosphere or drying conditions. Ca/S feed ratio requirements for a commercial AFBC that uses the agglomeration process were projected on the basis of the Westinghouse model for fluidized-bed desulphurization.

  1. A Fluidized Bed Chiller: A New Approach in Making Slush-Ice

    E-Print Network [OSTI]

    Klaren, D. G.; Van Der Meer, J. S.

    production of 11000 lbs/day. The system consists of a fluidized bed chiller and a storage vessel for ice integrated within a circulation system. Through a plate-and-frame heat exchanger this cool lhermal storage system is connected to the actual user...A FLUIDIZED BED CHILLER: A NEW APPROACH IN MAKING SLUSH-ICE Dr.Ir. D.G. Klaren M.Sc. Technical Director Gebr. Scheffers B.V. Schiedam, The Netherlands ABSTRACT A fluidized bed heat exchanger already successfully applied for heat transfer...

  2. Respirable aerosols from fluidized bed coal combustion. 3. Elemental composition of fly ash

    SciTech Connect (OSTI)

    Weissman, S.H.

    1983-02-01T23:59:59.000Z

    Trace element constituents in fly ash from an experimental atmospheric fluidized bed combustor (AFBC) are reported and compared with pulverized coal combustor (PCC) data and those from other fluidized bed combustors. Bulk and size-separated particles were collected and analyzed using spark source mass spectrometry. Fluidized bed combustion ash was similar to PCC ash in minor and trace element composition, but AFBC ash showed less size dependence of elemental composition. Bulk particle elemental composition varied with sampling position within the effluent stream. Penetration of elements through each cleanup stage and elemental enrichment were a function of the cleanup stage and the element under consideration.

  3. Atmospheric fluidized-bed combustion testing of western Kentucky limestones

    SciTech Connect (OSTI)

    Zimmerman, G.P.; Holcomb, R.S.; Guymon, R.H.

    1982-09-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) is studying and testing the burning of coal in an atmospheric fluidized-bed combustor (AFBC) as a means of generating electricity and/or process heat in an environmentally acceptable manner. The abundant, high-sulfur coal resources in this country can be utilized effectively in such a system. The ORNL test program supporting the 20-MW(e) AFBC pilot plant planned for operation by the Tennessee Valley Authority (TVA) in 1982 is described. During the test program 625 hours of coal combustion were accumulated in a 25-cm-diam bench scale AFBC. The fuel was Kentucky No. 9 coal with about 4% sulfur. Five different limestones from the Western Kentucky area were tested for their ability to reduce sulfur dioxide emissions. The bench scale combustor was operated under a variety of conditions including changes in bed temperature, bed height and superficial velocity. At a superficial velocity of 1.2 m/s, four of the five limestones achieved 90% sulfur retention with weight ratios of limestone feed to coal feed near 0.40:1 under no recycle (once through) operation. Carbon utilization (based on carbon loss data) averaged 84% for these tests. Two of the more promising stones were tested by recycling the material elutriated from the combustor. The amount of fresh limestone required for 90% sulfur retention was reduced by up to 50%. Carbon utilization approaching 98% was obtained under these conditions.

  4. Continuous fluidized-bed contactor with recycle of sorbent

    DOE Patents [OSTI]

    Scott, C.D.; Petersen, J.N.; Davison, B.H.

    1996-07-09T23:59:59.000Z

    A continuous fluidized-bed contactor containing sorbent particles is used to remove solutes from liquid solvents. As the sorbent particles, for example gel beads, sorb the solute, for example metal ion species, the sorbent particles tend to decrease in diameter. These smaller loaded sorbent particles rise to the top of the contactor, and larger sorbent particles remain at the bottom of the contactor as a result of normal hydraulic forces. The smaller loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. Alternatively, the loaded sorbent particles may also slightly increase in diameter, or exhibit no change in diameter but an increase in density. As a result of normal hydraulic forces the larger loaded sorbent particles fall to the bottom of the contactor. The larger loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. 8 figs.

  5. Development of second-generation pressurized fluidized bed combustion process

    SciTech Connect (OSTI)

    Wolowodiuk, W.; Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States); Bonk, D. [USDOE Morgantown Energy Technology Center, WV (United States)

    1994-10-01T23:59:59.000Z

    Under the sponsorship of the United States Department of Energy, Foster Wheeler Development Corporation, and its team members, Westinghouse, Gilbert/Commonwealth, and the Institute of Gas Technology are developing second-generation pressurized fluidized bed combustion technology capable of achieving net plant efficiency in excess of 45 percent based on the higher heating value of the coal. A three-phase program entails design and costing of a 500 MWe power plant and identification of developments needed to commercialize this technology (Phase 1), testing of individual components (Phase 2), and finally testing these components in an integrated mode (Phase 3). This paper briefly describes the results of the first two phases as well as the progress on the third phase. Since other projects which use the same technology are in construction or in negotiation stages -- namely, the Power System Development Facility and the Four Rivers Energy Modernization Projects -- brief descriptions of these are also included.

  6. Continuous fluidized-bed contactor with recycle of sorbent

    DOE Patents [OSTI]

    Scott, Charles D. (Oak Ridge, TN); Petersen, James N. (Moscow, ID); Davison, Brian H. (Knoxville, TN)

    1996-01-01T23:59:59.000Z

    A continuous fluidized-bed contactor containing sorbent particles is used to remove solutes from liquid solvents. As the sorbent particles, for example gel beads, sorb the solute, for example metal ion species, the sorbent particles tend to decrease in diameter. These smaller loaded sorbent particles rise to the top of the contactor, as larger sorbent particles remain at the bottom of the contactor as a result of normal hydraulic forces. The smaller loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor. Alternatively, the loaded sorbent particles may also slightly increase in diameter, or exhibit no change in diameter but an increase in density. As a result of normal hydraulic forces the larger loaded sorbent particles fall to the bottom of the contactor. The larger loaded sorbent particles are then recovered, regenerated, and reintroduced into the contactor.

  7. Nucla circulating atmospheric fluidized bed demonstration project. Final report

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute`s decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

  8. Computational Fluid Dynamics Simulation of Fluidized Bed Polymerization Reactors

    SciTech Connect (OSTI)

    Rong Fan

    2006-08-09T23:59:59.000Z

    Fluidized beds (FB) reactors are widely used in the polymerization industry due to their superior heat- and mass-transfer characteristics. Nevertheless, problems associated with local overheating of polymer particles and excessive agglomeration leading to FB reactors defluidization still persist and limit the range of operating temperatures that can be safely achieved in plant-scale reactors. Many people have been worked on the modeling of FB polymerization reactors, and quite a few models are available in the open literature, such as the well-mixed model developed by McAuley, Talbot, and Harris (1994), the constant bubble size model (Choi and Ray, 1985) and the heterogeneous three phase model (Fernandes and Lona, 2002). Most these research works focus on the kinetic aspects, but from industrial viewpoint, the behavior of FB reactors should be modeled by considering the particle and fluid dynamics in the reactor. Computational fluid dynamics (CFD) is a powerful tool for understanding the effect of fluid dynamics on chemical reactor performance. For single-phase flows, CFD models for turbulent reacting flows are now well understood and routinely applied to investigate complex flows with detailed chemistry. For multiphase flows, the state-of-the-art in CFD models is changing rapidly and it is now possible to predict reasonably well the flow characteristics of gas-solid FB reactors with mono-dispersed, non-cohesive solids. This thesis is organized into seven chapters. In Chapter 2, an overview of fluidized bed polymerization reactors is given, and a simplified two-site kinetic mechanism are discussed. Some basic theories used in our work are given in detail in Chapter 3. First, the governing equations and other constitutive equations for the multi-fluid model are summarized, and the kinetic theory for describing the solid stress tensor is discussed. The detailed derivation of DQMOM for the population balance equation is given as the second section. In this section, monovariate population balance, bivariate population balance, aggregation and breakage equation and DQMOM-Multi-Fluid model are described. In the last section of Chapter 3, numerical methods involved in the multi-fluid model and time-splitting method are presented. Chapter 4 is based on a paper about application of DQMOM to polydisperse gas-solid fluidized beds. Results for a constant aggregation and breakage kernel and a kernel developed from kinetic theory are shown. The effect of the aggregation success factor and the fragment distribution function are investigated. Chapter 5 shows the work on validation of mixing and segregation phenomena in gas-solid fluidized beds with a binary mixture or a continuous size distribution. The simulation results are compared with available experiment data and discrete-particle simulation. Chapter 6 presents the project with Univation Technologies on CFD simulation of a Polyethylene pilot-scale FB reactor, The fluid dynamics, mass/heat transfer and particle size distribution are investigated through CFD simulation and validated with available experimental data. The conclusions of this study and future work are discussed in Chapter 7.

  9. Metal behavior during fluidized bed thermal treatment of soil

    SciTech Connect (OSTI)

    Ho, T.C.; Lee, H.T.; Shiao, C.C.; Hopper, J.R. [Lamar Univ., Beaumont, TX (United States). Dept. of Chemical Engineering] [Lamar Univ., Beaumont, TX (United States). Dept. of Chemical Engineering; Bostick, W.D. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States). Chemistry Dept.] [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States). Chemistry Dept.

    1995-12-31T23:59:59.000Z

    The Superfund dumpsites are frequently composed of soils contaminated with hazardous organic constituents and toxic heavy metals. While thermal treatment is an effective method of remediating the contaminated soils, the major environmental concerns are the emissions of toxic metal fumes during the treatment and the leaching of metals from the treated soil. The US EPA has reported that metals can account for almost all of the identified cancer risks from waste incineration systems. Research leading to better understanding of their behavior and better controlling of their emissions is urgently needed. In this study, the behavior of metals during the fluidized bed thermal treatment of artificially prepared metal-contaminated clay was experimentally and theoretically investigated. The objective of the study was to evaluate the effects of operating conditions on metal volatilization and metal leachability associated with the process. Metal experiments were carried out in a well instrumented 76 mm (3 inch) i.d. fluidized bed incinerator. The metals involved were compounds of lead and cadmium and the operating parameters included metal concentration, air flow rate, treatment temperature and treatment duration. The observed results indicated that metal volatilization is mainly a function of treatment temperature and treatment duration. The degree of volatilization was observed to range from 5 to 40% depending on the operating conditions. Cadmium leachability was observed to be relatively high compared to that of lead. In addition to the experimental study, a theoretical model based on the laws of heat and mass transfer operations and reaction kinetics was derived to simulate the metal volatilization process. The derived model was found to predict reasonably well the experimental observations.

  10. Durability Testing of Fluidized Bed Steam Reforming Products

    SciTech Connect (OSTI)

    JANTZEN, CAROL M.; PAREIZS, JOHN M.; LORIER, TROY H.; MARRA, JAMES C.

    2005-07-01T23:59:59.000Z

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of radioactive wastes but especially aqueous high sodium wastes at the Hanford site, at the Idaho National Laboratory (INL), and at the Savannah River Site (SRS). The FBSR technology converts organic compounds to CO{sub 2} and H{sub 2}O, converts nitrate/nitrite species to N{sub 2}, and produces a solid residue through reactions with superheated steam, the fluidizing media. If clay is added during processing a ''mineralized'' granular waste form can be produced. The mineral components of the waste form are primarily Na-Al-Si (NAS) feldspathoid minerals with cage-like and ring structures and iron bearing spinel minerals. The cage and ring structured minerals atomically bond radionuclides like Tc{sup 99} and Cs{sup 137} and anions such as SO{sub 4}, I, F, and Cl. The spinel minerals appear to stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Durability testing of the FBSR products was performed using ASTM C1285 (Product Consistency Test) and the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP). The FBSR mineral products (bed and fines) evaluated in this study were found to be two orders of magnitude more durable than the Hanford Low Activity Waste (LAW) glass requirement of 2 g/m{sup 2} release of Na{sup +}. The PCT responses for the FBSR samples tested were consistent with results from previous FBSR Hanford LAW product testing. Differences in the response can be explained by the minerals formed and their effects on PCT leachate chemistry.

  11. Staged fluidized-bed coal combustor for boiler retrofit

    SciTech Connect (OSTI)

    Rehmat, A. (Institute of Gas Technology, Chicago, IL (United States)); Dorfman, L.; Shibayama, G. (Fluor-Daniels, Inc., Chicago, IL (United States)); Waibel, R. (Zink (J.) and Co., Tulsa, OK (United States))

    1991-01-01T23:59:59.000Z

    The Advanced Staged Fluidized-Bed Coal Combustion System (ASC) is a novel clean coal technology for either coal-fired repowering of existing boilers or for incremental power generation using combined-cycle gas turbines. This new technology combines staged combustion for gaseous emission control, in-situ sulfur capture, and an ash agglomeration/vitrification process for the agglomeration/vitrification of ash and spent sorbent, thus rendering solid waste environmentally benign. The market for ASC is expected to be for clean coal-fired repowering of generating units up to 250 MW, especially for units where space is limited. The expected tightening of the environmental requirements on leachable solids residue by-products could considerably increase the marketability for ASC. ASC consists of modular low-pressure vessels in which coal is partially combusted and gasified using stacked fluidized-bed processes to produce low-to-medium-Btu, high-temperature gas. This relatively clean fuel gas is used to repower/refuel existing pulverized-coal, natural gas, or oil-fired boilers using bottom firing and reburning techniques. The benefits of ASC coal-fired repowering include the ability to repower boilers without obtaining additional space while meeting the more stringent environmental requirements of the future. Low NO{sub x}, SO{sub x}, and particulate levels are expected while a nonleachable solid residue with trace metal encapsulation is produced. ASC also minimizes boiler modification and life-extension expenditures. Repowered efficiencies can be restored to the initial operating plant efficiency, and the existing boiler capacity can be increased by 10%. Preliminary cost estimates indicate that ASC will have up to a $250/kW capital cost advantage over existing coal-fired repowering options. 4 figs., 4 tabs.

  12. Instrumentation and Evaluation of a Pilot Scale Fluidized Bed Biomass Gasification System

    E-Print Network [OSTI]

    Maglinao, Amado L

    2009-12-04T23:59:59.000Z

    A pilot scale fluidized bed biomass gasifier developed at Texas A&M University in College Station, Texas was instrumented with thermocouples, pressure transducers and motor controllers for monitoring gasification temperature and pressure, air flow...

  13. Low Temperature Chemical Vapor Deposition of Zirconium Nitride in a Fluidized Bed 

    E-Print Network [OSTI]

    Arrieta, Marie

    2012-10-19T23:59:59.000Z

    The objective of this research was to design, assemble, and demonstrate the initial performance of a fluidized bed chemical vapor deposition (FB-CVD) system capable of producing thin, uniform zirconium nitride (ZrN) coatings (1 to 10 micrometers...

  14. Empirical models of emissions and energy efficiencies of coal-fired fluidized bed power plants

    E-Print Network [OSTI]

    Gruhl, Jim

    Mass and energy balances of fluidized bed energy technologies are to a significant degree dependent upon the specific design being investigated. It is difficult to make any generally accurate comments. about these balances. ...

  15. Respirable aerosols from fluidized bed coal combustion. 3. Elemental composition of fly ash

    SciTech Connect (OSTI)

    Weissman, S.H.; Carpenter, R.L.; Newton, G.J.

    1983-02-01T23:59:59.000Z

    Fluidized bed coal combustion is a promising technology for using coal in an environmentally acceptable manner. Trace elemental constituents in fly ash from an experimental atmospheric pressure fluidized bed combustor (AFBC) are reported and compared with pulverized-coal combustor (PCC) ash data and those from other fluidized bed combustors. Bulk and size-separated particles were collected and analyzed by using spark source mass spectrometry.Fluidized bed combustor ash was similar to PCC ash in minor and trace element composition. However, AFBC ash showed less size dependence of elemental composition than has been reported for PCC ash. Bulk particle elemental composition varied with sampling position within the effluent stream. Penetration of elements through each cleanup stage and elemental enrichment were a function of the cleanup stage and the element under consideration.

  16. Instrumentation and Evaluation of a Pilot Scale Fluidized Bed Biomass Gasification System 

    E-Print Network [OSTI]

    Maglinao, Amado L

    2009-12-04T23:59:59.000Z

    A pilot scale fluidized bed biomass gasifier developed at Texas A&M University in College Station, Texas was instrumented with thermocouples, pressure transducers and motor controllers for monitoring gasification temperature and pressure, air flow...

  17. Fluidized-Bed Waste-Heat Recovery System development. Semiannual report, 1 August 1982-31 January 1983

    SciTech Connect (OSTI)

    Cole, W.E.; DeSaro, R.; Joshi, C.

    1983-02-01T23:59:59.000Z

    The Fluidized-Bed Waste-Heat Recovery (FBWHR) System is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, a recirculating medium is heated by the flue gas in a fluidized bed. The hot medium is then removed from the bed and placed in a second fluidized bed where it is fluidized by the combustion air. Through this process, the combustion air is heated. The cooled medium is then returned to the first bed. Initial development of this concept is for the aluminum smelting industry.

  18. A simplified model for the combustion of coal in a continuous flow fluidized bed

    E-Print Network [OSTI]

    Richardson, Thomas Wade

    1982-01-01T23:59:59.000Z

    with ease of handling. 2. The rapid mixing of solids to nearly isothermal conditions throughout the reactor, hence the operation can be controlled simply and reliably. 3. The circulation of solids between two fluidized beds makes it possible...A SIMPLIFIED MODEL FOR THE COMBUSTION OF COAL IN A CONTINUOUS FLOW FLUIDIZED BED A Thesis by THOMAS WADE RICHARDSON Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER...

  19. Characterization of Biofilm in 200W Fluidized Bed Reactors

    SciTech Connect (OSTI)

    Lee, Michelle H.; Saurey, Sabrina D.; Lee, Brady D.; Parker, Kent E.; Eisenhauer, Emalee ER; Cordova, Elsa A.; Golovich, Elizabeth C.

    2014-09-29T23:59:59.000Z

    Contaminated groundwater beneath the 200 West Area at the Hanford Site in Southeast Washington is currently being treated using a pump and treat system to remove organics, inorganics, radionuclides, and metals. A granular activated carbon-based fluidized bed reactor (FBR) has been added to remove nitrate, hexavalent chromium and carbon tetrachloride. Initial analytical results indicated the microorganisms effectively reduced many of the contaminants to less than cleanup levels. However shortly thereafter operational upsets of the FBR include carbon carry over, over production of microbial extracellular polymeric substance (biofilm) materials, and over production of hydrogen sulfide. As a result detailed investigations were undertaken to understand the functional diversity and activity of the microbial community present in the FBR over time. Molecular analyses including terminal restriction fragment length polymorphism analysis, quantitative polymerase chain reaction and fluorescent in situ hybridization analyses were performed on the microbial community extracted from the biofilm within the bed and from the inoculum, to determine functional dynamics of the FBR bed over time and following operational changes. Findings from these analyses indicated: 1) the microbial community within the bed was completely different than community used for inoculation, and was likely from the groundwater; 2) analyses early in the testing showed an FBR community dominated by a few Curvibacter and Flavobacterium species; 3) the final sample taken indicated that the microbial community in the FBR bed had become more diverse; and 4) qPCR analyses indicated that bacteria involved in nitrogen cycling, including denitrifiers and anaerobic ammonia oxidizing bacteria, were dominant in the bed. These results indicate that molecular tools can be powerful for determining functional diversity within FBR type reactors. Coupled with micronutrient, influent and effluent chemistry evaluations, a more complete understanding of the balance between system additions (nutrients, groundwater) and biology can be achieved, thus increasing long-term predictions of performance. These analyses uniquely provide information that can be used in optimizing the overall performance, efficiency, and stability of the system both in real time as well as over the long-term, as the system design is altered or improved and/or new streams are added.

  20. Method of burning sulfur-containing fuels in a fluidized bed boiler

    DOE Patents [OSTI]

    Jones, Brian C. (Windsor, CT)

    1982-01-01T23:59:59.000Z

    A method of burning a sulfur-containing fuel in a fluidized bed of sulfur oxide sorbent wherein the overall utilization of sulfur oxide sorbent is increased by comminuting the bed drain solids to a smaller average particle size, preferably on the order of 50 microns, and reinjecting the comminuted bed drain solids into the bed. In comminuting the bed drain solids, particles of spent sulfur sorbent contained therein are fractured thereby exposing unreacted sorbent surface. Upon reinjecting the comminuted bed drain solids into the bed, the newly-exposed unreacted sorbent surface is available for sulfur oxide sorption, thereby increasing overall sorbent utilization.

  1. Scaling of pressurized fluidized beds. First quarterly progress report, October 1, 1992--January 15, 1993

    SciTech Connect (OSTI)

    Glicksman, L.; Farrell, P.

    1993-09-01T23:59:59.000Z

    Some preliminary work has been done to develop potential cold scale model designs to simulate the bed hydrodynamics of the American Electric Power Tidd pressurized bubbling fluidized bed combustor. The first design is based on the full set of scaling parameters presented in Equation (1), the second design was developed using the simplified set of scaling parameters given in Equation (2). The first design is roughly a 1:1 representation of a section of the core of the Tidd bed combustor. The additional flexibility provided by the simplified set of scaling parameters is particularly useful for developing experimental models of pressurized fluidized bed combustors where the full set of scaling relationships does not provide any reduction in the size of the models. Both the full and the simplified set of scaling relationships have been verified for applications to circulating fluidized bed combustors operating at atmospheric pressure. Currently there is a interest in fluidized bed combustors which operate at elevated pressures ({approximately}12 atm) for combined-cycle applications. One of the primary goals of this stud r is to verify both the till set and the simplified set of scaling relationships for applications to pressurized bubbling fluidized bed combustors.

  2. Fluidized bed pyrolysis of bitumen-impregnated sandstone at sub-atmospheric conditions

    SciTech Connect (OSTI)

    Fletcher, J.V.; Deo, M.D.; Hanson, F.V.

    1993-03-01T23:59:59.000Z

    A 15.2 cm diameter fluidized bed reactor was designed, built, and operated to study the pyrolysis of oil sands at pressures slightly less than atmospheric. Fluidizing gas flow through the reactor was caused by reducing the pressure above the bed with a gas pump operating in the vacuum mode. Pyrolysis energy was supplied by a propane burner, and the hot propane combustion gases were used for fluidization. The fluidized bed pyrolysis at reduced pressure using combustion gases allowed the reactor to be operated at significantly lower temperatures than previously reported. At 450{degree}, over 80% of the bitumen fed was recovered as a liquid product, and the spent sand contained less than 1% coke. The liquid product recovery system, by design, yielded three liquid streams with distinctly different properties.

  3. Fluidized bed pyrolysis of bitumen-impregnated sandstone at sub-atmospheric conditions

    SciTech Connect (OSTI)

    Fletcher, J.V.; Deo, M.D.; Hanson, F.V.

    1993-01-01T23:59:59.000Z

    A 15.2 cm diameter fluidized bed reactor was designed, built, and operated to study the pyrolysis of oil sands at pressures slightly less than atmospheric. Fluidizing gas flow through the reactor was caused by reducing the pressure above the bed with a gas pump operating in the vacuum mode. Pyrolysis energy was supplied by a propane burner, and the hot propane combustion gases were used for fluidization. The fluidized bed pyrolysis at reduced pressure using combustion gases allowed the reactor to be operated at significantly lower temperatures than previously reported. At 450[degree], over 80% of the bitumen fed was recovered as a liquid product, and the spent sand contained less than 1% coke. The liquid product recovery system, by design, yielded three liquid streams with distinctly different properties.

  4. Synthetic aggregate compositions derived from spent bed materials from fluidized bed combustion and fly ash

    DOE Patents [OSTI]

    Boyle, Michael J. (Aston, PA)

    1994-01-01T23:59:59.000Z

    Cementitious compositions useful as lightweight aggregates are formed from a blend of spent bed material from fluidized bed combustion and fly ash. The proportions of the blend are chosen so that ensuing reactions eliminate undesirable constituents. The blend is then mixed with water and formed into a shaped article. The shaped article is preferably either a pellet or a "brick" shape that is later crushed. The shaped articles are cured at ambient temperature while saturated with water. It has been found that if used sufficiently, the resulting aggregate will exhibit minimal dimensional change over time. The aggregate can be certified by also forming standardized test shapes, e.g., cylinders while forming the shaped articles and measuring the properties of the test shapes using standardized techniques including X-ray diffraction.

  5. Investigation of Gas Solid Fluidized Bed Dynamics with Non-Spherical Particles

    SciTech Connect (OSTI)

    Choudhuri, Ahsan

    2013-06-30T23:59:59.000Z

    One of the largest challenges for 21st century is to fulfill global energy demand while also reducing detrimental impacts of energy generation and use on the environment. Gasification is a promising technology to meet the requirement of reduced emissions without compromising performance. Coal gasification is not an incinerating process; rather than burning coal completely a partial combustion takes place in the presence of steam and limited amounts of oxygen. In this controlled environment, a chemical reaction takes place to produce a mixture of clean synthetic gas. Gas-solid fluidized bed is one such type of gasification technology. During gasification, the mixing behavior of solid (coal) and gas and their flow patterns can be very complicated to understand. Many attempts have taken place in laboratory scale to understand bed hydrodynamics with spherical particles though in actual applications with coal, the particles are non-spherical. This issue drove the documented attempt presented here to investigate fluidized bed behavior using different ranges of non-spherical particles, as well as spherical. For this investigation, various parameters are controlled that included particle size, bed height, bed diameter and particle shape. Particles ranged from 355 µm to 1180 µm, bed diameter varied from 2 cm to 7 cm, two fluidized beds with diameters of 3.4 cm and 12.4 cm, for the spherical and non-spherical shaped particles that were taken into consideration. Pressure drop was measured with increasing superficial gas velocity. The velocity required in order to start to fluidize the particle is called the minimum fluidization velocity, which is one of the most important parameters to design and optimize within a gas-solid fluidized bed. This minimum fluidization velocity was monitored during investigation while observing variables factors and their effect on this velocity. From our investigation, it has been found that minimum fluidization velocity is independent of bed height for both spherical and non-spherical particles. Further, it decrease with decreasing particle size and decreases with decreasing bed diameter. Shadow sizing, a non-intrusive imaging and diagnostic technology, was also used to visualize flow fields inside fluidized beds for both spherical and non- spherical particles and to detect the particle sizes.

  6. Alexandria fluidized-bed process-development plant: bubble characteristics

    SciTech Connect (OSTI)

    Not Available

    1982-12-01T23:59:59.000Z

    Recent studies at DOE's Alexandria Atmospheric Fluidized-Bed Combustion (AFBC) Process Development Unit (PDU) have involved experimental verifications of predictions from the Massachusetts Institute of Technology's Coal AFBC Systems Model. Although Model predictions were quite accurate in many instances, there appeared to be several significant discrepancies between predicted values and association experimental data from the 3' x 3' (nominal) combustor at Alexandria. Experimental work at Alexandria related to the MIT Model was initiated in 1980. Readers should consult previous reports for an evaluation of the Model and a comparison between the Model predictions and Alexandria experimental data. As a result of these studies, a number of information gaps within the Model's database were identified, primarily related to the fluid dynamics submodel, which might account for some of the discrepancies noted. In an attempt to support further development and calibration of the MIT Model, facilities at the Alexandria PDU were committed to providing experimental data to alleviate some of the information gaps. The specific information gap focused upon during the period of January to August 1982 involved the bubble growth submodel within the fluid dynamics portion. The specific objective involved a series of tests designed to measure bubble characteristics within both cold and hot beds. Measurements were made under a variety of different conditions. The insights gained from the bubble characteristic related testing have been passed on to DOE and MIT, and used as the basis for implementing additional model refinements. Additional model verification activity is being carried out by DOE/METC. It is recognized that additional work will be necessary for the FBC Model to achieve the goal of being a useful aid for boiler designers.

  7. DURABILITY TESTING OF FLUIDIZED BED STEAM REFORMER (FBSR) WASTE FORMS

    SciTech Connect (OSTI)

    Jantzen, C

    2006-01-06T23:59:59.000Z

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium aqueous radioactive wastes. The addition of clay and a catalyst as co-reactants converts high sodium aqueous low activity wastes (LAW) such as those existing at the Hanford and Idaho DOE sites to a granular ''mineralized'' waste form that may be made into a monolith form if necessary. Simulant Hanford and Idaho high sodium wastes were processed in a pilot scale FBSR at Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low-activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium-bearing waste (SBW). The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The durability of the FBSR waste form products was tested in order to compare the measured durability to previous FBSR waste form testing on Hanford Envelope C waste forms that were made by THOR Treatment Technologies (TTT) and to compare the FBSR durability to vitreous LAW waste forms, specifically the Hanford low activity waste (LAW) glass known as the Low-activity Reference Material (LRM). The durability of the FBSR waste form is comparable to that of the LRM glass for the test responses studied.

  8. Treating exhaust gas from a pressurized fluidized bed reaction system

    DOE Patents [OSTI]

    Isaksson, J.; Koskinen, J.

    1995-08-22T23:59:59.000Z

    Hot gases from a pressurized fluidized bed reactor system are purified. Under super atmospheric pressure conditions hot exhaust gases are passed through a particle separator, forming a filtrate cake on the surface of the separator, and a reducing agent--such as an NO{sub x} reducing agent (like ammonia)--is introduced into the exhaust gases just prior to or just after particle separation. The retention time of the introduced reducing agent is enhanced by providing a low gas velocity (e.g. about 1--20 cm/s) during passage of the gas through the filtrate cake while at super atmospheric pressure. Separation takes place within a distinct pressure vessel, the interior of which is at a pressure of about 2--100 bar, and introduction of reducing agent can take place at multiple locations (one associated with each filter element in the pressure vessel), or at one or more locations just prior to passage of clean gas out of the pressure vessel (typically passed to a turbine). 8 figs.

  9. Characterization of fuels for atmospheric fluidized bed combustion

    SciTech Connect (OSTI)

    Daw, C.S. (Oak Ridge National Lab., TN (USA)); Rowley, D.R.; Perna, M.A. (Babcock and Wilcox Co., Alliance, OH (USA). Research Center); Stallings, J.W. (Electric Power Research Inst., Palo Alto, CA (USA)); Divilio, R.J. (Combustion Systems, Inc., Silver Spring, MD (USA))

    1990-01-01T23:59:59.000Z

    The Electric Power Research Institute (EPRI) has sponsored a fuels characterization program for the past several years with the intention of assisting utilities and boiler manufacturers in evaluating fuel quality impact on atmospheric fluidized bed combustion (AFBC) performance. The goal has been to provide an improved framework for making fuel switching decisions and consolidating operating experience. Results from this program include a set of bench-scale testing procedures, a fuel characterization data base, and a performance simulation model that links fuel characteristics to combustion performance. This paper reviews the major results of the fuels characterization program. The testing procedures, data base, and performance simulation models are briefly described and their application illustrated with examples. Performance predictions for the B W 1-ft{sup 2} bench-scale AFBC and the Tennessee Valley Authority (TVA) 20 MW(e) AFBC Pilot Plant are compared with actual test data. The relationship of coal rank to combustion is discussed. 11 refs., 12 figs., 5 tabs.

  10. Fluidized-bed catalytic coal-gasification process. [US patent; pretreatment to minimize agglomeration

    DOE Patents [OSTI]

    Euker, C.A. Jr.; Wesselhoft, R.D.; Dunkleman, J.J.; Aquino, D.C.; Gouker, T.R.

    1981-09-14T23:59:59.000Z

    Coal or similar carbonaceous solids impregnated with gasification catalyst constituents are oxidized by contact with a gas containing between 2 vol % and 21 vol % oxygen at a temperature between 50 and 250/sup 0/C in an oxidation zone and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

  11. Model-free adaptive control of supercritical circulating fluidized-bed boilers

    DOE Patents [OSTI]

    Cheng, George Shu-Xing; Mulkey, Steven L

    2014-12-16T23:59:59.000Z

    A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  12. Erosion of heat exchanger tubes in fluidized beds. Annual report, 1990

    SciTech Connect (OSTI)

    Johnson, E.K.; Flemmer, R.L.C.

    1991-01-01T23:59:59.000Z

    This final report describes the activities of the 3-year project entitled ``Erosion of Heat Exchanger Tubes In Fluidized Beds.`` which was completed at the end of 1990. Project accomplishments include the collection of a substantial body of wear data In a 24in. {times} 24in. fluidized bed, comparative wear results In a 6in. {times} 6in. fluidized bed, the development of a dragometer and the collection of a comprehensive set of drag force data in the 24in. {times} 24in. bed, Fast Fourier Transform (FFT) analysis of bubble probe data to establish dominant bubble frequencies in the 24in. {times} 24in. bed, the use of a heat flux gauge for measurement of heat transfer coefficients in the 24in. {times} 24in. bed and the modeling of the tube wear in the 24in. {times} 24in. bed. Analysis of the wear data from the 24in. square bed indicates that tube wear increases with increase in superficial velocity, and with increase in tube height. The latter effect is a result of the tubes higher up in the bed seeing greater movement of dense phase than tubes lower down In the bed. In addition, tube wear was found to decrease with increase in particle size, for constant superficial velocity. Three models of tube wear were formulated and provided acceptable prediction of wear when compared with the experimental data.

  13. High temperature degradation by erosion-corrosion in bubbling fluidized bed combustors

    SciTech Connect (OSTI)

    Hou, Peggy Y.; MacAdam, S.; Niu, Y.; Stringer, J.

    2003-04-22T23:59:59.000Z

    Heat-exchanger tubes in fluidized bed combustors (FBCs) often suffer material loss due to combined corrosion and erosion. Most severe damage is believed to be caused by the impact of dense packets of bed material on the lower parts of the tubes. In order to understand this phenomenon, a unique laboratory test rig at Berkeley was designed to simulate the particle hammering interactions between in-bed particles and tubes in bubbling fluidized bed combustors. In this design, a rod shaped specimen is actuated a short distance within a partially fluidized bed. The downward specimen motion is controlled to produce similar frequencies, velocities and impact forces as those experienced by the impacting particle aggregates in practical systems. Room temperature studies have shown that the degradation mechanism is a three-body abrasion process. This paper describes the characteristics of this test rig, reviews results at elevated temperatures and compares them to field experience. At higher temperatures, deposits of the bed material on tube surfaces can act as a protective layer. The deposition depended strongly on the type of bed material, the degree of tube surface oxidation and the tube and bed temperatures. With HCl present in the bed, wastage was increased due to enhanced oxidation and reduced oxide scale adherence.

  14. Study of the combustion of low rank coal in a fluidized bed

    SciTech Connect (OSTI)

    Glaser, R.; Grimes, R.W.

    1991-09-01T23:59:59.000Z

    This report describes the results of preliminary combustion tests performed with Eagle Butte Coal in a bubbling, fluidized-bed combustion system. The system was designed for the combustion of low-rank coals and industrial wastes. The work, as proposed, was aimed at not only the evaluation of co-firing of waste material with coal, but also at developing modifications to first generation bubbling bed designs to improve the combustion performance during co-firing. However, the funding for the work was redirected and the combustion tests were suspended soon after the shakedown testing was completed. Consequently, this report describes the results of the tests completed prior to the redirection of the effort and funding. A total of 33 combustion tests were performed in a 6-inch diameter fluidized-bed combustor. Oxygen concentrations were measured at two points in the system; the vent line and at the interface between the fluid bed and the freeboard. These measurements provided a measure of the amount of conversion of coal within the fluidized bed compared to the conversion in the freeboard region. Typically, 75 to 80% of the conversion occurred within the bed. Several experiments were performed in which special bed internals were placed in the bed. The internals were designed to reduce bubble size in the bed thus increasing the surface area of the bubbles and hence promoting oxygen diffusion into the emulsion phase.

  15. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 8, NO. 2, MARCH 2000 247 A Model of a Bubbling Fluidized Bed Combustor

    E-Print Network [OSTI]

    Campi, Marco

    of NO and an improvement in the desulphurization process (the limestone present in the fluidized bed reacts with SO2

  16. Pressurized fluidized-bed hydroretorting of Eastern oil shales

    SciTech Connect (OSTI)

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S. (Institute of Gas Technology, Chicago, IL (United States)); Schultz, C.W. (Alabama Univ., University, AL (United States)); Parekh, B.K. (Kentucky Univ., Lexington, KY (United States)); Misra, M. (Nevada Univ., Reno, NV (United States)); Bonner, W.P. (Tennessee Technological Univ., Cookeville, TN (United States))

    1992-11-01T23:59:59.000Z

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in October 1987 by the US Department of Energy is to perform the research necessary to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The results of the original 3-year program, which was concluded in May 1991, have been summarized in a four-volume final report published by IGT. DOE subsequently approved a 1-year extension to the program to further develop the PFH process specifically for application to beneficiated shale as feedstock. Studies have shown that beneficiated shale is the preferred feedstock for pressurized hydroretorting. The program extension is divided into the following active tasks. Task 3. testing of process improvement concepts; Task 4. beneficiation research; Task 5. operation of PFH on beneficiated shale; Task 6. environmental data and mitigation analyses; Task 7. sample procurement, preparation, and characterization; and Task 8. project management and reporting. In order to accomplish all the program objectives, the Institute of Gas Technology (IGT), the prime contractor, worked with four other institutions: the University of Alabama/Mineral Resources Institute (MRI), the University of Kentucky Center for Applied Energy Research (UK-CAER), the University of Nevada (UN) at Reno, and Tennessee Technological University (TTU). This report presents the work performed during the program extension from June 1, 1991 through May 31, 1992.

  17. A Two-Stage Microbial Fuel Cell and Anaerobic Fluidized Bed Membrane Bioreactor (MFC-AFMBR) System for Effective Domestic

    E-Print Network [OSTI]

    A Two-Stage Microbial Fuel Cell and Anaerobic Fluidized Bed Membrane Bioreactor (MFC-AFMBR) System treatment process, consisting of microbial fuel cells and an anaerobic fluidized bed membrane bioreactor that is currently required for typical activated sludge or aerobic membrane bioreactor processes. In addition, MFCs

  18. Agglomeration of sorbent and ash carry-over for use in atmospheric fluidized-bed combustors

    SciTech Connect (OSTI)

    Rohatgi, N.D.T.; Kealrns, D.L.; Newby, R.A.; Ulerich, N.H.

    1983-04-01T23:59:59.000Z

    Agglomeration of elutriated sorbent, ash, and char from a fluidized-bed boiler, with spent bed overflow material and water, has been identified as a potentially attractive technique for reducing sorbent consumption in atmospheric fluidized-bed combustors (AFBC). The agglomerated products are returned to the combustor to improv the calcium utilization of the sorbent and to complete the combustion of elutriated carbon material. In this experimental program, agglomerates were formed from Babcock and Wilcox (BandW) raw materials (Carbon limestone, spent bed overflow, cyclone and baghouse catch) collected during test runs on the 1.8 m X 1.8 m fluidized-bed combustor. Agglomerate characteristics, such as handling strength, sulfur capture activity, carbon utilization, and resistance to attrition, were determined as functions of agglomeration processing variables. These variables include feed composition, feed particle size, amount of water addition, curing time, and curing atmosphere or drying conditions. Calcium-to-sulfur (Ca/S) feed ratio requirements for a commercial AFBC that uses the agglomeration process were projected on the basis of the Westinghouse model for fluidized-bed desulfurization.

  19. Rivesville multicell fluidized bed boiler. Annual technical progress report. July 1978-June 1979

    SciTech Connect (OSTI)

    Not Available

    1980-08-01T23:59:59.000Z

    Design, construction and test program of a 300,000 lb/hr steam generating capacity multicell fluidized bed boiler (MFB), as a pollution free method of burning high-sulfur or highly corrosive coals, is being carried out. The concept involves burning fuels such as coal, in a fluidized bed of limestone particles that react with the sulfur compounds formed during combustion to reduce air pollution. Nitrogen oxide emissions are also reduced at the lower combustion temperatures. The CaSO/sub 4/ produced in the furnace is discharged with the ash or regenerated to CaO for reuse in the fluidized bed. Information is presented on continued operation of the Rivesville MFB steam generating plant in a commercial mode and for determining performance and emission characteristics; studies and tests on flyash characterization and reinjection, fuel feed eductors and needles, air distributor, corrosion-erosion and sulfur capture; engineering studies to improve MFB performance and reliability.

  20. Metal wastage design guidelines for bubbling fluidized-bed combustors. Final report

    SciTech Connect (OSTI)

    Lyczkowski, R.W.; Podolski, W.F.; Bouillard, J.X.; Folga, S.M. [Argonne National Lab., IL (United States)

    1992-11-01T23:59:59.000Z

    These metal wastage design guidelines identify relationships between metal wastage and (1) design parameters (such as tube size, tube spacing and pitch, tube bundle and fluidized-bed height to distributor, and heat exchanger tube material properties) and (2) operating parameters (such as fluidizing velocity, particle size, particle hardness, and angularity). The guidelines are of both a quantitative and qualitative nature. Simplified mechanistic models are described, which account for the essential hydrodynamics and metal wastage processes occurring in bubbling fluidized beds. The empirical correlational approach complements the use of these models in the development of these design guidelines. Data used for model and guideline validation are summarized and referenced. Sample calculations and recommended design procedures are included. The influences of dependent variables on metal wastage, such as solids velocity, bubble size, and in-bed pressure fluctuations, are discussed.

  1. Sampling and instrumentation for fluidized-bed combustion. Annual report, October 1978-September 1979

    SciTech Connect (OSTI)

    Johnson, I.; Podolski, W.F.; Myles, K.M.

    1980-09-01T23:59:59.000Z

    In the first section of this report, background information is presented on instrumentation for fluidized-bed combustion, i.e., for process control, scientific investigation, and safety in planned and operating fluidized-bed combustion systems. The objective of this study is to update and extend the fluidized-bed portion of a preceding report, A Study of the State-of-the-Art of Instrumentation for Process Control and Safety in Large-Scale Coal Gasification, Liquefaction, and Fluidized-Bed Combustion Systems, ANL-76-4. The second section of this report describes two prototype mass flow rate instruments installed on the solids feed lines of an existing ANL fluidized-bed combustor. The Fossil Instrumentation Group at ANL designed, fabricated, and installed these instruments in cooperation with Chemical Engineering Division personnel - one on the coal feedline and one on the coal/limestone feedline. Each instrument consisted of a capacitive sensor spoolpiece and an associated preamplifier and signal conditioning. One channel of each instrument provides three outputs. One delivers a density signal while two others deliver two signals for measuring velocity by cross-correlation. Operation was verified by using laboratory signal analyzers to process the signals. The third section of this report summarizes the results of a Spectron Development Laboratory subcontract from ANL to investigate analytical techniques suitable for monitoring the concentration of gaseous alkali compounds in the hot gas stream from a fluidized-bed combustor. It was concluded from the study that the concept of using the Na/sub 2/SO/sub 4/ dew point to detect the onset of hot corrosion conditions is the most attractive of the techniques evaluated.

  2. Refractory experience in circulating fluidized bed combustors, Task 7. Final report

    SciTech Connect (OSTI)

    Vincent, R.Q.

    1989-11-01T23:59:59.000Z

    This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE`s Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

  3. ADVANCED SORBENT DEVELOPMENT PROGRAM DEVELOPMENT OF SORBENTS FOR MOVING-BED AND FLUIDIZED-BED APPLICATIONS

    SciTech Connect (OSTI)

    R.E Ayala; V.S. Venkataramani; Javad Abbasian; Rachid B. Slimane; Brett E. Williams; Minoo K. Zarnegar; James R. Wangerow; Andy H. Hill

    2000-03-31T23:59:59.000Z

    The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 C (900-1000 F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.'s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 C (650 F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 C (650-1000 F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment and a market plan for large-scale fabrication of sorbents were developed. As an optional task, long-term bench-scale tests of the best moving-bed sorbents were conducted. Starting from thermodynamic calculations, several metal oxides were identified for potential use as hot gas cleanup sorbents using constructed phase stability diagrams and laboratory screening of various mixed-metal oxide formulations. Modified zinc titanates and other proprietary metal oxide formulations were evaluated at the bench scale and many of them found to be acceptable for operation in the target desulfurization temperature range of 370 C (700 F) to 538 C (1000 F) and regeneration temperatures up to 760 C (1400 F). Further work is still needed to reduce the batch-to-batch repeatability in the fabrication of modified zinc titanates for larger scale applications. The information presented in this Volume 1 report contains the results of moving-bed sorbent development at General Electric's Corporate Research and Development (GE-CRD). A separate Volume 2 report contains the results of the subcontract on fluidized-bed sorbent development at the Institute of Gas Technology (IGT).

  4. FLUIDIZED BED STEAM REFORMER (FBSR) PRODUCT: MONOLITH FORMATION AND CHARACTERIZATION

    SciTech Connect (OSTI)

    Jantzen, C

    2006-09-13T23:59:59.000Z

    The most important requirement for Hanford's low activity waste (LAW) form for shallow land disposal is the chemical durability of the product. A secondary, but still essential specification, is the compressive strength of the material with regards to the strength of the material under shallow land disposal conditions, e.g. the weight of soil overburden and potential intrusion by future generations, because the term ''near-surface disposal'' indicates disposal in the uppermost portion, or approximately the top 30 meters, of the earth's surface. The THOR{reg_sign} Treatment Technologies (TTT) mineral waste form for LAW is granular in nature because it is formed by Fluidized Bed Steam Reforming (FBSR). As a granular product it has been shown to be as durable as Hanford's LAW glass during testing with ASTM C-1285-02 known as the Product Consistency Test (PCT) and with the Single Pass Flow Through Test (SPFT). Hanford Envelope A and Envelope C simulants both performed well during PCT and SPFT testing and during subsequent performance assessment modeling. This is partially due to the high aluminosilicate content of the mineral product which provides a natural aluminosilicate buffering mechanism that inhibits leaching and is known to occur in naturally occurring aluminosilicate mineral analogs. In order for the TTT Na-Al-Si (NAS) granular mineral product to meet the compressive strength requirements (ASTM C39) for a Hanford waste form, the granular product needs to be made into a monolith or disposed of in High Integrity Containers (HIC's). Additionally, the Hanford intruder scenario for disposal in the Immobilized Low Activity Waste (ILAW) trench is mitigated as there is reduced intruder exposure when a waste form is in a monolithic form. During the preliminary testing of a monolith binder for TTT's FBSR mineral product, four parameters were monitored: (1) waste loading (not optimized for each waste form tested); (2) density; (3) compressive strength; and (4) durability must not be compromised--binding agent should not react with the NAS product and binding agent should not create an unfavorable pH environment that may cause accelerated leaching. It is the goal of the present study to survey cementitious waste forms based on Ordinary Portland Cement (OPC), Ceramicrete, and hydroceramic binders by correlating waste loading, density and compressive strength and then determine if these binders affect the product performance in terms of the PCT response. This will be done by making a one-to-one comparison of the PCT response measured on granular NAS mineral product (mixed bed and fines products) with the PCT response of the monolithed NAS product in the different binders. Future studies may include, refining the above binders, and examining other binders. It is likely that binders formed from kaolin would be most compatible with the chemistry of the THOR{reg_sign} mineral waste form which is made by steam reforming of kaolin and sodium rich wastes. The economics of production on a large scale have yet to be investigated for any of the binders tested.

  5. Physical-chemical NO/sub x/ mechanisms in fluidized bed combustion

    SciTech Connect (OSTI)

    Bywater, R. J.

    1980-11-03T23:59:59.000Z

    Fluidized bed combustors operate in the large-particle (> 1 mm) high-velocity (> 1 m/s) fluidization regime which differs from most previous applications. These characteristics foster a distinctive volatiles evolution structure in the vicinity of the coal injectors of bottom-fed atmospheric fluidized beds (AFBC). The evolution of coal volatiles associated with bottom-fed AFBC was defined as the focal point. The major effort of the work was concerned with a group combustion model of dense gas/solids mixtures of devolatilizing coal being injected into the bottom of an AFBC. Critical development needs were defined in the area of solids circulation and injector design which impact both basic FBC design and NO/sub x/ emissions. Results of model calculations identified important new physical-chemical mechanisms influencing NO/sub x/ emissions.

  6. Alumina atomic layer deposition nanocoatings on primary diamond particles using a fluidized bed reactor

    E-Print Network [OSTI]

    George, Steven M.

    /high-temperature (HP/HT) synthesis methods [4­7] led to the discovery of polycrystalline diamond grit and the manufacture of polycrystalline diamond compact (PDC) materials [8]. PDC cutters are well known and widely usedAlumina atomic layer deposition nanocoatings on primary diamond particles using a fluidized bed

  7. Operating Experience of a Coal Fired Fluidized Bed at Georgetown University

    E-Print Network [OSTI]

    Lutes, I. G.; Gamble, R. L.

    1980-01-01T23:59:59.000Z

    Operation of the 100,000 lb/hr capacity, coal fired fluidized bed steam generator at Georgetown University began in July 1979. This project, which was co-funded by Georgetown University and the U. S. Department of Energy, involved expansion...

  8. Operating Experience with a Large Fluidized-Bed Gasifier of Woodwaste

    E-Print Network [OSTI]

    Guard, R. F. W.

    1982-01-01T23:59:59.000Z

    of natural gas for his factory. He ordered an Omnifuel fluidized-bed gasifier, which has been in operation since April, 1981, and which is currently believed to be the largest commercial biomass gasifier in operation with a rating of 80 million BTU...

  9. FLUIDIZED BED STEAM REFORMING FOR TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    SciTech Connect (OSTI)

    HEWITT WM

    2011-04-08T23:59:59.000Z

    This report is one of four reports written to provide background information regarding immobilization technologies remaining under consideration for supplemental immobilization of Hanford's low-activity waste. This paper provides the reader a general understanding of fluidized bed steam reforming and its possible application to treat and immobilize Hanford low-activity waste.

  10. Materials performance in coal-fired fluidized-bed combustion environments

    SciTech Connect (OSTI)

    Natesan, K.

    1993-07-01T23:59:59.000Z

    Development of cogeneration systems that involve combustion of coal in a fluidized bed for the generation of electricity and process heat has been in progress for a number of years. This paper addresses some of the key components in these systems, materials requirements/performance, and areas where additional effort is needed to improve the viability of these concepts for electric power generation.

  11. Operating Experience of a Coal Fired Fluidized Bed at Georgetown University 

    E-Print Network [OSTI]

    Lutes, I. G.; Gamble, R. L.

    1980-01-01T23:59:59.000Z

    of the heating and cooling plant with this new coal fired facility. Previously existing units at the University heating and cooling plant normally fire natural gas. The fluidized bed steam generating facility at Georgetown University is the only new coal fired...

  12. Performance and gas cleanup criterion for a cotton gin waste fluidized-bed gasifier

    E-Print Network [OSTI]

    Craig, Joe David

    1980-01-01T23:59:59.000Z

    feedstock, preferably used with very little preprocessing; however, the design should be able to handle other biomass feedstocks with little or no modification. The design heating value of gin waste is 16. 3 MJ/Kg. 2) It should be a fluidized bed type...

  13. Sorbent utilization prediction methodology: sulfur control in fluidized-bed combustors

    SciTech Connect (OSTI)

    Fee, D.C.; Wilson, W.I.; Shearer, J.A.; Smith, G.W.; Lenc, J.F.; Fan, L.S.; Myles, K.M.; Johnson, I.

    1980-09-01T23:59:59.000Z

    The United States Government has embarked on an ambitious program to develop and commercialize technologies to efficiently extract energy from coal in an environmentally acceptable manner. One of the more promising new technologies for steam and power generation is the fluidized-bed combustion of coal. In this process, coal is burned in a fluidized bed composed mainly of calcined limestone sorbent. The calcium oxide reacts chemically to capture the sulfur dioxide formed during the combustion and to maintain the stack gas sulfur emissions at acceptable levels. The spent sulfur sorbent, containing calcium sulfate, is a dry solid that can be disposed of along with coal ash or potentially used. Other major advantages of fluidized-bed combustion are the reduction in nitrogen oxide emissions because of the relatively low combustion temperatures, the capability of burning wide varieties of fuel, the high carbon combustion efficiencies, and the high heat-transfer coefficients. A key to the widespread commercialization of fluidized-bed technology is the ability to accurately predict the amount of sulfur that will be captured by a given sorbent. This handbook meets this need by providing a simple, yet reliable, user-oriented methodology (the ANL method) that allows performance of a sorbent to be predicted. The methodology is based on only three essential sorbent parameters, each of which can be readily obtained from standardized laboratory tests. These standard tests and the subsequent method of data reduction are described in detail.

  14. Mixing and combustion in a coal-limestone fluidized bed combustor

    SciTech Connect (OSTI)

    Kirkpatrick, M.O.

    1987-01-01T23:59:59.000Z

    Task 1 was to investigate experimentally the characteristics of solids mixing between coal and limestone in a cold fluidized bed; Task 2 was to derive a model to describe the behavior of solids mixing observed in Task 1; and Task 3 was to develop a combustor model, which couples the mixing model derived in Task 2 with a combustion model, to simulate the mixing and combustion behavior in a hot coal-limestone fluidized bed combustor. In Task 1, the experiments were carried out in a 0.203 m diameter cold fluidized bed with coal and limestone of different sizes the the fluidized particles. Experimental parameters examined included operation time, air flow rate, bed height, initial bed setup, relative particle size and relative amount of the two particles. In the second task, the mixing model considered the downward or upward movement of a particle in the bed as being governed by certain probability laws; these laws were, in turn, affected by the bubbles. The distance of the upward movement was governed by the residence time of a particle staying in a bubble wake; the distance of downward movement, however, was determined from a material balance consideration. In all, the model took into account the effects of time, flow rate, initial bed setup and relative particle size on solids mixing. Dynamic coal concentration profiles under different operating conditions were generated by the simulation and were found to represent the experimental data reasonably well. In addition to the operation parameters included in Tasks 1 and 2, the model developed in Task 3 also considered the inlet size distribution of coal, size reduction of coal due to combustion and coal elutriation. This model was a capable of predicting the dynamic mixing and combustion behavior in a combustor under specific operation conditions.

  15. Atmospheric fluidized bed combustion of municipal solid waste: test program results

    SciTech Connect (OSTI)

    Preuit, L C; Wilson, K B

    1980-05-01T23:59:59.000Z

    Air classified municipal solid waste (MSW) was fired in an atmospheric fluidized bed combustor at low excess air to simulate boiler conditions. The 7 ft/sup 2/ combustor at Combustion Power Company's energy laboratory in Menlo Park, CA, incorporates water tubes for heat extraction and recycles elutriated particles to the bed. System operation was stable while firing processed MSW for the duration of a 300-h test. Low excess air, low exhaust gas emissions, and constant bed temperature demonstrated feasibility of steam generation from fluidized bed combustion of MSW. During the 300-h test, combustion efficiency averaged 99%. Excess air was typically 44% while an average bed temperature of 1400/sup 0/F and an average superficial gas velocity of 4.6 fps were maintained. Typical exhaust emission levels were 30 ppM SO/sub 2/, 160 ppM NO/sub x/, 200 ppM CO, and 25 ppM hydrocarbons. No agglomeration of bed material or detrimental change in fluidization properties was experienced. A conceptual design study of a full scale plant to be located at Stanford University was based on process conditions from the 300-h test. The plant would produce 250,000 lb/hr steam at the maximum firing rate of 1000 tons per day (TPD) processed MSW. The average 800 TPD firing rate would utilize approximately 1200 TPD raw MSW from surrounding communities. The Stanford Solid Waste energy Program was aimed at development of a MSW-fired fluidized bed boiler and cogeneration plant to supply most of the energy needs of Stanford University.

  16. Capture of toxic metals by vaious sorbents during fluidized bed coal combustion

    SciTech Connect (OSTI)

    Ho, T.C.; Ghebremeskel, A.; Hopper, J.R.

    1995-12-31T23:59:59.000Z

    This study investigated the potential of employing suitable sorbents to capture trace metallic substances during fluidized bed coal combustion. The objectives of the study were to demonstrate the capture process, identify effective sorbents, and characterize the capture efficiency. Experiments were carried out in a 25.4 mm (1 ``) quartz fluidized bed coal combustor enclosed in an electric furnace. In an experiment, a coal sample from the DOE Coal Sample Bank or the Illinois Basin Coal Sample Bank was burned in the bed with a sorbent under various combustion conditions and the amount of metal capture by the sorbent was determined. The metals involved in the study were arsenic, cadmium, lead, mercury and selenium, and the sorbents tested included bauxite, zeolite and lime. The combustion conditions examined included bed temperature, particle size, fluidization velocity (percent excess air), and sorbent bed height. In addition to the experimental investigations, potential metal-sorbent reactions were also identified through performing chemical equilibrium analyses based on the minimization of system free energy.

  17. Fluidized-bed waste-heat recovery system development: Final report

    SciTech Connect (OSTI)

    Patch, K.D.; Cole, W.E.

    1988-06-01T23:59:59.000Z

    A major energy loss in industry is the heat content of the flue gases from industrial process heaters. One effective way to utilize the energy, which is applicable to all processes, is to preheat the combustion air for the process heater. Although recuperators are available to preheat this air when the flue gases are clean, recuperators to recover the heat from dirty and corrosive flue gases do not exist. The Fluidized-Bed Waste-Heat Recovery (FBWHR) system is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, recirculating alumina particles are heated by the flue gas in a raining bed. The hot particles are then removed from the bed and placed in a fluidized bed where they are fluidized by the combustion air. Through this process, the combustion air is preheated. The cooled particles are then returned to the raining bed. Initial development of this concept is for the aluminum smelting industry. In this final report, the design, development, fabrication, and installation of a full-scale FBWHR system is detailed.

  18. Development of the fluidized bed thermal treatment process for treating mixed waste

    SciTech Connect (OSTI)

    Semones, G.B.; Williams, P.M.; Stiefvater, S.P.; Mitchell, D.L.; Roecker, B.D.

    1993-05-01T23:59:59.000Z

    A fluidized bed system is being developed at Rocky Flats for the treatment of mixed waste (a mixture of radioactive and chemically hazardous waste). The current program builds on experience gained in the 1970`s and 1980`s in tests with bench-scale, pilot-scale, and demonstration-scale fluidized bed systems. The system operates at low temperatures ({approx} 525--600{degree}C) which eliminates many of the disadvantages associated with high temperature thermal treatment processes. The process has shown the ability to destroy polychlorinated biphenyls (PCB`s) with 99.9999% (``six-nines``) destruction efficiency in tests monitored by the Environmental Protection Agency (EPA). The bed makes use of in situ neutralization of acidic off-gases by incorporating sodium carbonate (Na{sub 2}CO{sub 3}) in the bed media. This eliminates using wet scrubbers to treat the off-gas; these produce a high volume of secondary waste. Once in operation, it is expected that the fluidized bed process will yield up to a 40:1 reduction in the volume of the waste.

  19. Testing of Western Kentucky No. 9 coal in an atmospheric fluidized-bed combustor. Technical report

    SciTech Connect (OSTI)

    Pettit, R.

    1984-05-01T23:59:59.000Z

    This report deals with the characterization of a western Kentucky No. 9 coal as an atmospheric fluidized-bed combustor (AFBC) feedstock. It is the first of a series of four reports, each dealing with a different Kentucky coal. All of the coal tests were conducted using an Oregon dolomite from the central Kentucky region. The tests were conducted in a 2 ft. 8 in. x 2 ft. 5 in. atmospheric fluidized bed combustor. The Western Kentucky No. 9 coal tested had a heating value of 12200 Btu/lb. The Oregon dolomite used contained 61% CaCO3 and 31% MgCO3. Detailed feedstock analyses are presented in Appendix E. Seven steady-state test runs were conducted over a two-week period. The runs were at one of 100%, 85%, or 70% loads. The air flowrate, bed temperature, and stack sulfur dioxide emissions rate were kept approximately constant during these tests to facilitate comparison.

  20. Fluidized bed heat exchanger with water cooled air distributor and dust hopper

    DOE Patents [OSTI]

    Jukkola, Walfred W. (Westport, CT); Leon, Albert M. (Mamaroneck, NY); Van Dyk, Jr., Garritt C. (Bethel, CT); McCoy, Daniel E. (Williamsport, PA); Fisher, Barry L. (Montgomery, PA); Saiers, Timothy L. (Williamsport, PA); Karstetter, Marlin E. (Loganton, PA)

    1981-11-24T23:59:59.000Z

    A fluidized bed heat exchanger is provided in which air is passed through a bed of particulate material containing fuel. A steam-water natural circulation system is provided for heat exchange and the housing of the heat exchanger has a water-wall type construction. Vertical in-bed heat exchange tubes are provided and the air distributor is water-cooled. A water-cooled dust hopper is provided in the housing to collect particulates from the combustion gases and separate the combustion zone from a volume within said housing in which convection heat exchange tubes are provided to extract heat from the exiting combustion gases.

  1. Attrition and elutriation phenomena in industrial atmospheric fluidized bed combustors

    SciTech Connect (OSTI)

    Wells, J.W.; Krishnan, R.P.

    1980-01-01T23:59:59.000Z

    Attrition and elutriation in large-scale AFBC systems depend on the design of the feed system, bed hydrodynamics and freeboard cooling. At present, no generalized correlation exists to predict these effects. It is suggested that routine solid samples for size analysis be taken before the solids enter the bed. In this way, correlations can be developed to predict the attrition in the feed system and in the bed separately. Secondly, data on the solids loading in the freeboard should be taken and related to bubble size, bubble velocity, bubble frequency and bed expansion. Such information can be obtained in a cold bed for lack of measuring techniques in hot beds. Accurate rate expressions for attrition and elutriation specific to coal ash, limestone, and char can then be developed to predict the performance of AFBC systems.

  2. The development of a 20-inch indirect fired fluidized bed gasifier

    SciTech Connect (OSTI)

    Flanigan, V.J.; Sitton, O.C.; Huang, W.E

    1988-03-01T23:59:59.000Z

    This report discusses the design, fabrication and operation of a 20'' I.D. fluidized bed gasifier producing medium Btu gas. The reactor is indirectly heated using 30 x 1-inch U-tubes inserted in the inert bed. The U-tubes are heated using flue gases produced from a propane burner system located at the bottom of the reactor. The feed material was dry wood chips fed into the bed with a 6in. auger. The reactor was fed both into the bed and at the top of the bed. The fluidizing medium was superheated steam which was superheated to 1000/degree/F. The gas produced from the reactor was passed through a cyclone for char removal and routed to the flare for combustion and disposal. The parameters measured during the experimental runs were wood feed rate, steam flow rate, steam temperatures, bed temperatures, free board temperatures, product gas temperatures, bed differential pressures, char production, gas production, gas analyses, and tar production. The parameters measured in the laboratory were moisture contents (wood and char), ash contents (wood and char), and tar content. 9 refs., 19 figs., 11 tabs.

  3. Experimental and computational studies of hydrodynamics in three-phase and two-phase fluidized beds

    SciTech Connect (OSTI)

    Bahary, M.

    1994-12-01T23:59:59.000Z

    The objective of the present study was to investigate the hydrodynamics of three-phase fluidized beds, their rheology, and experimentally verify a predictive three fluid hydrodynamic model developed at the Illinois Institute of Technology, Chicago. The recent reviews show that there exist no such models in the literature. The IIT hydrodynamic model computes the phase velocities and the volume fractions of gas, liquid, and particulate phases. Model verification involves a comparison of these computed velocities and volume fractions to experimental values. In this thesis, a three fluid model is presented. The input into the model can be particulate viscosities either measured with a Brookfield viscometer or derived using the mathematical techniques of kinetic theory of granular flows pioneered by Savage and others. The computer simulation of a three-phase fluidized bed in an asymmetric mode qualitatively predicts the gas, liquid and solid hold-ups (volume fractions) and flow patterns in the industrially important churn-turbulent (bubbly coalesced) regimes. The computations in a fluidized bed with a symmetric distributor incorrectly showed no bubble coalescence. A combination of X-ray and {gamma}-ray densitometers was used to measure the solids and the liquid volume fractions in a two dimensional bed in the bubble coalesced regime. There is a good agreement between the theory for an asymmetric distributor and the experiments.

  4. Grid-region heat transfer in a gas solid fluidized bed

    SciTech Connect (OSTI)

    Wang, R.C.

    1986-01-01T23:59:59.000Z

    The grid region heat transfer to a horizontal tube in a gas-solid fluidized bed was studied experimentally and theoretically. A preliminary experimental study was first conducted to investigate semi-quantitatively the heat transfer characteristics in the grid region as well as in the bubbling region of the gas-solid fluidized bed using a simple hot water circulation system. Experimental parameters included particle size, static bed height, superficial gas velocity, distributor open area, distributor hole sizes, distributor hole numbers, and vertical locations of the heating tube. An additional experimental study was then carried out to study quantitatively the heat transfer coefficient in each grid region phase, i.e., jet phase, emulsion phase and dead phase using an artificial jet and an electrically heated tube. The observed heat transfer coefficients for each phase were correlated as a function of experimental parameters. The observed results are also compared with results estimated from a heat transfer model, which is based on plausible heat transfer mechanisms in the grid region of a gas-solid fluidized bed.

  5. Alexandria fluidized-bed process development unit: cold-mode testing

    SciTech Connect (OSTI)

    None

    1981-02-01T23:59:59.000Z

    The objectives of the current test program include: validation of predictions from the Massachusetts Institute of Technology (MIT) Coal Atmospheric Fluidized Bed Combustor System Model; experimental studies supporting AFBC process developments; and the collection of transient data for process control design. This topical report summarizes results from cold mode testing, i.e., experiments performed without combustion for MIT Model verification. During these tests, sulfated limestone (generated from normal AFBC operations) was fluidized with air at temperatures ranging from 80 to 500/sup 0/F in the 3' x 3' (nominal) size PDU at Alexandria, VA. The MIT Model predictions tested include: slumped bed height, minimum fluidization velocity, and expanded bed height. In all cases, there were large discrepancies between the Model predictions and corresponding experimental results. Other results obtained included solids size distribution and particle size profiles in the bed. Size distribution was adequately modeled by the Rosin-Rammler equation. No transient process data was collected due to hardware problems with the Data Acquisition System. Tests were also performed to determine the effect of maldistribution of air, caused by leaks in the air distributor, on experimental results. The data indicated that effects of these leaks seemed to be undetectable.

  6. Cold flow tudy of a fluidized bed reactor for catalytic conversion of methanol to low molecular weight hydrocarbons

    E-Print Network [OSTI]

    Mehta, Shirish Ramniklal

    1982-01-01T23:59:59.000Z

    COLD FLOW STUDY OF A FLUIDIZED BED REACTOR FOR CATALYTIC CONVERSION OF METHANOL TO LOW MOLECULAR WEIGHT HYDROCAREONS A Thesis by SHIRISH RAMNIKLAL MEHTA Submitted to the Graduate College of Texas A&M University in partial fulfilment... of the requirement for the degree of MASTER OF SCIENCE March 1982 Major Subject: Chemical Engineering COLD FLOW STUDY OF A FLUIDIZED BED REACTOR FOR CATALYTIC CONVERSION OF METHANOL TO LOW MOLECULAR WEIGHT HYDROCARBON A Thesis by SHIRISH RAMNIKLAL MEHTA...

  7. Combustion of Cattle Manure in a Fluidized Bed Combustor 

    E-Print Network [OSTI]

    Annamalai, K.; Colaluca, M. A.; Ibrahim, M. Y.; Sweeten, J. M.

    1988-01-01T23:59:59.000Z

    air and at bed temperatures ranging from 600°C (1112°F) to 800°C (1472°F). Experimental data revealed that the gasification efficiencies ranged from 90 to 98 percent, while the combustion efficiencies varied from 45 to 85 percent....

  8. Trace metal capture by various sorbents during fluidized bed coal combustion

    SciTech Connect (OSTI)

    Ho, T.C.; Ghebremeskel, A.; Wang, K.S.; Hopper, J.R. [Lamar Univ., Beaumont, TX (United States)

    1997-07-01T23:59:59.000Z

    This study investigated the potential of employing suitable sorbents to capture toxic trace metallic substances during fluidized bed coal combustion. Metal capture experiments were carried out in a 25.4 mm (1 inch) quartz fluidized bed combustor enclosed in an electric furnace. The metals involved were cadmium, lead, chromium, arsenic and selenium, and the sorbents tested included bauxite, zeolite and lime. In addition to the experimental investigations, potential metal-sorbent reactions were also identified through chemical equilibrium calculations based on the minimization of system free energy. The observed experimental results indicated that metal capture by sorbents can be as high as 88% depending on the metal species and sorbent involved. Results from thermodynamic equilibrium simulations suggested the formation of metal-sorbent compounds such as Pb{sub 2}SiO{sub 4}(s), CdAl{sub 2}O{sub 4}(s) and CdSiO{sub 3}(s) under the combustion conditions.

  9. Proceedings of the sixth international conference on fluidized bed combustion. Volume II. Technical sessions

    SciTech Connect (OSTI)

    none,

    1980-08-01T23:59:59.000Z

    The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. The papers covered recent developments in atmospheric and pressurized fluidized-bed combustion, especially the design, operation and control of pilot and demonstration plants. The cleanup of combustion products and the erosion, corrosion and fouling of gas turbines was emphasized also. Fifty-five papers from Volume 2 of the proceedings have been entered individually into EDB and ERA; five papers had been entered previously from other sources. (LTN)

  10. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect (OSTI)

    Wei-Ping Pan; Yan Cao; Songgeng Li

    2006-04-01T23:59:59.000Z

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2006 through March 31, 2006. Work was performed on the following activities. First, the fabrication and manufacture of the CFBC Facility were completed. The riser, primary cyclone and secondary cyclone of Circulating Fluidized Bed (CFB) Combustor have been erected. Second, the Mercury Control Workshop and the Grand Opening of Institute for Combustion Science and Environmental Technology (ICSET) were successfully held on February 22 and 23, 2006, respectively. Third, effects of hydrogen chlorine (HCl) and sulfur dioxide (SO{sub 2}) on mercury oxidation were studied in a drop tube reactor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  11. Automatic control of air to fuel ratio in a fluidized bed gasifier 

    E-Print Network [OSTI]

    Ling, Peter P.

    1984-01-01T23:59:59.000Z

    ) gas through fluidized bed gasification is under study by individuals in the Agricultural Engineering Department of Texas A&N University. The basic goal of this project is to convert solid organic material into a combustible gas and then use the gas... of the ASAE (American society of Agricultural Engineers). Desrosors (1981) showed the importance of A/F ratio control in his wood gasification study. He pointed out that the composition and chemical energy of the final output gas is greatly affected...

  12. Proceedings of the sixth international conference on fluidized bed combustion. Volume III. Technical sessions

    SciTech Connect (OSTI)

    none,

    1980-08-01T23:59:59.000Z

    The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. Forty-five papers from Vol. III of the proceedings have been entered individually into EDB and ERA. Two papers had been entered previously from other sources. (LTN)

  13. Fuel characteristics and theoretical performance of a fluidized bed combustor with manure as a fuel

    E-Print Network [OSTI]

    Park, Joon Hwa

    1984-01-01T23:59:59.000Z

    convert cattle manure to a more useful form of energy. A small pilot plant having a capacity of 450 kg/day has been constructed to evaluate gasification of manure by partial oxidation. The reactor operates as a counter-current fluidized bed in which... and gasification appear most uniquely adapted to the quality of manure collected from Texas cattle feedlots. Miles ( 12) conducted combustion pile burning trials to determine appropriate conditions for burning old feedlot manure that contained soil particles...

  14. Proceedings of the Sixth International Conference on Fluidized Bed Combustion. Volume 1. Plenary sessions

    SciTech Connect (OSTI)

    none,

    1980-08-01T23:59:59.000Z

    The Sixth International Conference on Fluidized Bed Combustion was held at the Atlanta Hilton, Atlanta, Georgia, April 9-11, 1980. The papers in this volume involved presentation of the research and development programs of the US (US DOE, TVA, EPRI and US EPA), United Kingdom, Federal Republic of Germany and the People's Republic of China. Eight papers from Vol. 1 (Plenary Sessions) of the proceedings have been entered individually into EDB and ERA. (LTN)

  15. Apparatus for high flux photocatalytic pollution control using a rotating fluidized bed reactor

    DOE Patents [OSTI]

    Tabatabaie-Raissi, Ali; Muradov, Nazim Z.; Martin, Eric

    2003-06-24T23:59:59.000Z

    An apparatus based on optimizing photoprocess energetics by decoupling of the process energy efficiency from the DRE for target contaminants. The technique is applicable to both low- and high-flux photoreactor design and scale-up. An apparatus for high-flux photocatalytic pollution control is based on the implementation of multifunctional metal oxide aerogels and other media in conjunction with a novel rotating fluidized particle bed reactor.

  16. Design and performance of a fluidized-bed incinerator for TRU combustible wastes

    SciTech Connect (OSTI)

    Meile, L.J.; Meyer, F.G.

    1982-01-01T23:59:59.000Z

    Problems encountered in the incineration of glovebox generated waste at Rocky Flats Plant (RFP) led to the development of a fluidized-bed incineration (FBI) system for transuranic (TRU) combustible wastes. Laboratory and pilot-scale testing of the process preceded the installation of an 82-kg/h production demonstration incinerator at RFP. The FBI process is discussed, and the design of the demonstration incinerator is described. Operating experience and process performance for both the pilot and demonstration units are presented.

  17. Multistage fluidized bed reactor performance characterization for adsorption of carbon dioxide

    SciTech Connect (OSTI)

    Roy, S.; Mohanty, C.R.; Meikap, B.C. [Indian Institute of Technology, Kharagpur (India). Dept. of Chemical Engineering

    2009-12-15T23:59:59.000Z

    Carbon dioxide and its different compounds are generated as primary greenhouse gases from the flue gases of coal-fired thermal power plants, boilers, and other stationary combustion processes. This greenhouse gas causes global warming after being emitted to the environment. To deal with this problem, a new dry scrubbing process was tested in this study. A three-stage countercurrent fluidized bed adsorber was developed, designed, and fabricated. It was used as a removal apparatus and operated in a continuous regime for the two-phase system. The height of each stage was 0.30 m, and the inner diameter was 0.10 m. The paper presents the removal of CO{sub 2} from gas mixtures by chemical sorption on porous granular calcium oxide particles in the reactor at ambient temperature. The advantages of a multistage fluidized bed reactor for high mass transfer and high gas-solid contact can enhance the removal of the gas when using a dry method. The effects of the operating parameters such as sorbent, superficial gas velocity, and the Weir height on CO{sub 2} removal efficiency in the multistage fluidized bed were investigated. The results indicate that the removal efficiency of the carbon dioxide was around 71% at a high solid flow rate corresponding to lower gas velocity at room temperature. In comparison with wet scrubbers, this dry process appears to have lower cost, less complicated configuration, and simpler disposal of used sorbent. The results in this study assume importance from the perspective of use of a multistage fluidized bed adsorber for control of gaseous pollutants at high temperature.

  18. Materials performance in the atmospheric fluidized-bed cogeneration air heater experiment

    SciTech Connect (OSTI)

    Natesan, K.; Podolski, W.; Wang, D.Y.; Teats, F.G. [Argonne National Lab., IL (United States); Gerritsen, W.; Stewart, A.; Robinson, K. [Rockwell International Corp., Canoga Park, CA (United States)

    1991-02-01T23:59:59.000Z

    The Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) sponsored by the US Department of Energy (DOE) was initiated to assess the performance of various heat-exchanger materials to be used in fluidized-bed combustion air heater systems. Westinghouse Electric Corporation, through subcontracts with Babcock & Wilcox, Foster Wheeler, and ABB Combustion Engineering Systems, prepared specifications and hardware for the ACAHE tests. Argonne National Laboratory contracted with Rockwell International to conduct tests in the DOE atmospheric fluidized-bed combustion facility. This report presents an overview of the project, a description of the facility and the test hardware, the test operating conditions, a summary of the operation, and the results of analyzing specimens from several uncooled and cooled probes exposed in the facility. Extensive microstructural analyses of the base alloys, claddings, coatings, and weldments were performed on specimens exposed in several probes for different lengths of time. Alloy penetration data were determined for several of the materials as a function of specimen orientation and the exposure location in the combustor. Finally, the data were compared with earlier laboratory test data, and the long-term performance of candidate materials for air-heater applications was assessed.

  19. Materials performance in the atmospheric fluidized-bed cogeneration air heater experiment

    SciTech Connect (OSTI)

    Natesan, K.; Podolski, W.; Wang, D.Y.; Teats, F.G. (Argonne National Lab., IL (United States)); Gerritsen, W.; Stewart, A.; Robinson, K. (Rockwell International Corp., Canoga Park, CA (United States))

    1991-02-01T23:59:59.000Z

    The Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) sponsored by the US Department of Energy (DOE) was initiated to assess the performance of various heat-exchanger materials to be used in fluidized-bed combustion air heater systems. Westinghouse Electric Corporation, through subcontracts with Babcock Wilcox, Foster Wheeler, and ABB Combustion Engineering Systems, prepared specifications and hardware for the ACAHE tests. Argonne National Laboratory contracted with Rockwell International to conduct tests in the DOE atmospheric fluidized-bed combustion facility. This report presents an overview of the project, a description of the facility and the test hardware, the test operating conditions, a summary of the operation, and the results of analyzing specimens from several uncooled and cooled probes exposed in the facility. Extensive microstructural analyses of the base alloys, claddings, coatings, and weldments were performed on specimens exposed in several probes for different lengths of time. Alloy penetration data were determined for several of the materials as a function of specimen orientation and the exposure location in the combustor. Finally, the data were compared with earlier laboratory test data, and the long-term performance of candidate materials for air-heater applications was assessed.

  20. Economics of co-firing waste materials in an advanced pressurized fluidized-bed combustor

    SciTech Connect (OSTI)

    Bonk, D.L.; McDaniel, H.M. [Dept. of Energy, Morgantown, WV (United States). Morgantown Energy Technology Center; DeLallo, M.R. Jr.; Zaharchuk, R. [Gilbert/Commonwealth, Inc., Reading, PA (United States)

    1995-04-01T23:59:59.000Z

    The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal waste. Leading this approach is the atmospheric fluidized bed combustor (AFBC). It has demonstrated its commercial acceptance in the utility market as a reliable source of power by burning a variety of waste and alternative fuels. The fluidized bed, with its stability of combustion, reduces the amount of thermochemical transients and provides for easier process control. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economic feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. The results and conclusions developed are generally applicable to current and advanced PFBC design concepts.

  1. Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine industrial plant study

    SciTech Connect (OSTI)

    Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

    1992-07-01T23:59:59.000Z

    Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100{degrees}F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600{degrees}F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

  2. Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine induustrial plant study

    SciTech Connect (OSTI)

    Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

    1992-07-01T23:59:59.000Z

    Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100[degrees]F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600[degrees]F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

  3. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect (OSTI)

    Wei-Ping Pan; Andy Wu; John T. Riley

    2005-07-30T23:59:59.000Z

    This purpose of this report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period April 1, 2005 through June 30, 2005. The following tasks have been completed. First, the new Combustion Laboratory was occupied on June 15, 2005, and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building is in the final painting stage. Second, the fabrication and manufacturing contract for the CFBC Facility was awarded to Sterling Boiler & Mechanical, Inc. of Evansville, Indiana. Sterling is manufacturing the assembly and component parts of the CFBC system. The erection of the CFBC system is expected to start September 1, 2005. Third, mercury emissions from the cofiring of coal and chicken waste was studied experimentally in the laboratory-scale simulated fluidized-bed combustion facility. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described.

  4. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect (OSTI)

    Wei-Ping Pan; Andy Wu; John T. Riley

    2005-04-30T23:59:59.000Z

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2005 through March 31, 2005. The following tasks have been completed. First, the renovation of the new Combustion Laboratory is nearly complete, and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building is in the final stages. Second, the fabrication and manufacture of the CFBC Facility is being discussed with a potential contractor. Discussions with potential contactor regarding the availability of materials and current machining capabilities have resulted in the modification of the original designs. The selection of the fabrication contractor for the CFBC Facility is expected during the next quarter. Third, co-firing experiments conducted with coal and chicken waste have been initiated in the laboratory-scale simulated fluidized-bed facility. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  5. Analysis of fluidized beds for the simultaneous aerosol separation and heat recovery

    SciTech Connect (OSTI)

    El-Halwagi, M.M. [Auburn Univ., AL (United States)

    1993-01-01T23:59:59.000Z

    A mathematical model is developed to describe the performance of fluidized beds for the simultaneous heat recovery and aerosol separation. This new concept is analyzed in light of the various transport processes taking place within the bed. A two-phase model is developed for the system in which heat and aerosol particles are transferred from the bubble phase to the emulsion phase. In addition to aerosol separation via diffusion, interception, impaction and electrostatic precipitation, thermophoretic collection is also analyzed. The results indicate that high thermal and separation efficiencies can be obtained.

  6. Automatic control of air to fuel ratio in a fluidized bed gasifier

    E-Print Network [OSTI]

    Ling, Peter P.

    1984-01-01T23:59:59.000Z

    efficient but was not as convenient for small research unit. Fuel Bin First Auger Air Lock Fluidised Bed Gasifier Feed Motor Gear Reducer Second Auger Bleed-off Valve and Valve Actuator Blower Laminar Flow Element PIG. 3. The A/F Ratio Control...AUTOMATIC CONTROL OF AIR TO FUEL RATIO IN A FLUIDIZED BED GASIFIER A Thesis by PETER P. LING Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1984...

  7. Preliminary assessment of alternative atmospheric fluidized-bed-combustion power-plant systems. Final report

    SciTech Connect (OSTI)

    Bianchini, J.; Rogali, R.; Wysocki, J.; Bradley, W.

    1982-02-01T23:59:59.000Z

    This report presents a technical and economic evaluation of alternative atmospheric fluidized-bed combustion (AFBC) power plant systems with nominal capacities of 1000 MWe. Both eastern and western coal-fired power plants are evaluated for the following systems: baseline AFBC power plants with limestone beds; AFBC power plants with inert beds and wet FGC systems; AFBC power plant with inert beds and a dry FGD system (western coal only); AFBC power plants with limestone beds and limestone precalcination; AFBC power plants with limestone beds and agglomeration and recycle of spent solids; AFBC power plant with limestone beds and sorbent regeneration (eastern coal only); and reference pulverized coal-fired (PCF) power plants with wet FGC systems. The eastern coal-fired plants burn Illinois bituminous coal with a higher heating value of 10,1000 Btu/lb and a sulfur content of 4%. The western coal-fired plants burn Wyoming subbituminous coal with a higher heating value of 8020 Btu/lb and a sulfur content of 0.48%. The capital and operating cost estimates are based on boiler designs developed by Babcock and Wilcox, Inc., and on sorbent requirements estimated by Westinghouse R and D Center. Sorbent requirements for the baseline AFBC power plants are based on a calcium to sulfur mole ratio of 5:1 for the eastern coal-fired plant and 0.7:1 for the western coal-fired plant. The Ca/S mole ratio for the western coal plant allows for 30 percent utilization of the alkaline coal ash to reduce sorbent requirements to the fluidized bed combustor. The economic analyses are based on a plant located in the East Central region of the United States with a 30-year life and a 70 percent capacity factor.

  8. Laboratory studies on corrosion of materials for fluidized bed combustion applications

    SciTech Connect (OSTI)

    Natesan, K.

    1990-10-01T23:59:59.000Z

    An extensive corrosion test program was conducted at Argonne National Laboratory to evaluate the corrosion performance of metallic structural materials in environments that simulate both steady-state and off-normal exposure conditions anticipated in fluidized bed combustion (FBC) systems. This report discusses the possible roles of key parameters, such as sorbent and gas chemistries, metal temperature, gas cycling conditions, and alloy pretreatment, in the corrosion process. Data on scale thickness and intergranular penetration depth are presented for several alloys as a function of the chemistry of the exposure environment, deposit chemistry, and exposure time. Test results were obtained to compare the corrosion behavior of materials in the presence of reagent grade sorbent compounds and spent-bed materials from bubbling- and circulating-fluid-bed systems. Finally, the laboratory test results were compared with metal wastage information developed over the years in several fluidized bed test facilities. Metallic alloys chosen for the tests were carbon steel, Fe-2 1/4Cr-1Mo and Fe-9Cr-1Mo ferritic steels. Types 304 and 310 stainless steel, and Incoloy 800. 26 refs., 61 figs., 8 tabs.

  9. A Study of Vertical Gas Jets in a Bubbling Fluidized Bed

    SciTech Connect (OSTI)

    Steven Ceccio; Jennifer Curtis

    2011-01-18T23:59:59.000Z

    A detailed experimental study of a vertical gas jet impinging a fluidized bed of particles has been conducted with the help of Laser Doppler Velocimetry measurements. Mean and fluctuating velocity profiles of the two phases have been presented and analyzed for different fluidization states of the emulsion. The results of this work would be greatly helpful in understanding the complex two-phase mixing phenomenon that occurs in bubbling beds, such as in coal and biomass gasification, and also in building more fundamental gas-solid Eulerian/Lagrangian models which can be incorporated into existing CFD codes. Relevant simulations to supplement the experimental findings have also been conducted using the Department of Energyâ??s open source code MFIX. The goal of these simulations was two-fold. One was to check the two-dimensional nature of the experimental results. The other was an attempt to improve the existing dense phase Eulerian framework through validation with the experimental results. In particular the sensitivity of existing frictional models in predicting the flow was investigated. The simulation results provide insight on wall-bounded turbulent jets and the effect frictional models have on gas-solid bubbling flows. Additionally, some empirical minimum fluidization correlations were validated for non-spherical particles with the idea of extending the present study to non-spherical particles which are more common in industries.

  10. Modeling of fluidized-bed combustion of coal: Phase II, final reports. Volume V. Appendix: stability and instability in fluidized-bed combustion

    SciTech Connect (OSTI)

    Louis, J.F.; Tung, S.E.

    1980-10-01T23:59:59.000Z

    This document is the fifth of the seven volumes series of our Phase II Final Report. The material developed in this volume has not been incorporated into the system model. It will be used as a precursor of a transient model to be developed in the next phase of our model work. There have been various fluidized combustor models of differing complexity and scope published in the literature. Most of these models have identified and predicted - often in satisfactory agreement with results from pilot units - the key steady state combustor characteristics such as the mass of carbon in the bed (carbon loading), the combustion efficiency, the sulfur retention by the solid sorbent and the pollutant (mainly NO/sub x/) emissions. These models, however, cannot be in most instances successfully used to study the extinction and ignition characteristics of the combustor because they are isothermal in structure in the sense that the bed temperature is not an output variable but rather an input one and must be a priori specified. In order to remedy these inadequacies of the previous models, we here present a comprehensive account of the formulation and some typical results of a new nonisothermal model which has been developed in order to study, among other things, the ignition and extinction characteristics of the AFBC units. This model is able to predict the temperature patterns in the bed, the carbon loading, the combustion efficiency and the O/sub 2/ and CO concentration profiles in the combustor for the different design or operational characteristics.

  11. Experimental study of fluidized bed combustion of feedlot manure 

    E-Print Network [OSTI]

    Madan, Ajit M.

    1984-01-01T23:59:59.000Z

    Mehendale and Mike Ballard for helping me during the experiments. I would also like to thank Ricardo Garza and Dr. C. V. Philip for their help during the exhaust gas analysis on the gas chromatograph. Finally, I would like to thank my friend Komain... Characteristics 2. 2 Gasification 2. 3 Combustion CHAPTER III OBJECTIVES CHAPTER IV THE EXPERIMENTAL APPARATUS 4. 1 General Facility Layout 4. 2 Air Flow System 4. 3 Bed Chamber 4. 4 Fuel Feed System 1V V1 1X 12 14 19 21 21 23 25 25 TABLE...

  12. MFIX simulation of NETL/PSRI challenge problem of circulating fluidized bed

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Tingwen; Dietiker, Jean-Francois; Shahnam, Mehrdad

    2012-12-01T23:59:59.000Z

    In this paper, numerical simulations of NETL/PSRI challenge problem of circulating fluidized bed (CFB) using the open-source code Multiphase Flow with Interphase eXchange (MFIX) are reported. Two rounds of simulation results are reported including the first-round blind test and the second-round modeling refinement. Three-dimensional high fidelity simulations are conducted to model a 12-inch diameter pilot-scale CFB riser. Detailed comparisons between numerical results and experimental data are made with respect to axial pressure gradient profile, radial profiles of solids velocity and solids mass flux along different radial directions at various elevations for operating conditions covering different fluidization regimes. Overall, the numerical results show that CFD can predict the complex gas–solids flow behavior in the CFB riser reasonably well. In addition, lessons learnt from modeling this challenge problem are presented.

  13. MFIX simulation of NETL/PSRI challenge problem of circulating fluidized bed

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Tingwen; Dietiker, Jean-Francois; Shahnam, Mehrdad

    2012-12-01T23:59:59.000Z

    In this paper, numerical simulations of NETL/PSRI challenge problem of circulating fluidized bed (CFB) using the open-source code Multiphase Flow with Interphase eXchange (MFIX) are reported. Two rounds of simulation results are reported including the first-round blind test and the second-round modeling refinement. Three-dimensional high fidelity simulations are conducted to model a 12-inch diameter pilot-scale CFB riser. Detailed comparisons between numerical results and experimental data are made with respect to axial pressure gradient profile, radial profiles of solids velocity and solids mass flux along different radial directions at various elevations for operating conditions covering different fluidization regimes. Overall, the numericalmore »results show that CFD can predict the complex gas–solids flow behavior in the CFB riser reasonably well. In addition, lessons learnt from modeling this challenge problem are presented.« less

  14. Analysis and characterization of atmospheric fluidized-bed-combustion agglomerates. Final report

    SciTech Connect (OSTI)

    Brekke, D.W.; Karner, F.R.

    1982-06-01T23:59:59.000Z

    The combustion of high-sodium low-rank coal in an Atmospheric Fluidized Bed Combustor (AFBC) can produce agglomeration of varying severity. Agglomerates and bed materials produced by a 0.2 m/sup 2/ AFBC were studied by polarized light microscopy, scanning electron microscopy, and electron microprobe analysis of thin sections. Bulk samples were studied using x-ray diffraction and x-ray fluorescence techniques. A physio-chemical or geochemical approach was used to characterize the materials and to postulate a mechanism of formation of the agglomerates. Quartz bed materials typically have nodular ash coatings with a matrix of finer sulfate ash richer in calcium and sulfur. Quartz bed agglomerates have additional calcium-rich sulfur-poor glass binding the grains together. Limestone bed materials typically have nodular ash coatings and have concentric alteration zones of calcium-rich areas with additional sulfur, iron, and sodium. Limestone agglomerates have additional sulfation and masses of coarse CaSO/sub 4/ crystals. Agglomerate formation in quartz bed materials follows a 4-stage process: an initial ash coating of about 50 microns thickness; thickened nodular coatings and initial sulfation; initial agglomeration by a cement of sulfated aluminosilicate ash; and bonding by recrystallized sulfated ash which has partly melted and solidified. Agglomerate formation in limestone bed materials follows a 3-stage process: initial bed grain alteration or calcining and sulfation producing concentric zones; thickened nodular ash coatings and continued sulfation; and agglomeration and growth of large CaSO/sub 4/ crystals. The agglomeration process is believed to be dependent upon temperature excursions caused by ash buildup in the bed with accompanying interaction between ash and bed material. Sodium appears to play a critical but presently largely unknown, role in the reactions producing agglomerates.

  15. Some investigations on heat transfer in a hot circulating fluidized bed

    SciTech Connect (OSTI)

    Nag, P.K.; Reddy, B.V. [Indian Inst. of Tech., Kharagpur (India). Dept. of Mechanical Engineering

    1995-12-31T23:59:59.000Z

    An experimental investigation has been made to study the heat transfer characteristics at different bed heights along the riser column in a Circulating Fluidized Bed (CFB) unit of 102 mm x 102 mm in bed cross-section, 5.25 m in height with a return leg of the same dimensions. The test probes have dimensions of 42.5 mm in O.D., 70 mm in height, and half of its outer surface is exposed to the bed. Three such test sections made of mild steel are located at 1.8 m, 2.3 m and 3.4 m (probe 3, probe 2 and probe 1 respectively) above the distributor plate in the riser column. The variation of the heat transfer coefficient at different bed heights, and the influence of operating parameters are investigated. PG and coal (of mean size 800 {micro}m) are burned. The primary superficial air velocity is varied between 3.0 to 7.0 m/s. Local sand of mean size 248 {micro}m is used as the bed material. The present data is compared with the published literature.

  16. Application of a fiber optic probe to the hydrodynamic study of an industrial fluidized bed furnace

    SciTech Connect (OSTI)

    Saberi, B.; Shakourzadeh, K. [Technical Univ. of Compiegne (France); Militzer, J. [Technical Univ. of Nova Scotia, Halifax, Nova Scotia (Canada)

    1997-12-31T23:59:59.000Z

    A fiber optic probe technique is used to establish the hydrodynamic characteristics of an industrial scale (0.9 m internal diameter and 2.5 m tall) bubbling fluidized bed. This measurement technique allows for the bubbling phenomenon to be studied locally. Bubble parameters such as size, velocity and frequency can be measured with an adequate accuracy. This, however, is not a straight forward procedure, since among other things the shape of the bubble and the position at which fiber intercepts the bubble are unknown. This requires a statistical treatment of the data and the use of a correction factor. A geometrical and statistical analysis of the bubble/probe interactions shows that the correction factor is approximately unitary and thus the bubble size distribution can be obtained directly from the statistical treatment of the results of relatively large number of series of measurements. In addition, sampling rate and sample duration have to be determined as a function of the bubble size and velocity. Several combinations of sampling time and sampling rate have been tested allowing for the best combination of these parameters to be determined. After treatment of the acquired signals, the mean bubble size and velocity were calculated. The results obtained were compared to the measured expansion of the bed and the overall gas flow rate. This confirmed the accuracy of the measurements and the usefulness of this technique to establish the hydrodynamics of bubbling fluidized beds.

  17. Measurement of alkali-vapor emission from pressurized fluidized-bed combustion of Illinois coals

    SciTech Connect (OSTI)

    Lee, S.H.D.; Teats, F.G.; Swift, W.M. (Argonne National Lab., IL (United States)); Banerjee, D.D. (Illinois Clean Coal Inst., Carterville, IL (United States))

    1993-01-01T23:59:59.000Z

    Two Illinois Herrin No. 6 coals and one Illinois Springfield No. 5 coal were separately combusted in a laboratory-scale (15-cm dia) pressurized fluidized-bed combustor (PFBC) combined with an alkali sorber. These coals were combusted in a fluidized bed of Tymochtee dolomite at temperatures ranging from 910 to 950[degree]C and a system pressure of 9.2 atm absolute. Alkali-vapor emission (Na and K) in the PFBC flue gas was determined by the analytical activated-bauxite sorber bed technique developed at Argonne National Laboratory. The test results showed that sodium is the major alkali-vapor species present in the PFBC flue gas, and that the level of sodium-vapor emission increases linearly with both Na and Cl contents in the coals. This suggests that the sodium-vapor emission results from direct vaporization of NaCl present in the coals. The measured alkali-vapor concentration (Na + K), 67 to 190 ppbW, is more than 2.5 times greater than the allowable alkali limit of 24 ppb for an industrial gas turbine. Combusting these coals in a PFBC for power generation may require developing a method to control alkali vapors.

  18. Measurement of alkali-vapor emission from pressurized fluidized-bed combustion of Illinois coals

    SciTech Connect (OSTI)

    Lee, S.H.D.; Teats, F.G.; Swift, W.M. [Argonne National Lab., IL (United States); Banerjee, D.D. [Illinois Clean Coal Inst., Carterville, IL (United States)

    1993-04-01T23:59:59.000Z

    Two Illinois Herrin No. 6 coals and one Illinois Springfield No. 5 coal were separately combusted in a laboratory-scale (15-cm dia) pressurized fluidized-bed combustor (PFBC) combined with an alkali sorber. These coals were combusted in a fluidized bed of Tymochtee dolomite at temperatures ranging from 910 to 950{degree}C and a system pressure of 9.2 atm absolute. Alkali-vapor emission (Na and K) in the PFBC flue gas was determined by the analytical activated-bauxite sorber bed technique developed at Argonne National Laboratory. The test results showed that sodium is the major alkali-vapor species present in the PFBC flue gas, and that the level of sodium-vapor emission increases linearly with both Na and Cl contents in the coals. This suggests that the sodium-vapor emission results from direct vaporization of NaCl present in the coals. The measured alkali-vapor concentration (Na + K), 67 to 190 ppbW, is more than 2.5 times greater than the allowable alkali limit of 24 ppb for an industrial gas turbine. Combusting these coals in a PFBC for power generation may require developing a method to control alkali vapors.

  19. Alexandria fluidized-bed process-development unit. Hot-mode testing

    SciTech Connect (OSTI)

    Not Available

    1982-12-01T23:59:59.000Z

    The objectives of the current test program include validation of predictions from the Massachusetts Institute of Technology (MIT) Atmospheric Fluidized Bed Coal Combustor System Model, continuation of experimental studies supporting AFBC process development, and collection of transient data for later process control studies. This topical report summarizes results from hot mode testing, i.e., experiments performed with combustion in the Process Development Unit for Model verification. During these tests, coal and limestone were fluidized and combusted with air at temperatures ranging from 1400 to 1580/sup 0/F in the 3' x 3' (nominal) size Process Development Unit (PDU) at Alexandria, Virginia. MIT Model predictions tested include: combustion efficiency, carbon loading, gas and solids concentrations, bed temperature, expanded bed height, overall heat transfer coefficient and sulfur retention by the coal/limestone system. Although not corresponding exactly, the Model predictions and experimental values for the overall heat transfer coefficients were relatively close in agreement. In all other cases, there were some discrepancies between the Model predictions and corresponding experimental PDU results. Transient process data were collected by the Data Acquisition System (DAS). Six parameters were recorded continuously on a six channel recorder. Variances were observed in the recorded transient data in response to input step changes.

  20. The corrosive environment in the fluidized-bed heat-exchanger for CCGT service

    SciTech Connect (OSTI)

    Rocazella, M.A.; Holt, C.F.; Wright, I.C.

    1983-01-01T23:59:59.000Z

    Corrosion and combustion diagnostic data were gathered in Battelle's 0.6m diameter coal-fired atmospheric fluidized-bed combustor (AFBC). Corrosion probes, constructed from ring specimens of candidate heatexchanger alloys, were exposed to the fluidized-bed environment during three different combustion experiments (50%, 20% and 0% excess air). An in-situ oxygen probe was used to monitor the oxygen partial pressure at the exposure locations. Two different mechanisms of material degradation were identified, i.e., both corrosion and erosion. An adherent deposit of bed material formed on all areas of the corrosion probes. The corrosion behavior of the alloys beneath the deposit, and the corresponding corrosion product morphologies, appeared to correlate well with predictions based on the oxygen partial pressure measurements from the exposure location. The results suggest the oxygen probe may be a useful diagnostic tool for locating regions with high corrosive potentials. However, the upstream faces of the corrosion probes were subjected to enhanced mechanical damage, and this periodic removal of both the deposit and corrosion products resulted in significantly more metal degradation. Also, this corrosion/erosion process may locally deplete the alloy in chromium, leaving it susceptible to severe sulfidation and/or accelerated oxidation. It was suggested that these locations would be the first to experience heat-exchanger tube failure, and the coupled corrosion/erosion process would be the failure mechanism.

  1. Etude de l'empoussirement des poudres par un test de fluidisation Study of dustiness of powders by a fluidized bed test

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Etude de l'empoussièrement des poudres par un test de fluidisation Study of dustiness of powders by a fluidized bed test MOUFAREJ ABOU JAOUDE Marie-Thérèsea , LEFRANCOIS Emmanuelb , LE BIHAN Olivierc of this study is to use a fluidized bed as a dustiness test based on entrainment and elutriation phenomena

  2. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect (OSTI)

    Wei-Ping Pan; Yan Cao; John Smith

    2007-03-31T23:59:59.000Z

    This report is to present the progress made on the project entitled ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2007 through March 31, 2007. The effort in this quarter has concentrated on installing the CFBC Facility and for conducting cold fluidization operations tests in the CFBC facility. The assembly of the ash recirculation pipe duct from the cyclones back to the bed area of the combustor, including the upper and lower loop seals was completed. The electric bed pre-heater was installed to heat the fluidizing air as it enters the wind box. The induced draft fan along with its machine base and power supply was received and installed. The flue gas duct from secondary cyclone outlet to induced draft fan inlet was received and installed, as well as the induced fan flue gas discharge duct. Pressure testing from the forced draft fan to the outlet of the induced fan was completed. In related research a pilot-scale halogen addition test was conducted in the empty slipstream reactor (without (Selective Catalytic Reduction) SCR catalyst loading) and the SCR slipstream reactor with two commercial SCR catalysts. The greatest benefits of conducting slipstream tests can be flexible control and isolation of specific factors. This facility is currently used in full-scale utility and will be combined into 0.6MW CFBC in the future. This work attempts to first investigate performance of the SCR catalyst in the flue gas atmosphere when burning Powder River Basin (PRB), including the impact of PRB coal flue gas composition on the reduction of nitrogen oxides (NOx) and the oxidation of elemental mercury (Hg(0)) under SCR conditions. Secondly, the impacts of hydrogen halogens (Hydrogen fluoride (HF), Hydrogen chloride (HCl), Hydrogen Bromide (HBr) and Hydrogen Iodine (HI)) on Hg(0) oxidation and their mechanisms can be explored.

  3. Performance of low-rank coal in atmospheric fluidized bed combustion. Technology transfer report

    SciTech Connect (OSTI)

    Hajicek, D.R.; Zobeck, B.J.; Mann, M.D.; Miller, B.G.; Ellman, R.C.; Benson, S.A.; Goblirsch, G.M.; Cooper, J.L.; Guillory, J.L.; Eklund, A.G.

    1985-10-01T23:59:59.000Z

    This report presents test data generated at GFETC and discusses the implications of this data in regard to the technical and economic feasibility of using low-rank coals in the AFBC. Atmospheric fluidized bed combustion offers a number of potential advantages over conventional pulverized coal combustion due to the intense turbulence in the fluidized bed and long residence times of solids in the bed without a long linear flow path. Advantages of the AFBC include flexibility to handle varying fuels, sulfur capture by limestone, high combustion efficiency, compact combustor size, lower NO/sub x/ emissions, and reduced slagging and fouling problems. Low-rank coals with high alkali-to-sulfur ratios offer a significant additional advantage: the ability to absorb significant sulfur on the alkaline ash. Results verify that AFBC is particularly well suited for the direct combustion of low-rank coals. With combustion temperatures above 1450/sup 0/F at 20% excess air or higher, the combustion efficiencies while burning low-rank coal were found to be above 98%, with efficiencies above 99% for most tests. The CO emissions were very low, typically below 0.05 lb/MMBtu or 50 ppMv. Overall heat transfer coefficients to water-cooled tubes while burning low-rank coals were comparable to those obtained with other fuels in AFBC, or 20 to 60 Btu/h-ft/sup 2/-/sup 0/F. These are considerably higher than those obtained in conventional coal-fired systems which are typically 5 to 15 Btu/h-ft/sup 2/-/sup 0/F. Factors influencing heat transfer included mass velocity, bed particle size, bed temperature, and ash recycle.

  4. Wavelet analysis to characterize cluster dynamics in a circulating fluidized bed

    SciTech Connect (OSTI)

    Guenther, C.; Breault, R.W.

    2007-04-30T23:59:59.000Z

    A common hydrodynamic feature in heavily loaded circulating fluidized beds is the presence of clusters. The continuous formation and destruction of clusters strongly influences particle hold-up, pressure drop, heat transfer at the wall, and mixing. In this paper fiber optic data is analyzed using discrete wavelet analysis to characterize the dynamic behavior of clusters. Five radial positions at three different axial locations under five different operating conditions spanning three different flow regimes were analyzed using discrete wavelets. Results are summarized with respect to cluster size and frequency.

  5. Pulse atmospheric fluidized bed combustion. Technical progress report, November 1988--January 1989

    SciTech Connect (OSTI)

    Not Available

    1989-03-01T23:59:59.000Z

    The overall objective of the program is the development of a pulsed atmospheric fluidized-bed combustion (PAFBC) technology to burn coal and to provide heat and steam to commercial, institutional, and small industrial applications at a reasonable price in an environmentally acceptable manner. During this reporting period, a total of eight shakedown and debugging coal combustion tests were performed in the AFBC. A start-up procedure was established, system improvements implemented, and preliminary material and heat balances made based on these tests. The pulse combustor for the AFBC system was fabricated and installed and a series of tests was conducted on the system. 17 figs., 5 tabs.

  6. Nucla circulating atmospheric fluidized bed demonstration project. Quarterly technical progress report, October--December 1990

    SciTech Connect (OSTI)

    Not Available

    1991-01-31T23:59:59.000Z

    During the fourth quarter of 1990, steady-state performance testing at the Nucla Circulating Fluidized Bed (CFB) resumed under sponsorship of the US Department of Energy. Co-sponsorship of the Demonstration Test Program by the Electric Power Research Institute (EPRI) was completed on June 15, 1990. From October through December, 1990, Colorado-Ute Electric Association (CUEA) completed a total of 23 steady-state performance tests, 4 dynamic tests, and set operating records during November and December as the result of improved unit operating reliability. Highlight events and achievements during this period of operation are presented.

  7. PSNH's Northern Wood power project repowers coal-fired plant with new fluidized-bed combustor

    SciTech Connect (OSTI)

    Peltier, R.

    2007-08-15T23:59:59.000Z

    The Northern Wood Power project permanently replaced a 50-MW coal-burning boiler (Unit 5) at Public Service of New Hampshire's Schiller station with a state-of-the-art circulating fluidized bed wood-burning boiler of the same capacity. The project, completed in December 2006, reduced emissions and expanded the local market for low-grade wood. For planning and executing the multiyear, $75 million project at no cost to its ratepayers, PSNH wins Power's 2007 Marmaduke Award for excellence in O & M. The award is named for Marmaduke Surfaceblow, the fictional marine engineer/plant troubleshoot par excellence. 7 figs., 1 tab.

  8. Heat exchanger materials for fluidized bed coal combustors

    SciTech Connect (OSTI)

    Godfrey, T G; Copper, R H; DeVan, J H; Drake, K R

    1980-01-01T23:59:59.000Z

    The 4500-h test in the FluiDyne AFBC tells us three things: (1) ferritic and austenitic superheater alloys perform well to approximately 590/sup 0/C (1100/sup 0/F), (2) high-temperature alloys can perform well at approximately 870/sup 0/C (1600/sup 0/F), and (3) they also may fail miserably at approximately 870/sup 0/C (1600/sup 0/F). Additional studies are clearly needed to develop a fundamental understanding of corrosion mechanisms in AFBC and to determine the envelope of safe operating conditions, which will depend upon alloy sensitivity, the oxygen and sulfur activities, and the many parameters that affect mixing and homogeneity within an operating AFBC. Ultimately long-term tests for periods to 20,000 h will be needed to assure the operability of in-bed heat exchanger and structural materials for the anticipated lifetime of a plant. Good design and well-controlled operations will yield good material performance in AFBC. The key to reliable material usage is operation within the safe envelope. Results from the present experiment suggest that this envelope is large for utility steam systems but smaller for high-temperature tubes and uncooled components in AFBC.

  9. Circulating fluidized bed gasification of a tire-derived fuel

    SciTech Connect (OSTI)

    Arena, U.; Cammarota, A. [Ist. di Ricerche Sulla Combustione-C.N.R., Napoli (Italy)

    1997-12-31T23:59:59.000Z

    A market available tire-derived fuel (TDF) was continuously fed in a laboratory scale CFB gasifier operated with air and steam as oxidizers. Silica sand, having a Sauter mean diameter of 155 {micro}m, was used as bed material. The riser and the recirculation column were maintained at 850 C by means of electric heaters driven by electronic controllers. The experiments were carried out at fixed values of solids mass flux (10 kg/sm{sup 2}) and superficial gas velocity in the primary (1.7 m/s) as well as in the secondary zone (2.7 m/s). The equivalence ratios and the H{sub 2}O/TDF d.a.f. ratio were varied between 0.3 and 0.6 and between 0.4 and 1.3, respectively. For each run, data from pressure electronic transducers, thermocouples and gas analyzers were processed to evaluate riser axial profiles of pressure, temperature and gas concentration (in terms of CO, H{sub 2}, CH{sub 4}, C{sub n}H{sub m} and CO{sub 2} content). Collecting, sieving and analyzing solids hold-up in the riser allowed estimation of the amount of carbon particles and their size distribution. Carbon conversion efficiency, specific gas yield and energy output were also determined.

  10. Project Profile: Particle Receiver Integrated with a Fluidized Bed |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010 |of Energy TEES logoSolar Power |

  11. Bed agglomerates formed by atmospheric fluidized bed combustion of a North Dakota lignite

    SciTech Connect (OSTI)

    Benson, S.A.; (Dept. of Energy, Grand Forks, ND); Karner, F.R.; Goblirsch, G.M.; Brekke, D.W.

    1982-01-01T23:59:59.000Z

    This paper discusses the performance of quartz or limestone as a bed material during the combustion of high sodium North Dakota lignite. The lignite is from the Beulah mine of Mercer County, North Dakota. The composite coal and coal ash analysis is summarized in Table 1. The lignite was partially dried before this series of tests; its as-mined moisture content was 36%, and its heating valve 15,000 J/g. Other important considerations are the operation of the combustor and how operational parameters affect the performance of the bed material, sulfur retention on coal ash and bed material, and heat transfer. The most important operational parameters of the AFBC for the tests are listed. The tendency for the bed to agglomerate has been shown through extensive testing to depend on the following parameters: (1) bed temperature (higher temperature increases tendency); (2) coal sodium content (increased coal sodium content shows increased severity of agglomeration); (3) bed material composition (high calcium content tends to delay, and decrease the severity of agglomerates formed; (4) ash recycle (increased recycle of ash tends to increase agglomeration tendency); (5) there appears to be a bed design parameter such as position of coal feed points, and distributor plate performance which affect bed material agglomeration. X-ray fluorescence analysis was performed on bed material sampled continually throughout the run to determine the changes in composition of major ash constituents.

  12. Neural Network Based Montioring and Control of Fluidized Bed.

    SciTech Connect (OSTI)

    Bodruzzaman, M.; Essawy, M.A.

    1996-04-01T23:59:59.000Z

    The goal of this project was to develop chaos analysis and neural network-based modeling techniques and apply them to the pressure-drop data obtained from the Fluid Bed Combustion (FBC) system (a small scale prototype model) located at the Federal Energy Technology Center (FETC)-Morgantown. The second goal was to develop neural network-based chaos control techniques and provide a suggestive prototype for possible real-time application to the FBC system. The experimental pressure data were collected from a cold FBC experimental set-up at the Morgantown Center. We have performed several analysis on these data in order to unveil their dynamical and chaotic characteristics. The phase-space attractors were constructed from the one dimensional time series data, using the time-delay embedding method, for both normal and abnormal conditions. Several identifying parameters were also computed from these attractors such as the correlation dimension, the Kolmogorov entropy, and the Lyapunov exponents. These chaotic attractor parameters can be used to discriminate between the normal and abnormal operating conditions of the FBC system. It was found that, the abnormal data has higher correlation dimension, larger Kolmogorov entropy and larger positive Lyapunov exponents as compared to the normal data. Chaotic system control using neural network based techniques were also investigated and compared to conventional chaotic system control techniques. Both types of chaotic system control techniques were applied to some typical chaotic systems such as the logistic, the Henon, and the Lorenz systems. A prototype model for real-time implementation of these techniques has been suggested to control the FBC system. These models can be implemented for real-time control in a next phase of the project after obtaining further measurements from the experimental model. After testing the control algorithms developed for the FBC model, the next step is to implement them on hardware and link them to the experimental system. In this report, the hardware implementation issues of the control algorithms are also discussed.

  13. Technical and economic assessment of fluidized bed augmented compressed air energy storage system. Volume III. Preconceptual design

    SciTech Connect (OSTI)

    Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

    1981-09-01T23:59:59.000Z

    A technical and economic assessment of fluidized bed combustion augmented compressed air energy storage systems is presented. The results of this assessment effort are presented in three volumes. Volume III - Preconceptual Design contains the system analysis which led to the identification of a preferred component configuration for a fluidized bed combustion augmented compressed air energy storage system, the results of the effort which transformed the preferred configuration into preconceptual power plant design, and an introductory evaluation of the performance of the power plant system during part-load operation and while load following.

  14. Dispersion and combustion of a bitumen-based emulsion in bubbling fluidized bed

    SciTech Connect (OSTI)

    Miccio, F.; Miccio, M.; Repetto, L.; Gradassi, A.T.

    1999-07-01T23:59:59.000Z

    An experimental program was carried out with ORIMULSION{reg{underscore}sign} as a part of an R and D project aimed at demonstrating the feasibility of contemporary combustion and desulfurization in atmospheric bubbling fluidized bed. ORIMULSION is a bitumen-based emulsion that is produced in Venezuela's Orinoco region with 30% w/w water and about 3% w/w sulfur content (on a dry basis). Two atmospheric, pre-pilot, bubbling bed units were used: a 140 mm ID reactor and a 370 mm ID combustor. The first one provides qualitative and quantitative information on dispersion and in-bed retention of ORIMULSION: to this end the bed is operated batchwise in hot tests without combustion and the fuel can be injected into the bed with or without a gaseous atomization stream. With the second one, steady-state combustion tests are carried out under typical conditions of bubbling FBC. The outcome of the experiments and significance of the results are fully discussed in the paper with reference to the ORIMULSION combustion mechanism. Among the other findings, the following ones appear particularly relevant. (1) A carbon condensed phase is actually formed with the structure of tiny carbon deposits on bed particles, but at a very low rate, as a consequence, combustion (and pollutant formation) is dominated by homogeneous mechanisms. (2) Combustion efficiency is always very high, with values approaching 100% in those tests with higher excess air. (3) The in-bed combustion efficiency is enhanced by those fuel injection conditions that lead to dispersion into fine droplets and to effective mixing within the bed; therefore, contrarily to the case of water suspensions of solid fuels, intense atomization of ORIMULSION is recommended.

  15. Trace metal capture by various sorbents during fluidized bed coal combustion

    SciTech Connect (OSTI)

    Ho, T.C.; Ghebremeskel, A.; Hopper, J.R.

    1996-06-01T23:59:59.000Z

    Experiments were conducted in a 1-in. quartz fluidized bed combustor enclosed in an electric furnace. Coal samples were burned in the bed with a sorbent under specific combustion conditions and the amount of metal capture by the sorbent determined. Three different cao samples from the Illinois Basin Coal Sample Bank were tested. Metals involved were Cd, Pb, and Cr; the sorbents included bauxite, zeolite, and lime. Potential metal-sorbent reactions were identified. Results indicated that metal capture by sorbent can be as high as 96%, depending on the metal species and sorbent. All 3 sorbents were capable of capturing Pb, zeolite and lime were able to capture Cr, and bauxite was the only sorbent capable of capturing Cd. Thermodynamic equilibrium calculations suggested the formation of metal-sorbent compounds such as Pb{sub 2}SiO{sub 4}, CdAl{sub 2}O{sub 4}, and CdSiO{sub 3} solids under the combustion conditions.

  16. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect (OSTI)

    Wei-Ping Pan; Zhongxian Cheng; Yan Cao; John Smith

    2006-09-30T23:59:59.000Z

    This report is to present the progress made on the project entitled ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2006 through September 30, 2006. The following activities have been completed: the steel floor grating around the riser in all levels and the three-phase power supply for CFBC System was installed. Erection of downcomers, loop seals, ash bunker, thermal expansion joints, fuel and bed material bunkers with load cells, rotary air-lock valves and fuel flow monitors is underway. Pilot-scale slipstream tests conducted with bromine compound addition were performed for two typical types of coal. The purposes of the tests were to study the effect of bromine addition on mercury oxidization. From the test results, it was observed that there was a strong oxidization effect for Powder River Basin (PRB) coal. The proposed work for next quarter and project schedule are also described.

  17. Natural-sorbent attrition and elutriation characteristics in fluidized-bed coal combustors

    SciTech Connect (OSTI)

    Wilson, W.I.; Fee, D.C.; Myles, K.M.; Johnson, I.; Fan, L.S.

    1981-01-01T23:59:59.000Z

    Laboratory test methods have been developed to measure the attrition and elutriation characteristics of limestones in an atmospheric-pressure fluidized-bed coal combustor (AFBC) at 850/sup 0/C. The attrition constant and elutriation rate were determined for a group of limestones when the system is assumed to be at steady state; that is, after sorbent breakup due to thermal shock and decrepitation during calcination of the sorbent feed are completed. An attrition model has been developed to analyze the laboratory data to predict sorbent performance in AFBCs. The attrition model assumes that the particle disintegration occurs from the abrasive removal of material from the surface of the particle rather than by particle fracture. The attrition constants of the limestones tested ranged from 1.5 x 10/sup -6/ sec/sup -1/ to 9.2 x 10/sup -8/ sec/sup -1/, and the elutriation rate had a fractional mass loss which ranged from 8.1 x 10/sup -8/ min/sup -1/ to 1.0 x 10/sup -3/ min/sup -1/. The test methods and techniques utilized by the model are undergoing refinement to improve the accuracy of the prediction. The attrition and elutriation of a sorbent in a fluidized-bed combustor affects the sorbent performance in a complex manner. The obvious case is the extreme situation where so much sorbent material is lost from the bed via attrition and elutriation that a constant bed height cannot be maintained. Because this aspect is an important consideration in sorbent selection, standard laboratory test methods have been developed to measure the attrition and elutriation characteristics of limestones in AFBCs.

  18. Carbon attrition during the circulating fluidized bed combustion of a packaging-derived fuel

    SciTech Connect (OSTI)

    Mastellone, M.L. [Univ. Federico II of Naples, Napoli (Italy). Dept. of Chemical Engineering] [Univ. Federico II of Naples, Napoli (Italy). Dept. of Chemical Engineering; Arena, U. [National Research Council, Napoli (Italy). Inst. for Combustion Research] [National Research Council, Napoli (Italy). Inst. for Combustion Research; [Univ. of Naples, Caserta (Italy). Dept. of Environmental Sciences

    1999-05-01T23:59:59.000Z

    Cylindrical pellets of a market-available packaging-derived fuel, obtained from a mono-material collection of polyethylene terephthalate (PET) bottles, were batchwise fed to a laboratory scale circulating fluidized bed (CFB) combustor. The apparatus, whose riser was 41 mm ID and 4 m high, was operated under both inert and oxidizing conditions to establish the relative importance of purely mechanical attrition and combustion-assisted attrition in generating carbon fines. Silica sand particles of two size distributions were used as inert materials. For each run, carbon load and carbon particle size distribution in the riser and rates of attrited carbon fines escaping the combustor were determined as a function of time. A parallel investigation was carried out with a bubbling fluidized bed (BFB) combustor to point out peculiarities of attrition in CFB combustors. After devolatilization, PET pellets generated fragile aggregates of char and sand, which easily crumbled, leading to single particles, partially covered by a carbon-rich layer. The injected fixed carbon was therefore present in the bed in three phases: an A-phase, made of aggregates of sand and char, an S-phase, made of individual carbon-covered sand particles and an F-phase, made of carbon fines, abraded by the surfaces of the A- and S-phases. The effects of the size of inert material on the different forms under which fixed carbon was present in the bed and on the rate of escape of attrited carbon fines from the combustor were investigated. Features of carbon attrition in CFB and BFB combustors are discussed.

  19. Atmospheric fluidized bed combustion for small scale market sectors. Final report

    SciTech Connect (OSTI)

    Ashworth, R.A.; Plessinger, D.A.; Sommer, T.M. [Energy and Environmental Research Corp., Orville, OH (United States); Keener, H.M. [Ohio Agricultural Research and Development Center, OH (United States); Webner, R.L. [Will-Burt Co., Orrville, OH (United States)

    1997-03-31T23:59:59.000Z

    The objective of this project was to demonstrate and promote the commercialization of coal-fired atmospheric fluidized bed combustion (AFBC) systems, with limestone addition for SO{sub 2} emissions control and a baghouse for particulate emissions control. This AFBC system was targeted for small scale industrial-commercial-institutional space and process heat applications. A cost effective and environmentally acceptable AFBC technology in this size range would displace a considerable amount of gas/oil with coal while resulting in significant total cost savings to the owner/operators. In the Proof-of-Concept Phase, a 2.2 x 10{sup 6} Btu/hr unit was installed and successfully operated at Cedar Lane Farms (CLF), a commercial nursery in Ohio. The heat from the fluidized bed was used to heat hot water which was recirculated through greenhouses for cool weather heating. The system was designed to be fully automated with minimal operator attention required. The AFBC system installed at CLF was an improved design that incorporated flyash/sorbent reinjection and an underbed feed system to improve limestone utilization. With these additions it was possible to lower the Ca/S ratio from {approximately} 3.0 to 2.0, and still maintain an SO{sub 2} emissions level of 1.2 lb/10{sup 6} Btu when burning the same high sulfur Ohio coal tested at OARDC.

  20. Influence of salts on the sulfur retention of limestone in atmospheric fluidized-bed combustors

    SciTech Connect (OSTI)

    Smith, G.W.; Lenc, J.F.; Shearer, J.A.; Chopra, O.K.; Myles, K.M.; Johnson, I.

    1981-06-01T23:59:59.000Z

    Increased utilization of the available CaO can reduce the amount of limestone required for SO/sub 2/ retention in atmospheric fluidized-bed combustion systems. In laboratory experiments, a pretreatment with inorganic salts, such as NaCl, CaCl/sub 2/, or Na/sub 2/CO/sub 3/, has been found to be an effective method of improving the CaO utilization. This report provides quantitative information on the effectiveness of the same sulfation-enhancement salts in reducing the limestone requirements in an atmospheric fluidized-bed combustor (AFBC). Some laboratory experiments indicated that only 0.1 mol % of salt was required to produce the structural changes in the limestone necessary to increase the CaO utilization. In contrast, the AFBC runs indicated that as much as 2.0 mol % salt was required to obtain a significant increase in the CaO utilization. The increased utilization of the salt-treated limestone in the AFBC reduced the total amount of limestone needed to meet the EPA emission standard for sulfur dioxide to one-half of that required when no treatment is used.

  1. Synthesis gas formation by catalytic oxidation of methane in fluidized bed reactors

    SciTech Connect (OSTI)

    Bharadwaj, S.S.; Schmidt, L.D. (Univ. of Minnesota, Minneapolis (United States))

    1994-03-01T23:59:59.000Z

    The production of synthesis gas (CO + H[sub 2]) by the catalytic partial oxidation of CH[sub 4] in air or O[sub 2] in static fluidized beds at atmospheric pressure has been examined over Pt, Rh, and Ni catalysts coated on 100-[mu]m [alpha]-Al[sub 2]O[sub 3] beads. With CH[sub 4]/air feeds, CO and H[sub 2] selectivities as high as 95% with >90% CH[sub 4] conversion were obtained on Rh and Ni catalysts at contact times of 0.1-0.5 sec. Pt catalysts were found to have significantly lower selectivities for all the three catalysts were improved by heating the reaction mixture above the autothermal reactor temperature and using O[sub 2] instead of air. The selectivities and conversions were fairly constant over the range of contact time s used. Probable reaction pathways for CH[sub 4] oxidation in fluidized beds are discussed. 31 refs., 6 figs.

  2. Pressurized Fluidized Bed Combustion Second-Generation System Research and Development

    SciTech Connect (OSTI)

    A. Robertson; D. Horazak; R. Newby; H. Goldstein

    2002-11-01T23:59:59.000Z

    Research is being conducted under United States Department of Energy (DOE) Contract DE-AC21-86MC21023 to develop a new type of coal-fired plant for electric power generation. This new type of plant--called a Second-Generation or Advanced Pressurized Circulating Fluidized Bed Combustion (APCFB) plant--offers the promise of efficiencies greater than 45% (HHV), with both emissions and a cost of electricity that are significantly lower than conventional pulverized-coal-fired plants with scrubbers. The APCFB plant incorporates the partial gasification of coal in a carbonizer, the combustion of carbonizer char in a pressurized circulating fluidized bed boiler (PCFB), and the combustion of carbonizer syngas in a topping combustor to achieve gas turbine inlet temperatures of 2300 F and higher. A conceptual design was previously prepared for this new type of plant and an economic analysis presented, all based on the use of a Siemens Westinghouse W501F gas turbine with projected carbonizer, PCFB, and topping combustor performance data. Having tested these components at the pilot plant stage, the referenced conceptual design is being updated to reflect more accurate performance predictions together with the use of the more advanced Siemens Westinghouse W501G gas turbine and a conventional 2400 psig/1050 F/1050 F/2-1/2 in. steam turbine. This report describes the updated plant which is projected to have an HHV efficiency of 48% and identifies work completed for the October 2001 through September 2002 time period.

  3. Fluidized-bed atomic layer deposition reactor for the synthesis of core-shell nanoparticles

    SciTech Connect (OSTI)

    Didden, Arjen P.; Middelkoop, Joost; Krol, Roel van de, E-mail: roel.vandekrol@helmholtzberlin.de [Delft University of Technology, Faculty of Applied Sciences, Department of Chemical Engineering, P.O. Box 5045, 2600 GA Delft (Netherlands); Besling, Wim F. A. [NXP Semiconductors, High Tech Campus 32, 5656 AE Eindhoven (Netherlands)] [NXP Semiconductors, High Tech Campus 32, 5656 AE Eindhoven (Netherlands); Nanu, Diana E. [Thin Film Factory B.V., Hemma Oddastrjitte 5, 8927 AA Leeuwarden (Netherlands)] [Thin Film Factory B.V., Hemma Oddastrjitte 5, 8927 AA Leeuwarden (Netherlands)

    2014-01-15T23:59:59.000Z

    The design of a fluidized bed atomic layer deposition (ALD) reactor is described in detail. The reactor consists of three parts that have all been placed in one protective cabinet: precursor dosing, reactor, and residual gas treatment section. In the precursor dosing section, the chemicals needed for the ALD reaction are injected into the carrier gas using different methods for different precursors. The reactor section is designed in such a way that a homogeneous fluidized bed can be obtained with a constant, actively controlled, reactor pressure. Furthermore, no filters are required inside the reactor chamber, minimizing the risk of pressure increase due to fouling. The residual gas treatment section consists of a decomposition furnace to remove residual precursor and a particle filter and is installed to protect the pump. In order to demonstrate the performance of the reactor, SiO{sub 2} particles have been coated with TiO{sub 2} using tetrakis-dimethylamino titanium (TDMAT) and H{sub 2}O as precursors. Experiments with varying pulse times show that saturated growth can be obtained with TDMAT pulse times larger than 600 s. Analysis of the powder with High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy (HAADF-STEM) and energy dispersive X-ray spectroscopy confirmed that after 50 cycles, all SiO{sub 2} particles were coated with a 1.6 nm homogenous shell of TiO{sub 2}.

  4. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect (OSTI)

    Wei-Ping Pan; Songgeng Li; John T. Riley

    2005-10-01T23:59:59.000Z

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2005 through September 30, 2005. The following tasks have been completed. First, the construction of the Circulating Fluidized-Bed (CFB) Combustor Building was completed. The experimental facilities have been moved into the CFB Combustor Building. Second, the fabrication and manufacture of the CFBC Facility is in the final stage and is expected to be completed before November 30, 2005. Third, the drop tube reactor has been remodeled and installed to meet the specific requirements for the investigation of the effects of flue gas composition on mercury oxidation. This study will start in the next quarter. Fourth, the effect of sulfur dioxide on molecular chlorine via the Deacon reaction was investigated. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  5. Bench-scale testing of fluidized-bed sorbents -- ZT-4

    SciTech Connect (OSTI)

    Gangwal, S.K.; Gupta, R.P.

    1995-12-01T23:59:59.000Z

    The objectives of this project are to identify and demonstrate methods for enhancing long-term chemical reactivity and attrition resistance of zinc oxide-based mixed metal-oxide sorbents for desulfurization of hot coal-derived gases in a high-temperature, high-pressure (HTHP) fluidized-bed reactor. Specific objectives of this study are the following: {sm_bullet} Investigating various manufacturing methods to produce fluidizable zinc ferrite and zinc titanate sorbents in a particle size range of 50 to 400 {mu}m; Characterizating and screening the formulations for chemical reactivity, attrition resistance, and structural properties; Testing selected formulations in an HTHP bench-scale fluidized-bed reactor to obtain an unbiased ranking of the promising sorbents; Investigating the effect of various process variables, such as temperature, nature of coal gas, gas velocity, and chemical composition of the sorbent, on the performance of the sorbent; Life-cycle testing of the superior zinc ferrite and zinc titanate formulations under HTHP conditions to determine their long-term chemical reactivity and mechanical strength; Addressing various reactor design issues; Generating a database on sorbent properties and performance (e.g., rates of reaction, attrition rate) to be used in the design and scaleup of future commercial hot-gas desulfurization systems; Transferring sorbent manufacturing technology to the private sector; Producing large batches (in tonnage quantities) of the sorbent to demonstrate commercial feasibility of the preparation method; and Coordinate testing of superior formulations in pilot plants with real and/or simulated coal gas.

  6. Flow Regime Study in a High Density Circulating Fluidized Bed Riser with an Abrupt Exit

    SciTech Connect (OSTI)

    Mei, J.S.; Shadle, L.J.; Yue, P.C.; Monazam, E.R. (REM Engineering Services)

    2007-01-01T23:59:59.000Z

    Flow regime study was conducted in a 0.3 m diameter, 15.5 m height circulating fluidized bed (CFB) riser with an abrupt exit at the National Energy Technology Laboratory of the U.S. Department of Energy. Local particle velocities were measured at various radial positions and riser heights using an optical fiber probe. On-line measurement of solid circulating rate was continuously recorded by the Spiral. Glass beads of mean diameter 61 ?m and particle density of 2,500 kg/m3 were used as bed material. The CFB riser was operated at various superficial gas velocities ranging from 3 to 7.6 m/s and solid mass flux from 20 to 550 kg/m2-s. At a constant riser gas velocity, transition from fast fluidization to dense suspension upflow (DSU) regime started at the bottom of the riser with increasing solid flux. Except at comparatively low riser gas velocity and solid flux, the apparent solid holdup at the top exit region was higher than the middle section of the riser. The solid fraction at this top region could be much higher than 7% under high riser gas velocity and solid mass flux. The local particle velocity showed downward flow near the wall at the top of the riser due to its abrupt exit. This abrupt geometry reflected the solids and, therefore, caused solid particles traveling downward along the wall. However, at location below, but near, the top of the riser the local particle velocities were observed flowing upward at the wall. Therefore, DSU was identified in the upper region of the riser with an abrupt exit while the fully developed region, lower in the riser, was still exhibiting core-annular flow structure. Our data were compared with the flow regime boundaries proposed by Kim et al. [1] for distinguishing the dilute pneumatic transport, fast fluidization, and DSU.

  7. [Pulsed atmospheric fluidized bed combustion (PAFBC)]. Technical progress report, February 1989--April 1989

    SciTech Connect (OSTI)

    Not Available

    1989-05-01T23:59:59.000Z

    The fourth Quarterly Technical Progress Report presents the results of work accomplished during the period February 6 through April 30, 1989. the overall objective of the program is the development of a pulsed atmospheric, fluidized bed combustion (PAFBC) technology to burn coal and to provide heat and steam to commercial, institutional, and small industrial applications at a reasonable price in an environmentally acceptable manner. During this past quarter, a baseline for comparing PAFBC vs. AFBC performance was established and the initial series of PAFBC coal-fired combustion tests was completed. The AFBC baseline was representative of bubbling bed units with the exception of emissions which were somewhat higher and attributable to the size constraints of the AFBC unit. However, it still provided a valid baseline for referencing and optimizing PAFBC performance. Initial coal combustion tests in the pulsed fluid-bed verified enhanced performance in comparison to the non-pulsed beds, providing reduced NO{sub x}, CO, and SO{sub 2} emissions as well as higher steam generation rates and considerably lower entrainment losses. 9 figs., 4 tabs.

  8. Gas turbine blade materials' corrosion in the effluent from a pressurized fluidized bed combustor

    SciTech Connect (OSTI)

    Mc Carron, R.L.; Brobst, R.P.

    1984-06-01T23:59:59.000Z

    Two nominally 200-hour tests were conducted in the General Electric Company's Pressurized Fluidized Bed (PFB) Coal Combustion facility in Malta, NY. The purpose of the tests was to evaluate the influence of bed operating temperature and dolomite composition on the degradation of gas turbine vane and blade base alloys and protective coating/cladding systems in the effluent from a PFB. Operating conditions were as follows: 1710/sup 0/-1770/sup 0/F (932/sup 0/C-966/sup 0/C) bed temperature and Pfizer dolomite (0.1 wt% sodium plus potassium), and 1630/sup 0/-1690/sup 0/F (888/sup 0/-921/sup 0/C) bed temperature and Tymochtee dolomite (0.9 wt% sodium plus potassium). Brookville seam coal with 4.5 wt% sulfur, 0.3 wt% alkali, and 0.17 wt% chlorine was used in both tests. Bare nickel and cobalt-base vane and blade alloys were susceptible to hot corrosion over the entire temperature range investigated, 1100/sup 0/1600/sup 0/F (593/sup 0/-871/sup 0/C). CoCrAlY and FeCrAlY overlay coatings showed good corrosion resistance at temperatures above 1450/sup 0/F, but were susceptible to pitting attack at lower temperatures. A platinum-aluminide diffusion coating showed excellent corrosion resistance at all temperatures.

  9. Four stage, fluidized bed gasification process minimizes NO{sub x}

    SciTech Connect (OSTI)

    Lewis, F.M.; Haug, R.T.

    1999-07-01T23:59:59.000Z

    In 1981, after a long and thorough study of alternative methods of sewage sludge (biosolids) disposal, the City of Los Angeles (CLA) embarked on a pilot test program to incinerate dried sewage sludge from its Hyperion Wastewater Treatment Plant. This dried sludge is typically 47% ash, 53% combustible, and has an average higher heating value (HHV), moisture, ash-free (MAF) of 10,675 Btu/Lbm. The dried sludge is called sludge derived fuel (SDF). Approximately 8% of the MAF fraction of SDF is fuel-bound nitrogen. When SDF, with its extremely high fuel-bound nitrogen, was combusted in conventional multiple hearth and fluidized bed pilot plant furnaces, NO{sub x} emissions were extremely high ({gt}1,000 ppm). Faced with this dilemma, the CLA initiated an R and D program to reduce NO{sub x}. The pilot tests with a sub-stoichiometric fluid bed and an excess air afterburner (two-stages) reduced NO{sub x} to 400--600 ppm. With one intermediate stage added (three-stage), NO{sub x} was reduced to 130--150 ppm. However, when the following four-stage process was developed and tested, NO{sub x} was reduced to 50--75 ppm. Stage 1: Sub-stoichiometric fluidized bed operating at a nominal 30% stoichiometric air (SA). Stage 2:Sub-stoichiometric zone operating at a nominal 80% SA. Stage 3: Stoichiometric zone operating at a nominal 100% SA. Stage 4: Excess air zone (Afterburner) operating at a nominal 135% SA (35% excess air). After pilot testing was complete and design parameters established, three full-size, fluid bed gasifiers (two operational--one standby) were designed, constructed and operated until 1996. This paper describes the design, operation, and emission testing of these four-stage fluid bed gasifiers with special emphasis on the problems of (a) pneumatic feeding of SDF powder into the pressurized bed and (b) baghouse fabrics (expanded PTEE membrane on PTFE scrim). Final emission test results for NO{sub x} and other criteria pollutants are also presented.

  10. Design and operation of a coal-washery sludge fired 75 t/h steam fluidized bed combustion boiler

    SciTech Connect (OSTI)

    Jiang, X.; Chi, Y.; Yan, J. [and others

    1999-07-01T23:59:59.000Z

    Based upon the coal-washery sludge fluidized bed agglomerating combustion technology developed by Zhejiang University and the design and operation experience accumulated from the 35 t/h stream fluidized bed boilers, a coal-washery sludge fired 75 t/h steam circulating fluidized bed boiler (12 MWe) for cogeneration application was designed. The design features of the boiler can be summarized as follows: (1) Combination of solid particle impact separator (in furnace circulation) and moderate temperature ({approximately}500 C) uniflow cyclone; (2) Low solid circulation rate; (3) Loop-seal for solid particle recirculation; (4) Air duct oil burner for boiler start-up; and (5) Coal-Washery sludge firing or co-firing of coal-washery sludge and coal. The boiler is installed at Dongtan Coal Mine Cogeneration Plant in Shandong Province of China. The daily disposal capacity of coal-washery sludge is over 300 tons. The first trial operation of the boiler was on Dec. 18, 1997. The cogeneration plant has been in commercial operation since May 1998. This boiler is the largest capacity boiler to dispose of coal-washery sludge in China. The successful operation of this boiler has sped up the commercialization process of the coal-washery sludge fluidized bed combustion technology.

  11. Influence of sulfation-enhancement salt additives on the corrosion behavior of materials in atmospheric fluidized-bed combustors

    SciTech Connect (OSTI)

    Chopra, O.K.; Smith, G.W.; Lenc, J.F.; Myles, K.M.; Johnson, I.

    1981-12-01T23:59:59.000Z

    Increased utilization of CaO can reduce the amount of limestone required for SO/sub 2/ retention in atmospheric fluidized-bed combustion (AFBC) systems. A recently developed method of improving the utilization involves treating the limestone with various salts, such as NaCl, CaCl/sub 2/, or Na/sub 2/CO/sub 3/. The present report provides information on the influence of these sulfation-enhancement salt additives on corrosion of candidate structural materials for AFBC systems. Four 100-h and two 1000-h corrosion test runs were conducted in a 152-mm-ID fluidized-bed coal combustor. In each run, three air-cooled corrosion probes and four uncooled corrosion coupon holders, each with seven specimens, were installed at various locations in the fluidized bed and freeboard sections of the combustor. The temperature of the corrosion specimens ranged from 400 to 850/sup 0/C. As controls, some of the runs were made without any salt additions. The results indicate that the presence of salt has no effect on the corrosion behavior of the various iron- and nickel-base alloys that were placed in the freeboard section of the combustor. Although the uncooled alloys within the fluidized bed do undergo oxidation/sulfidation corrosion, the addition of CaCl/sub 2/ does not further affect the corrosion rate; the addition of NaCl or Na/sub 2/CO/sub 3/ increases the corrosion rates for the high-nickel alloys, but not for the stainless steels. The observed corrosion rates for all of the alloys from within the fluidized bed containing approximately 2 mol % CaCl/sub 2/ or Na/sub 2/CO/sub 3/ are in good agreement with the rates reported in other similar studies without salt additions. The corrosion data and a metallographic evaluation of the corrosion specimens are presented.

  12. Development of methods to predict agglomeration and deposition in fluidized-bed combustion systems (FBCS). Topical report

    SciTech Connect (OSTI)

    Mann, M.D.; Henderson, A.K.; Swanson, M.L.; Allan, S.E.

    1996-02-01T23:59:59.000Z

    The successful design and operation of advanced combustion systems require the ability to control and mitigate ash-related problems. The major ash-related problems are slag flow control, slag attack on the refractory, ash deposition on heat-transfer surfaces, corrosion and erosion of equipment materials, and emissions control. These problems are the result of physical and chemical interactions of the fuels, bed materials, and system components. The interactions that take place and ultimately control ash behavior in fluidized-bed combustion (FBC) systems are controlled by the abundance and association of the inorganic components in coal and by the system conditions. Because of the complexity of the materials and processes involved, the design and operations engineer often lacks the information needed to predict ash behavior and reduce ash-related problems. The deposition of ashes from the fluidized bed combustion of lignite and petroleum coke is described in this paper.

  13. Verification of sub-grid filtered drag models for gas-particle fluidized beds with immersed cylinder arrays

    SciTech Connect (OSTI)

    Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran

    2014-03-01T23:59:59.000Z

    The accuracy of coarse-grid multiphase CFD simulations of fluidized beds may be improved via the inclusion of filtered constitutive models. In our previous study (Sarkar et al., Chem. Eng. Sci., 104, 399-412), we developed such a set of filtered drag relationships for beds with immersed arrays of cooling tubes. Verification of these filtered drag models is addressed in this work. Predictions from coarse-grid simulations with the sub-grid filtered corrections are compared against accurate, highly-resolved simulations of full-scale turbulent and bubbling fluidized beds. The filtered drag models offer a computationally efficient yet accurate alternative for obtaining macroscopic predictions, but the spatial resolution of meso-scale clustering heterogeneities is sacrificed.

  14. Process for generating electricity in a pressurized fluidized-bed combustor system

    DOE Patents [OSTI]

    Kasper, Stanley (Pittsburgh, PA)

    1991-01-01T23:59:59.000Z

    A process and apparatus for generating electricity using a gas turbine as part of a pressurized fluidized-bed combustor system wherein coal is fed as a fuel in a slurry in which other constituents, including a sulfur sorbent such as limestone, are added. The coal is combusted with air in a pressurized combustion chamber wherein most of the residual sulfur in the coal is captured by the sulfur sorbent. After particulates are removed from the flue gas, the gas expands in a turbine, thereby generating electric power. The spent flue gas is cooled by heat exchange with system combustion air and/or system liquid streams, and the condensate is returned to the feed slurry.

  15. [Pulsed atmospheric fluidized-bed combustion]. Technical progress report, August--October 1988

    SciTech Connect (OSTI)

    Not Available

    1988-10-01T23:59:59.000Z

    This second Quarterly Technical Progress Report presents the results of work accomplished during the period July 25 through October 30, 1988. The overall objective of the program is the development of a pulsed atmospheric fluidized-bed combustion (PAFBC) technology to burn coal and to provide heat and steam to commercial, institutional, and small industrial applications at a reasonable price in environmentally acceptable manner. Progress during this period accelerated rapidly. The site for the installation of the PAFBC was completed. All of the system components, including the fabrication of the furnace, were also completed. Additional component testing and inspection was also completed. By the end of this period the AFBC was completely assembled and installed at the site adjacent to the MTCI facility and shakedown tests were initiated. 20 figs., 2 tabs.

  16. Testing of Oregon dolomite from central Kentucky in an atmospheric fluidized-bed combustor. Technical report

    SciTech Connect (OSTI)

    Not Available

    1984-12-01T23:59:59.000Z

    This report is the first in a series of six limestone reports, and describes the results of testing of an Oregon dolomite from central Kentucky (1/8 in. x 0, 63% CaCO/sub 3/, 31% MgCO/sub 3/) in a 2 ft/ 8 in. x 2 ft. 5 in., 0.75-MW AFBC. All six limestones (or dolomites) were tested using the same coal, a washed Western Kentucky No. 9 coal (1/4 in. x 0, 3.1% sulfur, 9% ash, 13230 Btu/lb.). Operating problems encountered are described. On the basis of numbers, it was concluded that an economic re-evaluation of low-superficial-velocity fluidized beds is warranted, and that it is feasible to burn high-sulfur coals efficiently in an AFBC when Oregon dolomite from central Kentucky is used as the sulfur sorbent.

  17. Circulating fluidized bed hydrodynamics experiments for the multiphase fluid dynamics research consortium (MFDRC).

    SciTech Connect (OSTI)

    Oelfke, John Barry; Torczynski, John Robert; O'Hern, Timothy John; Tortora, Paul Richard; Bhusarapu, Satish (; ); Trujillo, Steven Mathew

    2006-08-01T23:59:59.000Z

    An experimental program was conducted to study the multiphase gas-solid flow in a pilot-scale circulating fluidized bed (CFB). This report describes the CFB experimental facility assembled for this program, the diagnostics developed and/or applied to make measurements in the riser section of the CFB, and the data acquired for several different flow conditions. Primary data acquired included pressures around the flow loop and solids loadings at selected locations in the riser. Tomographic techniques using gamma radiation and electrical capacitance were used to determine radial profiles of solids volume fraction in the riser, and axial profiles of the integrated solids volume fraction were produced. Computer Aided Radioactive Particle Tracking was used to measure solids velocities, fluxes, and residence time distributions. In addition, a series of computational fluid dynamics simulations was performed using the commercial code Arenaflow{trademark}.

  18. Radioactive Demonstrations Of Fluidized Bed Steam Reforming (FBSR) With Hanford Low Activity Wastes

    SciTech Connect (OSTI)

    Jantzen, C. M.; Crawford, C. L.; Burket, P. R.; Bannochie, C. J.; Daniel, W. G.; Nash, C. A.; Cozzi, A. D.; Herman, C. C.

    2012-10-22T23:59:59.000Z

    Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One immobilization technology being considered is Fluidized Bed Steam Reforming (FBSR) which offers a low temperature (700-750?C) continuous method by which wastes high in organics, nitrates, sulfates/sulfides, or other aqueous components may be processed into a crystalline ceramic (mineral) waste form. The granular waste form produced by co-processing the waste with kaolin clay has been shown to be as durable as LAW glass. The FBSR granular product will be monolithed into a final waste form. The granular component is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals such as sodalite. Production of the FBSR mineral product has been demonstrated both at the industrial, engineering, pilot, and laboratory scales on simulants. Radioactive testing at SRNL commenced in late 2010 to demonstrate the technology on radioactive LAW streams which is the focus of this study.

  19. Rocky Flats Plant fluidized-bed incinerator. Engineering design and reference manual

    SciTech Connect (OSTI)

    Meile, L.J.

    1982-11-05T23:59:59.000Z

    The information in this manual is being presented to complete the documentation of the fluidized-bed incineration (FBI) process development at the Rocky Flats Plant. The information pertains to the 82-kg/hour demonstration unit at the Rocky Flats Plant. This document continues the presentation of design reference material in the aeas of equipment drawings, space requirements, and unit costs. In addition, appendices contain an operating procedure and an operational safety analysis of the process. The cost figures presented are based on 1978 dollars and have not been converted to a current dollar value. Also, the cost of modifications are not included, since they would be insignificant if they were incorporated into a new installation.

  20. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect (OSTI)

    Wei-Ping Pan; Songgeng Li

    2006-01-01T23:59:59.000Z

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period October 1, 2005 through December 31, 2005. Work was performed on the following activities. First, the fabrication and manufacture of the CFBC Facility is nearly completed. The erection of the CFBC facility is expected to start in the second week of February, 2006. Second, effect of flue gas components on mercury oxidation was investigated in a drop tube reactor. As a first step, experiment for mercury oxidation by chlorine was investigated. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  1. Performance analysis of co-firing waste materials in an advanced pressurized fluidized-bed combustor

    SciTech Connect (OSTI)

    Bonk, D.L.; McDaniel, H.M. [USDOE Morgantown Energy Technology Center, WV (United States); DeLallo, M.R. Jr.; Zaharchuk, R. [Gilbert/Commonwealth, Inc., Reading, PA (United States)

    1995-07-01T23:59:59.000Z

    The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal wastes. Leading this approach is the atmospheric fluidized-bed combustor (AFBC). It has demonstrated its commercial acceptance in the utility market as a reliable source of power by burning a variety of waste and alternative fuels. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economical feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. The results and conclusions developed are generally applicable to current and advanced PFBC design concepts. Wastes considered for co-firing include municipal solid waste (MSW), sewage sludge, and industrial de-inking sludge. Conceptual designs of two power plants rated at 250 MWe and 150 MWe were developed. Heat and material balances were completed for each plant along with environmental issues. With the PFBC`s operation at high temperature and pressure, efforts were centered on defining feeding systems capable of operating at these conditions. Air emissions and solid wastes were characterized to assess the environmental performance comparing them to state and Federal regulations. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

  2. [Pulsed atmospheric fluidized bed combustion (PAFBC)]. Technical progress report, May--July 1988

    SciTech Connect (OSTI)

    Not Available

    1988-10-01T23:59:59.000Z

    This first Quarterly Technical Progress Report presents the results of work accomplished during the period April 19 through July 24,1988. The overall objective of the program is the development of a pulsed atmospheric fluidized-bed combustion (PAFBC) technology to burn coal and to provide heat and steam to commercial, institutional, and small industrial applications at a reasonable price in an environmentally acceptable manner. the program scope consisted of two tasks; the first was to establish preliminary feasibility by the use of theoretical and state-of-the-art information. This task was completed during the first quarter of the contract period and a topical report entitled, ``Pulsed Atmospheric Fluidized Bed combustion (PAFBC) - Preliminary Feasibility Study`` was prepared as a ``decision point to proceed`` deliverable in accordance with the terms of the contract. This first quarterly progress report therefore covers the contract activities subsequent to the approval of the feasibility study and the decision to proceed with the Task 2 effort. As the initial quarterly technical progress report, this document includes a subsection on background which will be omitted in subsequent reports. All effort during this period was devoted to the design and analysis of the PAFBC. Design drawings were prepared and fabrication and procurement initiated. Quotations were evaluated and a fabrication contract awarded. A site adjacent to the MTCI building was chosen for the installation of the PAFBC. Some ancillary components were purchased, renovated, and tested. Some delays in delivery of components have resulted in some schedule delay. It is anticipated that the program pace will accelerate as soon as parts are received and installation and assembly are initiated. 10 figs.,1 tab.

  3. Characterizing and modeling combustion of mild-gasification chars in pressurized fluidized beds

    SciTech Connect (OSTI)

    Daw, C.S.

    1995-10-01T23:59:59.000Z

    Oak Ridge National Laboratory (ORNL) is supported by the Morgantown Energy Technology Center (METC) of the Department of Energy (DOE) under FWP-FEAA310 to characterize the fuel properties of liquid and char coproducts from the mild gasification of coal, Because most of the energy content of coals subjected to mild gasification is retained in the byproduct char, efficient and cost-effective utilization of the char is essential in insuring that candidate gasification processes are commercially viable. One potential use for char of particular interest to DOE is pressurized fluidized bed combustion (PFBC). PFBC is of particular interest because it has the potential for 10 to 30 percent greater overall energy efficiency than atmospheric fluidized bed combustion (AFBC), While bench-scale tools and analytical procedures for characterizing fuels for AFBC have been recently demonstrated, no such tools have been reliably demonstrated for PFBC. This report summarizes the results of joint research collaboration between ORNL and B&W that has been directed at modifying the previously developed AFBC fuel characterization procedures to be applicable for mild-gasification chars and PFBC conditions. The specific objectives were to: (1) characterize the combustion reactivity of a selected set of candidate mild- gasification chars at PFB conditions; (2) compare the measured char characteristics with those of more conventional PFBC fuels; (3) modify an AFBC computer code previously developed by B&W and ORNL for the Electric Power Research Institute (EPRI) to predict PFBC performance; and (4) apply the modified code and measured char combustion characteristics to make performance predictions for the candidate chars relative to more conventional fuels.

  4. Staged combustion for reduced NO/sub x/ emissions from an atmospheric fluidized-bed combustor

    SciTech Connect (OSTI)

    Duqum, J.N.; Fortino, R.T.; Loudin, K.L.

    1989-06-01T23:59:59.000Z

    To reduce exhaust NO/sub x/ below existing levels in an atmospheric fluidized-bed combustor, two-stage combustion was studied on the 6' /times/ 6' (6 /times/ 6) atmospheric fluidized-bed combustion (AFBC) facility at the Babcock and Wilcox (B and W) Alliance, Ohio, Research Center. This report documents the tests and related numerical modeling. The two-stage testing was conducted with Pittsburgh No. 8 coal. NO/sub x/ was reduced to a minimum level of 132 ppM at the stack, or about 50% below baseline NO/sub x/ with overfire air (OFA). Combustion efficiency was maintained at 98% at these minimum NO/sub x/ conditions. Although acceptable sulfur capture was not maintained, tests with overbed fly ash recycle and higher OFA jet velocity indicated that sulfur capture can be brought to acceptable levels by improving freeboard mixing. Numerical modeling was investigated as a means of scaling the results of staged combustion from the 6 /times/ 6 AFBC facility to larger AFBC units. B and W's existing three-dimensional models for pulverized-coal combustion and NO/sub x/ formation and reduction were applied to the 6 /times/ 6 freeboard. Lagrangian particle transport models were found capable of predicting elutriation. Exit flue gas temperatures were well predicted, but internal freeboard temperatures were underpredicted. B and W's NO/sub x/ model under predicted reaction rates for fuel NO/sub x/ production and reduction. The OFA ports for this project were designed using mixing analysis without combustion. This type of analysis can help in the design of OFA ports for larger units such as Tennessee Valley Authority's 20-MW pilot-scale plant. However, additional computer code validation is required before combustion and NO/sub x/ analyses can be used for scale-up. 37 refs., 43 figs.

  5. Fluidized Bed Steam Reforming of Hanford LAW Using THORsm Mineralizing Technology

    SciTech Connect (OSTI)

    Olson, Arlin L.; Nicholas R Soelberg; Douglas W. Marshall; Gary L. Anderson

    2004-11-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) documented, in 2002, a plan for accelerating cleanup of the Hanford Site, located in southeastern Washington State, by at least 35 years. A key element of the plan was acceleration of the tank waste program and completion of ''tank waste treatment by 2028 by increasing the capacity of the planned Waste Treatment Plant (WTP) and using supplemental technologies for waste treatment and immobilization.'' The plan identified steam reforming technology as a candidate for supplemental treatment of as much as 70% of the low-activity waste (LAW). Mineralizing steam reforming technology, offered by THOR Treatment Technologies, LLC would produce a denitrated, granular mineral waste form using a high-temperature fluidized bed process. A pilot scale demonstration of the technology was completed in a 15-cm-diameter reactor vessel. The pilot scale facility was equipped with a highly efficient cyclone separator and heated sintered metal filters for particulate removal, a thermal oxidizer for reduced gas species and NOx destruction, and a packed activated carbon bed for residual volatile species capture. The pilot scale equipment is owned by the DOE, but located at the Science and Technology Applications Research (STAR) Center in Idaho Falls, ID. Pilot scale testing was performed August 2–5, 2004. Flowsheet chemistry and operational parameters were defined through a collaborative effort involving Idaho National Engineering and Environmental Laboratory, Savannah River National Laboratory (SRNL), and THOR Treatment Technologies personnel. Science Application International Corporation, owners of the STAR Center, personnel performed actual pilot scale operation. The pilot scale test achieved a total of 68.7 hrs of cumulative/continuous processing operation before termination in response to a bed de-fluidization condition. 178 kg of LAW surrogate were processed that resulted in 148 kg of solid product, a mass reduction of about 17%. The process achieved essentially complete bed turnover within approximately 40 hours. Samples of mineralized solid product materials were analyzed for chemical/physical properties. SRNL will report separately the results of product performance testing that were accomplished.

  6. Fundamental study on transient bubble (slug) behavior by characterizing transient forces of solid particles in fluidized beds. Topical report, January 1991--June 1992

    SciTech Connect (OSTI)

    Kono, H.

    1992-10-01T23:59:59.000Z

    The objective of this work is to recognize and interpret the signals of transient motion of bubbles (slugs) in fluidized beds (METC/DOE) by measuring and utilizing the signals of transient gas phase pressure fluctuation, and also by taking the video pictures of transient motions of the bubbles and emulsion phase in fluidized beds. The two signals were measured simultaneously in a three dimensional fluidized bed. Correlation study on the voidage signal and pressure fluctuation was carried out. A domain concept was introduced and new bubble classification was suggested. A video recording approach was also developed to record the transient bubble motion in a two dimensional fluidized bed with a special consideration. This new approach enhances the understanding of bubble image and the physical meaning of transient particle forces. The fundamental mechanism of bubble flow was experimentally investigated and interesting new findings of the transient bubble flow were obtained.

  7. Economic Evaluation of By-Product Power/Co-Generation Systems for Industrial Plants with Fluidized-Bed Coal Burning Facilities

    E-Print Network [OSTI]

    Mesko, J. E.

    1980-01-01T23:59:59.000Z

    Economic analysis of the construction and operation of by-product electric power and steam/power cogeneration systems in coal fired fluidized-bed steam cycles, located at individual industrial sites analyzed by the author, is being presented...

  8. Design considerations for sludge fired fluidized bed incinerator-cum-boiler

    SciTech Connect (OSTI)

    Bapat, D.W.; Vishwanathan, K. [Thermax Ltd., Pune (India). Research and Development Centre

    1997-12-31T23:59:59.000Z

    Thermal Limited, a major player in the field of Fluidized Bed Boilers in India, has supplied on a turnkey basis, three boilers each of 22.5 tons per hour capacity as a part of Cogeneration system for PT. South Pacific Viscose, Indonesia. The plant generates huge volumes of sludge from its effluent Treatment Plant (ETP). The sludge produced from the ETP has a moisture content of about 98%, which is subsequently reduced to about 78% using a decanter before feeding the sludge into the boiler. The waste sludge has a negative heating value ({minus}150 kcal/kg on NCV basis) and required coal as support fuel for burning. The plant`s requirement was to incinerate the entire sludge generated in the plant, which meant that nearly 50% of the fuel fed to the boiler consisted of the waste sludge. Additional requirements were to burn coal and oil as back-up fuels. This paper deals with the challenges encountered and various design features provided in the configuration of the incinerator-cum-boiler including conveying, feeding and spreading arrangement of the waste sludge for effective incineration in addition to burning coal and oil. Also included in the paper is a brief description of the automatic control logics for combustion control and bed temperature control.

  9. Effect of pressure on second-generation pressurized fluidized bed combustion plants

    SciTech Connect (OSTI)

    Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States); Bonk, D.L. [USDOE Morgantown Energy Technology Center, WV (United States)

    1993-06-01T23:59:59.000Z

    In the search for a more efficient, less costly, and more environmentally responsible method for generating electrical power from coal, research and development has turned to advanced pressurized fluidized bed combustion (PFBC) and coal gasification technologies. A logical extension of this work is the second- generation PFBC plant, which incorporates key components of each of these technologies. In this new type of plant, coal devolatilized/carbonized before it is injected into the PFB combustor bed, and the low Btu fuel gas produced by this process is burned in a gas turbine topping combustor. By integrating coal carbonization with PFB coal/char combustion, gas turbine inlet temperatures higher than 1149{degrees}C (2100{degrees}F) can be achieved. The carbonizer, PFB combustor, and particulate-capturing hot gas cleanup systems operate at 871{degrees}C (1600{degrees}F), permitting sulfur capture by lime-based sorbents and minimizing the release of coal contaminants to the gases. This paper presents the performance and economics of this new type of plant and provides a brief overview of the pilot plant test programs being conducted to support its development.

  10. Pressurized fluidized bed reactor and a method of operating the same

    DOE Patents [OSTI]

    Isaksson, Juhani (Karhula, FI)

    1996-01-01T23:59:59.000Z

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  11. Hydrotreating the bitumen-derived hydrocarbon liquid produced in a fluidized-bed pyrolysis reactor

    SciTech Connect (OSTI)

    Longstaff, D.C.; Deo, M.D.; Hanson, F.V.; Oblad, A.G.; Tsai, C.H.

    1991-12-31T23:59:59.000Z

    The pyrolysis of bitumen-impregnated sandstone produces three primary product streams: C{sub 1}-C{sub 4} hydrocarbons gases, a C{sub 5}{sup +} total liquid product, and a carbonaceous residue on the spent sand. The bitumen-derived hydrocarbon liquid was significantly upgraded relative to the native bitumen: it had a higher API gravity, lower Conradson carbon residue, asphaltene content, pour point and viscosity and a reduced distillation endpoint relative to the native bitumen. The elemental composition was little different from that of the native bitumen except for the hydrogen content which was lower. The bitumen-derived liquid produced in a 4-inch diameter fluidized-bed reactor from the Whiterocks tar sand deposit has been hydrotreated in a fixed-bed reactor to determine the extent of upgrading as a function of process operating variables. The extent of denitrogenation and desulfurization of the bitumen-derived liquid was used to monitor catalyst activity as a function of process operating variables and to estimate the extent of catalyst deactivation as a function of time on-stream. The apparent kinetics for the nitrogen and sulfur removal reactions were determined. Product distribution and yield data were also obtained.

  12. Hydrotreating the bitumen-derived hydrocarbon liquid produced in a fluidized-bed pyrolysis reactor

    SciTech Connect (OSTI)

    Longstaff, D.C.; Deo, M.D.; Hanson, F.V.; Oblad, A.G.; Tsai, C.H.

    1991-01-01T23:59:59.000Z

    The pyrolysis of bitumen-impregnated sandstone produces three primary product streams: C{sub 1}-C{sub 4} hydrocarbons gases, a C{sub 5}{sup +} total liquid product, and a carbonaceous residue on the spent sand. The bitumen-derived hydrocarbon liquid was significantly upgraded relative to the native bitumen: it had a higher API gravity, lower Conradson carbon residue, asphaltene content, pour point and viscosity and a reduced distillation endpoint relative to the native bitumen. The elemental composition was little different from that of the native bitumen except for the hydrogen content which was lower. The bitumen-derived liquid produced in a 4-inch diameter fluidized-bed reactor from the Whiterocks tar sand deposit has been hydrotreated in a fixed-bed reactor to determine the extent of upgrading as a function of process operating variables. The extent of denitrogenation and desulfurization of the bitumen-derived liquid was used to monitor catalyst activity as a function of process operating variables and to estimate the extent of catalyst deactivation as a function of time on-stream. The apparent kinetics for the nitrogen and sulfur removal reactions were determined. Product distribution and yield data were also obtained.

  13. Pressurized fluidized bed reactor and a method of operating the same

    DOE Patents [OSTI]

    Isaksson, J.

    1996-02-20T23:59:59.000Z

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  14. Data summary of municipal solid waste management alternatives. Volume 5, Appendix C, Fluidized-bed combustion

    SciTech Connect (OSTI)

    none,

    1992-10-01T23:59:59.000Z

    This appendix provides information on fluidized-bed combustion (FBC) technology as it has been applied to municipal waste combustion (MWC). A review of the literature was conducted to determine: (1) to what extent FBC technology has been applied to MWC, in terms of number and size of units was well as technology configuration; (2) the operating history of facilities employing FBC technology; and (3) the cost of these facilities as compared to conventional MSW installations. Where available in the literature, data on operating and performance characteristics are presented. Tabular comparisons of facility operating/cost data and emissions data have been complied and are presented. The literature review shows that FBC technology shows considerable promise in terms of providing improvements over conventional technology in areas such as NOx and acid gas control, and ash leachability. In addition, the most likely configuration to be applied to the first large scale FBC dedicated to municipal solid waste (MSW) will employ circulating bed (CFB) technology. Projected capital costs for the Robbins, Illinois 1600 ton per day CFB-based waste-to-energy facility are competitive with conventional systems, in the range of $125,000 per ton per day of MSW receiving capacity.

  15. Heat transfer from a horizontal finned tube bundle in bubbling fluidized beds of small and large particles

    SciTech Connect (OSTI)

    Devaru, C.B. [Jayachamaraja College of Engineering, Mysore (India). Dept. of Mechanical Engineering; Kolar, A.K. [Indian Inst. of Technology, Madras (India). Dept. of Mechanical Engineering

    1995-12-31T23:59:59.000Z

    Steady state average heat transfer coefficient measurements were made by the local thermal simulation technique in a cold, square, bubbling air-fluidized bed (0.305 m x 0.305 m) with immersed horizontal finned tube bundles (in-line and staggered) with integral 60{degree} V-thread. Studies were conducted using beds of small (average particle diameter less than 1 mm) sand particles and of large (average particle diameter greater thin 1 mm) particles (raagi, mustard, millet and coriander). The fin pitch varied from 0.8 to 5.0 mm and the fin height varied from 0.69 to 4.4 mm. The tube pitch ratios used were 1.75 and 3.5. The influence of bed particle diameter, fluidizing velocity, fin pitch, and tube pitch ratio on average heat transfer coefficient was studied. Fin pitch and bed particle diameter are the most significant parameters affecting heat transfer coefficient within the range of experimental conditions. Bed pressure drop depends only on static bed height. New direct correlations, incorporating easily measurable quantities, for average heat transfer coefficient for finned tube bundles (in-line and staggered) are proposed.

  16. An experimental study of temperature of burning coal particle in fluidized bed

    SciTech Connect (OSTI)

    Mirko Komatina; Vasilije Manovic; Dragoljub Dakic [University of Belgrade, Belgrade (Serbia and Montenegro). Faculty of Mechanical Engineering

    2006-02-01T23:59:59.000Z

    The purpose of this study was to investigate the temperature of coal particle during combustion in fluidized bed (FB). It is necessary to know the coal particle temperature in order to predict kinetics of chemical reactions within and at the surface of coal particle, accurate NOx and SO{sub 2} emission, fragmentation, attrition, the possibility of ash melting, etc. The experimental investigations were conducted in order to obtain the reliable data on the temperature of particle burning in the FB. A method using thermocouple was developed and applied for measurements. Thermocouple was inserted in the center of the particle shaped into spherical form with various diameters: 5, 7, 8, and 10 mm. Two characteristic types of low-rank Serbian coals were investigated. Experiments were done at the FB temperature in the range of 590-710{sup o}C. Two types of experiments were performed: (I) combustion using air as fluidization gas and (ii) devolatilization with N{sub 2} followed by combustion of obtained char in air. The temperature histories of particles during all stages after introducing in the FB were analyzed. Temperature difference between the burning particle and the FB was defined as a criterion, for comparison. It was shown that the temperature profile depends on the type of the coal and the particle size. The higher temperature difference between the burning particle and the FB was obtained for smaller particles and for lignite (130-180{sup o}C) in comparison to the brown coal (70-130{sup o}C). The obtained results indicated that a primary role in the temperature history of coal particle have the mass and heat transfer through combusting particle. 24 refs., 6 figs., 3 tabs.

  17. Low temperature SO{sub 2} removal with solid sorbents in a circulating fluidized bed absorber. Final report

    SciTech Connect (OSTI)

    Lee, S.K.; Keener, T.C.

    1994-10-10T23:59:59.000Z

    A novel flue gas desulfurization technology has been developed at the University of Cincinnati incorporating a circulating fluidized bed absorber (CFBA) reactor with dry sorbent. The main features of CFBA are high sorbent/gas mixing ratios, excellent heat and mass transfer characteristics, and the ability to recycle partially utilized sorbent. Subsequently, higher SO{sub 2} removal efficiencies with higher overall sorbent utilization can be realized compared with other dry sorbent injection scrubber systems.

  18. CRUCIBLE TESTING OF TANK 48H RADIOACTIVEWASTE SAMPLE USING FLUIDIZED BED STEAMREFORMING TECHNOLOGY FOR ORGANICDESTRUCTION

    SciTech Connect (OSTI)

    Crawford, C

    2008-07-31T23:59:59.000Z

    The purpose of crucible scale testing with actual radioactive Tank 48H material was to duplicate the test results that had been previously performed on simulant Tank 48H material. The earlier crucible scale testing using simulants was successful in demonstrating that bench scale crucible tests produce results that are indicative of actual Fluidized Bed Steam Reforming (FBSR) pilot scale tests. Thus, comparison of the results using radioactive Tank 48H feed to those reported earlier with simulants would then provide proof that the radioactive tank waste behaves in a similar manner to the simulant. Demonstration of similar behavior for the actual radioactive Tank 48H slurry to the simulant is important as a preliminary or preparation step for the more complex bench-scale steam reformer unit that is planned for radioactive application in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF) later in 2008. The goals of this crucible-scale testing were to show 99% destruction of tetraphenylborate and to demonstrate that the final solid product produced is sodium carbonate. Testing protocol was repeated using the specifications of earlier simulant crucible scale testing, that is sealed high purity alumina crucibles containing a pre-carbonated and evaporated Tank 48H material. Sealing of the crucibles was accomplished by using an inorganic 'nepheline' sealant. The sealed crucibles were heat-treated at 650 C under constant argon flow to inert the system. Final product REDOX measurements were performed to establish the REDuction/OXidation (REDOX) state of known amounts of added iron species in the final product. These REDOX measurements confirm the processing conditions (pyrolysis occurring at low oxygen fugacity) of the sealed crucible environment which is the environment actually achieved in the fluidized bed steam reformer process. Solid product dissolution in water was used to measure soluble cations and anions, and to investigate insoluble fractions of the product solids. Radioanalytical measurements were performed on the Tank 48H feed material and on the dissolved products in order to estimate retention of Cs-137 in the process. All aspects of prior crucible scale testing with simulant Tank 48H slurry were demonstrated to be repeatable with the actual radioactive feed. Tetraphenylborate destruction was shown to be >99% and the final solid product is sodium carbonate crystalline material. Less than 10 wt% of the final solid products are insoluble components comprised of Fe/Ni/Cr/Mn containing sludge components and Ti from monosodium titanate present in Tank 48H. REDOX measurements on the radioactive solid products indicate a reducing atmosphere with extremely low oxygen fugacity--evidence that the sealed crucible tests performed in the presence of a reductant (sugar) under constant argon purge were successful in duplicating the pyrolysis reactions occurring with the Tank 48H feed. Soluble anion measurements confirm that using sugar as reductant at 1X stoichiometry was successful in destroying nitrate/nitrite in the Tank 48H feed. Radioanalytical measurements indicate that {approx}75% of the starting Cs-137 is retained in the solid product. No attempts were made to analyze/measure other potential Cs-137 in the process, i.e., as possible volatile components on the inner surface of the alumina crucible/lid or as offgas escaping the sealed crucible. The collective results from these crucible scale tests on radioactive material are in good agreement with simulant testing. Crucible scale processing has been shown to duplicate the complex reactions of an actual fluidized bed steam reformer. Thus this current testing should provide a high degree of confidence that upcoming bench-scale steam reforming with radioactive Tank 48H slurry will be successful in tetraphenylborate destruction and production of sodium carbonate product.

  19. Hot-gas desulfurization. II. Use of gasifier ash in a fluidized-bed process. Final report

    SciTech Connect (OSTI)

    Schrodt, J.T.

    1981-02-01T23:59:59.000Z

    Three gasifier coal ashes were used as reactant/sorbents in batch fluidized-beds to remove hydrogen sulfide from hot, made-up fuel gases. It is predominantly the iron oxide in the ash that reacts with and removes the hydrogen sulfide; the sulfur reappears in ferrous sulfide. Sulfided ashes were regenerated by hot, fluidizing streams of oxygen in air; the sulfur is recovered as sulfur dioxide, exclusively. Ash sorption efficiency and sulfur capacity increase and stabilize after several cycles of use. These two parameters vary directly with the iron oxide content of the ash and process temperature, but are independent of particle size in the range 0.01 - 0.02 cm. A western Kentucky No. 9 ash containing 22 weight percent iron as iron oxide sorbed 4.3 weight percent sulfur at 1200/sup 0/F with an ash sorption efficiency of 0.83 at ten percent breakthrough. A global, fluidized-bed, reaction rate model was fitted to the data and it was concluded that chemical kinetics is the controlling mechanism with a predicted activation energy of 19,600 Btu/lb mol. Iron oxide reduction and the water-gas-shift reaction were two side reactions that occurred during desulfurization. The regeneration reaction occurred very rapidly in the fluid-bed regime, and it is suspected that mass transfer is the controlling phenomenon.

  20. A One-Dimensional (1-D) Three-Region Model for a Bubbling Fluidized-Bed Adsorber

    SciTech Connect (OSTI)

    Lee, Andrew; Miller, David C.

    2012-01-01T23:59:59.000Z

    A general one-dimensional (1-D), three-region model for a bubbling fluidized-bed adsorber with internal heat exchangers has been developed. The model can predict the hydrodynamics of the bed and provides axial profiles for all temperatures, concentrations, and velocities. The model is computationally fast and flexible and allows for any system of adsorption and desorption reactions to be modeled, making the model applicable to any adsorption process. The model has been implemented in both gPROMS and Aspen Custom Modeler, and the behavior of the model has been verified.

  1. Assessment of atmospheric fluidized-bed combustion recycle systems. Final report

    SciTech Connect (OSTI)

    Rogali, R.; Wysocki, J.; Kursman, S.

    1981-10-01T23:59:59.000Z

    This report presents a technical and economic evaluation of AFBC power plants with recycle systems, and a comparison of these plants with AFBC power plants with carbon burnup beds (CBB) and with pulverized coal-fired (PCF) power plants with flue gas desulfurization (FGD) systems. The analysis considers 1000 MWe plants burning both eastern and western coals. The capital and operating cost estimates are based on boiler designs developed by Babcock and Wilcox, Inc., and on sorbent requirements estimated by Burns and Roe, Inc. The economic analyses are based on a plant located in the East Central region of the United States with a 30-year life and a 70 percent capacity factor. The eastern coal-fired plants are designed to burn Illinois bituminous coal with a higher heating value of 10,100 Btu/lb and a sulfur content of 4%. The required calcium to sulfur mole ratios for the eastern plants are 3.8:1 and 2.5:1 for the AFBC/CBB and AFBC/recycle plants, respectively. The western coal-fired plants are designed to burn Wyoming subbituminous coal with a higher heating value of 8,020 Btu/lb and a sulfur content of 0.48%. The required calcium to sulfur mole ratios for the western plants are 0.7:1 and 0.4:1 for the AFBC/CBB and AFBC/recycle plants, respectively. These Ca/S mole ratios allow for 30 percent utilization of the alkaline coal ash to reduce sorbent requirements to the fluidized bed combustor. The analyses indicate that the AFBC/recycle plants have an economic advantage over the AFBC/CBB plants and over the PCF/FGD plants for both eastern and western coal.

  2. An atmospheric pressure, fluidized bed combustion system burning high-chlorine coals in the convection section

    SciTech Connect (OSTI)

    Liu, K.; Xie, W.; Pan, W.P.; Riley, J.T.

    2000-03-01T23:59:59.000Z

    The possibility of fireside corrosion in power plant boiler components is always a major concern when the fuels include high-sulfur and high-chlorine coals (or refuse waste). Sulfur and chloride products may play important roles especially in fireside corrosion in atmospheric pressure, fluidized bed combustion (AFBC) systems, caused by the capture of sulfur and chlorine by limestone used as bed material in the combustor, and the resulting deposition of sulfur- or chlorine-rich compounds onto metallic surfaces. Results were reported from tests in a 0.1-MW{sub th} AFBC system where 1,000-h test burns were conducted using two coals with widely differing chlorine levels, and limestone was used as the sulfur sorbent. Coupons of three stainless steels (Types 304 [UNS S30400], 309 [UNS S30900], 347 [UNS S34700]) were exposed to the hot flue gases in the freeboard ({approximately} 10- cm below the location of the convection pass tubes). Deposits formed on the alloys contained high sulfur concentrations in their outer parts, as well as sodium, potassium, magnesium, and calcium. Sulfur appeared to be associated with calcium and magnesium, suggesting that the fly ash may have reacted further after being deposited on the surface of the coupon. Areas of high sulfur concentration also correlated well with areas of high chromium content of the inner layers of the scales. cross sections of samples indicated that sulfur had penetrated into the alloy and reacted to form sulfide corrosion products. There was no direct evidence to show that alkali chlorides were involved in the corrosion process. No chloride was identified in the alloy samples. There was slight oxide spallation observed on all three alloys, with the degree of spallation in the following order: Type 304 > Type 347 > Type 309.

  3. Experimental study of the hydrodynamics and cluster formation in a Circulating Fluidized Bed. Annual report, 1990

    SciTech Connect (OSTI)

    Gautam, M.; Johnson, E.

    1991-01-01T23:59:59.000Z

    A novel non-invasive gas-solid flow measuring technique being developed and tested for studying the hydrodynamics inside the riser of a Circulating Fluidized Bed (CFB). First of the two aims of the overall program, namely, design, development and testing of the technique to characterize the particle and gas velocities in two-phase flows was accomplished in the past year. The ``fringe-model`` laser Doppler anemometry concept has been modified and extended by using particles coated with a fluorescent dye and introducing a narrow band pass filter in the receiving optics. The technique permits optical discrimination between the scattered light (laser wavelength from undyed particles) and the fluorescence emission (longer wavelength). Results from extensive testing of various dye-solvent combinations, counter processor settings, signal-to noise optimization and subsequent flow measurements in the test section have shown that the technique can effectively discriminate between two classes of particles--the smaller seed particles for the gas phase data and the larger bed particles. Use of a two-watt Argon-Ion laser assisted in the non-intrusive probing of the gas-solid flow and in enhancing the signal-to-noise ratio. An uncertainty analysis of LDA measurements is presented. Design of the cold flow CFB model, presently under fabrication, is outlined in this report. The Plexiglas CFB model will be employed for the riser core-annular flow studies using the fluorescence-emission based laser-Doppler anemometry. The results from this study will present a unique detailed description of the complex gas-solid behavior in the CFB riser.

  4. Experimental study of the hydrodynamics and cluster formation in a Circulating Fluidized Bed

    SciTech Connect (OSTI)

    Gautam, M.; Johnson, E.

    1991-01-01T23:59:59.000Z

    A novel non-invasive gas-solid flow measuring technique being developed and tested for studying the hydrodynamics inside the riser of a Circulating Fluidized Bed (CFB). First of the two aims of the overall program, namely, design, development and testing of the technique to characterize the particle and gas velocities in two-phase flows was accomplished in the past year. The fringe-model'' laser Doppler anemometry concept has been modified and extended by using particles coated with a fluorescent dye and introducing a narrow band pass filter in the receiving optics. The technique permits optical discrimination between the scattered light (laser wavelength from undyed particles) and the fluorescence emission (longer wavelength). Results from extensive testing of various dye-solvent combinations, counter processor settings, signal-to noise optimization and subsequent flow measurements in the test section have shown that the technique can effectively discriminate between two classes of particles--the smaller seed particles for the gas phase data and the larger bed particles. Use of a two-watt Argon-Ion laser assisted in the non-intrusive probing of the gas-solid flow and in enhancing the signal-to-noise ratio. An uncertainty analysis of LDA measurements is presented. Design of the cold flow CFB model, presently under fabrication, is outlined in this report. The Plexiglas CFB model will be employed for the riser core-annular flow studies using the fluorescence-emission based laser-Doppler anemometry. The results from this study will present a unique detailed description of the complex gas-solid behavior in the CFB riser.

  5. Radionuclide and contaminant immobilization in the fluidized bed steam reforming waste products

    SciTech Connect (OSTI)

    Neeway, James J.; Qafoku, Nikolla; Westsik, Joseph H.; Brown, Christopher F.; Jantzen, Carol; Pierce, Eric M.

    2012-05-01T23:59:59.000Z

    The goal of this chapter is to introduce the reader to the Fluidized Bed Steam Reforming (FBSR) process and resulting waste form. The first section of the chapter gives an overview of the potential need for FBSR processing in nuclear waste remediation followed by an overview of the engineering involved in the process itself. This is followed by a description of waste form production at a chemical level followed by a section describing different process streams that have undergone the FBSR process. The third section describes the resulting mineral product in terms of phases that are present and the ability of the waste form to encapsulate hazardous and radioactive wastes from several sources. Following this description is a presentation of the physical properties of the granular and monolith waste form product including and contaminant release mechanisms. The last section gives a brief summary of this chapter and includes a section on the strengths associated with this waste form and the needs for additional data and remaining questions yet to be answered. The reader is directed elsewhere for more information on other waste forms such as Cast Stone (Lockrem, 2005), Ceramicrete (Singh et al., 1997, Wagh et al., 1999) and geopolymers (Kyritsis et al., 2009; Russell et al., 2006).

  6. Trace metal capture by various sorbents during fluidized bed coal combustion

    SciTech Connect (OSTI)

    Ho, T.C.; Ghebremeskel, A.N.; Hopper, J.R. [Lamar Univ., Beaumont, TX (United States)

    1996-12-31T23:59:59.000Z

    Toxic trace metallic elements such as arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, and selenium are usually contained in coal in various forms and trace amounts. These metals will either stay in the ash or be vaporized during high temperature combustion. Portions of the vaporized metals may eventually be emitted from a combustion system in the form of metal fumes or particulates with diameters less than 1 micron, which are potentially hazardous to the environment. Current practice of controlling trace metal emissions during coal combustion employs conventional air pollution control devices (APCDs), such as electrostatic precipitators and baghouses, to collect fly ash and metal fumes. The control may not always be effective on metal fumes due to their extremely fine sizes. This study is to explore the opportunities for improved control of toxic trace metal emissions from coal-fired combustion systems. Specifically, the technology proposed is to employ suitable sorbents to reduce the amount of metal volatilization and capture volatilized metal vapors during fluidized bed coal combustion. The objective of the study was to investigate experimentally and theoretically the metal capture process.

  7. Pressurized fluidized-bed hydroretorting of eastern oil shales. Progress report, September 1992--November 1992

    SciTech Connect (OSTI)

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S.

    1992-12-01T23:59:59.000Z

    This report presents the work performed during the program quarter from September 1, 1992 though November 30, 1992. The Institute of Gas Technology (IGT) is the prime contractor for the program extension to develop the Pressurized Fluidized-Bed Hydroretorting II system technology. Four institutions are working with IGT as subcontractors. Task achievements are discussed for the following active tasks of the program: Subtask 3.7 innovative reactor concept testing; Subtask 3.9 catalytic hydroretorting; Subtask 3.10 autocatalysis in hydroretorting; Subtask 3.11 shale oil upgrading and evaluation; Subtask 4.1.3 stirred ball mill grinding; Subtask 4.1.5 alternative technology evaluation; Subtask 4.1.6 ultrafine size separation; Subtask 4.2.1 column flotation tests; Subtask 4.4 integrated grinding and flotation; Subtask 4.7 economic analysis; Subtask 6.2.2 wastewater treatability; Subtask 6.2.3 waste management facility conceptual design; and Subtask 8 project management and reporting.

  8. Pressurized Fluidized-Bed Hydroretorting of eastern oil shales. Final report, June 1992--January 1993

    SciTech Connect (OSTI)

    Roberts, M.J.; Mensinger, M.C.; Erekson, E.J.; Rue, D.M.; Lau, F.S. [Institute of Gas Technology, Chicago, IL (United States); Schultz, C.W.; Hatcher, W.E. [Alabama Univ., University, AL (United States). Mineral Resources Inst.; Parekh, B.K. [Kentucky Univ., Lexington, KY (United States). Center for Applied Energy Research; Bonner, W.P. [Tennessee Technological Univ., Cookeville, TN (United States)

    1993-03-01T23:59:59.000Z

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in September 1987 by the US Department of Energy was to perform the research necessary to develop the pressurized fluidized-bed hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation and upgrading, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The program was divided into the following active tasks: Task 3 -- Testing of Process Improvement Concepts; Task 4 -- Beneficiation Research; Task 6 -- Environmental Data and Mitigation Analyses; and Task 9 -- Information Required for the National Environmental Policy Act. In order to accomplish all of the program objectives, tho Institute of Gas Technology (ICT), the prime contractor, worked with four other institutions: The University of Alabama/Mineral Resources Institute (MRI), the University of Alabama College of Engineering (UA), University of Kentucky Center for Applied Energy Research (UK-CAER), and Tennessee Technological University (TTU). This report presents the work performed by IGT from June 1, 1992 through January 31, 1993.

  9. Engineering systems analysis of pressurized fluidized-bed-combustion power systems

    SciTech Connect (OSTI)

    Graves, R.L.; Griffin, F.P.; Lackey, M.E.

    1982-04-01T23:59:59.000Z

    This effort was conducted to provde supporting data for the research and development program on pressurized fluidized bed combustor (PFBC) systems being continued under the auspices of the Office of Coal Utilization of DOE. This report deals with the first phase of the effort, designated Task 1, which was scoped to be a somewhat broad review of PFBC technology and an analysis to determine its potential and sensitivity to key development needs. Background information pertaining to the application of PFBC to the market for coal-fired technology is included. The status of development is reviewed and the deficiencies in data are identified. Responses to a survey of PFBC developers are reviewed with emphasis on the high risk areas of the PFBC concept. Some of these problems are: uncertainty of life of gas turbine components; lack of demonstration of load following; and hot solids handling. Some high risk areas, such as the gas cleanup or gas turbine systems, can be relieved by reducing the severity of design conditions such as the turbine inlet temperature. Alternate turbine designs or plant configurations are also possible solutions. Analyses were performed to determine whether the advantages held by PFBC systems in cost, efficiency, and emissions would be nullified by measures taken to reduce risk. In general, the results showed that the attractive features of the PFBC could be preserved.

  10. Mineralogy and pore water chemistry of a boiler ash from a MSW fluidized-bed incinerator

    SciTech Connect (OSTI)

    Bodenan, F., E-mail: f.bodenan@brgm.f [BRGM - French Geological Survey, Environment and Processes Division, BP 36009, 3 Av. C. Guillemin, 45060 Orleans Cedex (France); Guyonnet, D.; Piantone, P.; Blanc, P. [BRGM - French Geological Survey, Environment and Processes Division, BP 36009, 3 Av. C. Guillemin, 45060 Orleans Cedex (France)

    2010-07-15T23:59:59.000Z

    This paper presents an investigation of the mineralogy and pore water chemistry of a boiler ash sampled from a municipal solid waste fluidized-bed incinerator, subject to 18 months of dynamic leaching in a large percolation column experiment. A particular focus is on the redox behaviour of Cr(VI) in relation to metal aluminium Al{sup 0}, as chromium may represent an environmental or health hazard. The leaching behaviour and interaction between Cr(VI) and Al{sup 0} are interpreted on the basis of mineralogical evolutions observed over the 18-month period and of saturation indices calculated with the geochemical code PhreeqC and reviewed thermodynamic data. Results of mineralogical analyses show in particular the alteration of mineral phases during leaching (e.g. quartz and metal aluminium grains), while geochemical calculations suggest equilibria of percolating fluids with respect to specific mineral phases (e.g. monohydrocalcite and aluminium hydroxide). The combination of leaching data on a large scale and mineralogical analyses document the coupled leaching behaviour of aluminium and chromium, with chromium appearing in the pore fluids in its hexavalent and mobile state once metal aluminium is no longer available for chromium reduction.

  11. Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Final report

    SciTech Connect (OSTI)

    NONE

    1996-06-30T23:59:59.000Z

    The problem addressed by our invention is that of municipal solid waste utilization. The dimensions of the problem can be visualized by the common comparison that the average individual in America creates in five years time an amount of solid waste equivalent in weight to the Statue of Liberty. The combustible portion of the more than 11 billion tons of solid waste (including municipal solid waste) produced in the United States each year, if converted into useful energy, could provide 32 quads per year of badly needed domestic energy, or more than one-third of our annual energy consumption. Conversion efficiency and many other factors make such a production level unrealistic, but it is clear that we are dealing with a very significant potential resource. This report describes research pertaining to the co-combustion of oil shale with solid municipal wastes in a circulating fluidized bed. The oil shale adds significant fuel content and also constituents that can possible produce a useful cementitious ash.

  12. Development of algorithms for capacitance imaging techniques for fluidized bed flow fields

    SciTech Connect (OSTI)

    Loudin, W.J.

    1991-01-01T23:59:59.000Z

    The objective of this research is to provide support for the instrumentation concept of a High Resolution Capacitance Imaging System (HRCIS). The work involves the development and evaluation of the mathematical theory and associated models and algorithms which reduce the electronic measurements to valid physical characterizations. The research and development require the investigation of techniques to solve large systems of equations based on capacitance measurements for various electrode configurations in order to estimate densities of materials in a cross-section of a fluidized bed. Capacitance measurements are made for 400 connections of the 32-electrode system; 400 corresponding electric-field curves are constructed by solving a second order partial differential equation. These curves are used to partition the circular disk into 193 regions called pixels, and the density of material in each pixel is to be estimated. Two methods of approximating densities have been developed and consideration of a third method has been initiated. One method (Method 1) is based on products of displacement currents for intersecting electric-field curves on a cross section. For each pixel one point of intersection is chosen, and the product of the capacitance measurements is found. Both the product and the square-root-of-product seem to yield good relative distribution of densities.

  13. Development of algorithms for capacitance imaging techniques for fluidized bed flow fields. 1990 Annual report

    SciTech Connect (OSTI)

    Loudin, W.J.

    1991-01-01T23:59:59.000Z

    The objective of this research is to provide support for the instrumentation concept of a High Resolution Capacitance Imaging System (HRCIS). The work involves the development and evaluation of the mathematical theory and associated models and algorithms which reduce the electronic measurements to valid physical characterizations. The research and development require the investigation of techniques to solve large systems of equations based on capacitance measurements for various electrode configurations in order to estimate densities of materials in a cross-section of a fluidized bed. Capacitance measurements are made for 400 connections of the 32-electrode system; 400 corresponding electric-field curves are constructed by solving a second order partial differential equation. These curves are used to partition the circular disk into 193 regions called pixels, and the density of material in each pixel is to be estimated. Two methods of approximating densities have been developed and consideration of a third method has been initiated. One method (Method 1) is based on products of displacement currents for intersecting electric-field curves on a cross section. For each pixel one point of intersection is chosen, and the product of the capacitance measurements is found. Both the product and the square-root-of-product seem to yield good relative distribution of densities.

  14. Technology assessment for an atmospheric fluidized-bed combustion demonstration plant

    SciTech Connect (OSTI)

    Siman-Tov, M; Jones, Jr, J E

    1980-01-01T23:59:59.000Z

    This study assesses the atmospheric fluidized-bed combustion (AFBC) technology with respect to design, construction, and operation of a demonstration power plant in the range of 150 to 250 MW(e) capacity and identifies the most critical research and development needs for the plant project. The general conclusion of these studies is that AFBC is feasible for large power plants and that it has a generally good potential for providing an economically and environmentally acceptable alternative to conventional coal-fired power plants. Several areas of technical uncertainty must, however, be resolved in order to ensure success of an AFBC demonstration plant project. Much of the existing data base for AFBC comes from small-scale test units, and much of it is still inconclusive. A number of operational and design problems exist that do not yet have conclusive answers. A focused research and development program aimed at the early resolution of these problems should be carried out to ensure successful construction and operation of the proposed AFBC demonstration plant and early commercialization of the technology. A large flexible feeding test facility designed to investigate the feeding problems and possibilities should be constructed. A materials-test facility is also needed for testing, evaluating and selecting materials, as well as demonstrating their long-term compatibility. An intermediate-size pilot plant with sufficient flexibility to test alternate solutions to the above-mentioned problems will considerably strengthen the demonstration program.

  15. Market Assessment and Technical Feasibility Study of Pressurized Fluidized Bed Combustion Ash Use

    SciTech Connect (OSTI)

    Bland, A.E.; Brown, T.H. [Western Research Inst., Laramie, WY (United States)

    1996-12-31T23:59:59.000Z

    Western Research Institute in conjunction with the Electric Power Research Institute, Foster Wheeler Energy International, Inc. and the U.S. Department of Energy Technology Center (METC), has undertaken a research and demonstration program designed to examine the market potential and the technical feasibility of ash use options for pressurized fluidized bed combustion (PFBC) ashes. The assessment is designed to address six applications, including: (1) structural fill, (2) road base construction, (3) supplementary cementing materials in portland cement, (4) synthetic aggregate, and (5) agricultural/soil amendment applications. Ash from low-sulfur subbituminous coal-fired Foster Wheeler Energia Oy pilot circulating PFBC tests in Karhula, Finland, and ash from the high-sulfur bituminous coal-fired American Electric Power (AEP) bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing. This paper addresses the technical feasibility of ash use options for PFBC unit using low- sulfur coal and limestone sorbent (karhula ash) and high-sulfur coal and dolomite sorbents (AEP Tidd ash).

  16. Testing of Eastern Kentucky Amburgy coal in an atmospheric fluidized-bed combustor

    SciTech Connect (OSTI)

    Not Available

    1985-01-01T23:59:59.000Z

    This report is the third in a series of four coal reports, and describes the results of testing of an Eastern Kentucky Amburgy coal (1/4 in. x 0, 3.3% sulfur, 11% ash, 12920 Btu/lb.) in a 2 ft. 8 in. x 2 ft. 5 in., 0.75-MW AFBC. All 4 coal tests were conducted using Oregon dolomite from central Kentucky (1/8 in. x 0, 62% CaCO/sub 3/, 31% MgCO/sub 3/) as the sulfur sorbent. Results obtained from eight steady-state test runs at three different loads at a constant superficial velocity of 5.4 ft./s are presented. Operating problems encountered are described. On the basis of numbers, it was concluded that an economic re-evaluation of low-superficial-velocity fluidized beds is warranted, and that it is feasible to burn eastern Kentucky Amburgy coal efficiently in an AFBC while keeping emissions below EPA limits.

  17. Mechanical properties and corrosion behavior of materials exposed to an experimental, atmospheric fluidized-bed combustor

    SciTech Connect (OSTI)

    Ganesan, P.; Sagues, A.; Sethi, V.

    1984-06-01T23:59:59.000Z

    A joint materials test program developed by the Institute for Mining and Minerals Research (IMMR) and the Tennessee Valley Authority (TVA) involved the postexposure mechanical properties and corrosion behavior of candidate structural materials in an experimental, atmospheric fluidized-bed combustor (AFBC). This combustor was operated by Accurex Corporation at Research Triangle Park, North Carolina, under the direction of TVA. The materials studied were Type 304, Type 310, and INCOLOY alloy 800 in the form of disc coupons with and without crevice configurations. Type 304 was also used for mechanical property measurements. The alloys were exposed to the combustor environment at about840/sup 0/C for approximately 330 hours. The ranking in terms of decreasing weight loss was: (1) Type 304, (2) Type 310, and (3) INCOLOY alloy 800. The presence of tight crevices did not enhance the corrosion rate. In addition, the corrosion rates, based on the weight loss (typically 1 to 6 mpy), indicated that the alloys performed reasonably well when considering materials wastage. However, optical microscopy observations showed intergranular corrosion penetration in INCOLOY alloy 800 and Type 304. The mechanical properties of Type 304 were inferior to the unexposed alloy. A comparison of the data obtained from the combustor-exposed 304ss tensile samples with data from control samples exposed in vacuum to a similar thermal history indicated that the chemistry of the AFBC environment did not play a major role in the observed degradation of the mechanical properties.

  18. Testing of Western Kentucky No. 11 coal in an atmospheric fluidized bed combustor

    SciTech Connect (OSTI)

    Not Available

    1985-01-01T23:59:59.000Z

    This report is the second of a series of four coal reports, and describes the results of testing of a Western Kentucky No. 11 coal (1/4 in. x 0, 3.8% sulfur, 33% ash, 83/50 Btu/lb.) in a 2 ft. 8 in. x 2 ft. 5 in., 0.75-MW AFBC. All four coal tests were conducted using Oregon dolomite from central Kentucky (1/8 in. x 0, 62% CaCO/sub 3/, 31% MgCO/sub 3/) as the sulfur sorbent. Results obtained from eight steady-state test runs at three different loads at a constant superficial velocity of 5 ft./s are presented. Operating problems encountered are described, and include problems with large variations in coal ash and Btu contents, cyclone downleg blockage, moisture in feed material, and fouling of heat-transfer surfaces caused by high carryover rates. On the basis of numbers, it was concluded that an economic re-evaluation of low-superficial-velocity fluidized beds is warranted, and that it is feasible to burn Western Kentucky No. 11 coal efficiently in an AFBC provided that the boiler control system is designed to handle large variations in coal ash and Btu contents.

  19. Testing of Eastern Kentucky Hazard coal in an atmospheric fluidized-bed combustor

    SciTech Connect (OSTI)

    Not Available

    1985-01-01T23:59:59.000Z

    This report is the fourth in a series of four coal reports, and describes the results of testing of an Eastern Kentucky Hazard No. 9 coal (1/4 in. x 0, 3.4% sulfur, 11% ash, 12640 Btu/lb.) in a 2 ft. 8 in. x 2 ft. 5 in., 0.75-MW AFBC. All four coal tests were conducted using Oregon dolomite from central Kentucky (1/8 in. x 0, 62% C-CO/sub 2/, 31% MgCO/sub 2/) as the sulfur sorbent. Results obtained from eight steady-state test runs at three different loads at a constant superficial velocity of 5.4 ft./s are presented. Operating problems encountered are described. On the basis of numbers, it was concluded that an economic re-evaluation of low-superficial velocity fluidized beds is warranted, and that it is feasible to burn Eastern Kentucky Hazard No. 9 coal efficiently in an AFBC while keeping emissions below EPA limits.

  20. Atmospheric fluidized-bed combustion (AFBC) co-firing of coal and hospital waste. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1993-02-01T23:59:59.000Z

    The proposed project involves co-firing of coal and medical waste (including infectious medical waste) in an atmospheric fluidized-bed combustor (AFBC) to safely dispose of medical waste and produce steam for hospital needs. Combustion at the design temperature and residence time (duration) in the AFBC has been proven to render infectious medical waste free of disease producing organisms. The project would be located at the Veterans Affairs (VA) Medical Center in Lebanon, Pennsylvania. The estimated cost of the proposed AFBC facility is nearly $4 million. It would be jointly funded by DOE, Veterans Affairs, and Donlee Technologies, Inc., of York, Pennsylvania, under a cooperative agreement between DOE and Donlee. Under the terms of this agreement, $3.708 million in cost-shared financial assistance would be jointly provided by DOE and the Veterans Affairs (50/50), with $278,000 provided by Donlee. The purposes of the proposed project are to: (1) provide the VA Medical Center and the Good Samaritan Hospital (GSH), also of Lebanon, Pennsylvania, with a solution for disposal of their medical waste; and (2) demonstrate that a new coal-burning technology can safely incinerate infectious medical waste, produce steam to meet hospital needs, and comply with environmental regulations.

  1. Desulfurization of fuel gases in fluidized bed gasification and hot fuel gas cleanup systems

    DOE Patents [OSTI]

    Steinberg, M.; Farber, G.; Pruzansky, J.; Yoo, H.J.; McGauley, P.

    1983-08-26T23:59:59.000Z

    A problem with the commercialization of fluidized bed gasification is that vast amounts of spent sorbent are generated if the sorbent is used on a once-through basis, especially if high sulfur coals are burned. The requirements of a sorbent for regenerative service in the FBG process are: (1) it must be capable of reducing the sulfur containing gas concentration of the FBG flue gas to within acceptable environmental standards; (2) it must not lose its reactivity on cyclic sulfidation and regeneration; (3) it must be capable of regeneration with elimination of substantially all of its sulfur content; (4) it must have good attrition resistance; and, (5) its cost must not be prohibitive. It has now been discovered that calcium silicate pellets, e.g., Portland cement type III pellets meet the criteria aforesaid. Calcium silicate removes COS and H/sub 2/S according to the reactions given to produce calcium sulfide silicate. The sulfur containing product can be regenerated using CO/sub 2/ as the regenerant. The sulfur dioxide can be conveniently reduced to sulfur with hydrogen or carbon for market or storage. The basic reactions in the process of this invention are the reactions with calcium silicate given in the patent. A convenient and inexpensive source of calcium silicate is Portland cement. Portland cement is a readily available, widely used construction meterial.

  2. Performance of the Fluidized Bed Steam Reforming Product Under Hydraulically Unsaturated Conditions

    SciTech Connect (OSTI)

    Neeway, James J.; Qafoku, Nikolla; Williams, Benjamin D.; Rod, Kenton A.; Bowden, Mark E.; Brown, Christopher F.; Pierce, Eric M.

    2014-05-01T23:59:59.000Z

    Currently, several candidates for secondary waste immobilization at the Hanford site in the State of Washington, USA are being considered. To demonstrate the durability of the product in the unsaturated Integrated Disposal Facility (IDF) at the site, a series of tests have been performed one of the candidate materials using the Pressurized Unsaturated Flow (PUF) system. The material that was tested was the Fluidized Bed Steam Reformer (FBSR) granular product and the granular product encapsulated in a geopolymer matrix. The FBSR product is composed primarily of an insoluble sodium aluminosilicate matrix with the dominant phases being feldspathoid minerals mostly nepheline, sodalite, and nosean. The PUF test method allows for the accelerated weathering of materials, including radioactive waste forms, under hydraulically unsaturated conditions, thus mimicking the open-flow and transport properties that most likely will be present at the IDF. The experiments show a trend of decreasing tracer release as a function of time for several of the elements released from the material including Na, Si, Al, and Cs. However, some of the elements, notably I and Re, show a steady release throughout the yearlong test. This result suggests that the release of these minerals from the sodalite cage occurs at a different rate compared with the dissolution of the predominant nepheline phase.

  3. Characterization and Leaching Tests of the Fluidized Bed Steam Reforming (FBSR) Waste Form for LAW Immobilization

    SciTech Connect (OSTI)

    Neeway, James J.; Qafoku, Nikolla; Brown, Christopher F.; Peterson, Reid A.

    2013-10-01T23:59:59.000Z

    Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) have been evaluated. One such immobilization technology is the Fluidized Bed Steam Reforming (FBSR) granular product. The FBSR granular product is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals. Production of the FBSR mineral product has been demonstrated both at the industrial and laboratory scale. Pacific Northwest National Laboratory (PNNL) was involved in an extensive characterization campaign. This goal of this campaign was study the durability of the FBSR mineral product and the mineral product encapsulated in a monolith to meet compressive strength requirements. This paper gives an overview of results obtained using the ASTM C 1285 Product Consistency Test (PCT), the EPA Test Method 1311 Toxicity Characteristic Leaching Procedure (TCLP), and the ASTMC 1662 Single-Pass Flow-Through (SPFT) test. Along with these durability tests an overview of the characteristics of the waste form has been collected using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), microwave digestions for chemical composition, and surface area from Brunauer, Emmett, and Teller (BET) theory.

  4. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS

    SciTech Connect (OSTI)

    Nsakala ya Nsakala; Gregory N. Liljedahl

    2003-05-15T23:59:59.000Z

    Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this study, ALSTOM Power Inc. (ALSTOM) has investigated several coal fired power plant configurations designed to capture CO{sub 2} from effluent gas streams for use or sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB units results in significant Boiler Island cost savings. Additionally, ALSTOM has identified several advanced/novel plant configurations, which improve the efficiency and cost of the CO{sub 2} product cleanup and compression process. These advanced/novel concepts require long development efforts. An economic analysis indicates that the proposed oxygen-firing technology in circulating fluidized boilers could be developed and deployed economically in the near future in enhanced oil recovery (EOR) applications or enhanced gas recovery (EGR), such as coal bed methane recovery. ALSTOM received a Cooperative Agreement from the US Department of Energy National Energy Technology Laboratory (DOE) in 2001 to carry out a project entitled ''Greenhouse Gas Emissions Control by Oxygen Firing in Circulating Fluidized Bed Boilers.'' This two-phased project is in effect from September 28, 2001, to October 27, 2004. (U.S. DOE NETL Cooperative Agreement No. DE-FC26-01NT41146). Phase I consisted of an evaluation of the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants, and supporting bench-scale testing. And Phase II consists of pilot-scale testing, supporting a refined performance and economic evaluation of the oxygen-fired AFC concept. Phase I, detailed in this report, entails a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants. Thirteen separate but related cases (listed below), representing various levels of technology development, were evaluated as described herein. The first seven cases represent coal combustion cases in CFB type equipment. The next four cases represent Integrated Gasification Combined Cycle (IGCC) systems. The last two cases represent advanced Chemical Looping systems, which were completely paid for by ALSTOM and included herein for completeness.

  5. Experimental and theoretical investigation on the mechanism of transient bubble images in fluidized-bed combustors: Systematic interpretation and analysis. Final report, July 1992--July 1995

    SciTech Connect (OSTI)

    Hisashi O. Kono

    1995-08-01T23:59:59.000Z

    For the improvement of the design and operation of the FBC systems, the insight into the intrinsic transient bubbling phenomena in freely bubbling fluidized beds is of vital importance. The authors have found several basic new bubbling mechanisms in this work experimentally, and some of them have not been published in past literature. Using the two dimensional fluidized bed, the images of transient bubbling behavior were recorded by videos, and processed and analyzed by computers. As the results of experiments, the following new experimental facts were found: (1) transient bubbles change and fluctuate their size and shape over very short time intervals (on the order of 30 milliseconds); (2) bubble disappearance and reappearance occurred in the emulsion phase in addition to the known phenomena of coalescence and splitting. The bubble interaction occurred between the bubbles and adjacent emulsion phase and also among the transient bubbles; (3) bubble`s velocity fluctuated significantly, e.g., 0.6 to 3.0 m/s; (4) under one single specific fluidization condition, two different fluidization patterns appeared to occur randomly shifting from one pattern to the other or vice versa; (5) the erosion rates of in-bed tubes at ambient and elevated temperature could be predicted using material property data and transient behavior of bubbles. By introducing a new quantitative criterion which the authors call a gas stress index in the emulsion phase, the comparison of the fluidization quality between two and three dimensional fluidized beds was accomplished. They found reasonable correspondence between the two beds, and concluded that the new findings of transient bubble behavior should hold true for both types of fluidized beds. 32 refs., 85 figs., 13 tabs.

  6. Proposed replacement and operation of the anhydrous hydrogen fluoride supply and fluidized-bed chemical processing systems at Building 9212, Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The US Department of Energy (DOE) proposes to replace the existing anhydrous hydrogen fluoride (AHF) supply and fluidized-bed reactor systems for the Weapons Grade Highly Enriched Uranium Chemical Recovery and Recycle Facility, Building 9212, which is located within the Y-12 Plant on DOE`s Oak Ridge Reservation in Oak Ridge, Tennessee. The proposed replacement system would be based upon modern design criteria and safety analyses. The replacement AHF supply and distribution system equipment would be located on the existing Dock 8/8A at Building 9212. Utilities would be extended to the dock to service the process equipment. The following process equipment modules would be prefabricated for installation at the modified dock: an AHF cylinder enclosure, an AHF supply manifold and vaporizer module, an AHF sump tank and transfer skid, and an AHF supply off-gas scrubber assembly module. The fluidized-bed reactor system would be constructed in an area adjacent to the existing system in Building 9212. The replacement equipment would consist of a new reduction fluidized-bed reactor, a hydrofluorination fluidized-bed reactor, and associated air emission control equipment. The no-action alternative, which is the continued operation of the existing AHF supply and fluidized-bed reactor systems, was also evaluated.

  7. Tennessee Valley Authority atmospheric fluidized-bed combustor simulation interim annual report, January 1-December 31, 1980

    SciTech Connect (OSTI)

    Wells, J.W.; Culver, M.H.; Krishnan, R.P.

    1981-09-01T23:59:59.000Z

    A detailed description of the work performed during 1980 for the Tennessee Valley Authority (TVA) in support of the TVA Fluidized-Bed Combustion (FBC) Demonstration Plant Program is presented. The work was carried out under Task 4, modeling and simulation of atmospheric fluidized-bed combustion (AFBC) systems. The overall objective of this task is to develop a steady-state mathematical model with the capability of predicting trends in bed performance under various feed and operating conditions. Previously during 1979, three predictive subcodes (subprograms) were developed: bubble growth subcode, elutriation-attrition subcode, and coal combustion subcode. During 1980, three additional predictive subcodes were developed: the SO/sub 2/ capture subcode, the NO/sub x/ emissions subcode, and the freeboard subcode. Also, during this period, the following subcodes were combined to form an overall simulation code of the AFBC bed: (1) bubble growth subcode, (2) elutriation-attrition subcode, (3) coal combustion subcode, (4) SO/sub 2/ capture subcode, and (5) NO/sub x/ emissions subcode. In addition, an energy balance routine was added to the combined code. The resulting overall bed simulation, which is currently being tested with experimental data, is capable of predicting how some of the important operating variables affect AFBC's performance. The freeboard model has been combined with the overall bed simulation and is currently being debugged. Once the overall AFBC simulation is operational, it will be tested against field data from operating AFBCs and used to simulate the TVA/Electric Power Research Institute (EPRI) 20-MW(e) AFBC pilot plant. (WHK)

  8. Stability of flows in fluidized beds. Technical status report, December 8, 1991--March 7, 1992

    SciTech Connect (OSTI)

    Rajagopal, C.

    1992-08-01T23:59:59.000Z

    In this paper we carry out a systematic linearized stability analysis of the state of uniform fluidization for a fluid infused with granular particles. We carry out an interesting optimization procedure which leads to bounds for certain parameters, within which the state of uniform fluidization is stable. We find that this stability depends critically on the structure of the pressure-like term. (VC)

  9. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect (OSTI)

    Wei-Ping Pan; Yan Cao; John Smith

    2008-05-31T23:59:59.000Z

    On February 14, 2002, President Bush announced the Clear Skies Initiative, a legislative proposal to control the emissions of nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), and mercury from power plants. In response to this initiative, the National Energy Technology Laboratory organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified multi-pollutant control; improved sorbents and catalysts; mercury monitoring and capture; and improved understanding of the underlying reaction chemistry occurring during combustion as the most pressing research needs related to controlling environmental emissions from fossil-fueled power plants. The Environmental Control Technology Laboratory will help meet these challenges and offer solutions for problems associated with emissions from fossil-fueled power plants. The goal of this project was to develop the capability and technology database needed to support municipal, regional, and national electric power generating facilities to improve the efficiency of operation and solve operational and environmental problems. In order to effectively provide the scientific data and the methodologies required to address these issues, the project included the following aspects: (1) Establishing an Environmental Control Technology Laboratory using a laboratory-scale, simulated fluidized-bed combustion (FBC) system; (2) Designing, constructing, and operating a bench-scale (0.6 MW{sub th}), circulating fluidized-bed combustion (CFBC) system as the main component of the Environmental Control Technology Laboratory; (3) Developing a combustion technology for co-firing municipal solid waste (MSW), agricultural waste, and refuse-derived fuel (RDF) with high sulfur coals; (4) Developing a control strategy for gaseous emissions, including NO{sub x}, SO{sub 2}, organic compounds, and heavy metals; and (5) Developing new mercury capturing sorbents and new particulate filtration technologies. Major tasks during this period of the funded project's timeframe included: (1) Conducting pretests on a laboratory-scale simulated FBC system; (2) Completing detailed design of the bench-scale CFBC system; (3) Contracting potential bidders to fabricate of the component parts of CFBC system; (4) Assembling CFBC parts and integrating system; (5) Resolving problems identified during pretests; (6) Testing with available Powder River Basin (PRB) coal and co-firing of PRB coal with first wood pallet and then chicken wastes; and (7) Tuning of CFBC load. Following construction system and start-up of this 0.6 MW CFBC system, a variety of combustion tests using a wide range of fuels (high-sulfur coals, low-rank coals, MSW, agricultural waste, and RDF) under varying conditions were performed to analyze and monitor air pollutant emissions. Data for atmospheric pollutants and the methodologies required to reduce pollutant emissions were provided. Integration with a selective catalytic reduction (SCR) slipstream unit did mimic the effect of flue gas composition, including trace metals, on the performance of the SCR catalyst to be investigated. In addition, the following activities were also conducted: (1) Developed advanced mercury oxidant and adsorption additives; (2) Performed laboratory-scale tests on oxygen-fuel combustion and chemical looping combustion; and (3) Conducted statistical analysis of mercury emissions in a full-scale CFBC system.

  10. Tennessee Valley Authority atmospheric fluidized-bed combustor simulation interim annual report, January 1-December 31, 1979

    SciTech Connect (OSTI)

    Wells, J.W.; Krishnan, R.P.

    1980-10-01T23:59:59.000Z

    This report contains a detailed description of the work performed during 1979 for the Tennessee Valley Authority in support of the TVA Fluidized-Bed Combustor (FBC) Demonstration Plant Program. The work was carried out under task 4, modeling and simulation of atmospheric fluidized-bed combustor (AFBC) systems. The overall objective of this task is to develop a steady-state mathematical model with the capability of predicting trends in bed performance under various feed and operating conditions. As part of this effort, three predictive subprograms (subcodes) were developed during 1979: (1) bubble-growth subcode, (2) sorbent-coal ash elutriation and attrition subcode, and (3) coal combustion subcode. These codes, which are currently being tested with experimental data, are capable of predicting how some of the important operating variables in the AFBC affect its performance. After testing against field data, these subcodes will be incorporated into an overall AFBC system code, which was developed earlier at ORNL for analysis of the Department of Energy (DOE) Component Test and Integration Unit (CTIU) at Morgantown, West Virginia. In addition to these predictive subcodes, the overall system code previously developed for the CTIU is described. The material balance is closed, based on vendor-supplied data. This balance is then used to predict the heat transfer characteristics of the surfaces (submerged and freeboard) in the AFBC. Existing correlations for heat transfer in AFBC are used in the code along with thermophysical properties of the various streams.

  11. Numerical Modeling of Reactive Multiphase Flow for FCC and Hot Gas Desulfurization Circulating Fluidized Beds

    SciTech Connect (OSTI)

    None

    2005-07-01T23:59:59.000Z

    This work was carried out to understand the behavior of the solid and gas phases in a CFB riser. Only the riser is modeled as a straight pipe. A model with linear algebraic approximation to solids viscosity of the form, {musubs} = 5.34{epsisubs}, ({espisubs} is the solids volume fraction) with an appropriate boundary condition at the wall obtained by approximate momentum balance solution at the wall to acount for the solids recirculation is tested against experimental results. The work done was to predict the flow patterns in the CFB risers from available experimental data, including data from a 7.5-cm-ID CFB riser at the Illinois Institute of Technology and data from a 20.0-cm-ID CFB riser at the Particulate Solid Research, Inc., facility. This research aims at modeling the removal of hydrogen sulfide from hot coal gas using zinc oxide as the sorbent in a circulating fluidized bed and in the process indentifying the parameters that affect the performance of the sulfidation reactor. Two different gas-solid reaction models, the unreacted shrinking core (USC) and the grain model were applied to take into account chemical reaction resistances. Also two different approaches were used to affect the hydrodynamics of the process streams. The first model takes into account the effect of micro-scale particle clustering by adjusting the gas-particle drag law and the second one assumes a turbulent core with pseudo-steady state boundary condition at the wall. A comparison is made with experimental results.

  12. FLUIDIZED BED STEAM REFORMED MINERAL WASTE FORMS: CHARACTERIZATION AND DURABILITY TESTING

    SciTech Connect (OSTI)

    Jantzen, C; Troy Lorier, T; John Pareizs, J; James Marra, J

    2006-12-06T23:59:59.000Z

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium low activity wastes (LAW) such as those existing at the Hanford site, at the Idaho National Laboratory (INL), and the Savannah River Site (SRS). The addition of clay, charcoal, and a catalyst as co-reactants with the waste denitrates the aqueous wastes and forms a granular mineral waste form that can subsequently be made into a monolith for disposal if necessary. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage and ring structures and iron bearing spinel minerals. The mineralization occurs at moderate temperatures between 650-750 C in the presence of superheated steam. The cage and ring structured feldspathoid minerals atomically bond radionuclides like Tc-99 and Cs-137 and anions such as SO{sub 4}, I, F, and Cl. The spinel minerals stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium bearing waste (SBW) in pilot scale facilities at the Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The results of the SPFT testing and the activation energies for dissolution are discussed in this study.

  13. FLUIDIZED BED STEAM REFORMED MINERAL WASTE FORMS: CHARACTERIZATION AND DURABILITY TESTING

    SciTech Connect (OSTI)

    Jantzen, C; Troy Lorier, T; John Pareizs, J; James Marra, J

    2007-03-31T23:59:59.000Z

    Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium low activity wastes (LAW) such as those existing at the Hanford site, at the Idaho National Laboratory (INL), and the Savannah River Site (SRS). The addition of clay, charcoal, and a catalyst as co-reactants with the waste denitrates the aqueous wastes and forms a granular mineral waste form that can subsequently be made into a monolith for disposal if necessary. The waste form produced is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals with cage and ring structures and iron bearing spinel minerals. The mineralization occurs at moderate temperatures between 650-750 C in the presence of superheated steam. The cage and ring structured feldspathoid minerals atomically bond radionuclides like Tc-99 and Cs-137 and anions such as SO4, I, F, and Cl. The spinel minerals stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low-activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium bearing waste (SBW) in pilot scale facilities at the Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The results of the SPFT testing and the activation energies for dissolution are discussed in this study.

  14. Fluidized Bed Steam Reformed (FBSR) Mineral Waste Forms: Characterization and Durability Testing

    SciTech Connect (OSTI)

    Jantzen, Carol M.; Lorier, Troy H.; Pareizs, John M.; Marra, James C. [Savannah River National Laboratory, Aiken, SC, 29803 (United States)

    2007-07-01T23:59:59.000Z

    Fluidized Bed Steam Reforming (FBSR) is being considered as a mineralizing technology for the immobilization of a wide variety of wastes that are high in organics, nitrates-nitrites, halides, and/or sulfates. These wastes include the decontaminated High Level Waste (HLW) supernates referred to as low activity waste (LAW) at Department of Energy (DOE) sites in the United States and waste streams that may be generated by the advanced nuclear fuel cycle flowsheets that are being considered by the Global Nuclear Energy Partnership (GNEP) initiative. The organics are pyrolyzed into CO{sub 2} and steam in the absence of air. The FBSR mineral waste form is a granular but can subsequently be made into a monolith for disposal if necessary. The waste form is a multiphase mineral assemblage of Na-Al-Si (NAS) feldspathoid minerals (sodalite, nosean, and nepheline) with cage and ring structures that sequester radionuclides like Tc-99 and Cs-137 and anions such as SO{sub 4}, I, F, and Cl. Iron bearing spinel minerals are also formed and these phases stabilize Resource Conservation and Recovery Act (RCRA) hazardous species such as Cr and Ni. Dissolution rates ({eta}) and activation energies of dissolution are parameters needed for Performance Assessments (PA) to be completed on the FBSR mineral waste form. These parameters are defined in this study by Single Pass Flow Through (SPFT) testing. The dissolution rate ({eta}) and the activation energies for dissolution calculated in this study agree with the available rate and activation energy data for natural single crystal nepheline. (authors)

  15. CO-PRODUCTION OF HYDROGEN AND ELECTRICITY USING PRESSURIZED CIRCULATING FLUIDIZED BED GASIFICATION TECHNOLOGY

    SciTech Connect (OSTI)

    Zhen Fan

    2006-05-30T23:59:59.000Z

    Foster Wheeler has completed work under a U.S. Department of Energy cooperative agreement to develop a gasification equipment module that can serve as a building block for a variety of advanced, coal-fueled plants. When linked with other equipment blocks also under development, studies have shown that Foster Wheeler's gasification module can enable an electric generating plant to operate with an efficiency exceeding 60 percent (coal higher heating value basis) while producing near zero emissions of traditional stack gas pollutants. The heart of the equipment module is a pressurized circulating fluidized bed (PCFB) that is used to gasify the coal; it can operate with either air or oxygen and produces a coal-derived syngas without the formation of corrosive slag or sticky ash that can reduce plant availabilities. Rather than fuel a gas turbine for combined cycle power generation, the syngas can alternatively be processed to produce clean fuels and or chemicals. As a result, the study described herein was conducted to determine the performance and economics of using the syngas to produce hydrogen for sale to a nearby refinery in a hydrogen-electricity co-production plant setting. The plant is fueled with Pittsburgh No. 8 coal, produces 99.95 percent pure hydrogen at a rate of 260 tons per day and generates 255 MWe of power for sale. Based on an electricity sell price of $45/MWhr, the hydrogen has a 10-year levelized production cost of $6.75 per million Btu; this price is competitive with hydrogen produced by steam methane reforming at a natural gas price of $4/MMBtu. Hence, coal-fueled, PCFB gasifier-based plants appear to be a viable means for either high efficiency power generation or co-production of hydrogen and electricity. This report describes the PCFB gasifier-based plant, presents its performance and economics, and compares it to other coal-based and natural gas based hydrogen production technologies.

  16. Fluidized-bed retorting of Colorado oil shale: Topical report. [None

    SciTech Connect (OSTI)

    Albulescu, P.; Mazzella, G.

    1987-06-01T23:59:59.000Z

    In support of the research program in converting oil shale into useful forms of energy, the US Department of Energy is developing systems models of oil shale processing plants. These models will be used to project the most attractive combination of process alternatives and identify future direction for R and D efforts. With the objective of providing technical and economic input for such systems models, Foster Wheeler was contracted to develop conceptual designs and cost estimates for commercial scale processing plants to produce syncrude from oil shales via various routes. This topical report summarizes the conceptual design of an integrated oil shale processing plant based on fluidized bed retorting of Colorado oil shale. The plant has a nominal capacity of 50,000 barrels per operating day of syncrude product, derived from oil shale feed having a Fischer Assay of 30 gallons per ton. The scope of the plant encompasses a grassroots facility which receives run of the mine oil shale, delivers product oil to storage, and disposes of the processed spent shale. In addition to oil shale feed, the battery limits input includes raw water, electric power, and natural gas to support plant operations. Design of the individual processing units was based on non-confidential information derived from published literature sources and supplemented by input from selected process licensors. The integrated plant design is described in terms of the individual process units and plant support systems. The estimated total plant investment is similarly detailed by plant section and an estimate of the annual operating requirements and costs is provided. In addition, the process design assumptions and uncertainties are documented and recommendations for process alternatives, which could improve the overall plant economics, are discussed.

  17. Characterization of a fluidized-bed combustion ash to determine potential for environmental impact. Final report

    SciTech Connect (OSTI)

    Hassett, D.J.; Henderson, A.K.; Pflughoeft-Hassett, D.F.; Mann, M.D.; Eylands, K.E.

    1997-10-01T23:59:59.000Z

    A 440-megawatt, circulating fluidized-bed combustion (CFBC), lignite-fired power plant is planned for construction in Choctaw County north of Ackerman, Mississippi. This power plant will utilize Mississippi lignite from the first lignite mine in that state. Malcolm Pirnie, Inc., is working with the power plant developer in the current planning and permitting efforts for this proposed construction project. In order to accommodate Mississippi state regulatory agencies and meet appropriate permit requirements, Malcolm Pirnie needed to provide an indication of the characteristics of the by-products anticipated to be produced at the proposed plant. Since the Mississippi lignite is from a newly tapped mine and the CFBC technology is relatively new, Malcolm Pirnie contacted with the Energy and Environmental Research Center (EERC) to develop and perform a test plan for the production and characterization of ash similar to ash that will be eventually produced at the proposed power plant. The work performed at the EERC included two primary phases: production of by-products in a bench-scale CFBC unit using lignite provided by Malcolm Pirnie with test conditions delineated by Malcolm Pirnie to represent expected operating conditions for the full-scale plant; and an extensive characterization of the by-products produced, focusing on Mississippi regulatory requirements for leachability, with the understanding that return of the by-product to the mine site was an anticipated by-product management plan. The overall focus of this project was the environmental assessment of the by-product expected to be produced at the proposed power plant. Emphasis was placed on the leachability of potentially problematic trace elements in the by-products. The leaching research documented in this report was performed to determine trends of leachability of trace elements under leaching conditions appropriate for evaluating land disposal in monofills, such as returning the by-products to the mine site.

  18. A field study on the trace metal behavior in atmospheric circulating fluidized-bed coal combustion

    SciTech Connect (OSTI)

    Lind, T.; Kauppinen, E.I.; Jokiniemi, J.K.; Maenhaut, W.

    1994-12-31T23:59:59.000Z

    Trace element behavior in atmospheric circulating fluidized-bed combustion (CFBC) of Venezuelan bituminous coal was studied by determining particle size distributions in the CFBC flue gas. The size distributions of calcium, iron, aluminium, and 21 trace elements, Sc, V, Cr, Mn, Co, Ni, Zn, Ga, As, Se, Sr, Cd, Sb, Cs, Ba, La, Ce, Sm, Lu, Pb, and Th, in the size range 0.01--70{micro}m, were determined by collecting aerosols with a low-pressure impactor-cyclone sampling train from the flue gases of an 80-MW(th) CFBC boiler upstream of the electrostatic precipitator. The collected samples were analyzed gravimetrically and with instrumental neutron activation analysis (INAA), particle-induced X-ray emission analysis (PIXE), and inductively coupled plasma mass spectrometry (ICP-MS). The number size distributions of the aerosols were determined with a differential electrical mobility method in the size range 0.01--0.8 {micro}m. In the ultrafine particle mode, i.e., D{sub p} < 0.1 {micro}m, the CFBC number concentrations varied strongly during the experiments, being one to two orders of magnitude lower than those observed in pulverized coal combustion. For all of the elements studied, 75% or more were found in particles larger than 5{micro}m. None of the studied elements showed significant vaporization and subsequent chemical surface reaction or condensation in the CFBC. The Sr, Se, V, Zn, Ga, Cs, Ba, La, Sm, Lu, and Th size distributions resembled those of aluminium, suggesting their occurrence in aluminosilicate-rich particles in the fly ash. The association of the trace elements with aluminium in the fly ash particles may result from reactions of the trace elements with the aluminosilicate mineral particles inside the burning coal particles, or their initial occurrence in association with these minerals.

  19. Interim operations report for atmospheric fluidized-bed combustion conversion at Northern States Power Company

    SciTech Connect (OSTI)

    Thimsen, D. (Hamilton Maurer International, Inc., Falcon Heights, MN (USA))

    1991-03-01T23:59:59.000Z

    Northern States Power Company converted its Black Dog Station Unit No. 2 boiler from a front wall fired pulverized coal boiler to a bubbling atmospheric fluidized bed combustor (AFBC) boiler. The resulting unit was uprated from 85 MWe to 130 MWe burning western subbituminous coal. This report describes the AFBC operating and maintenance experience in the startup period from initial operation in June 1986 through March 1989 when a turbine oil fire caused a forced outage of 8 months. A brief review of the construction history is given in Section 1. Section 2 chronicles the AFBC operation. Section 3 describes how the boiler is restarted under several conditions. The performance history of the systems in the AFBC that are peculiar to the AFBC process or directly impacted by the AFBC process are described in detail in Section 4. The AFBC conversion at the Black Dog station has met nearly all of the original design objectives: (1) The unit can operate at rated output of 130 MWe burning western subbituminous coal, (2) The design life of the unit has been extended 25 years, (3) It has been shown that the EPA New Source Performance Standards for NO{sub x} and SO{sub 2} can be met with no flue gas treatment, (4) Operators have conducted over 200 routine daily unit restarts confirming the ability of the unit to serve in daily cycling mode, and (5) A variety of fuels have been successfully burned in the AFBC. The only objective that remains partially achieved is routine operation at full load. The boiler/turbine/generator have been shown to be fully capable of operation at full load, but the electrostatic precipitators (which were largely unchanged during the retrofit) have been inadequate to allow full load operation while remaining within permitted opacity and particulate emissions. The unit is currently dispatched in daily cycling service and is limited to operation below 106 MWe by its emissions control permit. 12 refs., 34 figs., 6 tabs.

  20. Pressurized fluidized-bed hydroretorting of Eastern oil shales. Annual report, June 1991--May 1992

    SciTech Connect (OSTI)

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S. [Institute of Gas Technology, Chicago, IL (United States); Schultz, C.W. [Alabama Univ., University, AL (United States); Parekh, B.K. [Kentucky Univ., Lexington, KY (United States); Misra, M. [Nevada Univ., Reno, NV (United States); Bonner, W.P. [Tennessee Technological Univ., Cookeville, TN (United States)

    1992-11-01T23:59:59.000Z

    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in October 1987 by the US Department of Energy is to perform the research necessary to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The results of the original 3-year program, which was concluded in May 1991, have been summarized in a four-volume final report published by IGT. DOE subsequently approved a 1-year extension to the program to further develop the PFH process specifically for application to beneficiated shale as feedstock. Studies have shown that beneficiated shale is the preferred feedstock for pressurized hydroretorting. The program extension is divided into the following active tasks. Task 3. testing of process improvement concepts; Task 4. beneficiation research; Task 5. operation of PFH on beneficiated shale; Task 6. environmental data and mitigation analyses; Task 7. sample procurement, preparation, and characterization; and Task 8. project management and reporting. In order to accomplish all the program objectives, the Institute of Gas Technology (IGT), the prime contractor, worked with four other institutions: the University of Alabama/Mineral Resources Institute (MRI), the University of Kentucky Center for Applied Energy Research (UK-CAER), the University of Nevada (UN) at Reno, and Tennessee Technological University (TTU). This report presents the work performed during the program extension from June 1, 1991 through May 31, 1992.

  1. Fluidized Bed Steam Reforming of INEEL SBW Using THORsm Mineralizing Technology

    SciTech Connect (OSTI)

    Arlin L. Olson; Nicholas R. Soelberg; Douglas W. Marshall; Gary L. Anderson

    2004-12-01T23:59:59.000Z

    Sodium bearing waste (SBW) disposition is one of the U.S. Department of Energy (DOE) Idaho Operation Office’s (NE-ID) and State of Idaho’s top priorities at the Idaho National Engineering and Environmental Laboratory (INEEL). Many studies have resulted in the identification of five treatment alternatives that form a short list of perhaps the most appropriate technologies for the DOE to select from. The alternatives are (a) calcination with maximum achievable control technology (MACT) upgrade, (b) steam reforming, (c) cesium ion exchange (CsIX) with immobilization, (d) direct evaporation, and (e) vitrification. Each alternative has undergone some degree of applied technical development and preliminary process design over the past four years. DOE desired further experimental data, with regard to steam reforming technology, to make informed decisions concerning selection of treatment technology for SBW. Mineralizing steam reforming technology, offered by THOR Treatment Technologies, LLC would produce a denitrated, granular mineral waste form using a high-temperature fluidized bed process. A pilot scale demonstration of the technology was performed in a 15-cm-diameter reactor vessel September 27 through October 1, 2004. The pilot scale equipment is owned by the DOE, and located at the Science and Technology Applications Research (STAR) Center in Idaho Falls, ID. Flowsheet chemistry and operational parameters were defined through a collaborative effort involving Idaho National Engineering and Environmental Laboratory, Savannah River National Laboratory (SRNL), and THOR Treatment Technologies personnel. Personnel from Science Applications International Corporation, owners of the STAR Center, operated the pilot plant. The pilot scale test was terminated as planned after achieving a total of 100 hrs of cumulative/continuous processing operation. About 230 kg of SBW surrogate were processed that resulted in about 88 kg of solid product, a mass reduction of about 62%. The process achieved about a 90% turnover of the starting bed. Samples of mineralized solid product materials were analyzed for chemical/physical properties. Results of product performance testing conducted by SRNL will be reported separately by SRNL.

  2. Sulfur removal in advanced two stage pressurized fluidized bed combustion. Technical report, 1 March--31 May 1994

    SciTech Connect (OSTI)

    Abbasian, J.; Chowdiah, P.; Hill, A.H.; Rue, D.M. [Inst. of Gas Technology, Chicago, IL (United States)

    1994-09-01T23:59:59.000Z

    The objective of this study is to obtain data on the rates of reaction between hydrogen sulfide (H{sub 2}S) and uncalcined calcium-based sorbents under operating conditions relevant to first stage (carbonizer) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors (PFBC). In these systems the CO{sub 2} partial pressure in the first stage generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, removal of sulfur compounds takes place through the reaction between H{sub 2}S and calcium carbonate. To achieve this objective, the rates of reaction between hydrogen sulfide and uncalcined calcium-based sorbents will be determined by conducting tests in pressurized thermogravimetric analyzer (TGA) and high-pressure/high-temperature fluidized-bed reactor (HPTR) units. The effects of sorbent type, sorbent particle size, reactor temperature and pressure, and CO{sub 2} and H{sub 2}S partial pressures on the sulfidation reaction rate will be determined. During this quarter a series of sulfidation tests were conducted in the high-pressure/high-temperature fluidized-bed reactor (HPTR) units. The effects of sorbent type, sorbent particle size, reactor temperature and pressure, and CO{sub 2} and H{sub 2}S partial pressures on the sulfidation reaction rate will be determined. During this quarter a series of sulfidation tests were conducted in the high-pressure high-temperature thermogravimetric analyzer (HPTGA unit) using limestone and dolomite. The results suggest that half-calcined dolomite is much more reactive than uncalcined limestone. Also, temperature in the range of 800 to 950 C did not significantly affect the sulfidation reaction rates for both limestone and dolomite.

  3. Oxidation/corrosion of metallic and ceramic materials in an aluminum remelt furnace. [For fluidized bed waste heat recovery systems

    SciTech Connect (OSTI)

    Federer, J.I.; Jones, P.J.

    1985-12-01T23:59:59.000Z

    Both metallic alloys and ceramic materials are candidates for the distributor plate and other components of fluidized bed waste heat recovery (FBWHR) systems. Eleven Fe-, Ni-, and Co-base alloys were exposed to air at elevated temperatures in laboratory furnaces and to flue gases in an aluminum remelt furnace to assess their resistance to oxidation and corrosion. Four SiC ceramics and two oxide ceramics were also tested in the aluminum remelt furnace. Some alloys were coated with aluminum or SiO2 by commercial processes in an effort to enhance their oxidation and corrosion resistance.

  4. Validation testing of the EERC pilot-scale circulating fluidized-bed combustor using Salt Creek coal

    SciTech Connect (OSTI)

    Mann, M.D.; Hajicek, D.R.; Moe, T.A.; Henderson, A.K.

    1991-09-01T23:59:59.000Z

    The overall goal of the project was to provide a technical basis for assessing the economic and environmental feasibility of circulating fluidized-bed combustion (CFBC) technology, focusing on the effect of system configuration and coal properties on performance. Other underlying goals of the program were to (1) design and construct a CFBC test facility, thereby providing a test facility at an independent laboratory; (2) demonstrate that the test unit is capable of meeting the original design objectives; and (3) assess the ability of the unit to provide scalable data. The purpose of this interim report is to present data from validation testing to establish the scalability of data generated from this unit.

  5. Validation testing of the EERC pilot-scale circulating fluidized-bed combustor using Salt Creek coal. Final report

    SciTech Connect (OSTI)

    Mann, M.D.; Hajicek, D.R.; Moe, T.A.; Henderson, A.K.

    1991-09-01T23:59:59.000Z

    The overall goal of the project was to provide a technical basis for assessing the economic and environmental feasibility of circulating fluidized-bed combustion (CFBC) technology, focusing on the effect of system configuration and coal properties on performance. Other underlying goals of the program were to (1) design and construct a CFBC test facility, thereby providing a test facility at an independent laboratory; (2) demonstrate that the test unit is capable of meeting the original design objectives; and (3) assess the ability of the unit to provide scalable data. The purpose of this interim report is to present data from validation testing to establish the scalability of data generated from this unit.

  6. Technical and economic assessment of fluidized-bed-augmented compressed-air energy-storage system: system load following capability

    SciTech Connect (OSTI)

    Lessard, R.D.; Blecher, W.A.; Merrick, D.

    1981-09-01T23:59:59.000Z

    The load-following capability of fluidized bed combustion-augmented compressed air energy storage systems was evaluated. The results are presented in two parts. The first part is an Executive Summary which provides a concise overview of all major elements of the study including the conclusions, and, second, a detailed technical report describing the part-load and load following capability of both the pressurized fluid bed combustor and the entire pressurized fluid bed combustor/compressed air energy storage system. The specific tasks in this investigation were to: define the steady-state, part-load operation of the CAES open-bed PFBC; estimate the steady-state, part-load performance of the PFBC/CAES system and evaluate any possible operational constraints; simulate the performance of the PFBC/CAES system during transient operation and assess the load following capability of the system; and establish a start-up procedure for the open-bed PFBC and evaluate the impact of this procedure. The conclusions are encouraging and indicate that the open-bed PFBC/CAES power plant should provide good part-load and transient performance, and should have no major equipment-related constraints, specifically, no major problems associated with the performance or design of either the open-end PFBC or the PFBC/CAES power plant in steady-state, part-load operation are envisioned. The open-bed PFBC/CAES power plant would have a load following capability which would be responsive to electric utility requirements for a peak-load power plant. The open-bed PFBC could be brought to full operating conditions within 15 min after routine shutdown, by employing a hot-start mode of operation. The PFBC/CAES system would be capable of rapid changes in output power (12% of design load per minute) over a wide output power range (25% to 100% of design output). (LCL)

  7. Atmospheric fluidized-bed combustor design whose performance will significantly exceed conventional FBC operation performance. Final report

    SciTech Connect (OSTI)

    Hsiao, K.H.; Lin, Y.Y.; Guglietta, G.W.; Cares, W.R.; Fraley, L.D.; Schreiner, W.C.; Schlossman, M.; Solbakken, A.

    1982-12-01T23:59:59.000Z

    It is the goal of this project to bring forth a bench-scale design and test program to establish the merits of the circulating bed concept of atmospheric fluidized bed combustors (AFBC) and to show what the process development unit elements might be. The circulating fluid dynamics were modeled. From such a model the physical dimensions of a test system and the matrix for a test program can be established which will allow determination of parameters for scale-up evaluation of effectiveness and cost. This report presents an analysis of circulating bed boiler design methodology, alternative bench-scale designs for two coal feed levels (20 lbs/h and 80 lbs/h), including costs, and a test program. It is shown that the circulating bed concept has great merit for meeting DOE's advanced AFBC combustor criteria. A conceptual AFBC bench-scale design has been developed for an innovative AFBC system, specifically, a circulating bed boiler (CBB) for which two geometrically-similar designs, differing only in size, are presented.

  8. An experimental study of a vertical tube gas-fluidized bed

    E-Print Network [OSTI]

    Mandich, Kevin Matthew

    2010-01-01T23:59:59.000Z

    acceleration constant. This fixed bed is illustrated infrom the low-velocity fixed bed to the flat slug regime seenvertical tube such that the fixed bed height lay between the

  9. JV Task 108 - Circulating Fluidized-Bed Combustion and Combustion Testing of Turkish Tufanbeyli Coal

    SciTech Connect (OSTI)

    Douglas Hajicek; Jay Gunderson; Ann Henderson; Stephen Sollom; Joshua Stanislowski

    2007-08-15T23:59:59.000Z

    Two combustion tests were performed at the Energy & Environmental Research Center (EERC) using Tufanbeyli coal from Turkey. The tests were performed in a circulating fluidized-bed combustor (CFBC) and a pulverized coal-fired furnace, referred to as the combustion test facility (CTF). One of the goals of the project was to determine the type of furnace best suited to this coal. The coal is high in moisture, ash, and sulfur and has a low heating value. Both the moisture and the sulfur proved problematic for the CTF tests. The fuel had to be dried to less than 37% moisture before it could be pulverized and further dried to about 25% moisture to allow more uniform feeding into the combustor. During some tests, water was injected into the furnace to simulate the level of flue gas moisture had the fuel been fed without drying. A spray dryer was used downstream of the baghouse to remove sufficient sulfur to meet the EERC emission standards permitted by the North Dakota Department of Health. In addition to a test matrix varying excess air, burner swirl, and load, two longer-term tests were performed to evaluate the fouling potential of the coal at two different temperatures. At the lower temperature (1051 C), very little ash was deposited on the probes, but deposition did occur on the walls upstream of the probe bank, forcing an early end to the test after 2 hours and 40 minutes of testing. At the higher temperature (1116 C), ash deposition on the probes was significant, resulting in termination of the test after only 40 minutes. The same coal was burned in the CFBC, but because the CFBC uses a larger size of material, it was able to feed this coal at a higher moisture content (average of 40.1%) compared to the CTF (ranging from 24.2% to 26.9%). Sulfur control was achieved with the addition of limestone to the bed, although the high calcium-to-sulfur rate required to reduce SO{sub 2} emissions resulted in heat loss (through limestone calcination) and additional ash handling. A more efficient downstream sulfur scrubber capable of operation at a much lower Ca/S ratio would result in significantly higher boiler efficiency for this coal. At the operating temperature of a typical CFBC, bed agglomeration and convective pass fouling are not likely to be significant problems with this fuel. Compared to pulverized coal-firing, CFBC technology is clearly the better choice for this fuel. It provides more efficient sulfur capture, lower NO{sub x} emissions, better solids-handling capability, and can utilize a wetter feedstock, requiring less crushing and sizing. The lower operating temperature of CFBC boilers (820 C) reduces the risk of fouling and agglomeration. Care must be taken to minimize heat loss in the system to accommodate the low heating value of the coal.

  10. Operation of a steam hydro-gasifier in a fluidized bed reactor

    E-Print Network [OSTI]

    Park, Chan Seung; Norbeck, Joseph N.

    2008-01-01T23:59:59.000Z

    OPERATION OF A S T E A M HYDRO-GASIFIER IN A FLUIDIZED BEDMaterial Using Self-Sustained Hydro- Gasification." [0011]the process, using a steam hydro-gasification reactor (SHR)

  11. Evaluation of dust cake filtration at high temperature with effluence from an atmospheric fluidized-bed combustor

    SciTech Connect (OSTI)

    Dennis, R.A.

    1990-08-01T23:59:59.000Z

    In the spring of 1989, two separate test series were simultaneously conducted at the US Department of Energy's (DOE's) Morgantown Energy Technology Center (METC) to examine applied and fundamental behavior of dust cake filtration under high temperature and high pressure (HTHP) conditions. The purpose was to provide information on dust-cake filtration properties to gas stream cleanup researchers associated with the Tidd 70 megawatt (MW) pressurized fluidized-bed combustor (PFBC). The two test facilities included (1) a high-pressure natural-gas combustor with injected particulate, which was fed to two full-size candle filters; and (2) an atmospheric fluidized-bed combustor (AFBC) with coal and limestone sorbent to generate a particulate-laden combustion exhaust gas, which was sent to a single full-size candle filter and a small-scale disc filter. Several major conclusions from these studies are noted below. On average reducing the mean particulate size by 33% and the associated loading carried in the filtrate will increase the dust cake specific flow resistance (K{sub 2}) by 498%. High-temperature and high-pressure filtration can be successfully performed with ceramic candle filters at moderate filtration face velocities and reasonable system pressure drops. Off-line filter cleaning can produce a filter system with a higher apparent permeability than that produced from on-line filter cleaning at the same face velocity. 19 refs., 89 figs., 13 tabs.

  12. Performance and economics of co-firing a coal/waste slurry in advanced fluidized-bed combustion

    SciTech Connect (OSTI)

    DeLallo, M.R.; Zaharchuk, R. [Parsons Power Group, Inc., Reading, PA (United States); Reuther, R.B.; Bonk, D.L. [USDOE Morgantown Energy Technology Center, WV (United States)

    1996-09-01T23:59:59.000Z

    This study`s objective was to investigate co-firing a pressurized fluidized-bed combustor with coal and refuse-derived fuel for the production of electricity and the efficient disposal of waste. Performance evaluation of the pressurized fluidized-bed combustor (PFBC) power plant co-fired with refuse-derived fuel showed only slightly lower overall thermal efficiency than similar sized plants without waste co-firing. Capital costs and costs of electricity are within 4.2 percent and 3.2 percent, respectively, of waste-free operation. The results also indicate that there are no technology barriers to the co-firing of waste materials with coal in a PFBC power plant. The potential to produce cost-competitive electrical power and support environmentally acceptable waste disposal exists with this approach. However, as part of technology development, there remain several design and operational areas requiring data and verification before this concept can realize commercial acceptance. 3 refs., 3 figs., 4 tabs.

  13. Sulfur removal in advanced two stage pressurized fluidized bed combustion. Technical report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Abbasian, J.; Hill, A.; Wangerow, J.R. [Inst. of Gas Technology, Chicago, IL (United States)

    1994-12-31T23:59:59.000Z

    The objective of this study is to obtain data on the rates and the extent of sulfation reactions involving partially sulfided calcium-based sorbents, and oxygen as well as sulfur dioxide, at operating conditions closely simulating those prevailing in the second stage (combustor) of Advanced Two-Stage Pressurized Fluidized-Bed Combustors (PFBC). In these systems the CO{sub 2} partial pressure generally exceeds the equilibrium value for calcium carbonate decomposition. Therefore, calcium sulfate is produced through the reactions between SO{sub 2} and calcium carbonate as well as the reaction between calcium sulfide and oxygen. To achieve this objective, the rates of reaction involving SO{sub 2} and oxygen (gaseous reactant); and calcium sulfide and calcium carbonate (solid reactants), will be determined by conducting tests in a pressurized thermogravimetric analyzer (HPTGA) unit. The effects of sorbent type, sorbent particle size, reactor temperature and pressure; and O{sub 2} as well as SO{sub 2} partial pressures on the sulfation reactions rate will be determined. During this quarter, samples of the selected limestone and dolomite were sulfided in the fluidized-bed reactor. These tests were conducted in both calcining and non-calcining operating conditions to produce partially-sulfided sorbents containing calcium oxide and calcium carbonate, respectively. These samples which represent the carbonizer discharge material, will be used as the feed material in the sulfation tests to be conducted in the HPTGA unit during the next quarter.

  14. Analysis/control of in-bed tube erosion phenomena in the Fluidized Bed Combustion (FBC) system. Technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect (OSTI)

    Lee, S.W.

    1994-04-01T23:59:59.000Z

    This technical report summarizes the research work performed and progress achieved during the period of January 1, 1994 to March 31, 1994. The metal wastage mechanisms and rate that occur in 1018 carbon steel used in in-bed tube of the bubbling fluidized bed combustor (BFBC) are discussed with particle-surface collision frequency around tube. The distribution of particle-surface collision frequency around tube was affected by the location of tube and bed height. A series of material wastage tests was carried out using 742 {mu}m, quartz silica (SiO{sub 2}) on 1018 steel at elevated temperature (300 {degrees}C) which occurs in-bed locations of BFBC. The morphologies of the specimens were examined and analyzed by scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The maximum collision frequency around the periphery of the tube was found at 45 {degrees}, 315 {degrees} from bottom center, 0{degrees}, which was correlated with maximum material wastage rate of the specimens.

  15. Performance of the Fluidized Bed Steam Reforming product under hydraulically unsaturated conditions

    SciTech Connect (OSTI)

    Neeway, James J [ORNL] [ORNL; Rod, Kenton A. [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Bowden, Mark E [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Pierce, Eric M [ORNL] [ORNL; Qafoku, Nikolla [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Williams, Benjamin D [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL); Brown, Christopher F [Pacific Northwest National Laboratory (PNNL)] [Pacific Northwest National Laboratory (PNNL)

    2014-01-01T23:59:59.000Z

    Several candidates for supplemental low-activity waste (LAW) immobilization at the Hanford site in Washington State, USA are being considered. One waste sequestering technology considered is Fluidized Bed Steam Reforming (FBSR). The granular product resulting from the FBSR process is composed primarily of an insoluble sodium aluminosilicate matrix with the dominant phases being feldspathoid minerals with a 1:1:1 molar ratio of Na, Al and Si. To demonstrate the durability of the product, which can be disposed of at the unsaturated Integrated Disposal Facility (IDF) at Hanford, a series of tests has been performed using the Pressurized Unsaturated Flow (PUF) system, which allows for the accelerated weathering of the solid materials. The system maintains hydraulically unsaturated conditions, thus mimicking the open-flow and transport properties that will be present at the IDF. Two materials were tested using the system: 1) the FBSR granular product and 2) the FBSR granular product encapsulated in a geopolymer to form a monolith. Results of the experiments show a trend of relatively constant effluent concentration of Na, Si, Al, and Cs as a function of time from both materials. The elements I and Re show a steady release throughout the yearlong test from the granular material but their concentrations seem to be increasing at one year from the monolith material. This result suggests that these two elements may be present in the sodalite cage structure rather than in the predominant nepheline phase because their release occurs at a different rate compared to nepheline phase. Also, these elements to not seem to reprecipitate when released from the starting material. Calculated one-year release rates for Si are on the order of 10 6 g/(m2 d) for the granular material and 10 5 g/(m2 d) for the monolith material while Re release is seen to be two orders of magnitude higher than Si release rates. SEM imaging and XRD analysis show how the alteration of the two materials is dependent on their depth in the column. This phenomenom is a result of depth-dependent solution concentrations giving rise chemical environments that may be supersaturated with respect to a number of mineral phases.

  16. Analysis/control of in-bed tube erosion phenomena in the fluidized bed combustion (FBC) system. Technical progress report No. 14, [January 1, 1996--March 31, 1996

    SciTech Connect (OSTI)

    Lee, Seong W.

    1996-04-01T23:59:59.000Z

    The material wastage tests were continued to analyze erosion phenomena under the simulated erosion conditions of in-bed tubes in fluidized bed combustors. AISI 1018 steel and three thermal sprayed coating specimens were tested at an elevated temperature (300{degrees}C) using nozzle type erosion tester. Bed ashes retrieved from the operating biomass-fired boiler were used for erodent particles at a particle loading of 375 g, at particle impact angle of 30{degrees}, at particle velocity 60 m/s for exposure periods of 4 hours. The specimens were water-cooled on the backside. The material wastage of specimens was determined by thickness measurements. Test results can be seen that the cooled specimen had greater material wastage than that of the uncooled specimens. In addition, all of thermal-sprayed coating specimens for both cooled and uncooled specimens could reduce the erosion wastage rates as compared with 1018 steel. Among the three thermal-sprayed coatings, a DS-105 specimen of high velocity oxygen fuel spraying exhibited the lowest erosion wastage rate. When tested a higher particle velocity (60 m/s), but at the same elevated temperature (300{degrees}C), the material wastage rate of all three coatings was about 6 to 18 times higher than that of the material wastage at a low particle velocity (2.5 m/s).

  17. Final Environmental Impact Statement for the JEA Circulating Fluidized Bed Combustor Project

    SciTech Connect (OSTI)

    N /A

    2000-06-30T23:59:59.000Z

    This EIS assesses environmental issues associated with constructing and demonstrating a project that would be cost-shared by DOE and JEA (formerly the Jacksonville Electric Authority) under the Clean Coal Technology Program. The project would demonstrate circulating fluidized bed (CFB) combustion technology at JEA's existing Northside Generating Station in Jacksonville, Florida, about 9 miles northeast of the downtown area of Jacksonville. The new CFB combustor would use coal and petroleum coke to generate nearly 300 MW of electricity by repowering the existing Unit 2 steam turbine, a 297.5-MW unit that has been out of service since 1983. The proposed project is expected to demonstrate emission levels of sulfur dioxide (SO{sub 2}), oxides of nitrogen (NO{sub x}), and particulate matter that would be lower than Clean Air Act limits while at the same time producing power more efficiently and at less cost than conventional coal utilization technologies. At their own risk, JEA has begun initial construction activities without DOE funding. Construction would take approximately two years and, consistent with the original JEA schedule, would be completed in December 2001. Demonstration of the proposed project would be conducted during a 2-year period from March 2002 until March 2004. In addition, JEA plans to repower the currently operating Unit 1 steam turbine about 6 to 12 months after the Unit 2 repowering without cost-shared funding from DOE. Although the proposed project consists of only the Unit 2 repowering, this EIS analyzes the Unit 1 repowering as a related action. The EIS also considers three reasonably foreseeable scenarios that could result from the no-action alternative in which DOE would not provide cost-shared funding for the proposed project. The proposed action, in which DOE would provide cost-shared finding for the proposed project, is DOE's preferred alternative. The EIS evaluates the principal environmental issues, including air quality, traffic, noise, and ecological resources, that could result from construction and operation of the proposed project. Key findings include that maximum modeled increases in ground-level concentrations of SO{sub 2} nitrogen dioxide (NO{sub 2}), and particulate matter (for the proposed project alone or in conjunction with the related action) would always be less than 10% of their corresponding standards for increases in pollutants. For potential cumulative air quality impacts, results of modeling regional sources and the proposed project indicate that the maximum 24-hour average SO{sub 2} concentration would closely approach (i.e., 97%) but not exceed the corresponding Florida standard. After the Unit 1 repowering, results indicate that the maximum 24-hour average SO{sub 2} concentration would be 91% of the Florida standard. Concentrations for other averaging periods and pollutants would be lower percentages of their standards. Regarding toxic air pollutants from the proposed project, the maximum annual cancer risk to a member of the public would be approximately 1 in 1 million; given the conservative assumptions in the estimate, the risk would probably be less. With regard to threatened and endangered species, impacts to manatees, gopher tortoises, and other species would be negligible or non-existent. Construction-induced traffic would result in noticeable congestion. In the unlikely event that all coal were transported by rail, up to 3 additional trains per week would exacerbate impacts associated with noise, vibration, and blocked roads at on-grade rail crossings. Additional train traffic could be minimized by relying more heavily on barges and ships for coal transport, which is likely to be a more economic fuel delivery mode. During construction of the proposed project, noise levels would increase from the current operational levels. Except possibly during steam blowouts and possibly during operation of equipment used to construct a nearby segment of a conveyor, construction noise should not appreciably affect the background noise of nearby residences or exceed local nois

  18. Recovery of uranium from seawater; 15: Development of amidoxime resins with high sedimentation velocity for passively driver fluidized bed adsorbers

    SciTech Connect (OSTI)

    Egawa, Hiroaki; Kabay, N.; Jyo, A.; Hirono, Masaki; Shuto, Taketomi (Kumamoto Univ. (Japan). Dept. of Applied Chemistry)

    1994-03-01T23:59:59.000Z

    In order to design the amidoxime resins (RNH) suitable for circulating fluidized bed adsorbers, RNH were prepared from precursory acrylonitrile-divinylbenzene copolymer beads of different particle sizes, and chemical and physical properties of the resulting RNH were evaluated. Specific surface areas, pore structures, swelling ratios, and anion and cation-exchange capacities of RNH are little affected by the particle size, while their sedimentation velocities in water increase with an increase in particle size as expected from fluid dynamics. Although the uptake of uncomplexed uranyl ion from a uranyl nitrate solution (0.01 M) was not influenced by the particle size, the uranium uptake from seawater decreases with an increase in the particle size, indicating that the particle diffusion of the bulky complexed species UO[sub 2](CO[sub 3])[sub 3][sup 4[minus

  19. The Nucla Circulating Fluidized-Bed Demonstration Project: A U.S. DOE post-project assessment

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    This report is a post-project assessment of the Nucla Circulating Fluidized-Bed (CFB) Demonstration Project, the second project to be completed in the DOE Clean Coal Technology Program. Nucla was the first successful utility repowering project in the US, increasing the capacity of the original power station from 36 MW(e) to 110 MW(e) and extending its life by 30 years. In the CFB boiler, combustion and desulfurization both take place in the fluidized bed. Calcium in the sorbent captures sulfur dioxide and the relatively low combustion temperatures limit NOx formation. Hot cyclones separate the larger particles from the gas and recirculates them to the lower zones of the combustion chambers. This continuous circulation of coal char and sorbent particles is the novel feature of CFB technology. This demonstration project significantly advanced the environmental, operational, and economic potential of atmospheric CFB technology, precipitating a large number of orders for atmospheric CFB equipment. By 1994, more than 200 atmospheric CFB boilers have been constructed worldwide. Although at least six CFB units have been operated, the Nucla project`s CFB database continues to be an important and unique resource for the design of yet larger atmospheric CFB systems. The post-project assessment report is an independent DOE appraisal of the success a completed project had in achieving its objectives and aiding in the commercialization of the demonstrated technology. The report also provides an assessment of the expected technical, environmental, and economic performance of the commercial version of the technology as well as an analysis of the commercial market.

  20. Particle size effects in particle-particle triboelectric charging studied with an integrated fluidized bed and electrostatic separator system

    SciTech Connect (OSTI)

    Bilici, Mihai A.; Toth, Joseph R.; Sankaran, R. Mohan; Lacks, Daniel J. [Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7217 (United States)

    2014-10-15T23:59:59.000Z

    Fundamental studies of triboelectric charging of granular materials via particle-particle contact are challenging to control and interpret because of foreign material surfaces that are difficult to avoid during contacting and measurement. The measurement of particle charge itself can also induce charging, altering results. Here, we introduce a completely integrated fluidized bed and electrostatic separator system that charges particles solely by interparticle interactions and characterizes their charge on line. Particles are contacted in a free-surface fluidized bed (no reactor walls) with a well-controlled fountain-like flow to regulate particle-particle contact. The charged particles in the fountain are transferred by a pulsed jet of air to the top of a vertically-oriented electrostatic separator consisting of two electrodes at oppositely biased high voltage. The free-falling particles migrate towards the electrodes of opposite charge and are collected by an array of cups where their charge and size can be determined. We carried out experiments on a bidisperse size mixture of soda lime glass particles with systematically varying ratios of concentration. Results show that larger particles fall close to the negative electrode and smaller particles fall close to the positive electrode, consistent with theory and prior experiments that larger particles charge positively and smaller particles charge negatively. The segregation of particles by charge for one of the size components is strongest when its collisions are mostly with particles of the other size component; thus, small particles segregate most strongly to the negative sample when their concentration in the mixture is small (and analogous results occur for the large particles). Furthermore, we find additional size segregation due to granular flow, whereby the fountain becomes enriched in larger particles as the smaller particles are preferentially expelled from the fountain.

  1. DURABILITY TESTING OF FLUIDIZED BED STEAM REFORMER WASTE FORMS FOR SODIUM BEARING WASTE AT IDAHO NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Crawford, C; Carol Jantzen, C

    2007-08-27T23:59:59.000Z

    Fluidized Bed Steam Reforming (FBSR) processing of Sodium Bearing Waste simulants was performed in December 2006 by THOR{sup sm} Treatment Technologies LLC (TTT) The testing was performed at the Hazen Research Inc. (HRI) pilot plant facilities in Golden, CO. FBSR products from these pilot tests on simulated waste representative of the SBW at the Idaho Nuclear Technology and Engineering Center (INTEC) were subsequently transferred to the Savannah River National Laboratory (SRNL) for characterization and leach testing. Four as-received Denitration and Mineralization Reformer (DMR) granular/powder samples and four High Temperature Filter (HTF) powder samples were received by SRNL. FBSR DMR samples had been taken from the ''active'' bed, while the HTF samples were the fines collected as carryover from the DMR. The process operated at high fluidizing velocities during the mineralization test such that nearly all of the product collected was from the HTF. Active bed samples were collected from the DMR to monitor bed particle size distribution. Characterization of these crystalline powder samples shows that they are primarily Al, Na and Si, with > 1 wt% Ca, Fe and K. The DMR samples contained less than 1 wt% carbon and the HTF samples ranged from 13 to 26 wt% carbon. X-ray diffraction analyses show that the DMR samples contained significant quantities of the Al{sub 2}O{sub 3} startup bed. The DMR samples became progressively lower in starting bed alumina with major Na/Al/Si crystalline phases (nepheline and sodium aluminosilicate) present as cumulative bed turnover occurred but 100% bed turnover was not achieved. The HTF samples also contained these major crystalline phases. Durability testing of the DMR and HTF samples using the ASTM C1285 Product Consistency Test (PCT) 7-day leach test at 90 C was performed along with several reference glass samples. Comparison of the normalized leach rates for the various DMR and HTF components was made with the reference glasses and the Low Activity Waste (LAW) specification for the Hanford Waste Treatment and Vitrification Plant (WTP). Normalized releases from the DMR and HTF samples were all less than 1 g/m{sup 2}. For comparison, normalized release from the High-Level Waste (HLW) benchmark Environmental Assessment (EA) glass for Si, Li, Na and B ranges from 2 to 8 g/m{sup 2}. The normalized release specification for LAW glass for the Hanford WTP is 2 g/m{sup 2}. The Toxicity Characteristic Leach Test (TCLP) was performed on DMR and HTF as received samples and the tests showed that these products meet the criteria for the EPA RCRA Universal Treatment Standards for all of the constituents contained in the starting simulants such as Cr, Pb and Hg (RCRA characteristically hazardous metals) and Ni and Zn (RCRA metals required for listed wastes).

  2. Technical and economic assessment of fluidized bed augmented compressed air energy-storage system. Volume II. Introduction and technology assessment

    SciTech Connect (OSTI)

    Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

    1981-09-01T23:59:59.000Z

    The results are described of a study subcontracted by PNL to the United Technologies Research Center on the engineering feasibility and economics of a CAES concept which uses a coal fired, fluidized bed combustor (FBC) to heat the air being returned from storage during the power production cycle. By burning coal instead of fuel oil, the CAES/FBC concept can completely eliminate the dependence of compressed air energy storage on petroleum fuels. The results of this assessment effort are presented in three volumes. Volume II presents a discussion of program background and an in-depth coverage of both fluid bed combustion and turbomachinery technology pertinent to their application in a CAES power plant system. The CAES/FBC concept appears technically feasible and economically competitive with conventional CAES. However, significant advancement is required in FBC technology before serious commercial commitment to CAES/FBC can be realized. At present, other elements of DOE, industrial groups, and other countries are performing the required R and D for advancement of FBC technology. The CAES/FBC will be reevaluated at a later date when FBC technology has matured and many of the concerns now plaguing FBC are resolved. (LCL)

  3. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke

    2001-07-13T23:59:59.000Z

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences, Foster Wheeler Energy Services, Inc., Parsons Energy and Chemicals Group, Inc., and Cofiring Alternatives. During this reporting period, work focused on completing the biofuel characterization and the design of the conceptual fluidized bed system.

  4. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits

    2001-01-18T23:59:59.000Z

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. During this reporting period, work focused on performing the design of the conceptual fluidized bed system and determining the system economics.

  5. Development of a countercurrent multistage fluidized-bed reactor and mathematical modeling for prediction of removal efficiency of sulfur dioxide from flue gases

    SciTech Connect (OSTI)

    Mohanty, C.R.; Malavia, G.; Meikap, B.C. [Indian Institute of Technology, Kharagpur (India). Dept. of Chemical Engineering

    2009-02-15T23:59:59.000Z

    A bubbling countercurrent multistage fluidized-bed reactor for the sorption of sulfur dioxide by hydrated lime particles was simulated employing a two-phase model, with the bubble phase assumed to be in plug flow and with the emulsion phase either in plug flow (EGPF model) or in perfectly mixed flow (EGPM model). The model calculations were compared with experimental data in term of percentage removal efficiency of sulfur dioxide. Both models were applied to understand the influence of operating parameters on the reactor performance. The comparison showed that the EGPF model agreed well with the experimental data. From the perspective of use of a multistage fluidized-bed reactor as air pollution control equipment in industry, the model could be considered general enough for predicting the performance of reactors for gas-solid treatment.

  6. The O{sub 2}-enriched air gasification of coal, plastics and wood in a fluidized bed reactor

    SciTech Connect (OSTI)

    Mastellone, Maria Laura, E-mail: mlaura.mastellone@unina2.it [Department of Environmental Sciences-Second University of Naples, Via Vivaldi, 43 81100 Caserta (Italy); Zaccariello, Lucio; Santoro, Donato; Arena, Umberto [Department of Environmental Sciences-Second University of Naples, Via Vivaldi, 43 81100 Caserta (Italy)

    2012-04-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer The effect of the O{sub 2} in the gasification stream of a BFB gasifier has been studied. Black-Right-Pointing-Pointer Main advantage of the O{sub 2}-enriched air is the increasing of the bed temperature. Black-Right-Pointing-Pointer No remarkable effects on tar reduction. Decreasing of recognized PAHs. Black-Right-Pointing-Pointer Gasification reactions completed inside the dense bed and splashing zone. Black-Right-Pointing-Pointer Polycondensation reactions occur mainly in the freeboard region. - Abstract: The effect of oxygen-enriched air during fluidized bed co-gasification of a mixture of coal, plastics and wood has been investigated. The main components of the obtained syngas were measured by means of on-line analyzers and a gas chromatograph while those of the condensate phase were off-line analysed by means of a gas chromatography-mass spectrometer (GC-MS). The characterization of condensate phase as well as that of the water used as scrubbing medium completed the performed diagnostics. The experimental results were further elaborated in order to provide material and substances flow analyses inside the plant boundaries. These analyses allowed to obtain the main substance distribution between solid, gaseous and condensate phases and to estimate the conversion efficiency of carbon and hydrogen but also to easily visualise the waste streams produced by the process. The process performance was then evaluated on the basis of parameters related to the conversion efficiency of fuels into valuable products (i.e. by considering tar and particulate as process losses) as well as those related to the energy recovery.

  7. Composition and chemistry of particulates from the Tidd Clean Coal Demonstration Plant pressurized fluidized bed combustor, cyclone, and filter vessel

    SciTech Connect (OSTI)

    Smith, D.H.; Grimm, U.; Haddad, G.

    1995-12-31T23:59:59.000Z

    In a Pressurized Fluidized Bed Combustion (PFBC)/cyclone/filter system ground coal and sorbent are injected as pastes into the PFBC bed; the hot gases and entrained fine particles of ash and calcined or reacted sorbent are passed through a cyclone (which removes the larger entrained particles); and the very-fine particles that remain are then filtered out, so that the cleaned hot gas can be sent through a non-ruggedized hot-gas turbine. The 70 MWe Tidd PFBC Demonstration Plant in Brilliant, Ohio was completed in late 1990. The initial design utilized seven strings of primary and secondary cyclones to remove 98% of the particulate matter. However, the Plant also included a pressurized filter vessel, placed between the primary and secondary cyclones of one of the seven strings. Coal and dolomitic limestone (i.e, SO{sub 2} sorbent) of various nominal sizes ranging from 12 to 18 mesh were injected into the combustor operating at about 10 atm pressure and 925{degree}C. The cyclone removed elutriated particles larger than about 0.025 mm, and particles larger than ca. 0.0005 mm were filtered at about 750{degree}C by ceramic candle filters. Thus, the chemical reaction times and temperatures, masses of material, particle-size distributions, and chemical compositions were substantially different for particulates removed from the bed drain, the cyclone drain, and the filter unit. Accordingly, we have measured the particle-size distributions and concentrations of calcium, magnesium, sulfur, silicon, and aluminum for material taken from the three units, and also determined the chemical formulas and predominant crystalline forms of the calcium and magnesium sulfate compounds formed. The latter information is particularly novel for the filter-cake material, from which we isolated the ``new`` compound Mg{sub 2}Ca(SO{sub 4}){sub 3}.

  8. An experimental study of the hydrodynamics and cluster formation in a circulating fluidized bed. Topical report, January 1, 1991--June 30, 1992

    SciTech Connect (OSTI)

    Gautam, M.; Jurewicz, J.; Heping, Y.; Clifton, K.

    1992-07-01T23:59:59.000Z

    This research program involves two major aspects. First, to evaluate techniques to effectively probe the polydisperse gas-solid flows and second, to apply these techniques to study the gas-solid flow structure and clusters in the riser of a circulating fluidized bed riser. Amongst the non-intrusive techniques a modified laser Doppler technique based on the fluorescence-emission concept has been adopted and the other techniques involve pitot-static pressure probes. A circulating fluidized bed (CFB) facility has been designed, built and is currently operational at West Virginia University. The design provides for maximum versatility in investigating the hydrodynamics of the CFB riser. Two stage cyclones are employed to capture the particles exhausted from the riser. Measurements of gas velocity distribution were carried out in the circulating fluidized bed riser. with particles having a mean diameter of 112 {mu}m and a density of 2305 kg/m{sup 3} and another set of particles with a mean diameter of 145 {mu}m and a density of 2245 kg/m{sup 3}. The experimental results showed that the local gas velocity varied with the radial position, elevation, solids circulation rate, superficial velocity and particle size. A general formula for gas velocity distribution in the circulating fluidized bed riser was obtained based on the particle circulation, superficial velocity and particle diameter. The pressure drops across the L-valve were also studied for different particle sizes, L-valve diameters and aeration. The solids flowrate was found to be a function of the L-valve geometry, operating parameters and solids properties. Pressure drop of L-valve increases with increasing solids diameter and decreasing diameter of the L-valve. Pressure drop across standpipe increases as the solids diameter and diameter of the standpipe decrease.

  9. Co-firing a pressurized fluidized-bed combustion system with coal and refuse derived fuels and/or sludges. Task 16

    SciTech Connect (OSTI)

    DeLallo, M.; Zaharchuk, R.

    1994-01-01T23:59:59.000Z

    The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal waste. Leading this approach, the atmospheric fluidized-bed combustor (AFBC) has demonstrated its commercial acceptance in the utility market as a reliable source of power burning a variety of waste and alternative fuels. The fluidized bed, with its stability of combustion, reduces the amount of thermochemical transients and provides for easier process control. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economic feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Wastes considered for co-firing include municipal solid waste (MSW), tire-derived fuel (TDF), sewage sludge, and industrial de-inking sludge. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

  10. Characterization and fate of vapor-phase organic constituents from atmospheric pressure fluidized bed combustors (AFBC): East Stroudsburg University AFBC

    SciTech Connect (OSTI)

    Yeh, Hsu-Chi; Newton, G.J.; Henderson, T.R.; Hobbs, C.H.

    1987-08-01T23:59:59.000Z

    Very little research has been devoted to the characterization of vapor-phase organic compounds in gaseous streams. Because of the concerns that gaseous organic compounds from FBCs may include potentially toxic and/or mutagenic materials. We will measure vapor-phase hydrocarbon concentrations in the process streams of operating FBCs. This report describes our field sampling results on the atmospheric pressure fluidized bed combustor (AFBC) at the East Stroudsburg University during its normal operation for supplying heat and hot water to the campus. This AFBC has a bed size of 36 ft/sup 2/ and was burning anthracite culm. The culm consumption rates during the week of our sampling period were 1600 to 3000 lb/hr. Emphasis was placed on characterization of process stream effluents, including particles and vapor-phase organic constituents. Results indicated that the mass concentration (or loading) of particulate matter within the effluent stream was similar to other FBCs that have been studied. The particulate mass concentration measured after the baghouse location was 0.0048 g/m/sup 3/ (0.0047 lb/10/sup 6/ Btu). This was equivalent to a total of 35 g/hr of particulate emissions. The fraction of particulate material presented as organics (extractable fraction) was, on the average, less than 2% of total mass of particulate emissions. The vapor-phase organic contents indicated that the quantities of individual polycyclic aromatic hydrocarbons (PAHs) were low, being less than 2.5 ..mu..g/m/sup 3/ for any individual sample. Most of the PAHs detected were low boiling compounds such as naphthalene or phenanthrene, with trace amounts of pyrene. 22 refs., 13 figs., 11 tabs.

  11. Technical and economic assessment of fluidized-bed-augmented compressed-air energy-storage system. Volume I. Executive summary

    SciTech Connect (OSTI)

    Giramonti, A.J.; Lessard, R.D.; Merrick, D.; Hobson, M.J.

    1981-09-01T23:59:59.000Z

    An energy storage system which could be attractive for future electric utility peak-load applications is a modified gas turbine power system utilizing underground storage of very high pressure air. The compressed air energy storage (CAES) concept involves using off-peak electricity generated from indigenous coal or nuclear sources to compress air, storing the air in large underground facilities, and withdrawing the air during peak-load periods when it would be heated by combustion and expanded through gas turbines to generate power. The attractiveness of the CAES concept is based upon its potential to supply competitively priced peaking energy, to reduce peak-load power plant dependence on petroleum-based fuels, and to provide a means for leveling the utility system load demand. Therefore, a technical and economic assessment of coal-fired fluidized bed (FBC) combustor/compressed air energy storage (FBC/CAES) systems was performed and is described. The conclusions drawn from the FBC/CAES study program are encouraging. They indicate that pressurized FBC/CAES power plants should be technologically feasible, provide good performance, and be economically competitive. Specifically, it is concluded that: coal-fired FBC/CAES systems should be technically feasible in the near future and potentially attractive for peak-load power generation; and an open-bed PFBC/CAES configuration would provide the best candidate for early commercialization. It has relatively low risk combined with moderate cost and reasonable round-trip heat rate. It also has the potential for future growth options which tend to reduce costs and lower fuel consumption.

  12. Testing fluidized bed incinerators for energy-efficient operation for the Southtowns Sewage Treatment Agency. Final report

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    Two methods for improving the energy efficiency of fluidized bed sludge incinerators were evaluated. The first method used paper pulp and polymer as conditioning agents for municipal sludge instead of lime and ferric chloride. Automatic control of the incinerator was the second method evaluated for energy savings. To evaluate the use of paper pulp and polymer as conditioning agents, varying quantities of paper pulp were added to the liquid sludge to determine the optimal sludge-to-paper pulp ratio. The effect of the paper pulp and polymer-conditioned sludge on plant operations also was evaluated. When compared to sludge conditioned with lime and ferric chloride, the paper pulp and polymer-conditioned sludge had similar cake release and feed characteristics, higher BTU values for the dry sludge solids, required less auxiliary fuel for incineration, and generated less ash for disposal. The paper pulp and polymer did not have any appreciable negative effects on the operation of the wastewater treatment plant. It was estimated that processing and incinerating the sludge conditioned with paper pulp and polymer resulted in a cost savings of up to $91.73 per dry ton of activated sludge solids. To evaluate the effect of automatic control, all the incinerator operating parameters including air flow rates, fuel oil feed rates, and sludge feed rates, were automatically monitored and controlled to minimize auxiliary fuel oil use and to keep the incinerator running at optimal conditions. Although effective, the estimated cost savings for automatic control of the incinerator were small.

  13. Initial test results from the Department of Energy`s pressurized fluidized bed combustion Hot Gas Cleanup Program

    SciTech Connect (OSTI)

    Dennis, R.A. [USDOE Morgantown Energy Technology Center, WV (United States); Lippert, T.E.; Bruck, G.J.; Alvin, M.A. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center; Mudd, M.J. [Ohio Power Co., Columbus, OH (United States)]|[American Electric Power Service Corp., Columbus, OH (United States)

    1993-06-01T23:59:59.000Z

    In August 1989 a cooperative agreement was signed between Ohio Power Company, through its agent the American Electric Power Service Corporation, and the United States Department of Energy to assess the readiness and economic viability of high-temperature and high-pressure (HTHP) particulate filter systems for pressurized fluidized bed combustion (PFBC) applications. In this agreement, known as the PFBC Hot Gas Cleanup (HGCU) Program, two HTHP particulate filtration systems are to be tested with one seventh of the flow from the Tidd 70-MWe PFBC Clean Coal Demonstration Plant. This paper describes the initial results from the first PFBC HGCU test and an additional proof-of-concept, pilot-scale test used to validate a ceramic candle filter element, which may be used in the second test of the PFBC HGCU Program. The first test consisted of a three-cluster filter system, incorporating 384, 1.5-meter long silicon carbide candle filters. This system utilized a one-seventh flow slipstream, approximately 7360 actual cubic feet per minute, from the Tidd 70-MWe PFBC. The proof-of-concept test is being used to qualify mullite candle filters as a potential candidate for the second test at the Tidd 70-MWe PFBC. Both filter systems were designed and fabricated by the Westinghouse Science and Technology Center.

  14. Pressurized fluidized-bed hydroretorting of eastern oil shales. [Estimation of the cost of beneficiating Alabama shale

    SciTech Connect (OSTI)

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S.

    1992-12-01T23:59:59.000Z

    This report presents the work performed during the program quarter from September 1, 1992 though November 30, 1992. The Institute of Gas Technology (IGT) is the prime contractor for the program extension to develop the Pressurized Fluidized-Bed Hydroretorting II system technology. Four institutions are working with IGT as subcontractors. Task achievements are discussed for the following active tasks of the program: Subtask 3.7 innovative reactor concept testing; Subtask 3.9 catalytic hydroretorting; Subtask 3.10 autocatalysis in hydroretorting; Subtask 3.11 shale oil upgrading and evaluation; Subtask 4.1.3 stirred ball mill grinding; Subtask 4.1.5 alternative technology evaluation; Subtask 4.1.6 ultrafine size separation; Subtask 4.2.1 column flotation tests; Subtask 4.4 integrated grinding and flotation; Subtask 4.7 economic analysis; Subtask 6.2.2 wastewater treatability; Subtask 6.2.3 waste management facility conceptual design; and Subtask 8 project management and reporting.

  15. Industrial application fluidized bed combustion. Category III: indirect fired heaters. Quarterly technical report No. 16, April 1-June 30, 1980

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    The High Temperature Heat Flux Test Unit was put into operation during July 1979. Tests using both propane and coal fuels have been completed. Test results are summarized in this report. The object of the Economic and Applications Task of the Program is to evaluate the economic and logistic factors that might influence the schedule and circumstances under which coal fired Atmospheric Fluidized Bed Combustion (AFBC) technology might be applied to petroleum and petrochemical plant process heaters. The results of these studies indicate that the potential for near term application of AFBC technology to refinery crude heaters is relatively low. A possible alternative application of FBC heaters in the Exxon Donor Solvent Process for the liquefaction of coal has been identified. In this alternative an FBC heater would be used to burn the heavy vacuum tower bottoms. A preliminary design of such a heater has been completed and released to the Exxon Synfuels Division for further evaluation. The final task of the program will be to prepare a design specification for a hypothetical commercial sized process heater from which all interested parties can make a definitive evaluation of the technical and commercial prospects of the technology. This design work is now underway.

  16. Environmental assessment: source test and evaluation report - B and W/Alliance atmospheric fluidized-bed combustor. Final report

    SciTech Connect (OSTI)

    Kindya, R.J.; Hall, R.R.; Young, C.W.; Fennelly, P.

    1981-04-01T23:59:59.000Z

    The report gives results of a comprehensive emission sampling and analysis of a pilot-scale, atmospheric-pressure, coal-fired, fluidized-bed combustor (AFBC). Screening data on organic and inorganic pollutants and indications of biological activity were obtained. The Babcock and Wilcox/Electric Power Research Institute AFBC at Alliance, OH. (B and W/EPRI/Alliance), with a coal-firing capacity of 880 kg/hr was tested. Air pollutant emissions of trace elements were measured upstream of particulate controls. Assuming a control efficiency of 99.9%, necessary to meet the utility boiler Federal NSPS for particulate of 13 ng/J, emissions of trace elements are not significant. Elemental concentrations do not appear to be significantly different from other FBCs or conventional coal combustion systems. Limited further analyses for specific polynuclear aromatic compounds indicate that emissions of these compounds are probably of no concern. Analysis of laboratory-generated leachates from solid waste samples reveals that trace metal concentrations are well below Federal hazardous waste criteria. Positive test results for mutagenicity and cytotoxicity screening tests require further investigation.

  17. Environmental assessment of the atlas bio-energy waste wood fluidized bed gasification power plant. Final report

    SciTech Connect (OSTI)

    Holzman, M.I.

    1995-08-01T23:59:59.000Z

    The Atlas Bio-Energy Corporation is proposing to develop and operate a 3 MW power plant in Brooklyn, New York that will produce electricity by gasification of waste wood and combustion of the produced low-Btu gas in a conventional package steam boiler coupled to a steam-electric generator. The objectives of this project were to assist Atlas in addressing the environmental permit requirements for the proposed power plant and to evaluate the environmental and economic impacts of the project compared to more conventional small power plants. The project`s goal was to help promote the commercialization of biomass gasification as an environmentally acceptable and economically attractive alternative to conventional wood combustion. The specific components of this research included: (1) Development of a permitting strategy plan; (2) Characterization of New York City waste wood; (3) Characterization of fluidized bed gasifier/boiler emissions; (4) Performance of an environmental impact analysis; (5) Preparation of an economic evaluation; and (6) Discussion of operational and maintenance concerns. The project is being performed in two phases. Phase I, which is the subject of this report, involves the environmental permitting and environmental/economic assessment of the project. Pending NYSERDA participation, Phase II will include development and implementation of a demonstration program to evaluate the environmental and economic impacts of the full-scale gasification project.

  18. DISPOSAL OF FLUIDIZED BED COMBUSTION ASH IN AN UNDERGROUND MINE TO CONTROL ACID MINE DRAINAGE AND SUBSIDENCE

    SciTech Connect (OSTI)

    Unknown

    1999-07-01T23:59:59.000Z

    This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion-FBC ash). Success will be measured in terms of technical feasibility of the approach (i.e. % void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). This document reports on progress made during Phase III. The report is divided into three major sections. The first deals with the Hydraulic Injection component. This section of the report describes the progress and milestones associated with the grouting activities of the project. The Phase III tasks of Economic Analysis and Regulatory Analysis is covered under this section. The second component is Pneumatic Injection. This section reports on progress made towards completing the demonstration project. The last component involves evaluating the migration of contaminants through the grouted mine. A computer model has been developed in earlier phases and will model the flow of water in and around the grouted Longridge mine.

  19. Secondary Waste Form Screening Test Results—THOR® Fluidized Bed Steam Reforming Product in a Geopolymer Matrix

    SciTech Connect (OSTI)

    Pires, Richard P.; Westsik, Joseph H.; Serne, R. Jeffrey; Mattigod, Shas V.; Golovich, Elizabeth C.; Valenta, Michelle M.; Parker, Kent E.

    2011-07-14T23:59:59.000Z

    Screening tests are being conducted to evaluate waste forms for immobilizing secondary liquid wastes from the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Plans are underway to add a stabilization treatment unit to the Effluent Treatment Facility to provide the needed capacity for treating these wastes from WTP. The current baseline is to use a Cast Stone cementitious waste form to solidify the wastes. Through a literature survey, DuraLith alkali-aluminosilicate geopolymer, fluidized-bed steam reformation (FBSR) granular product encapsulated in a geopolymer matrix, and a Ceramicrete phosphate-bonded ceramic were identified both as candidate waste forms and alternatives to the baseline. These waste forms have been shown to meet waste disposal acceptance criteria, including compressive strength and universal treatment standards for Resource Conservation and Recovery Act (RCRA) metals (as measured by the toxicity characteristic leaching procedure [TCLP]). Thus, these non-cementitious waste forms should also be acceptable for land disposal. Information is needed on all four waste forms with respect to their capability to minimize the release of technetium. Technetium is a radionuclide predicted to be in the secondary liquid wastes in small quantities, but the Integrated Disposal Facility (IDF) risk assessment analyses show that technetium, even at low mass, produces the largest contribution to the estimated IDF disposal impacts to groundwater.

  20. Controlling emissions from a black liquor fluidized bed evaporator (Copeland reactor) using a regenerative thermal oxidizer and a prefilter

    SciTech Connect (OSTI)

    Grzanka, R.

    1997-12-31T23:59:59.000Z

    This paper reports on an intriguing pilot project developed to control air emissions from a pulp mill. Testing is complete, and the results show favorable emissions reductions. Stone Container Corporation, REECO, NCASI, the Ohio DEP, and the US EPA, have all worked together and approved the installation of control equipment, for VOC and HAP emissions under Presumptive MACT, setting the standard for the Copeland Reactor process in a semi chem pulp mill. The equipment, once operational, will reduce VOC and CO emissions by greater than 90%. This installation will be done at one seventh the cost of the significant process modifications required to accomplish the same emission reduction. In addition, increased process operating efficiency will be achieved with the use of an energy recovery system. The process is a black liquor fluidized bed boiler, which is used to generate sodium carbonate from the black liquor. The vapor emissions were high in VOCs, CO and particulate. After much study and testing, a wet electrostatic precipitator was chosen as the filter system for particulate control, followed by a regenerative thermal oxidizer for VOC and HAP control, finally an air-to-air heat exchanger is being used to preheat the combustion air entering the process.

  1. Characterization and Leaching Tests of the Fluidized Bed Steam Reforming (FBSR) Waste Form for LAW Immobilization - 13400

    SciTech Connect (OSTI)

    Neeway, James J.; Qafoku, Nikolla P.; Peterson, Reid A.; Brown, Christopher F. [Pacific Northwest National Laboratory, Richland, WA (United States)] [Pacific Northwest National Laboratory, Richland, WA (United States)

    2013-07-01T23:59:59.000Z

    Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) have been evaluated. One such immobilization technology is the Fluidized Bed Steam Reforming (FBSR) granular product. The FBSR granular product is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals. Production of the FBSR mineral product has been demonstrated both at the industrial and laboratory scale. Pacific Northwest National Laboratory (PNNL) was involved in an extensive characterization campaign. The goal of this campaign was to study the durability of the FBSR mineral product and the encapsulated FBSR product in a geo-polymer monolith. This paper gives an overview of results obtained using the ASTM C 1285 Product Consistency Test (PCT), the EPA Test Method 1311 Toxicity Characteristic Leaching Procedure (TCLP), and the ASTMC 1662 Single-Pass Flow-Through (SPFT) test. Along with these durability tests an overview of the characteristics of the waste form has been collected using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), microwave digestions for chemical composition, and surface area from Brunauer, Emmett, and Teller (BET) theory. (authors)

  2. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Sulfur control

    SciTech Connect (OSTI)

    Roberts, M.J.; Abbasian, J.; Akin, C.; Lau, F.S.; Maka, A.; Mensinger, M.C.; Punwani, D.V.; Rue, D.M. (Institute of Gas Technology, Chicago, IL (United States)); Gidaspow, D.; Gupta, R.; Wasan, D.T. (Illinois Inst. of Tech., Chicago, IL (United States)); Pfister, R.M.: Krieger, E.J. (Ohio State Univ., Columbus, OH (United States))

    1992-05-01T23:59:59.000Z

    This topical report on Sulfur Control'' presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite) for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT's electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.

  3. Pulsed atmospheric fluidized bed combustion. Technical progress report, April--June 1995

    SciTech Connect (OSTI)

    NONE

    1995-07-31T23:59:59.000Z

    Design activities for this report period included: (1) Mechanical. Stress analysis calculations were performed on the steam/water pressure piping. Pipe support design and drawings were completed by Duke Fluor Daniel. The fluid bed distributor bubble cap design was revisited and changes made for ease of maintenance. (2) Electrical and Instrumentation. Control and instrumentation scheme proposed earlier, was based on independent single loop controllers. After careful review, it is decided to go for state of art distributed control system (DCS) which uses programmable logic controllers (PLC). In addition, coal/limestone pickup hopper fabrication was completed during this period and shipped to the site. The coal/limestone floating caps have been made at MTCI and ready for shipping. All major equipment installation was completed. The pulse combustor steam/water jacket and air plenum were installed. Construction of control room building was just completed.

  4. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING WITH ACUTAL HANFORD LOW ACTIVITY WASTES VERIFYING FBSR AS A SUPPLEMENTARY TREATMENT

    SciTech Connect (OSTI)

    Jantzen, C.; Crawford, C.; Burket, P.; Bannochie, C.; Daniel, G.; Nash, C.; Cozzi, A.; Herman, C.

    2012-01-12T23:59:59.000Z

    The U.S. Department of Energy's Office of River Protection is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the cleanup mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA). Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. Fluidized Bed Steam Reforming (FBSR) is one of the supplementary treatments being considered. FBSR offers a moderate temperature (700-750 C) continuous method by which LAW and other secondary wastes can be processed irrespective of whether they contain organics, nitrates/nitrites, sulfates/sulfides, chlorides, fluorides, and/or radio-nuclides like I-129 and Tc-99. Radioactive testing of Savannah River LAW (Tank 50) shimmed to resemble Hanford LAW and actual Hanford LAW (SX-105 and AN-103) have produced a ceramic (mineral) waste form which is the same as the non-radioactive waste simulants tested at the engineering scale. The radioactive testing demonstrated that the FBSR process can retain the volatile radioactive components that cannot be contained at vitrification temperatures. The radioactive and nonradioactive mineral waste forms that were produced by co-processing waste with kaolin clay in an FBSR process are shown to be as durable as LAW glass.

  5. Disposal of Fluidized Bed Combustion Ash in an Underground Mine to Control Acid Mine Drainage and Subsidence

    SciTech Connect (OSTI)

    NONE

    1998-08-31T23:59:59.000Z

    This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion (FBC) ash). Success will be measured in terms of technical feasibility of the approach (i.e. YO void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). During Phase Ill the majority of the activity involves completing two full scale demonstration projects. The eleven acre Longridge mine in Preston County will be filled with 53,000 cubic yards of grout during the spring of 1998 and monitored for following year. The second demonstration involves stowing 2000 tons of ash into an abandoned mine to demonstrate the newly redesigned Burnett Ejector. This demonstration is anticipated to take place during the winter of 1997. This document will report on progress made during Phase Ill. The report will be divided into four major sections. The first will be the Hydraulic Injection component. This section of the report will report on progress and milestones associated with the grouting activities of the project. The Phase Ill tasks of Economic Analysis and Regulatory Analysis will be covered under this section. The second component is Pneumatic Injection. This section reports on progress made towards completing the demonstration project. The Water Quality component involves background monitoring of water quality and precipitation at the Phase Ill (Longridge) mine site. The last component involves evaluating the migration of contaminants through the grouted mine. A computer model has been developed in earlier phases and will model the flow of water in and around the grouted Longridge mine.

  6. Chaotic behavior control in fluidized bed systems using artificial neural network. Quarterly progress report, October 1, 1996--December 31, 1996

    SciTech Connect (OSTI)

    Bodruzzaman, M.; Essawy, M.A.

    1996-02-27T23:59:59.000Z

    Pressurized fluidized-bed combustors (FBC) are becoming very popular, efficient, and environmentally acceptable replica for conventional boilers in Coal-fired and chemical plants. In this paper, we present neural network-based methods for chaotic behavior monitoring and control in FBC systems, in addition to chaos analysis of FBC data, in order to localize chaotic modes in them. Both of the normal and abnormal mixing processes in FBC systems are known to undergo chaotic behavior. Even though, this type of behavior is not always undesirable, it is a challenge to most types of conventional control methods, due to its unpredictable nature. The performance, reliability, availability and operating cost of an FBC system will be significantly improved, if an appropriate control method is available to control its abnormal operation and switch it to normal when exists. Since this abnormal operation develops only at certain times due to a sequence of transient behavior, then an appropriate abnormal behavior monitoring method is also necessary. Those methods has to be fast enough for on-line operation, such that the control methods would be applied before the system reaches a non-return point in its transients. It was found that both normal and abnormal behavior of FBC systems are chaotic. However, the abnormal behavior has a higher order chaos. Hence, the appropriate control system should be capable of switching the system behavior from its high order chaos condition to low order chaos. It is to mention that most conventional chaos control methods are designed to switch a chaotic behavior to a periodic orbit. Since this is not the goal for the FBC case, further developments are needed. We propose neural network-based control methods which are known for their flexibility and capability to control both non-linear and chaotic systems. A special type of recurrent neural network, known as Dynamic System Imitator (DSI), will be used for the monitoring and control purposes.

  7. Chaotic behavior control in fluidized bed systems using artificial neural network. Quarterly progress report, April 1, 1996--June 30, 1996

    SciTech Connect (OSTI)

    Bodruzzaman, M.; Essawy, M.A.

    1996-07-30T23:59:59.000Z

    We have developed techniques to control the chaotic behavior in the Fluidized Bed (FBC) Systems using Artificial Neural Networks (ANNs). For those techniques to cross from theory to implementation, the computer programs we are developing have to be interfaced with the outside world, as a necessary step towards the actual interface with an FBC system or its experimental mock up. For this reason we are working on a Data Acquisition Board setup that will enable communication between our programs and external systems. Communication is planned to be enabled in both ways to deliver feedback signals from a system to the control programs in one way, and the control signals from the control programs to the controlled system in the other way. On the other hand, since most of our programs are PC based, they have to follow the revolutionary progress in the PC technology. Our programs were developed in the DOS environment using an early version of Microsoft C compiler. For those programs to meet the current needs of most PC users, we are working on converting those programs to the Windows environment, using a very advanced and up to date C++ compiler. This compiler is known as the Microsoft Visual C++ Version 4.0. This compiler enables the implementation of very professional and sophisticated Windows 95, 32 bit applications. It also allows a simple utilization of the Object Oriented Programming (OOP) techniques, and lots of powerful graphical and communication tools known as the Microsoft Foundation Classes (MFC). This compiler also allows creating Dynamic Link Libraries (DLLS) that can be liked together or with other Windows programs. These two main aspects, the computer-system interface and the DOS-Windows migration will give our programs a leap frog towards their real implementation.

  8. Use of fluidized bed coal combustion techniques to study efficiency, emission reduction, boiler effects, and waste utilization: Final report, July 1, 1985-February 28, 1986

    SciTech Connect (OSTI)

    Hesketh, H.E.; Rajan, S.

    1986-05-01T23:59:59.000Z

    This study program, funded by the US Department of Energy through the Southern Illinois University Coal Research Center's Coal Technology Laboratory, was conducted during the period from July 1984 through February 1986. Two lines of testing were carried out simultaneously. One consisted of using a laboratory-scale atmospheric fluidized bed combustor (AFBC) to acquire thermodynamic data and operating characteristics for Illinois coal combustion. The other included acquisition, installation, shakedown, and operation of a large one million Btu/h pilot-scale AFBC (plus boiler and associated instrumentation). Both programs were to study Illinois reference and gob (waste) type coals.

  9. MRI Investigations of Particle Motion within a Three-Dimensional Vibro-Fluidized Granular Bed

    E-Print Network [OSTI]

    Mick D. Mantle; Andrew J. Sederman; Lynn F. Gladden; Jonathan M. Huntley; Tom W. Martin Ricky D. Wildman; Mark D. Shattuck

    2007-02-08T23:59:59.000Z

    The unique ability of magnetic resonance imaging (MRI) to provide spatial and temporal information from optically opaque systems, in three dimensions, make it an ideal tool to study the internal motion of rapid granular flows. This paper will focus on the use of ultra-fast velocity compensated MRI measurements to study particle velocity and density distributions in a granular gas, produced by vibrating vertically a bed of mustard seeds at 40 Hz. Specifically, a velocity compensated, double spin-echo, triggered, one-dimensional MRI profiling pulse sequence was developed. This gives an MRI temporal resolution of approximately 2 ms and also minimises MRI velocity artefacts. 12 phase measurements per vibration cycle were used. The data can be used to extract values of the mustard seed average velocity and velocity propagators (probability distributions functions) as a function of the phase of the vibration cycle and vertical height within the cell. The data show strong transient effects during the impact phase of the vibration. A detailed discussion of the temporal passage of the individual phase resolved, height resolved velocity distributions, along with seed velocity propagators at a fix height from the vibrating base is presented.

  10. Circulating Fluid Bed Combustor

    E-Print Network [OSTI]

    Fraley, L. D.; Do, L. N.; Hsiao, K. H.

    1982-01-01T23:59:59.000Z

    The circulating bed combustor represents an alternative concept of burning coal in fluid bed technology, which offers distinct advantages over both the current conventional fluidized bed combustion system and the pulverized coal boilers equipped...

  11. Pressurized fluidized-bed hydroretorting of eastern oil shales. Volume 2, Task 3, Testing of process improvement concepts: Final report, September 1987--May 1991

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    This final report, Volume 2, on ``Process Improvement Concepts`` presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). Results of work on electroseparation of shale oil and fines conducted by IIT is included in this report, as well as work conducted by IGT to evaluate the restricted pipe discharge system. The work was conducted as part of the overall program on ``Pressurized Fluidized-Bed Hydroretorting of Eastern Oil Shales.``

  12. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Tom Steitz

    2002-07-12T23:59:59.000Z

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives.

  13. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke

    2001-10-12T23:59:59.000Z

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels.

  14. Second generation pressurized fluidized-bed combustion (PFBC) research and development, Phase 2 --- Task 4, carbonizer testing. Volume 2, Data reconciliation

    SciTech Connect (OSTI)

    Froehlich, R.; Robertson, A.; Vanhook, J.; Goyal, A.; Rehmat, A.; Newby, R.

    1994-11-01T23:59:59.000Z

    During the period beginning November 1991 and ending September 1992, a series of tests were conducted at Foster Wheeler Development Corporation in a fluidized-bed coal carbonizer to determine its performance characteristics. The carbonizer was operated for 533 hours in a jetting fluidized-bed configuration during which 36 set points (steady-state periods) were achieved. Extensive data were collected on the feed and product stream compositions, heating values, temperatures, and flow rates. With these data, elemental and energy balances were computed to evaluate and confirm accuracy of the data. The carbonizer data were not as self-consistent as could be desired (balance closure imperfection). A software package developed by Science Ventures, Inc., of California, called BALAID, was used to reconcile the carbonizer data; the details of the reconciliation have been given in Volume 1 of this report. The reconciled data for the carbonizer were rigorously analyzed, correlations were developed, and the model was updated accordingly. The model was then used in simulating each of the 36 steady-state periods achieved in the pilot plant. The details are given in this Volume one. This Volume 2 provides details of the carbonizer data reconciliation.

  15. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; John Gaudlip; Matthew Lapinsky; Rhett McLaren; William Serencsits; Neil Raskin; Tom Steitz; Joseph J. Battista

    2003-03-26T23:59:59.000Z

    The Pennsylvania State University, utilizing funds furnished by the U.S. Department of Energy's Biomass Power Program, investigated the installation of a state-of-the-art circulating fluidized bed boiler at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring biofuels and coal-based feedstocks. The study was performed using a team that included personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Foster Wheeler Energy Corporation; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. The activities included assessing potential feedstocks at the University Park campus and surrounding region with an emphasis on biomass materials, collecting and analyzing potential feedstocks, assessing agglomeration, deposition, and corrosion tendencies, identifying the optimum location for the boiler system through an internal site selection process, performing a three circulating fluidized bed (CFB) boiler design and a 15-year boiler plant transition plan, determining the costs associated with installing the boiler system, developing a preliminary test program, determining the associated costs for the test program, and exploring potential emissions credits when using the biomass CFB boiler.

  16. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke; Joseph J. Battista

    2001-03-31T23:59:59.000Z

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute and the Office of Physical Plant, Foster Wheeler Energy Services, Inc., and Cofiring Alternatives.

  17. MINERALIZATION OF RADIOACTIVE WASTES BY FLUIDIZED BED STEAM REFORMING (FBSR): COMPARISONS TO VITREOUS WASTE FORMS, AND PERTINENT DURABILITY TESTING

    SciTech Connect (OSTI)

    Jantzen, C

    2008-12-26T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) was requested to generate a document for the Washington State Department of Ecology and the U.S. Environmental Protection Agency that would cover the following topics: (1) A description of the mineral structures produced by Fluidized Bed Steam Reforming (FBSR) of Hanford type Low Activity Waste (LAW including LAWR which is LAW melter recycle waste) waste, especially the cage structured minerals and how they are formed. (2) How the cage structured minerals contain some contaminants, while others become part of the mineral structure (Note that all contaminants become part of the mineral structure and this will be described in the subsequent sections of this report). (3) Possible contaminant release mechanisms from the mineral structures. (4) Appropriate analyses to evaluate these release mechanisms. (5) Why the appropriate analyses are comparable to the existing Hanford glass dataset. In order to discuss the mineral structures and how they bond contaminants a brief description of the structures of both mineral (ceramic) and vitreous waste forms will be given to show their similarities. By demonstrating the similarities of mineral and vitreous waste forms on atomic level, the contaminant release mechanisms of the crystalline (mineral) and amorphous (glass) waste forms can be compared. This will then logically lead to the discussion of why many of the analyses used to evaluate vitreous waste forms and glass-ceramics (also known as glass composite materials) are appropriate for determining the release mechanisms of LAW/LAWR mineral waste forms and how the durability data on LAW/LAWR mineral waste forms relate to the durability data for LAW/LAWR glasses. The text will discuss the LAW mineral waste form made by FBSR. The nanoscale mechanism by which the minerals form will be also be described in the text. The appropriate analyses to evaluate contaminant release mechanisms will be discussed, as will the FBSR test results to date and how they compare to testing performed on LAW glasses. Other details about vitreous waste form durability and impacts of REDuction/OXidation (REDOX) on durability are given in Appendix A. Details about the FBSR process, various pilot scale demonstrations, and applications are given in Appendix B. Details describing all the different leach tests that need to be used jointly to determine the leaching mechanisms of a waste form are given in Appendix C. Cautions regarding the way in which the waste form surface area is measured and in the choice of leachant buffers (if used) are given in Appendix D.

  18. Atmospheric fluidized bed combustion advanced system concepts applicable to small industrial and commercial markets. Topical report, Level 2

    SciTech Connect (OSTI)

    Ake, T.R.; Dixit, V.B.; Mongeon, R.K.

    1992-09-01T23:59:59.000Z

    As part of an overall strategy to promote FBC coal combustion and to improve the marketability of the eastern coals, the US Department of Energy`s Morgantown Energy Research Center awarded a three level contract to Riley Stoker Corporation to develop advanced Multi Solids Fluidized Bed (MSFB) boiler designs. The first level of this contract targeted the small package boiler (10,000--50,000 lb/hr steam) and industrial size boiler (75,000--150,000 lb/hr steam) markets. Two representative sizes, 30,000 lb/hr and 110,000 lb/hr of steam, were selected for the two categories for a detailed technical and economic evaluation. Technically, both the designs showed promise, however, the advanced industrial design was favored on economic considerations. It was thus selected for further study in the second level of the contract. Results of this Level-2 effort, presented in this report, consisted of testing the design concept in Riley`s 4.4 MBtu/hr pilot MSFB facility located at Riley Research Center in Worcester, Mass. The design and economics of the proof of concept facility developed in Level-1 of the contract were then revised in accordance with the findings of the pilot test program. A host site for commercial demonstration in Level-3 of the contract was also secured. It was determined that co-firing coal in combination with paper de-inking sludge will broaden the applicability of the design beyond conventional markets. International Paper (IP), the largest paper company in the world, is willing to participate in this part of the program. IP has offered its Hammermill operation at Lockhaven, Pa, site of a future paper de-inking plant, for the proof of concept installation. This plant will go in operation in 1994. It is recommended that METC proceed to the commercial demonstration of the design developed. The approach necessary to satisfy the needs of the customer while meeting the objectives of this program is presented along with a recommended plan of action.

  19. RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING AS A SUPPLEMENTARY TREATMENT FOR HANFORD'S LOW ACTIVITY WASTE AND SECONDARY WASTES

    SciTech Connect (OSTI)

    Jantzen, C.; Crawford, C.; Cozzi, A.; Bannochie, C.; Burket, P.; Daniel, G.

    2011-02-24T23:59:59.000Z

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the Savannah River National Laboratory (SRNL) to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of I-125/129 and Tc-99 to chemically resemble WTP-SW. Ninety six grams of radioactive product were made for testing. The second campaign commenced using SRS LAW chemically trimmed to look like Hanford's LAW. Six hundred grams of radioactive product were made for extensive testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

  20. MASS TRANSFER CONTROLLED REACTIONS IN PACKED BEDS AT LOW REYNOLDS NUMBERS

    E-Print Network [OSTI]

    Fedkiw, Peter S.

    2011-01-01T23:59:59.000Z

    Phase Mass Transfer 'in Fixed Beds at Low Reynolds Numbers,"Systems - In Particular in· Fixed Beds, Fluidized Beds andto a Sphere in a Fixed and Fluidized Bed," AIChE I. , Neale,

  1. The Lakeland McIntosh Unit 4 demonstration project utilizing Foster Wheeler`s pressurized circulating fluidized-bed combustion technology

    SciTech Connect (OSTI)

    McClung, J.D.; Provol, S.J. [Foster Wheeler Development Corp., Livingston, NJ (United States); Morehead, H.T. [Westinghouse Electric Corp., Orlando, FL (United States); Dodd, A.M. [Lakeland Electric and Water, Lakeland, FL (United States)

    1997-12-31T23:59:59.000Z

    The City of Lakeland, Florida, Foster Wheeler and the Westinghouse Electric Corporation have embarked on the demonstration of a Clean Coal Technology at the City of Lakeland`s McIntosh Power Station in lakeland, Polk County, Florida. The project will demonstrate the Pressurized Circulating Fluidized Bed Combustion (PCFB) technology developed by Foster Wheeler and Westinghouse. The Lakeland McIntosh Unit 4 Project is a nominal 170 MW power plant designed to burn a range of low- to high-sulfur coals. The combined cycle plant employs a Westinghouse 251B12 gas turbine engine in conjunction with a steam turbine operating in a 2400/1000/1000 steam cycle. The plant will demonstrate both the PCFB and topped PCFB combustion technologies. This paper provides a process description of the Foster Wheeler PCFB and Topped PCFB technologies and their application to the Lakeland McIntosh Unit 4 Project.

  2. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Tom Steitz

    2002-10-14T23:59:59.000Z

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. During this reporting period, the final technical design and cost estimate were submitted to Penn State by Foster Wheeler. In addition, Penn State initiated the internal site selection process to finalize the site for the boiler plant.

  3. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Curtis Jawdy

    2000-10-09T23:59:59.000Z

    The Pennsylvania State University, under contract to the US Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal or coal refuse, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute and the Office of Physical Plant, Foster Wheeler Energy Corporation, Foster Wheeler Development Corporation, and Cofiring Alternatives. The major emphasis of work during this reporting period was to assess the types and quantities of potential feedstocks and collect samples of them for analysis. Approximately twenty different biomass, animal waste, and other wastes were collected and analyzed.

  4. Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor

    SciTech Connect (OSTI)

    Yan Cao; Hongcang Zhou; Junjie Fan; Houyin Zhao; Tuo Zhou; Pauline Hack; Chia-Chun Chan; Jian-Chang Liou; Wei-ping Pan [Western Kentucky University (WKU), Bowling Green, KY (USA). Institute for Combustion Science and Environmental Technology (ICSET)

    2008-12-15T23:59:59.000Z

    Four types of biomass (chicken waste, wood pellets, coffee residue, and tobacco stalks) were cofired at 30 wt % with a U.S. sub-bituminous coal (Powder River Basin Coal) in a laboratory-scale fluidized bed combustor. A cyclone, followed by a quartz filter, was used for fly ash removal during tests. The temperatures of the cyclone and filter were controlled at 250 and 150{sup o}C, respectively. Mercury speciation and emissions during cofiring were investigated using a semicontinuous mercury monitor, which was certified using ASTM standard Ontario Hydra Method. Test results indicated mercury emissions were strongly correlative to the gaseous chlorine concentrations, but not necessarily correlative to the chlorine contents in cofiring fuels. Mercury emissions could be reduced by 35% during firing of sub-bituminous coal using only a quartz filter. Cofiring high-chlorine fuel, such as chicken waste (Cl = 22340 wppm), could largely reduce mercury emissions by over 80%. When low-chlorine biomass, such as wood pellets (Cl = 132 wppm) and coffee residue (Cl = 134 wppm), is cofired, mercury emissions could only be reduced by about 50%. Cofiring tobacco stalks with higher chlorine content (Cl = 4237 wppm) did not significantly reduce mercury emissions. Gaseous speciated mercury in flue gas after a quartz filter indicated the occurrence of about 50% of total gaseous mercury to be the elemental mercury for cofiring chicken waste, but occurrence of above 90% of the elemental mercury for all other cases. Both the higher content of alkali metal oxides or alkali earth metal oxides in tested biomass and the occurrence of temperatures lower than 650{sup o}C in the upper part of the fluidized bed combustor seemed to be responsible for the reduction of gaseous chlorine and, consequently, limited mercury emissions reduction during cofiring. 36 refs., 3 figs. 1 tab.

  5. Engineering support services for the DOE/GRI coal-gasification research program. Evaluation of the data base for single-stage gasification of peat. [IGT 6 inch, single stage, fluidized bed (not PEATGAS)

    SciTech Connect (OSTI)

    Bostwick, L.E.; Hubbard, D.A.; Shah, K.V.; Do, L.T.

    1982-03-01T23:59:59.000Z

    Kellogg has reviewed the data base generated by IGT in the 6 inch PDU for the single stage fluidized bed gasification of peat. Kellogg's central finding is that the existing data base should be expanded by further testing in the PDU, after necessary modifications, to investigate further the effects of operating parameters within the ranges of interest. The existing data base consists of 20 PDU runs. Kellogg has concentrated on the Minnesota peat data base, since an insufficient number of runs exist for Maine and North Carolina peats to establish any valid trends. Consequently, the evaluation presented concerns only the Minnesota peat data base with respect to ranges of operating parameters studied, the criteria for good fluidized-bed operation and the effects of the key operating parameters on the performance. In Kellogg's opinion the existing data base demonstrates that: gasification of peat at 90+% carbon conversion is possible in a single stage fluidized bed reactor; the most significant operating parameters have been identified; the single stage fluidized bed peat gasifier has merit because of simplicity of operation, near-zero production of liquids and potential of operation without steam and at low pressure. However, Kellogg notes the following shortcomings:relatively small number of experimental runs and lack of data at certain levels of operating parameters studied; sintering occurred in 35% of the runs; in all the 20 test runs, fines losses exceeded in 5% of the feed and for the Minnesota peat data base, fines losses averaged 12.8%; use of large amounts of fluidizing gas (in this case N/sub 2/), which does not reflect commercial operation; and lack of data with higher peat feed moisture content. Thus, in Kellogg's opinion, considerable advantage is to be gained by expanding the existing data base and lists its specific recommendations.

  6. Dynamic Modeling and Control Studies of a Two-Stage Bubbling Fluidized Bed Adsorber-Reactor for Solid-Sorbent CO{sub 2} Capture

    SciTech Connect (OSTI)

    Modekurti, Srinivasarao; Bhattacharyya, Debangsu; Zitney, Stephen E.

    2013-07-31T23:59:59.000Z

    A one-dimensional, non-isothermal, pressure-driven dynamic model has been developed for a two-stage bubbling fluidized bed (BFB) adsorber-reactor for solid-sorbent carbon dioxide (CO{sub 2}) capture using Aspen Custom Modeler® (ACM). The BFB model for the flow of gas through a continuous phase of downward moving solids considers three regions: emulsion, bubble, and cloud-wake. Both the upper and lower reactor stages are of overflow-type configuration, i.e., the solids leave from the top of each stage. In addition, dynamic models have been developed for the downcomer that transfers solids between the stages and the exit hopper that removes solids from the bottom of the bed. The models of all auxiliary equipment such as valves and gas distributor have been integrated with the main model of the two-stage adsorber reactor. Using the developed dynamic model, the transient responses of various process variables such as CO{sub 2} capture rate and flue gas outlet temperatures have been studied by simulating typical disturbances such as change in the temperature, flowrate, and composition of the incoming flue gas from pulverized coal-fired power plants. In control studies, the performance of a proportional-integral-derivative (PID) controller, feedback-augmented feedforward controller, and linear model predictive controller (LMPC) are evaluated for maintaining the overall CO{sub 2} capture rate at a desired level in the face of typical disturbances.

  7. Voidage and pressure profile characteristics of sand-iron ore-coal-FCC single-particle systems in the riser of a pilot plant circulating fluidized bed

    SciTech Connect (OSTI)

    Das, M.; Meikap, B.C.; Saha, R.K. [Indian Institute for Technology, Kharagpur (India). Dept. for Chemical Engineering

    2008-06-15T23:59:59.000Z

    Hydrodynamic behaviors of single system of particles were investigated in a circulating fluidized bed (CFB) unit. Particles belonging to Geldart groups A and B like sand of various sizes (90, 300, 417, 522, 599, and 622 mu m), FCC catalyst (120 mu m), iron ore (166 and 140 {mu} m), and coal (335 and 168 {mu} m) were used to study the hydrodynamic characteristics. Superficial air velocity used in the present study ranged between 2.01 and 4.681 m/s and corresponding mass fluxes were 12.5-50 kg/(m{sup 2} s). A CFB needs the creation of some special hydrodynamic conditions, namely a certain combination of superficial gas velocity, solids circulation rate, particle diameter, density of particle, etc. which can give rise to a state wherein the solid particles are subjected to an upward velocity greater than the terminal or free fall velocity of the majority of the individual particles. The hydrodynamics of the bed was investigated in depth and theoretical analysis is presented to support the findings. Based on gas-solid momentum balance in the riser, a distinction between apparent and real voidage has been made. The effects of acceleration and friction on the real voidage have been estimated. Results indicated a 0.995 voidage for higher superficial gas velocity of 4.681. m/s.

  8. Development and Implementation of 3-D, High Speed Capacitance Tomography for Imaging Large-Scale, Cold-Flow Circulating Fluidized Bed

    SciTech Connect (OSTI)

    Qussai Marashdeh

    2012-09-30T23:59:59.000Z

    A detailed understanding of multiphase flow behavior inside a Circulating Fluidized Bed (CFB) requires a 3-D technique capable of visualizing the flow field in real-time. Electrical Capacitance Volume Tomography (ECVT) is a newly developed technique that can provide such measurements. The attractiveness of the technique is in its low profile sensors, fast imaging speed and scalability to different section sizes, low operating cost, and safety. Moreover, the flexibility of ECVT sensors enable them to be designed around virtually any geometry, rendering them suitable to be used for measurement of solid flows in exit regions of the CFB. Tech4Imaging LLC has worked under contract with the U.S. Department of Energyâ??s National Energy Technology Laboratory (DOE NETL) to develop an ECVT system for cold flow visualization and install it on a 12 inch ID circulating fluidized bed. The objective of this project was to help advance multi-phase flow science through implementation of an ECVT system on a cold flow model at DOE NETL. This project has responded to multi-phase community and industry needs of developing a tool that can be used to develop flow models, validate computational fluid dynamics simulations, provide detailed real-time feedback of process variables, and provide a comprehensive understating of multi-phase flow behavior. In this project, a complete ECVT system was successfully developed after considering different potential electronics and sensor designs. The system was tested at various flow conditions and with different materials, yielding real-time images of flow interaction in a gas-solid flow system. The system was installed on a 12 inch ID CFB of the US Department of Energy, Morgantown Labs. Technical and economic assessment of Scale-up and Commercialization of ECVT was also conducted. Experiments conducted with larger sensors in conditions similar to industrial settings are very promising. ECVT has also the potential to be developed for imaging multi-phase flow systems in high temperature and high pressure conditions, typical in many industrial applications.

  9. Technical and economic evaluation of ten high temperature, high pressure particulate cleanup systems for pressurized fluidized bed combustion

    SciTech Connect (OSTI)

    Rubow, L.N.; Borden, M.; Buchanan, T.L.; Cramp, J.A.C.; Fischer, W.H.; Klett, M.G.; Maruvada, S.M.; Nelson, E.T.; Weinstein, R.E.; Zaharchuk, R.

    1984-07-01T23:59:59.000Z

    The objective of this analysis was to provide a technical and economic evaluation of the ten high temperature, high pressure (HTHP) systems for the purpose of prioritizing them according to performance, cost, and general viability of achieving commercial status. The scope primarily included reviewing/normalizing test experience to date, normalizing commercial designs, developing normalized capital and operating costs for each system, performing trade-off studies, and performing an evaluation utilizing in-house and outside inputs. The HTHP particulate cleanup system must be capable of the same stringent operating requirements as a conventional system, except it must do so at HTHP conditions. Utilities will demand nearly the same reliability as found in conventional equipment. Regarding particulate cleanup, the system must meet NSPS requirements at the stack, and also meet turbine inlet requirements. The ten devices evaluated were: Electrostatic Precipitator - Cottrell Environmental Sciences (CES); Ceramic Felt Filter - Acurex Corporation; Ceramic Cross Flow Filter - Westinghouse; Shallow Static Granular Bed Filter - Ducon/Westinghouse; Electrostatic Granular Bed Filter - General Electric (GE); Moving Granular Bed Filter - Combustion Power Company (CPC); Dry Plate Scrubber - Air Pollution Technology (APT); Magnetic Granular Bed Filter - Exxon; Electrocyclone - General Electric; and Acoustic Agglomerator - Aerojet/Pennsylvania State University (PSU). The test data for the ten devices were normalized to standard conditions with a reference inlet particle loading and size distribution. The purpose of system design normalization is to provide, for each of the HTHP concepts, a scaled-up commercial design which reflects a consistent design approach. 104 figures, 136 tables.

  10. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank SX-105 And AN-103) By Fluidized Bed Steam Reformation

    SciTech Connect (OSTI)

    Jantzen, Carol; Herman, Connie; Crawford, Charles; Bannochie, Christopher; Burket, Paul; Daniel, Gene; Cozzi, Alex; Nash, Charles; Miller, Donald; Missimer, David

    2014-01-10T23:59:59.000Z

    One of the immobilization technologies under consideration as a Supplemental Treatment for Hanford’s Low Activity Waste (LAW) is Fluidized Bed Steam Reforming (FBSR). The FBSR technology forms a mineral waste form at moderate processing temperatures thus retaining and atomically bonding the halides, sulfates, and technetium in the mineral phases (nepheline, sodalite, nosean, carnegieite). Additions of kaolin clay are used instead of glass formers and the minerals formed by the FBSR technology offers (1) atomic bonding of the radionuclides and constituents of concern (COC) comparable to glass, (2) short and long term durability comparable to glass, (3) disposal volumes comparable to glass, and (4) higher Na2O and SO{sub 4} waste loadings than glass. The higher FBSR Na{sub 2}O and SO{sub 4} waste loadings contribute to the low disposal volumes but also provide for more rapid processing of the LAW. Recent FBSR processing and testing of Hanford radioactive LAW (Tank SX-105 and AN-103) waste is reported and compared to previous radioactive and non-radioactive LAW processing and testing.

  11. Use of fluidized bed coal combustion techniques to study efficiency, emission reduction, boiler effects, and waste utilization. Annual report, January 1-June 30, 1985

    SciTech Connect (OSTI)

    Hesketh, H.E.; Rajan, S.

    1985-09-01T23:59:59.000Z

    The acquisition of thermodynamic and operating data on a wide variety of waste coals in a laboratory-scale atmospheric fluidized bed combustor (AFBC) unit is reported. The coals tested include: (1) low and medium heating value gob pile wastes, with ash content as high as 60%; (2) pelletized gob waste fines; (3) various cuts taken from beneficiation plant rejects with low heating values and high ash content; and (4) a partially devolatilized char produced from a caking Illinois coal. These waste coals could be successfully burned in the bench-scale unit with the exception of the high ash content beneficiation plant reject with a low heating value of 1700 Btu/lb. Some of the waste coals exhibited better combustion characteristics than others. The results obtained and the recommendations for improving the combustion and emission characteristics of the waste coals are discussed. Shakedown tests have been completed with the 1-ft diameter, 1 MBtu/h pilot-scale AFBC unit, and the results are reported. 1 ref., 15 figs., 8 tabs.

  12. Development of an alternative kraft black liquor recovery process based on low-temperature processing in fluidized beds. Final technical report on Annex 9, Task 1

    SciTech Connect (OSTI)

    Kubes, G.J.

    1994-03-24T23:59:59.000Z

    The overall objective of this research program was to provide the fundamental knowledge and experimental data from pilot scale operation for an alternative black liquor recovery technology which would have a higher overall energy efficiency, would not suffer from the smelt-water explosion hazard and would be lower in capital cost. In addition, the alternative process would be more flexible and well suited for incremental recovery capacity or for new pulping processes, such as the new sulfide-sulfide-AQ process. The research program consists of number of specific research objectives with the aim to achieve the ultimate objective of developing an alternative recovery process which is shown in Figure 1. The specific objectives are linked to individual unit operations and they represent the following research topics: (1) superheated steam drying of kraft black liquors; (2) fast pyrolysis of black liquor; (3) hydrogen sulfide absorption from flue gas; (4) reduction of sodium sulfate in solid phase with gaseous hydrogen; and (5) verification of the fundamental results in fluidized bed pilot plant. The accomplishments in each of these objectives are described.

  13. anaerobic sludge bed: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bed gasifier operation. Open Access Theses and Dissertations Summary: ??A fluidized bed gasification (FBG) pilot plant was designed and constructed at the University of...

  14. Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Quarterly report, quarter ending 31 December 1994

    SciTech Connect (OSTI)

    Not Available

    1995-01-01T23:59:59.000Z

    The test plan is designed to demonstrate that oil shale co-combusted with municipal solid waste (MSW) can reduce gaseous pollutants (SO{sub 2}, CO) to acceptable levels (90%+ reduction) and produce a cementitious ash which will, at a minimum, be acceptable in normal land fills. The small-scale combustion testing will be accomplished in a 6-in. circulating fluid bed combustor (CFBC) at Hazen Research Laboratories. This work will be patterned after the study the authors conducted in 1988 when coal and oil shale were co-combusted in a program sponsored by the Electric Power Research Institute. The specific purpose of the test program will be to: determine the required ratio of oil shale to MSW by determining the ratio of absorbent to pollutant (A/P); determine the effect of temperature and resident time in the reactor; and determine if kinetic model developed for coal/oil shale mixture is applicable.

  15. Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system. Quarterly progress report, April 1-June 30, 1982

    SciTech Connect (OSTI)

    None

    1982-10-21T23:59:59.000Z

    The overall objective of the Westinghouse coal gasification program is to demonstrate the viability of the Westinghouse pressurized, fluidized bed, gasification system for the production of medium-Btu fuel gas for syngas, electrical power generation, chemical feedstocks, or industrial fuels and to obtain performance and scaleup data for the process and hardware. Progress reports are presented for the following tasks: (1) operation and maintenance of the process development unit (PDU); (2) process analysis; (3) cold flow scaleup facility; (4) process and component engineering and design; and (5) laboratory support studies. Some of the highlights for this period are: TP-032-1, a single stage, oxygen-steam blown gasifier test was conducted in three operational phases from March 30, 1982 through May 2, 1982; TP-032-2 was conducted in two operational phases from May 20, 1982 through May 27, 1982; TP-032-1 and TP-032-2 successfully served as shakedown and demonstrations of the full cyclone cold wall; no visible deposits were found on the cold wall after processing highly fouling coals; samples of product gas produced during TP-032-1, were passed through four different scrubbing solutions and analyzed for 78 EPA primary organic pollutants, all of which were found to be below detection limits; TP-M004, a CO/sub 2/ tracer gas test, was initiated and completed; data analysis of test TP-M002-2 was completed and conclusions are summarized in this report; design, procurement and fabrication of the solids injection device were completed; laboratory studies involved gas-solids flow modeling and coal/ash behavior. 2 references, 11 figures, 39 tables.

  16. Modeling of fluidized-bed combustion of coal: Phase II, final reports. Volume VI. FBC-Data Base-Management-System (FBC-DBMS) development

    SciTech Connect (OSTI)

    Louis, J.F.; Tung, S.E.

    1980-10-01T23:59:59.000Z

    The primary goal of the Fluidized Bed Combustor Data Base, (FBCDB), situated in MIT's Energy laboratory, is to establish a data repository for the express use of designers and research personnel involved in FBC development. DBMS is a software that provides an efficient way of storing, retrieving, updating and manipulating data using an English-like query language. It is anticipated that the FBCDB would play an active and a direct role in the development of FBC technology as well as in the FBC commercial application. After some in-house experience and after a careful and extensive review of commercially available database systems, it was determined that the Model 204 DBMS by Computer Corporation of America was the most suitable to our needs. The setup of a prototype in-house database also allowed us to investigate and understand fully the particular problems involved in coordinating FBC development with a DBMS. Various difficult aspects were encountered and solutions had been sought. For instance, we found that it was necessary to rename the variables to avoid repetition as well as to increase usefulness of our database and, hence, we had designed a classification system for which variables were classified under category to achieve standardization of variable names. The primary content of FBCDB is a collection of data points defined by the value of a number of specific FBC variables. A user may interactively access the database from a computer terminal at any location, retrieve, examine, and manipulate the data as well as produce tables or graphs of the results.

  17. Modeling of fluidized-bed combustion of coal: Phase II, final reports. Volume VII. FBC Data-Base-Management System (FBC-DBMS) users manual

    SciTech Connect (OSTI)

    Louis, J.F.; Tung, S.E.

    1980-10-01T23:59:59.000Z

    The primary goal of the Fluidized Bed Combustor Data Base (FBCDB) is to establish a data repository for the express use of designers and research personnel involved in FBC development. FBCDB is implemented on MIT's 370/168 computer, using the Model 204 Data Base Management System (DBMS) developed by Computer Corporation of America. DBMS is a software that provides an efficient way of storing, retrieving, updating and manipulating data using an English-like query language. The primary content of FBCDB is a collection of data points defined by the value of a number of specific FBC variables. A user may interactively access the data base from a computer terminal at any location, retrieve, examine, and manipulate the data as well as produce tables or graphs of the results. More than 20 program segments are currently available in M204 User Language to simplify the user interface for the FBC design or research personnel. However, there are still many complex and advanced retrieving as well as applications programs to be written for this purpose. Although there are currently 71 entries, and about 2000 groups reposited in the system, this size of data is only an intermediate portion of our selection. The usefulness of the system at the present time is, therefore, limited. This version of FBCDB will be released on a limited scale to obtain review and comments. The document is intended as a reference guide to the use of FBCDB. It has been structured to introduce the user to the basics of FBCDB, summarize what the available segments in FBCDB can do, and give detailed information on the operation of FBCDB. This document represents a preliminary draft of a Users Manual. The draft will be updated when the data base system becomes fully implemented. Any suggestions as to how this manual may be improved will be appreciated.

  18. Effects of H{sub 2}O and particles on the simultaneous removal of SO{sub 2} and fly ash using a fluidized-bed sorbent/catalyst reactor

    SciTech Connect (OSTI)

    Rau, J.Y.; Chen, J.C.; Wey, M.Y.; Lin, M.D. [National Chung Hsing University, Taichung (Taiwan). Dept. of Environmental Engineering

    2009-12-15T23:59:59.000Z

    This study investigated the potential of a fluidized-bed sorbent/catalyst reactor for the simultaneous removals of SO{sub 2} and fly ash from a simulated flue gas containing different H{sub 2}O and particles. Experimental results showed that the removal efficiency of particles and SO{sub 2} was 85%-96% and 5.75-2.97 mg SO{sub 2}/g, respectively, as the H{sub 2}O content was 1.5-5.3%. The activities of sorbent/catalysts for simultaneous removals of SO{sub 2} and particles were inhibited by H{sub 2}O and particles, and the inhibition effects increased with the content of H{sub 2}O. As the H{sub 2}O content increased, the particle size distribution (PSD) of fine particles shifted to the coarse particles. The results of BET analysis show that the obstruction phenomenon of the sorbent/catalyst caused by the particles was diminished with the increased content of H{sub 2}O. The results showed this aggregation phenomenon of fine particles shifted to the coarse particles may cause increased water vapor content in fluidized-bed sorbent/catalyst reactor.

  19. Development and Testing of the Advanced CHP System Utilizing the Off-Gas from the Innovative Green Coke Calcining Process in Fluidized Bed

    SciTech Connect (OSTI)

    Chudnovsky, Yaroslav; Kozlov, Aleksandr

    2013-08-15T23:59:59.000Z

    Green petroleum coke (GPC) is an oil refining byproduct that can be used directly as a solid fuel or as a feedstock for the production of calcined petroleum coke. GPC contains a high amount of volatiles and sulfur. During the calcination process, the GPC is heated to remove the volatiles and sulfur to produce purified calcined coke, which is used in the production of graphite, electrodes, metal carburizers, and other carbon products. Currently, more than 80% of calcined coke is produced in rotary kilns or rotary hearth furnaces. These technologies provide partial heat utilization of the calcined coke to increase efficiency of the calcination process, but they also share some operating disadvantages. However, coke calcination in an electrothermal fluidized bed (EFB) opens up a number of potential benefits for the production enhancement, while reducing the capital and operating costs. The increased usage of heavy crude oil in recent years has resulted in higher sulfur content in green coke produced by oil refinery process, which requires a significant increase in the calcinations temperature and in residence time. The calorific value of the process off-gas is quite substantial and can be effectively utilized as an “opportunity fuel” for combined heat and power (CHP) production to complement the energy demand. Heat recovered from the product cooling can also contribute to the overall economics of the calcination process. Preliminary estimates indicated the decrease in energy consumption by 35-50% as well as a proportional decrease in greenhouse gas emissions. As such, the efficiency improvement of the coke calcinations systems is attracting close attention of the researchers and engineers throughout the world. The developed technology is intended to accomplish the following objectives: - Reduce the energy and carbon intensity of the calcined coke production process. - Increase utilization of opportunity fuels such as industrial waste off-gas from the novel petroleum coke calcination process. - Increase the opportunity of heat (chemical and physical) utilization from process off-gases and solid product. - Develop a design of advanced CHP system utilizing off-gases as an “opportunity fuel” for petroleum coke calcinations and sensible heat of calcined coke. A successful accomplishment of the aforementioned objectives will contribute toward the following U.S. DOE programmatic goals: - Drive a 25% reduction in U. S. industrial energy intensity by 2017 in support of EPAct 2005; - Contribute to an 18% reduction in U.S. carbon intensity by 2012 as established by the Administration’s “National Goal to Reduce Emissions Intensity.” 8

  20. Fluid bed material transfer method

    DOE Patents [OSTI]

    Pinske, Jr., Edward E. (Akron, OH)

    1994-01-01T23:59:59.000Z

    A fluidized bed apparatus comprising a pair of separated fluid bed enclosures, each enclosing a fluid bed carried on an air distributor plate supplied with fluidizing air from below the plate. At least one equalizing duct extending through sidewalls of both fluid bed enclosures and flexibly engaged therewith to communicate the fluid beds with each other. The equalizing duct being surrounded by insulation which is in turn encased by an outer duct having expansion means and being fixed between the sidewalls of the fluid bed enclosures.

  1. Moving bed reactor for solar thermochemical fuel production

    DOE Patents [OSTI]

    Ermanoski, Ivan

    2013-04-16T23:59:59.000Z

    Reactors and methods for solar thermochemical reactions are disclosed. Embodiments of reactors include at least two distinct reactor chambers between which there is at least a pressure differential. In embodiments, reactive particles are exchanged between chambers during a reaction cycle to thermally reduce the particles at first conditions and oxidize the particles at second conditions to produce chemical work from heat. In embodiments, chambers of a reactor are coupled to a heat exchanger to pre-heat the reactive particles prior to direct exposure to thermal energy with heat transferred from reduced reactive particles as the particles are oppositely conveyed between the thermal reduction chamber and the fuel production chamber. In an embodiment, particle conveyance is in part provided by an elevator which may further function as a heat exchanger.

  2. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    SciTech Connect (OSTI)

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

    2012-02-02T23:59:59.000Z

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

  3. Dynamic modeling and control of a solid-sorbent CO{sub 2} capture process with two-stage bubbling fluidized bed adsorber reactor

    SciTech Connect (OSTI)

    Modekurti, S.; Bhattacharyya, D.; Zitney, S.

    2012-01-01T23:59:59.000Z

    Solid-sorbent-based CO{sub 2} capture processes have strong potential for reducing the overall energy penalty for post-combustion capture from the flue gas of a conventional pulverized coal power plant. However, the commercial success of this technology is contingent upon it operating over a wide range of capture rates, transient events, malfunctions, and disturbances, as well as under uncertainties. To study these operational aspects, a dynamic model of a solid-sorbent-based CO{sub 2} capture process has been developed. In this work, a one-dimensional (1D), non-isothermal, dynamic model of a two-stage bubbling fluidized bed (BFB) adsorber-reactor system with overflow-type weir configuration has been developed in Aspen Custom Modeler (ACM). The physical and chemical properties of the sorbent used in this study are based on a sorbent (32D) developed at National Energy Technology Laboratory (NETL). Each BFB is divided into bubble, emulsion, and cloud-wake regions with the assumptions that the bubble region is free of solids while both gas and solid phases coexist in the emulsion and cloud-wake regions. The BFB dynamic model includes 1D partial differential equations (PDEs) for mass and energy balances, along with comprehensive reaction kinetics. In addition to the two BFB models, the adsorber-reactor system includes 1D PDE-based dynamic models of the downcomer and outlet hopper, as well as models of distributors, control valves, and other pressure-drop devices. Consistent boundary and initial conditions are considered for simulating the dynamic model. Equipment items are sized and appropriate heat transfer options, wherever needed, are provided. Finally, a valid pressure-flow network is developed and a lower-level control system is designed. Using ACM, the transient responses of various process variables such as flue gas and sorbent temperatures, overall CO{sub 2} capture, level of solids in the downcomer and hopper have been studied by simulating typical disturbances such as change in the temperature, flowrate, and composition of the flue gas. To maintain the overall CO{sub 2} capture at a desired level in face of the typical disturbances, two control strategies were considered–a proportional-integral-derivative (PID)-based feedback control strategy and a feedforward-augmented feedback control strategy. Dynamic simulation results show that both the strategies result in unacceptable overshoot/undershoot and a long settling time. To improve the control system performance, a linear model predictive controller (LMPC) is designed. In summary, the overall results illustrate how optimizing the operation and control of carbon capture systems can have a significant impact on the extent and the rate at which commercial-scale capture processes will be scaled-up, deployed, and used in the years to come.

  4. Experimental study of the performance of solar dryers with pebble beds

    SciTech Connect (OSTI)

    Helwa, N.H.; Rehim, Z.S.A. [National Research Center, Cairo (Egypt)

    1997-07-01T23:59:59.000Z

    Major problems of the arid region are transportation of agricultural products and losses due to spoilage of the products, especially in summer. This work presents the performance of a solar drying system consisting of an air heater and a dryer chamber connected to a greenhouse. The drying system is designed to dry a variety of agricultural products. The effect of air mass flow rate on the drying process is studied. Composite pebbles, which are constructed from cement and sand, are used to store energy for night operation. The pebbles are placed at the bottom of the drying chamber and are charged during the drying process itself. A separate test is done using a simulator, a packed bed storage unit, to find the thermal characteristics of the pebbles during charging and discharging modes with time. Accordingly, the packed bed is analyzed using a heat transfer model with finite difference technique described before and during the charging and discharging processes. Graphs are presented that depict the thermal characteristics and performance of the pebble beds and the drying patterns of different agricultural products. The results show that the amount of energy stored in the pebbles depends on the air mass flow rate, the inlet air temperature, and the properties of the storage materials. The composite pebbles can be used efficiently as storing media.

  5. Measuring and modeling solids movement in a large, cold fluidized bed test facility. Second quarterly report, January 1, 1980-March 31, 1980

    SciTech Connect (OSTI)

    Fitzgerald, T. J.; Mrazek, R. V.; Crane, S. D.

    1980-03-01T23:59:59.000Z

    The plume model is developed to represent a tube-filled AFBC with large particles, in which air-entrained coal enters in a number of feed ports from below. It assumes that the volatiles are rapidly released from the coal at the feed entry ports to rise as plumes of combustible vapors. Graphs have been prepared to display the predictions of this model for narrow size cuts of a typical coal feed. For a feed of wide size distribution, use these single size charts and properly sum. The lowest carbon efficiency always comes with an intermediate size of feed coal, not with very large or very small feed sizes. Thus the coal feed to the AFBC should try to avoid this critical size. The plume behavior, whether it breaks the surface of the bed, the temperature jump above the bed, concentration variations across the bed, etc., are all governed by one dimensionless group HD/u/sub 0/L/sub 2//sup 2/, which depends primarily on the spacing of feed ports in the bed. For a given coal feed, the carbon efficiency depends only on superficial gas velocity in the bed, the excess air, and elutriation rate constant. A special case and simplification of this model views the coal as being uniformly distributed all over the bed before the volatiles are released. Here analysis is very much simpler, not involving plumes and no volatiles leaving the bed. This plumeless model should reasonably represent AFBC using large feed particles, introduced across the top of the bed and then rapidly mixed by large scale convective flow of solids. The analysis shows that, even in beds with plumes, the simpler plumeless model can be used with negligible error to calculate carbon efficiency; for volatile efficiency, temperature jumps and composition variations across the bed, the complete plume model must be used.

  6. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank Farm Blend) By Fluidized Bed Steam Reformation (FBSR)

    SciTech Connect (OSTI)

    Jantzen, C. M.; Crawford, C. L.; Bannochie, C. J.; Burket, P. R.; Cozzi, A. D.; Daniel, W. E.; Hall, H. K.; Miller, D. H.; Missimer, D. M.; Nash, C. A.; Williams, M. F.

    2013-08-21T23:59:59.000Z

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Supplemental Treatment is likely to be required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP’s LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750°C) continuous method by which LAW can be processed irrespective of whether the waste contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be comparable to LAW glass, i.e. leaches Tc-99, Re and Na at <2g/m2 during ASTM C1285 (Product Consistency) durability testing. Monolithing of the granular FBSR product was investigated to prevent dispersion during transport or burial/storage. Monolithing in an inorganic geopolymer binder, which is amorphous, macro-encapsulates the granules, and the monoliths pass ANSI/ANS 16.1 and ASTM C1308 durability testing with Re achieving a Leach Index (LI) of 9 (the Hanford Integrated Disposal Facility, IDF, criteria for Tc-99) after a few days and Na achieving an LI of >6 (the Hanford IDF criteria for Na) in the first few hours. The granular and monolithic waste forms also pass the EPA Toxicity Characteristic Leaching Procedure (TCLP) for all Resource Conservation and Recovery Act (RCRA) components at the Universal Treatment Standards (UTS). Two identical Benchscale Steam Reformers (BSR) were designed and constructed at SRNL, one to treat non-radioactive simulants and the other to treat actual radioactive wastes. The results from the non-radioactive BSR were used to determine the parameters needed to operate the radioactive BSR in order to confirm the findings of non-radioactive FBSR pilot scale and engineering scale tests and to qualify an FBSR LAW waste form for applications at Hanford. Radioactive testing commenced using SRS LAW from Tank 50 chemically trimmed to look like Hanford’s blended LAW known as the Rassat simulant as this simulant composition had been tested in the non-radioactive BSR, the non-radioactive pilot scale FBSR at the Science Applications International Corporation-Science and Technology Applications Research (SAIC-STAR) facility in Idaho Falls, ID and in the TTT Engineering Scale Technology Demonstration (ESTD) at Hazen Research Inc. (HRI) in Denver, CO. This provided a “tie back” between radioactive BSR testing and non-radioactive BSR, pilot scale, and engineering scale testing. Approximately six hundred grams of non-radioactive and radioactive BSR product were made for extensive testing and comparison to the non-radioactive pilot scale tests performed in 2004 at SAIC-STAR and the engineering scale test performed in 2008 at HRI with the Rassat simulant. The same mineral phases and off-gas species were found in the radioactive and non-radioactive testing. The granular ESTD and BSR products (radioactive and non-radioactive) were analyzed for to

  7. archean spherule beds: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    has the potential of supplementing the existing fossil fuels, but the heat content of manure is rather low. Since, the fluidized bed... Annamalai, K.; Colaluca, M. A.; Ibrahim,...

  8. Pressurized fluidized-bed hydroretorting of eastern oil shales. Volume 4, Task 5, Operation of PFH on beneficiated shale, Task 6, Environmental data and mitigation analyses and Task 7, Sample procurement, preparation, and characterization: Final report, September 1987--May 1991

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    The objective of Task 5 (Operation of Pressurized Fluidized-Bed Hydro-Retorting (PFH) on Beneficiated Shale) was to modify the PFH process to facilitate its use for fine-sized, beneficiated Eastern shales. This task was divided into 3 subtasks: Non-Reactive Testing, Reactive Testing, and Data Analysis and Correlations. The potential environment impacts of PFH processing of oil shale must be assessed throughout the development program to ensure that the appropriate technologies are in place to mitigate any adverse effects. The overall objectives of Task 6 (Environmental Data and Mitigation Analyses) were to obtain environmental data relating to PFH and shale beneficiation and to analyze the potential environmental impacts of the integrated PFH process. The task was divided into the following four subtasks. Characterization of Processed Shales (IGT), 6.2. Water Availability and Treatment Studies, 6.3. Heavy Metals Removal and 6.4. PFH Systems Analysis. The objective of Task 7 (Sample Procurement, Preparation, and Characterization) was to procure, prepare, and characterize raw and beneficiated bulk samples of Eastern oil shale for all of the experimental tasks in the program. Accomplishments for these tasks are presented.

  9. Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank SX-105, Tank AN-103, And AZ-101/102) By Fluidized Bed Steam Reformation (FBSR)

    SciTech Connect (OSTI)

    Jantzen, C. M.; Crawford, C. L.; Bannochie, C. J.; Burket, P. R.; Cozzi, A. D.; Daniel, W. E.; Hall, H. K.; Miller, D. H.; Missimer, D. M.; Nash, C. A.; Williams, M. F.

    2013-09-18T23:59:59.000Z

    Fluidized Bed Steam Reforming (FBSR) is a robust technology for the immobilization of a wide variety of radioactive wastes. Applications have been tested at the pilot scale for the high sodium, sulfate, halide, organic and nitrate wastes at the Hanford site, the Idaho National Laboratory (INL), and the Savannah River Site (SRS). Due to the moderate processing temperatures, halides, sulfates, and technetium are retained in mineral phases of the feldspathoid family (nepheline, sodalite, nosean, carnegieite, etc). The feldspathoid minerals bind the contaminants such as Tc-99 in cage (sodalite, nosean) or ring (nepheline) structures to surrounding aluminosilicate tetrahedra in the feldspathoid structures. The granular FBSR mineral waste form that is produced has a comparable durability to LAW glass based on the short term PCT testing in this study, the INL studies, SPFT and PUF testing from previous studies as given in the columns in Table 1-3 that represent the various durability tests. Monolithing of the granular product was shown to be feasible in a separate study. Macro-encapsulating the granular product provides a decrease in leaching compared to the FBSR granular product when the geopolymer is correctly formulated.

  10. Simulation of space particle bed reactors

    E-Print Network [OSTI]

    Vincendon, Isabelle R.

    1989-01-01T23:59:59.000Z

    ? dimensional fluidized bed codes called CHEhI- FLUB, FLAG and FLIrFIX. The FLUFIX code efl'ort actually began in 19ig with the development of a step ? by ? step building ? block approach to understand the hy- drodynamics of fluidized beds and close coupling... with validation experiments. In mid ? 1979, the IC ? FIXs computer program was modified so that it would model a fluidized bed with a. central jet This required transforming K ? FIX I'rom a gas ? liquid computer program to a. gas ? solia computer program. Later...

  11. Disposal of fluidized bed combustion ash in an underground mine to control acid mine drainage and subsidence - phase II - small scale field demonstration. Topical report, December 1, 1996--February 28, 1997

    SciTech Connect (OSTI)

    Ziemkiewicz, P.F.; Head, W.J.; Gray, D.D.; Siriwardane, H.J.; Sack, W.A.

    1998-01-01T23:59:59.000Z

    It has been proposed that a mix made from fly and bottom ash from atmospheric pressure fluidized bed coal combusters (FBC ash), water, and stabilizers be injected from the surface into abandoned room and pillar coal mines through boreholes. Besides ash disposal, this process would prevent subsidence and acid mine drainage. Such a mix (called `grout`) needs to be an adequately stable and flowable suspension for it to spread and cover large areas in the mine. This is necessary as the drilling of the boreholes will be an expensive operation and the number such holes should be minimized. Addition of bentonite was found to be needed for this purpose. A suitable grout mix was tested rheologically to determine its fluid flow properties. Finding little published information on such materials, tests were performed using a commercial rotational viscometer with a T-bar rotor and a stand which produced a helical rotor path. Existing mixer viscometer test methods were modified and adapted to convert the measurements of torque vs. angular speed to the material properties appearing in several non-Newtonian constitutive equations. Yield stress was measured by an independent test called the vane method. The rheological behavior was a close fit to the Bingham fluid model. Bleed tests were conducted to ascertain the stability of the mixtures. Spread tests were conducted to compare the flowability of various mixes. Using the flow parameters determined in the laboratory, numerical simulations of grout flow were performed and compared with the results of scale model and field tests. A field injection of this grout was performed at the Fairfax mines in Preston county, W.V.. The observations there proved that this FBC ash grout flows as desired, is a very economical way of disposing the environmentally menacing ash, while also preventing the subsidence and acid mine drainage of the mines.

  12. Attrition resistant fluidizable reforming catalyst

    DOE Patents [OSTI]

    Parent, Yves O. (Golden, CO); Magrini, Kim (Golden, CO); Landin, Steven M. (Conifer, CO); Ritland, Marcus A. (Palm Beach Shores, FL)

    2011-03-29T23:59:59.000Z

    A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.

  13. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Sulfur control. Topical report for Subtask 3.1, In-bed sulfur capture tests; Subtask 3.2, Electrostatic desulfurization; Subtask 3.3, Microbial desulfurization and denitrification

    SciTech Connect (OSTI)

    Roberts, M.J.; Abbasian, J.; Akin, C.; Lau, F.S.; Maka, A.; Mensinger, M.C.; Punwani, D.V.; Rue, D.M. [Institute of Gas Technology, Chicago, IL (United States); Gidaspow, D.; Gupta, R.; Wasan, D.T. [Illinois Inst. of Tech., Chicago, IL (United States); Pfister, R.M.: Krieger, E.J. [Ohio State Univ., Columbus, OH (United States)

    1992-05-01T23:59:59.000Z

    This topical report on ``Sulfur Control`` presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite) for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT`s electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.

  14. Analysis/control of in-bed tube erosion phenomena in the fluidized bed combustion (FBC) system. [Quarterly] technical progress report No. 11, April 1, 1995--June 30, 195

    SciTech Connect (OSTI)

    Lee, Seong W.

    1995-07-01T23:59:59.000Z

    This technical report summarizes the research work performed and progress achieved during the period of April 1, 1995 to June 30, 1995. In this study, the preliminary analysis of test data and understanding of the erosion behavior of resistant coatings for the in-bed tube materials were discussed for one the remedies of preventing in-bed tube erosion. The material wastage of the specimen was determined by weight and thickness loss measurements. The morphologies of the specimens were examined by scanning electron microscopy (SEM). For the material wastage. of the coating specimens, High Velocity Oxygen Fuel (HVOF) coatings (DS200) and the arc-sprayed coating at elevated temperature condition exhibited 2 to 3 times lower erosion wastage than that of AISI 1018 steel. For the angular dependence of erosion rate, two coatings exhibited the ductile behavior as demonstrated by higher wastage rates at shallow impact angle than that at steep impact angle. Tests will be continued and compared with erosion test results from higher velocity test conditions.

  15. Fluidization characteristics of power-plant fly ashes and fly ash-charcoal mixtures. [MS Thesis; 40 references

    SciTech Connect (OSTI)

    Nguyen, C.T.

    1980-03-01T23:59:59.000Z

    As a part of the continuing research on aluminum recovery from fly ash by HiChlor process, a plexiglass fluidization column system was constructed for measurement of fluidization parameters for power-plant fly ashes and fly ash-charcoal mixtures. Several bituminous and subbituminous coal fly ashes were tested and large differences in fluidization characteristics were observed. Fly ashes which were mechanically collected fluidized uniformly at low gas flow rates. Most fly ashes which were electrostatically precipitated exhibited channeling tendency and did not fluidize uniformly. Fluidization characteristics of electrostatically collected ashes improve when the finely divided charcoal powder is added to the mixture. The fluidization of the mixture was aided initially by a mechanical stirrer. Once the fluidization had succeeded, the beds were ready to fluidize without the assistance of a mechanical action. Smooth fluidization and large bed expansion were usually observed. The effects of charcoal size and aspect ratio on fluidization characteristics of the mixtures were also investigated. Fluidization characteristics of a fly ash-coal mixture were tested. The mixture fluidized only after being oven-dried for a few days.

  16. FLUIDIZABLE CATALYSTS FOR PRODUCING HYDROGEN BY STEAM REFORMING BIOMASS PYROLYSIS LIQUIDS

    E-Print Network [OSTI]

    , and gasification reactions. Our fixed-bed experiments showed that the carbohydrate-derived fraction of poplar-fluidizable (fixed-bed) commercial catalysts.1 These multicomponent catalysts, which generally contain Ni, K, Ca-Chemie manufactured the fixed-bed catalyst from which the ground and sieved catalyst was made. This material consisted

  17. Solar Photocatalytic Hydrogen Production from Water Using a Dual Bed Photosystem - Phase I Final Report and Phase II Proposal

    SciTech Connect (OSTI)

    Clovis A. Linkous; Darlene K. Slattery

    2000-09-11T23:59:59.000Z

    In this work we are attempting to perform the highly efficient storage of solar energy in the form of H{sub 2} via photocatalytic decomposition of water. While it has been demonstrated that H{sub 2} and O{sub 2} can be evolved from a single vessel containing a single suspended photocatalyst (Sayama 1994; 1997), we are attempting to perform net water-splitting by using two photocatalysts immobilized in separate containers, or beds. A schematic showing how the device would work is shown.

  18. Solids fluidizer-injector

    DOE Patents [OSTI]

    Bulicz, Tytus R. (Hickory Hills, IL)

    1990-01-01T23:59:59.000Z

    An apparatus and process for fluidizing solid particles by causing rotary motion of the solid particles in a fluidizing chamber by a plurality of rotating projections extending from a rotatable cylinder end wall interacting with a plurality of fixed projections extending from an opposite fixed end wall and passing the solid particles through a radial feed orifice open to the solids fluidizing chamber on one side and a solid particle utilization device on the other side. The apparatus and process are particularly suited for obtaining intermittent feeding with continual solids supply to the fluidizing chamber. The apparatus and process are suitable for injecting solid particles, such as coal, to an internal combustion engine.

  19. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    SciTech Connect (OSTI)

    Not Available

    1992-02-01T23:59:59.000Z

    The report summarizes unit operating experience and test program progress for 1989 on Colorado-Ute Electric Association's Nucla CFB Demonstration Program. During this period, the objectives of the Nucla Station operating group were to correct problems with refractory durability, resolve primary air fan capacity limitations, complete the high ash and high sulfur coal tests, switch to Salt Creek coal as the operating fuel, and make the unit available for testing without capacity restrictions. Each of these objectives was addressed and accomplished, to varying degrees, except for the completion of the high sulfur coal acceptance tests. (VC)

  20. Circulating Fluidized Bed Combustion Boiler Project 

    E-Print Network [OSTI]

    Farbstein, S. B.; Moreland, T.

    1984-01-01T23:59:59.000Z

    , in turn, obtains essentially all of its natural gas supply from the Panhandle Eastern Pipeline Company. Gas prices have increased from $0.48 to $5.45 per million Btu in the last 12 years (Figure 3), and, despite our energy conservation program... is purchased. The crushed or sized coal will be transferred by a dense phase pneumatic conveying system to the steel storage silo. The level of the storage silo will control the conveying operation. The silo can hold 450 tons of prepared coal...

  1. State of Fluidized Bed Combustion Technology

    E-Print Network [OSTI]

    Pope, M.

    1979-01-01T23:59:59.000Z

    A new combustion technology has been developed in the last decade that permits the burning of low quality coal, lignite and other fuels, while maintaining stack emissions within State and Federal EPA limits. Low quality fuels can be burned...

  2. State of Industrial Fluidized Bed Combustion

    E-Print Network [OSTI]

    Mesko, J. E.

    1982-01-01T23:59:59.000Z

    is expectOO. Direct combustion of oil shale, combustion of wxxi ani municipil refuse also has been deron stratOO, either as primary fuels or as additives in units primarily firOO with coal. Combustion of liquid fuels, such as residual oils containing...

  3. FLUIDIZED BED COMBUSTION UNIT FOR OIL SHALE

    E-Print Network [OSTI]

    M. Hammad; Y. Zurigat; S. Khzai; Z. Hammad; O. Mubydeem

    combustion performance using oil shale as fuel in direct burning process. It is a steel column of 18 cm

  4. Stability of Gas-Fluidized Beds

    E-Print Network [OSTI]

    Mandich, Kevin Matthew

    between the domi- nant disturbance frequency obtained fromcorresponding to the disturbance frequency of the leadingis dominant, the disturbance frequency decreases with Re. (

  5. Stability of Gas-Fluidized Beds

    E-Print Network [OSTI]

    Mandich, Kevin Matthew

    a series of wall-mounted, non-intrusive pressure taps, thethat the taps were non-intrusive Signal Processing Softwaresignal obtained using non-intrusive probes in the wall of

  6. Mathematical modeling of fluidized bed reactors

    E-Print Network [OSTI]

    Nasif, Nilufer Havva

    1985-01-01T23:59:59.000Z

    39 40 Comparison of concentration profiles predicted by CCBM with constant bubble size (dB ) using dif- ferent solution procedures Schematic representation of Fryer and Potter (1974) algorithm . Schematic representation of Peters et al. (1982... description of the downward flow of emulsion phase gas under certain conditions, such as those of Kunii and Levenspiel (1968b, 1969), and Fryer and Potter (1972a) have this limitation in common. Dubble size is one of the most important parameters...

  7. Fluidized Bed Technology - Overview | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf Flash2010-45.pdfFlash2011-43and Statement ofStrike |60Overview

  8. State-of-the-art review and report on critical aspects and scale-up considerations in the design of fluidized-bed reactors. Final report on Phase 1

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    Information is given on the design of distributor plates and opening geometry to provide uniform flow over the reactor area. The design of granular bed filters is also considered. Pressure drops and particle size in the bed are discussed. (LTN)

  9. Apparatus and method for solar coal gasification

    DOE Patents [OSTI]

    Gregg, David W. (Moraga, CA)

    1980-01-01T23:59:59.000Z

    Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials. Incident solar radiation is focused from an array of heliostats onto a tower-mounted secondary mirror which redirects the focused solar radiation down through a window onto the surface of a vertically-moving bed of coal, or a fluidized bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called "synthesis gas", which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam at the rear surface of the secondary mirror.

  10. Solids fluidizer-injector

    DOE Patents [OSTI]

    Bulicz, T.R.

    1990-04-17T23:59:59.000Z

    An apparatus and process are described for fluidizing solid particles by causing rotary motion of the solid particles in a fluidizing chamber by a plurality of rotating projections extending from a rotatable cylinder end wall interacting with a plurality of fixed projections extending from an opposite fixed end wall and passing the solid particles through a radial feed orifice open to the solids fluidizing chamber on one side and a solid particle utilization device on the other side. The apparatus and process are particularly suited for obtaining intermittent feeding with continual solids supply to the fluidizing chamber. The apparatus and process are suitable for injecting solid particles, such as coal, to an internal combustion engine. 3 figs.

  11. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE (WTP-SW) BY FLUIDIZED BED STEAM REFORMING (FBSR) USING THE BENCH SCALE REFORMER PLATFORM

    SciTech Connect (OSTI)

    Crawford, C.; Burket, P.; Cozzi, A.; Daniel, G.; Jantzen, C.; Missimer, D.

    2014-08-21T23:59:59.000Z

    The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150°C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750°C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford’s WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing. The granular products (both simulant and radioactive) were tested and a subset of the granular material (both simulant and radioactive) were stabilized in a geopolymer matrix. Extensive testing and characterization of the granular and monolith material were made including the following: ? ASTM C1285 (Product Consistency Test) testing of granular and monolith; ? ASTM C1308 accelerated leach testing of the radioactive monolith; ? ASTM C192 compression testing of monoliths; and ? EPA Method 1311 Toxicity Characteristic Leaching Procedure (TCLP) testing. The significant findings of the testing completed on simulant and radioactive WTP-SW are given below: ? Data indicates {sup 99}Tc, Re, Cs, and I

  12. Standleg Moving Granular Bed Filter development program

    SciTech Connect (OSTI)

    Newby, R.A.; Yang, W.C.; Smeltzer, E.E.

    1992-11-01T23:59:59.000Z

    The design, fabrication, and installation of the cold flow test facility has been completed. The SMGBF test facility shown in Figure 2 consists of a solids feed hopper, a transparent test vessel, a screw conveyor, a 55-gal drum for solids storage, a dust feeder, a baghouse filter, and the associated instrumentation for flow and pressure control and measurement. The standleg is 11-in ID by 3-ft long, and also transparent to facilitate observation. The crushed acrylic particles of characteristics shown in Table 1 are used as the bed media. The bed particles were selected, by maintaining the particle size while reducing the particle density, to simulate the minimum fluidization velocity expected under high-temperature, high-pressure conditions. By maintaining the particle size, the bed effectively simulates the bed packing and voidage in the moving bed which is directly related to the efficiency of particulate removal and pressure drop characteristics. The test facility performed as designed and no particular difficulties were encountered. The baseline data on pressure profiles across the stationary and the moving granular beds were obtained for gas face velocities up to 6 ft/s, higher than the minimum fluidization velocity of the bed material (5 ft/s), and no visible fluidization was observed at the base of the standleg. This confirms the operational feasibility of the compact SMGBF design.

  13. Standleg Moving Granular Bed Filter development program

    SciTech Connect (OSTI)

    Newby, R.A.; Yang, W.C.; Smeltzer, E.E.

    1992-01-01T23:59:59.000Z

    The design, fabrication, and installation of the cold flow test facility has been completed. The SMGBF test facility shown in Figure 2 consists of a solids feed hopper, a transparent test vessel, a screw conveyor, a 55-gal drum for solids storage, a dust feeder, a baghouse filter, and the associated instrumentation for flow and pressure control and measurement. The standleg is 11-in ID by 3-ft long, and also transparent to facilitate observation. The crushed acrylic particles of characteristics shown in Table 1 are used as the bed media. The bed particles were selected, by maintaining the particle size while reducing the particle density, to simulate the minimum fluidization velocity expected under high-temperature, high-pressure conditions. By maintaining the particle size, the bed effectively simulates the bed packing and voidage in the moving bed which is directly related to the efficiency of particulate removal and pressure drop characteristics. The test facility performed as designed and no particular difficulties were encountered. The baseline data on pressure profiles across the stationary and the moving granular beds were obtained for gas face velocities up to 6 ft/s, higher than the minimum fluidization velocity of the bed material (5 ft/s), and no visible fluidization was observed at the base of the standleg. This confirms the operational feasibility of the compact SMGBF design.

  14. Bed Bugs

    E-Print Network [OSTI]

    Gold, Roger E.; Howell Jr., Harry N.

    2001-11-15T23:59:59.000Z

    Bed bugs infest beds, bedding and furniture and feed on the blood of humans. This publication explains how to identify bed bugs, how to locate infestations and how to control these pests....

  15. Rotary bed reactor for chemical-looping combustion with carbon capture

    E-Print Network [OSTI]

    Zhao, Zhenlong

    2012-01-01T23:59:59.000Z

    Chemical-looping combustion (CLC) is a novel and promising technology for power generation with inherent CO2 capture. Currently almost all the research has been focused on developing CLC based inter-connected fluidized bed ...

  16. Thermochemical process for seasonal storage of solar energy: characterization and modeling of a high-density reactive bed

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Thermochemical process for seasonal storage of solar energy: characterization and modeling to maximize the use of solar energy for house heating, it is interesting to valorize the solar energy excess efficiency, and a 20 per cent share of renewable). The use of renewable energies and in particular solar

  17. Design and Operation of Fluid Beds for Heating, Cooling and Quenching Operations

    E-Print Network [OSTI]

    Kemp, W. E.

    1981-01-01T23:59:59.000Z

    in the sand from the molding operation. 710 ';: i ESL-IE-81-04-120 Proceedings from the Third Industrial Energy Technology Conference Houston, TX, April 26-29, 1981 5. Cleanliness Fluidized beds were described as neat operations with fluidizing sand... of an exhaustive test ing process and cOJTq)romises were necessary. 5 . Cleanliness Although the potential for clean operations may still be there, operations to date at Luling Steel have been beset with excessive dusting. Fluidized beds, especially those...

  18. Demonstration of an advanced circulation fludized bed coal combustor phase 1: Cold model study. Final report

    SciTech Connect (OSTI)

    Govind, R. [Cincinnati Univ., OH (United States). Dept. of Chemical Engineering

    1993-03-20T23:59:59.000Z

    It was found that there was a strong dependence of the density profile on the secondary air injection location and that there was a pronounced solid separation from the conveying gas, due to the swirl motion. Furthermore, the swirl motion generated strong internal circulation patterns and higher slip velocities than in the case of nonswirl motion as in an ordinary circulating fluidized bed. Radial solids flux profiles were measured at different axial locations. The general radial profile in a swirling circulating fluidized bed indicated an increased downward flow of solids near the bed walls, and strong variations in radial profiles along the axial height. For swirl numbers less than 0.9, which is typical for swirling circulating fluidized beds, there is no significant increase in erosion due to swirl motion inside the bed. Pending further investigation of swirl motion with combustion, at least from our cold model studies, no disadvantages due to the introduction of swirl motion were discovered.

  19. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS: PHASE II--PILOT SCALE TESTING AND UPDATED PERFORMANCE AND ECONOMICS FOR OXYGEN FIRED CFB WITH CO2 CAPTURE

    SciTech Connect (OSTI)

    Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek

    2004-10-27T23:59:59.000Z

    Because fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this Phase II study, ALSTOM Power Inc. (ALSTOM) has investigated one promising near-term coal fired power plant configuration designed to capture CO{sub 2} from effluent gas streams for sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}, along with some moisture, nitrogen, oxygen, and trace gases like SO{sub 2} and NO{sub x}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB plants results in significant Boiler Island cost savings resulting from reduced component The overall objective of the Phase II workscope, which is the subject of this report, is to generate a refined technical and economic evaluation of the Oxygen fired CFB case (Case-2 from Phase I) utilizing the information learned from pilot-scale testing of this concept. The objective of the pilot-scale testing was to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and delayed petroleum coke in O{sub 2}/CO{sub 2} mixtures. Firing rates in the pilot test facility ranged from 2.2 to 7.9 MM-Btu/hr. Pilot-scale testing was performed at ALSTOM's Multi-use Test Facility (MTF), located in Windsor, Connecticut.

  20. Robust techniques for developing empirical models of fluidized bed combustors

    E-Print Network [OSTI]

    Gruhl, Jim

    This report is designed to provide a review of those data analysis techniques that are most useful for fitting m-dimensional empirical surfaces to very large sets of data. One issue explored is the improvement

  1. EIS-0289: JEA Circulating Fluidized Bed Combustor Project

    Broader source: Energy.gov [DOE]

    This EIS assesses environmental issues associated with constructing and demonstrating a project that would be cost-shared by DOE and JEA (formerly the Jacksonville Electric Authority) under the...

  2. Initial Design of a Dual Fluidized Bed Reactor

    E-Print Network [OSTI]

    Yun, Minyoung

    2014-01-01T23:59:59.000Z

    Administration | Annual Energy Outlook 2014 Early ReleaseAdministration | Annual Energy Outlook 2014 Early ReleaseAdministration | Annual Energy Outlook 2014 Early Release

  3. Circulating Fluidized Bed (CFB) Boilers Market will grow due...

    Open Energy Info (EERE)

    Energy Concerns to Push Global Market to Grow at 8.1% CAGR from 2013 to 2019 Oil Shale Market is Estimated to Reach USD 7,400.70 Million by 2022 more Group members (32)...

  4. LIQUID-FLUIDIZED-BED HEAT' EXCHANGER FLOW DISTRIBUTION MODELS

    Office of Scientific and Technical Information (OSTI)

    as the velocity i s increased and i t w i l l behave as a f l u i d u n t i l the terminal velocity2 i s reached. A t terminal velocity, the particles w i l l be entrained i n...

  5. Particle Receiver Integrated with Fluidized Bed (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01T23:59:59.000Z

    National Renewable Energy Laboratory is one of the 2012 SunShot CSP R&D awardees for their advanced receivers. This fact sheet explains the motivation, description, and impact of the project.

  6. annual fluidized bed: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    program considerably facilitated its operation which can now be remotely done. The gasification of sorghum, CGT and manure showed that they contained high amounts of...

  7. advanced fluidized bed: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    program considerably facilitated its operation which can now be remotely done. The gasification of sorghum, CGT and manure showed that they contained high amounts of...

  8. agitation fluidized bed: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    program considerably facilitated its operation which can now be remotely done. The gasification of sorghum, CGT and manure showed that they contained high amounts of...

  9. anaerobic fluidized bed: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    program considerably facilitated its operation which can now be remotely done. The gasification of sorghum, CGT and manure showed that they contained high amounts of...

  10. agitated fluidized bed: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    program considerably facilitated its operation which can now be remotely done. The gasification of sorghum, CGT and manure showed that they contained high amounts of...

  11. atmospheric fluidized bed: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    program considerably facilitated its operation which can now be remotely done. The gasification of sorghum, CGT and manure showed that they contained high amounts of...

  12. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    SciTech Connect (OSTI)

    Unknown

    2003-01-30T23:59:59.000Z

    Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the October 1--December 31, 2002 time period.

  13. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    SciTech Connect (OSTI)

    Archie Robertson

    2003-07-23T23:59:59.000Z

    Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the April 1--June 30, 2003 time period.

  14. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    SciTech Connect (OSTI)

    Archie Robertson

    2003-10-29T23:59:59.000Z

    Foster Wheeler Power Group, Inc. is working under US Department of Energy contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. This report describes the work performed during the July 1--September 30, 2003 time period.

  15. DEVELOPMENT OF PRESSURIZED CIRCULATING FLUIDIZED BED PARTIAL GASIFICATION MODULE (PGM)

    SciTech Connect (OSTI)

    Archie Robertson

    2004-07-01T23:59:59.000Z

    Foster Wheeler Power Group, Inc. is working under US Department of Energy Contract No. DE-FC26-00NT40972 to develop a partial gasification module (PGM) that represents a critical element of several potential coal-fired Vision 21 plants. When utilized for electrical power generation, these plants will operate with efficiencies greater than 60% and produce near zero emissions of traditional stack gas pollutants. The new process partially gasifies coal at elevated pressure producing a coal-derived syngas and a char residue. The syngas can be used to fuel the most advanced power producing equipment such as solid oxide fuel cells or gas turbines, or processed to produce clean liquid fuels or chemicals for industrial users. The char residue is not wasted; it can also be used to generate electricity by fueling boilers that drive the most advanced ultra-supercritical pressure steam turbines. The amount of syngas and char produced by the PGM can be tailored to fit the production objectives of the overall plant, i.e., power generation, clean liquid fuel production, chemicals production, etc. Hence, PGM is a robust building bock that offers all the advantages of coal gasification but in a more user-friendly form; it is also fuel flexible in that it can use alternative fuels such as biomass, sewerage sludge, etc. Under this contract a series of pilot plant tests are being conducted to ascertain PGM performance with a variety of fuels. The performance and economics of a PGM based plant designed for the co-production of hydrogen and electricity will also be determined. This report describes the work performed during the April-June 30, 2004 time period.

  16. Initial Design of a Dual Fluidized Bed Reactor

    E-Print Network [OSTI]

    Yun, Minyoung

    2014-01-01T23:59:59.000Z

    below. a. Direct heat supply Combustion and gasificationgas. b. Indirect heat supply Combustion and gasificationunlike the direct heat supply method. The heat of combustion

  17. Circulating Fluidized Bed Boilers Market Analysis | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower InternationalChuichu,Cima NanoTechCinergyfor

  18. Circulating Fluidized Bed Boilers Market Size | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower InternationalChuichu,Cima NanoTechCinergyforCirculating

  19. Circulating Fluidized Bed Boilers Market Trends | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower InternationalChuichu,Cima

  20. Circulating Fluidized Bed Boilers Market | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower InternationalChuichu,Cima