Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fluid viscosity increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Viscosity of a nucleonic fluid  

E-Print Network [OSTI]

The viscosity of nucleonic matter is studied both classically and in a quantum mechanical description. The collisions between particles are modeled as hard sphere scattering as a baseline for comparison and as scattering from an attractive square well potential. Properties associated with the unitary limit are developed which are shown to be approximately realized for a system of neutrons. The issue of near perfect fluid behavior of neutron matter is remarked on. Using some results from hard sphere molecular dynamics studies near perfect fluid behavior is discussed further.

Aram Z. Mekjian

2012-03-21T23:59:59.000Z

2

Viscosity of High Energy Nuclear Fluids  

E-Print Network [OSTI]

Relativistic high energy heavy ion collision cross sections have been interpreted in terms of almost ideal liquid droplets of nuclear matter. The experimental low viscosity of these nuclear fluids have been of considerable recent quantum chromodynamic interest. The viscosity is here discussed in terms of the string fragmentation models wherein the temperature dependence of the nuclear fluid viscosity obeys the Vogel-Fulcher-Tammann law.

V. Parihar; A. Widom; D. Drosdoff; Y. N. Srivastava

2007-03-15T23:59:59.000Z

3

Quartz resonator fluid density and viscosity monitor  

DOE Patents [OSTI]

A pair of thickness-shear mode resonators, one smooth and one with a textured surface, allows fluid density and viscosity to be independently resolved. A textured surface, either randomly rough or regularly patterned, leads to trapping of liquid at the device surface. The synchronous motion of this trapped liquid with the oscillating device surface allows the device to weigh the liquid; this leads to an additional response that depends on liquid density. This additional response enables a pair of devices, one smooth and one textured, to independently resolve liquid density and viscosity; the difference in responses determines the density while the smooth device determines the density-viscosity product, and thus, the pair determines both density and viscosity.

Martin, Stephen J. (Albuquerque, NM); Wiczer, James J. (Albuquerque, NM); Cernosek, Richard W. (Albuquerque, NM); Frye, Gregory C. (Cedar Crest, NM); Gebert, Charles T. (Albuquerque, NM); Casaus, Leonard (Bernalillo, NM); Mitchell, Mary A. (Tijeras, NM)

1998-01-01T23:59:59.000Z

4

Non-invasive fluid density and viscosity measurement  

DOE Patents [OSTI]

The noninvasively measurement of the density and viscosity of static or flowing fluids in a section of pipe such that the pipe performs as the sensing apparatus, is described. Measurement of a suitable structural vibration resonance frequency of the pipe and the width of this resonance permits the density and viscosity to be determined, respectively. The viscosity may also be measured by monitoring the decay in time of a vibration resonance in the pipe.

Sinha, Dipen N. (Los Alamos, NM)

2012-05-01T23:59:59.000Z

5

An improved viscosity equation to characterize shear-thinning fluids  

SciTech Connect (OSTI)

An improved viscosity equation is proposed for shear-thinning polymer solutions, using a kinetic approach to model the rate of formation and loss of interactive bonding during shear flow. The bonds are caused by temporary polymer entanglements in polymer solutions, and by coordination bonding in metal ion cross-linked gels. The equation characterizes the viscosity of shear-thinning fluids over a wide range of shear rates, from the zero shear region through to infinite shear viscosity. The equation has been used to characterize fluid data from a wide range of fluids. Recent work indicates that a range of polymer solutions, polymer-based drilling fluids and frac-gels do not have a measurable yield stress, and that the equations which use extrapolated values of yield stress can be significantly in error. The new equation is compared with the Carreau and Cross equations, using the correlation procedure of Churchill and Usagi. It gives a significantly better fit to the data (by up to 50%) over a wide range of shear rates. The improved equation can be used for evaluating the fluid viscosity during the flow of polymeric fluids, in a range of oilfield applications including drilling, completion, stimulation and improved recovery (IOR) processes.

Allen, E.

1995-11-01T23:59:59.000Z

6

46.1 Shear Viscosity An important mechanical property of fluids is viscosity. Physical systems and applications as diverse as  

E-Print Network [OSTI]

46-1 46.1 Shear Viscosity An important mechanical property of fluids is viscosity. Physical systems, the internal friction of a fluid is analogous to the macroscopic mechanical friction, which causes an object. Kostic Northern Illinois University #12;46-2 Mechanical Variables top plate causes the fluid adjacent

Kostic, Milivoje M.

7

Textured-surface quartz resonator fluid density and viscosity monitor  

DOE Patents [OSTI]

A pair of thickness-shear mode resonators, one smooth and one with a textured surface, allows fluid density and viscosity to be independently resolved. A textured surface, either randomly rough or regularly patterned, leads to trapping of liquid at the device surface. The synchronous motion of this trapped liquid with the oscillating device surface allows the device to weigh the liquid; this leads to an additional response that depends on liquid density. This additional response enables a pair of devices, one smooth and one textured, to independently resolve liquid density and viscosity; the difference in responses determines the density while the smooth device determines the density-viscosity product, and thus, the pair determines both density and viscosity.

Martin, Stephen J. (Albuquerque, NM); Wiczer, James J. (Albuquerque, NM); Cernosek, Richard W. (Albuquerque, NM); Frye, Gregory C. (Cedar Crest, NM); Gebert, Charles T. (Albuquerque, NM); Casaus, Leonard (Bernalillo, NM); Mitchell, Mary A. (Tijeras, NM)

1998-08-25T23:59:59.000Z

8

Densities and viscosities of ternary ammonia/water fluids  

SciTech Connect (OSTI)

The densities, viscosities, and boiling points (at barometric pressure) of solutions formed by inorganic salts dissolved in an ammonia/water (NH{sub 3}/H{sub 2}O) solvent have been measured. These ternary solutions of ammonia/water/dissolved salt are being investigated to reduce rectification requirements and to expand the temperature range of ammonia/water in advanced absorption cycles. Densities and viscosities of these fluids were measured over the temperature range of 283.15 to 343.15 K (10.0 to 70.0{degrees}C). Observed densities and viscosities were expressed as empirical functions of temperature by means of the least-squares method. The dynamic viscosities of ternary fluids were found to be three to seven times greater than those of the binary system of NH{sub 3}/H{sub 2}O, which implies that a substantial decrease in the film heat and mass transfer coefficient is possible. However, because this quantitative linkage is not well understood, direct measurements of heat and mass transfer rates in a minisorber are recommended and planned.

Reiner, R.H.; Zaltash, A.

1993-03-01T23:59:59.000Z

9

Determination of fluid viscosities from biconical annular geometries: Experimental and modeling studies  

E-Print Network [OSTI]

Knowledge of viscosity of flow streams is essential for the design and operation of production facilities, drilling operations and reservoir engineering calculations. The determination of the viscosity of a reservoir fluid at downhole conditions...

Rondon, Nolys Javier

2009-05-15T23:59:59.000Z

10

Drop Formation and Breakup of Low Viscosity Elastic Fluids: Effects of Molecular Weight and Concentration  

E-Print Network [OSTI]

The dynamics of drop formation and pinch-off have been investigated for a series of low viscosity elastic fluids possessing similar shear viscosities, but differing substantially in elastic properties. On initial approach ...

Tirtaatmadja, Viyada

2007-01-23T23:59:59.000Z

11

The measurement of the viscosity of cross-linked fracture fluids using a FANN Model 50C rotational viscometer  

E-Print Network [OSTI]

System 8-1 Bob ZO Viscosity Curves ? Case I Delayed System 8-2 Bob 21 Viscosity Curves - Case II Delayed System 8-2 Bob 37 38 39 40 INTROOUCTION With the h1gher prices for oil and gas received during the past ten years, the petroleum industry has... in greatly increased productivity. The first hydraulic fracture treatments used viscous oil as the base for the fracture fluid. Later, the industry began using low viscosity, water-based fluids pumped at high injection rates. In the late 1960's, the use...

Bastian, Peter Andrae

1983-01-01T23:59:59.000Z

12

Department of Mechanical Engineering Fall 2010 Viscosity Measurement of Troublesome Fluids  

E-Print Network [OSTI]

Fluids Overview Air Products completes many batches of a variety of different fluids every year takes Air Products 2-3 hours to obtain a viscosity measurement. The goal of this project is to design a process that will shorten the time it takes Air Products to obtain a viscosity measurement, without

Demirel, Melik C.

13

Absolute measurement of the viscosity of classical and quantum fluids by rotating-cylinder viscometers  

SciTech Connect (OSTI)

We discuss the use of rotating-cylinder viscometers to determine absolute shear viscosities of classical fluids and of helium II in the context of past and current knowledge of the stability and flow of these fluids between concentric cylinders. We identify a problem in measuring the absolute viscosity when the inner cylinder is rotating and the outer cylinder is at rest. We conclude by discussing the design of viscometers for absolute viscosity measurements in helium I and helium II.

Donnelly, R.J.; LaMar, M.M.

1987-11-01T23:59:59.000Z

14

Effective field theory for fluids: Hall viscosity from a Wess-Zumino-Witten term  

E-Print Network [OSTI]

We propose an effective action that describe a relativistic fluid with Hall viscosity. The construction involves a Wess-Zumino-Witten term that exists only in (2+1) spacetime dimensions. We note that this formalism can accommodate only a Hall viscosity which is a homogeneous function of the entropy and particle number densities of degree one.

Michael Geracie; Dam Thanh Son

2014-11-11T23:59:59.000Z

15

The measurement of cross-linked fracture fluid viscosity using a pipe viscometer  

E-Print Network [OSTI]

was designed to reproduce the shear rate vs. viscosity pr ofile for a linear (uncross-linked) fracture fluid. The fluid tested was a 40 lb/1000 gal hydroxypropyl guar polymer solution, which is a 0. 48$ HPG aqueous solution, The compar ison of the published.... Fig. 27 compar es cases 31, 32, and 33. -1 The gel cross-linked at 30 sec has the lowest appar ent viscosity. Case 31 does not follow the same trend as the other -1 cases. The gel cross-linked at 100 sec has a higher appar ent ? 1 viscosity than...

Vermaelen, John Douglas

1985-01-01T23:59:59.000Z

16

Computer simulation of effective viscosity of fluid-proppant mixture used in hydraulic fracturing  

E-Print Network [OSTI]

The paper presents results of numerical experiments performed to evaluate the effective viscosity of a fluid-proppant mixture, used in hydraulic fracturing. The results, obtained by two complimenting methods (the particle dynamics and the smoothed particle hydrodynamics), coincide to the accuracy of standard deviation. They provide an analytical equation for the dependence of effective viscosity on the proppant concentration, needed for numerical simulation of the hydraulic fracture propagation.

Kuzkin, Vitaly A; Linkov, Aleksandr M

2013-01-01T23:59:59.000Z

17

Coalescence of Low-Viscosity Fluids in Air  

E-Print Network [OSTI]

An electrical method is used to study the early stages of coalescence of two low-viscosity drops. A drop of aqueous NaCl solution is suspended in air above a second drop of the same solution which is grown until the drops touch. At that point a rapidly widening bridge forms between them. By measuring the resistance and capacitance of the system during this coalescence event, one can obtain information about the time dependence of the characteristic bridge radius and its characteristic height. At early times, a new asymptotic regime is observed that is inconsistent with previous theoretical predictions. The measurements at several drop radii and approach velocities are consistent with a model in which the two liquids coalesce with a slightly deformed interface.

Sarah C. Case

2008-09-09T23:59:59.000Z

18

Analysis of hydraulic power transduction in regenerative rotary shock absorbers as function of working fluid kinematic viscosity  

E-Print Network [OSTI]

This investigation seeks to investigate the relationship of kinematic fluid viscosity to the effective power transduction seen by a hydraulic motor. Applications of this research specifically relate to energy recovery from ...

Avadhany, Shakeel N

2009-01-01T23:59:59.000Z

19

Effect of viscosity and surface tension on the growth of Rayleigh -Taylor instability and Richtmyer-Meshkov instability induced two fluid inter-facial nonlinear structure  

E-Print Network [OSTI]

The effect of viscous drag and surface tension on the nonlinear two fluid inter facial structures induced by Rayleigh -Taylor instability and Richtmyer-Meshkov instability are investigated.Viscosity and surface tension play important roles on the fluid instabilities. It is seen that the magnitude of the suppression of the terminal growth rate of the tip of the bubble height depends only on the viscous coefficient of the upper (denser) fluid through which the bubble rises and surface tension of the interface. But in regard to spike it is shown that in an inviscid fluid spike does not remain terminal but approaches a free fall as the Atwood number A increases. In this respect there exits qualitative agreement with simulation result as also with some earlier theoretical results. Viscosity reduces the free fall velocity appreciably and with increasing viscosity tends to make it terminal. Results obtained from numerical integration of the relevant nonlinear equations describing the temporal development of the spike support the foregoing observations.

M. R. Gupta; Rahul Banerjee; L. K. Mandal; R. Bhar; H. C. Pant; Manoranjan Khan; M. K. Srivastava

2011-06-07T23:59:59.000Z

20

Topical viscosity control for light hydrocarbon displacing fluids in petroleum recovery and in fracturing fluids for well stimulation  

DOE Patents [OSTI]

Solvent-type flooding fluids comprising light hydrocarbons in the range of ethane to hexane (and mixtures thereof) are used to displace crude oil in formations having temperatures of about 20 degrees to about 150 degrees Centigrade and pressures above about 650 psi, the light hydrocarbons having dissolved therein from about 0.05% to about 3% of an organotin compound of the formula R.sub.3 SnF where each R is independently an alkyl, aryl or alkyaryl group from 3 to 12 carbon atoms. Under the pressures and temperatures described, the organotin compounds become pentacoordinated and linked through the electronegative bridges, forming polymers within the light hydrocarbon flooding media to render them highly viscous. Under ambient conditions, the viscosity control agents will not readily be produced from the formation with either crude oil or water, since they are insoluble in the former and only sparingly soluble in the latter.

Heller, John P. (Socorro, NM); Dandge, Dileep K. (Socorro, NM)

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fluid viscosity increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Linearized fluid/gravity correspondence: from shear viscosity to all order hydrodynamics  

E-Print Network [OSTI]

In ref.~\\cite{1406.7222}, we reported a construction of all order linearized fluid dynamics with strongly coupled $\\mathcal{N}=4$ super-Yang-Mills theory as underlying microscopic description. The linearized fluid/gravity correspondence makes it possible to resum all order derivative terms in the fluid stress tensor. Dissipative effects are fully encoded by the shear term and a new one, emerging starting from third order in hydrodynamic derivative expansion. In this work, we provide all computational details omitted in~\\cite{1406.7222} and present additional results. We derive closed-form linear holographic RG flow-type equations for momenta-dependent transport coefficient functions. Generalized Navier-Stokes equations are shown to emerge from the constraint components of the bulk Einstein equations. We perturbatively solve the RG equations for the viscosity functions, up to third order in derivative expansion, and up to this order compute spectrum of small fluctuations. Finally, we solve the RG equations numerically, thus accounting for all order derivative terms in the boundary stress tensor.

Yanyan Bu; Michael Lublinsky

2014-11-02T23:59:59.000Z

22

The effect of various mixers on the viscosity and flow properties of an oil well drilling fluid  

E-Print Network [OSTI]

of Texas in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE January, 1957 MaJor SubJect. Petroleum Englneerlng THE EFFECT OF VARIOUS MIXERS ON THE VISCOSITY AND FLOW PROPERTIES QF AN OIL WELL DRILLING FLUID A Thesis... on the 300 rpm Farm V-G Meter Reading 15 The Effect of Various Mixers on the 600 rpm Farm V-G Meter Reading 15 The Effect of Various Mixers on the Plastic Viscosity of a Bentonite Mud 16 Temperature Variation of the Drilling Mud Mixed in Variou...

Spannagel, Johnny Allen

1957-01-01T23:59:59.000Z

23

Ionizing Electron Incidents as an Efficient Way to Reduce Viscosity of Heavy Petroleum Fluids  

E-Print Network [OSTI]

levels. The effect of electron irradiation on different heavy petroleum fluids is investigated in this study. Radiation-induced physical and chemical changes of the fluids have been evaluated using different analytical instruments. The results show...

Alfi, Masoud

2012-10-19T23:59:59.000Z

24

A numerical study of fluids with pressure dependent viscosity flowing through a rigid porous media  

E-Print Network [OSTI]

In this paper we consider modifications to Darcy's equation wherein the drag coefficient is a function of pressure, which is a realistic model for technological applications like enhanced oil recovery and geological carbon sequestration. We first outline the approximations behind Darcy's equation and the modifications that we propose to Darcy's equation, and derive the governing equations through a systematic approach using mixture theory. We then propose a stabilized mixed finite element formulation for the modified Darcy's equation. To solve the resulting nonlinear equations we present a solution procedure based on the consistent Newton-Raphson method. We solve representative test problems to illustrate the performance of the proposed stabilized formulation. One of the objectives of this paper is also to show that the dependence of viscosity on the pressure can have a significant effect both on the qualitative and quantitative nature of the solution.

Nakshatrala, K B

2009-01-01T23:59:59.000Z

25

New fluids help increase effectiveness of hydraulic fracturing  

SciTech Connect (OSTI)

It is important to choose the most effective fluid for hydraulic fracturing a particular formation. Fracturing fluids are used to initiate formation parting, extend the fracture into the reservoir, and to transport and distribute proppant. This paper discusses the fundamental of fluid types, viscosifiers, and fluid rheology.

Ebinger, C.D.; Hunt, E.

1989-06-05T23:59:59.000Z

26

Viscosity Measurement G.E. Leblanc  

E-Print Network [OSTI]

O.1 Shear Viscosity An important mechanical property of fluids is viscosity. Physical systems and Non-Newtonian Fluids l Dimensions and Units of Viscosity l Viscometer Types l Capillary M. Kostic and applications as diverse as fluid flow in pipes, the flow of blood, lubrication of engine parts, the dynamics

Kostic, Milivoje M.

27

Amine-functionalized task-specific ionic liquids: a mechanistic explanation for the dramatic increase in viscosity upon complexation with CO{sub 2} from molecular simulation  

SciTech Connect (OSTI)

The capture of CO{sub 2} from fossil fuel combustion, particularly in coal-fired power plants, represents a critical component of efforts aimed at stabilizing greenhouse gas levels in the atmosphere. Recently, a series of second-generation task-specific ionic liquids (TSILs) containing amine functional groups have been synthesized and demonstrated to have much higher capacities for CO{sub 2} due to their reactivity with CO{sub 2}, as well unusually high viscosities in both the neat and complexed states. The current work extends the seminal studies of CO{sub 2} capture with ionic liquids (ILs) by providing insight from simulations into the mechanism responsible for the dramatic increase in viscosity upon complexation. Simulations conclusively demonstrate that the slow translational and rotational dynamics, which are manifest in the high viscosity, may be attributable to the formation of a strong, pervasive hydrogen-bonded network. Semiquantitative estimates of the cation and anion self-diffusion coefficients and rotational time constants, as well as detailed hydrogen bond analysis, are consistent with the experimentally observed formation of glassy or gel-like materials upon contact with CO{sub 2}. This has significant implications for the design of new approaches or materials involving ILs that take advantage of these preconceived limitations, in the synthesis or manipulation of new TSIL frameworks for CO{sub 2} capture, and in novel experimental studies of chemistries and dynamics in persistent heterogeneous environments.

Gutowski, K.E.; Maginn, E.J. [University of Notre Dame, Notre Dame, IN (United States)

2008-11-15T23:59:59.000Z

28

Viscosity of alumina nanoparticles dispersed in car engine coolant  

SciTech Connect (OSTI)

The present paper, describes our experimental results on the viscosity of the nanofluid prepared by dispersing alumina nanoparticles (<50 nm) in commercial car coolant. The nanofluid prepared with calculated amount of oleic acid (surfactant) was tested to be stable for more than 80 days. The viscosity of the nanofluids is measured both as a function of alumina volume fraction and temperature between 10 and 50 C. While the pure base fluid display Newtonian behavior over the measured temperature, it transforms to a non-Newtonian fluid with addition of a small amount of alumina nanoparticles. Our results show that viscosity of the nanofluid increases with increasing nanoparticle concentration and decreases with increase in temperature. Most of the frequently used classical models severely under predict the measured viscosity. Volume fraction dependence of the nanofluid viscosity, however, is predicted fairly well on the basis of a recently reported theoretical model for nanofluids that takes into account the effect of Brownian motion of nanoparticles in the nanofluid. The temperature dependence of the viscosity of engine coolant based alumina nanofluids obeys the empirical correlation of the type: log ({mu}{sub nf}) = A exp(BT), proposed earlier by Namburu et al. (author)

Kole, Madhusree; Dey, T.K. [Thermophysical Measurements Laboratory, Cryogenic Engineering Centre, Indian Institute of Technology, Kharagpur 721 302 (India)

2010-09-15T23:59:59.000Z

29

Turbulent mixing, viscosity, diffusion and gravity in the formation of cosmological structures: the fluid mechanics of dark matter  

E-Print Network [OSTI]

Self-gravitational structure formation theory for astrophysics and cosmology is revised using nonlinear fluid mechanics. Gibson's 1996-2000 theory balances fluid mechanical forces with gravitational forces and density diffusion with gravitational diffusion at critical viscous, turbulent, magnetic, and diffusion length scales termed Schwarz scales. Instability occurs for scales larger than the largest Schwarz scale rather than only for scales larger than the acoustic scale introduced by Jeans 1902. From the new theory, the inner-halo-dark-matter of galaxies consists of dark proto-globular-star-cluster (PGC) clumps of small-planetary-mass objects called primordial fog particles (PFPs) formed soon after decoupling at 300,000 years. PFPs explain Schild's 1996 "rogue planets >... likely to be the missing mass" of a quasar lens-galaxy. WIMP dark matter fluid is super-diffusive and fragments at large L_SD scales to form outer-galaxy-halos. In the beginning of structure formation 30,000 years after the Big Bang the viscous Schwarz scale L_SV matched the horizon scale L_H at proto-galaxy-supercluster masses, decreasing to proto-galaxy fragments at 300,000 years. WIMP diffusivities from observed outer-halo (L_SD) scales indicate WIMP particle masses in the neutrino rather than neutralino range.

Carl H. Gibson

2000-12-18T23:59:59.000Z

30

Implications of a viscosity bound on black hole accretion  

E-Print Network [OSTI]

Motivated by the viscosity bound in gauge/gravity duality, we consider the ratio of shear viscosity (eta) to entropy density (s) in black hole accretion flows. We use both an ideal gas equation of state and the QCD equation of state obtained from lattice for the fluid accreting onto a Kerr black hole. The QCD equation of state is considered since the temperature of accreting matter is expected to approach 10^{12}K in certain hot flows. We find that in both the cases eta/s is small only for primordial black holes and several orders of magnitude larger than any known fluid for stellar and supermassive black holes. We show that a lower bound on the mass of primordial black holes leads to a lower bound on eta/s and vice versa. Finally we speculate that the Shakura-Sunyaev viscosity parameter should decrease with increasing density and/or temperatures.

Aninda Sinha; Banibrata Mukhopadhyay

2012-02-13T23:59:59.000Z

31

A Ratiometric Fluorescent Viscosity Sensor Mark A. Haidekker,*, Thomas P. Brady, Darcy Lichlyter, and Emmanuel A. Theodorakis*,  

E-Print Network [OSTI]

.g., blood, plasma, or lymphatic fluid viscosity changes in diabetes, hypertension, infarction, and aging).2

Theodorakis, Emmanuel

32

Male gender, increased blood viscosity, body mass index and triglyceride levels are independently associated with systemic relative hypertension in sickle cell anemia  

E-Print Network [OSTI]

are independently associated with systemic relative hypertension in sickle cell anemia Yann Lamarre1,2,3 *, Marie: 2931, 3 tables, 0 figure Key words: Sickle cell anemia, relative hypertension, blood viscosity, vaso.1371/journal.pone.0066004 #12;2 Abstract: Patients with sickle cell anemia (SCA) have usually lower

Boyer, Edmond

33

Viscous fluid dynamics  

E-Print Network [OSTI]

We briefly discuss the phenomenological theory of dissipative fluid. We also present some numerical results for hydrodynamic evolution of QGP fluid with dissipation due to shear viscosity only. Its effect on particle production is also studied.

A. K. Chaudhuri

2007-03-12T23:59:59.000Z

34

Method for measuring liquid viscosity and ultrasonic viscometer  

DOE Patents [OSTI]

An ultrasonic viscometer and method for measuring fluid viscosity are provided. Ultrasonic shear and longitudinal waves are generated and coupled to the fluid. Reflections from the generated ultrasonic shear and longitudinal waves are detected. Phase velocity of the fluid is determined responsive to the detected ultrasonic longitudinal waves reflections. Viscosity of the fluid is determined responsive to the detected ultrasonic shear waves reflections. Unique features of the ultrasonic viscometer include the use of a two-interface fluid and air transducer wedge to measure relative signal change and to enable self calibration and the use of a ratio of reflection coefficients for two different frequencies to compensate for environmental changes, such as temperature.

Sheen, Shuh-Haw (Naperville, IL); Lawrence, William P. (Downers Grove, IL); Chien, Hual-Te (Naperville, IL); Raptis, Apostolos C. (Downers Grove, IL)

1994-01-01T23:59:59.000Z

35

Synthesis and use of an in-solution ratiometric fluorescent viscosity sensor  

E-Print Network [OSTI]

response times8­10. Scope and limitations of existing mechanical methods for measuring fluid viscosity Viscosity is usually measured on a bulk scale by exposing the fluid under test to shear forces. The resistance against the shear force, caused by the internal friction of the fluid, can be measured

Theodorakis, Emmanuel

36

Experimental Investigation on High-pressure, High-temperature Viscosity of Gas Mixtures  

E-Print Network [OSTI]

Modeling the performance of high-pressure, high-temperature (HPHT) natural gas reservoirs requires the understanding of gas behavior at such conditions. In particular, gas viscosity is an important fluid property that directly affects fluid flow...

Davani, Ehsan

2012-02-14T23:59:59.000Z

37

INCREASE  

ScienceCinema (OSTI)

The Interdisciplinary Consortium for Research and Educational Access in Science and Engineering (INCREASE), assists minority-serving institutions in gaining access to world-class research facilities.

None

2013-07-22T23:59:59.000Z

38

Full Life Wind Turbine Gearbox Lubricating Fluids  

SciTech Connect (OSTI)

Industrial gear box lubricants typically are hydrocarbon based mineral oils with considerable amounts of additives to overcome the lack of base fluid properties like wear protection, oxidation stability, load carrying capacity, low temperature solidification and drop of viscosity at higher temperatures. For today's wind turbine gearboxes, the requirements are more severe and synthetic hydrocarbon oils are used to improve on this, but all such hydrocarbon based lubricants require significant amounts of Extreme Pressure (EP) additives to meet performance requirements. Perfluoropolyether (PFPE) fluids provide load carrying capacity as an inherent property. During the course of the project with the main tasks of 'Establish a Benchmark', 'Lubricant Evaluation', 'Full Scale Gearbox Trial' and 'Economic Evaluation', the PAO Reference oil exhibited significant changes after laboratory gear testing, in service operation in the field and full scale gearbox trial. Four hydrocarbon base oils were selected for comparison in the benchmarking exercise and showed variation with respect to meeting the requirements for the laboratory micro-pitting tests, while the PFPE fluid exceeded the requirements even with the material taken after the full scale gear box trial. This is remarkable for a lubricant without EP additives. Laboratory bearing tests performed on the PFPE fluids before and after the full scale gear box trial showed the results met requirements for the industry standard. The PFPE fluid successfully completed the full scale gear box test program which included baseline and progressive staged load testing. The evaluation of gears showed no micro-pitting or objectionable wear. By the final stage, lubricant film thickness had been reduced to just 21% of its original value, this was by design and resulted in a lambda ratio of well below 1. This test design scenario of a low lambda ratio is a very undesirable lubrication condition for real world but creates the ability to test the lubricating fluids performance under the most extreme conditions. The PAO Reference oil also passed its testing without any noticeable deterioration of the gear surface. However the PAO Reference oil was replaced midway through the progressive loading, as the lubricant was burned in an attempt to raise the sump temperature to the same levels as for the PFPE. Both materials experienced a decrease of viscosity during their respective run times. The viscosity index decreased for the PAO there while there was a slight increase for the PFPE. FZG laboratory gear tests and measurements of the drive motor's current during the full scale gear box trial were made to characterize the relative efficiency between the PFPE fluid and the PAO Reference oil. In the FZG laboratory efficiency test, the PFPE fluids show much higher churning losses due to their higher viscosity and density. The analysis seems to show that the efficiency correlates better to dynamic viscosity than any other of the measured metrics such as film thickness. In load stages where the load, speed and temperature are similar, the PFPE fluid has a greater film thickness and theoretical gear protection, but requires a larger current for the drive motor than the PAO. However in load stages where the film thickness is the same, the PFPE fluid's reduced dynamic viscosity gives it a slight efficiency advantage relative to the PAO reference oil. Ultimately, many factors such as temperature, rotational speed, and fluid viscosity combine in a complex fashion to influence the results. However, the PFPE's much lower change of viscosity with respect to temperature, allows variations in designing an optimum viscosity to balance efficiency versus gear protection. Economic analysis was done using Cost of Energy calculations. The results vary from 5.3% for a 'Likely Case' to 16.8% for a 'Best Case' scenario as potential cost improvement by using PFPE as the gearbox lubricating fluid. It is important to note the largest portion of savings comes in Levelized Replacement Cost, which is dictated by the assumption on gearb

Lutz, Glenn A.; Jungk, Manfred; Bryant, Jonathan J.; Lauer, Rebecca S.; Chobot, Anthony; Mayer, Tyler; Palmer, Shane; Kauffman, Robert E.

2012-02-28T23:59:59.000Z

39

Viscosity of aqueous and cyanate ester suspensions containing alumina nanoparticles  

SciTech Connect (OSTI)

The viscosities of both aqueous and cyanate ester monomer (BECy) based suspensions of alumina nanoparticle were studied. The applications for these suspensions are different: aqueous suspensions of alumina nanoparticles are used in the production of technical ceramics made by slip casting or tape casting, and the BECy based suspensions are being developed for use in an injection-type composite repair resin. In the case of aqueous suspensions, it is advantageous to achieve a high solids content with low viscosity in order to produce a high quality product. The addition of a dispersant is useful so that higher solids content suspensions can be used with lower viscosities. For BECy suspensions, the addition of nanoparticles to the BECy resin is expected to enhance the mechanical properties of the cured composite. The addition of saccharides to aqueous suspensions leads to viscosity reduction. Through DSC measurements it was found that the saccharide molecules formed a solution with water and this resulted in lowering the melting temperature of the free water according to classic freezing point depression. Saccharides also lowered the melting temperature of the bound water, but this followed a different rule. The shear thinning and melting behaviors of the suspensions were used to develop a model based on fractal-type agglomeration. It is believed that the structure of the particle flocs in these suspensions changes with the addition of saccharides which leads to the resultant viscosity decrease. The viscosity of the BECy suspensions increased with solids content, and the viscosity increase was greater than predicted by the classical Einstein equation for dilute suspensions. Instead, the Mooney equation fits the viscosity behavior well from 0-20 vol% solids. The viscosity reduction achieved at high particle loadings by the addition of benzoic acid was also investigated by NMR. It appears that the benzoic acid interacts with the surface of the alumina particle which may be the cause of the viscosity reduction. The flow behavior of alumina particles in water and BECy is markedly different. Aqueous alumina suspensions are shear thinning at all alumina loadings and capable of 50 vol% loading before losing fluidity whereas BECy/alumina suspensions show Newtonian behavior up to 5 vol%, and above 5 vol% show shear thinning at all shear rates. Highly loaded suspensions (i.e. 20vol% alumina) exhibit shear thinning at low and moderate shear rates and shear thickening at higher shear rates. The maximum particle loading for a fluid suspension, in this case, appears to be about 20 vol%. The difference in the viscosity of these suspensions must be related to the solvent-particle interactions for each system. The reason is not exactly known, but there are some notable differences between BECy and water. Water molecules are {approx}0.28 nm in length and highly hydrogen bonded with a low viscosity (1 mPa's) whereas in the cyanate ester (BECy) system, the solvent molecule is about 1.2 nm, in the largest dimension, with surfaces of varied charge distribution throughout the molecule. The viscosity of the monomer is also reasonably low for organic polymer precursor, about 7 mPa's. Nanoparticles in water tend to agglomerate and form flocs which are broken with the shear force applied during viscosity measurement. The particle-particle interaction is very important in this system. In BECy, the particles appear to be well dispersed and not as interactive. The solvent-particle interaction appears to be most important. It is not known exactly how the alumina particles interact with the monomer, but NMR suggests hydrogen bonding. These hydrogen bonds between the particle and monomer could very well affect the viscosity. A conclusion that can be reached in this work is that the presence of hydroxyl groups on the surface of the alumina particles is significant and seems to affect the interactions between other particles and the solvent. Thus, the hydrogen bonding between particles, particle/additive and/or particle/solvent dictates the behavior of nanos

Lawler, Katherine

2009-08-05T23:59:59.000Z

40

VISCOSITY IN PLANETARY RINGS WITH SPINNING SELF-GRAVITATING PARTICLES  

SciTech Connect (OSTI)

Using local N-body simulation, we examine viscosity in self-gravitating planetary rings. We investigate the dependence of viscosity on various parameters in detail, including the effects of particle surface friction. In the case of self-gravitating rings with low optical depth, viscosity is determined by particle random velocity. Inclusion of surface friction slightly reduces both random velocity and viscosity when particle random velocity is determined by inelastic collisions, while surface friction slightly increases viscosity when gravitational encounters play a major role in particle velocity evolution, so that viscous heating balances with increased energy dissipation at collisions due to surface friction. We find that including surface friction changes viscosity in dilute rings up to a factor of about two. In the case of self-gravitating dense rings, viscosity is significantly increased due to the effects of gravitational wakes, and we find that varying restitution coefficients also change viscosity in such dense rings by a factor of about two. We confirm that our numerical results for viscosity in dense rings with gravitational wakes can be well approximated by a semianalytic expression that is consistent with a previously obtained formula. However, we find that this formula seems to overestimate viscosity in dense rings far from the central planet, where temporary gravitational aggregates form. We derive semianalytic expressions that reproduce our numerical results well for the entire range of examined parameters.

Yasui, Yuki; Ohtsuki, Keiji [Department of Earth and Planetary Sciences, Kobe University, Kobe 657-8501 (Japan); Daisaka, Hiroshi [Graduate School of Commerce and Management, Hitotsubashi University, Tokyo 186-8601 (Japan)

2012-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "fluid viscosity increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Increased  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348 270 300AptamersstabilityIncreased confinement

42

Lowering kraft black liquor viscosity of ultrafiltration  

SciTech Connect (OSTI)

High viscosity is a major factor limiting the percentage total dissolved solids (%TDS) to which kraft black liquor (KBL), a spent pulping liquor, can be concentrated before it is burned to recover its fuel value and its inorganic chemicals. The effect on black liquor viscosity of removing high molecular weight lignin by ultrafiltration of 16% and 24% TDS liquors was studied. Viscosities of ultrafiltration permeates were reduced relative to feed black liquors. When a permeate was concentrated to higher %TDS levels, its viscosity decreased yet further relative to feed samples evaporated to similar solids levels. Retentate viscosity was very high relative to both feed and permeate. Ultrafiltration was carried out at 75/degrees/C using polysulfone membranes in a plate-and-frame or hollow fiber system. Flux rates varied greatly depending upon the specific liquor used. Flux was enhanced by increased temperature and increased linear velocity. The membrane molecular weight cutoff (MWCO) typically used was 50,000; increasing 100,000 or 200,000 did not enhance flux.

Hill, M.K.; Violette, D.A.; Woerner, D.L.

1988-10-01T23:59:59.000Z

43

Note: Precision viscosity measurement using suspended microchannel resonators  

SciTech Connect (OSTI)

We report the characterization of a suspended microchannel resonator (SMR) for viscosity measurements in a low viscosity regime (<10 mPa s) using two measurement schemes. First, the quality factor (Q-factor) of the SMR was characterized with glycerol-water mixtures. The measured Q-factor at 20 Degree-Sign C exhibits a bilinear behavior with the sensitivity of 1281 (mPa s){sup -1} for a lower (1-4 mPa s) and 355 (mPa s){sup -1} for a higher viscosity range (4-8 mPa s), respectively. The second scheme is the vibration amplitude monitoring of the SMR running in a closed loop feedback. When compared in terms of the measurement time, the amplitude-based measurement takes only 0.1 {approx} 1 ms while the Q-factor-based measurement takes {approx}30 s. However, the viscosity resolution of the Q-factor-based measurement is at least three times better than the amplitude-based measurement. By comparing the Q-factors of heavy water and 9.65 wt.% glycerol-water mixture that have very similar viscosities but different densities, we confirmed that the SMR can measure the dynamic viscosity without the density correction. The obtained results demonstrate that the SMR can measure the fluid viscosity with high precision and even real-time monitoring of the viscosity change is possible with the amplitude-based measurement scheme.

Lee, I.; Lee, J. [Department of Mechanical Engineering, Sogang University, Seoul 121-742 (Korea, Republic of); Park, K. [Department of Mechanical, Industrial, and Systems Engineering, University of Rhode Island, Kingston, Rhode Island 02881 (United States)

2012-11-15T23:59:59.000Z

44

The nucleon thermal width due to pion-baryon loops and its contribution in Shear viscosity  

E-Print Network [OSTI]

In the real-time thermal field theory, the standard expression of shear viscosity for the nucleonic constituents is derived from the two point function of nucleonic viscous stress tensors at finite temperature and density. The finite thermal width or Landau damping is traditionally included in the nucleon propagators. This thermal width is calculated from the in-medium self-energy of nucleon for different possible pion-baryon loops. The dynamical part of nucleon-pion-baryon interactions are taken care by the effective Lagrangian densities of standard hadronic model. The shear viscosity to entropy density ratio of nucleonic component decreases with the temperature and increases with the nucleon chemical potential. However, adding the contribution of pionic component, total viscosity to entropy density ratio also reduces with the nucleon chemical potential when the mixing effect between pion and nucleon components in the mixed gas is considered. Within the hadronic domain, viscosity to entropy density ratio of the nuclear matter is gradually reducing as temperature and nucleon chemical potential are growing up and therefore the nuclear matter is approaching toward the (nearly) perfect fluid nature.

Sabyasachi Ghosh

2015-03-24T23:59:59.000Z

45

Freeze-out by bulk viscosity driven instabilities  

E-Print Network [OSTI]

We describe a new scenario (first introduced in [G. Torrieri, B. Tom\\'a\\v{s}ik and I. Mishustin, Phys. Rev. C \\textbf{77}, 034903 (2008)]) for freezeout in heavy ion collisions that could solve the lingering problems associated with the so-called HBT puzzle. We argue that bulk viscosity increases as $T$ approaches $T_c$. The fluid {then} becomes unstable against small perturbations, and fragments into clusters of a size much smaller than the total size of the system. These clusters maintain the pre-existing outward-going flow, as a spray of droplets, but develop no flow of their own, and hadronize by evaporation. We show that this scenario can explain HBT data and suggest how it can be experimentally tested.

Torrieri, Giorgio; Mishustin, Igor

2008-01-01T23:59:59.000Z

46

Falsification of dark energy by fluid mechanics  

E-Print Network [OSTI]

The 2011 Nobel Prize in Physics was awarded for the discovery of accelerating supernovae dimness, suggesting a remarkable change in the expansion rate of the Universe from a decrease since the big bang to an increase, driven by anti-gravity forces of a mysterious dark energy material comprising 70% of the Universe mass-energy. Fluid mechanical considerations falsify both the accelerating expansion and dark energy concepts. Kinematic viscosity is neglected in current standard models of self-gravitational structure formation, which rely on cold dark matter CDM condensations and clusterings that are also falsified by fluid mechanics. Weakly collisional CDM particles do not condense but diffuse away. Photon viscosity predicts superclustervoid fragmentation early in the plasma epoch and protogalaxies at the end. At the plasma-gas transition, the plasma fragments into Earth-mass gas planets in trillion planet clumps (proto-globular-star-cluster PGCs). The hydrogen planets freeze to form the dark matter of galaxies ...

Gibson, Carl H

2012-01-01T23:59:59.000Z

47

Shear viscosity, cavitation and hydrodynamics at LHC  

E-Print Network [OSTI]

We study evolution of quark-gluon matter in the ultrarelativistic heavy-ion collisions within the frame work of relativistic second-order viscous hydrodynamics. In particular, by using the various prescriptions of a temperature-dependent shear viscosity to the entropy ratio, we show that the hydrodynamic description of the relativistic fluid become invalid due to the phenomenon of cavitation. For most of the initial conditions relevant for LHC, the cavitation sets in very early during the evolution of the hydrodynamics in time $\\lesssim 2 $fm/c. The cavitation in this case is entirely driven by the large values of shear viscosity. Moreover we also demonstrate that the conformal term used in equations of the relativistic dissipative hydrodynamic can influence the cavitation time.

Jitesh R. Bhatt; Hiranmaya Mishra; V. Sreekanth

2011-09-28T23:59:59.000Z

48

Post-processing of polymer foam tissue scaffolds with high power ultrasound: a route to increased pore interconnectivity, pore size and fluid transport  

E-Print Network [OSTI]

We expose thick polymer foam tissue scaffolds to high power ultrasound and study its effect on the openness of the pore architecture and fluid transport through the scaffold. Our analysis is supported by measurements of fluid uptake during insonification and imaging of the scaffold microstructure via x-ray computed tomography, scanning electron microscopy and acoustic microscopy. The ultrasonic treatment is found to increase the mean pore size by over 10%. More striking is the improvement in fluid uptake: for scaffolds with only 40% water uptake via standard immersion techniques, we can routinely achieve full saturation of the scaffold over approximately one hour of exposure. These desirable modifications occur with no loss of scaffold integrity and negligible mass loss, and are optimized when the ultrasound treatment is coupled to a pre-wetting stage with ethanol. Our findings suggest that high power ultrasound is a highly targetted and efficient means to promote pore interconnectivity and fluid transport in thick foam tissue scaffolds.

N J Watson; R K Johal; Y Reinwald; L J White; A M Ghaemmaghami; S P Morgan; F R A J Rose; M J W Povey; N G Parker

2013-02-18T23:59:59.000Z

49

Gas Viscosity at High Pressure and High Temperature  

E-Print Network [OSTI]

Gas viscosity is one of the gas properties that is vital to petroleum engineering. Its role in the oil and gas production and transportation is indicated by its contribution in the resistance to the flow of a fluid both in porous media and pipes...

Ling, Kegang

2012-02-14T23:59:59.000Z

50

Fluid Mixing from Viscous Fingering  

E-Print Network [OSTI]

Mixing efficiency at low Reynolds numbers can be enhanced by exploiting hydrodynamic instabilities that induce heterogeneity and disorder in the flow. The unstable displacement of fluids with different viscosities, or ...

Jha, Birendra

51

Crossover from capillary fingering to compact invasion for two-phase drainage with stable viscosity ratios  

SciTech Connect (OSTI)

Motivated by a wide range of applications from enhanced oil recovery to carbon dioxide sequestration, we have developed a two-dimensional, pore-level model of immiscible drainage, incorporating viscous, capillary, and gravitational effects. This model has been validated quantitatively, in the very different limits of zero viscosity ratio and zero capillary number; flow patterns from modeling agree well with experiment. For a range of stable viscosity ratios (?injected/?displaced 1), we have increased the capillary number, Nc, and studied the way in which the flows deviate from capillary fingering (the fractal flow of invasion percolation) and become compact for realistic capillary numbers. Results exhibiting this crossover from capillary fingering to compact invasion are presented for the average position of the injected fluid, the fluid–fluid interface, the saturation and fractional flow profiles, and the relative permeabilities. The agreement between our results and earlier theoretical predictions [Blunt M, King MJ, Scher H. Simulation and theory of two-phase flow in porous media. Phys Rev A 1992;46:7680–99; Lenormand R. Flow through porous media: limits of fractal patterns. Proc Roy Soc A 1989;423:159–68; Wilkinson D. Percolation effects in immiscible displacement. Phys Rev A 1986;34:1380–90; Xu B, Yortsos YC, Salin D. Invasion Percolation with viscous forces. Phys Rev E 1998;57:739–51] supports the validity of these general theoretical arguments, which were independent of the details of the porous media in both two and three dimensions.

Ferer, M.V.; Bromhal, G.S.; Smith, D.H

2007-02-01T23:59:59.000Z

52

THERMOPHYSICAL PROPERTIES OF NANOPARTICLE-ENHANCED IONIC LIQUIDS HEAT TRANSFER FLUIDS  

SciTech Connect (OSTI)

An experimental investigation was completed on nanoparticle enhanced ionic liquid heat transfer fluids as an alternative to conventional organic based heat transfer fluids (HTFs). These nanoparticle-based HTFs have the potential to deliver higher thermal conductivity than the base fluid without a significant increase in viscosity at elevated temperatures. The effect of nanoparticle morphology and chemistry on thermophysical properties was examined. Whisker shaped nanomaterials were found to have the largest thermal conductivity temperature dependence and were also less likely to agglomerate in the base fluid than spherical shaped nanomaterials.

Fox, E.

2013-04-15T23:59:59.000Z

53

Saturation of elliptic flow and shear viscosity  

E-Print Network [OSTI]

Effect of shear viscosity on elliptic flow is studied in causal dissipative hydrodynamics in 2+1 dimensions. Elliptic flow is reduced in viscous dynamics. Causal evolution of minimally viscous fluid ($\\eta/s$=0.08), can explain the PHENIX data on elliptic flow in 16-23% Au+Au collisions up to $p_T\\approx$3.6 GeV. In contrast, ideal hydrodynamics, can explain the same data only up to $p_T\\approx$1.5 GeV. $p_T$ spectra of identified particles are also better explained in minimally viscous fluid than in ideal dynamics. However, saturation of elliptic flow at large $p_T$ is not reproduced.

A. K. Chaudhuri

2007-10-08T23:59:59.000Z

54

Bulk Viscosity and Cavitation in Boost-Invariant Hydrodynamic Expansion  

E-Print Network [OSTI]

We solve second order relativistic hydrodynamics equations for a boost-invariant 1+1-dimensional expanding fluid with an equation of state taken from lattice calculations of the thermodynamics of strongly coupled quark-gluon plasma. We investigate the dependence of the energy density as a function of proper time on the values of the shear viscosity, the bulk viscosity, and second order coefficients, confirming that large changes in the values of the latter have negligible effects. Varying the shear viscosity between zero and a few times s/(4 pi), with s the entropy density, has significant effects, as expected based on other studies. Introducing a nonzero bulk viscosity also has significant effects. In fact, if the bulk viscosity peaks near the crossover temperature Tc to the degree indicated by recent lattice calculations in QCD without quarks, it can make the fluid cavitate -- falling apart into droplets. It is interesting to see a hydrodynamic calculation predicting its own breakdown, via cavitation, at the temperatures where hadronization is thought to occur in ultrarelativistic heavy ion collisions.

Krishna Rajagopal; Nilesh Tripuraneni

2010-02-16T23:59:59.000Z

55

Controlled black liquor viscosity reduction through salting-in  

SciTech Connect (OSTI)

Black liquor viscosity increases exponentially with solids content and therefore causes processing problems for the paper industry by being a limiting factor in the Kraft pulp process. This study investigates a new approach for achieving viscosity reduction by salting-in black liquor through the addition of thiocyanate salts. These salts generally increase the solubility of the polymer constituents in black liquor, leading to a decrease in its viscosity. Several thiocyanate salts capable of reducing liquor viscosity by more than two orders of magnitude have been identified, with viscosity reduction greatest at high solids content. Salting-in of black liquor depends on the cation paired with the thiocyanate anion, as well as on solution pH and temperature. Comparative studies reveal the most effective viscosity-reducing agent of the series examined and that lignin plays an important role in the viscosity behavior of both unmodified and salted-in black liquor at high solids concentrations. These experimental findings are interpreted in terms of the underlying principles that describe salting-in and how it affects aqueous solution structure.

Roberts, J.E.; Khan, S.A.; Spontak, R.J. [North Carolina State Univ., Raleigh, NC (United States)] [North Carolina State Univ., Raleigh, NC (United States)

1996-08-01T23:59:59.000Z

56

Kinetic theory viscosity  

E-Print Network [OSTI]

We show how the viscous evolution of Keplerian accretion discs can be understood in terms of simple kinetic theory. Although standard physics texts give a simple derivation of momentum transfer in a linear shear flow using kinetic theory, many authors, as detailed by Hayashi & Matsuda 2001, have had difficulties applying the same considerations to a circular shear flow. We show here how this may be done, and note that the essential ingredients are to take proper account of, first, isotropy locally in the frame of the fluid and, second, the geometry of the mean flow.

C. J. Clarke; J. E. Pringle

2004-03-17T23:59:59.000Z

57

Calculate viscosities for 355 liquids  

SciTech Connect (OSTI)

Liquid viscosities are important factors in process design and operation. The viscosity of a liquid determines its flow properties, such as velocity and pressure drop. In addition, the heat- and mass-transfer characteristics of a liquid are affected by its viscosity. An equation can be used to calculate liquid viscosities as a function of temperature. In the accompanying table, regression coefficients are included for 355 compounds with five, six or seven carbon atoms--generally the most-widely used in the chemical and petroleum industries. To calculate the viscosity of a liquid at any temperature between its melting and critical points (T[sub min] and T[sub max]), use the following equation: log[sub 10] [eta][sub liq] = A + B/T + CT + DT[sup 2] where [eta][sub liq] = viscosity, cP, A,B,C and D = regression coefficients, and T = liquid temperature, K. Insert the temperature into the equation along with the corresponding regression coefficients from the table. The chemical formulae are listed by the number of carbon atoms.

Yaws, C.L.; Lin, Xiaoyan; Li Bu (Lamar Univ., TX (United States))

1994-04-01T23:59:59.000Z

58

Entropy & viscosity bound of strange stars  

E-Print Network [OSTI]

At finite temperature (T) there is a link with general relativity and hydrodynamics that leads to a lower bound for the ratio of shear viscosity and entropy density (\\eta/s). We find that the bound is saturated in the simple model for quark matter that we use for strange stars at T = 80 MeV, at the surface of a strange star. At this T we have the possibility of cosmic separation of phases. We find that, although strongly correlated, the quark matter at the surface of strange stars constitute the most perfect interacting fluid permitted by nature. At the centre of the star, however, the density is higher and conditions are more like the results found for perturbative QCD.

Sibasish Laha; Taparati Gangopadhyay; Manjari Bagchi; Mira Dey; Jishnu Dey; Monika Sinha; Subharthi Ray

2007-02-08T23:59:59.000Z

59

Centrality dependence of elliptic flow and QGP viscosity  

E-Print Network [OSTI]

In the Israel-Stewart's theory of second order hydrodynamics, we have analysed the recent PHENIX data on charged particles elliptic flow in Au+Au collisions. PHENIX data demand more viscous fluid in peripheral collisions than in central collisions. Over a broad range of collision centrality (0-10%- 50-60%), viscosity to entropy ratio ($\\eta/s$) varies between 0-0.17.

A. K. Chaudhuri

2010-03-30T23:59:59.000Z

60

Reversible shear thickening at low shear rates of electrorheological fluids under electric fields  

E-Print Network [OSTI]

Shear thickening is a phenomenon of significant viscosity increase of colloidal suspensions. While electrorheological (ER) fluids can be turned into a solid-like material by applying an electric field, their shear strength is widely represented by the attractive electrostatic interaction between ER particles. By shearing ER fluids between two concentric cylinders, we show a reversible shear thickening of ER fluids above a low critical shear rate (100 V/mm), which could be characterized by a modified Mason number. Shear thickening and electrostatic particle interaction-induced inter-particle friction forces is considered to be the real origin of the high shear strength of ER fluids, while the applied electric field controls the extent of shear thickening. The electric field-controlled reversible shear thickening has implications for high-performance ER/magnetorheological (MR) fluid design, clutch fluids with high friction forces triggered by applying local electric field, other field-responsive materials and intelligent systems.

Yu Tian; Minliang Zhang; Jile Jiang; Noshir Pesika; Hongbo Zeng; Jacob Israelachvili; Yonggang Meng; Shizhu Wen

2010-08-24T23:59:59.000Z

Note: This page contains sample records for the topic "fluid viscosity increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Modeling multiphase flow for high viscosity liquids: a study of vertical/inclined zero net liquid flow  

E-Print Network [OSTI]

This experimental study investigates the effects of inclination angle and fluid viscosity on zero net liquid flow (ZNLF). Predicting liquid holdup under ZNLF conditions is necessary in several types of petroleum industry operations. These include...

Rodriguez, Jose Ramon

2001-01-01T23:59:59.000Z

62

Newtonian fluid flow through Microfabricated Hyperbolic Contractions  

E-Print Network [OSTI]

spraying (Barnes et al. 1989). Optimization of these processes requires accurate measurements for measurement of extensional viscosity involves studying the fluid flow through contractions profiled to give extensional viscosity. To remove the effect of shear at the walls of contractions Shaw (1975) proposed the use

63

Spreading of Fluids on Solids Under Pressure: Effect of Slip  

E-Print Network [OSTI]

Spreading of different types of fluid on substrates under an impressed force is an interesting problem. Here we study spreading of four fluids, having different hydrophilicity and viscosity on two substrates - glass and perspex, under an external force. The area of contact of fluid and solid is video-photographed and its increase with time is measured. The results for different external forces can be scaled onto a common curve. We try to explain the nature of this curve on the basis of existing theoretical treatment where either the no-slip condition is used or slip between fluid and substrate is introduced. We find that of the eight cases under study, in five cases quantitative agreement is obtained using a slip coefficient.

Soma Nag; Tapati Dutta; Sujata Tarafdar

2010-05-28T23:59:59.000Z

64

Fluid dynamics on sieve trays  

SciTech Connect (OSTI)

A study was conducted to investigate the effects of fluid properties on the hydrodynamics of sieve tray columns. The study showed that changes in liquid viscosity influenced froth height, while changes in liquid surface tension and density influenced total pressure drop across the trays. Liquid holdup was independent of these solution properties. The liquid systems used for the study were: water/glycerol for viscosity, water/ethanol for surface tension and methanol/chloroform for density.

Hag, M.A.

1982-08-01T23:59:59.000Z

65

High Temperature, high pressure equation of state density correlations and viscosity correlations  

SciTech Connect (OSTI)

Global increase in oil demand and depleting reserves has derived a need to find new oil resources. To find these untapped reservoirs, oil companies are exploring various remote and harsh locations such as deep waters in Gulf of Mexico, remote arctic regions, unexplored deep deserts, etc. Further, the depth of new oil/gas wells being drilled has increased considerably to tap these new resources. With the increase in the well depth, the bottomhole temperature and pressure are also increasing to extreme values (i.e. up to 500 F and 35,000 psi). The density and viscosity of natural gas and crude oil at reservoir conditions are critical fundamental properties required for accurate assessment of the amount of recoverable petroleum within a reservoir and the modeling of the flow of these fluids within the porous media. These properties are also used to design appropriate drilling and production equipment such as blow out preventers, risers, etc. With the present state of art, there is no accurate database for these fluid properties at extreme conditions. As we have begun to expand this experimental database it has become apparent that there are neither equations of state for density or transport models for viscosity that can be used to predict these fundamental properties of multi-component hydrocarbon mixtures over a wide range of temperature and pressure. Presently, oil companies are using correlations based on lower temperature and pressure databases that exhibit an unsatisfactory predictive capability at extreme conditions (e.g. as great as {+-} 50%). From the perspective of these oil companies that are committed to safely producing these resources, accurately predicting flow rates, and assuring the integrity of the flow, the absence of an extensive experimental database at extreme conditions and models capable of predicting these properties over an extremely wide range of temperature and pressure (including extreme conditions) makes their task even more daunting.

Tapriyal, D.; Enick, R.; McHugh, M.; Gamwo, I.; Morreale, B.

2012-07-31T23:59:59.000Z

66

Viscosity of black liquor project  

SciTech Connect (OSTI)

The discussion of magnetic resonance in this report is confined to nuclides with a spin quantum number of 1/2. Included is a basic discussion of magnetic resonance; magnetic resonance relaxation and viscosity; and rhometers and viscometers. Many other effects are ignored for the sake of clarity.

Barrall, G.A.

1998-06-01T23:59:59.000Z

67

Anomalous-viscosity current drive  

DOE Patents [OSTI]

The present invention relates to a method and apparatus for maintaining a steady-state current for magnetically confining the plasma in a toroidal magnetic confinement device using anomalous viscosity current drive. A second aspect of this invention relates to an apparatus and method for the start-up of a magnetically confined toroidal plasma.

Stix, T.H.; Ono, M.

1986-04-25T23:59:59.000Z

68

"Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"  

SciTech Connect (OSTI)

ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

2008-06-12T23:59:59.000Z

69

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids (2012)  

E-Print Network [OSTI]

are still within reasonable range. Nevertheless, for test case two, which has higher density and viscosity, emulsification, spraying and so on. The kinematics and dynamics of the fluid interfaces play an important role

Frey, Pascal

70

Displacement of oil from reservoir rock using graded-viscosity water  

E-Print Network [OSTI]

of reservoir conditions. The objective of this paper was to investigate, in the dis- placement processes the effect on oil recovery of 1) A graded- viscosity bank as compared to that of a constant-viscosity bank. The two banks used had the same mass...- cosity. He compared his results with a constant-viscosity slug, having the same mass of polymer and found increased oil recov- eries from the graded-viscosity slug, in the displacement process. His concentration of polymer, however, were too high...

Al-Atigi, Yosef A

1974-01-01T23:59:59.000Z

71

An estimate of QGP viscosity from STAR data on $?$ mesons  

E-Print Network [OSTI]

In the Israel-Stewart's theory of dissipative hydrodynamics, with a lattice based equation of state, where the confinement-deconfinement transition is a cross-over at $T_{co}$=196 MeV, we have analysed the STAR data on $\\phi$ meson production in Au+Au collisions at $\\sqrt{s}$=200 GeV. From a simultaneous fit to $\\phi$ mesons multiplicity, mean $p_T$ and integrated $v_2$, we obtain a phenomenological estimate of QGP viscosity, $\\eta/s =0.15 \\pm 0.05 \\pm 0.03$, the first error is due to the experimental uncertainty in STAR measurements, the second reflects the uncertainties in initial and final conditions of the fluid. A host of STAR data, e.g. $\\phi$ multiplicity, integrated $v_2$, mean $p_T$, $p_T$ spectra ($p_T <$3 GeV), in central Au+Au collisions, are consistent with the estimate of viscosity.

A. K. Chaudhuri

2009-03-20T23:59:59.000Z

72

From Stopping to Viscosity in Heavy Ion Collisions  

SciTech Connect (OSTI)

Stopping in heavy ion collisions is investigated with the aim of learning about the shear viscosity of nuclear matter. Boltzmann equation simulations are compared to available data on stopping in the energy range of 20-117 MeV/nucleon. Stopping observables used include momentum anisotropy and linear momentum transfer. The data show that modeling the transport with free nucleon-nucleon cross-sections is inaccurate and reduced cross-sections are required. Reduction of the cross-sections produces an increase in the shear viscosity of nuclear matter, compared to calculations based on free cross-sections.

Barker, Brent W.; Danielewicz, Pawel [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824 (United States)

2010-04-26T23:59:59.000Z

73

Stress tensor and bulk viscosity in relativistic nuclear collisions  

E-Print Network [OSTI]

We discuss the influence of different initial conditions for the stress tensor and the effect of bulk viscosity on the expansion and cooling of the fireball created in relativistic heavy ion collisions. In particular, we explore the evolution...however, it does not significantly increase the entropy produced....

Fries, Rainer J.; Mueller, Berndt; Schaefer, Andreas.

2008-01-01T23:59:59.000Z

74

Causal dissipative hydrodynamics for QGP fluid in 2+1 dimensions  

E-Print Network [OSTI]

In 2nd order causal dissipative theory, space-time evolution of QGP fluid is studied in 2+1 dimensions. Relaxation equations for shear stress tensors are solved simultaneously with the energy-momentum conservation equations. Comparison of evolution of ideal and viscous QGP fluid, initialized under the same conditions, e.g. same equilibration time, energy density and velocity profile, indicate that in a viscous dynamics, energy density or temperature of the fluid evolve slowly, than in an ideal fluid. Cooling gets slower as viscosity increases. Transverse expansion also increases in a viscous dynamics. For the first time we have also studied elliptic flow of 'quarks' in causal viscous dynamics. It is shown that elliptic flow of quarks saturates due to non-equilibrium correction to equilibrium distribution function, and can not be mimicked by an ideal hydrodynamics.

A. K. Chaudhuri

2007-08-01T23:59:59.000Z

75

Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities  

DOE Patents [OSTI]

A method for treating a tar sands formation includes providing heat to at least part of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat is allowed to transfer from the heaters to at least a portion of the formation. A viscosity of one or more zones of the hydrocarbon layer is assessed. The heating rates in the zones are varied based on the assessed viscosities. The heating rate in a first zone of the formation is greater than the heating rate in a second zone of the formation if the viscosity in the first zone is greater than the viscosity in the second zone. Fluids are produced from the formation through the production wells.

Karanikas, John Michael; Vinegar, Harold J

2014-03-04T23:59:59.000Z

76

Under consideration for publication in J. Fluid Mech. 1 Dynamics of Bead Formation,  

E-Print Network [OSTI]

evolution it is possible to extract transient extensional viscosity information even for very low viscosity the instability and breakup of polymeric jets is important for a wide variety of applications including spraying- stable when compared to a Newtonian fluid of the same viscosity and inertia (Middleman (1965), Goldin et

77

Falsification of dark energy by fluid mechanics  

E-Print Network [OSTI]

The 2011 Nobel Prize in Physics was awarded for the discovery of accelerating supernovae dimness, suggesting a remarkable change in the expansion rate of the Universe from a decrease since the big bang to an increase, driven by anti-gravity forces of a mysterious dark energy material comprising 70% of the Universe mass-energy. Fluid mechanical considerations falsify both the accelerating expansion and dark energy concepts. Kinematic viscosity is neglected in current standard models of self-gravitational structure formation, which rely on cold dark matter CDM condensations and clusterings that are also falsified by fluid mechanics. Weakly collisional CDM particles do not condense but diffuse away. Photon viscosity predicts superclustervoid fragmentation early in the plasma epoch and protogalaxies at the end. At the plasma-gas transition, the plasma fragments into Earth-mass gas planets in trillion planet clumps (proto-globular-star-cluster PGCs). The hydrogen planets freeze to form the dark matter of galaxies and merge to form their stars. Dark energy is a systematic dimming error for Supernovae Ia caused by dark matter planets near hot white dwarf stars at the Chandrasekhar carbon limit. Evaporated planet atmospheres may or may not scatter light from the events depending on the line of sight.

Carl H. Gibson

2012-03-23T23:59:59.000Z

78

Numerical Analysis of Cell Deformation of Twophase Flow with Discontinuous Viscosity and Nonlinear Surface Tension  

E-Print Network [OSTI]

­linear Surface Tension Zhilin Li and Sharon Lubkin Center For Research in Scientific Computation & Department equations, cell deformation, non­linear surface tension, jump conditions, interface, discontinuous and non boundary separating two fluids that have equal or different viscosity and non­linear surface tension

79

Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid  

E-Print Network [OSTI]

by their very low thermal conductivity. These fluids have almost two orders of magnitude lower thermal, a significant amount of data has been gathered on the thermal conductivity of nanofluids. Typical materials usedEnhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid J

80

Hyperon bulk viscosity in strong magnetic fields  

E-Print Network [OSTI]

We study the bulk viscosity of neutron star matter including $\\Lambda$ hyperons in the presence of quantizing magnetic fields. Relaxation time and bulk viscosity due to both the non-leptonic weak process involving $\\Lambda$ hyperons and direct Urca processes are calculated here. In the presence of a strong magnetic field of $10^{17}$ G, the hyperon bulk viscosity coefficient is reduced whereas bulk viscosity coefficients due to direct Urca processes are enhanced compared with their field free cases when many Landau levels are populated by protons, electrons and muons.

Monika Sinha; Debades Bandyopadhyay

2009-06-06T23:59:59.000Z

Note: This page contains sample records for the topic "fluid viscosity increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Determining the effective viscosity of a Shear Induced State Structure (SIS) surfactant, C16TMASal, during injection into a porous medium  

E-Print Network [OSTI]

The purpose of this experimental study was to determine both the effective viscosity and the suitability of C16TASal for use in enhanced oil recovery. The work eventually involved the injection of a single phase fluid with various concentrations...

Platt, Frank Martin

1994-01-01T23:59:59.000Z

82

Development of neural network models for the prediction of dewpoint pressure of retrograde gases and saturated oil viscosity of black oil systems  

E-Print Network [OSTI]

Accurate prediction of gas condensate and crude oil fluid properties are critical elements in reservoir-engineering calculations. Dewpoint pressure of gas condensate reservoirs and oil viscosity of black oil systems are some of the important...

Gonzalez Zambrano, Alfredo Antonio

2002-01-01T23:59:59.000Z

83

Heat Transfer in Complex Fluids  

SciTech Connect (OSTI)

Amongst the most important constitutive relations in Mechanics, when characterizing the behavior of complex materials, one can identify the stress tensor T, the heat flux vector q (related to heat conduction) and the radiant heating (related to the radiation term in the energy equation). Of course, the expression 'complex materials' is not new. In fact, at least since the publication of the paper by Rivlin & Ericksen (1955), who discussed fluids of complexity (Truesdell & Noll, 1992), to the recently published books (Deshpande et al., 2010), the term complex fluids refers in general to fluid-like materials whose response, namely the stress tensor, is 'non-linear' in some fashion. This non-linearity can manifest itself in variety of forms such as memory effects, yield stress, creep or relaxation, normal-stress differences, etc. The emphasis in this chapter, while focusing on the constitutive modeling of complex fluids, is on granular materials (such as coal) and non-linear fluids (such as coal-slurries). One of the main areas of interest in energy related processes, such as power plants, atomization, alternative fuels, etc., is the use of slurries, specifically coal-water or coal-oil slurries, as the primary fuel. Some studies indicate that the viscosity of coal-water mixtures depends not only on the volume fraction of solids, and the mean size and the size distribution of the coal, but also on the shear rate, since the slurry behaves as shear-rate dependent fluid. There are also studies which indicate that preheating the fuel results in better performance, and as a result of such heating, the viscosity changes. Constitutive modeling of these non-linear fluids, commonly referred to as non-Newtonian fluids, has received much attention. Most of the naturally occurring and synthetic fluids are non-linear fluids, for example, polymer melts, suspensions, blood, coal-water slurries, drilling fluids, mud, etc. It should be noted that sometimes these fluids show Newtonian (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a given temperature, an increase in {zeta} implies that the activation energy is smaller and thus, the reaction ra

Mehrdad Massoudi

2012-01-01T23:59:59.000Z

84

Improvement of nutritive value of guar meal through reduction of viscosity by enzyme supplementation  

E-Print Network [OSTI]

Guar meal is a high protein by-product of guar gum production that contains a residual gum, galactomannan polysaccharide. The gum increases intestinal viscosity while decreasing nutrient absorption. Four experiments examined effects of two guar...

Lee, Jason Thomas

2002-01-01T23:59:59.000Z

85

To appear in INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS  

E-Print Network [OSTI]

and sharp gradients. This stabilization introduces artificial viscosity at places of large local residuals.g. the drag and lift coe#cients of an airfoil immersed in a viscous or inviscid fluid. The performance

Hartmann, Ralf

86

Technology for Increasing Geothermal Energy Productivity. Computer Models to Characterize the Chemical Interactions of Goethermal Fluids and Injectates with Reservoir Rocks, Wells, Surface Equiptment  

SciTech Connect (OSTI)

This final report describes the results of a research program we carried out over a five-year (3/1999-9/2004) period with funding from a Department of Energy geothermal FDP grant (DE-FG07-99ID13745) and from other agencies. The goal of research projects in this program were to develop modeling technologies that can increase the understanding of geothermal reservoir chemistry and chemistry-related energy production processes. The ability of computer models to handle many chemical variables and complex interactions makes them an essential tool for building a fundamental understanding of a wide variety of complex geothermal resource and production chemistry. With careful choice of methodology and parameterization, research objectives were to show that chemical models can correctly simulate behavior for the ranges of fluid compositions, formation minerals, temperature and pressure associated with present and near future geothermal systems as well as for the very high PT chemistry of deep resources that is intractable with traditional experimental methods. Our research results successfully met these objectives. We demonstrated that advances in physical chemistry theory can be used to accurately describe the thermodynamics of solid-liquid-gas systems via their free energies for wide ranges of composition (X), temperature and pressure. Eight articles on this work were published in peer-reviewed journals and in conference proceedings. Four are in preparation. Our work has been presented at many workshops and conferences. We also considerably improved our interactive web site (geotherm.ucsd.edu), which was in preliminary form prior to the grant. This site, which includes several model codes treating different XPT conditions, is an effective means to transfer our technologies and is used by the geothermal community and other researchers worldwide. Our models have wide application to many energy related and other important problems (e.g., scaling prediction in petroleum production systems, stripping towers for mineral production processes, nuclear waste storage, CO2 sequestration strategies, global warming). Although funding decreases cut short completion of several research activities, we made significant progress on these abbreviated projects.

Nancy Moller Weare

2006-07-25T23:59:59.000Z

87

The Bulk Viscosity of a Pion Gas  

E-Print Network [OSTI]

We compute the bulk viscosity of a gas of pions at temperatures below the QCD crossover temperature, for the physical value of pion mass, to lowest order in chiral perturbation theory. Bulk viscosity is controlled by number-changing processes which become exponentially slow at low temperatures when the pions become exponentially dilute, leading to an exponentially large bulk viscosity zeta ~ (F_0^8/m_\\pi^5) exp(2m_\\pi/T), where F_0 = 93 MeV is the pion decay constant.

Egang Lu; Guy D. Moore

2011-01-31T23:59:59.000Z

88

Bulk viscosity of N=2* plasma  

E-Print Network [OSTI]

We use gauge theory/string theory correspondence to study the bulk viscosity of strongly coupled, mass deformed SU(N_c) N=4 supersymmetric Yang-Mills plasma, also known as N=2^* gauge theory. For a wide range of masses we confirm the bulk viscosity bound proposed in arXiv:0708.3459. For a certain choice of masses, the theory undergoes a phase transition with divergent specific heat c_V ~ |1-T_c/T|^(-1/2). We show that, although bulk viscosity rapidly grows as T -> T_c, it remains finite in the vicinity of the critical point.

Alex Buchel; Chris Pagnutti

2009-03-02T23:59:59.000Z

89

6. Fluid mechanics: fluid statics; fluid dynamics  

E-Print Network [OSTI]

1/96 6. Fluid mechanics: fluid statics; fluid dynamics (internal flows, external flows) Ron and Flow Engineering | 20500 Turku | Finland 2/96 6.1 Fluid statics Ã?bo Akademi University | Thermal and Flow Engineering | 20500 Turku | Finland #12;3/96 Fluid statics, static pressure /1 Two types

Zevenhoven, Ron

90

Using supercritical fluids to refine hydrocarbons  

DOE Patents [OSTI]

This is a method to reactively refine hydrocarbons, such as heavy oils with API gravities of less than 20.degree. and bitumen-like hydrocarbons with viscosities greater than 1000 cp at standard temperature and pressure using a selected fluid at supercritical conditions. The reaction portion of the method delivers lighter weight, more volatile hydrocarbons to an attached contacting device that operates in mixed subcritical or supercritical modes. This separates the reaction products into portions that are viable for use or sale without further conventional refining and hydro-processing techniques. This method produces valuable products with fewer processing steps, lower costs, increased worker safety due to less processing and handling, allow greater opportunity for new oil field development and subsequent positive economic impact, reduce related carbon dioxide, and wastes typical with conventional refineries.

Yarbro, Stephen Lee

2014-11-25T23:59:59.000Z

91

Measurement of DWPF glass viscosity - Final Report  

SciTech Connect (OSTI)

This report details the results of a scoping study funded by the Defense Waste Processing Facility (DWPF) for the measurement of melt viscosities for simulated glasses representative of Macrobatch 2 (Tank 42/51 feed).

Harbour, J.R.

2000-02-17T23:59:59.000Z

92

Factors affecting viscosity changes in corn  

E-Print Network [OSTI]

of heating rate, holding temperature and CMC. Differences were found to exist between meals from different crop years which were not attributable to particle size. When tested at 13, 15 and 17% solids, new meal consistently developed viscosity earliest...

McGill, Kendra Louise

1995-01-01T23:59:59.000Z

93

Thermal Diffusivity and Viscosity of Suspensions of Disc Shaped Nanoparticles  

E-Print Network [OSTI]

In this work we conduct a transient heat conduction experiment with an aqueous suspension of nanoparticle disks of Laponite JS, a sol forming grade, using laser light interferometry. The image sequence in time is used to measure thermal diffusivity and thermal conductivity of the suspension. Imaging of the temperature distribution is facilitated by the dependence of refractive index of the suspension on temperature itself. We observe that with the addition of 4 volume % of nano-disks in water, thermal conductivity of the suspension increases by around 30%. A theoretical model for thermal conductivity of the suspension of anisotropic particles by Fricke as well as by Hamilton and Crosser explains the trend of data well. In turn, it estimates thermal conductivity of the Laponite nanoparticle itself, which is otherwise difficult to measure in a direct manner. We also measure viscosity of the nanoparticle suspension using a concentric cylinder rheometer. Measurements are seen to follow quite well, the theoretical relation for viscosity of suspensions of oblate particles that includes up to two particle interaction. This result rules out the presence of clusters of particles in the suspension. The effective viscosity and thermal diffusivity data show that the shape of the particle has a role in determining enhancement of thermophysical properties of the suspension.

Susheel S. Bhandari; K. Muralidhar; Yogesh M Joshi

2014-03-05T23:59:59.000Z

94

The nucleon thermal width due to pion-baryon loops and its contribution in Shear viscosity  

E-Print Network [OSTI]

In the real-time thermal field theory, the standard expression of shear viscosity for the nucleonic constituents is derived from the two point function of nucleonic viscous stress tensors at finite temperature and density. The finite thermal width or Landau damping is traditionally included in the nucleon propagators. This thermal width is calculated from the in-medium self-energy of nucleon for different possible pion-baryon loops. The dynamical part of nucleon-pion-baryon interactions are taken care by the effective Lagrangian densities of standard hadronic model. The shear viscosity to entropy density ratio of nucleonic component decreases with the temperature and increases with the nucleon chemical potential. However, adding the contribution of pionic component, total viscosity to entropy density ratio also reduces with the nucleon chemical potential when the mixing effect between pion and nucleon components in the mixed gas is considered. Within the hadronic domain, viscosity to entropy density ratio of ...

Ghosh, Sabyasachi

2015-01-01T23:59:59.000Z

95

Experimental Investigation of the Effective Foam Viscosity in Unsaturated Porous Media  

SciTech Connect (OSTI)

Foam has the potential to effectively carry and distribute either aqueous or gaseous amendments to the deep vadose zone for contaminant remediation. However, the transport of foam in porous media is complicated because flow characteristics such as the effective viscosity are affected not only by foam properties but also by the sediment properties and flow conditions. We determined the average effective foam viscosity via a series of laboratory experiments and found that the effective foam viscosity increased with the liquid fraction in foam, the injection rate, and sediment permeability. These impacts are quantified with an empirical expression, which is further demonstrated with data from literature. The results show that the liquid fraction in foam and sediment permeability are two primary factors affecting effective foam viscosity. These results suggest that, when foam is used in deep vadose zone remediation, foam flow will not suffer from gravitational drainage and can distribute amendments uniformly in heterogeneous sediments.

Zhang, Z. F.; Zhong, Lirong; White, Mark D.; Szecsody, James E.

2012-11-01T23:59:59.000Z

96

Predicting viscosities of aqueous salt mixtures  

SciTech Connect (OSTI)

Viscosity plays an important role in quantifying heat and mass transfer rates as depicted in theoretical and semi-empirical correlations. In practical problems where extreme temperatures and solute concentrations are encountered, viscosity data is usually unavailable. At these conditions, no dependable correlation appears to exist in the literature. This paper uses the hole type model to predict the viscosity of aqueous electrolytes containing single and mixed salts up to the molten salt regime. This model needs two parameters which can be evaluated from sparse data. For LiBr/water and (Li, K, na) NO[sub 3]/water mixtures, it is shown that the agreement between predicted and experimental values is very good over wide temperature and concentration ranges. The deviation between these two values was found to be less than 9%.

Zaltash, A.; Ally, M.R.

1992-01-01T23:59:59.000Z

97

Predicting viscosities of aqueous salt mixtures  

SciTech Connect (OSTI)

Viscosity plays an important role in quantifying heat and mass transfer rates as depicted in theoretical and semi-empirical correlations. In practical problems where extreme temperatures and solute concentrations are encountered, viscosity data is usually unavailable. At these conditions, no dependable correlation appears to exist in the literature. This paper uses the hole type model to predict the viscosity of aqueous electrolytes containing single and mixed salts up to the molten salt regime. This model needs two parameters which can be evaluated from sparse data. For LiBr/water and (Li, K, na) NO{sub 3}/water mixtures, it is shown that the agreement between predicted and experimental values is very good over wide temperature and concentration ranges. The deviation between these two values was found to be less than 9%.

Zaltash, A.; Ally, M.R.

1992-12-01T23:59:59.000Z

98

Shear Viscosity of a Hot Pion Gas  

E-Print Network [OSTI]

The shear viscosity of an interacting pion gas is studied using the Kubo formalism as a microscopic description of thermal systems close to global equilibrium. We implement the skeleton expansion in order to approximate the retarded correlator of the viscous part of the energy-momentum tensor. After exploring this in $g\\phi^4$ theory we show how the skeleton expansion can be consistently applied to pions in chiral perturbation theory. The shear viscosity $\\eta$ is determined by the spectral width, or equivalently, the mean free path of pions in the heat bath. We derive a new analytical result for the mean free path which is well-conditioned for numerical evaluation and discuss the temperature and pion-mass dependence of the mean free path and the shear viscosity. The ratio $\\eta/s$ of the interacting pion gas exceeds the lower bound $1/4\\pi$ from AdS/CFT correspondence.

Robert Lang; Norbert Kaiser; Wolfram Weise

2012-09-04T23:59:59.000Z

99

Fundamental studies of fluid mechanics and stability in porous media  

SciTech Connect (OSTI)

This report summarizes accomplished and proposed work for the fundamental studies of fluid mechanics and stability in porous media. Topics discussed include: viscous fingering in miscible displacements; polymer flow interactions in free shear layers of viscoelastic fluids; effect of nonmonotonic viscosity profiles on the stability of miscible displacements in porous media; and references. (JL)

Homsy, G.M.

1991-08-01T23:59:59.000Z

100

Viscosity of a nanoconfined liquid during compression  

SciTech Connect (OSTI)

The viscous behavior of liquids under nanoconfinement is not well understood. Using a small-amplitude atomic force microscope, we found bulk-like viscosity in a nanoconfined, weakly interacting liquid. A further decrease in viscosity was observed at confinement sizes of a just few molecular layers. Overlaid over the continuum viscous behavior, we measured non-continuum stiffness and damping oscillations. The average stiffness of the confined liquid was found to scale linearly with the size of the confining tip, while the damping scales with the radius of curvature of the tip end.

Khan, Shah H. [Institute of Physics and Electronics, University of Peshawar, Peshawar 25120 (Pakistan); Kramkowski, Edward L.; Ochs, Peter J.; Wilson, David M.; Hoffmann, Peter M., E-mail: hoffmann@wayne.edu [Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201 (United States)

2014-01-13T23:59:59.000Z

Note: This page contains sample records for the topic "fluid viscosity increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Fluid varieties  

E-Print Network [OSTI]

We invent the notion of a derived and fluid variety. Fluid variety has no proper derived variety as its subvariety. We examine some properties of fluid and derived varieties. Examples of such varieties of bands are presented.

Ewa Graczynska; Dietmar Schweigert

2005-07-01T23:59:59.000Z

102

Models of magnetic-field evolution and effective viscosity in weakly collisional extragalactic plasmas  

E-Print Network [OSTI]

In weakly collisional extragalactic plasmas such as the intracluster medium, viscous stress and the rate of change of the magnetic-field strength are proportional to the local pressure anisotropy, so subject to constraints imposed by the pressure-anisotropy-driven mirror and firehose instabilities and controlled by the local instantaneous plasma beta. The dynamics of such plasmas is dramatically different from a conventional MHD fluid. The plasma is expected to stay locally in a marginal state with respect to the instabilities, but how it does this is an open question. Two models of magnetic-field evolution are investigated. In the first, marginality is achieved via suppression of the rate of change of the field. In the second, the instabilities give rise to anomalous collisionality, reducing pressure anisotropy to marginal - at the same time decreasing viscosity and so increasing the turbulent rate of strain. Implications of these models are studied in a simplified 0D setting. In the first model, the field grows explosively but on a time scale that scales with initial beta, while in the second, dynamical field strength can be reached in one large-scale turbulence turn-over time regardless of the initial seed. Both models produce very intermittent fields. Both also suffer from strong constraints on their applicability: for typical cluster-core conditions, scale separation between the fluid motions and the microscale fluctuations breaks down at beta~10^5-10^4. At larger beta (weaker fields), a fully collisionless plasma dynamo theory is needed in order to justify the growth of the field from a tiny primordial seed. However, the models discussed here are appropriate for studying the structure of the currently observed field as well as large-scale dynamics and thermodynamics of the magnetized ICM or similarly dilute astrophysical plasmas.

Federico Mogavero; Alexander A. Schekochihin

2014-03-04T23:59:59.000Z

103

Thermal Fluids  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Fluids The Thermal Fluids and Heat Transfer program works on thermal hydraulic reactor safety code development and experimental heat transferthermal hydraulics. The...

104

From Stopping to Viscosity in Nuclear Reactions  

SciTech Connect (OSTI)

Data on stopping in intermediate-energy central heavy-ion collisions are analyzed following transport theory based on the Boltzmann equation. In consequence, values of nuclear shear viscosity are inferred. The inferred values are significantly larger than obtained for free nucleon dispersion relations and free nucleon-nucleon cross sections.

Danielewicz, Pawel; Barker, Brent; Shi Lijun [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy Michigan State University, East Lansing, Michigan 48824 (United States)

2009-05-07T23:59:59.000Z

105

From Stopping to Viscosity in Nuclear Reactions  

E-Print Network [OSTI]

Data on stopping in intermediate-energy central heavy-ion collisions are analyzed following transport theory based on the Boltzmann equation. In consequence, values of nuclear shear viscosity are inferred. The inferred values are significantly larger than obtained for free nucleon dispersion relations and free nucleon-nucleon cross sections.

Danielewicz, P; Shi, L

2009-01-01T23:59:59.000Z

106

From Stopping to Viscosity in Nuclear Reactions  

E-Print Network [OSTI]

Data on stopping in intermediate-energy central heavy-ion collisions are analyzed following transport theory based on the Boltzmann equation. In consequence, values of nuclear shear viscosity are inferred. The inferred values are significantly larger than obtained for free nucleon dispersion relations and free nucleon-nucleon cross sections.

P. Danielewicz; B. Barker; L. Shi

2009-03-14T23:59:59.000Z

107

Effect of pulping conditions and black liquor composition on Newtonian viscosity of high solids kraft black liquors  

SciTech Connect (OSTI)

The influence of black liquor composition and solids concentrations on the Newtonian viscosity of slash pine black liquors over wide ranges of temperature (up to 140 C) and solids concentrations (between 50% and 83% solids) has been studied. It was found that the zero shear rate viscosity of high solids black liquors depends strongly on the cooking conditions and/or black liquor composition. Not only is high solids viscosity affected by lignin molecular weight and lignin concentration in the liquor but other organic and inorganic constituents of black liquor also make a significant contribution to viscosity. The dependency of zero shear rate viscosity on solids concentrations, and temperature is defined. The Newtonian viscosities vary over a wide range depending on temperature, solids concentrations and solids composition. The results indicate that, at fixed levels of effective alkali and sulfidity, the zero shear rate viscosities can be described as a function of both lignin concentration and lignin molecular weight. The viscosity of black liquor is an increasing function of the organics-to-inorganics ratio and is a decreasing function of the concentration of sodium and chloride ions and pH of the liquor.

Zaman, A.A.; Fricke, A.L. [Univ. of Florida, Gainesville, FL (United States). Dept. of Chemical Engineering] [Univ. of Florida, Gainesville, FL (United States). Dept. of Chemical Engineering

1996-02-01T23:59:59.000Z

108

Viscosities of natural gases at high pressures and high temperatures  

E-Print Network [OSTI]

Estimation of viscosities of naturally occurring petroleum gases provides the information needed to accurately work out reservoir-engineering problems. Existing models for viscosity prediction are limited by data, especially at high pressures...

Viswanathan, Anup

2007-09-17T23:59:59.000Z

109

Relation between viscosity and stability for heavy oil emulsions  

E-Print Network [OSTI]

The relation between viscosity and stability has been hics. found by investigating the effect of surfactant concentration on emulsion stability. Based on the Bingham plastic model for viscosity as a function of shear rate, two parameters were found...

Ye, Sherry Qianwen

1998-01-01T23:59:59.000Z

110

EFFECT OF GLASS COMPOSITION ON ACTIVATION ENERGY OF VISCOSITY...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3389-3399 (2008). 3. D. R. NEUVILLE, "Viscosity, structure and mixing in (Ca, Na) silicate melts," Chem. Geol., 229, 28 (2006). 4. P. HRMA, "High-temperature Viscosity of...

111

Under consideration for publication in J. Fluid Mech. 1 Splashing from drop impact into a deep  

E-Print Network [OSTI]

surrounding gases. We find that the splashing threshold depends on the gas's dynamic viscosity, but not its, and disintegrates into a spray of secondary droplets. Nonetheless, many basic details of this process remain obscure. Fezzaa and R. D. Deegan Fluid Viscosity Density Surface tension Drop Diameter (cp) (g/cm3 ) (dyne/cm) (cm

Deegan, Robert

112

Entropy production at freeze-out from dissipative fluids  

E-Print Network [OSTI]

Entropy production due to shear viscosity during the continuous freeze-out of a longitudinally expanding dissipative fluid is addressed. Assuming the validity of the fluid dynamical description during the continuous removal of interacting matter we estimated a small entropy production as function of the freeze-out duration and the ratio of dissipative to non-dissipative quantities in case of a relativistic massless pion fluid.

E. Molnar

2007-09-17T23:59:59.000Z

113

Simple concept predicts viscosity of heavy oil and bitumen  

SciTech Connect (OSTI)

For in situ recovery, a correlation has been developed for predicting the viscosity of bitumen and heavy oil. The correlation requires only a single viscosity measurement. The derived viscosities show an overall average absolute deviation of 4.4% from experimental data for 18 sets of Alberta heavy oil and bitumen containing 175 measurements. The paper describes the equations, their accuracy in determining viscosity, and an example from the Alberta deposits.

Puttagunta, V.R.; Miadonye, A.; Singh, B. (Lakehead Univ., Thunder Bay, Ontario (Canada))

1993-03-01T23:59:59.000Z

114

Identification of an average temperature and a dynamical pressure in a multitemperature mixture of fluids  

E-Print Network [OSTI]

Identification of an average temperature and a dynamical pressure in a multitemperature mixture pressure even if the fluids have a zero bulk viscosity. The nonequilib- rium dynamical pressure can

Boyer, Edmond

115

A Semi-Lagrangian approach for dilute non-collisional fluid-particle flows  

E-Print Network [OSTI]

sprays [3, 4, 30, 52], environmental studies on pollutant transport [28, 54, 55, 58, 65], the formation viscosity of the fluid, and d the mass per unit volume of the droplets (see [19] and the references therein

Goudon, Thierry

116

Black liquor viscosity reduction through salt additives: A novel environmentally benign processing alternative  

SciTech Connect (OSTI)

Processing black liquor at high solids would reduce SO{sub x} emissions, facilitate the use of non-chlorine bleaching techniques and enhance the energy efficiency of the pulping process. However, black liquor exhibits and exponential increase in viscosity as its solids content rises, thus hindering its processability in the composition range of interest (>70% solids). In this study, we present a new approach for controlling viscosity at high solids content by {open_quotes}salting in{close_quotes} black liquor through addition of thiocyanate salts. These salts increases the solubility of the polymer constituents in black liquor leading to a decrease in its viscosity. Several salts capable of viscosity reduction by as much as two orders of magnitude have been identified. The effects of cation size, solution pH and temperature on viscosity reduction is presented and interpreted in terms of the underlying principles of {open_quotes}salting in{close_quotes} and how it affects aqueous solution structure.

Roberts, J.E.; Khan, S.A.; Spontak, R.J. [North Carolina State Univ., Raleigh, NC (United States)

1996-10-01T23:59:59.000Z

117

Disposal of drilling fluids  

SciTech Connect (OSTI)

Prior to 1974 the disposal of drilling fluids was not considered to be much of an environmental problem. In the past, disposal of drilling fluids was accomplished in various ways such as spreading on oil field lease roads to stabilize the road surface and control dust, spreading in the base of depressions of sandy land areas to increase water retention, and leaving the fluid in the reserve pit to be covered on closure of the pit. In recent years, some states have become concerned over the indescriminate dumping of drilling fluids into pits or unauthorized locations and have developed specific regulations to alleviate the perceived deterioration of environmental and groundwater quality from uncontrolled disposal practices. The disposal of drilling fluids in Kansas is discussed along with a newer method or treatment in drilling fluid disposal.

Bryson, W.R.

1983-06-01T23:59:59.000Z

118

Miscibility, solubility, viscosity, and density measurements for R-236fa with potential lubricants. Final report  

SciTech Connect (OSTI)

The report gives results of miscibility, solubility, viscosity, and density measurements for refrigerant R-236fa and two potential lubricants. (The data are needed to determine the suitability of refrigerant/lubricant combinations for use in refrigeration systems.) The tested oils were pentaerythritol ester mixed-acid (ISO68), hereafter SW-68 manufactured by Castrol, and polyol ester mixed-acid (ISO46), hereafter Arctic-46 manufactured by Mobil. Miscibility was measured in a series of miniature test cells submerged in a constant temperature bath, precisely controlled over a temperature range of -50 to 90 C. Solubility, viscosity, and density data were also obtained for R-236fa mixed with the two oils for a refrigerant concentration of 0 to 40 wt % refrigerant over a temperature range of 30 to 100 C. This research shows that: (1) solubility, viscosity, and density are functions of temperature and concentration, (2) solubility increases with increasing temperature and refrigerant concentration (i.e., mass fraction of refrigerant). (3) viscosity decreases with increasing temperature and refrigerant concentration, and (4) density decreases with increasing temperature but increases with increasing refrigerant concentration. R-114 and naphthenic mineral oil were also tested.

Kang, H.M.; Pate, M.B.

1999-02-01T23:59:59.000Z

119

Ternary liquid mixture viscosities and densities  

SciTech Connect (OSTI)

Liquid mixture viscosities and densities have been measured at 298.15 K and ambient pressure for 20 ternary systems. Twelve ternary compositions, encompassing the entire composition range, have been chosen for each system in an effort to test a newly proposed predictive equation based on local compositions. Viscosities calculated by using the local composition model agreed with the experimental data within an average absolute deviation of 6.4%. No adjustable parameters were used and only binary interactions in the form of NRTL constants were input. The results of these studies indicate that the local composition model predictions are generally as good for multicomponent systems as they are for the corresponding binaries. 24 references, 3 tables.

Wei, I.C.; Rowley, R.L.

1984-01-01T23:59:59.000Z

120

Low-frequency fluid waves in fractures and pipes  

SciTech Connect (OSTI)

Low-frequency analytical solutions have been obtained for phase velocities of symmetrical fluid waves within both an infinite fracture and a pipe filled with a viscous fluid. Three different fluid wave regimes can exist in such objects, depending on the various combinations of parameters, such as fluid density, fluid viscosity, walls shear modulus, channel thickness, and frequency. Equations for velocities of all these regimes have explicit forms and are verified by comparisons with the exact solutions. The dominant role of fractures in rock permeability at field scales and the strong amplitude and frequency effects of Stoneley guided waves suggest the importance of including these wave effects into poroelastic theories.

Korneev, Valeri

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "fluid viscosity increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

RELAP-7 Numerical Stabilization: Entropy Viscosity Method  

SciTech Connect (OSTI)

The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The code is based on the INL's modern scientific software development framework, MOOSE (Multi-Physics Object Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5's capability and extends the analysis capability for all reactor system simulation scenarios. RELAP-7 utilizes a single phase and a novel seven-equation two-phase flow models as described in the RELAP-7 Theory Manual (INL/EXT-14-31366). The basic equation systems are hyperbolic, which generally require some type of stabilization (or artificial viscosity) to capture nonlinear discontinuities and to suppress advection-caused oscillations. This report documents one of the available options for this stabilization in RELAP-7 -- a new and novel approach known as the entropy viscosity method. Because the code is an ongoing development effort in which the physical sub models, numerics, and coding are evolving, so too must the specific details of the entropy viscosity stabilization method. Here the fundamentals of the method in their current state are presented.

R. A. Berry; M. O. Delchini; J. Ragusa

2014-06-01T23:59:59.000Z

122

New barrier fluids for subsurface containment of contaminants  

SciTech Connect (OSTI)

In some situations, containment of contaminants in the subsurface may be preferable to removal or treatment in situ. In these cases, it maybe possible to form barriers by injecting fluids (grouts) that set in place and reduce the formation permeability. This paper reports laboratory work to develop two types of fluids for this application: colloidal silica (CS) and polysiloxane (PSX). Falling-head permeameter tests of grouted Hanford sand, lasting 50 days, showed hydraulic conductivities of order 10{sup -7} cm/sec for these two materials. Low initial viscosity of the grout is necessary to permit injection without causing fracturing or surface uplift. Experiments with crosslinked polysiloxanes showed that they could be diluted to achieve adequately low viscosity without losing their ability to cure. Control of the gel time is important for grout emplacement. Gel time of CS grouts increased with increasing pH (above 6.5) and with decreasing ionic strength. Salt solutions were added to the colloid-to increase the ionic strength and control gel time. When injected into Hanford sand, the CS grout gelled much more quickly than the same formula without sand. This effect results from salinity that is present in pore water and from multi-valent ions that are desorbed from clays and ion-exchanged for mono-valent ions in the grout. Ion-exchange experiments showed that most of the multi-valent ions could be removed-by flushing the sand with 15 PV of 4% NaCl and sand treated in this manner did not accelerate the gelling of the grout. When grout is injected into unsaturated soil it slumps, leaving the soil only partially saturated and achieving less permeability reduction upon gelling. Multiple injections of CS grout in 1-D sand columns demonstrated that by accumulating the residual gelled grout saturations from several injections, low permeability can be achieved.

Moridis, G.J.; Persoff, P.; Holman, H.Y.; Muller, S.J.; Pruess, K.; Radke, C.J.

1993-10-01T23:59:59.000Z

123

The Role of Viscosity in TATB Hot Spot Ignition  

SciTech Connect (OSTI)

The role of dissipative effects, such as viscosity, in the ignition of high explosive pores is investigated using a coupled chemical, thermal, and hydrodynamic model. Chemical reactions are tracked with the Cheetah thermochemical code coupled to the ALE3D hydrodynamic code. We perform molecular dynamics simulations to determine the viscosity of liquid TATB. We also analyze shock wave experiments to obtain an estimate for the shock viscosity of TATB. Using the lower bound liquid-like viscosities, we find that the pore collapse is hydrodynamic in nature. Using the upper bound viscosity from shock wave experiments, we find that the pore collapse is closest to the viscous limit.

Fried, L E; Zepeda-Ruis, L; Howard, W M; Najjar, F; Reaugh, J E

2011-08-02T23:59:59.000Z

124

Cosmological perturbations for imperfect fluids  

E-Print Network [OSTI]

Interacting fluids, endowed with bulk viscous stresses, are discussed in a unified perspective with the aim of generalizing the treatment of cosmological perturbation theory to the case where both fluctuating decay rates and fluctuating bulk viscosity coefficients are simultaneously present in the relativistic plasma. A gauge-invariant treatment of the qualitatively new phenomena arising in this context is provided. In a complementary approach, faithful gauge-fixed descriptions of the gravitational and hydrodynamical fluctuations are developed and exploited. To deepen the interplay between bulk viscous stresses and fluctuating decay rates, illustrative examples are proposed and discussed both analytically and numerically. Particular attention is paid to the coupled evolution of curvature and entropy fluctuations when, in the relativistic plasma, at least one of the interacting fluids possesses a fluctuating bulk viscosity coefficient. It is argued that this class of models may be usefully employed as an effective description of the decay of the inflaton as well as of other phenomena involving imperfect relativistic fluids.

Massimo Giovannini

2005-11-11T23:59:59.000Z

125

Holographic Fluids with Vorticity and Analogue Gravity  

E-Print Network [OSTI]

We study holographic three-dimensional fluids with vorticity in local equilibrium and discuss their relevance to analogue gravity systems. The Fefferman-Graham expansion leads to the fluid's description in terms of a comoving and rotating Papapetrou-Randers frame. A suitable Lorentz transformation brings the fluid to the non-inertial Zermelo frame, which clarifies its interpretation as moving media for light/sound propagation. We apply our general results to the Lorentzian Kerr-AdS_4 and Taub-NUT-AdS_4 geometries that describe fluids in cyclonic and vortex flows respectively. In the latter case we associate the appearance of closed timelike curves to analogue optical horizons. In addition, we derive the classical rotational Hall viscosity of three-dimensional fluids with vorticity. Our formula remarkably resembles the corresponding result in magnetized plasmas.

Robert G. Leigh; Anastasios C. Petkou; P. Marios Petropoulos

2012-05-28T23:59:59.000Z

126

Pumping viscoelastic two-fluid media  

E-Print Network [OSTI]

Using a two-fluid model for viscoelastic polymer solutions, we study analytically fluid transport driven by a transverse, small amplitude traveling wave propagation. The pumping flow far from the waving boundary is shown to be strongly wave number and viscosity dependent, in contrast to a viscous Newtonian fluid. We find the two qualitatively different regimes: In one regime relevant to small wave numbers, the fluidic transport is almost the same as the Newtonian case, and uniform viscoelastic constitutive equations provide a good approximation. In the other regime, the pumping is substantially decreased because of the gel-like character. The boundary separating these two regimes is clarified. Our results suggest possible needs of two-fluid descriptions for the transport and locomotion in biological fluids with cilia and flagella.

Hirofumi Wada

2010-04-08T23:59:59.000Z

127

Bound for entropy and viscosity ratio for strange quark matter  

E-Print Network [OSTI]

High energy density ($\\eps$) and temperature (T) links general relativity and hydrodynamics leading to a lower bound for the ratio of shear viscosity ($\\eta$) and entropy density ($s$). We get the interesting result that the bound is saturated in the simple model for quark matter that we use for strange stars at the surface for $T \\sim 80 MeV$. At this $T$ we have the possibility of cosmic separation of phases. At the surface of the star where the pressure is zero - the density $\\eps$ has a fixed value for all stars of various masses with correspondingly varying central energy density $\\eps_c$. Inside the star where this density is higher, the ratio of $\\eta/s$ is larger and are like the known results found for perturbative QCD. This serves as a check of our calculation. The deconfined quarks at the surface of the strange star at $T = 80 MeV$ seem to constitute the most perfect interacting fluid permitted by nature.

Manjari Bagchi; Jishnu Dey; Mira Dey; Taparati Gangopadhyay; Sibasish Laha; Subharthi Ray; Monika Sinha

2008-07-03T23:59:59.000Z

128

Transport in non-conformal holographic fluids  

E-Print Network [OSTI]

We have considered non-conformal fluid dynamics whose gravity dual is a certain Einstein dilaton system with Liouville type dilaton potential, characterized by an intrinsic parameter $\\eta$. We have discussed the Hawking-Page transition in this framework using hard-wall model and it turns out that the critical temperature of the Hawking-Page transition encapsulates a non-trivial dependence on $\\eta$. We also obtained transport coefficients such as AC conductivity, shear viscosity and diffusion constant in the hydrodynamic limit, which show non-trivial $\\eta$ dependent deviations from those in conformal fluids, although the ratio of the shear viscosity to entropy density is found to saturate the universal bound. Some of the retarded correlators are also computed in the high frequency limit for case study.

Shailesh Kulkarni; Bum-Hoon Lee; Jae-Hyuk Oh; Chanyong Park; Raju Roychowdhury

2013-03-06T23:59:59.000Z

129

Torsional Response and Dissipationless Viscosity in Topological Insulators  

E-Print Network [OSTI]

We consider the visco-elastic response of the electronic degrees of freedom in 2D and 3D topological insulators (TI). Our primary focus is on the 2D Chern insulator which exhibits a bulk dissipationless viscosity analogous to the quantum Hall viscosity predicted in integer and fractional quantum Hall states. We show that the dissipationless viscosity is the response of a TI to torsional deformations of the underlying lattice geometry. The visco-elastic response also indicates that crystal dislocations in Chern insulators will carry momentum density. We briefly discuss generalizations to 3D which imply that time-reversal invariant TI's will exhibit a quantum Hall viscosity on their surfaces.

Taylor L. Hughes; Robert G. Leigh; Eduardo Fradkin

2011-01-18T23:59:59.000Z

130

Effect of bulk viscosity in low density, hypersonic blunt body flows  

SciTech Connect (OSTI)

A computational fluids dynamics scheme is presented to solve the unsteady Thin-Layer Navier-Stokes (TLNS) equations over a blunt body at high altitude, high Mach number atmospheric reentry flow conditions. This continuum approach is directed to low density hypersonic flows by accounting for non-zero bulk viscosity effects in near frozen flow conditions. The TLNS equations are solved over an axisymmetric body at zero incidence relative to the free stream. The time dependent axisymmetric governing equations are transformed into a computational plane, then cast into weak conservative form and solved using a first-order fully implicit scheme in time with second-order flux vector splitting for spatial derivatives. The physical domain is defined over representative sphere and sphere/cone geometries using a body-fitted clustered algebraic grid within a fixed domain (i.e., shock capturing). At the present time, nonequilibrium thermo-chemistry effects are not modeled. Catalytic wall, ionization and radiation effects are also excluded from the current analysis. However, the significant difference from previous studies is the inclusion of the capability to model non-zero bulk viscosity effects. The importance of bulk viscosity is reviewed and blunt body flow field solutions are presented to illustrate the potential contribution of this phenomena at high altitude hypersonic conditions. The current technique is compared with experimental data and other approximate continuum solutions. A variety of test cases are also presented for a wide range of free stream Mach conditions. 18 refs., 42 figs.

Rutledge, W.H. (Sandia National Labs., Albuquerque, NM (USA)); Hoffmann, K.A. (Texas Univ., Austin, TX (USA))

1991-01-01T23:59:59.000Z

131

Coalescence of bubbles and drops in an outer fluid  

E-Print Network [OSTI]

When two liquid drops touch, a microscopic connecting liquid bridge forms and rapidly grows as the two drops merge into one. Whereas coalescence has been thoroughly studied when drops coalesce in vacuum or air, many important situations involve coalescence in a dense surrounding fluid, such as oil coalescence in brine. Here we study the merging of gas bubbles and liquid drops in an external fluid. Our data indicate that the flows occur over much larger length scales in the outer fluid than inside the drops themselves. Thus we find that the asymptotic early regime is always dominated by the viscosity of the drops, independent of the external fluid. A phase diagram showing the crossovers into the different possible late-time dynamics identifies a dimensionless number that signifies when the external viscosity can be important.

Joseph D. Paulsen; Rémi Carmigniani; Anerudh Kannan; Justin C. Burton; Sidney R. Nagel

2014-07-24T23:59:59.000Z

132

Sensor for viscosity and shear strength measurement  

SciTech Connect (OSTI)

Measurement of the physical properties (viscosity and density) of waste slurries is critical in evaluating transport parameters to ensure turbulent flow through transport pipes. The environment for measurement and sensor exposure is extremely harsh; therefore, reliability and ruggedness are critical in the sensor design. Two different viscometer techniques are being investigated in this study, based on: magnetostrictive pulse generated acoustic waves; and an oscillating cylinder. Prototype sensors have been built and tested which are based on both techniques. A base capability instrumentation system has been designed, constructed, and tested which incorporates both of these sensors. It requires manual data acquisition and off-line calculation. A broad range of viscous media has been tested using this system. Extensive test results appear in this report. The concept for each technique has been validated by these test results. This base capability system will need to be refined further before it is appropriate for field tests. The mass of the oscillating system structure will need to be reduced. A robust acoustic probe assembly will need to be developed. In addition, in March 1997 it was made known for the first time that the requirement was for a deliverable automated viscosity instrumentation system. Since then such a system has been designed, and the hardware has been constructed so that the automated concept can be proved. The rest of the hardware, which interfaced to a computer, has also been constructed and tested as far as possible. However, for both techniques the computer software for automated data acquisition, calculation, and logging had not been completed before funding and time ran out.

Ebadian, M.A.; Dillion, J.; Moore, J.; Jones, K.

1998-01-01T23:59:59.000Z

133

Viscosity of ?-pinene secondary organic material and implications for particle growth and reactivity  

SciTech Connect (OSTI)

Particles composed of secondary organic material (SOM) are abundant in the lower troposphere and play important roles in climate, air quality, and health. The viscosity of these particles is a fundamental property that is presently poorly quantified for conditions relevant to the lower troposphere. Using two new techniques, namely a bead-mobility technique and a poke-flow technique, in conjunction with simulations of fluid flow, we measure the viscosity of the watersoluble component of SOM produced by ?-pinene ozonolysis. The viscosity is comparable to that of honey at 90% relative humidity (RH), comparable to that of peanut butter at 70% RH and greater than or comparable to that of bitumen for ? 30% RH, implying that the studied SOM ranges from liquid to semisolid/solid at ambient relative humidities. With the Stokes-Einstein relation, the measured viscosities further imply that the growth and evaporation of SOM by the exchange of organic molecules between the gas and condensed phases may be confined to the surface region when RH ? 30%, suggesting the importance of an adsorption-type mechanism for partitioning in this regime. By comparison, for RH ? 70% partitioning of organic molecules may effectively occur by an absorption mechanism throughout the bulk of the particle. Finally, the net uptake rates of semi-reactive atmospheric oxidants such as O3 are expected to decrease by two to five orders of magnitude for a change in RH from 90% to ? 30% RH, with possible implications for the rates of chemical aging of SOM particles in the atmosphere.

Renbaum-Wolff, Lindsay; Grayson, James W.; Bateman, Adam P.; Kuwata, Mikinori; Sellier, Mathieu; Murray, Benjamin J.; Shilling, John E.; Martin, Scot T.; Bertram, Allan K.

2013-05-14T23:59:59.000Z

134

Fluid-Rock Characterization and Interactions in NMR Well Logging  

SciTech Connect (OSTI)

The objective of this project was to characterize the fluid properties and fluid-rock interactions which are needed for formation evaluation by NMR well logging. NMR well logging is finding wide use in formation evaluation. The formation parameters commonly estimated were porosity, permeability, and capillary bound water. Special cases include estimation of oil viscosity, residual oil saturation, location of oil/water contact, and interpretation on whether the hydrocarbon is oil or gas.

Hirasaki, George J.; Mohanty, Kishore K.

2003-02-10T23:59:59.000Z

135

The influence of fluid properties on the success of hydraulic fracturing operations  

SciTech Connect (OSTI)

Hydroxypropylguar based fluids are the most commonly used fluids for hydraulic fracturing. Through the addition of borate ions the polymer present in the fluid can crosslink to form a high viscosity gel. Prior to placement in the fracture the fluid is required to have a low viscosity to minimize friction losses in the tubular goods. A high viscosity fluid is required in the fracture for several reasons, primarily to suspend the proppant and to minimize fluid loss into the formation. This paper describes a new method which can be used to model the gelation reaction of crosslinking fluids. By modeling the dynamic properties of the fluid it is possible to predict the physical state of the fluid at any time during a fracturing treatment. Small amplitude oscillatory measurements are applied to fluid samples in a cone-and-plate geometry. The change in the dynamic properties with time can be fitted to a simple model which can then be used to determine the gel time for the fluid. Methods used to distinguish between the liquid and gel state are also discussed.

Power, D.J.; Boger, D.V. [Univ. of Melbourne, Victoria (Australia); Paterson, L.

1994-12-31T23:59:59.000Z

136

Fluid Dynamics in Sucker Rod Pumps  

SciTech Connect (OSTI)

Sucker rod pumps are installed in approximately 90% of all oil wells in the U.S. Although they have been widely used for decades, there are many issues regarding the fluid dynamics of the pump that have not been fully investigated. A project was conducted at Sandia National Laboratories to develop unimproved understanding of the fluid dynamics inside a sucker rod pump. A mathematical flow model was developed to predict pressures in any pump component or an entire pump under single-phase fluid and pumping conditions. Laboratory flow tests were conducted on instrumented individual pump components and on a complete pump to verify and refine the model. The mathematical model was then converted to a Visual Basic program to allow easy input of fluid, geometry and pump parameters and to generate output plots. Examples of issues affecting pump performance investigated with the model include the effects of viscosity, surface roughness, valve design details, plunger and valve pressure differentials, and pumping rate.

Cutler, R.P.; Mansure, A.J.

1999-01-14T23:59:59.000Z

137

Statistical Estimation of Fluid Flow Fields Johnny Chang David Edwards Yizhou Yu  

E-Print Network [OSTI]

their motion fields. 1 Introduction Dynamic fluids, such as rivers, ocean waves, moving clouds, smoke and fires (4) where is the kinematic viscosity of the fluid, is its den- sity and f is an external force scale. A good ex- ample is the changing surface geometry of a water surface. This is because the self

Yu, Yizhou

138

Fundamental studies of fluid mechanics and stability in porous media. Progress report  

SciTech Connect (OSTI)

This report summarizes accomplished and proposed work for the fundamental studies of fluid mechanics and stability in porous media. Topics discussed include: viscous fingering in miscible displacements; polymer flow interactions in free shear layers of viscoelastic fluids; effect of nonmonotonic viscosity profiles on the stability of miscible displacements in porous media; and references. (JL)

Homsy, G.M.

1991-08-01T23:59:59.000Z

139

Pulsatile flow of a chemically-reacting non-linear fluid  

E-Print Network [OSTI]

of such fluids could change because of the chemical reactions and the flow. Here, I investigate the pulsatile flow of a chemically-reacting fluid whose viscosity depends on the concentration of a species (constituent) that is governed by a convection...

Bridges, Ronald Craig, II

2007-09-17T23:59:59.000Z

140

Global existence for the primitive equations with small anisotropic viscosity  

E-Print Network [OSTI]

diffusivity, and the horizontal viscosity and horizontal thermal diffusivity of size where 0 and no vertical thermal diffusivity and we also suppose that the horizontal viscosity and thermal diffusivity go , Van-Sang Ngo R´esum´e: Dans cet article, nous consid´erons le syst`eme des ´equations prim- itives

Charve, Frédéric

Note: This page contains sample records for the topic "fluid viscosity increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

EddyViscosity Time Reversing Waves a Dissipative Environment  

E-Print Network [OSTI]

where linear shallow water speed is given o o . The kinematic viscosity denoted parameter ratio been shown [6] nonlinear (inviscid) shallow water waves pres­ ence a random topography and alsoEddyViscosity Time Reversing Waves a Dissipative Environment Josselin Garnier Laboratoire

Garnier, Josselin

142

1 Visco-plastic rheology 1.1 Effective viscosity  

E-Print Network [OSTI]

1 Visco-plastic rheology 1.1 Effective viscosity Rheology specifies the relationship between viscosity eff, = 2eff , (2) which includes viscous and plastic components, 1 eff = 1 visc + 1 plast . (3) Also the strain rate tensor can be split into viscous and plastic part, = visc + plast , (4) where

Cerveny, Vlastislav

143

Hybrid viscosity and the magnetoviscous instability in hot, collisionless accretion disks  

E-Print Network [OSTI]

We aim to illustrate the role of hot protons in enhancing the magnetorotational instability (MRI) via the ``hybrid'' viscosity, which is due to the redirection of protons interacting with static magnetic field perturbations, and to establish that it is the only relevant mechanism in this situation. It has recently been shown by Balbus \\cite{PBM1} and Islam & Balbus \\cite{PBM11} using a fluid approach that viscous momentum transport is key to the development of the MRI in accretion disks for a wide range of parameters. However, their results do not apply in hot, advection-dominated disks, which are collisionless. We develop a fluid picture using the hybrid viscosity mechanism, that applies in the collisionless limit. We demonstrate that viscous effects arising from this mechanism can significantly enhance the growth of the MRI as long as the plasma $\\beta \\gapprox 80$. Our results facilitate for the first time a direct comparison between the MHD and quasi-kinetic treatments of the magnetoviscous instability in hot, collisionless disks.

Prasad Subramanian; Peter A. Becker; Menas Kafatos

2008-02-25T23:59:59.000Z

144

Surface tension in a reactive binary mixture of incompressible fluids  

E-Print Network [OSTI]

Surface tension in a reactive binary mixture of incompressible fluids Henning Struchtrup Institute with a distributed form of surface tension. The model describes chemistry, diffusion, viscosity and heat transfer tension at the front. Keywords: Binary mixtures, Surface tension, Irreversible thermodynamics, Hele

Struchtrup, Henning

145

Fluid-fluid versus fluid-solid demixing in mixtures of parallel hard hypercubes  

E-Print Network [OSTI]

It is well known that the increase of the spatial dimensionality enhances the fluid-fluid demixing of a binary mixture of hard hyperspheres, i.e. the demixing occurs for lower mixture size asymmetry as compared to the three-dimensional case. However, according to simulations, in the latter dimension the fluid-fluid demixing is metastable with respect to the fluid-solid transition. According to the results obtained from approximations to the equation of state of hard hyperspheres in higher dimensions, the fluid-fluid demixing might becomes stable for high enough dimension. However, this conclusion is rather speculative since none of the above works have taken into account the stability of the crystalline phase (nor by a minimization of a given density functional, neither spinodal calculations or MC simulations). Of course, the lack of results is justified by the difficulty for performing density functional calculations or simulations in high dimensions and, in particular, for highly asymmetric binary mixtures. In the present work, we will take advantage of a well tested theoretical tool, namely the fundamental measure density functional theory for parallel hard hypercubes (in the continuum and in the hypercubic lattice). With this, we have calculated the fluid-fluid and fluid-solid spinodals for different spatial dimensions. We have obtained, no matter of the dimensionality, the mixture size asymmetry nor the polydispersity (included as a bimodal distribution function centered around the asymmetric edge-lengths), that the fluid-fluid critical point is always located above the fluid-solid spinodal. In conclusion, these results point to the existence of demixing between at least one solid phase rich in large particles and one fluid phase rich in small ones, preempting a fluid-fluid demixing, independently of the spatial dimension or the polydispersity.

Luis Lafuente; Yuri Martinez-Raton

2011-02-08T23:59:59.000Z

146

Fluid dynamics of dilatant fluid  

E-Print Network [OSTI]

Dense mixture of granules and liquid often shows a sever shear thickening and is called a dilatant fluid. We construct a fluid dynamics model for the dilatant fluid by introducing a phenomenological state variable for a local state of dispersed particles. With simple assumptions for an equation of the state variable, we demonstrate that the model can describe basic features of the dilatant fluid such as the stress-shear rate curve that represents discontinuous severe shear thickening, hysteresis upon changing shear rate, instantaneous hardening upon external impact. Analysis of the model reveals that the shear thickening fluid shows an instability in a shear flow for some regime and exhibits {\\it the shear thickening oscillation}, i.e. the oscillatory shear flow alternating between the thickened and the relaxed states. Results of numerical simulations are presented for one and two-dimensional systems.

Hiizu Nakanishi; Shin-ichiro Nagahiro; Namiko Mitarai

2011-12-20T23:59:59.000Z

147

Fluid inflation  

SciTech Connect (OSTI)

In this work we present an inflationary mechanism based on fluid dynamics. Starting with the action for a single barotropic perfect fluid, we outline the procedure to calculate the power spectrum and the bispectrum of the curvature perturbation. It is shown that a perfect barotropic fluid naturally gives rise to a non-attractor inflationary universe in which the curvature perturbation is not frozen on super-horizon scales. We show that a scale-invariant power spectrum can be obtained with the local non-Gaussianity parameter f{sub NL} = 5/2.

Chen, X. [Centre for Theoretical Cosmology, DAMTP, University of Cambridge, Cambridge CB3 0WA (United Kingdom); Firouzjahi, H. [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Namjoo, M.H. [School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Sasaki, M., E-mail: x.chen@damtp.cam.ac.uk, E-mail: firouz@ipm.ir, E-mail: mh.namjoo@ipm.ir, E-mail: misao@yukawa.kyoto-u.ac.jp [Yukawa Institute for theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

2013-09-01T23:59:59.000Z

148

Exploratory Characterization of a Perfluoropolyether Oil as a Possible Viscosity Standard at Deepwater Production Conditions of 533 K and 241 MPa  

SciTech Connect (OSTI)

DuPont’s perfluoropolyether oil Krytox® GPL 102 is a promising candidate for the high-temperature, high-pressure Deepwater viscosity standard (DVS). The preferred DVS is a thermally stable liquid that exhibits a viscosity of roughly 20 mPa?s at 533 K and 241 MPa; a viscosity value representative of light oils found in ultra-deep formations beneath the deep waters of the Gulf of Mexico. A windowed rolling-ball viscometer designed by our team is used to determine the Krytox® GPL 102 viscosity at pressures to 245 MPa and temperatures of 311 K, 372 K, and 533 K. At 533 K and 243 MPa, the Krytox® GPL 102 viscosity is (27.2±1.3)mPa?s . The rolling-ball viscometer viscosity results for Krytox® GPL 102 are correlated with an empirical 10-parameter surface fitting function that yields an MAPD of 3.9 %. A Couette rheometer is also used to measure the Krytox® GPL 102 viscosity, yielding a value of (26.2±1)mPa?s at 533 K and 241 MPa. The results of this exploratory study suggest that Krytox® GPL 102 is a promising candidate for the DVS, primarily because this fluoroether oil is thermally stable and exhibits a viscosity closer to the targeted value of 20 mPa ? s at 533 K and 241 MPa than any other fluid reported to date. Nonetheless, further studies must be conducted by other researcher groups using various types of viscometers and rheometers on samples of Krytox GPL® 102 from the same lot to further establish the properties of Krytox GPL® 102.

Baled, Hseen O.; Tapriyal, Deepak; Morreale, Bryan D.; Soong, Yee; Gamwo, Isaac; Krukonis, Val; Bamgbade, Babatunde A.; Wu, Yue; McHugh, Mark A.; Burgess, Ward A.; M Enick, Robert M.

2013-10-01T23:59:59.000Z

149

Noncommutative Fluids  

E-Print Network [OSTI]

We review the connection between noncommutative gauge theory, matrix models and fluid mechanical systems. The noncommutative Chern-Simons description of the quantum Hall effect and bosonization of collective fermion states are used as specific examples.

Alexios P. Polychronakos

2007-06-27T23:59:59.000Z

150

A Brief Review of Viscosity Models for Slag in Coal Gasification  

SciTech Connect (OSTI)

Many researchers have defined the phenomenon of 'slagging' as the deposition of ash in the radiative section of a boiler, while 'fouling' refers to the deposition of ash in the convective-pass region. Among the important parameters affecting ash deposition that need to be studied are ash chemistry, its transport, deposit growth, and strength development; removability of the ash deposit; heat transfer mechanisms; and the mode of operation for boilers. The heat transfer at the walls of a combustor depends on many parameters including ash deposition. This depends on the processes or parameters controlling the impact efficiency and the sticking efficiency. For a slagging combustor or furnace, however, the temperatures are so high that much of the coal particles are melted and the molten layer, in turn, captures more particles as it flows. The main problems with ash deposition are reduced heat transfer in the boiler and corrosion of the tubes. Common ways of dealing with these issues are soot blowing and wall blowing on a routine basis; however, unexpected or uncontrolled depositions can also complicate the situation, and there are always locations inaccessible to the use of such techniques. Studies have indicated that slag viscosity must be within a certain range of temperatures for tapping and the membrane wall to be accessible, for example, between 1300 C and 1500 C, the viscosity is approximately 25 Pa {center_dot} s. As the operating temperature decreases, the slag cools and solid crystals begin to form. In such cases the slag should be regarded as a non-Newtonian suspension, consisting of liquid silicate and crystals. A better understanding of the rheological properties of the slag, such as yield stress and shear-thinning, are critical in determining the optimum operating conditions. To develop an accurate heat transfer model in any type of coal combustion or gasification process, the heat transfer and to some extent the rheological properties of ash and slag, especially in high-temperature environments need to be understood and properly modeled. The viscosity of slag and the thermal conductivity of ash deposits are among two of the most important constitutive parameters that need to be studied. The accurate formulation or representations of the (transport) properties of coal (and biomass for co-firing cases) present a special challenge of modeling efforts in computational fluid dynamics applications. In this report, we first provide a brief review of the various approaches taken by different researchers in formulating or obtaining a slag viscosity model. In general, these models are based on experiments. Since slag behaves as a non-linear fluid, we discuss the constitutive modeling of slag and the important parameters that must be studied.

Massoudi, Mehrdad; Wang, Ping

2011-11-01T23:59:59.000Z

151

J. Fluid Mech. (2009), vol. 626, pp. 211240. c 2009 Cambridge University Press doi:10.1017/S0022112009005795 Printed in the United Kingdom  

E-Print Network [OSTI]

geometries. Particular attention is given to the influence of the fluid viscosity on the evolution of the sheet and its bounding rim. In both geometries, after a transient that depends on the sheet viscosity rupture can be either desirable, as in spray formation (e.g. Pomeau & Villermaux 2006), or undesirable

Bush, John W.M.

152

Collision of viscoelastic jets and the formation of fluid webs Erik Miller, Beau Gibson, Erik McWilliams, and Jonathan P. Rothsteina  

E-Print Network [OSTI]

and industrial applications such as agrochemical spraying, spray coating, and ink jet printing, little work has by the extensional viscosity, E, and the surface tension, , of the fluid. For polymeric or worm-like micelle solutions, the shear and extensional viscosities can be strong functions of the flow kinematics, the rate

Rothstein, Jonathan

153

Bulk Viscosity driven clusterization of quark-gluon plasma and early freeze-out in relativistic heavy-ion collisions  

E-Print Network [OSTI]

We introduce a new scenario for heavy ion collisions that could solve the lingering problems associated with the so-called HBT puzzle. We postulate that the system starts expansion as the perfect quark-gluon fluid but close to freeze-out it splits into clusters, due to a sharp rise of bulk viscosity in the vicinity of the hadronization transition. We then argue that the characteristic cluster size is determined by the viscosity coefficient and the expansion rate. Typically it is much smaller and independent of the total system volume. These clusters maintain the pre-existing outward-going flow, as a spray of droplets, but develop no flow of their own, and hadronize by evaporation. We provide an ansatz for converting the hydrodynamic output into clusters.

Giorgio Torrieri; Boris Tomasik; Igor Mishustin

2008-02-26T23:59:59.000Z

154

Bulk Viscosity driven clusterization of quark-gluon plasma and early freeze-out in relativistic heavy-ion collisions  

E-Print Network [OSTI]

We introduce a new scenario for heavy ion collisions that could solve the lingering problems associated with the so-called HBT puzzle. We postulate that the system starts expansion as the perfect quark-gluon fluid but close to freeze-out it splits into clusters, due to a sharp rise of bulk viscosity in the vicinity of the hadronization transition. We then argue that the characteristic cluster size is determined by the viscosity coefficient and the expansion rate. Typically it is much smaller and independent of the total system volume. These clusters maintain the pre-existing outward-going flow, as a spray of droplets, but develop no flow of their own, and hadronize by evaporation. We provide an ansatz for converting the hydrodynamic output into clusters.

Torrieri, G; Mishustin, I

2007-01-01T23:59:59.000Z

155

Viscous Quark-Gluon Plasma Model Through Fluid QCD Approach  

E-Print Network [OSTI]

A Lagrangian density for viscous quark-gluon plasma has been constructed within the fluid-like QCD framework. Gauge symmetry is preserved for all terms inside the Lagrangian, except for the viscous term. The transition mechanism from point particle field to fluid field, and vice versa, is discussed. The energy momentum tensor that is relevant for the gluonic plasma having the nature of fluid bulk of gluon sea is derived within the model. By imposing conservation law in the energy momentum tensor, shear viscosity appears as extractable from the equation.

T. P. Djun; B. Soegijono; T. Mart; L. T. Handoko

2014-10-14T23:59:59.000Z

156

Variational bounds for the shear viscosity of gelling melts  

E-Print Network [OSTI]

We study shear stress relaxation for a gelling melt of randomly crosslinked, interacting monomers. We derive a lower bound for the static shear viscosity $\\eta$, which implies that it diverges algebraically with a critical exponent $k\\ge 2\

Claas H. Köhler; Henning Löwe; Peter Müller; Annette Zippelius

2007-05-03T23:59:59.000Z

157

Extensional viscosity measurements of polyethylene using a melt flow indexer  

E-Print Network [OSTI]

. The Cogswell and Darby methods of defining extension rate and extensional viscosity are examined and compared. Six polyethylene resins (A through F) have been selected for this study. They have different densities, molecular weights (MN and molecular weight...

Moffatt, Scott Gordon

1999-01-01T23:59:59.000Z

158

BURGERS' EQUATION WITH VANISHING HYPER-VISCOSITY EITAN TADMOR  

E-Print Network [OSTI]

hyper-viscosity method introduced in [Tad93], consult (2.1) below, which directly governs the approximate N-projection uN PN u. As in [Tad93], we restrict attention to the periodic case. We begin

159

Quasiparticle theory of shear and bulk viscosities of hadronic matter  

SciTech Connect (OSTI)

A theoretical framework for the calculation of shear and bulk viscosities of hadronic matter at finite temperature is presented. The framework is based on the quasiparticle picture. It allows for an arbitrary number of hadron species with pointlike interactions, and allows for both elastic and inelastic collisions. Detailed balance is ensured. The particles have temperature-dependent masses arising from mean-field or potential effects, which maintains self-consistency between the equation of state and the transport coefficients. As an example, we calculate the shear and bulk viscosity in the linear {sigma} model. The ratio of shear viscosity to entropy density shows a minimum in the vicinity of a rapid crossover transition, whereas the ratio of bulk viscosity to entropy density shows a maximum.

Chakraborty, P.; Kapusta, J. I. [School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

2011-01-15T23:59:59.000Z

160

Transition to Turbulence in Shear-Thinning Fluids  

E-Print Network [OSTI]

energy DNS direct numerical simulation RCA right coronary arteries WSS wall shear stress z? vorticity in the z direction ?t time scale of dissipation due to viscosity iu total velocity u total velocity in the x direction v total velocity in the y... viscosity K fluid consistency divided by density n power law index xL domain length in the x direction v yL domain length in the y direction Lz domain length in the z direction D height of the half channel ??? velocity field of the mature...

Zhen, Ni

2014-04-23T23:59:59.000Z

Note: This page contains sample records for the topic "fluid viscosity increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Oxygen consumption by asphalt films and resulting viscosity changes  

E-Print Network [OSTI]

OXYGEN CONSUMPTION BY ASPHALT FILNS AND RESULTING VISCOSITY CHANGES A Thesis by FRANK LEE CARTER, JR. Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... Nay 1965 Major Subject: Chemistry OXYGEN CONSUMPTION BY ASPHALT FILMS AND RESULTING VISCOSITY CHANGES A Thesis by FRANK LEE CARTER, JR. Approved as to style and content by: (Chairm of Committee) (H o Depa ( mb ) (Membe May 1965...

Carter, Frank Lee

2012-06-07T23:59:59.000Z

162

Use of ammonia to reduce the viscosity of bottoms streams produced in hydroconversion processes  

DOE Patents [OSTI]

Coal, petroleum residuum and similar carbonaceous feed materials are subjected to hydroconversion in the presence of molecular hydrogen to produce a hydroconversion effluent which is then subjected to one or more separation steps to remove lower molecular weight liquids and produce a heavy bottoms stream containing high molecular weight liquids and unconverted carbonaceous material. The viscosity of the bottoms streams produced in the separation step or steps is prevented from increasing rapidly by treating the feed to the separation step or steps with ammonia gas prior to or during the separation step or steps. The viscosity of the heavy bottoms stream produced in the final separation step is also controlled by treating these bottoms with ammonia gas. In a preferred embodiment of the invention, the effluent from the hydroconversion reactor is subjected to an atmospheric distillation followed by a vacuum distillation and the feeds to these distillations are contacted with ammonia during the distillations.

Zaczepinski, Sioma (Houston, TX); Billimoria, Rustom M. (Houston, TX); Tao, Frank (Baytown, TX); Lington, Christopher G. (Houston, TX); Plumlee, Karl W. (Baytown, TX)

1984-01-01T23:59:59.000Z

163

Shear viscosity of hot nuclear matter by the mean free path method  

E-Print Network [OSTI]

The shear viscosity of hot nuclear matter is investigated by using the mean free path method within the framework of IQMD model. Finite size nuclear sources at different density and temperature are initialized based on the Fermi-Dirac distribution. The results show that shear viscosity to entropy density ratio decreases with the increase of temperature and tends toward a constant value for $\\rho\\sim\\rho_0$, which is consistent with the previous studies on nuclear matter formed during heavy-ion collisions. At $\\rho\\sim\\frac{1}{2}\\rho_0$, a minimum of $\\eta/s$ is seen at around $T=10$ MeV and a maximum of the multiplicity of intermediate mass fragment ($M_{\\text{IMF}}$) is also observed at the same temperature which is an indication of the liquid-gas phase transition.

D. Q. Fang; Y. G. Ma; C. L. Zhou

2014-04-17T23:59:59.000Z

164

Turbulence and turbulent mixing in natural fluids  

E-Print Network [OSTI]

Turbulence and turbulent mixing in natural fluids begins with big bang turbulence powered by spinning combustible combinations of Planck particles and Planck antiparticles. Particle prograde accretion on a spinning pair releases 42% of the particle rest mass energy to produce more fuel for turbulent combustion. Negative viscosity and negative turbulence stresses work against gravity, creating mass-energy and space-time from the vacuum. Turbulence mixes cooling temperatures until a quark-gluon strong-force SF freeze-out. Gluon-viscosity anti-gravity ({\\Lambda}SF) exponentially inflates the fireball to preserve big bang turbulence information at scales larger than ct as the first fossil turbulence. Cosmic microwave background CMB temperature anisotropies show big bang turbulence fossils along with fossils of weak plasma turbulence triggered (10^12 s) as plasma viscous forces permit gravitational fragmentation on supercluster to galaxy mass scales (10^13 s). Turbulent morphologies and viscous-turbulent lengths a...

Gibson, Carl H

2010-01-01T23:59:59.000Z

165

R fluids  

E-Print Network [OSTI]

A theory of collisionless fluids is developed in a unified picture, where nonrotating figures with anisotropic random velocity component distributions and rotating figures with isotropic random velocity component distributions, make adjoints configurations to the same system. R fluids are defined and mean and rms angular velocities and mean and rms tangential velocity components are expressed, by weighting on the moment of inertia and the mass, respectively. The definition of figure rotation is extended to R fluids. The generalized tensor virial equations are formulated for R fluids and further attention is devoted to axisymmetric configurations where, for selected coordinate axes, a variation in figure rotation has to be counterbalanced by a variation in anisotropy excess and vice versa. A microscopical analysis of systematic and random motions is performed under a few general hypotheses, by reversing the sign of tangential or axial velocity components of an assigned fraction of particles, leaving the distribution function and other parameters unchanged (Meza 2002). The application of the reversion process to tangential velocity components, implies the conversion of random motion rotation kinetic energy into systematic motion rotation kinetic energy. The application of the reversion process to axial velocity components, implies the conversion of random motion translation kinetic energy into systematic motion translation kinetic energy, and the loss related to a change of reference frame is expressed in terms of systematic (imaginary) motion rotation kinetic energy. A procedure is sketched for deriving the spin parameter distribution (including imaginary rotation) from a sample of observed or simulated large-scale collisionless fluids i.e. galaxies and galaxy clusters.

R. Caimmi

2007-10-20T23:59:59.000Z

166

Two-dimensional nanostructured Y{sub 2}O{sub 3} particles for viscosity modification  

SciTech Connect (OSTI)

Nanoparticle additives have been shown to improve the mechanical and transport phenomena of various liquids; however, little has been done to try and explain the rheological modifications provided from such modifications from a theoretical standpoint. Here, we report a non-Einstein-like reduction of viscosity of mineral oil with the utilization of yttrium oxide nanosheet additives. Experimental results, coupled with generalized smoothed-particle hydrodynamics simulations, provide insight into the mechanism behind this reduction of fluid shear stress. The ordered inclination of these two-dimensional nanoparticle additives markedly improves the lubricating properties of the mineral oil, ultimately reducing the friction, and providing a way in designing and understanding next generation of lubricants.

He, Xingliang; Xiao, Huaping; Liang, Hong, E-mail: hliang@tamu.edu [Department of Mechanical Engineering, Texas A and M University, College Station, Texas 77843-3123 (United States); Kyle, Jonathan P.; Terrell, Elon J. [Department of Mechanical Engineering, Columbia University, New York, New York 10027 (United States)

2014-04-21T23:59:59.000Z

167

Viscosity Determination of Molten Ash from Low-Grade US Coals  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

In entrained slagging gasifiers, the fluidity of the molten ash is a critical factor for process control since it affects slag formation, the capture of inorganic constituents, refractory wear, and slag drainage along the gasification chamber walls. The use of western coal, or mixtures of eastern and western coals as gasifier feedstock, is likely to occur as western coals become available and technological issues that hinder their use are being resolved. In the present work, the viscosity of synthetic slags with ash chemistries simulating the western U.S. coals, was experimentally measured at a Po2?=?10- 8 atm in the temperature range of 1773–1573 K (1500–1300 °C) using a rotating-bob viscometer. Alumina spindles and containment crucibles of both alumina and zirconia were used. Crystallization studies of this slag using a confocal scanning laser microscope found that a (Mg,Fe)Al2O4-based spinel precipitated at temperatures below 1723 K (1450 °C), and this agreed with FactSage equilibrium phase prediction. The same spinels were observed in the post-viscometry experiment slags when ZrO2 crucibles were used and assumed to be in equilibrium with the slag at the higher temperatures. Zirconia dissolution resulted in a slight increase in the solid fraction present in slags at lower temperatures, compared to spinel fraction. Crystal precipitation changed the apparent activation energy and required a longer stabilization times for viscosity measurements. The viscosity results were used in predictive equations based on Veytsman and Einstein's models, with critical nucleation temperatures and the solid fraction calculated with FactSage. In the simulated eastern/western coal feedstock blends based on ash compositions, the fractions of the solid precipitates were also calculated using the thermodynamic program FactSage for each blend composition, and the plastic viscosity of each eastern/western coal slag blend was predicted using Veytsman's model and compared to available experimental data.

Zhu, Jingxi [National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States); URS Corp., Albany, OR (United States); Nakano, Jinichiro [National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States); URS Corp., Albany, OR (United States); Kaneko, Tetsuya Kenneth [National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States); Carnegie Mellon Univ., Pittsburgh, PA (United States); Mu, Haoyuan [Carnegie Mellon Univ., Pittsburgh, PA (United States); Bennett, James P. [National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States); Kwong, Kyei-Sing [National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States); Rozelle, Peter [US Dept. of Energy, Washington, DC (United States). Office of Clean Energy Systems; Sridhar, Seetharaman [National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States); Carnegie Mellon Univ., Pittsburgh, PA (United States)

2011-10-01T23:59:59.000Z

168

Fluid extraction  

DOE Patents [OSTI]

A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

Wai, Chien M. (Moscow, ID); Laintz, Kenneth E. (Los Alamos, NM)

1999-01-01T23:59:59.000Z

169

Causal relativistic hydrodynamics for viscous fluids  

E-Print Network [OSTI]

We report on recent results from VISH2+1, a code that solves the relativistic Israel-Stewart equations for causal viscous hydrodynamics for heavy-ion collisions with longitudinal boost invariance. We find that even ``minimal'' shear viscosity eta/s=hbar/(4pi) leads to a large reduction of elliptic flow compared to ideal fluid dynamics. We explore systematically the sensitivity of this reduction to the equation of state, system size, initial conditions, and the microscopic relaxation time in different formulations of the Israel-Stewart equations.

Ulrich W Heinz; Huichao Song

2008-06-03T23:59:59.000Z

170

Dissipative kinetic Alfvén solitary waves resulting from viscosity  

SciTech Connect (OSTI)

Nonlinear small-amplitude kinetic Alfvén solitary waves (KASWs) are investigated with their “anomalous” kinetic viscosity effect on electrons. It is found that the structure of a hump-type KASW solution develops into a shock-type (or double layer) KASW solution for large amplitude KASWs when viscosity exists. For small amplitude KASWs, the Korteweg-de Vries (KdV) equation with an approximate pseudopotential was solved, and it is found that the hump-type KASWs develop into oscillating shock-type (kink-type) KASWs. It is also found that the oscillating scale of this structure is related to the propagation velocity and plasma beta, while the damping scale is inversely proportional to the viscosity.

Choi, C.-R.; Kang, S.-B.; Min, K.-W. [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)] [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Woo, M.-H. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of)] [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Hwang, J.; Park, Y.-D. [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)] [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)

2013-11-15T23:59:59.000Z

171

A generalized viscosity equation for pure heavy hydrocarbons  

SciTech Connect (OSTI)

This paper presents a method for the correlation and prediction of the viscosity of pure heavy hydrocarbons listed in API Research Project 42. The 273 heavy hydrocarbons in the database include branched/unbranched paraffins and olefins together with a variety of complex nonfused/fused aromatic and naphthenic compounds. A generalized one-parameter viscosity-temperature equation, log ({mu} + 0.8) = 100(0.01T){sup b}, is proposed (overall AAD {lt} 7-10%) for all heavy hydrocarbons in the database. For each hydrocarbon, an optimum value of parameter b is provided. It is shown that parameter b varies linearly with the logarithm of molar mass as well as the inverse of boiling temperature (at 10 mmHg). This important observation leads to the development of a predictive method for the liquid-phase viscosity of pure heavy hydrocarbons.

Mehrotra, A.K. (Dept. of Chemical and Petroleum Engineering, Univ. of Calgary, Calgary, Alberta T2N 1N4 (CA))

1991-02-01T23:59:59.000Z

172

Study of shear-driven unsteady flows of a fluid with a pressure dependent viscosity  

E-Print Network [OSTI]

In this thesis, the seminal work of Stokes concerning the ow of a Navier-Stokesuid due to a suddenly accelerated or oscillating plate and the ow due to torsionaloscillations of an innitely long rod in a Navier-Stokes uid is extended to a uid...

Srinivasan, Shriram

2009-05-15T23:59:59.000Z

173

Effectiveness of continuous hot-fluid stimulation of high viscosity oil wells  

E-Print Network [OSTI]

Cl Ct P) 0 5 N Cl C di l tQ E (U O V O O 0 QJ + CL 0 V Ql O lJ QJ 4- 4? Tl O Cl Cfl C lJ Ct C (3 ) aanqewacIIIIa I IIo I~ onpoag 0 37 Higher injection rates result in higher production temperatures at steady-state due... thermal system with heat loss to 38 adjacent shale layers. In the formation having smaller kv/kh ratio, the injected hot oil flows farther in the horizontal direction. Consequently, the contact area between the formation and the shale layer is larger...

Oetama, Teddy

1983-01-01T23:59:59.000Z

174

A geological fingerprint of low-viscosity fault fluids mobilized during an earthquake  

E-Print Network [OSTI]

Principles of Physical Sedimentology, George Allen andCalifornia, paper presented at Sedimentology of Gravels andcoarse-grained sediments, Sedimentology, 22(2), 157 – 204.

Brodsky, Emily E.; Rowe, Christie D.; Moore, J. Casey; Meneghini, Francesca

2009-01-01T23:59:59.000Z

175

A geological fingerprint of low-viscosity fault fluids mobilized during an earthquake  

E-Print Network [OSTI]

Deformation processes in unconsolidated sands, Geol. Soc.by the liquefaction of unconsolidated sands and some ancient

Brodsky, Emily E.; Rowe, Christie D.; Moore, J. Casey; Meneghini, Francesca

2009-01-01T23:59:59.000Z

176

Decreased Hematocrit-To-Viscosity Ratio and Increased Lactate Dehydrogenase Level in Patients with Sickle Cell  

E-Print Network [OSTI]

with Sickle Cell Anemia and Recurrent Leg Ulcers Philippe Connes1,2,3* , Yann Lamarre1,2 , Marie-à-Pitre, Guadeloupe Abstract Leg ulcer is a disabling complication in patients with sickle cell anemia (SCA Dehydrogenase Level in Patients with Sickle Cell Anemia and Recurrent Leg Ulcers. PLoS ONE 8(11): e79680. doi:10

Paris-Sud XI, Université de

177

All Order Linearized Hydrodynamics from Fluid/Gravity Correspondence  

E-Print Network [OSTI]

Using fluid/gravity correspondence, we determine the (linearized) stress energy tensor of $\\mathcal{N}=4$ super-Yang-Mills theory at strong coupling with all orders in derivatives of fluid velocity included. We find that the dissipative effects are fully encoded in the shear term and a new one, which emerges starting from the third order. We derive, for the first time, closed linear holographic RG flow-type equations for (generalized) momenta-dependent viscosity functions. In the hydrodynamic regime, we obtain the stress tensor up to third order in derivative expansion analytically. We then numerically determine the viscosity functions up to large momenta. As a check of our results, we also derive the generalized Navier-Stokes equations from the Einstein equations in the dual gravity.

Yanyan Bu; Michael Lublinsky

2014-11-02T23:59:59.000Z

178

Dark Energy Coupled with Dark Matter in Viscous Fluid Cosmology  

E-Print Network [OSTI]

We investigate cosmological models with two interacting fluids: dark energy and dark matter in flat Friedmann-Robertson-Walker universe. The interaction between dark energy and dark matter is described in terms of the parameters present in the inhomogeneous equation of state when allowance is made for bulk viscosity, for the Little Rip, the Pseudo Rip, and the bounce universes. We obtain analytic representation for characteristic properties in these cosmological models, in particular the bulk viscosity $\\zeta=\\zeta(H,t)$ as function of Hubble parameter and time. We discuss the corrections of thermodynamical parameters in the equations of state due coupling between the viscous fluid and dark matter. Some common properties of these corrections are elucidated.

I. Brevik; V. V. Obukhov; A. V. Timoshkin

2014-10-10T23:59:59.000Z

179

Entropy current for non-relativistic fluid  

E-Print Network [OSTI]

We study transport properties of a parity-odd, non-relativistic charged fluid in presence of background electric and magnetic fields. To obtain stress tensor and charged current for the non-relativistic system we start with the most generic relativistic fluid, living in one higher dimension and reduce the constituent equations along the light-cone direction. We also reduce the equation satisfied by the entropy current of the relativistic theory and obtain a consistent entropy current for the non-relativistic system (we call it "canonical form" of the entropy current). Demanding that the non-relativistic fluid satisfies the second law of thermodynamics we impose constraints on various first order transport coefficients. For parity even fluid, this is straight forward; it tells us positive definiteness of different transport coefficients like viscosity, thermal conductivity, electric conductivity etc. However for parity-odd fluid, canonical form of the entropy current fails to confirm the second law of thermodynamics. Therefore, we need to add two parity-odd vectors to the entropy current with arbitrary coefficients. Upon demanding the validity of second law, we see that one can fix these two coefficients exactly.

Nabamita Banerjee; Suvankar Dutta; Akash Jain; Dibakar Roychowdhury

2014-05-22T23:59:59.000Z

180

Phase Transitions and the Perfectness of Fluids  

E-Print Network [OSTI]

We calculate the ratio eta/s, the shear viscosity (eta) to entropy density (s), which characterizes how perfect a fluid is, in weakly coupled real scalar field theories with different types of phase transitions. The mean-field results of the eta/s behaviors agree with the empirical observations in atomic and molecular systems such as water, He, N, and all the matters with data available in the NIST database. These behaviors are expected to be the same in N component scalar theories with an O(N) symmetry. We speculate these eta/s behaviors are general properties of fluid shared by QCD and cold atoms. Finally, we clarify some issues regarding counterexamples of the conjectured universal eta/s bound found in Refs.[16,17].

Jiunn-Wei Chen; Mei Huang; Yen-Han Li; Eiji Nakano; Di-Lun Yang

2008-10-11T23:59:59.000Z

Note: This page contains sample records for the topic "fluid viscosity increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Laboratory imaging of stimulation fluid displacement from hydraulic fractures  

SciTech Connect (OSTI)

Laboratory experiments were conducted to physically investigate the processes governing stimulation fluid displacement from hydraulic fractures. Experiments were performed on two scales: meter-scale in a 1500 cm{sup 2} sand pack and core-scale in a 65 cm{sup 2} API linear conductivity cell. High-resolution light transmission imaging was employed at the meter-scale to visualize and quantify processes governing fluid displacement. For comparison, complimentary tests were performed using an API conductivity cell under ambient test conditions and at elevated closure stress. In these experiments viscous fingering and gravity drainage were identified as the dominant processes governing fluid displacement. Fluid viscosity was found to dictate the relative importance of the competing displacement processes and ultimately determine the residual liquid saturation of the sand pack. The process by which fluid displacement occurs was seen to effect the shape of both the gas and liquid phase relative permeability functions. Knowledge of such viscosity/relative permeability relationships may prove useful in bounding predictions of post-stimulation recovery of gels from the fracture pack.

Tidwell, V. [Sandia National Lab., Albuquerque, NM (United States); Parker, M. [SPE, Richardson, TX (United States)

1996-11-01T23:59:59.000Z

182

J. Fluid Mech. (2005), vol. 537, pp. 125144. c 2005 Cambridge University Press doi:10.1017/S0022112005005033 Printed in the United Kingdom  

E-Print Network [OSTI]

wave and the internal bore on the basis of the two- layer shallow-water equations, following in reality. Simulations are conducted for fluids with the same kinematic viscosity, as well as for fluids then demands that these energy conserving fronts are connected by an expansion wave, and that a bore forms

Meiburg, Eckart H.

183

An extension of Pedersen's viscosity model for saturated black oil systems  

E-Print Network [OSTI]

This thesis presents a modification of Pedersen's corresponding states compositional viscosity model for black oil systems when no compositional data are available. This new model provides better estimates for oil viscosity than previously existing...

Adejuwon, Adeyemi

2000-01-01T23:59:59.000Z

184

1. Introduction Fluid flow in continuous casting of steel is of great inter-  

E-Print Network [OSTI]

-phase fluid flow owing to the simulation kinematic viscosity of steel and water, the flow pattern itself and entrainment of the mold slag, · transient fluctuations and waves in the top surface level, and their effect, such as intermixing during a grade change and segregation. Extensive past work has employed physical water models

Thomas, Brian G.

185

Fluid Inclusion Gas Analysis  

SciTech Connect (OSTI)

Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

Dilley, Lorie

2013-01-01T23:59:59.000Z

186

Fluid Inclusion Gas Analysis  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

Dilley, Lorie

187

Process for stabilizing the viscosity characteristics of coal derived materials and the stabilized materials obtained thereby  

DOE Patents [OSTI]

A process is disclosed for stabilizing the viscosity of coal derived materials such as an SRC product by adding up to 5.0% by weight of a light volatile phenolic viscosity repressor. The viscosity will remain stabilized for a period of time of up to 4 months.

Bronfenbrenner, James C. (Allentown, PA); Foster, Edward P. (Allentown, PA); Tewari, Krishna (Allentown, PA)

1985-01-01T23:59:59.000Z

188

THE CALCULATION OF QUALITY FACTOR OF FILM BULK ACOUSTIC RESONATORS WITH THE CONSIDERATION OF VISCOSITY  

E-Print Network [OSTI]

elastic constants which are proportional to vibration frequency. The actual value of the viscosity factor is given as an equivalent parameter. Such a procedure is useful in understanding the effect of viscosity factor, viscosity, electrical circuit parameters, layered structures, piezoelectric, film, FBAR 1

Wang, Ji

189

Chemically Reactive Working Fluids  

Broader source: Energy.gov (indexed) [DOE]

commercial application. Goal: Demonstrate feasibility of employing chemically reacting fluids (CRFW) as heat transfer fluids (HTF) for CSP systems operating at 650C-1200C....

190

Simulating Fluids Exhibiting Microstructure  

E-Print Network [OSTI]

... fluids containing elastic particles, and polymer fluids, all exhibit non-trivial macroscopic behavior due to interactions occurring on micro/mesoscopic scales.

191

Knudsen number, ideal hydrodynamic limit for elliptic flow and QGP viscosity in $\\sqrt{s}$=62 and 200 GeV Cu+Cu/Au+Au collisions  

E-Print Network [OSTI]

Taking into account of entropy generation during evolution of a viscous fluid, we have estimated inverse Knudsen number, ideal hydrodynamic limit for elliptic flow and QGP viscosity to entropy ratio in $\\sqrt{s}$=62 and 200 GeV Cu+Cu/Au+Au collisions. Viscosity to entropy ratio is estimated as $\\eta/s=0.17\\pm 0.10\\pm 0.20$, the first error is statistical, the second one is systematic. In a central Au+Au collision, inverse Knudsen number is $\\approx 2.80\\pm 1.63$, which presumably small for complete equilibration. In peripheral collisions it is even less. Ideal hydrodynamic limit for elliptic flow is $\\sim$40% more than the experimental flow in a central collision.

A. K. Chaudhuri

2010-09-27T23:59:59.000Z

192

Viscosity Determination of Molten Ash from Low-Grade US Coals  

SciTech Connect (OSTI)

In entrained slagging gasifiers, the fluidity of the molten ash is a critical factor for process control since it affects slag formation, the capture of inorganic constituents, refractory wear, and slag drainage along the gasification chamber walls. The use of western coal, or mixtures of eastern and western coals as gasifier feedstock, is likely to occur as western coals become available and technological issues that hinder their use are being resolved. In the present work, the viscosity of synthetic slags with ash chemistries simulating the western U.S. coals, was experimentally measured at a Po2?=?10- 8 atm in the temperature range of 1773–1573 K (1500–1300 °C) using a rotating-bob viscometer. Alumina spindles and containment crucibles of both alumina and zirconia were used. Crystallization studies of this slag using a confocal scanning laser microscope found that a (Mg,Fe)Al2O4-based spinel precipitated at temperatures below 1723 K (1450 °C), and this agreed with FactSage equilibrium phase prediction. The same spinels were observed in the post-viscometry experiment slags when ZrO2 crucibles were used and assumed to be in equilibrium with the slag at the higher temperatures. Zirconia dissolution resulted in a slight increase in the solid fraction present in slags at lower temperatures, compared to spinel fraction. Crystal precipitation changed the apparent activation energy and required a longer stabilization times for viscosity measurements. The viscosity results were used in predictive equations based on Veytsman and Einstein's models, with critical nucleation temperatures and the solid fraction calculated with FactSage. In the simulated eastern/western coal feedstock blends based on ash compositions, the fractions of the solid precipitates were also calculated using the thermodynamic program FactSage for each blend composition, and the plastic viscosity of each eastern/western coal slag blend was predicted using Veytsman's model and compared to available experimental data.

Zhu, Jingxi [National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States); URS Corp., Albany, OR (United States); Nakano, Jinichiro [National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States); URS Corp., Albany, OR (United States); Kaneko, Tetsuya Kenneth [National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States); Carnegie Mellon Univ., Pittsburgh, PA (United States); Mu, Haoyuan [Carnegie Mellon Univ., Pittsburgh, PA (United States); Bennett, James P. [National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States); Kwong, Kyei-Sing [National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States); Rozelle, Peter [US Dept. of Energy, Washington, DC (United States). Office of Clean Energy Systems; Sridhar, Seetharaman [National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States); Carnegie Mellon Univ., Pittsburgh, PA (United States)

2011-10-01T23:59:59.000Z

193

Shear viscosity $?$ to electric conductivity $?_{el}$ ratio for the Quark-Gluon Plasma  

E-Print Network [OSTI]

The transport coefficients of strongly interacting matter are currently subject of intense theoretical and phenomenological studies due to their relevance for the characterization of the quark-gluon plasma produced in ultra-relativistic heavy-ion collisions (uRHIC). We discuss the connection between the shear viscosity to entropy density ratio, $\\eta/s$, and the electric conductivity, $\\sigma_{el}$. We note that once the relaxation time is tuned to determine the shear viscosity $\\eta$ to have a minimum value $\\eta/s=1/4\\pi$ near the critical temperature $T_c$, one simultaneously predicts an electric conductivity $\\sigma_{el}/T$ very close to recent lQCD data. More generally, we discuss why the ratio of $\\eta/s$ over $\\sigma_{el}/T$ supplies a measure of the quark to gluon scattering rates whose knowledge would allow to significantly advance in the understanding of the QGP phase. We also predict that $(\\eta/s)/(\\sigma_{el}/T)$, independently on the running coupling $\\alpha_s(T)$, should increase up to about $\\sim 50$ for $T \\rightarrow T_c$, while it goes down to a nearly flat behavior around $\\simeq 3$ for $T \\geq 4\\, T_c$.

A. Puglisi; S. Plumari; V. Greco

2014-07-09T23:59:59.000Z

194

Viscosity, relaxation time, and dynamics within a model asphalt of larger molecules  

SciTech Connect (OSTI)

The dynamics properties of a new “next generation” model asphalt system that represents SHRP AAA-1 asphalt using larger molecules than past models is studied using molecular simulation. The system contains 72 molecules distributed over 12 molecule types that range from nonpolar branched alkanes to polar resins and asphaltenes. Molecular weights range from 290 to 890 g/mol. All-atom molecular dynamics simulations conducted at six temperatures from 298.15 to 533.15 K provide a wealth of correlation data. The modified Kohlrausch-Williams-Watts equation was regressed to reorientation time correlation functions and extrapolated to calculate average rotational relaxation times for individual molecules. The rotational relaxation rate of molecules decreased significantly with increasing size and decreasing temperature. Translational self-diffusion coefficients followed an Arrhenius dependence. Similar activation energies of ?42 kJ/mol were found for all 12 molecules in the model system, while diffusion prefactors spanned an order of magnitude. Viscosities calculated directly at 533.15 K and estimated at lower temperatures using the Debye-Stokes-Einstein relationship were consistent with experimental data for asphalts. The product of diffusion coefficient and rotational relaxation time showed only small changes with temperature above 358.15 K, indicating rotation and translation that couple self-consistently with viscosity. At lower temperatures, rotation slowed more than diffusion.

Li, Derek D.; Greenfield, Michael L., E-mail: greenfield@egr.uri.edu [Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881 (United States)

2014-01-21T23:59:59.000Z

195

Fluid transport container  

DOE Patents [OSTI]

An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitting for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container. 13 figs.

DeRoos, B.G.; Downing, J.P. Jr.; Neal, M.P.

1995-11-14T23:59:59.000Z

196

Microscale fluid flow induced by thermoviscous expansion along a traveling wave  

E-Print Network [OSTI]

The thermal expansion of a fluid combined with a temperature-dependent viscosity introduces nonlinearities in the Navier-Stokes equations unrelated to the convective momentum current. The couplings generate the possibility for net fluid flow at the microscale controlled by external heating. This novel thermo-mechanical effect is investigated for a thin fluid chamber by a numerical solution of the Navier-Stokes equations and analytically by a perturbation expansion. A demonstration experiment confirms the basic mechanism and quantitatively validates our theoretical analysis.

Franz M. Weinert; Jonas A. Kraus; Thomas Franosch; Dieter Braun

2008-04-02T23:59:59.000Z

197

Murray's law revisited with Qu\\'emada's fluids and fractal trees  

E-Print Network [OSTI]

In 1926, Murray proposed the first law for the optimal design of blood vessels. He minimized the power dissipation arising from the trade-off between fluid circulation and blood maintenance. The law, based on a constant fluid viscosity, states that in the optimal configuration the fluid flow rate inside the vessel is proportional to the cube of the vessel radius, implying that wall shear stress is not dependent on the vessel radius. Murray's law has been found to be true in blood macrocirculation, but not in microcirculation. In 2005, Alarc\\'on et al took into account the non monotonous dependence of viscosity on vessel radius - F{\\aa}hr{\\ae}us - Lindqvist effect - due to phase separation effect of blood. They were able to predict correctly the behavior of wall shear stresses in microcirculation. One last crucial step remains however: to account for the dependence of blood viscosity on shear rates. In this work, we investigate how viscosity dependence on shear rate affects Murray's law. We extended Murray's o...

Benjamin, Mauroy

2015-01-01T23:59:59.000Z

198

Supercritical fluid thermodynamics for coal processing  

SciTech Connect (OSTI)

The main objective of this research is to develop an equation of state that can be used to predict solubilities and tailor supercritical fluid solvents for the extraction and processing of coal. To meet this objective we have implemented a two-sided. approach. First, we expanded the database of model coal compound solubilities in higher temperature fluids, polar fluids, and fluid mixtures systems. Second, the unique solute/solute, solute/cosolvent and solute/solvent intermolecular interactions in supercritical fluid solutions were investigated using spectroscopic techniques. These results increased our understanding of the molecular phenomena that affect solubility in supercritical fluids and were significant in the development of an equation of state that accurately reflects the true molecular makeup of the solution. (VC)

van Swol, F. (Illinois Univ., Urbana, IL (United States). Dept. of Chemical Engineering); Eckert, C.A. (Georgia Inst. of Tech., Atlanta, GA (United States). School of Chemical Engineering)

1988-09-15T23:59:59.000Z

199

Measurement of surface tension and viscosity by open capillary techniques  

DOE Patents [OSTI]

An open-channel capillary is provided, having preferably a v-shaped groove in a flat wettable surface. The groove has timing marks and a source marker in which the specimen to be tested is deposited. The time of passage between the timing marks is recorded, and the ratio of surface tension .gamma. to viscosity .mu. is determined from the equation given below: ##EQU1## where h.sub.0 is the groove depth, .alpha. is the groove angle, .theta. is the liquid/solid contact angle, and t is the flow time. It has been shown by the

Rye,Robert R. (Albuquerque, NM), Yost,Frederick G. (Cedar Crest, NM)

1998-01-01T23:59:59.000Z

200

Standardization of Thermo-Fluid Modeling in Modelica.Fluid  

E-Print Network [OSTI]

Thermo-Fluid Systems, Modelica 2003 Conference, Linköping,H. Tummescheit: The Modelica Fluid and Media Library forThermo-Fluid Pipe Networks, Modelica 2006 Conference, Vi-

Franke, Rudiger

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fluid viscosity increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Graduate Studies Environmental Fluid Mechanics  

E-Print Network [OSTI]

Graduate Studies Environmental Fluid Mechanics and Water Resources Engineering GRADUATE COURSESResourcesManagement · IntermediateFluidMechanics · AdvancedFluidMechanics · EnvironmentalFluidMechanics · AdvancedEnvironmental FluidMechanics · FluidMechanicsofOrganisms · OpenChannelHydraulics · SedimentTransport · ComputationalFluidMechanics

Storici, Francesca

202

Bulk viscosity and cavitation in boost-invariant hydrodynamic expansion  

E-Print Network [OSTI]

We solve second order relativistic hydrodynamics equations for a boost-invariant 1+1-dimensional expanding fluid with an equation of state taken from lattice calculations of the thermodynamics of strongly coupled quark-gluon ...

Rajagopal, Krishna

203

Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers  

SciTech Connect (OSTI)

Injection of carbon dioxide (CO{sub 2}) into saline aquifers has been proposed as a means to reduce greenhouse gas emissions (geological carbon sequestration). Large-scale injection of CO{sub 2} will induce a variety of coupled physical and chemical processes, including multiphase fluid flow, fluid pressurization and changes in effective stress, solute transport, and chemical reactions between fluids and formation minerals. This work addresses some of these issues with special emphasis given to the physics of fluid flow in brine formations. An investigation of the thermophysical properties of pure carbon dioxide, water and aqueous solutions of CO{sub 2} and NaCl has been conducted. As a result, accurate representations and models for predicting the overall thermophysical behavior of the system CO{sub 2}-H{sub 2}O-NaCl are proposed and incorporated into the numerical simulator TOUGH2/ECO{sub 2}. The basic problem of CO{sub 2} injection into a radially symmetric brine aquifer is used to validate the results of TOUGH2/ECO2. The numerical simulator has been applied to more complex flow problem including the CO{sub 2} injection project at the Sleipner Vest Field in the Norwegian sector of the North Sea and the evaluation of fluid flow dynamics effects of CO{sub 2} injection into aquifers. Numerical simulation results show that the transport at Sleipner is dominated by buoyancy effects and that shale layers control vertical migration of CO{sub 2}. These results are in good qualitative agreement with time lapse surveys performed at the site. High-resolution numerical simulation experiments have been conducted to study the onset of instabilities (viscous fingering) during injection of CO{sub 2} into saline aquifers. The injection process can be classified as immiscible displacement of an aqueous phase by a less dense and less viscous gas phase. Under disposal conditions (supercritical CO{sub 2}) the viscosity of carbon dioxide can be less than the viscosity of the aqueous phase by a factor of 15. Because of the lower viscosity, the CO{sub 2} displacement front will have a tendency towards instability. Preliminary simulation results show good agreement between classical instability solutions and numerical predictions of finger growth and spacing obtained using different gas/liquid viscosity ratios, relative permeability and capillary pressure models. Further studies are recommended to validate these results over a broader range of conditions.

Garcia, Julio Enrique

2003-12-18T23:59:59.000Z

204

PHYSICAL REVIEW E 85, 016327 (2012) Forces acting on a small particle in an acoustical field in a viscous fluid  

E-Print Network [OSTI]

wave (millimeters in water at megahertz frequencies). The acoustophoretic response of suspended force from an ultrasound wave on a compressible, spherical particle suspended in a viscous fluid. Using Prandtl-Schlichting boundary-layer theory, we include the kinematic viscosity of the solvent and derive

205

Air Entrainment by Contact Lines of a Solid Plate Plunged into a Viscous Fluid Antonin Marchand,1  

E-Print Network [OSTI]

Air Entrainment by Contact Lines of a Solid Plate Plunged into a Viscous Fluid Antonin Marchand,1, The Netherlands (Received 13 September 2011; published 18 May 2012) The entrainment of air by advancing contact of entrainment speed on liquid viscosity, pointing towards a crucial role of the flow inside the air film

206

Friction-Induced Fluid Heating in Nanoscale Helium Flows  

SciTech Connect (OSTI)

We investigate the mechanism of friction-induced fluid heating in nanoconfinements. Molecular dynamics simulations are used to study the temperature variations of liquid helium in nanoscale Poiseuille flows. It is found that the fluid heating is dominated by different sources of friction as the external driving force is changed. For small external force, the fluid heating is mainly caused by the internal viscous friction in the fluid. When the external force is large and causes fluid slip at the surfaces of channel walls, the friction at the fluid-solid interface dominates over the internal friction in the fluid and is the major contribution to fluid heating. An asymmetric temperature gradient in the fluid is developed in the case of nonidentical walls and the general temperature gradient may change sign as the dominant heating factor changes from internal to interfacial friction with increasing external force.

Li Zhigang [Department of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

2010-05-21T23:59:59.000Z

207

Environmentally safe fluid extractor  

DOE Patents [OSTI]

An environmentally safe fluid extraction device for use in mobile laboratory and industrial settings comprising a pump, compressor, valving system, waste recovery tank, fluid tank, and a exhaust filtering system.

Sungaila, Zenon F. (Orland Park, IL)

1993-01-01T23:59:59.000Z

208

Fluid sampling tool  

DOE Patents [OSTI]

The invention includes a rotatable tool for collecting fluid through the wall of a container. The tool includes a fluid collection section with a cylindrical shank having an end portion for drilling a hole in the container wall when the tool is rotated, and a threaded portion for tapping the hole in the container wall. A passageway in the shank in communication with at least one radial inlet hole in the drilling end and an opening at the end of the shank is adapted to receive fluid from the container. The tool also includes a cylindrical chamber affixed to the end of the shank opposite to the drilling portion thereof for receiving and storing fluid passing through the passageway. The tool also includes a flexible, deformable gasket that provides a fluid-tight chamber to confine kerf generated during the drilling and tapping of the hole. The invention also includes a fluid extractor section for extracting fluid samples from the fluid collecting section.

Johnston, Roger G. (Los Alamos, NM); Garcia, Anthony R. E. (Espanola, NM); Martinez, Ronald K. (Santa Cruz, NM)

2001-09-25T23:59:59.000Z

209

HEAT TRANSFER FLUIDS  

E-Print Network [OSTI]

The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

Lenert, Andrej

2012-01-01T23:59:59.000Z

210

1. Introduction Obtaining valid reservoir fluid samples is  

E-Print Network [OSTI]

sampling in gas condensate wells, but this approach requires special small scale separation systems and possible financial penalties. For example, an oil sample which has lost some of its dissolved gas would have increased viscosity, and could lead to a reservoir appearing to be uneconomic to produce. A gas-condensate

Williams, John M.

211

Viscosity calculated in simulations of strongly coupled dusty plasmas with gas friction  

SciTech Connect (OSTI)

A two-dimensional strongly coupled dusty plasma is modeled using Langevin and frictionless molecular dynamical simulations. The static viscosity {eta} and the wave-number-dependent viscosity {eta}(k) are calculated from the microscopic shear in the random motion of particles. A recently developed method of calculating the wave-number-dependent viscosity {eta}(k) is validated by comparing the results of {eta}(k) from the two simulations. It is also verified that the Green-Kubo relation can still yield an accurate measure of the static viscosity {eta} in the presence of a modest level of friction as in dusty plasma experiments.

Feng Yan; Goree, J.; Liu Bin [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States)

2011-05-15T23:59:59.000Z

212

E-Print Network 3.0 - assess viscosity reduction Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

final spread as well as the stopping time... time with viscosity. Key words: self compacting concrete, rheology, slump flow, yield stress Source: Georgiou, Georgios - Department...

213

Effects of pore fluids in the subsurface on ultrasonic wave propagation  

SciTech Connect (OSTI)

This thesis investigates ultrasonic wave propagation in unconsolidated sands in the presence of different pore fluids. Laboratory experiments have been conducted in the sub-MHz range using quartz sand fully saturated with one or two liquids. Elastic wave propagation in unconsolidated granular material is computed with different numerical models: in one-dimension a scattering model based on an analytical propagator solution, in two dimensions a numerical approach using the boundary integral equation method, in three dimensions the local flow model (LFM), the combined Biot and squirt flow theory (BISQ) and the dynamic composite elastic medium theory (DYCEM). The combination of theoretical and experimental analysis yields a better understanding of how wave propagation in unconsolidated sand is affected by (a) homogeneous phase distribution; (b) inhomogeneous phase distribution, (fingering, gas inclusions); (c) pore fluids of different viscosity; (d) wettabilities of a porous medium. The first study reveals that the main ultrasonic P-wave signatures, as a function of the fraction on nonaqueous-phase liquids in initially water-saturated sand samples, can be explained by a 1-D scattering model. The next study investigates effects of pore fluid viscosity on elastic wave propagation, in laboratory experiments conducted with sand samples saturated with fluids of different viscosities. The last study concentrates on the wettability of the grains and its effect on elastic wave propagation and electrical resistivity.

Seifert, P.K.

1998-05-01T23:59:59.000Z

214

A Strongly Coupled Anisotropic Fluid From Dilaton Driven Holography  

E-Print Network [OSTI]

We consider a system consisting of $5$ dimensional gravity with a negative cosmological constant coupled to a massless scalar, the dilaton. We construct a black brane solution which arises when the dilaton satisfies linearly varying boundary conditions in the asymptotically $AdS_5$ region. The geometry of this black brane breaks rotational symmetry while preserving translational invariance and corresponds to an anisotropic phase of the system. Close to extremality, where the anisotropy is big compared to the temperature, some components of the viscosity tensor become parametrically small compared to the entropy density. We study the quasi normal modes in considerable detail and find no instability close to extremality. We also obtain the equations for fluid mechanics for an anisotropic driven system in general, working upto first order in the derivative expansion for the stress tensor, and identify additional transport coefficients which appear in the constitutive relation. For the fluid of interest we find that the parametrically small viscosity can result in a very small force of friction, when the fluid is enclosed between appropriately oriented parallel plates moving with a relative velocity.

Sachin Jain; Nilay Kundu; Kallol Sen; Aninda Sinha; Sandip P. Trivedi

2015-01-13T23:59:59.000Z

215

Methods for fluid separations, and devices capable of separating fluids  

DOE Patents [OSTI]

Wick-Containing apparatus capable of separating fluids and methods of separating fluids using wicks are disclosed.

TeGrotenhuis, Ward E [Kennewick, WA; Stenkamp, Victoria S [Richland, WA

2006-05-30T23:59:59.000Z

216

Methods for fluid separations, and devices capable of separating fluids  

DOE Patents [OSTI]

Wick-Containing apparatus capable of separating fluids and methods of separating fluids using wicks are disclosed.

TeGrotenhuis, Ward E. (Kennewick, WA); Stenkamp, Victoria S. (Richland, WA)

2007-09-25T23:59:59.000Z

217

Fluid breakup during simultaneous two-phase flow through a three-dimensional porous medium  

E-Print Network [OSTI]

We use confocal microscopy to directly visualize the simultaneous flow of both a wetting and a non-wetting fluid through a model three-dimensional (3D) porous medium. We find that, for small flow rates, both fluids flow through unchanging, distinct, connected 3D pathways; in stark contrast, at sufficiently large flow rates, the non-wetting fluid is broken up into discrete ganglia. By performing experiments over a range of flow rates, using fluids of different viscosities, and with porous media having different geometries, we show that this transition can be characterized by a state diagram that depends on the capillary numbers of both fluids, suggesting that it is controlled by the competition between the viscous forces exerted on the flowing oil and the capillary forces at the pore scale. Our results thus help elucidate the diverse range of behaviors that arise in two-phase flow through a 3D porous medium.

Sujit S. Datta; Jean-Baptiste Dupin; David A. Weitz

2014-06-26T23:59:59.000Z

218

High Operating Temperature Liquid Metal Heat Transfer Fluids...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

plant. A successful candidate fluid would allow for the reduction of the levelized cost of energy by increasing the operating temperature for the CSP plant power cycle, which...

219

Graduate Studies Environmental Fluid Mechanics  

E-Print Network [OSTI]

Graduate Studies Environmental Fluid Mechanics and Water Resources Engineering ENVIRONMENTAL FLUID MECHANICS AND WATER RESOURCES ENGINEERING (EFMWR) The environmental fluid mechanics and water resources Environmental Fluid Mechanics and Hydraulic Engineering research focuses on turbulent entrainment, transport

Jacobs, Laurence J.

220

Spinning fluids reactor  

DOE Patents [OSTI]

A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

Miller, Jan D; Hupka, Jan; Aranowski, Robert

2012-11-20T23:59:59.000Z

Note: This page contains sample records for the topic "fluid viscosity increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Cavitation from bulk viscosity in neutron stars and quark stars  

E-Print Network [OSTI]

The bulk viscosity in quark matter is sufficiently high to reduce the effective pressure below the corresponding vapor pressure during density perturbations in neutron stars and strange stars. This leads to mechanical instability where the quark matter breaks apart into fragments comparable to cavitation scenarios discussed for ultra-relativistic heavy-ion collisions. Similar phenomena may take place in kaon-condensed stellar cores. Possible applications to compact star phenomenology include a new mechanism for damping oscillations and instabilities, triggering of phase transitions, changes in gravitational wave signatures of binary star inspiral, and astrophysical formation of strangelets. At a more fundamental level it points to the possible inadequacy of a hydrodynamical treatment of these processes in compact stars.

Jes Madsen

2009-09-30T23:59:59.000Z

222

Notes 06. Liquid cavitation in fluid film bearings  

E-Print Network [OSTI]

[s] U ?R. Journal surface speed [m/s] V dh/dt. Squeeze film velocity [m/s] X= ?R, y, z Coordinate system on plane of bearing ? ()/ cav ?? . Density ratio ? P ? ? ? ? . Liquid bulk-modulus [N/m 2 ] ? Liquid density [kg/m 3 ] cav... ? Density at Pcav [kg/m 3 ] ? Fluid absolute viscosity [N.s/m 2 ] ? Journal angular speed (rad/s) Subscripts * Inception of the cavitation zone a Ambient value cav Cavitation NOTES 6. CAVITATION IN LIQUID FILM BEARINGS. Dr. Luis San Andr?s ? 2009...

San Andres, Luis

2009-01-01T23:59:59.000Z

223

Nearly perfect fluid in Au+Au collisions at RHIC  

E-Print Network [OSTI]

In the Israel-Stewart's theory of dissipative hydrodynamics, we have analysed the STAR data on $\\phi$ meson production in Au+Au collisions at $\\sqrt{s}$=200 GeV. From a simultaneous fit to $\\phi$ mesons multiplicity, mean $p_T$ and integrated $v_2$, we obtain a phenomenological estimate of QGP viscosity, $\\eta/s =0.07 \\pm 0.03 \\pm 0.14$, the first error is due to the experimental uncertainty in STAR measurements, the second reflects the uncertainties in initial and final conditions of the fluid.

A. K. Chaudhuri

2009-10-21T23:59:59.000Z

224

Solubility, viscosity and density of refrigerant/lubricant mixtures  

SciTech Connect (OSTI)

This report presents results on low refrigerant concentration (70, 80, 90, and 100 weight percent lubricant) mixtures of the following fluids: CFC-12/ISO 32 naphthenic mineral oil; HCFC-22/ISO 32 naphthenic mineral oil; and HFC-134a/ISO 32 pentaerythritol ester mixed acid. These data have been reduced to engineering form and are presented in the form of a Daniel Chart. Scatter diagrams are given for the first fluid listed above, with the intent of illustrating the quality of data as well as providing the rationale for selecting the particular functional forms chosen to represent the experimental data. Equations are given along with statistical measures of goodness of fit.

Henderson, D.R.

1993-01-01T23:59:59.000Z

225

Membrane fluids and Dirac membrane fluids  

E-Print Network [OSTI]

There are two different methods to describe membrane (string) fluids, which use different field content. The relation between the methods is clarified by construction of combined method. Dirac membrane field appears naturally in new approach. It provides a possibility to consider new aspects of electrodynamics-type theories with electric and magnetic sources. The membrane fluid models automatically prohibit simulatenos existence of electric and magnetic currents. Possible applications to the dark energy problem are mentioned.

M. G. Ivanov

2005-05-04T23:59:59.000Z

226

What Are the Limitations of Braginskii's Fluid Equations and Hazeltine's Drift Kinetic Equation?  

SciTech Connect (OSTI)

The two-fluid equations of Braginskii miss heat-flux terms in the viscosity. In this work we employ drift orderings to recover these missing terms and obtain a fully self-consistent system of short mean-free path two-fluid equations. These equations cannot be recovered from the short mean-free path limit of the well-known drift kinetic formalism of Hazeltine since this formalism is only accurate through first order in the small gyroradius expansion parameter, whereas second order accuracy is required. We propose a way of generalizing this formalism to make it second-order accurate. We also use the results to derive the gyroviscosity and ion perpendicular viscosity for plasmas of arbitrary collisionality, provided the leading order distribution function is velocity-space isotropic. As an application, we consider electrostatic turbulence in a tokamak and use our expressions for ion viscosity in the toroidal angular momentum conservation equation to show that the ion perpendicular viscosity can be important for determining the axisymmetric radial electric field (and, therefore, zonal flow amplitude), especially if the turbulent radial particle flux is small.

Simakov, Andrei N. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Catto, Peter J. [MIT Plasma Science and Fusion Center, Cambridge, MA 02139 (United States)

2006-11-30T23:59:59.000Z

227

Method of preparing a high solids content, low viscosity ceramic slurry  

DOE Patents [OSTI]

A method for producing a high solids content, low viscosity ceramic slurry composition comprises turbomilling a dispersion of a ceramic powder in a liquid to form a slurry having a viscosity less than 100 centipoise and a solids content equal to or greater than 48 volume percent.

Tiegs, Terry N. (Lenoir City, TN); Wittmer, Dale E. (Carbondale, IL)

1995-01-01T23:59:59.000Z

228

Effects of Thermal Exposure and Test Temperature on Structure Evolution and Hardness/Viscosity  

E-Print Network [OSTI]

Effects of Thermal Exposure and Test Temperature on Structure Evolution and Hardness/Viscosity the physical and mechanical properties (i.e., viscosity, flow, and fracture). In some cases, the thermal coating techniques (e.g., high velocity oxygen fuel (HVOF), plasma spray, cold spray, etc.) have been used

Rollins, Andrew M.

229

Method of preparing a high solids content, low viscosity ceramic slurry  

DOE Patents [OSTI]

A method for producing a high solids content, low viscosity ceramic slurry composition comprises turbomilling a dispersion of a ceramic powder in a liquid to form a slurry having a viscosity less than 100 centipoise and a solids content equal to or greater than 48 volume percent.

Tiegs, T.N.; Wittmer, D.E.

1995-10-10T23:59:59.000Z

230

Optical fiber-based fluorescent viscosity sensor Mark A. Haidekker and Walter J. Akers  

E-Print Network [OSTI]

Optical fiber-based fluorescent viscosity sensor Mark A. Haidekker and Walter J. Akers Department bound to a fiber-optic tip without loss of viscosity sensi- tivity. The optical fiber itself may be used to molecular rotors in solution. An optical fiber-based fluorescent vis- cosity sensor may be used in real

Theodorakis, Emmanuel

231

Natural Gas Hydrate Particles in Oil-Free Systems with Kinetic Inhibition and Slurry Viscosity Reduction  

E-Print Network [OSTI]

Natural Gas Hydrate Particles in Oil-Free Systems with Kinetic Inhibition and Slurry Viscosity, reduction of slurry viscosity, and corrosion inhibition. INTRODUCTION Water often forms gas hydrates antiagglomeration (AA) in the natural gas hydrate literature. The main limitation to application has been the need

Firoozabadi, Abbas

232

A correlation of United States tar sand bitumen viscosities with NMR spectroscopic parameters  

SciTech Connect (OSTI)

A method has been developed whereby the viscosity of a tar sand bitumen at any temperature can be calculated from nuclear magnetic resonance parameters. The method is semiempirical but is based upon some fundamental theoretical concepts for molecular mobility and intermolecular interactions. Using this method, the viscosities of three United States tar sand bitumens have been correlated to the weighted average spin-spin relaxation rates for the semiliquid, solidlike mobile, and solidlike rigid phases of the bitumens. The results indicate that bitumens with a high viscosity have a greater amount of solidlike rigid phase and lesser amounts of solidlike mobile and semiliquid phases than do the bitumens with low viscosity. It is also shown that the viscosity of a tar sand bitumen over a 100 degree temperature range can be determined from a single NMR experiment conducted near room temperature. 18 refs., 3 figs., 4 tabs.

Netzel, D.A.; Turner, T.F.

1989-06-01T23:59:59.000Z

233

A correlation of United States tar sand bitumen viscosities with NMR spectroscopic parameters  

SciTech Connect (OSTI)

A method has been developed whereby the viscosity of a tar sand bitumen at any temperature can be calculated from nuclear magnetic resonance parameters. The method is semi empirical but is based upon some fundamental theoretical concepts for molecular mobility and intermolecular interactions. Using this method, the viscosities of three United States tar sand bitumens have been correlated to the weighted average spin-spin, relaxation rates for the semiliquid, solidlike mobile, and solidlike rigid phases of the bitumens. The results indicate that bitumens with a high viscosity have a greater amount of solidlike rigid phase and lesser amounts of solidlike mobile and semiliquid phases than do the bitumens with low viscosity. It is also shown that the viscosity of a tar sand bitumen over a 100 degree temperature range can be determined from a single NMR experiment conducted near room temperature.

Netzel, D.A.; Turner, T.F. (Western Research Institute, Box 3395, Laramie, WY (US))

1990-01-01T23:59:59.000Z

234

Viscous potential flow analysis of electrified miscible finitely conducting fluid through porous media  

SciTech Connect (OSTI)

In this work, a viscous potential flow analysis is used to investigate capillary surface waves between two horizontal finite fluid layers. The two layers have finite conductivities and admit mass and heat transfer. A general dispersion relation is derived. The presence of finite conductivities together with the dielectric permeabilities makes the horizontal electric field play a dual role in the stability criterion. The phenomenon of negative viscosity is observed. A new growth rate parameter, depending on the kinematical viscosity of the lower fluid layer, is found and has a stabilizing effect on the unstable modes. The growth rates and neutral stability curve are given and applied to air-water interface. The effects of various parameters are discussed for the Kelvin-Helmholtz and the Rayleigh-Taylor instabilities.

Obied Allah, M. H. [Department of Mathematics, Faculty of Science, Assiut University, Assiut (Egypt)

2013-04-15T23:59:59.000Z

235

Creating fluid injectivity in tar sands formations  

DOE Patents [OSTI]

Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons including mobilized hydrocarbons are produced from the portion.

Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

2012-06-05T23:59:59.000Z

236

Creating fluid injectivity in tar sands formations  

DOE Patents [OSTI]

Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons are produced from the portion.

Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

2010-06-08T23:59:59.000Z

237

Direct Numerical Simulation of Surfactant-Stabilized Emulsions Morphology and Shear Viscosity in Starting Shear Flow  

SciTech Connect (OSTI)

A 3D lattice Boltzmann model for two-phase flow with amphiphilic surfactant was used to investigate the evolution of emulsion morphology and shear stress in starting shear flow. The interfacial contributions were analyzed for low and high volume fractions and varying surfactant activity. A transient viscoelastic contribution to the emulsion rheology under constant strain rate conditions was attributed to the interfacial stress. For droplet volume fractions below 0.3 and an average capillary number of about 0.25, highly elliptical droplets formed. Consistent with affine deformation models, gradual elongation of the droplets increased the shear stress at early times and reduced it at later times. Lower interfacial tension with increased surfactant activity counterbalanced the effect of increased interfacial area, and the net shear stress did not change significantly. For higher volume fractions, co-continuous phases with a complex topology were formed. The surfactant decreased the interfacial shear stress due mainly to advection of surfactant to higher curvature areas. Our results are in qualitative agreement with experimental data for polymer blends in terms of transient interfacial stresses and limited enhancement of the emulsion viscosity at larger volume fractions where the phases are co-continuous.

Roar Skartlien; Espen Sollum; Andreas Akselsen; Paul Meakin

2012-07-01T23:59:59.000Z

238

Fiber optic fluid detector  

DOE Patents [OSTI]

Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

Angel, S.M.

1987-02-27T23:59:59.000Z

239

Frequency-dependent processing and interpretation (FDPI) of seismic data for identifying, imaging and monitoring fluid-saturated underground reservoirs  

DOE Patents [OSTI]

A method for identifying, imaging and monitoring dry or fluid-saturated underground reservoirs using seismic waves reflected from target porous or fractured layers is set forth. Seismic imaging the porous or fractured layer occurs by low pass filtering of the windowed reflections from the target porous or fractured layers leaving frequencies below low-most corner (or full width at half maximum) of a recorded frequency spectra. Additionally, the ratio of image amplitudes is shown to be approximately proportional to reservoir permeability, viscosity of fluid, and the fluid saturation of the porous or fractured layers.

Goloshubin, Gennady M.; Korneev, Valeri A.

2006-11-14T23:59:59.000Z

240

Frequency-dependent processing and interpretation (FDPI) of seismic data for identifying, imaging and monitoring fluid-saturated underground reservoirs  

DOE Patents [OSTI]

A method for identifying, imaging and monitoring dry or fluid-saturated underground reservoirs using seismic waves reflected from target porous or fractured layers is set forth. Seismic imaging the porous or fractured layer occurs by low pass filtering of the windowed reflections from the target porous or fractured layers leaving frequencies below low-most corner (or full width at half maximum) of a recorded frequency spectra. Additionally, the ratio of image amplitudes is shown to be approximately proportional to reservoir permeability, viscosity of fluid, and the fluid saturation of the porous or fractured layers.

Goloshubin, Gennady M. (Sugar Land, TX); Korneev, Valeri A. (Lafayette, CA)

2005-09-06T23:59:59.000Z

Note: This page contains sample records for the topic "fluid viscosity increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Metalworking and machining fluids  

DOE Patents [OSTI]

Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.

Erdemir, Ali (Naperville, IL); Sykora, Frank (Caledon, ON, CA); Dorbeck, Mark (Brighton, MI)

2010-10-12T23:59:59.000Z

242

Purely radiative perfect fluids  

E-Print Network [OSTI]

We study `purely radiative' (div E = div H = 0) and geodesic perfect fluids with non-constant pressure and show that the Bianchi class A perfect fluids can be uniquely characterized --modulo the class of purely electric and (pseudo-)spherically symmetric universes-- as those models for which the magnetic and electric part of the Weyl tensor and the shear are simultaneously diagonalizable. For the case of constant pressure the same conclusion holds provided one also assumes that the fluid is irrotational.

B. Bastiaensen; H. R. Karimian; N. Van den Bergh; L. Wylleman

2007-05-08T23:59:59.000Z

243

Effects of oxygen on fracturing fluids  

SciTech Connect (OSTI)

The stability of polysaccharide gels at high temperature is limited by such factors as pH, mechanical degradation, and oxidants. Oxygen is unavoidably placed in fracturing fluids through dissolution of air. To prevent premature degradation of the fracturing fluid by this oxidant, oxygen scavengers are commonly used. In this paper, the effects of oxygen and various oxygen scavengers on gel stability will be presented. Mechanical removal of oxygen resulted in surprisingly stable fracturing gels at 275 F. However, chemical removal of oxygen gave mixed results. Test data from sodium thiosulfate, sodium sulfite, and sodium erythorbate used as oxygen scavengers/gel stabilizers showed that the efficiency of oxygen removal from gels did not directly coincide with the viscosity retention of the gel, and large excesses of additives were necessary to provide optimum gel stabilization. The inability of some oxygen scavengers to stabilize the gel was the result of products created from the interaction of oxygen with the oxygen scavenger, which in turn, produced species that degraded the gel. The ideal oxygen scavenger should provide superior gel stabilization without creating detrimental side reaction products. Of the materials tested, sodium thiosulfate appeared to be the most beneficial.

Walker, M.L.; Shuchart, C.E.; Yaritz, J.G.; Norman, L.R.

1995-11-01T23:59:59.000Z

244

Effect of Resins and DBSA on Asphaltene Precipitation from Petroleum Fluids  

E-Print Network [OSTI]

Effect of Resins and DBSA on Asphaltene Precipitation from Petroleum Fluids Lamia Goual and Abbas different petroleum fluids. Various resins are added to three different petroleum fluids to measure of precipitation. However, addition of resins to a petroleum fluid increases the amount of precipitated asphaltenes

Firoozabadi, Abbas

245

MECH 386 INDUSTRIAL FLUID MECHANICS INDUSTRIAL FLUID MECHANICS  

E-Print Network [OSTI]

MECH 386 ­ INDUSTRIAL FLUID MECHANICS 1 INDUSTRIAL FLUID MECHANICS MECH 386 Contact information Dr This course is an introduction to industrial fluid mechanics. According to J. C. R. Hunt (a famous fluid mechanics specialist): "industrial fluid mechanics broadly covers those aspects of the design, manufacture

246

Determining circulating fluid temperature in drilling, workover, and well-control operations  

SciTech Connect (OSTI)

Estimation of fluid temperature in both flow conduits (drillpipe or tubing and the annulus) is required to ascertain the fluid density and viscosity and, in turn, to calculate the pressure drop or the maximum allowable pumping rate for a number of operations. These operations include drilling, workover, and well control. The fluid temperature estimation becomes critical for high-temperature or geothermal reservoirs where significant heat exchange occurs or when fluid properties are temperature sensitive, such as for a non-Newtonian fluid. In this work, the authors present an analytical model for the flowing fluid temperature in the drillpipe/tubing and in the annulus as a function of well depth and circulation time. The model is based on an energy balance between the formation and the fluid in the drillpipe.tubing and annulus. Steady-state heat transfer is assumed in the wellbore while transient heat transfer takes place in the formation. solutions are obtained for two possible scenarios: (1) the fluid flows down the annulus and up the drillpipe/tubing, and (2) the fluid flows down the tubing and up the annulus. The analytic model developed is cast in a set of simple algebraic equations for rapid implementation. The authors also show that the maximum temperature occurs not at the well bottom, but at some distance higher from the bottom for flow up the annulus.

Kabir, C.S. [Chevron Overseas Petroleum Technology Co. (Kuwait); Hasan, A.R.; Ameen, M.M. [Univ. of North Dakota, Grand Forks, ND (United States); Kouba, G.E.

1996-06-01T23:59:59.000Z

247

A parameter sensitivity analysis using an EOS for optimal characterization of Cupiagua reservoir fluids  

E-Print Network [OSTI]

PARAMETER FOR HYDROCARBONS . . . . Page 3. 1- PVT SUMMARY. . . . . . 46 3. 2- 3. 3- RECOMBINED FLUID COMPOSITION- CUPIAGUA A1 CCE AT 242eF AND 244eF ? CUPIAGUA Al . . . . . . . . . , 49 . . . . . . . 50 3. 4- CVD AT 242eF ? CUPIAGUA Al (UPPER.... 10- CCE AT 1500F, 240eF AND 247eF ? CUPIAGUA C3 . . . . . CVD AT 247eF - CUPIAGUA C3. MULTISTAGE SEPARATOR SUMMARY- CUPIAGUA C3. . . . . 54 . . . . 55 . . . . 55 3. 11- FLUID VISCOSITY AT 247 F ? CUPIAGUA C3 . . . . . . . . . 55 3. 12...

Florez, Alberto

1998-01-01T23:59:59.000Z

248

Fluid blade disablement tool  

DOE Patents [OSTI]

A fluid blade disablement (FBD) tool that forms both a focused fluid projectile that resembles a blade, which can provide precision penetration of a barrier wall, and a broad fluid projectile that functions substantially like a hammer, which can produce general disruption of structures behind the barrier wall. Embodiments of the FBD tool comprise a container capable of holding fluid, an explosive assembly which is positioned within the container and which comprises an explosive holder and explosive, and a means for detonating. The container has a concavity on the side adjacent to the exposed surface of the explosive. The position of the concavity relative to the explosive and its construction of materials with thicknesses that facilitate inversion and/or rupture of the concavity wall enable the formation of a sharp and coherent blade of fluid advancing ahead of the detonation gases.

Jakaboski, Juan-Carlos (Albuquerque, NM); Hughs, Chance G. (Albuquerque, NM); Todd, Steven N. (Rio Rancho, NM)

2012-01-10T23:59:59.000Z

249

Ultrasonic attenuation and volume viscosity in liquid argon, nitrogen and helium  

E-Print Network [OSTI]

/cm . Measurements taken at densities from 2 1. 06 to 1. 42 g/cm result in values of 2. 3 to 0. 8 for the ratio of volume to shear viscosity. These values are compared with theoretical predictions of other investigators. It appears that the volume viscosity...ULTRASOM IC A'ITEN UAT IOM AMD VOLUME VISCOSITY IM LIQUID ARGON, "IITROGEV AMD MET IUM A Thesis by JAMES ROBFRT SI'%GER Submitted to the Graduate College of the Texas AgM University in partial fulfillment of the requirements for the degree...

Singer, James Robert

1967-01-01T23:59:59.000Z

250

J. Fluid Mech. (2012), vol. 690, pp. 94128. c Cambridge University Press 2011 94 doi:10.1017/jfm.2011.386  

E-Print Network [OSTI]

-4 percritical flows. However, thanks to the use of water-based fluids of vari-5 ous viscosity, our experiments show that a rhomboid pattern can develop in6 subcritical flows. Its angle is primarily a function the mark of a hydraulic phenomenon,10 but rather results from the coupling between the water flow

251

Fluid sampling system  

DOE Patents [OSTI]

An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to be decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank. 4 figs.

Houck, E.D.

1994-10-11T23:59:59.000Z

252

Fluid sampling system  

DOE Patents [OSTI]

An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.

Houck, Edward D. (Idaho Falls, ID)

1994-01-01T23:59:59.000Z

253

Thermodynamic Model for Fluid-Fluid Interfacial Areas in Porous...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(free) and isolated (entrapped) nonwetting fluids. The model is restricted to two-fluid systems in which (1) no significant conversion of mechanical work into heat occurs,...

254

Tilting the Primordial Power Spectrum with Bulk Viscosity  

E-Print Network [OSTI]

Within the context of the cold dark matter model, current observations suggest that inflationary models which generate a tilted primordial power spectrum with negligible gravitational waves provide the most promising mechanism for explaining large scale clustering. The general form of the inflationary potential which produces such a spectrum is a hyperbolic function and is interpreted physically as a bulk viscous stress contribution to the energy-momentum of a perfect baryotropic fluid. This is equivalent to expanding the equation of state as a truncated Taylor series. Particle physics models which lead to such a potential are discussed.

James E. Lidsey

1993-12-16T23:59:59.000Z

255

FRACTURING FLUID CHARACTERIZATION FACILITY  

SciTech Connect (OSTI)

Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

Subhash Shah

2000-08-01T23:59:59.000Z

256

Fluid sampling tool  

DOE Patents [OSTI]

A fluid sampling tool is described for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall. 6 figs.

Garcia, A.R.; Johnston, R.G.; Martinez, R.K.

1999-05-25T23:59:59.000Z

257

Effects of lubricant viscosity and surface texturing on ring-pack performance in internal combustion engines  

E-Print Network [OSTI]

The piston ring-pack contributes approximately 25% of the mechanical losses in an internal combustion engine. Both lubricant viscosity and surface texturing were investigated in an effort to reduce this ring-pack friction ...

Takata, Rosalind (Rosalind Kazuko), 1978-

2006-01-01T23:59:59.000Z

258

Deformation and breakup of high-viscosity droplets with symmetric microfluidic cross flows Thomas Cubaud*  

E-Print Network [OSTI]

flows due to the effect of nearby boundaries. In particular, the translation of lubricated drops having are generated at the first focusing section by injecting a sili- cone oil liquid L1 , having a viscosity 1

Cubaud, Thomas

259

The effective approach for predicting viscosity of saturated and undersaturated reservoir oil  

E-Print Network [OSTI]

Predicting reservoir oil viscosity with numerical correlation equations using field-measured variables is widely used in the petroleum industry. Most published correlation equations, however, have never profoundly realized the genuine relationship...

Kulchanyavivat, Sawin

2006-04-12T23:59:59.000Z

260

Analysis of techniques for predicting viscosity of heavy oil and tar sand bitumen  

SciTech Connect (OSTI)

Thermal recovery methods are generally employed for recovering heavy oil and tar sand bitumen. These methods rely on reduction of oil viscosity by application of heat as one of the primary mechanisms of oil recovery. Therefore, design and performance prediction of the thermal recovery methods require adequate prediction of oil viscosity as a function of temperature. In this paper, several commonly used temperature-viscosity correlations are analyzed to evaluate their ability to correctly predict heavy oil and bitumen viscosity as a function of temperature. The analysis showed that Ali and Standing`s correlations gave satisfactory results in most cases when properly applied. Guidelines are provided for their application. None of the correlations, however, performed satisfactorily with very heavy oils at low temperatures.

Khataniar, S.; Patil, S.L.; Kamath, V.A. [Univ. of Alaska, Fairbanks, AK (United States)

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "fluid viscosity increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Effects of petroleum distillate on viscosity, density and surface tension of intermediate and heavy crude oils  

E-Print Network [OSTI]

Experimental and analytical studies have been carried out to better understand the effects of additives on viscosity, density and surface tension of intermediate and heavy crude oils. The studies have been conducted for the following oil samples...

Abdullayev, Azer

2009-06-02T23:59:59.000Z

262

Role of viscosity in the accurate prediction of source-terms for high molecular weight substances  

E-Print Network [OSTI]

This study shows that using better material property predictions results in better source-term modeling for high molecular weight substances. Viscosity, density, and enthalpy are used as a function of process variables, namely, temperature...

Shaikh, Irfan Yusuf

1999-01-01T23:59:59.000Z

263

Medium effects and the shear viscosity of the dilute Fermi gas away from the conformal limit  

E-Print Network [OSTI]

We study the shear viscosity of a dilute Fermi gas as a function of the scattering length in the vicinity of the unitarity limit. The calculation is based on kinetic theory, which provides a systematic approach to transport properties in the limit in which the fugacity $z=n\\lambda^3/2$ is small. Here, $n$ is the density of the gas and $\\lambda$ is the thermal wave length of the fermions. At leading order in the fugacity expansion the shear viscosity is independent of density, and the minimum shear viscosity is achieved at unitarity. At the next order medium effects modify the scattering amplitude as well as the quasi-particle energy and velocity. We show that these effects shift the minimum of the shear viscosity to the Bose-Einstein condensation (BEC) side of the resonance, in agreement with the result of recent experiments.

Marcus Bluhm; Thomas Schaefer

2014-10-10T23:59:59.000Z

264

Supercritical fluid extraction  

DOE Patents [OSTI]

A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated or lipophilic crown ether or fluorinated dithiocarbamate. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

Wai, Chien M. (Moscow, ID); Laintz, Kenneth (Pullman, WA)

1994-01-01T23:59:59.000Z

265

Multiphase fluid characterization system  

DOE Patents [OSTI]

A measurement system and method for permitting multiple independent measurements of several physical parameters of multiphase fluids flowing through pipes are described. Multiple acoustic transducers are placed in acoustic communication with or attached to the outside surface of a section of existing spool (metal pipe), typically less than 3 feet in length, for noninvasive measurements. Sound speed, sound attenuation, fluid density, fluid flow, container wall resonance characteristics, and Doppler measurements for gas volume fraction may be measured simultaneously by the system. Temperature measurements are made using a temperature sensor for oil-cut correction.

Sinha, Dipen N.

2014-09-02T23:59:59.000Z

266

Br-Cl-Na systematics in Illinois basin fluids: Constraints on fluid origin and evolution  

SciTech Connect (OSTI)

The authors present here bromide, chloride, and sodium data for fluids from reservoirs of Ordovician through Pennsylvania age in the Illinois basic which suggest that remnant marine fluids contribute significantly to fluid Cl budgets. Cl/Br and NaBr ratios for Ordovician through Devonian formation fluids are relatively uniform and near those for seawater, despite greater than a factor of ten range in Cl concentration. In contrast, fluids from Mississippian and Pennsylvanian reservoirs, separated from older reservoirs by the New Albany Shale Group, have more variable fluid Cl/Br and Na/Br ratios, most of which are significantly greater then those of seawater. The 1:1 stoichiometry of Cl and Na increases for Mississippian and Pennsylvanian formation fluids is consistent with halite dissolution. Nevertheless, Br systematics and mass-balance considerations indicate that he overall Cl budget of Illinois basin formation fluids appears to be more significantly influenced by the contribution from subaerially evaporated seawater than by halite dissolution.

Walter, L.M.; Huston, T.J. (Washington Univ., St. Louis, Missouri (USA)); Stueber, A.M. (Southern Illinois Univ., Edwardsville (USA))

1990-04-01T23:59:59.000Z

267

On the "viscosity maximum" during the uniaxial extension of a low density polyethylene  

E-Print Network [OSTI]

An experimental investigation of the viscosity overshoot phenomenon observed during uniaxial extension of a low density polyethylene is pre- sented. For this purpose, traditional integral viscosity measurements on a Muenstedt type extensional rheometer are combined with local mea- surements based on the in-situ visualization of the sample under exten- sion. For elongational experiments at constant strain rates within a wide range of Weissenberg numbers (Wi), three distinct deformation regimes are identified. Corresponding to low values of Wi (regime I), the tensile stress displays a broad maximum. This maximum can be explained by simple mathematical arguments as a result of low deformation rates and it should not be confused with the viscosity overshoot phenomenon. Corre- sponding to intermediate values of Wi (regime II), a local maximum of the integral extensional viscosity is systematically observed. However, within this regime, the local viscosity measurements reveal no maximum, but a plateau. Careful inspection of the images of samples within this regime shows that, corresponding to the maximum of the integral viscosity, sec- ondary necks develop along the sample. The emergence of a maximum of the integral elongational viscosity is thus related to the distinct in- homogeneity of deformation states and is not related to the rheological properties of the material. In the fast stretching limit (high Wi, regime III), the overall geometric uniformity of the sample is well preserved, no secondary necks are observed and both the integral and the local transient elongational viscosity show no maximum. A detailed comparison of the experimental findings with results from literature is presented.

Teodor I. Burghelea; Zdenek Stary; Helmut Muenstedt

2010-01-13T23:59:59.000Z

268

Shear viscosity from Gauss-Bonnet gravity with a dilaton coupling  

SciTech Connect (OSTI)

We calculate the shear viscosity of field theories with gravity duals of Gauss-Bonnet gravity with a nontrivial dilaton using anti-de Sitter/conformal field theory. We find that the dilaton field has a nontrivial contribution to the ratio of shear viscosity over entropy density, and, after imposing a causal constraint for the boundary field theory, the new lower bound 4/25{pi}, obtained from pure Gauss-Bonnet gravity, may have a small violation.

Cai Ronggen [Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100190 (China); Nie Zhangyu; Sun Yawen [Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100190 (China); Graduate University of Chinese Academy of Sciences, YuQuan Road 19A, Beijing 100049 (China); Ohta, Nobuyoshi [Department of Physics, Kinki University, Higashi-Osaka, Osaka 577-8502 (Japan)

2009-03-15T23:59:59.000Z

269

Viscosity of plant oils as a function of temperature, fatty acid chain length, and unsaturation  

E-Print Network [OSTI]

for the degree of MASTER OF SCIENCE December 1988 Major Subject: Agricultural Engineering VISCOSITY OF PLANT OILS AS A FUNCTION OF TEMPERATURE, FATTY ACID CHAIN LENGTH, AND UNSATURATION A Thesis by TONG HENG NEO Approved as to style and content by...: Vincent E. Sweat (Chairman of Committee) Ron L. Richter (Member) R. Engler (Member) Edward A. Hiler (Head of the Department) December 1988 ABSTRACT Viscosity of Plant Oils as a Function of Temperature, Fatty Acid Chain Length, and Unsaturation...

Neo, Tong Heng

1988-01-01T23:59:59.000Z

270

Numerical implication of Riemann problem theory for fluid dynamics  

SciTech Connect (OSTI)

The Riemann problem plays an important role in understanding the wave structure of fluid flow. It is also crucial step in some numerical algorithms for accurately and efficiently computing fluid flow; Godunov method, random choice method, and from tracking method. The standard wave structure consists of shock and rarefaction waves. Due to physical effects such as phase transitions, which often are indistinguishable from numerical errors in an equation of state, anomalkous waves may occur, ''rarefaction shocks'', split waves, and composites. The anomalous waves may appear in numerical calculations as waves smeared out by either too much artificial viscosity or insufficient resolution. In addition, the equation of state may lead to instabilities of fluid flow. Since these anomalous effects due to the equation of state occur for the continuum equations, they can be expected to occur for all computational algorithms. The equation of state may be characterized by three dimensionless variables: the adiabatic exponent ..gamma.., the Grueneisen coefficient GAMMA, and the fundamental derivative G. The fluid flow anomalies occur when inequalities relating these variables are violated. 18 refs.

Menikoff, R.

1988-01-01T23:59:59.000Z

271

Volume-translated cubic EoS and PC-SAFT density models and a free volume-based viscosity model for hydrocarbons at extreme temperature and pressure conditions  

SciTech Connect (OSTI)

This research focuses on providing the petroleum reservoir engineering community with robust models of hydrocarbon density and viscosity at the extreme temperature and pressure conditions (up to 533 K and 276 MPa, respectively) characteristic of ultra-deep reservoirs, such as those associated with the deepwater wells in the Gulf of Mexico. Our strategy is to base the volume-translated (VT) Peng–Robinson (PR) and Soave–Redlich–Kwong (SRK) cubic equations of state (EoSs) and perturbed-chain, statistical associating fluid theory (PC-SAFT) on an extensive data base of high temperature (278–533 K), high pressure (6.9–276 MPa) density rather than fitting the models to low pressure saturated liquid density data. This high-temperature, high-pressure (HTHP) data base consists of literature data for hydrocarbons ranging from methane to C{sub 40}. The three new models developed in this work, HTHP VT-PR EoS, HTHP VT-SRK EoS, and hybrid PC-SAFT, yield mean absolute percent deviation values (MAPD) for HTHP hydrocarbon density of ?2.0%, ?1.5%, and <1.0%, respectively. An effort was also made to provide accurate hydrocarbon viscosity models based on literature data. Viscosity values are estimated with the frictional theory (f-theory) and free volume (FV) theory of viscosity. The best results were obtained when the PC-SAFT equation was used to obtain both the attractive and repulsive pressure inputs to f-theory, and the density input to FV theory. Both viscosity models provide accurate results at pressures to 100 MPa but experimental and model results can deviate by more than 25% at pressures above 200 MPa.

Burgess, Ward A.; Tapriyal, Deepak; Morreale, Bryan D.; Soong, Yee; Baled, Hseen; O Enick, Robert M; Wu, Yue; Bamgbade, Babatunde A.; McHugh,Mark A.

2013-12-15T23:59:59.000Z

272

Circulating Fluid Bed Combustor  

E-Print Network [OSTI]

The circulating bed combustor represents an alternative concept of burning coal in fluid bed technology, which offers distinct advantages over both the current conventional fluidized bed combustion system and the pulverized coal boilers equipped...

Fraley, L. D.; Do, L. N.; Hsiao, K. H.

1982-01-01T23:59:59.000Z

273

Fluid pumping apparatus  

DOE Patents [OSTI]

A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.

West, Phillip B. (Idaho Falls, ID)

2006-01-17T23:59:59.000Z

274

Basic fluid system trainer  

DOE Patents [OSTI]

A trainer, mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.

Semans, Joseph P. (Uniontown, PA); Johnson, Peter G. (Pittsburgh, PA); LeBoeuf, Jr., Robert F. (Clairton, PA); Kromka, Joseph A. (Idaho Falls, ID); Goron, Ronald H. (Connellsville, PA); Hay, George D. (Venetia, PA)

1993-01-01T23:59:59.000Z

275

Phoresis in fluids  

E-Print Network [OSTI]

This paper presents a unified theory of phoretic phenomena in single-component fluids. Simple formulas are given for the phoretic velocities of small inert force-free non-Brownian particles migrating through otherwise ...

Brenner, Howard

276

Valve for fluid control  

DOE Patents [OSTI]

A valve for controlling fluid flows. This valve, which includes both an actuation device and a valve body provides: the ability to incorporate both the actuation device and valve into a unitary structure that can be placed onto a microchip, the ability to generate higher actuation pressures and thus control higher fluid pressures than conventional microvalves, and a device that draws only microwatts of power. An electrokinetic pump that converts electric potential to hydraulic force is used to operate, or actuate, the valve.

Oborny, Michael C. (Albuquerque, NM); Paul, Phillip H. (Livermore, CA); Hencken, Kenneth R. (Pleasanton, CA); Frye-Mason, Gregory C. (Cedar Crest, NM); Manginell, Ronald P. (Albuquerque, NM)

2001-01-01T23:59:59.000Z

277

R3 fluids  

E-Print Network [OSTI]

With regard to large-scale astrophysical systems, the current paper deals with (i) formulation of tensor virial equations from the standpoint of analytical mechanics; (ii) investigation on the role of systematic and random motions for virial equilibrium configurations; (iii) extent to which systematic and random motions are equivalent in changing a fluid shape. The tensor virial equations are formulated using analytical mechanics, and the self potential-energy tensor is shown to be symmetric. The role of systematic and random motions in collisionless, ideal, self-gravitating fluids, is analysed in detail including radial and tangential velocity dispersion on the equatorial plane. R3 fluids are defined as ideal, self-gravitating fluids in virial equilibrium, with systematic rotation around a principal axis of inertia, and ihe related virial equations are formulated. A unified theory of systematic and random motions is developed for R3 fluids, taking into consideration imaginary rotation. The effect of random motion excess is shown to be equivalent to an additional real or imaginary rotation, respectively, inducing flattening or elongation. R3 fluids are found to admit adjoint configurations with isotropic random velocity distribution. Further constraints are established on the amount of random velocity anisotropy along the principal axes, for triaxial configurations. A necessary condition is formulated for the occurrence of bifurcation points from axisymmetric to triaxial configurations in virial equilibrium, which is independent of the anisotropy parameters. In the special case of homeoidally striated Jacobi ellipsoid, some previously known results are reproduced.

R. Caimmi

2006-07-27T23:59:59.000Z

278

Solubility, viscosity and density of refrigerant/lubricant mixtures  

SciTech Connect (OSTI)

This report presents results for low refrigerant concentration (70, 80, 90 and 100 weight percent lubricant) mixtures of the following fluids: CFC-12/ISO 32 naphthenic mineral oil, HCFC-22/ISO 32 naphthenic mineral oil, CFC-12/ISO 100 naphthenic mineral oil, HFC-134a/ISO 22 pentaerythritol ester mixed acid, HFC-134a/ISO 32 pentaerythritol ester mixed acid [number sign]1, HFC-134a/ISO 68 pentaerythritol ester mixed acid, HFC-134a/ISO 100 pentaerythritol ester mixed acid, HFC-134a/ISO 32 pentaerythritol ester mixed acid [number sign]2, HCFC-123/ISO 32 naphthenic mineral oil, HCFC-123/ISO 100 naphthenic mineral oil, HCFC-123/150 SUS alkylbenzene, HCFC-123/300 SUS alkylbenzene. These data have been reduced to engineering form and are presented in the form of a Daniel Chart. Equations are given along with statistical measures of goodness of fit.

Henderson, D.R.

1993-04-01T23:59:59.000Z

279

Lecture notes Introductory fluid mechanics  

E-Print Network [OSTI]

Lecture notes Introductory fluid mechanics Simon J.A. Malham Simon J.A. Malham (22nd February 2013 of fluid mechanics and along the way see lots of interesting applications. 2 Fluid flow 2.1 Flow A material essential to all modern car braking mechanisms. Fluids can be further subcatergorized. There are ideal

Malham, Simon J.A.

280

Lecture notes Introductory fluid mechanics  

E-Print Network [OSTI]

Lecture notes Introductory fluid mechanics Simon J.A. Malham Simon J.A. Malham (17th March 2014 of fluid mechanics and along the way see lots of interesting applications. 2 Fluid flow, the Continuum are generally incompressible--a feature essential to all modern car braking mechanisms. Fluids can be further

Malham, Simon J.A.

Note: This page contains sample records for the topic "fluid viscosity increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fluid Mechanics and Homeland Security  

E-Print Network [OSTI]

Fluid Mechanics and Homeland Security Gary S. Settles Mechanical and Nuclear Engineering Department. 2006. 38:87­110 The Annual Review of Fluid Mechanics is online at fluid.annualreviews.org doi: 10 security involves many applications of fluid mechanics and offers many opportunities for research

Settles, Gary S.

282

Tailored Working Fluids for Enhanced Binary Geothermal Power Plants  

Broader source: Energy.gov [DOE]

DOE Geothermal Program Peer Review 2010 - Presentation. Project Objective: To improve the utilization of available energy in geothermal resources and increase the energy conversion efficiency of systems employed by a) tailoring the subcritical and/or supercritical glide of enhanced working fluids to best match thermal resources, and b) identifying appropriate thermal system and component designs for the down-selected working fluids.

283

Fluid driven recipricating apparatus  

DOE Patents [OSTI]

An apparatus comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached.

Whitehead, John C. (Davis, CA)

1997-01-01T23:59:59.000Z

284

Fluid driven reciprocating apparatus  

DOE Patents [OSTI]

An apparatus is described comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached. 13 figs.

Whitehead, J.C.

1997-04-01T23:59:59.000Z

285

Shear viscosity of the quark-gluon plasma in a kinetic theory approach  

SciTech Connect (OSTI)

One of the main results of heavy ions collision (HIC) at relativistic energy experiments is the very small shear viscosity to entropy density ratio of the Quark-Gluon Plasma, close to the conjectured lower bound ?/s=1/4? for systems in the infinite coupling limit. Transport coefficients like shear viscosity are responsible of non-equilibrium properties of a system: Green-Kubo relations give us an exact expression to compute these coefficients. We compute shear viscosity numerically using Green-Kubo relation in the framework of Kinetic Theory solving the relativistic transport Boltzmann equation in a finite box with periodic boundary conditions. We investigate a system of particles interacting via anisotropic and energy dependent cross-section in the range of temperature of interest for HIC. Green-Kubo results are in agreement with Chapman-Enskog approximation while Relaxation Time approximation can underestimates the viscosity of a factor 2. The correct analytic formula for shear viscosity can be used to develop a transport theory with a fixed ?/s and have a comparison with physical observables like elliptic flow.

Puglisi, A.; Plumari, S.; Scardina, F.; Greco, V. [Department of Physics and Astronomy, University of Catania, Via S. Sofia 64, I-95125 Catania, Italy and Laboratorio Nazionale del Sud, INFN-LNS, Via S. Sofia 63, I-95125 Catania (Italy)

2014-05-09T23:59:59.000Z

286

Universal fluid droplet ejector  

DOE Patents [OSTI]

A droplet generator comprises a fluid reservoir having a side wall made of glass or quartz, and an end cap made from a silicon plate. The end cap contains a micromachined aperture through which the fluid is ejected. The side wall is thermally fused to the end cap, and no adhesive is necessary. This means that the fluid only comes into contact with the side wall and the end cap, both of which are chemically inert. Amplitudes of drive pulses received by reservoir determine the horizontal displacements of droplets relative to the ejection aperture. The drive pulses are varied such that the dropper generates a two-dimensional array of vertically-falling droplets. Vertical and horizontal inter-droplet spacings may be varied in real time. Applications include droplet analysis experiments such as Millikan fractional charge searches and aerosol characterization, as well as material deposition applications. 8 figs.

Lee, E.R.; Perl, M.L.

1999-08-24T23:59:59.000Z

287

Universal fluid droplet ejector  

DOE Patents [OSTI]

A droplet generator comprises a fluid reservoir having a side wall made of glass or quartz, and an end cap made from a silicon plate. The end cap contains a micromachined aperture through which the fluid is ejected. The side wall is thermally fused to the end cap, and no adhesive is necessary. This means that the fluid only comes into contact with the side wall and the end cap, both of which are chemically inert. Amplitudes of drive pulses received by reservoir determine the horizontal displacements of droplets relative to the ejection aperture. The drive pulses are varied such that the dropper generates a two-dimensional array of vertically-falling droplets. Vertical and horizontal interdroplet spacings may be varied in real time. Applications include droplet analysis experiments such as Millikan fractional charge searches and aerosol characterization, as well as material deposition applications.

Lee, Eric R. (Redwood City, CA); Perl, Martin L. (Palo Alto, CA)

1999-08-24T23:59:59.000Z

288

Dynamics of a confined dusty fluid in a sheared ion flow  

SciTech Connect (OSTI)

Dynamics of an isothermally driven dust fluid is analyzed which is confined in an azimuthally symmetric cylindrical setup by an effective potential and is in equilibrium with an unconfined sheared flow of a streaming plasma. Cases are analyzed where the confining potential constitutes a barrier for the driven fluid, limiting its spatial extension and boundary velocity. The boundary effects entering the formulation are characterized by applying the appropriate boundary conditions and a range of solutions exhibiting single and multiple vortex are obtained. The equilibrium solutions considered in the cylindrical setup feature a transition from single to multiple vortex state of the driven flow. Effects of (i) the variation in dust viscosity, (ii) coupling between the driving and the driven fluid, and (iii) a friction determining the equilibrium dynamics of the driven system are characterized.

Laishram, Modhuchandra; Sharma, Devendra; Kaw, Predhiman K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

2014-07-15T23:59:59.000Z

289

View dependent fluid dynamics  

E-Print Network [OSTI]

VIEW DEPENDENT FLUID DYNAMICS A Thesis by BRIAN ARTHUR BARRAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2006 Major Subject: Visualization... Sciences VIEW DEPENDENT FLUID DYNAMICS A Thesis by BRIAN ARTHUR BARRAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Donald...

Barran, Brian Arthur

2006-08-16T23:59:59.000Z

290

Anomalous Viscosity, Resistivity, and Thermal Diffusivity of the Solar Wind Plasma  

E-Print Network [OSTI]

In this paper we have estimated typical anomalous viscosity, resistivity, and thermal difffusivity of the solar wind plasma. Since the solar wind is collsionless plasma, we have assumed that the dissipation in the solar wind occurs at proton gyro radius through wave-particle interactions. Using this dissipation length-scale and the dissipation rates calculated using MHD turbulence phenomenology [Verma et al., 1995a], we estimate the viscosity and proton thermal diffusivity. The resistivity and electron’s thermal diffusivity have also been estimated. We find that all our transport quantities are several orders of magnitude higher than those calculated earlier using classical transport theories of Braginskii. In this paper we have also estimated the eddy turbulent viscosity. 1 1

Mahendra K. Verma

2008-01-01T23:59:59.000Z

291

Anomalous Viscosity, Resistivity, and Thermal Diffusivity of the Solar Wind Plasma  

E-Print Network [OSTI]

In this paper we have estimated typical anomalous viscosity, resistivity, and thermal difffusivity of the solar wind plasma. Since the solar wind is collsionless plasma, we have assumed that the dissipation in the solar wind occurs at proton gyro radius through wave-particle interactions. Using this dissipation length-scale and the dissipation rates calculated using MHD turbulence phenomenology [{\\it Verma et al.}, 1995a], we estimate the viscosity and proton thermal diffusivity. The resistivity and electron's thermal diffusivity have also been estimated. We find that all our transport quantities are several orders of magnitude higher than those calculated earlier using classical transport theories of {\\it Braginskii}. In this paper we have also estimated the eddy turbulent viscosity.

Mahendra K. Verma

1995-09-05T23:59:59.000Z

292

Isospin splitting of nucleon effective mass and shear viscosity of nuclear matter  

E-Print Network [OSTI]

Based on an improved isospin- and momentum-dependent interaction, we have studied the qualitative effect of isospin splitting of nucleon effective mass on the specific shear viscosity of neutron-rich nuclear matter from a relaxation time approach. It is seen that for $m_n^\\star>m_p^\\star$, the relaxation time of neutrons is smaller and the neutron flux between flow layers is weaker, leading to a smaller specific shear viscosity of neutron-rich matter compared to the case for $m_n^\\starnuclear matter at higher densities, lower temperatures, and larger isospin asymmetries, but it doesn't affect much the behavior of the specific shear viscosity near nuclear liquid-gas phase transition.

Xu, Jun

2015-01-01T23:59:59.000Z

293

Equation of State and Viscosities from a Gravity Dual of the Gluon Plasma  

E-Print Network [OSTI]

Employing new precision data of the equation of state of the SU(3) Yang-Mills theory (gluon plasma) the dilaton potential of the gravity dual is adjusted in the temperature range $(1 - 10) T_c$ in a bottom-up approach. The ratio of bulk viscosity to shear viscosity follows then as $\\zeta/\\eta \\approx \\pi \\Delta v_s^2$ for $\\Delta v_s^2 maximum value of 0.95 at $\\Delta v_s^2 \\approx 0.32$, where $\\Delta v_s^2$ is the non-conformality measure, while the ratio of shear viscosity to entropy density is known as $(4 \\pi)^{-1}$ for the considered set-up with Hilbert action on the gravity side.

R. Yaresko; B. Kampfer

2014-12-02T23:59:59.000Z

294

The Fluid Nature of Quark-Gluon Plasma  

E-Print Network [OSTI]

Collisions of heavy nuclei at very high energies offer the exciting possibility of experimentally exploring the phase transformation from hadronic to partonic degrees of freedom which is predicted to occur at several times normal nuclear density and/or for temperatures in excess of $\\sim 170$ MeV. Such a state, often referred to as a quark-gluon plasma, is thought to have been the dominant form of matter in the universe in the first few microseconds after the Big Bang. Data from the first five years of heavy ion collisions of Brookhaven National Laboratory's Relativistic Heavy Ion Collider (RHIC) clearly demonstrate that these very high temperatures and densities have been achieved. While there are strong suggestions of the role of quark degrees of freedom in determining the final-state distributions of the produced matter, there is also compelling evidence that the matter does {\\em not} behave as a quasi-ideal state of free quarks and gluons. Rather, its behavior is that of a dense fluid with very low kinematic viscosity exhibiting strong hydrodynamic flow and nearly complete absorption of high momentum probes. The current status of the RHIC experimental studies is presented, with a special emphasis on the fluid properties of the created matter, which may in fact be the most perfect fluid ever studied in the laboratory.

W. A. Zajc

2008-02-25T23:59:59.000Z

295

TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID...  

Open Energy Info (EERE)

TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION GAS CHEMISTRY Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings:...

296

Relativistic viscoelastic fluid mechanics  

E-Print Network [OSTI]

A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski spacetime become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

Masafumi Fukuma; Yuho Sakatani

2011-09-01T23:59:59.000Z

297

Supersymmetric Fluid Mechanics  

E-Print Network [OSTI]

When anticommuting Grassmann variables are introduced into a fluid dynamical model with irrotational velocity and no vorticity, the velocity acquires a nonvanishing curl and the resultant vorticity is described by Gaussian potentials formed from the Grassmann variables. Upon adding a further specific interaction with the Grassmann degrees of freedom, the model becomes supersymmetric.

R. Jackiw; A. P. Polychronakos

2000-07-17T23:59:59.000Z

298

Viscosity of liquid {sup 4}He and quantum of circulation: Are they related?  

SciTech Connect (OSTI)

In the vicinity of the superfluid transition in liquid {sup 4}He, we explore the relation between two apparently unrelated physical quantities—the kinematic viscosity, ?, in the normal state and the quantum of circulation, ?, in the superfluid state. The model developed here leads to the simple relationship ? ? ?/6, and links the classical and quantum flow properties of liquid {sup 4}He. We critically examine available data relevant to this relation and find that the prediction holds well at the saturated vapor pressure. Additionally, we predict the kinematic viscosity for liquid {sup 4}He along the ?-line at negative pressures.

L’vov, Victor S., E-mail: victor.lvov@gmail.com, E-mail: skrbek@fzu.cz, E-mail: krs3@nyu.edu [Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Skrbek, Ladislav, E-mail: victor.lvov@gmail.com, E-mail: skrbek@fzu.cz, E-mail: krs3@nyu.edu [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 12116 Prague (Czech Republic)] [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 12116 Prague (Czech Republic); Sreenivasan, Katepalli R., E-mail: victor.lvov@gmail.com, E-mail: skrbek@fzu.cz, E-mail: krs3@nyu.edu [Departments of Physics and Mechanical Engineering, and Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States)

2014-04-15T23:59:59.000Z

299

Preparation and characterization of a viscosity index improver for naphthenic and paraffinic base oils  

SciTech Connect (OSTI)

Copolymers of [alpha]-methyl styrene and 2-ethylhexyl acrylate were prepared in a benzene solution. The presence of the copolymers were confirmed by solubility, IR and NMR tests. The molecular weight and the polydispersity of the polymers were estimated by GPC. The copolymers obtained were blended with paraffinic and naphthenic base oils. The viscosity, the viscosity index (VI), the Q value as well as the stability to shear and oxidation were obtained for these blends. The results are compared with the results obtained with an oil blend containing a commonly used high temperature additive. Two of the copolymers obtained have shown to be good alternatives for specific applications.

Bataille, P. (Ecole Polytechnique de Montreal (Canada)); Sharifi-Sangani, N.; Evin, E. (Univ. of Tehran (Iran, Islamic Republic of))

1994-02-01T23:59:59.000Z

300

Lyapunov Stabilizability of Controlled Diffusions via a Superoptimality Principle for Viscosity Solutions  

SciTech Connect (OSTI)

We prove optimality principles for semicontinuous bounded viscosity solutions of Hamilton-Jacobi-Bellman equations. In particular, we provide a representation formula for viscosity supersolutions as value functions of suitable obstacle control problems. This result is applied to extend the Lyapunov direct method for stability to controlled Ito stochastic differential equations. We define the appropriate concept of the Lyapunov function to study stochastic open loop stabilizability in probability and local and global asymptotic stabilizability (or asymptotic controllability). Finally, we illustrate the theory with some examples.

Cesaroni, Annalisa [Dipartimento di Matematica P. e A., Universita di Padova, via Belzoni 7, 35131 Padova (Italy)], E-mail: acesar@math.unipd.it

2006-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "fluid viscosity increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Magnetically stimulated fluid flow patterns  

ScienceCinema (OSTI)

Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

Martin, Jim; Solis, Kyle

2014-08-06T23:59:59.000Z

302

Fluid Flow Modeling in Fractures  

E-Print Network [OSTI]

In this paper we study fluid flow in fractures using numerical simulation and address the challenging issue of hydraulic property characterization in fractures. The methodology is based on Computational Fluid Dynamics, ...

Sarkar, Sudipta

2004-01-01T23:59:59.000Z

303

Lecture notes Ideal fluid mechanics  

E-Print Network [OSTI]

Lecture notes Ideal fluid mechanics Simon J.A. Malham Simon J.A. Malham (6th Feb 2010) Maxwell and in the process learn about the subtleties of fluid mechanics and along the way see lots of interesting are generally incompressible--a feature essential to all modern car braking mechanisms. Fluids can be further

Malham, Simon J.A.

304

Fluid Mechanics 25 March 2009  

E-Print Network [OSTI]

Journal of Fluid Mechanics 25 March 2009 VOLUME 623 Journal of Fluid Mechanics 25 Mar. 2009 VOLUME 623 #12;J. Fluid Mech. (2009), vol. 623, pp. 75­84. c 2009 Cambridge University Press doi:10.1017/SLCS and the capture region enable analysis of the effect of several physiological and mechanical parameters

Dabiri, John O.

305

Shear viscosity measurements in the binary mixture butyl cellosolve-water near its upper and lower critical consolute points  

E-Print Network [OSTI]

has been measured for a two-component critical liquid system, butyl cellosolve-water, in the region to report measurements of the shear viscosity of critical binary mixture butyl cello- solve (2-n353 Shear viscosity measurements in the binary mixture butyl cellosolve-water near its upper

Boyer, Edmond

306

Influence of Droplet Geometry on the Coalescence of Low Viscosity Drops A. Eddi, K. G. Winkels, and J. H. Snoeijer  

E-Print Network [OSTI]

Influence of Droplet Geometry on the Coalescence of Low Viscosity Drops A. Eddi, K. G. Winkels involving sprays and print- ing [4,5]. Breakup and coalescence are singular events during which the liquid-off is universal in the sense that it is completely independent of initial conditions. In this regime, viscosity

Snoeijer, Jacco

307

Oscillating fluid power generator  

SciTech Connect (OSTI)

A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

Morris, David C

2014-02-25T23:59:59.000Z

308

Optical microstructure and viscosity enhancement for an epoxy resin matrix containing multiwall carbon  

E-Print Network [OSTI]

Optical microstructure and viscosity enhancement for an epoxy resin matrix containing multiwall of multiwall carbon nanotubes MWCNTs suspended in an epoxy resin matrix. The base epoxy resin was found;pended in an essentially Newtonian epoxy matrix. The particular carbon nanotubes con- sidered

Elliott, James

309

An experimental investigation into the dimension-sensitive viscosity of polymer containing lubricant oils in microchannels  

E-Print Network [OSTI]

lubricant oils in microchannels David Erickson a , Fuzhi Lu a , Dongqing Li a,*, Tony White b , Jason Gao b lubrication processes, lubricating oils containing polymer additives are subject to high shear rate through of channel height on the effective viscosity of oil lubricants with two different polymer additives (a radial

Erickson, David

310

Viscosity and mutual diffusion of deuterium-tritium mixtures in the warm-dense-matter regime  

SciTech Connect (OSTI)

We have calculated viscosity and mutual diffusion of deuterium-tritium (DT) in the warm, dense matter regime for densities from 5 to 20 g/cm{sup 3} and temperatures from 2 to 10 eV, using both finite-temperature Kohn-Sham density-functional theory molecular dynamics (QMD) and orbital-free molecular dynamics (OFMD). The OFMD simulations are in generally good agreement with the benchmark QMD results, and we conclude that the simpler OFMD method can be used with confidence in this regime. For low temperatures (3 eV and below), one-component plasma (OCP) model simulations for diffusion agree with the QMD and OFMD calculations, but deviate by 30% at 10 eV. In comparison with the QMD and OFMD results, the OCP viscosities are not as good as for diffusion, especially for 5 g/cm{sup 3} where the temperature dependence is significantly different. The QMD and OFMD reduced diffusion and viscosity coefficients are found to depend largely, though not completely, only on the Coulomb coupling parameter {Gamma}, with a minimum in the reduced viscosity at {Gamma}{approx_equal}25, approximately the same position found in the OCP simulations. The QMD and OFMD equations of state (pressure) are also compared with the hydrogen two-component plasma model.

Kress, J. D.; Cohen, James S.; Horner, D. A.; Collins, L. A. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Lambert, F. [CEA, DAM, DIF, F-91297 Arpajon (France)

2010-09-15T23:59:59.000Z

311

Thermophysical Properties of Lithium Bromide + 1, 2-Propanediol Aqueous Solutions Solubility, Density and Viscosity  

SciTech Connect (OSTI)

The solubilities, densities and viscosities of lithium bromide (LiBr) + 1, 2-propanediol (HO-CH2-CHOH-CH3) aqueous solution (mass ratio of LiBr/HO-CH2-CHOH-CH3 = 3.5, 4.5 and 5.5) were measured in the mass fraction range from 0.30 to 0.75. Solubility measurements were performed by the visual method in the temperature range of (271.15 to 345.15) K. The density measurements were made using an automated vibrating tube density meter, and the viscosity measurements were carried out with an automated falling-ball viscometer in the temperature range of (293.15 to 363.15) K. The density and viscosity data were correlated with appropriate regression equations as a function of the mass fraction and temperature. The maximum average absolute deviations (AAD) between experimental and correlated data were 0.08% and 1.51% for densities and viscosities, respectively.

Wang, Kai [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Vineyard, Edward Allan [ORNL] [ORNL

2012-01-01T23:59:59.000Z

312

Entropy Viscosity Method for Lagrangian Hydrodynamics and Central Schemes for Mean Field Games  

E-Print Network [OSTI]

problem on a computational mesh that moves with the material velocity. The method is based on two major concepts. The first one is producing high order convergence rates for smooth solutions even with active viscosity terms. This is achieved by using high...

Tomov, Vladimir

2014-04-18T23:59:59.000Z

313

The role of the solvent viscosity on the spatiotemporal instabilities of large aperture dye lasers  

E-Print Network [OSTI]

The role of the solvent viscosity on the spatiotemporal instabilities of large aperture dye lasers for publication 27 May 1998 Local intensity fluctuations in a large aperture dye laser have been measured of Physics. S0003-6951 98 00131-4 High energy flash-lamp pumped dye lasers are charac- terized by a large

Rey Juan Carlos, Universidad

314

An optimal viscosity profile in enhanced oil recovery by polymer flooding  

E-Print Network [OSTI]

An optimal viscosity profile in enhanced oil recovery by polymer flooding Prabir Daripa a,*, G in oil reservoir is one of the effective methods of enhanced (tertiary) oil recovery. A classical model reserved. Keywords: Enhanced oil recovery; Polymer flooding; Linear stability 0020-7225/$ - see front

Daripa, Prabir

315

An optimal viscosity profile in enhanced oil recovery by polymer Prabir Daripa1,  

E-Print Network [OSTI]

An optimal viscosity profile in enhanced oil recovery by polymer flooding Prabir Daripa1, and G. Pa is one of the effective methods of enhanced (tertiary) oil recovery. A classical model of this process channeling of flow through high permeable region in the heterogeneous case. Key words: enhanced oil recovery

Daripa, Prabir

316

Neutrino emissivity and bulk viscosity of iso-CSL quark matter in neutron stars  

E-Print Network [OSTI]

We present results for neutrino emissivities and bulk viscosities of a two-flavor color superconducting quark matter phase with isotropic color-spin-locked (iso-CSL) single-flavor pairing which fulfill the constraints on quark matter derived from cooling and rotational evolution of compact stars. We compare with results for the phenomenologically successful, but yet heuristic 2SC+X phase.

David B. Blaschke; Jens Berdermann

2007-10-27T23:59:59.000Z

317

The Propagation of Rayleigh Waves in Layered Piezoelectric Structures with Viscosity  

E-Print Network [OSTI]

The Propagation of Rayleigh Waves in Layered Piezoelectric Structures with Viscosity Jinxiang Shen frequency and wave propagation. With the known major properties such as the quality factor, we can obtain, filters, and delay lines made by surface acoustic waves propagating along the surface of piezoelectric

Wang, Ji

318

EFFECT OF CONTACT VISCOSITY AND ROUGHNESS ON INTERFACE STIFFNESS AND WAVE PROPAGATION  

E-Print Network [OSTI]

EFFECT OF CONTACT VISCOSITY AND ROUGHNESS ON INTERFACE STIFFNESS AND WAVE PROPAGATION Anil Misra1 and asperity properties compete in determining the stiffness behavior, and consequently, the wave propagation widely used to investigate plane wave propagation through contacts between two rough solids [see

Boyer, Edmond

319

Ultrasonic methods for measuring liquid viscosity and volume percent of solids  

SciTech Connect (OSTI)

This report describes two ultrasonic techniques under development at Argonne National Laboratory (ANL) in support of the tank-waste transport effort undertaken by the U.S. Department of Energy in treating low-level nuclear waste. The techniques are intended to provide continuous on-line measurements of waste viscosity and volume percent of solids in a waste transport line. The ultrasonic technique being developed for waste-viscosity measurement is based on the patented ANL viscometer. Focus of the viscometer development in this project is on improving measurement accuracy, stability, and range, particularly in the low-viscosity range (<30 cP). A prototype instrument has been designed and tested in the laboratory. Better than 1% accuracy in liquid density measurement can be obtained by using either a polyetherimide or polystyrene wedge. To measure low viscosities, a thin-wedge design has been developed and shows good sensitivity down to 5 cP. The technique for measuring volume percent of solids is based on ultrasonic wave scattering and phase velocity variation. This report covers a survey of multiple scattering theories and other phenomenological approaches. A theoretical model leading to development of an ultrasonic instrument for measuring volume percent of solids is proposed, and preliminary measurement data are presented.

Sheen, S.H.; Chien, H.T.; Raptis, A.C.

1997-02-01T23:59:59.000Z

320

Effect of Water on Deposition, Aggregate Size, and Viscosity of Asphaltenes  

E-Print Network [OSTI]

Effect of Water on Deposition, Aggregate Size, and Viscosity of Asphaltenes Seyma Aslan and Abbas. In this study, we investigate the aggregation and deposition of water and asphaltenes, the most polar fraction and provide the evidence for clear changes in asphaltene deposition. Differential interference contrast (DIC

Firoozabadi, Abbas

Note: This page contains sample records for the topic "fluid viscosity increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

E-Print Network 3.0 - advanced fluid mechanics Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

... Source: Obayashi, Shigeru - Institute of Fluid Science, Tohoku University Collection: Engineering 6 Jump to Content Increase text size Decrease text size Current Issue Summary:...

322

Downhole Fluid Analyzer Development  

SciTech Connect (OSTI)

A novel fiber optic downhole fluid analyzer has been developed for operation in production wells. This device will allow real-time determination of the oil, gas and water fractions of fluids from different zones in a multizone or multilateral completion environment. The device uses near infrared spectroscopy and induced fluorescence measurement to unambiguously determine the oil, water and gas concentrations at all but the highest water cuts. The only downhole components of the system are the fiber optic cable and windows. All of the active components--light sources, sensors, detection electronics and software--will be located at the surface, and will be able to operate multiple downhole probes. Laboratory testing has demonstrated that the sensor can accurately determine oil, water and gas fractions with a less than 5 percent standard error. Once installed in an intelligent completion, this sensor will give the operating company timely information about the fluids arising from various zones or multilaterals in a complex completion pattern, allowing informed decisions to be made on controlling production. The research and development tasks are discussed along with a market analysis.

Bill Turner

2006-11-28T23:59:59.000Z

323

On the forces acting on a small particle in an acoustical field in a viscous fluid  

E-Print Network [OSTI]

We calculate the acoustic radiation force from an ultrasound wave on a compressible, spherical particle suspended in a viscous fluid. Using Prandtl--Schlichting boundary-layer theory, we include the kinematic viscosity of the solvent and derive an analytical expression for the resulting radiation force, which is valid for any particle radius and boundary-layer thickness provided that both of these length scales are much smaller than the wavelength of the ultrasound wave (mm in water at MHz frequencies). The acoustophoretic response of suspended microparticles is predicted and analyzed using parameter values typically employed in microchannel acoustophoresis.

Settnes, Mikkel

2011-01-01T23:59:59.000Z

324

Molten Salt Heat Transfer Fluid (HTF)  

Energy Innovation Portal (Marketing Summaries) [EERE]

Sandia has developed a heat transfer fluid (HTF) for use at elevated temperatures that has a lower freezing point than any molten salt mixture available commercially. This allows the HTF to be used in applications in which the expensive parasitic energy costs necessary for freeze protection can be significantly reduced. The higher operating temperature limit significantly increases power cycle efficiency and overall power plan sun-to-net electric efficiency....

2013-03-12T23:59:59.000Z

325

LUBRICANTS AND HYDRAULIC FLUIDS  

E-Print Network [OSTI]

Contents) Major General, USA Chief of Staff i Table of Contents Purpose ........................................................ 1-1 1-1 Applicability .................................................... 1-2 1-1 References ...................................................... 1-3 1-1 Distribution Statement ............................................. 1-4 1-1 Scope ......................................................... 1-5 1-2 Friction ........................................................ 2-1 2-1 Wear .......................................................... 2-2 2-4 Lubrication and Lubricants ......................................... 2-3 2-6 Hydrodynamic or Fluid Film Lubrication ............................... 2-4 2-6 Boundary Lubrication ............................................. 2-5 2-8 Extreme Pressure (EP) Lubrication ................................... 2-6 2-9 Elastohydrodynamic (EHD) Lubrication ................................ 2-7 2-9 Oil R

Engineer Manual Department

326

Mixture of anisotropic fluids  

E-Print Network [OSTI]

The recently introduced approach describing coupled quark and gluon anisotropic fluids is generalized to include explicitly the transitions between quarks and gluons. We study the effects of such processes on the thermalization rate of anisotropic systems. We find that the quark-gluon transitions may enhance the overall thermalization rate in the cases where the initial momentum anisotropies correspond to mixed oblate-prolate or prolate configurations. On the other hand, no effect on the thermalization rate is found in the case of oblate configurations. The observed regularities are connected with the late-time behavior of the analyzed systems which is described either by the exponential decay or the power law.

Wojciech Florkowski; Radoslaw Maj

2013-09-11T23:59:59.000Z

327

RUMINAL ADAPTATION TO INCREASING LEVELS OF CONCENTRATES  

E-Print Network [OSTI]

.0 % citrus pulp, 1.0 % lard, 7.0 % sugarbeet pulp, 3.3 % oat husk meal, 2.0 % coconut expeller and 2-chromatography. The rate of lactate fermentation was measured by incubation of 10 ml rumen fluid (taken at 14.00 h) with 1. If adaptation occurs one should expect an increase of lactate and a higher rate of L- lactate fermentation

Paris-Sud XI, Université de

328

Chemical and Microbial Characterization of North Slope Viscous Oils to Assess Viscosity Reduction and Enhanced Recovery  

SciTech Connect (OSTI)

A large proportion of Alaska North Slope (ANS) oil exists in the form of viscous deposits, which cannot be produced entirely using conventional methods. Microbially enhanced oil recovery (MEOR) is a promising approach for improving oil recovery for viscous deposits. MEOR can be achieved using either ex situ approaches such as flooding with microbial biosurfactants or injection of exogenous surfactant-producing microbes into the reservoir, or by in situ approaches such as biostimulation of indigenous surfactant-producing microbes in the oil. Experimental work was performed to analyze the potential application of MEOR to the ANS oil fields through both ex situ and in situ approaches. A microbial formulation containing a known biosurfactant-producing strain of Bacillus licheniformis was developed in order to simulate MEOR. Coreflooding experiments were performed to simulate MEOR and quantify the incremental oil recovery. Properties like viscosity, density, and chemical composition of oil were monitored to propose a mechanism for oil recovery. The microbial formulation significantly increased incremental oil recovery, and molecular biological analyses indicated that the strain survived during the shut-in period. The indigenous microflora of ANS heavy oils was investigated to characterize the microbial communities and test for surfactant producers that are potentially useful for biostimulation. Bacteria that reduce the surface tension of aqueous media were isolated from one of the five ANS oils (Milne Point) and from rock oiled by the Exxon Valdez oil spill (EVOS), and may prove valuable for ex situ MEOR strategies. The total bacterial community composition of the six different oils was evaluated using molecular genetic tools, which revealed that each oil tested possessed a unique fingerprint indicating a diverse bacterial community and varied assemblages. Collectively we have demonstrated that there is potential for in situ and ex situ MEOR of ANS oils. Future work should focus on lab and field-scale testing of ex situ MEOR using Bacillus licheniformis as well as the biosurfactant-producing strains we have newly isolated from the Milne Point reservoir and the EVOS environment.

Shirish Patil; Abhijit Dandekar; Mary Beth Leigh

2008-12-31T23:59:59.000Z

329

Diffusion Enhancement in Core-softened fluid confined in nanotubes  

E-Print Network [OSTI]

We study the effect of confinement in the dynamical behavior of a core-softened fluid. The fluid is modeled as a two length scales potential. This potential in the bulk reproduces the anomalous behavior observed in the density and in the diffusion of liquid water. A series of $NpT$ Molecular Dynamics simulations for this two length scales fluid confined in a nanotube were performed. We obtain that the diffusion coefficient increases with the increase of the nanotube radius for wide channels as expected for normal fluids. However, for narrow channels, the confinement shows an enhancement in the diffusion coefficient when the nanotube radius decreases. This behavior, observed for water, is explained in the framework of the two length scales potential.

José R. Bordin; Alan B. de Oliveira; Alexandre Diehl; Marcia C. Barbosa

2012-08-05T23:59:59.000Z

330

Modeling and Algorithmic Approaches to Constitutively-Complex, Micro-structured Fluids  

SciTech Connect (OSTI)

The team for this Project made significant progress on modeling and algorithmic approaches to hydrodynamics of fluids with complex microstructure. Our advances are broken down into modeling and algorithmic approaches. In experiments a driven magnetic bead in a complex fluid accelerates out of the Stokes regime and settles into another apparent linear response regime. The modeling explains the take-off as a deformation of entanglements, and the longtime behavior is a nonlinear, far-from-equilibrium property. Furthermore, the model has predictive value, as we can tune microstructural properties relative to the magnetic force applied to the bead to exhibit all possible behaviors. Wave-theoretic probes of complex fluids have been extended in two significant directions, to small volumes and the nonlinear regime. Heterogeneous stress and strain features that lie beyond experimental capability were studied. It was shown that nonlinear penetration of boundary stress in confined viscoelastic fluids is not monotone, indicating the possibility of interlacing layers of linear and nonlinear behavior, and thus layers of variable viscosity. Models, algorithms, and codes were developed and simulations performed leading to phase diagrams of nanorod dispersion hydrodynamics in parallel shear cells and confined cavities representative of film and membrane processing conditions. Hydrodynamic codes for polymeric fluids are extended to include coupling between microscopic and macroscopic models, and to the strongly nonlinear regime.

Forest, Mark Gregory [University of North Carolina at Chapel Hill] [University of North Carolina at Chapel Hill

2014-05-06T23:59:59.000Z

331

Ultrasonic fluid quality sensor system  

DOE Patents [OSTI]

A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.

Gomm, Tyler J. (Meridian, ID); Kraft, Nancy C. (Idaho Falls, ID); Phelps, Larry D. (Pocatello, ID); Taylor, Steven C. (Idaho Falls, ID)

2002-10-08T23:59:59.000Z

332

Ultrasonic Fluid Quality Sensor System  

DOE Patents [OSTI]

A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.

Gomm, Tyler J. (Meridian, ID); Kraft, Nancy C. (Idaho Falls, ID); Phelps, Larry D. (Pocatello, ID); Taylor, Steven C. (Idaho Falls, ID)

2003-10-21T23:59:59.000Z

333

Immiscible displacement of viscositymatched fluids in twodimensional porous media Olav Inge Frette, Knut Jo'' rgen Ma lo'' y, and Jean Schmittbuhl*  

E-Print Network [OSTI]

to the viscous effects. @S1063­651X~96!05012­X# PACS number~s!: 47.55.Mh, 05.40.1j, 47.55.Kf I. INTRODUCTION­phase flow in a porous medium is also of large practical importance in secondary oil recovery. In this paper a lower viscosity than the displaced fluid, the situation is highly unstable and ramified viscous fingers

Schmittbuhl, Jean

334

Heat recirculating cooler for fluid stream pollutant removal  

DOE Patents [OSTI]

A process by which heat is removed from a reactant fluid to reach the operating temperature of a known pollutant removal method and said heat is recirculated to raise the temperature of the product fluid. The process can be utilized whenever an intermediate step reaction requires a lower reaction temperature than the prior and next steps. The benefits of a heat-recirculating cooler include the ability to use known pollutant removal methods and increased thermal efficiency of the system.

Richards, George A. (Morgantown, WV); Berry, David A. (Morgantown, WV)

2008-10-28T23:59:59.000Z

335

Viscosity Solutions of Systems of PDEs with Interconnected Obstacles and Switching Problem  

SciTech Connect (OSTI)

This paper deals with existence and uniqueness of a solution in viscosity sense, for a system of m variational partial differential inequalities with inter-connected obstacles. A particular case is the Hamilton-Jacobi-Bellmann system of the Markovian stochastic optimal m-states switching problem. The switching cost functions depend on (t,x). The main tool is the notion of systems of reflected backward stochastic differential equations with oblique reflection.

Hamadene, S., E-mail: hamadene@univ-lemans.fr; Morlais, M. A., E-mail: Marie_Amelie.Morlais@univ-lemans.fr [Universite du Maine, LMM (France)

2013-04-15T23:59:59.000Z

336

Relationship of Viscosity, Surface Tensions, and Coefficient of Friction of Lubricating Oils  

E-Print Network [OSTI]

oils, is easily accounted for. Ilineral lubricating oils are not affected by high pressure steam or alkalies and these character- istics enable them to be used where other lubricants would be quite unfitted for the work. Animal Oils:-- These oils...RELATI01ISHII OF VISCOSITY, SUHFACE TEUSIOUS, A3D COEFFICIENT O? FlilCTIOB 0? LUBRICATING OILS. A Thesis Submitted to the Faculty of the Graduate School, University of Kansas, Lawrence. For The Degree of Master of Science ilechanioal...

Carson, Earl

1914-01-01T23:59:59.000Z

337

Phenomenology and physical origin of shear-localization and shear-banding in complex fluids  

E-Print Network [OSTI]

We review and compare the phenomenological aspects and physical origin of shear-localization and shear-banding in various material types, namely emulsions, suspensions, colloids, granular materials and micellar systems. It appears that shear-banding, which must be distinguished from the simple effect of coexisting static-flowing regions in yield stress fluids, occurs in the form of a progressive evolution of the local viscosity towards two significantly different values in two adjoining regions of the fluids in which the stress takes slightly different values. This suggests that from a global point of view shear-banding in these systems has a common physical origin: two physical phenomena (for example, in colloids, destructuration due to flow and restructuration due to aging) are in competition and, depending on the flow conditions, one of them becomes dominant and makes the system evolve in a specific direction.

Guillaume Ovarlez; Stéphane Rodts; Xavier Chateau; Philippe Coussot

2010-02-09T23:59:59.000Z

338

Real viscosity effects in inertial confinement fusion target deuterium–tritium micro-implosions  

SciTech Connect (OSTI)

We report on numerical studies of real viscous effects on the implosion characteristics of imploded DT micro-targets. We use the implicit ePLAS code to perform 2D simulations of spherical and slightly ellipsoidal DT shells on DT gas filled ?40??m diameter voids. Before their final implosions the shells have been nearly adiabatically compressed up to 10{sup 2} or 10{sup 3}?g/cm{sup 3} densities. While the use of conventional artificial viscosity can lead to high central densities for initially spherical shells, we find that a real physical viscosity from ion-ion collisions can give a high (>20?keV) central temperature but severely reduced central density (<200?g/cm{sup 3}), while the elliptical shells evidence p?=?2 distortion of the heated central fuel region. These results suggest that the general use of artificial viscosities in Inertial Confinement Fusion (ICF) modeling may have lead to overly optimistic yields for current NIF targets and that polar direct drive with more energy for the imploding capsule may be needed for ultimate ICF success.

Mason, R. J., E-mail: rodmason01@msn.com; Kirkpatrick, R. C.; Faehl, R. J. [Research Applications Corporation, Los Alamos, New Mexico 87544 (United States)] [Research Applications Corporation, Los Alamos, New Mexico 87544 (United States)

2014-02-15T23:59:59.000Z

339

Spin and Madelung fluid  

E-Print Network [OSTI]

Starting from the Pauli current we obtain the decomposition of the non-relativistic local velocity in two parts: one parallel and the other orthogonal to the momentum. The former is recognized to be the ``classical'' part, that is the velocity of the center-of-mass, and the latter the ``quantum'' one, that is the velocity of the motion in the center-of-mass frame (namely, the internal ``spin motion'' or {\\em Zitterbewegung}). Inserting the complete expression of the velocity into the kinetic energy term of the classical non-relativistic (i.e., Newtonian) Lagrangian, we straightforwardly derive the so-called ``quantum potential'' associated to the Madelung fluid. In such a way, the quantum mechanical behaviour of particles appears to be strictly correlated to the existence of spin and Zitterbewegung.

G. Salesi

2009-06-23T23:59:59.000Z

340

BE436 FUNDAMENTALS OF FLUID MECHANICS (Spring 2014) Fluid mechanics is the study of how and why fluids move. The behavior of fluids plays a  

E-Print Network [OSTI]

BE436 FUNDAMENTALS OF FLUID MECHANICS (Spring 2014) Fluid mechanics is the study of how and why fluids move. The behavior of fluids plays a fundamental role in the function of living biological, and microfluidic devices. Course info: We will examine all of the usual topics in fluid mechanics. This course

Vajda, Sandor

Note: This page contains sample records for the topic "fluid viscosity increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The Burgers Program for Fluid Dynamics Eighth Annual Symposium  

E-Print Network [OSTI]

as a lubricant film between the pipe wall and the oil core. Usually the density of oil is lower than To transport a high-viscosity liquid (oil) through a pipeline a low-viscosity liquid (water) can be used

Maryland at College Park, University of

342

IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 35, NO. 1, JANUARY 1999 1 Effect of the Solvent Viscosity on the  

E-Print Network [OSTI]

IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 35, NO. 1, JANUARY 1999 1 Effect of the Solvent Viscosity HTECH-LG951494. The authors are with the Departamento de ´Optica, Facultad de Ciencias F

Rey Juan Carlos, Universidad

343

Adequate description of heavy oil viscosities and a method to assess optimal steam cyclic periods for thermal reservoir simulation  

E-Print Network [OSTI]

exceeding 2.5 trillion barrels. Management decisions and production strategies from thermal oil recovery processes are frequently based on reservoir simulation. A proper description of the physical properties, particularly oil viscosity, is essential...

Mago, Alonso Luis

2006-08-16T23:59:59.000Z

344

Fluid inflation with brane correction  

E-Print Network [OSTI]

In this paper, we have investigated the possibility to have inflation from inhomogeneous viscous fluids by taking into account the brane correction coming from string-inspired five dimensional Einsten's gravity. We have realized several kinds of viable solutions for early-time acceleration. At the end of inflation, the classical Einstein's gravity is recovered and fluids produce decelerated expansion.

Ratbay Myrzakulov; Lorenzo Sebastiani

2014-11-03T23:59:59.000Z

345

Fluid jet electric discharge source  

DOE Patents [OSTI]

A fluid jet or filament source and a pair of coaxial high voltage electrodes, in combination, comprise an electrical discharge system to produce radiation and, in particular, EUV radiation. The fluid jet source is composed of at least two serially connected reservoirs, a first reservoir into which a fluid, that can be either a liquid or a gas, can be fed at some pressure higher than atmospheric and a second reservoir maintained at a lower pressure than the first. The fluid is allowed to expand through an aperture into a high vacuum region between a pair of coaxial electrodes. This second expansion produces a narrow well-directed fluid jet whose size is dependent on the size and configuration of the apertures and the pressure used in the reservoir. At some time during the flow of the fluid filament, a high voltage pulse is applied to the electrodes to excite the fluid to form a plasma which provides the desired radiation; the wavelength of the radiation being determined by the composition of the fluid.

Bender, Howard A. (Ripon, CA)

2006-04-25T23:59:59.000Z

346

LECTURES IN ELEMENTARY FLUID DYNAMICS  

E-Print Network [OSTI]

LECTURES IN ELEMENTARY FLUID DYNAMICS: Physics, Mathematics and Applications J. M. McDonough Departments of Mechanical Engineering and Mathematics University of Kentucky, Lexington, KY 40506-0503 c 1987, 1990, 2002, 2004, 2009 #12;Contents 1 Introduction 1 1.1 Importance of Fluids

McDonough, James M.

347

Determination of the effect of gas viscosity upon gas flow in permeable media containing water and gas  

E-Print Network [OSTI]

?ateredeaturated Natural Gas Visoositiss at Varieua PPISSQreao ~ ~ ~ o e ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 32 VI Ns~tura+ed gitrogen Viscosities 0't Varieue h%00uraee ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ eel 33 VII Das Wbili... pressure to 1500 ysi per yccryoses of flew work~ tho viscosities af aitrogen aud tho natural gas wbou saturated with water vapor were also detercdcmd Sco basis yerpese of this pre)set was te dsteruine ths offset of the vtsoosQy of a gas nyon the web...

Stegemeier, Richard Joseph

1952-01-01T23:59:59.000Z

348

An evaluation of high viscosity, crowded phase emulsions as herbicide carriers when applied through the bifluid spray system  

E-Print Network [OSTI]

AN EVALUATION OF HIGH VISCOSITY, CROWDED PHASE EMULSIONS AS HERBICIDE CARRIERS WHEN APPLIED THROUGH THE BIFLUID SPRAY SYSTEM A Thesis By PHIL J, PHILLIPS Submitted to the Graduate School of the Agricultural and Mechanical College of Texas... in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1963 Range Management AN EVALUATION OF HIGH VISCOSITY, CROWDED PHASE EMULSIONS AS HERBICIDE CARRIERS WHEN APPLIED THROUGH THE BIFLUID SPRAY SYSTEM A Thesis By PHIL J...

Phillips, Phil J

1963-01-01T23:59:59.000Z

349

Local order variations in confined hard-sphere fluids  

E-Print Network [OSTI]

Pair distributions of fluids confined between two surfaces at close distance are of fundamental importance for a variety of physical, chemical, and biological phenomena, such as interactions between macromolecules in solution, surface forces, and diffusion in narrow pores. However, in contrast to bulk fluids, properties of inhomogeneous fluids are seldom studied at the pair-distribution level. Motivated by recent experimental advances in determining anisotropic structure factors of confined fluids, we analyze theoretically the underlying anisotropic pair distributions of the archetypical hard-sphere fluid confined between two parallel hard surfaces using first-principles statistical mechanics of inhomogeneous fluids. For this purpose, we introduce an experimentally accessible ensemble-averaged local density correlation function and study its behavior as a function of confining slit width. Upon increasing the distance between the confining surfaces, we observe an alternating sequence of strongly anisotropic versus more isotropic local order. The latter is due to packing frustration of the spherical particles. This observation highlights the importance of studying inhomogeneous fluids at the pair-distribution level.

Kim Nygård; Sten Sarman; Roland Kjellander

2013-10-31T23:59:59.000Z

350

Fe{sub 3}O{sub 4}/Zeolite nanocomposites synthesized by microwave assisted coprecipitation and its performance in reducing viscosity of heavy oil  

SciTech Connect (OSTI)

Fe{sub 3}O{sub 4}/Zeolite nanocomposites have been synthesized via microwave assisted coprecipitation method and show to be efficient in reducing viscosity of heavy oil compared to other Fe{sub 3}O{sub 4}/Zeolite nanocomposites prepared by conventional method. The following precursors such as FeCl{sub 3}?6H{sub 2}O, FeSO{sub 4}?7H{sub 2}O, NH{sub 4}OH, and natural zeolite of heulandite type were used in the sample preparation. In this study, the effect of Fe{sub 3}O{sub 4} composition in the composite and microwave time heating were investigated. Fe{sub 3}O{sub 4}/Zeolite nanocomposites were then characterized to study the influence on crystal structures, morphology and physicochemical properties. The characterization techniques include X-ray diffraction (XRD), scanning electron microscopy (SEM) and nitrogen physisorption. The results show that by increasing the microwave heating time, the degree of nanocomposite intergrowth can be enhanced. The nanocomposite was tested in catalytic aquathermolysis of heavy oil at 200°C for 6 h and the Fe{sub 3}O{sub 4}/zeolite of 1 to 4 ratios performed the highest viscosity reduction of heavy oil reaching 92%.

Iskandar, Ferry, E-mail: ferry@fi.itb.ac.id [Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10 Bandung, 40132 (Indonesia); Fitriani, Pipit; Merissa, Shanty; Khairurrijal,; Abdullah, Mikrajuddin [Physics of Electronic Materials Research Division, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132 (Indonesia); Mukti, Rino R. [Division of Inorganic and Physical Chemistry, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132 (Indonesia)

2014-02-24T23:59:59.000Z

351

Inserting Group Variables into Fluid Mechanics  

E-Print Network [OSTI]

A fluid, like a quark-gluon plasma, may possess degrees of freedom indexed by a group variable, which retains its identity even in the fluid/continuum description. Conventional Eulerian fluid mechanics is extended to encompass this possibility.

R. Jackiw

2004-10-28T23:59:59.000Z

352

Finite element simulation of electrorheological fluids  

E-Print Network [OSTI]

Electrorheological (ER) fluids change their flow properties dramatically when an electric field is applied. These fluids are usually composed of dispersions of polarizable particles in an insulating base fluid or composed ...

Rhyou, Chanryeol, 1973-

2005-01-01T23:59:59.000Z

353

Fluid description of shock phenomena in  

E-Print Network [OSTI]

an overview of the results on MHD bow shock ows which are presented throughout this dissertation. We. 2.1 represents the contribution from irreversible dissipative processes like viscosity and thermal

De Sterck, Hans

354

Does increased red blood cell deformability raise the risk for osteonecrosis in sickle cell Nathalie Lemonne1  

E-Print Network [OSTI]

1 Does increased red blood cell deformability raise the risk for osteonecrosis in sickle cell Pointe-à-Pitre, 97157 Pointe-à-Pitre, Guadeloupe Running head: Avascular necrosis and sickle cell anemia in sickle cell anemia (SCA) remains unknown. Blood hyper-viscosity has been suggested as a factor involved

Paris-Sud XI, Université de

355

Fluid flow monitoring device  

DOE Patents [OSTI]

A flow meter and temperature measuring device are described comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips. 7 figures.

McKay, M.D.; Sweeney, C.E.; Spangler, B.S. Jr.

1993-11-30T23:59:59.000Z

356

Fluid flow monitoring device  

DOE Patents [OSTI]

A flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.

McKay, Mark D. (1426 Socastee Dr., North Augusta, SC 29841); Sweeney, Chad E. (3600 Westhampton Dr., Martinez, GA 30907-3036); Spangler, Jr., B. Samuel (2715 Margate Dr., Augusta, GA 30909)

1993-01-01T23:59:59.000Z

357

Computational fluid dynamic applications  

SciTech Connect (OSTI)

The rapid advancement of computational capability including speed and memory size has prompted the wide use of computational fluid dynamics (CFD) codes to simulate complex flow systems. CFD simulations are used to study the operating problems encountered in system, to evaluate the impacts of operation/design parameters on the performance of a system, and to investigate novel design concepts. CFD codes are generally developed based on the conservation laws of mass, momentum, and energy that govern the characteristics of a flow. The governing equations are simplified and discretized for a selected computational grid system. Numerical methods are selected to simplify and calculate approximate flow properties. For turbulent, reacting, and multiphase flow systems the complex processes relating to these aspects of the flow, i.e., turbulent diffusion, combustion kinetics, interfacial drag and heat and mass transfer, etc., are described in mathematical models, based on a combination of fundamental physics and empirical data, that are incorporated into the code. CFD simulation has been applied to a large variety of practical and industrial scale flow systems.

Chang, S.-L.; Lottes, S. A.; Zhou, C. Q.

2000-04-03T23:59:59.000Z

358

Violation of Bell's inequality in fluid mechanics  

E-Print Network [OSTI]

We show that a classical fluid mechanical system can violate Bell's inequality because the fluid motion is correlated over large distances.

Robert Brady; Ross Anderson

2013-05-28T23:59:59.000Z

359

Fluid Gravity Engineering Rocket motor flow analysis  

E-Print Network [OSTI]

Fluid Gravity Engineering Capability · Rocket motor flow analysis -Internal (performance) -External young scientists/engineers Fluid Gravity Engineering Ltd #12;

Anand, Mahesh

360

Variable flexure-based fluid filter  

DOE Patents [OSTI]

An apparatus and method for filtering particles from a fluid comprises a fluid inlet, a fluid outlet, a variable size passage between the fluid inlet and the fluid outlet, and means for adjusting the size of the variable size passage for filtering the particles from the fluid. An inlet fluid flow stream is introduced to a fixture with a variable size passage. The size of the variable size passage is set so that the fluid passes through the variable size passage but the particles do not pass through the variable size passage.

Brown, Steve B.; Colston Jr., Billy W.; Marshall, Graham; Wolcott, Duane

2007-03-13T23:59:59.000Z

Note: This page contains sample records for the topic "fluid viscosity increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Does Life Come from Water or Fluids?  

E-Print Network [OSTI]

In the present work the Stochastic generalization of the quantum hydrodynamic analogy (SQHA) is used to obtain the far from equilibrium kinetics for a real gas and its fluid phase. In gasses and their liquids, interacting by Lennard-Jones potentials whose mean distance is bigger than the quantum correlation distance and than the molecular interaction distance r0, it is possible to define a Fokker-Plank type equation of motion as a function of the mean phase space molecular volume that far from equilibrium shows maximizing the dissipation of a part of the generalized SQHA-free energy. In the case of a real gas with no chemical reactions and at quasi-isothermal conditions, the principle disembogues into the maximum free energy dissipation confirming the experimental outputs of electro-convective instability. In this case, the model shows that the transition to stationary states with higher free energy can happen and that, in incompressible fluids, the increase of free energy is almost given by a decrease of entropy leading to the appearance of self-ordered structures. The output of the theory showing that the generation of order, via energy dissipation, is more efficient in fluids than in gasses, because of their incompressibility, leads to the re-conciliation between physics and biology furnishing the eplanation why the life was born in water. The theoretical output also suggests that the search for life out of the earth must consider the possibility to find it in presence of liquid phases different from water.

Piero Chiarelli

2013-11-22T23:59:59.000Z

362

Strongly Correlated Quantum Fluids: Ultracold Quantum Gases, Quantum Chromodynamic Plasmas, and Holographic Duality  

E-Print Network [OSTI]

Strongly correlated quantum fluids are phases of matter that are intrinsically quantum mechanical, and that do not have a simple description in terms of weakly interacting quasi-particles. Two systems that have recently attracted a great deal of interest are the quark-gluon plasma, a plasma of strongly interacting quarks and gluons produced in relativistic heavy ion collisions, and ultracold atomic Fermi gases, very dilute clouds of atomic gases confined in optical or magnetic traps. These systems differ by more than 20 orders of magnitude in temperature, but they were shown to exhibit very similar hydrodynamic flow. In particular, both fluids exhibit a robustly low shear viscosity to entropy density ratio which is characteristic of quantum fluids described by holographic duality, a mapping from strongly correlated quantum field theories to weakly curved higher dimensional classical gravity. This review explores the connection between these fields, and it also serves as an introduction to the Focus Issue of New Journal of Physics on Strongly Correlated Quantum Fluids: from Ultracold Quantum Gases to QCD Plasmas. The presentation is made accessible to the general physics reader and includes discussions of the latest research developments in all three areas.

Allan Adams; Lincoln D. Carr; Thomas Schaefer; Peter Steinberg; John E. Thomas

2012-05-23T23:59:59.000Z

363

Selection and Properties of Alternative Forming Fluids for TRISO Fuel Kernel Production  

SciTech Connect (OSTI)

Current Very High Temperature Reactor (VHTR) designs incorporate TRi-structural ISOtropic (TRISO) fuel, which consists of a spherical fissile fuel kernel surrounded by layers of pyrolytic carbon and silicon carbide. An internal sol-gel process forms the fuel kernel using wet chemistry to produce uranium oxyhydroxide gel spheres by dropping a cold precursor solution into a hot column of trichloroethylene (TCE). Over time, gelation byproducts inhibit complete gelation, and the TCE must be purified or discarded. The resulting TCE waste stream contains both radioactive and hazardous materials and is thus considered a mixed hazardous waste. Changing the forming fluid to a non-hazardous alternative could greatly improve the economics of TRISO fuel kernel production. Selection criteria for a replacement forming fluid narrowed a list of ~10,800 chemicals to yield ten potential replacement forming fluids: 1-bromododecane, 1- bromotetradecane, 1-bromoundecane, 1-chlorooctadecane, 1-chlorotetradecane, 1-iododecane, 1-iodododecane, 1-iodohexadecane, 1-iodooctadecane, and squalane. The density, viscosity, and surface tension for each potential replacement forming fluid were measured as a function of temperature between 25 °C and 80 °C. Calculated settling velocities and heat transfer rates give an overall column height approximation. 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane show the greatest promise as replacements, and future tests will verify their ability to form satisfactory fuel kernels.

Doug Marshall; M. Baker; J. King; B. Gorman

2013-01-01T23:59:59.000Z

364

Influence of shear viscosity on the correlation between the triangular flow and initial spatial triangularity  

E-Print Network [OSTI]

In a hydrodynamic model, with fluctuating initial conditions, the correlation between triangular flow and initial spatial triangularity is studied. The triangular flow, even in ideal fluid, is only weakly correlated with the initial triangularity. The correlation is largely reduced in viscous fluid. Elliptic flow on the other hand appears to be strongly correlated with initial eccentricity. Weak correlation between triangular flow and initial triangularity indicate that a part of triangular flow is unrelated to initial triangularity. Triangularity acquired during the fluid evolution also contributes to the triangular flow.

A. K. Chaudhuri

2011-12-06T23:59:59.000Z

365

Influence of shear viscosity on the correlation between the triangular flow and initial spatial triangularity  

E-Print Network [OSTI]

In a hydrodynamic model, with fluctuating initial conditions, the correlation between triangular flow and initial spatial triangularity is studied. The triangular flow, even in ideal fluid, is only weakly correlated with the initial triangularity. The correlation is largely reduced in viscous fluid. Elliptic flow on the other hand appears to be strongly correlated with initial eccentricity. Weak correlation between triangular flow and initial triangularity indicate that a part of triangular flow is unrelated to initial triangularity. Triangularity acquired during the fluid evolution also contributes to the triangular flow.

Chaudhuri, A K

2011-01-01T23:59:59.000Z

366

Viscosity solutions of systems of PDEs with interconnected obstacles and Multi modes switching problems  

E-Print Network [OSTI]

This paper deals with existence and uniqueness, in viscosity sense, of a solution for a system of m variational partial differential inequalities with inter-connected obstacles. A particular case of this system is the deterministic version of the Verification Theorem of the Markovian optimal m-states switching problem. The switching cost functions are arbitrary. This problem is connected with the valuation of a power plant in the energy market. The main tool is the notion of systems of reflected BSDEs with oblique reflection.

Hamadène, Said

2011-01-01T23:59:59.000Z

367

Insertable fluid flow passage bridgepiece and method  

DOE Patents [OSTI]

A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.

Jones, Daniel O. (Glenville, NV)

2000-01-01T23:59:59.000Z

368

Nonlinear Fluid Dynamics from Gravity  

E-Print Network [OSTI]

Black branes in AdS5 appear in a four parameter family labeled by their velocity and temperature. Promoting these parameters to Goldstone modes or collective coordinate fields -- arbitrary functions of the coordinates on the boundary of AdS5 -- we use Einstein's equations together with regularity requirements and boundary conditions to determine their dynamics. The resultant equations turn out to be those of boundary fluid dynamics, with specific values for fluid parameters. Our analysis is perturbative in the boundary derivative expansion but is valid for arbitrary amplitudes. Our work may be regarded as a derivation of the nonlinear equations of boundary fluid dynamics from gravity. As a concrete application we find an explicit expression for the expansion of this fluid stress tensor including terms up to second order in the derivative expansion.

Sayantani Bhattacharyya; Veronika E Hubeny; Shiraz Minwalla; Mukund Rangamani

2008-04-02T23:59:59.000Z

369

The Quantum Theory of Fluids  

E-Print Network [OSTI]

The quantum theory of fields is largely based on studying perturbations around non-interacting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is `freer', in the sense that the non-interacting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree- and loop-level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behaviour is radically different to both classical fluids and quantum fields, with interesting physical consequences for fluids in the low temperature regime.

Ben Gripaios; Dave Sutherland

2014-06-24T23:59:59.000Z

370

Bio-inspired fluid locomotion  

E-Print Network [OSTI]

We have developed several novel methods of locomotion at low Reynolds number, for both Newtonian and non-Newtonian fluids: Robosnails 1 and 2, which operate on a lubrication layer, and the three-link swimmer which moves ...

Chan, Brian, 1980-

2009-01-01T23:59:59.000Z

371

Numerical modeling of elution peak profiles in supercritical fluid chromatography. Part I-Elution of an unretained tracer  

SciTech Connect (OSTI)

When chromatography is carried out with high-density carbon dioxide as the main component of the mobile phase (a method generally known as 'supercritical fluid chromatography' or SFC), the required pressure gradient along the column is moderate. However, this mobile phase is highly compressible and, under certain experimental conditions, its density may decrease significantly along the column. Such an expansion absorbs heat, cooling the column, which absorbs heat from the outside. The resulting heat transfer causes the formation of axial and radial gradients of temperature that may become large under certain conditions. Due to these gradients, the mobile phase velocity and most physico-chemical parameters of the system (viscosity, diffusion coefficients, etc.) are no longer constant throughout the column, resulting in a loss of column efficiency, even at low flow rates. At high flow rates and in serious cases, systematic variations of the retention factors and the separation factors with increasing flow rates and important deformations of the elution profiles of all sample components may occur. The model previously used to account satisfactorily for the effects of the viscous friction heating of the mobile phase in HPLC is adapted here to account for the expansion cooling of the mobile phase in SFC and is applied to the modeling of the elution peak profiles of an unretained compound in SFC. The numerical solution of the combined heat and mass balance equations provides temperature and pressure profiles inside the column, and values of the retention time and efficiency for elution of this unretained compound that are in excellent agreement with independent experimental data.

Kaczmarski, Krzysztof [University of Tennessee and Rzeszow University of Technology, Poland; Guiochon, Georges A [ORNL

2010-01-01T23:59:59.000Z

372

Slow Waves in Fractures Filled with Viscous Fluid  

SciTech Connect (OSTI)

Stoneley guided waves in a fluid-filled fracture generally have larger amplitudes than other waves, and therefore, their properties need to be incorporated in more realistic models. In this study, a fracture is modeled as an infinite layer of viscous fluid bounded by two elastic half-spaces with identical parameters. For small fracture thickness, I obtain a simple dispersion equation for wave-propagation velocity. This velocity is much smaller than the velocity of a fluid wave in a Biot-type solution, in which fracture walls are assumed to be rigid. At seismic prospecting frequencies and realistic fracture thicknesses, the Stoneley guided wave has wavelengths on the order of several meters and an attenuation Q factor exceeding 10, which indicates the possibility of resonance excitation in fluid-bearing rocks. The velocity and attenuation of Stoneley guided waves are distinctly different at low frequencies for water and oil. The predominant role of fractures in fluid flow at field scales is supported by permeability data showing an increase of several orders of magnitude when compared to values obtained at laboratory scales. These data suggest that Stoneley guided waves should be taken into account in theories describing seismic wave propagation in fluid-saturated rocks.

Korneev, Valeri

2008-01-08T23:59:59.000Z

373

CO2-based mixtures as working fluids for geothermal turbines.  

SciTech Connect (OSTI)

Sandia National Laboratories is investigating advanced Brayton cycles using supercritical working fluids for application to a variety of heat sources, including geothermal, solar, fossil, and nuclear power. This work is centered on the supercritical CO{sub 2} (S-CO{sub 2}) power conversion cycle, which has the potential for high efficiency in the temperature range of interest for these heat sources and is very compact-a feature likely to reduce capital costs. One promising approach is the use of CO{sub 2}-based supercritical fluid mixtures. The introduction of additives to CO{sub 2} alters the equation of state and the critical point of the resultant mixture. A series of tests was carried out using Sandia's supercritical fluid compression loop that confirmed the ability of different additives to increase or lower the critical point of CO{sub 2}. Testing also demonstrated that, above the modified critical point, these mixtures can be compressed in a turbocompressor as a single-phase homogenous mixture. Comparisons of experimental data to the National Institute of Standards and Technology (NIST) Reference Fluid Thermodynamic and Transport Properties (REFPROP) Standard Reference Database predictions varied depending on the fluid. Although the pressure, density, and temperature (p, {rho}, T) data for all tested fluids matched fairly well to REFPROP in most regions, the critical temperature was often inaccurate. In these cases, outside literature was found to provide further insight and to qualitatively confirm the validity of experimental findings for the present investigation.

Wright, Steven Alan; Conboy, Thomas M.; Ames, David E.

2012-01-01T23:59:59.000Z

374

Pitch-catch only ultrasonic fluid densitometer  

DOE Patents [OSTI]

The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.

Greenwood, Margaret S. (Richland, WA); Harris, Robert V. (Pasco, WA)

1999-01-01T23:59:59.000Z

375

FLUID MECHANICS AND MATHEMATICAL STRUCTURES PHILIP BOYLAND  

E-Print Network [OSTI]

FLUID MECHANICS AND MATHEMATICAL STRUCTURES PHILIP BOYLAND Department of Mathematics University in the most basic models of fluid motion. 1. Introduction Fluid mechanics is the source of many of the ideas, Lagrange, . . .. Mathematicians have abstracted and vastly generalized ba- sic fluid mechanical concepts

Boyland, Philip

376

Mechanical Engineering ME 3720 FLUID MECHANICS  

E-Print Network [OSTI]

Mechanical Engineering ME 3720 FLUID MECHANICS Pre-requisite: ME 2330 Co-requisite: ME 3210) to develop an understanding of the physical mechanisms and the mathematical models of fluid mechanics of fluid mechanics problems in engineering practice. The basic principles of fluid mechanics

Panchagnula, Mahesh

377

Pitch-catch only ultrasonic fluid densitometer  

DOE Patents [OSTI]

The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

Greenwood, M.S.; Harris, R.V.

1999-03-23T23:59:59.000Z

378

Fluid Mechanics IB Lecturer: Dr Natalia Berloff  

E-Print Network [OSTI]

-efficient aircraft design, hydroelectric power, chemical processing, jet-driven cutting tools · our fluid environment

379

Transparent fluids for 157-nm immersion lithography  

E-Print Network [OSTI]

- gineers. [DOI: 10.1117/1.1637366] Subject terms: 157-nm lithography; immersion fluid; perfluoropolyether

Rollins, Andrew M.

380

Identifying Fracture Types and Relative Ages Using Fluid Inclusion Stratigraphy  

SciTech Connect (OSTI)

Enhanced Geothermal Systems (EGS) are designed to recover heat from the subsurface by mechanically creating fractures in subsurface rocks. Understanding the life cycle of a fracture in a geothermal system is fundamental to the development of techniques for creating fractures. Recognizing the stage of a fracture, whether it is currently open and transmitting fluids; if it recently has closed; or if it is an ancient fracture would assist in targeting areas for further fracture stimulation. Identifying dense fracture areas as well as large open fractures from small fracture systems will also assist in fracture stimulation selection. Geothermal systems are constantly generating fractures, and fluids and gases passing through rocks in these systems leave small fluid and gas samples trapped in healed microfractures. Fluid inclusions trapped in minerals as the fractures heal are characteristic of the fluids that formed them, and this signature can be seen in fluid inclusion gas analysis. Our hypothesis is that fractures over their life cycle have different chemical signatures that we can see in fluid inclusion gas analysis and by using the new method of fluid inclusion stratigraphy (FIS) the different stages of fractures, along with an estimate of fracture size can be identified during the well drilling process. We have shown with this study that it is possible to identify fracture locations using FIS and that different fractures have different chemical signatures however that signature is somewhat dependent upon rock type. Open, active fractures correlate with increase concentrations of CO2, N2, Ar, and to a lesser extent H2O. These fractures would be targets for further enhancement. The usefulness of this method is that it is low cost alternative to current well logging techniques and can be done as a well is being drilled.

Dilley, Lorie M.; Norman, David; Owens, Lara

2008-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "fluid viscosity increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Viscous fluid dynamics in Au+Au collisions at RHIC  

E-Print Network [OSTI]

We have studied the space-time evolution of minimally viscous ($\\frac{\\eta}{s}$=0.08) QGP fluid, undergoing boost-invariant longitudinal motion and arbitrary transverse expansion. Relaxation equations for the shear stress tensor components, derived from the phenomenological Israel-Stewart's theory of dissipative relativistic fluid, are solved simultaneously with the energy-momentum conservation equations. Comparison of evolution of ideal and viscous fluid, both initialized under the similar conditions, e.g. same equilibration time, energy density and velocity profile, indicate that in viscous fluid, energy density or temperature of the fluid evolve slowly than in an ideal fluid. Transverse expansion is also more in viscous evolution. We have also studied particle production in viscous dynamics. Compared to ideal dynamics, in viscous dynamics, particle yield at high $p_T$ is increased. Elliptic flow on the other hand decreases. Minimally viscous QGP fluid, initialized at entropy density $s_{ini}$=110 $fm^{-3}$ at the initial time $\\tau_i$=0.6 fm, if freeze-out at temperature $T_F$=130 MeV, explains the centrality dependence of $p_T$ spectra of identified particles. Experimental $p_T$ spectra of $\\pi^-$, $K^+$ and protons in 0-5%, 5-10%, 10-20%, 20-30%, 30-40% and 40-50% Au+Au collisions are well reproduced through out the experimental $p_T$ range. This is in contrast to ideal dynamics, where, the spectra are reproduced only up to $p_T\\approx$1.5 GeV. Minimally viscous QGP fluid, also explain the elliptic flow in mid-central (10-20%, 16-23%, 20-30%) collisions. The minimum bias elliptic flow is also explained. However, the model under-predict/over-predict the elliptic flow in very central/peripheral collisions.

A. K. Chaudhuri

2008-06-18T23:59:59.000Z

382

Experimentally Determined Interfacial Area Between Immiscible Fluids in Porous Media  

SciTech Connect (OSTI)

When multiple fluids flow through a porous medium, the interaction between the fluid interfaces can be of great importance. While this is widely recognized in practical applications, numerical models often disregard interactios between discrete fluid phases due to the computational complexity. And rightly so, for this level of detail is well beyond most extended Darcy Law relationships. A new model of two-phase flow including the interfacial area has been proposed by Hassarizadeh and Gray based upon thermodynamic principles. A version of this general equation set has been implemented by Nessner and Hassarizadeh. Many of the interfacial parameters required by this equation set have never been determined from experiments. The work presented here is a description of how the interfacial area, capillary pressure, interfacial velocity and interfacial permeability from two-phase flow experiments in porous media experiments can be used to determine the required parameters. This work, while on-going, has shown the possibility of digitizing images within translucent porous media and identifying the location and behavior of interfaces under dynamic conditions. Using the described methods experimentally derived interfacial functions to be used in larger scale simulations are currently being developed. In summary, the following conclusions can be drawn: (1) by mapping a pore-throat geometry onto an image of immiscible fluid flow, the saturation of fluids and the individual interfaces between the fluids can be identified; (2) the resulting saturation profiles of the low velocity drainage flows used in this study are well described by an invasion percolation fractal scaling; (3) the interfacial area between fluids has been observed to increase in a linear fashion during the initial invasion of the non-wetting fluid; and (4) the average capillary pressure within the entire cell and representative elemental volumes were observed to plateau after a small portion of the volume was invaded.

Crandall, Dustin; Niessner, J; Hassanizadeh, S.M; Smith, Duane

2008-01-01T23:59:59.000Z

383

STUDY OF WORKING FLUID MIXTURES AND HIGH TEMPERATURE WORKING FLUIDS FOR COMPRESSOR DRIVEN SYSTEMS  

E-Print Network [OSTI]

FILE COPY DO NOT REWMOVE STUDY OF WORKING FLUID MIXTURES AND HIGH TEMPERATURE WORKING FLUIDS is the Step 2 product of the project "Study of working fluid mixtures and high temperature working fluids-ECONOMICAL EVALUATIONS ON COMPRESSION HEAT PUMPS WORKING WITH NONAZEOTROPIC MIXTURES OF FLUIDS 79 6.1 Introduction 79 6

Oak Ridge National Laboratory

384

Productivity increases in science  

SciTech Connect (OSTI)

The study quantifies the impact on the cost of experimentation of synergistic advancements in instrumentation, theory, and computation over the last two decades. The study finds that the productivity of experimental investigation (experimental results/$) is increasing as science is transformed from a linear, isolated approach to a hierarchical, multidisciplinary approach. Developments such as massively parallel processors coupled with instrumental systems with multiple probes and diverse data analysis capabilities will further this transformation and increase the productivity of scientific studies. The complexities and scale of today`s scientific challenges are much greater than in the past, however, so that the costs of research are increasing. Even though science is much more productive in terms of the experimental results, the challenges facing scientific investigators are increasing at an even faster pace. New approaches to infrastructure investments must capitalize on the changing dynamics of research and allow the scientific community to maximize gains in productivity so that complex problems can be attacked cost-effectively. Research strategies that include user facilities and coordinated experimental, computational, and theoretical research are needed.

Danko, J.E. [ed.; Young, J.K.; Molton, P.M.; Dirks, J.A.

1993-02-01T23:59:59.000Z

385

Productivity increases in science  

SciTech Connect (OSTI)

The study quantifies the impact on the cost of experimentation of synergistic advancements in instrumentation, theory, and computation over the last two decades. The study finds that the productivity of experimental investigation (experimental results/$) is increasing as science is transformed from a linear, isolated approach to a hierarchical, multidisciplinary approach. Developments such as massively parallel processors coupled with instrumental systems with multiple probes and diverse data analysis capabilities will further this transformation and increase the productivity of scientific studies. The complexities and scale of today's scientific challenges are much greater than in the past, however, so that the costs of research are increasing. Even though science is much more productive in terms of the experimental results, the challenges facing scientific investigators are increasing at an even faster pace. New approaches to infrastructure investments must capitalize on the changing dynamics of research and allow the scientific community to maximize gains in productivity so that complex problems can be attacked cost-effectively. Research strategies that include user facilities and coordinated experimental, computational, and theoretical research are needed.

Danko, J.E. (ed.); Young, J.K.; Molton, P.M.; Dirks, J.A.

1993-02-01T23:59:59.000Z

386

Miscibility, solubility, and viscosity measurements for R-236EA with potential lubricants. Final report, October 1992-March 1995  

SciTech Connect (OSTI)

The report gives results of miscibility, solubility, and viscosity measurements of refrigerant R-236ea with three potential lubricants. The lubricants were a mineral oil, alkylbenzene, and polyol ester, each with a nominal viscosity of 68 cSt. The miscibility tests were performed in a test facility consisting of a series of miniature test cells in a constant-temperature bath. Critical solution temperatures obtained from the miscibility data are presented for each refrigerant/lubricant combination. In addition to miscibility data, both solubility and viscosity data were obtained for R-236ea and the most promising lubricant. For comparison purposes, data were also taken for the existing U.S. Navy shipboard chiller refrigerant and lubricant concentration, namely 4-114 and a naphthenic oil.

Zoz, S.C.; Pate, M.B.

1996-05-01T23:59:59.000Z

387

Wood smoke inhalation increases pulmonary microvascular permeability  

SciTech Connect (OSTI)

The effect of wood smoke inhalation (SI) on pulmonary vascular permeability was studied in open-chested, anesthetized dogs. Animals were divided into two groups. A prenodal lymphatic vessel was cannulated in group I (n = 7), and baseline (BL) lung lymph flow (QL) and lymph (CL) and plasma (CP) protein concentrations were measured. The animals' lungs were then ventilated with wood smoke for 5 minutes. Left atrial pressure (Pla) was increased above baseline (mean 16.7 +/- 2.2 mm Hg), and the ratio of CL to CP was used to assess endothelial permeability at high lymph flows. There was little change in either QL (BL: 27 +/- 9; SI: 27 +/- 5 microliters/min) or CL/CP (BL: 0.76 +/- 0.03; SI: 0.74 +/- 0.02) after SI at normal Pla. Elevation of Pla caused a significant increase in QL (136 +/- 15 microliters/min), but CL/CP (0.67 +/- 0.02) failed to decrease significantly at high lymph flows. In group II (n = 15) total protein concentration of airway fluid was compared with that of plasma after smoke inhalation, intravenous alloxan, and increased Pla. The ratio of protein concentration in airway fluid to plasma after SI (0.70 +/- 0.07) was greater than that obtained with increased Pla (0.64 +/- 0.07) but less than that after alloxan (0.85 +/- 0.04). These data indicate that SI in the dog results in a moderate increase in pulmonary vascular permeability that is less severe than that induced by alloxan.

Nieman, G.F.; Clark, W.R. Jr.; Goyette, D.; Hart, A.K.; Bredenberg, C.E.

1989-04-01T23:59:59.000Z

388

Heat transfer in porous media with fluid phase changes  

SciTech Connect (OSTI)

A one-dimensional experimental apparatus was built to study the heat pipe phenomenon. Basically, it consists of a 25 cm long, 2.5 cm I.D. Lexane tube packed with Ottawa sand. The two ends of the tube were subjected to different tempratures, i.e., one above the boiling temperature and the other below. The tube was well insulated so that a uniform one-dimensional heat flux could pass through the sand pack. Presence of the heat pipe phenomenon was confirmed by the temperature and saturation profiles of the sand pack at the final steady state condition. A one-dimensional steady state theory to describe the experiment has been developed which shows the functional dependence of the heat pipe phenomenon on liquid saturation gradient, capillary pressure, permeability, fluid viscosity, latent heat, heat flux and gravity. Influence of the heat pipe phenomenon on wellbore heat losses was studied by use of a two-phase two-dimensional cylindrical coordinate computer model.

Su, H.J.

1981-06-01T23:59:59.000Z

389

Cold dark matter cosmology conflicts with fluid mechanics and observations  

E-Print Network [OSTI]

Cold dark matter hierarchical clustering (CDMHC) cosmology based on the Jeans 1902 criterion for gravitational instability gives predictions about the early universe contrary to fluid mechanics and observations. Jeans neglected viscosity, diffusivity, and turbulence: factors that determine gravitational structure formation and contradict small structures (CDM halos) forming from non-baryonic dark matter particle candidates. From hydro-gravitational-dynamics (HGD) cosmology, viscous-gravitational fragmentation produced supercluster (10^46 kg), cluster, and galaxy-mass (10^42 kg) clouds in the primordial plasma with the large fossil density turbulence (rho_o ~ 3x10-17 kg m-3) of the first fragmentation at 10^12 s, and a protogalaxy linear and spiral clump morphology reflecting maximum stretching near vortex lines of the plasma turbulence at the 10^13 s plasma-gas transition. Gas protogalaxies fragmented into proto-globular-star-cluster mass (10^36 kg) clumps of protoplanet gas clouds that are now frozen as earth-mass (10^24-^25 kg) Jovian planets of the baryonic dark matter, about 30,000,000 rogue planets per star. Observations contradict the CDMHCC prediction of large explosive Population III first stars at 10^16 s, but support the immediate gentle formation of small Population II first stars at 10^13 s in globular-star-clusters from HGD.

Carl H. Gibson

2006-10-23T23:59:59.000Z

390

Method for removing impurities from an impurity-containing fluid stream  

DOE Patents [OSTI]

A method of removing at least one polar component from a fluid stream. The method comprises providing a fluid stream comprising at least one nonpolar component and at least one polar component. The fluid stream is contacted with a supercritical solvent to remove the at least one polar component. The at least one nonpolar component may be a fat or oil and the at least one polar component may be water, dirt, detergents, or mixtures thereof. The supercritical solvent may decrease solubility of the at least one polar component in the fluid stream. The supercritical solvent may function as a solvent or as a gas antisolvent. The supercritical solvent may dissolve the nonpolar components of the fluid stream, such as fats or oils, while the polar components may be substantially insoluble. Alternatively, the supercritical solvent may be used to increase the nonpolarity of the fluid stream.

Ginosar, Daniel M.; Fox, Robert V.

2010-04-06T23:59:59.000Z

391

Supercritical fluid thermodynamics for coal processing. Final report, September 15, 1988--September 14, 1991  

SciTech Connect (OSTI)

The main objective of this research is to develop an equation of state that can be used to predict solubilities and tailor supercritical fluid solvents for the extraction and processing of coal. To meet this objective we have implemented a two-sided. approach. First, we expanded the database of model coal compound solubilities in higher temperature fluids, polar fluids, and fluid mixtures systems. Second, the unique solute/solute, solute/cosolvent and solute/solvent intermolecular interactions in supercritical fluid solutions were investigated using spectroscopic techniques. These results increased our understanding of the molecular phenomena that affect solubility in supercritical fluids and were significant in the development of an equation of state that accurately reflects the true molecular makeup of the solution. (VC)

van Swol, F. [Illinois Univ., Urbana, IL (United States). Dept. of Chemical Engineering; Eckert, C.A. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Chemical Engineering

1988-09-15T23:59:59.000Z

392

Maxwell's fluid model of magnetism  

E-Print Network [OSTI]

In 1861, Maxwell derived two of his equations of electromagnetism by modelling a magnetic line of force as a `molecular vortex' in a fluid-like medium. Later, in 1980, Berry and colleagues conducted experiments on a `phase vortex', a wave geometry in a fluid which is analogous to a magnetic line of force and also exhibits behaviour corresponding to the quantisation of magnetic flux. Here we unify these approaches by writing down a solution to the equations of motion for a compressible fluid which behaves in the same way as a magnetic line of force. We then revisit Maxwell's historical inspiration, namely Faraday's 1846 model of light as disturbances in lines of force. Using our unified model, we show that such disturbances resemble photons: they are polarised, absorbed discretely, obey Maxwell's full equations of electromagnetism to first order, and quantitatively reproduce the correlation that is observed in the Bell tests.

Robert Brady; Ross Anderson

2015-02-20T23:59:59.000Z

393

Holographic plasma and anyonic fluids  

E-Print Network [OSTI]

We use alternative quantisation of the $D3/D5$ system to explore properties of a strongly coupled charged plasma and strongly coupled anyonic fluids. The $S$-transform of the $D3/D5$ system is used as a model for charged matter interacting with a U(1) gauge field in the large coupling regime, and we compute the dispersion relationship of the propagating electromagnetic modes as the density and temperature are changed. A more general $SL(2,\\mathbb{Z})$ transformation gives a strongly interacting anyonic fluid, and we study its transport properties as we change the statistics of the anyons and the background magnetic field.

Daniel K. Brattan; Gilad Lifschytz

2013-10-20T23:59:59.000Z

394

Non-Newtonian fluid flow  

E-Print Network [OSTI]

zero and unity. The Ostwald- de Waele Equation (4), commonly known as the power law, is sometimes used to describe fluid behavior of this type. The rheological equation is (4) where the parameters "k" and "n" are constant for a particular fluid... be extended to include Reynolds numbers and the type of flow determined to be laminar and/or turbulent. It is assumed that the transition from laminar to turbulent flow occurs at a Reynolds number of 2100, the numeric distribution of Reynolds numbers...

Osinski, Charles Anthony

1963-01-01T23:59:59.000Z

395

Method and apparatus for measuring shear modulus and viscosity of a monomolecular film  

DOE Patents [OSTI]

Apparatus for measuring the shear modulus of a monomolecular film comprises a circular trough having inwardly sloping sides containing a liquid for supporting the monolayer on the surface thereof; a circular rotor suspended above the trough such that the lower surface of the rotor contacts the surface of the liquid, positioned such that the axis of the rotor is concentric with the axis of the trough and freely rotable about its axis; means for hydrostatically compressing the monolayer in the annular region formed between the rotor and the sides of the trough; and means for rotating the trough about its axis. Preferably, hydrostatic compression of the monolayer is achieved by removing liquid from the bottom of the trough (decreasing the surface area) while raising the trough vertically along its axis to maintain the monolayer at a constant elevation (and maintain rotor contact). In order to measure viscosity, a means for rotating the rotor about its axis is added to the apparatus.

Abraham, B.M.; Miyano, K.; Ketterson, J.B.

1983-10-18T23:59:59.000Z

396

Residential propane prices increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter Apropane prices increase The average

397

Residential propane prices increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter Apropane prices increase The

398

Residential propane prices increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter Apropane prices increase Thepropane

399

Residential propane prices increase  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter Apropane prices increase

400

Compressor bleed cooling fluid feed system  

DOE Patents [OSTI]

A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.

Donahoo, Eric E; Ross, Christopher W

2014-11-25T23:59:59.000Z

Note: This page contains sample records for the topic "fluid viscosity increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Quantum fluids in the Kaehler parametrization  

E-Print Network [OSTI]

In this paper we address the problem of the quantization of the perfect relativistic fluids formulated in terms of the K\\"{a}hler parametrization. This fluid model describes a large set of interesting systems such as the power law energy density fluids, Chaplygin gas, etc. In order to maintain the generality of the model, we apply the BRST method in the reduced phase space in which the fluid degrees of freedom are just the fluid potentials and the fluid current is classically resolved in terms of them. We determine the physical states in this setting, the time evolution and the path integral formulation.

L. Holender; M. A. Santos; I. V. Vancea

2012-03-21T23:59:59.000Z

402

Direct Measurements of Pore Fluid Density by Vibrating Tube Densimetry  

SciTech Connect (OSTI)

The densities of pore-confined fluids were measured for the first time by means of a vibrating tube method. Isotherms of total adsorption capacity were measured directly making the method complementary to the conventional gravimetric or volumetric/piezometric adsorption techniques, which yield the excess adsorption (the Gibbsian surface excess). A custom-made high-pressure, high-temperature vibrating tube densimeter (VTD) was used to measure the densities of subcritical and supercritical propane (between 35 C and 97 C) and supercritical carbon dioxide (between 32 C and 50 C) saturating hydrophobic silica aerogel (0.2 g/cm3, 90% porosity) synthesized inside Hastelloy U-tubes. Additionally, excess adsorption isotherms for supercritical CO2 and the same porous solid were measured gravimetrically using a precise magnetically-coupled microbalance. Pore fluid densities and total adsorption isotherms increased monotonically with increasing density of the bulk fluid, in contrast to excess adsorption isotherms, which reached a maximum at a subcritical density of the bulk fluid, and then decreased towards zero or negative values at supercritical densities. Compression of the confined fluid significantly beyond the density of the bulk liquid at the same temperature was observed at subcritical temperatures. The features of the isotherms of confined fluid density are interpreted to elucidate the observed behavior of excess adsorption. The maxima of excess adsorption were found to occur below the critical density of the bulk fluid at the conditions corresponding to the beginning of the plateau of total adsorption, marking the end of the transition of pore fluid to a denser, liquid-like pore phase. The results for propane and carbon dioxide showed similarity in the sense of the principle of corresponding states. No measurable effect of pore confinement on the liquid-vapor critical point was found. Quantitative agreement was obtained between excess adsorption isotherms determined from VTD total adsorption results and those measured gravimetrically at the same temperature, confirming the validity of the vibrating tube measurements. Vibrating tube densimetry was demonstrated as a novel experimental approach capable of providing the average density of pore-confined fluids.

Gruszkiewicz, Miroslaw {Mirek} S [ORNL; Rother, Gernot [ORNL; Wesolowski, David J [ORNL; Cole, David R [ORNL; Wallacher, Dirk [Helmholtz-Zentrum Berlin

2012-01-01T23:59:59.000Z

403

Fundamentals of Engineering (FE) Exam Fluid Mechanics Review  

E-Print Network [OSTI]

Fundamentals of Engineering (FE) Exam Fluid Mechanics Review Steven Burian Civil & Environmental Engineering March 22, 2013 #12;Morning (Fluid Mechanics) A. Flow measurement B. Fluid properties C. Fluid, and compressors K. Non-Newtonian flow L. Flow through packed beds Fluids and FE #12;#12;#12;Fluids § Fluids

Provancher, William

404

Visually simulating realistic fluid motion  

E-Print Network [OSTI]

's second law of motion and Conservation of Mass, which leads to the continuity equation. Newton's second law states that the total force F, acting on an element equals mass m times the element's acceleration a. In the case of fluids we do not consider...

Naithani, Priyanka

2002-01-01T23:59:59.000Z

405

Directed flow fluid rinse trough  

DOE Patents [OSTI]

Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs.

Kempka, Steven N. (9504 Lona La., Albuquerque, NM 87111); Walters, Robert N. (11872 LaGrange St., Boise, ID 83709)

1996-01-01T23:59:59.000Z

406

Directed flow fluid rinse trough  

DOE Patents [OSTI]

Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs. 9 figs.

Kempka, S.N.; Walters, R.N.

1996-07-02T23:59:59.000Z

407

Experimental Assessment of Water Based Drilling Fluids in High Pressure and High Temperature Conditions  

E-Print Network [OSTI]

Proper selection of drilling fluids plays a major role in determining the efficient completion of any drilling operation. With the increasing number of ultra-deep offshore wells being drilled and ever stringent environmental and safety regulations...

Ravi, Ashwin

2012-10-19T23:59:59.000Z

408

S urface chemistry of a viscose-based activated carbon cloth modified by treatment with ammonia and steam  

E-Print Network [OSTI]

-based activated carbon fibers (ACF) to optimize the oxidative retention of up to 5000 ppmv of SO2 in moist air suitable for the recovery of sulfuric acid at room temperature than granular activated carbon becauseS urface chemistry of a viscose-based activated carbon cloth modified by treatment with ammonia

Paris-Sud XI, Université de

409

Convective instability of a boundary layer with temperature-and strain-rate-dependent viscosity in terms of `available buoyancy'  

E-Print Network [OSTI]

be approximately proportional to the integral over the depth of the lithosphere of the ratio of thermal buoyancy. Such instabilities are driven by the negative thermal buoyancy of the cold lithosphere and retarded largely for driving convective downwelling. For non-Newtonian viscosity with power law exponent n and temperature

Conrad, Clint

410

PHYSICAL REVIEW E 86, 066321 (2012) Numerical study of viscosity and inertial effects on tank-treading and tumbling  

E-Print Network [OSTI]

PHYSICAL REVIEW E 86, 066321 (2012) Numerical study of viscosity and inertial effects on tank December 2012) An inextensible vesicle under shear flow experiences a tank-treading motion on its membrane the transition between the tank-treading and tumbling motions in detail. The present numerical results

Lai, Ming-Chih

411

Local structure and dynamics in colloidal fluids and gels  

E-Print Network [OSTI]

Gels in soft-matter systems are an important nonergodic state of matter. We study a colloid-polymer mixture which is quenched by increasing the polymer concentration, from a fluid to a gel. Using confocal microscopy, we study both the static structure and dynamics in three dimensions (3D). Between the dynamically arrested gel and ergodic fluid comprised of isolated particles we find an intermediate 'cluster fluid' state, where the 'bonds' between the colloidal particles have a finite lifetime. The local dynamics are reminiscent of a fluid, while the local structure is almost identical to that of the gel. Simultaneous real-time local structural analysis and particle tracking in 3D at the single-particle level yields the following interesting information. Particles in the clusters move in a highly correlated manner, but, at the same time, exhibit significant dynamical heterogeneity, reflecting the enhanced mobility near the free surface. Deeper quenching eventually leads to a gel state where the 'bond' lifetime exceeds that of the experiment, although the local structure is almost identical to that of the 'cluster fluid'.

Takehiro Ohtsuka; C. Patrick Royall; Hajime Tanaka

2009-04-17T23:59:59.000Z

412

The Effects of Fluid Flow On Shear Localization and Frictional Strength From Dynamic Models Of Fault Gouge During Earthquakes  

E-Print Network [OSTI]

have an increased localization toward the boundaries of the gouge layer (type III), and no occurrence of distributed (type I) shear. Systems with lower N and k show liquefaction events. Liquefaction events originate from increases in fluid pressure...

Bianco, Ronald

2013-12-02T23:59:59.000Z

413

Similarity Flow Solutions of a Non-Newtonian Power-law Fluid  

E-Print Network [OSTI]

In this paper we present a mathematical analysis for a steady-state laminar boundary layer flow, governed by the Ostwald-de Wael power-law model of an incompressible non- Newtonian fluid past a semi-infinite power-law stretched flat plate with uniform free stream velocity. A generalization of the usual Blasius similarity transformation is used to find similarity solutions [1]. Under appropriate assumptions, partial differential equations are transformed into an autonomous third-order nonlinear degenerate ordinary differential equation with boundary conditions. Using a shooting method, we establish the existence of an infinite number of global unbounded solutions. The asymptotic behavior is also discussed. Some properties of those solutions depend on the viscosity power-law index.

Guedda, Mohamed

2009-01-01T23:59:59.000Z

414

Journal of Fluid Mechanics The subtle dynamics of  

E-Print Network [OSTI]

into smaller entities, as in the formation of sprays. However, the stability of liquid sheets is surprisingly the viscosity of both the sheet a

Eggers, Jens

415

CRITICALITY CURVES FOR PLUTONIUM HYDRAULIC FLUID MIXTURES  

SciTech Connect (OSTI)

This Calculation Note performs and documents MCNP criticality calculations for plutonium (100% {sup 239}Pu) hydraulic fluid mixtures. Spherical geometry was used for these generalized criticality safety calculations and three geometries of neutron reflection are: {sm_bullet}bare, {sm_bullet}1 inch of hydraulic fluid, or {sm_bullet}12 inches of hydraulic fluid. This document shows the critical volume and critical mass for various concentrations of plutonium in hydraulic fluid. Between 1 and 2 gallons of hydraulic fluid were discovered in the bottom of HA-23S. This HA-23S hydraulic fluid was reported by engineering to be Fyrquel 220. The hydraulic fluid in GLovebox HA-23S is Fyrquel 220 which contains phosphorus. Critical spherical geometry in air is calculated with 0 in., 1 in., or 12 inches hydraulic fluid reflection.

WITTEKIND WD

2007-10-03T23:59:59.000Z

416

Phenomenology and simulations of active fluids   

E-Print Network [OSTI]

Active fluids are an interesting new class of non-equilibrium systems in physics. In such fluids, the system is forced out of equilibrium by the individual active particles - in contrast to driven systems where the system ...

Tjhung, Elsen

2013-11-28T23:59:59.000Z

417

Quantifying the stimuli of photorheological fluids  

E-Print Network [OSTI]

We develop a model to predict the dynamics of photorheological fluids and, more generally, photoresponsive fluids for monochromatic and polychromatic light sources. Derived from first principles, the model relates the ...

Bates, Sarah Woodring

2010-01-01T23:59:59.000Z

418

Fluid sampling system for a nuclear reactor  

DOE Patents [OSTI]

A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump. 1 fig.

Lau, L.K.; Alper, N.I.

1994-11-22T23:59:59.000Z

419

Fluid Flow Simulation in Fractured Reservoirs  

E-Print Network [OSTI]

The purpose of this study is to analyze fluid flow in fractured reservoirs. In most petroleum reservoirs, particularly carbonate reservoirs and some tight sands, natural fractures play a critical role in controlling fluid ...

Sarkar, Sudipta

2002-01-01T23:59:59.000Z

420

Fluid sampling system for a nuclear reactor  

DOE Patents [OSTI]

A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump.

Lau, Louis K. (Monroeville, PA); Alper, Naum I. (Monroeville, PA)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fluid viscosity increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Ultrasonic fluid densitometer for process control  

DOE Patents [OSTI]

The present invention is an ultrasonic fluid densitometer that uses at least one pair of transducers for transmitting and receiving ultrasonic signals internally reflected within a material wedge. A temperature sensor is provided to monitor the temperature of the wedge material. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface and comparing a transducer voltage and wedge material temperature to a tabulation as a function of density.

Greenwood, Margaret S. (Richland, WA)

2000-01-01T23:59:59.000Z

422

Supercritical Fluid Attachment of Palladium Nanoparticles on...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Attachment of Palladium Nanoparticles on Aligned Carbon Nanotubes. Supercritical Fluid Attachment of Palladium Nanoparticles on Aligned Carbon Nanotubes. Abstract: Nanocomposite...

423

Calculation of large scale relative permeabilities from stochastic properties of the permeability field and fluid properties  

SciTech Connect (OSTI)

The paper describes the method and presents preliminary results for the calculation of homogenized relative permeabilities using stochastic properties of the permeability field. In heterogeneous media, the spreading of an injected fluid is mainly sue to the permeability heterogeneity and viscosity fingering. At large scale, when the heterogeneous medium is replaced by a homogeneous one, we need to introduce a homogenized (or pseudo) relative permeability to obtain the same spreading. Generally, is derived by using fine-grid numerical simulations (Kyte and Berry). However, this operation is time consuming and cannot be performed for all the meshes of the reservoir. We propose an alternate method which uses the information given by the stochastic properties of the field without any numerical simulation. The method is based on recent developments on homogenized transport equations (the {open_quotes}MHD{close_quotes} equation, Lenormand SPE 30797). The MHD equation accounts for the three basic mechanisms of spreading of the injected fluid: (1) Dispersive spreading due to small scale randomness, characterized by a macrodispersion coefficient D. (2) Convective spreading due to large scale heterogeneities (layers) characterized by a heterogeneity factor H. (3) Viscous fingering characterized by an apparent viscosity ration M. In the paper, we first derive the parameters D and H as functions of variance and correlation length of the permeability field. The results are shown to be in good agreement with fine-grid simulations. The are then derived a function of D, H and M. The main result is that this approach lead to a time dependent . Finally, the calculated are compared to the values derived by history matching using fine-grid numerical simulations.

Lenormand, R.; Thiele, M.R. [Institut Francais du Petrole, Rueil Malmaison (France)

1997-08-01T23:59:59.000Z

424

Harmonic Fluids Changxi Zheng Doug L. James  

E-Print Network [OSTI]

Harmonic Fluids Changxi Zheng Doug L. James Cornell University Abstract Fluid sounds- ing. Furthermore, while offline applications can rely on talented foley artists to "cook up" plausible for vortex-based fluid sounds [Dobashi et al. 2003] and solid bodies [O'Brien et al. 2001; James et al. 2006

Columbia University

425

2014 GRADUATE STUDIES ENVIRONMENTAL FLUID MECHANICS  

E-Print Network [OSTI]

for Civil and Environmental Engineers · Stochastic Hydrology · Water Resources Management · Fluid Mechanics2014 GRADUATE STUDIES ENVIRONMENTAL FLUID MECHANICS AND WATER RESOURCES ENGINEERING RESEARCH AREAS SELECTED COURSES FACILITIES The Environmental Fluid Mechanics and Water Resources program at the Georgia

Wang, Yuhang

426

Journal of Fluid Mechanics Hesitant Nature  

E-Print Network [OSTI]

Journal of Fluid Mechanics Focus luids on F Hesitant Nature E. VILLERMAUX Aix-Marseille Universit0022112009991303 1 #12;Journal of Fluid Mechanics Focus luids on F 1 mm Figure 1. The `gobbling' phenomenon). J. Fluid Mech. (2009), vol. 636, pp. 1­4. c Cambridge University Press 2009 doi:10.1017/S

427

MECH 502: Fluid Mechanics Winter semester 2010  

E-Print Network [OSTI]

MECH 502: Fluid Mechanics Winter semester 2010 Instructor: I.A. Frigaard Times: Tuesdays week of semester. Location: CHBE 103 Synopsis: This course will focus primarily on fluid mechanics will be to look at fluid mechanics fundamentals, and at the mathematical modeling & analysis of simplified flow

428

SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW  

E-Print Network [OSTI]

SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW J. E. Santos1, G. B. Savioli2, J. M. Carcione3, D´e, Argentina SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12;Introduction. I Storage of CO2). SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12;Introduction. II CO2 is separated from natural

Santos, Juan

429

Fluid Construction Grammar on Real Robots  

E-Print Network [OSTI]

Chapter 10 Fluid Construction Grammar on Real Robots Luc Steels1,2, Joachim De Beule3, and Pieter and P. Wellens (2012). Fluid Construction Grammar on Real Robots. In Luc Steels and Manfred Hild (Eds game experiments reported in this book. This framework is called Fluid Construction Grammar (FCG

Steels, Luc

430

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2011; 00:123  

E-Print Network [OSTI]

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2011; 00 for the treatment of discontinuous pressures in multi­fluid flows Roberto F. Ausas1 , Gustavo C. Buscaglia1 WORDS: Multi­fluids, Two­phase flows, Embedded interfaces, Finite element method, Surface tension

Buscaglia, Gustavo C.

431

Fall 2011 ME 542 Advanced Fluid Mechanics ENG ME 542 Advanced Fluid Mechanics  

E-Print Network [OSTI]

Fall 2011 ME 542 Advanced Fluid Mechanics ENG ME 542 Advanced Fluid Mechanics Instructor: M. S. Howe EMA 218 mshowe@bu.edu This course is intended to consolidate your knowledge of fluid mechanics specialized courses on fluid mechanics, acoustics and aeroacoustics. Outline syllabus: Equations of motion

432

PHYSICS OF FLUIDS 24, 043102 (2012) A numerical investigation of the fluid mechanical  

E-Print Network [OSTI]

PHYSICS OF FLUIDS 24, 043102 (2012) A numerical investigation of the fluid mechanical sewing or jet of liquid falling onto a fixed surface is one of the simplest situations in fluid mechanics, yet by Chiu-Webster and Lister9 (henceforth CWL), who called it the "fluid mechanical sewing machine

Audoly, Basile

433

Introduction to Computational Fluid Dynamics 424512 E #1 -rz Introduction to Computational Fluid Dynamics  

E-Print Network [OSTI]

Introduction to Computational Fluid Dynamics 424512 E #1 - rz Introduction to Computational Fluid Dynamics (iCFD) 424512.0 E, 5 sp / 3 sw 1. Introduction; Fluid dynamics (lecture 1 of 5) Ron Zevenhoven Ã?bo to Computational Fluid Dynamics 424512 E #1 - rz april 2013 Ã?bo Akademi Univ - Thermal and Flow Engineering

Zevenhoven, Ron

434

Electrokinetic micro-fluid mixer  

DOE Patents [OSTI]

A method and apparatus for efficiently and rapidly mixing liquids in a system operating in the creeping flow regime such as would be encountered in capillary-based systems. By applying an electric field to each liquid, the present invention is capable of mixing together fluid streams in capillary-based systems, where mechanical or turbulent stirring cannot be used, to produce a homogeneous liquid.

Paul, Phillip H. (Livermore, CA); Rakestraw, David J. (Fremont, CA)

2000-01-01T23:59:59.000Z

435

Fluid dynamics kill Wyoming icicle  

SciTech Connect (OSTI)

Control of a blowout in which a portion of the drill collar string was extending through the rotary table and into the derrick was compounded by ice building up on the derrick and substructure. However, the momentum kill procedure proved successful. Topics considered in this paper include oil wells, natural gas wells, sleeves, rotary drills, drilling rigs, fluid mechanics, occupational safety, blowouts, drill pipes, rotary drilling, ice removal, and freezing.

Grace, R.D.

1987-04-01T23:59:59.000Z

436

Locomotion in complex fluids: Integral theorems  

E-Print Network [OSTI]

The biological fluids encountered by self-propelled cells display complex microstructures and rheology. We consider here the general problem of low-Reynolds number locomotion in a complex fluid. {Building on classical work on the transport of particles in viscoelastic fluids,} we demonstrate how to mathematically derive three integral theorems relating the arbitrary motion of an isolated organism to its swimming kinematics {in a non-Newtonian fluid}. These theorems correspond to three situations of interest, namely (1) squirming motion in a linear viscoelastic fluid, (2) arbitrary surface deformation in a weakly non-Newtonian fluid, and (3) small-amplitude deformation in an arbitrarily non-Newtonian fluid. Our final results, valid for a wide-class of {swimmer geometry,} surface kinematics and constitutive models, at most require mathematical knowledge of a series of Newtonian flow problems, and will be useful to quantity the locomotion of biological and synthetic swimmers in complex environments.

Eric Lauga

2014-10-15T23:59:59.000Z

437

Calculation of Neoclassical Toroidal Viscosity with a Particle Simulation in the Tokamak Magnetic Breaking Experiments  

SciTech Connect (OSTI)

Accurate calculation of perturbed distribution function #14;?f and perturbed magnetic fi eld #14;?B is essential to achieve prediction of non-ambipolar transport and neoclassical toroidal viscosity (NTV) in perturbed tokamaks. This paper reports a study of the NTV with a #14;?f particle code (POCA) and improved understanding of magnetic braking in tokamak experiments. POCA calculates the NTV by computing #14;f with guiding-center orbit motion and using #14;B from the ideal perturbed equilibrium code (IPEC). POCA simulations are compared with experimental estimations for NTV, which are measured from angular momentum balance (DIII-D) and toroidal rotational damping rate (NSTX). The calculation shows good agreement in total NTV torque for the DIII-D discharge, where an analytic neoclassical theory also gives a consistent result thanks to relatively large aspect-ratio and slow toroidal rotations. In NSTX discharges, where the aspect-ratio is small and the rotation is fast, the theory only gives a qualitative guide for predicting NTV. However, the POCA simulation largely improves the quantitative NTV prediction for NSTX. It is discussed that a self- consistent calculation of ?#14;B using general perturbed equilibria is eventually necessary since a non-ideal plasma response can change the perturbed eld and thereby the NTV torque.

Kimin Kim, et al

2013-04-23T23:59:59.000Z

438

Ratio of shear viscosity to entropy density in generalized theories of gravity  

SciTech Connect (OSTI)

Near the horizon of a black brane solution in anti-de Sitter space, the long-wavelength fluctuations of the metric exhibit hydrodynamic behavior. For Einstein's theory, the ratio of the shear viscosity of near-horizon metric fluctuations {eta} to the entropy per unit of transverse volume s is {eta}/s=1/4{pi}. We propose that, in generalized theories of gravity, this ratio is given by the ratio of two effective gravitational couplings and can be different than 1/4{pi}. Our proposal confirms that {eta}/s is equal to 1/4{pi} for any theory that can be transformed into Einstein's theory, such as F(R) gravity. Our proposal also implies that matter interactions--except those including explicit or implicit factors of the Riemann tensor--will not modify {eta}/s. The proposed formula reproduces, in a very simple manner, some recently found results for Gauss-Bonnet gravity. We also make a prediction for {eta}/s in Lovelock theories of any order or dimensionality.

Brustein, Ram; Medved, A. J. M. [Department of Physics, Ben-Gurion University, Beer-Sheva 84105 (Israel); Physics Department, University of Seoul, Seoul 130-743 (Korea, Republic of)

2009-01-15T23:59:59.000Z

439

An ultrasonic instrument for measuring density and viscosity of tank waste  

SciTech Connect (OSTI)

An estimated 381,000 m{sup 3}/1.1 x 10{sup 9} Ci of radioactive waste are stored in high-level waste tanks at the Hanford Savannah River, Idaho Nuclear Engineering and Environmental Laboratory, and West Valley facilities. This nuclear waste has created one of the most complex waste management and cleanup problems that face the United States. Release of radioactive materials into the environment from underground waste tanks requires immediate cleanup and waste retrieval. Hydraulic mobilization with mixer pumps will be used to retrieve waste slurries and salt cakes from storage tanks. To ensure that transport lines in the hydraulic system will not become plugged, the physical properties of the slurries must be monitored. Characterization of a slurry flow requires reliable measurement of slurry density, mass flow, viscosity, and volume percent of solids. Such measurements are preferably made with on-line nonintrusive sensors that can provide continuous real-time monitoring. With the support of the U.S. Department of Energy (DOE) Office of Environmental Management (EM-50), Argonne National Laboratory (ANL) is developing an ultrasonic instrument for in-line monitoring of physical properties of radioactive tank waste.

Sheen, S.H.; Chien, H.T.; Raptis, A.C.

1997-10-01T23:59:59.000Z

440

Hydrostatic bearings for a turbine fluid flow metering device  

DOE Patents [OSTI]

A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion. 3 figs.

Fincke, J.R.

1982-05-04T23:59:59.000Z

Note: This page contains sample records for the topic "fluid viscosity increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Hydrostatic bearings for a turbine fluid flow metering device  

DOE Patents [OSTI]

A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

Fincke, James R. (Rigby, ID)

1982-01-01T23:59:59.000Z

442

Silica recovery and control in Hawaiian geothermal fluids  

SciTech Connect (OSTI)

A series of experiments was performed to investigate methods of controlling silica in waste geothermal brines produced at the HGP-A Generator Facility. Laboratory testing has shown that the rate of polymerization of silica in the geothermal fluids is highly pH dependent. At brine pH values in excess of 8.5 the suspension of silica polymers flocculated and rapidly precipitated a gelatinous silica mass. Optimum flocculation and precipitation rates were achieved at pH values in the range of 10.5 to 11.5. The addition of transition metal salts to the geothermal fluids similarly increased the rate of polymerization as well as the degree of precipitation of the silica polymer from suspension. A series of experiments performed on the recovered silica solids demonstrated that methanol extraction of the water in the gels followed by critical point drying yielded surface areas in excess of 300 M{sup 2}/g and that treatment of the dried solids with 2 N HCl removed most of the adsorbed impurities in the recovered product. A series of experiments tested the response of the waste brines to mixing with steam condensate and non-condensable gases.The results demonstrated that the addition of condensate and NCG greatly increased the stability of the silica in the geothermal brines. They also indicated that the process could reduce the potential for plugging of reinjection wells receiving waste geothermal fluids from commercial geothermal facilities in Hawaii. Conceptual designs were proposed to apply the gas re-combination approach to the disposal of geothermal waste fluids having a range of chemical compositions. Finally, these designs were applied to the geothermal fluid compositions found at Cerro Prieto, Ahuachapan, and Salton Sea.

Thomas, D.M.

1992-06-01T23:59:59.000Z

443

Silica recovery and control in Hawaiian geothermal fluids. Final report  

SciTech Connect (OSTI)

A series of experiments was performed to investigate methods of controlling silica in waste geothermal brines produced at the HGP-A Generator Facility. Laboratory testing has shown that the rate of polymerization of silica in the geothermal fluids is highly pH dependent. At brine pH values in excess of 8.5 the suspension of silica polymers flocculated and rapidly precipitated a gelatinous silica mass. Optimum flocculation and precipitation rates were achieved at pH values in the range of 10.5 to 11.5. The addition of transition metal salts to the geothermal fluids similarly increased the rate of polymerization as well as the degree of precipitation of the silica polymer from suspension. A series of experiments performed on the recovered silica solids demonstrated that methanol extraction of the water in the gels followed by critical point drying yielded surface areas in excess of 300 M{sup 2}/g and that treatment of the dried solids with 2 N HCl removed most of the adsorbed impurities in the recovered product. A series of experiments tested the response of the waste brines to mixing with steam condensate and non-condensable gases.The results demonstrated that the addition of condensate and NCG greatly increased the stability of the silica in the geothermal brines. They also indicated that the process could reduce the potential for plugging of reinjection wells receiving waste geothermal fluids from commercial geothermal facilities in Hawaii. Conceptual designs were proposed to apply the gas re-combination approach to the disposal of geothermal waste fluids having a range of chemical compositions. Finally, these designs were applied to the geothermal fluid compositions found at Cerro Prieto, Ahuachapan, and Salton Sea.

Thomas, D.M.

1992-06-01T23:59:59.000Z

444

Predictions of flow through an isothermal serpentine passage with linear eddy-viscosity Reynolds Averaged Navier Stokes models.  

SciTech Connect (OSTI)

Flows with strong curvature present a challenge for turbulence models, specifically eddy viscosity type models which assume isotropy and a linear and instantaneous equilibrium relation between stress and strain. Results obtained from three different codes and two different linear eddy viscosity turbulence models are compared to a DNS simulation in order to gain some perspective on the turbulence modeling capability of SIERRA/Fuego. The Fuego v2f results are superior to the more common two-layer k-e model results obtained with both a commercial and research code in terms of the concave near wall behavior predictions. However, near the convex wall, including the separated region, little improvement is gained using the v2f model and in general the turbulent kinetic energy prediction is fair at best.

Laskowski, Gregory Michael

2005-12-01T23:59:59.000Z

445

Mechanistic modeling of increased oxygen transport using functionalized magnetic fluids in bioreactors  

E-Print Network [OSTI]

Absorption of gases into a liquid is of crucial importance to multiphase reactions because diffusion of a sparingly soluble gas across a gas-liquid interface generally limits the relevant reaction rates. Pertinent examples ...

Ollé Pocurull, Bernat

2007-01-01T23:59:59.000Z

446

Solvent viscosity effect on quenching rate constants of phenophytin a fluorescence by quinones. Role of non-stationary effects  

SciTech Connect (OSTI)

The fluorescence quenching of phenophytin a by quinones in different solvents has been studied with a steady-state and pulse photoexcitation. The quenching in alcohols is caused by complexes which are spectrally undetectable. In other solvents the quenching is dynamic. The effect of viscosity on the quenching rate has been studied. It has been found that the non-stationary effects play a substantial role in the quenching process.

Kapinus, E.I.; Dilung II.; Kucherova, I.Y.; Kuz'min, M.G.; Zartsev, N.K.

1986-11-01T23:59:59.000Z

447

Multiple source/multiple target fluid transfer apparatus  

DOE Patents [OSTI]

A fluid transfer apparatus includes: a) a plurality of orifices for connection with fluid sources; b) a plurality of orifices for connection with fluid targets; c) a set of fluid source conduits and fluid target conduits associated with the orifices; d) a pump fluidically interposed between the source and target conduits to transfer fluid therebetween; e) a purge gas conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass a purge gas under pressure; f) a solvent conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass solvent, the solvent conduit including a solvent valve; g) pump control means for controlling operation of the pump; h) purge gas valve control means for controlling operation of the purge gas valve to selectively impart flow of purge gas to the fluid source conduits, fluid target conduits and pump; i) solvent valve control means for controlling operation of the solvent valve to selectively impart flow of solvent to the fluid source conduits, fluid target conduits and pump; and j) source and target valve control means for controlling operation of the fluid source conduit valves and the fluid target conduit valves to selectively impart passage of fluid between a selected one of the fluid source conduits and a selected one of the fluid target conduits through the pump and to enable passage of solvent or purge gas through selected fluid source conduits and selected fluid target conduits.

Turner, Terry D. (Idaho Falls, ID)

1997-01-01T23:59:59.000Z

448

Multiple source/multiple target fluid transfer apparatus  

DOE Patents [OSTI]

A fluid transfer apparatus includes: (a) a plurality of orifices for connection with fluid sources; (b) a plurality of orifices for connection with fluid targets; (c) a set of fluid source conduits and fluid target conduits associated with the orifices; (d) a pump fluidically interposed between the source and target conduits to transfer fluid there between; (e) a purge gas conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass a purge gas under pressure; (f) a solvent conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass solvent, the solvent conduit including a solvent valve; (g) pump control means for controlling operation of the pump; (h) purge gas valve control means for controlling operation of the purge gas valve to selectively impart flow of purge gas to the fluid source conduits, fluid target conduits and pump; (i) solvent valve control means for controlling operation of the solvent valve to selectively impart flow of solvent to the fluid source conduits, fluid target conduits and pump; and (j) source and target valve control means for controlling operation of the fluid source conduit valves and the fluid target conduit valves to selectively impart passage of fluid between a selected one of the fluid source conduits and a selected one of the fluid target conduits through the pump and to enable passage of solvent or purge gas through selected fluid source conduits and selected fluid target conduits. 6 figs.

Turner, T.D.

1997-08-26T23:59:59.000Z

449

Immersible solar heater for fluids  

DOE Patents [OSTI]

An immersible solar heater comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

Kronberg, James W. (Aiken, SC)

1995-01-01T23:59:59.000Z

450

Fluid cooled vehicle drive module  

DOE Patents [OSTI]

An electric vehicle drive includes a support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EM/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.

2005-11-15T23:59:59.000Z

451

Heat pump/refrigerator using liquid working fluid  

DOE Patents [OSTI]

A heat transfer device is described that can be operated as a heat pump or refrigerator, which utilizes a working fluid that is continuously in a liquid state and which has a high temperature-coefficient of expansion near room temperature, to provide a compact and high efficiency heat transfer device for relatively small temperature differences as are encountered in heating or cooling rooms or the like. The heat transfer device includes a pair of heat exchangers that may be coupled respectively to the outdoor and indoor environments, a regenerator connecting the two heat exchangers, a displacer that can move the liquid working fluid through the heat exchangers via the regenerator, and a means for alternately increasing and decreasing the pressure of the working fluid. The liquid working fluid enables efficient heat transfer in a compact unit, and leads to an explosion-proof smooth and quiet machine characteristic of hydraulics. The device enables efficient heat transfer as the indoor-outdoor temperature difference approaches zero, and enables simple conversion from heat pumping to refrigeration as by merely reversing the direction of a motor that powers the device.

Wheatley, John C. (Del Mar, CA); Paulson, Douglas N. (Del Mar, CA); Allen, Paul C. (Solana Beach, CA); Knight, William R. (Corvallis, OR); Warkentin, Paul A. (San Diego, CA)

1982-01-01T23:59:59.000Z

452

Flows of Incompressible Newtonian and Generalized Newtonian Fluids over a Circular Cylinder  

E-Print Network [OSTI]

This thesis presents numerical solutions of the boundary value problems describing the isothermal and non-isothermal steady flows of incompressible Newtonian, power-law and Carreau fluids over a circular cylinder using the hpk-finite element process...g_i...max fluids (power-law and Carreau models) only shear thinning fluids are considered. Numerical studies demonstrate decoupled behavior of the temperature field from the rest of the deformation field. Shear thinning behavior and viscous dissipation for progressively increasing Reynolds numbers are simulated accurately without any difficulty....

Klein, Kayla

2012-05-31T23:59:59.000Z

453

Subcritical finite-amplitude solutions in plane Couette flow of visco-elastic fluids  

E-Print Network [OSTI]

Plane Couette flow of visco-elastic fluids is shown to exhibit a purely elastic subcritical instability in spite of being linearly stable. The mechanism of this instability is proposed and the nonlinear stability analysis of plane Couette flow of the Upper-Convected Maxwell fluid is presented. It is found that above the critical Weissenberg number, a small finite-size perturbation is sufficient to create a secondary flow, and the threshold value for the amplitude of the perturbation decreases as the Weissenberg number increases. The results suggest a scenario for weakly turbulent visco-elastic flow which is similar to the one for Newtonian fluids as a function of Reynolds number.

Alexander N. Morozov; Wim van Saarloos

2004-11-10T23:59:59.000Z

454

Split driveshaft pump for hazardous fluids  

DOE Patents [OSTI]

A pump having a split driveshaft for use in pumping hazardous fluids wherein only one driveshaft becomes contaminated by the fluid while the second remains isolated from the fluid. The pump has a first portion and a second portion. The first portion contains a pump motor, the first driveshaft, a support pedestal, and vapor barriers and seals. The second portion contains a second, self-lubricating driveshaft and an impeller. The first and second driveshafts are connected together by a releasable coupling. A shield and a slinger deployed below the coupling prevent fluid from the second portion from reaching the first portion. In operation, only the second assembly comes into contact with the fluid being pumped, so the risk of contamination of the first portion by the hazardous fluid is reduced. The first assembly can be removed for repairs or routine maintenance by decoupling the first and second driveshafts and disconnecting the motor from the casing.

Evans, II, Thomas P. (Aiken, SC); Purohit, Jwalit J. (Evans, GA); Fazio, John M. (Orchard Park, NY)

1995-01-01T23:59:59.000Z

455

On the equivalence of nonadiabatic fluids  

E-Print Network [OSTI]

Here we show how an anisotropic fluid in the diffusion limit can be equivalent to an isotropic fluid in the streaming out limit, in spherical symmetry. For a particular equation of state this equivalence is total, from one fluid we can obtain the other and vice versa. A numerical master model is presented, based on a generic equation of state, in which only quantitative differences are displayed between both nonadiabatic fluids. From a deeper view, other difference between fluids is shown as an asymmetry that can be overcome if we consider the appropriate initial-boundary conditions. Equivalence in this context can be considered as a first order method of approximation to study dissipative fluids.

W. Barreto

2010-11-17T23:59:59.000Z

456

Process for retarding fluid flow  

SciTech Connect (OSTI)

A process is described for retarding the flow of fluid in a subterranean formation, comprising: (a) introducing an effective amount of a gel-forming composition into a subterranean formation, the gel-forming composition being operable when gelled in the formation for retarding the flow of fluid therein. The gel-forming composition consists of: i. a first substance dissolved in water to form an aqueous solution, the first substance being selected from the group consisting of polyvivyl alcohols, and mixtures thereof, wherein the gel-forming composition contains an amount of the first substance of from about 0.5 to about 5 weight percent of the gel-forming composition, and ii. an effective amount of glutaraldehyde which is operable for forming a weakly acidic condition having a pH from about 5.5 to less than 7 in the gel-forming composition and also operable for promoting crosslinking of the first substance and glutaraldehyde and for forming a gel from the gel-forming composition under the weakly acidic condition within a period of time no greater than about 5 days without adding an acidic catalyst to the gel-forming composition to lower the pH of the gel-forming composition below about 5.5.

Sandford, B.B.; Zillmer, R.C.

1989-01-10T23:59:59.000Z

457

Apparatus for unloading pressurized fluid  

DOE Patents [OSTI]

An apparatus is described for unloading fluid, preferably pressurized gas, from containers in a controlled manner that protects the immediate area from exposure to the container contents. The device consists of an unloading housing, which is enclosed within at least one protective structure, for receiving the dispensed contents of the steel container, and a laser light source, located external to the protective structure, for opening the steel container instantaneously. The neck or stem of the fluid container is placed within the sealed interior environment of the unloading housing. The laser light passes through both the protective structure and the unloading housing to instantaneously pierce a small hole within the stem of the container. Both the protective structure and the unloading housing are specially designed to allow laser light passage without compromising the light's energy level. Also, the unloading housing allows controlled flow of the gas once it has been dispensed from the container. The external light source permits remote operation of the unloading device. 2 figures.

Rehberger, K.M.

1994-01-04T23:59:59.000Z

458

System and method for filling a plurality of isolated vehicle fluid circuits through a common fluid fill port  

SciTech Connect (OSTI)

A vehicle having multiple isolated fluid circuits configured to be filled through a common fill port includes a first fluid circuit disposed within the vehicle, the first fluid circuit having a first fill port, a second fluid circuit disposed within the vehicle, and a conduit defining a fluid passageway between the first fluid circuit and second fluid circuit, the conduit including a valve. The valve is configured such that the first and second fluid circuits are fluidly coupled via the passageway when the valve is open, and are fluidly isolated when the valve is closed.

Sullivan, Scott C; Fansler, Douglas

2014-10-14T23:59:59.000Z

459

Fluid control structures in microfluidic devices  

DOE Patents [OSTI]

Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.

Mathies, Richard A. (Moraga, CA); Grover, William H. (Berkeley, CA); Skelley, Alison (Berkeley, CA); Lagally, Eric (Oakland, CA); Liu, Chung N. (Albany, CA)

2008-11-04T23:59:59.000Z

460

Vibratory pumping of a free fluid stream  

DOE Patents [OSTI]

A vibratory fluid pump having a force generator for generating asymmetric periodic waves or oscillations connected to one end of one or more fluid conveyance means, such as filaments. The opposite ends of the filaments are connected to springs. Fluid introduced onto the filaments will traverse along the filaments according to the magnitude of the positive and negative excursions of the periodic waves or oscillations, and can be recovered from the filaments.

Merrigan, Michael A. (Santa Cruz, NM); Woloshun, Keith A. (Los Alamos, NM)

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fluid viscosity increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Vibratory pumping of a free fluid stream  

DOE Patents [OSTI]

A vibratory fluid pump is described having a force generator for generating asymmetric periodic waves or oscillations connected to one end of one or more fluid conveyance means, such as filaments. The opposite ends of the filaments are connected to springs. Fluid introduced onto the filaments will traverse along the filaments according to the magnitude of the positive and negative excursions of the periodic waves or oscillations, and can be recovered from the filaments. 3 figs.

Merrigan, M.A.; Woloshun, K.A.

1990-11-13T23:59:59.000Z

462

Precipitation of impurities in 9-32-0 grade fluid fertilizers  

SciTech Connect (OSTI)

For several years TVA has been studying production of 9-32-0 ammonium polyphosphate suspension produced from ammoniated merchant-grade wet-process orthophosphoric acid. Suspensions containing polyphosphate have an advantage over those that contain only orthophosphate in that they can be stored satisfactorily at much lower temperature. However, the introduction of polyphosphate (pyrophosphate anion) complicates the precipitation of impurities and has yielded inconsistent storage characteristics in 9-32-0 fluid fertilizers. Fluorine also has been shown to affect suspension fertilizer properties. The viscosity of 13-38-0 orthophosphate suspension fertilizers is affected by the atomic ratios F:(Al + Fe + Mg). Addition of fluorine prevents sludges and precipitates in ammonium polyphosphate fertilizer solutions - the proper amount of fluorine is related to the amount of each of the metallic impurities present and also to the fraction of the phosphate present as pyrophosphate. Incorporation of polyphosphate or fluorine or both has been shown to have positive effects on ammoniated wet-process phosphoric acid (WPPA), but they do not report the solubility relationships of the cation impurities (Fe, Al, Mg, and Ca) with respect to the anion constituents (PO/sub 4/, P/sub 2/O/sub 7/, and F). Therefore, a factorial study was developed to determine the solubility relationships of the precipitated metal impurities encountered in 9-32-0 fluid fertilizers. 10 refs., 1 fig., 20 tabs.

Dillard, E.F.; Scheib, R.M.; Greenwell, B.E.

1986-01-01T23:59:59.000Z

463

PRECISION CLEANING OF SEMICONDUCTOR SURFACES USING CARBON DIOXIDE-BASED FLUIDS  

SciTech Connect (OSTI)

The Los Alamos National Laboratory, on behalf of the Hewlett-Packard Company, is conducting tests of a closed-loop CO{sub 2}-based supercritical fluid process, known as Supercritical CO{sub 2} Resist Remover (SCORR). We have shown that this treatment process is effective in removing hard-baked, ion-implanted photoresists, and appears to be fully compatible with metallization systems. We are now performing experiments on production wafers to assess not only photoresist removal, but also residual surface contamination due to particulate and trace metals. Dense-phase (liquid or supercritical) CO{sub 2}, since it is non-polar, acts like an organic solvent and therefore has an inherently high volubility for organic compounds such as oils and greases. Also, dense CO{sub 2} has a low-viscosity and a low dielectric constant. Finally, CO{sub 2} in the liquid and supercritical fluid states can solubilize metal completing agents and surfactants. This combination of properties has interesting implications for the removal not only of organic films, but also trace metals and inorganic particulate. In this paper we discuss the possibility of using CO{sub 2} as a precision-cleaning solvent, with particular emphasis on semiconductor surfaces.

J. RUBIN; L. SIVILS; A. BUSNAINA

1999-07-01T23:59:59.000Z

464

Hydrostatic bearings for a turbine fluid flow metering device  

DOE Patents [OSTI]

A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

Fincke, J.R.

1980-05-02T23:59:59.000Z

465

Methodologies for Reservoir Characterization Using Fluid Inclusion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Surveys Chemical Signatures of and Precursors to Fractures Using Fluid Inclusion Stratigraphy Creation of an Engineered Geothermal System through Hydraulic and Thermal Stimulation...

466

Quantum Mechanical Description of Fluid Dynamics  

E-Print Network [OSTI]

In this paper, we deal with fluid motion in terms of quantum mechanics. Mechanism accounting for the appearance of quantum behavior is discussed.

H. Y. Cui

2001-08-16T23:59:59.000Z

467

Coupled atomistic-continuum methods for fluids  

E-Print Network [OSTI]

I will discuss the coupling scheme, its application to polymer fluids, and the major difficulties in implementations. In the second part of the talk, I will discuss the ...

468

DISPLAYING AND INTERPRETING FLUID INCLUSION STRATIGRAPHY ANALYSES...  

Open Energy Info (EERE)

This is the fourth paper in a series on developing fluid inclusion stratigraphy (FIS) as a logging tool for geothermal bore holes. Here we address methods of displaying...

469

SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW  

E-Print Network [OSTI]

SEISMIC MONITORING OF. CARBON DIOXIDE FLUID FLOW. J. E. Santos. 1. , G. B. Savioli. 2. , J. M. Carcione. 3. , D. Gei. 3. 1. CONICET, IGPUBA, Fac.

santos

470

Gas powered fluid gun with recoil mitigation  

DOE Patents [OSTI]

A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

Grubelich, Mark C; Yonas, Gerold

2013-11-12T23:59:59.000Z

471

Fluid casting of particle-based articles  

DOE Patents [OSTI]

A method for the production of articles made of a particle-based material; e.g., ceramics and sintered metals. In accordance with one aspect of the invention, a thermally settable slurry containing a relatively high concentration of the particles is introduced into an immiscible, heated fluid. The slurry sets or hardens into a shape determined by the physical characteristics of the fluid and the manner of introduction of the slurry into the fluid. For example, the slurry is pulse injected into the fluid to provide spherical articles. The hardened spheres may then be sintered to consolidate the particles and provide a high density product.

Menchhofer, Paul (Oak Ridge, TN)

1995-01-01T23:59:59.000Z

472

Solution generating theorems for perfect fluid spheres  

E-Print Network [OSTI]

The first static spherically symmetric perfect fluid solution with constant density was found by Schwarzschild in 1918. Generically, perfect fluid spheres are interesting because they are first approximations to any attempt at building a realistic model for a general relativistic star. Over the past 90 years a confusing tangle of specific perfect fluid spheres has been discovered, with most of these examples seemingly independent from each other. To bring some order to this collection, we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres. In addition, we develop new ``solution generating'' theorems for the TOV, whereby any given solution can be ``deformed'' to a new solution. Because these TOV-based theorems work directly in terms of the pressure profile and density profile it is relatively easy to impose regularity conditions at the centre of the fluid sphere.

Petarpa Boonserm; Matt Visser; Silke Weinfurtner

2006-09-20T23:59:59.000Z

473

Spinning Fluids: A Group Theoretical Approach  

E-Print Network [OSTI]

We extend the Lagrangian formulation of relativistic non-abelian fluids in group theory language. We propose a Mathisson-Papapetrou equation for spinning fluids in terms of the reduction limit of de Sitter group. The equation we find correctly boils down to the one for non-spinning fluids. We study the application of our results for an FRW cosmological background for fluids with no vorticity and for dusts in the vicinity of a Kerr black hole. We also explore two alternative approaches based on a group theoretical formulation of particles dynamics.

Dario Capasso; Debajyoti Sarkar

2014-04-07T23:59:59.000Z

474

Fluid&ParticulateSystems 424514/2010  

E-Print Network [OSTI]

Being often a low temperature process, better energy economy than, for example, distillation Fluid species (no solvent present) are separated by partial freezing Zone melting (refining) from solid

Zevenhoven, Ron

475

Conditions for fluid separations in microchannels, capillary-driven fluid separations, and laminated devices capable of separating fluids  

DOE Patents [OSTI]

Methods of separating fluids using capillary forces and/or improved conditions for are disclosed. The improved methods may include control of the ratio of gas and liquid Reynolds numbers relative to the Suratman number. Also disclosed are wick-containing, laminated devices that are capable of separating fluids.

TeGrotenhuis, Ward E. (Kennewick, WA); Stenkamp, Victoria S. (Richland, WA)

2008-03-18T23:59:59.000Z

476

Conditions for fluid separations in microchannels, capillary-driven fluid separations, and laminated devices capable of separating fluids  

DOE Patents [OSTI]

Methods of separating fluids using capillary forces and/or improved conditions for are disclosed. The improved methods may include control of the ratio of gas and liquid Reynolds numbers relative to the Suratman number. Also disclosed are wick-containing, laminated devices that are capable of separating fluids.

TeGrotenhuis, Ward E [Kennewick, WA; Stenkamp, Victoria S [Richland, WA

2005-04-05T23:59:59.000Z

477

Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems  

SciTech Connect (OSTI)

Rare earth element (REE) and yttrium (Y) concentrations were measured in fluids collected from deep-sea hydrothermal systems including the Mid-Atlantic Ridge (MAR), i.e., Menez Gwen, Lucky Strike, TAG, and Snakepit; the East Pacific Rise (EPR), i.e., 13{degree}N and 17--19{degree}S; and the Lau (Vai Lili) and Manus (Vienna Woods, PacManus, Desmos) Back-arc Basins (BAB) in the South-West Pacific. In most fluids, Y is trivalent and behaves like Ho. Chondrite normalized Y-REE (Y-REE{sub N}) concentrations of fluids from MAR, EPR, and two BAB sites, i.e., Vai Lili and Vienna Woods, showed common patterns with LREE enrichment and positive Eu anomalies. REE analysis of plagioclase collected at Lucky Strike strengthens the idea that fluid REE contents, are controlled by plagioclase phenocrysts. Other processes, however, such as REE complexation by ligands (Cl{sup {minus}}, F{sup {minus}}, So{sub 4}{sup 2{minus}}), secondary phase precipitation, and phase separation modify REE distributions in deep-sea hydrothermal fluids. REE speciation calculations suggest that aqueous REE are mainly complexed by Cl{sup {minus}} ions in hot acidic fluids from deep-sea hydrothermal systems. REE concentrations in the fluid phases are, therefore, influenced by temperature, pH, and duration of rock-fluid interaction. Unusual Y-REE{sub N} patterns found in the PacManus fluids are characterized by depleted LREE and a positive Eu anomaly. The Demos fluid sample shows a flat Y-REE{sub N} pattern, which increases regularly from LREE to HREE with no Eu anomaly. These Manus Basin fluids also have an unusual major element chemistry with relatively high Mg, So{sub 4}, H{sub 2}S, and F contents, which may be due to the incorporation of magmatic fluids into heated seawater during hydrothermal circulation. REE distribution in PacManus fluids may stem from a subseafloor barite precipitation and the REE in Demos fluids are likely influenced by the presence of sulfate ions.

Douville, E. [Univ. Bretagne Occidentale, Brest (France). Dept. de Chimie] [Univ. Bretagne Occidentale, Brest (France). Dept. de Chimie; [IFREMER Centre de Brest, Plouzane (France); Appriou, P. [Univ. Bretagne Occidentale, Brest (France)] [Univ. Bretagne Occidentale, Brest (France); Bienvenu, P. [CEA Cadarache, Saint Paul Lez Durance (France). Lab. d`Analyses Radiochimiques et Chimiques] [CEA Cadarache, Saint Paul Lez Durance (France). Lab. d`Analyses Radiochimiques et Chimiques; Charlou, J.L.; Donval, J.P.; Fouquet, Y. [IFREMER Centre de Brest, Plouzane (France)] [IFREMER Centre de Brest, Plouzane (France); Gamo, Toshitaka [Univ. of Tokyo, Nakano, Tokyo (Japan). Ocean Research Inst.] [Univ. of Tokyo, Nakano, Tokyo (Japan). Ocean Research Inst.

1999-03-01T23:59:59.000Z

478

Laser microfluidics : fluid actuation by light Laser microfluidics: fluid actuation by light  

E-Print Network [OSTI]

Laser microfluidics : fluid actuation by light Laser microfluidics: fluid actuation by light Jean.delville@cpmoh.u-bordeaux1.fr Abstract: The development of microfluidic devices is still hindered by the lack of robust to extend this concept to microfluidic two-phase flows. First, we investigate the destabilization of fluid

Paris-Sud XI, Université de

479

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 31: 345358 (1999)  

E-Print Network [OSTI]

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 31: 345­358 (1999 AND S. ROYc,3 a Engineering Science Program, MAES Department, 316A Perkins Hall, Uni6ersity of Tennessee Corporation, Burr Ridge, IL, USA SUMMARY The quest continues for accurate and efficient computational fluid

Roy, Subrata

480

Under consideration for publication in J. Fluid Mech. 1 The fluid dynamics of an underfloor air  

E-Print Network [OSTI]

Under consideration for publication in J. Fluid Mech. 1 The fluid dynamics of an underfloor air-0411, U.S.A., (Received 30 May 2005) This paper discusses the fluid dynamics of an under floor air. The experiments show that the properties of the system are determined by the entrainment into the plumes

Linden, Paul F.

Note: This page contains sample records for the topic "fluid viscosity increases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Fluid substitution in rocks saturated with viscoelastic fluids Dina Makarynska1  

E-Print Network [OSTI]

- terest in production from bituminous and heavy-oil reservoirs. Heavy-oil reserves account for more than 6 trillion barrels-in-place worldwide -- triple the world's reserves of conventional oil and gas Batzle et al , Jyoti Behura3 , and Mike Batzle4 ABSTRACT Heavy oils have high densities and extremely high viscosities

482

Immersible solar heater for fluids  

DOE Patents [OSTI]

An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater. 11 figs.

Kronberg, J.W.

1995-07-11T23:59:59.000Z

483

Immersible solar heater for fluids  

DOE Patents [OSTI]

An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

Hazen, T.C.; Fliermans, C.B.

1994-01-01T23:59:59.000Z

484

Dense colloidal fluids form denser amorphous sediments  

E-Print Network [OSTI]

Dense colloidal fluids form denser amorphous sediments Shir R. Libera,b , Shai Borohovicha of their randomly packed solid sediments. We demonstrate that the most dilute fluids of colloidal hard spheres form loosely packed sediments, where the volume fraction of the particles approaches in frictional systems

Schofield, Andrew B.

485

Foam vessel for cryogenic fluid storage  

DOE Patents [OSTI]

Cryogenic storage and separator vessels made of polyolefin foams are disclosed, as are methods of storing and separating cryogenic fluids and fluid mixtures using these vessels. In one embodiment, the polyolefin foams may be cross-linked, closed-cell polyethylene foams with a density of from about 2 pounds per cubic foot to a density of about 4 pounds per cubic foot.

Spear, Jonathan D (San Francisco, CA)

2011-07-05T23:59:59.000Z

486

Conservation of Momentum: Fluids and Elastic Solids  

E-Print Network [OSTI]

Chapter 3 Conservation of Momentum: Fluids and Elastic Solids The description of the motion, t) dx = (A,t) t(x, t) + div(u)(x, t) dx (3.2) (see A.11). By conservation of mass, the rate is conserved by the fluid motion. A differential equation for the velocity field u is obtained from the equa

Chicone, Carmen

487

Engineering Insights 2006 Complex Fluids Design Consortium  

E-Print Network [OSTI]

Engineering Insights 2006 Complex Fluids Design Consortium (CFDC) www.mrl.ucsb.edu/cfdc Overview;Engineering Insights 2006 Objectives -- continued · Create a world-class center for complex fluid and soft and Research Highlights Glenn Fredrickson October 18, 2006 #12;Engineering Insights 2006 What is the CFDC

California at Santa Barbara, University of

488

Direct porelevel observation of permeability increase in twophase flow by shaking  

E-Print Network [OSTI]

systems or enhancing production from oil reservoirs. The explanation of the dynamically increased mobility wetting fluid, usually water. In petroleum reservoirs, the nonwetting phase is oil, existing in the form September 2011; published 18 October 2011. [1] Increases in permeability of natural reservoirs and aqui

Beresnev, Igor

489

Evaluation of fluid bed heat exchanger optimization parameters. Final report  

SciTech Connect (OSTI)

Uncertainty in the relationship of specific bed material properties to gas-side heat transfer in fluidized beds has inhibited the search for optimum bed materials and has led to over-conservative assumptions in the design of fluid bed heat exchangers. An experimental program was carried out to isolate the effects of particle density, thermal conductivity, and heat capacitance upon fluid bed heat transfer. A total of 31 tests were run with 18 different bed material loads on 12 material types; particle size variations were tested on several material types. The conceptual design of a fluidized bed evaporator unit was completed for a diesel exhaust heat recovery system. The evaporator heat transfer surface area was substantially reduced while the physical dimensions of the unit increased. Despite the overall increase in unit size, the overall cost was reduced. A study of relative economics associated with bed material selection was conducted. For the fluidized bed evaporator, it was found that zircon sand was the best choice among materials tested in this program, and that the selection of bed material substantially influences the overall system costs. The optimized fluid bed heat exchanger has an estimated cost 19% below a fin augmented tubular heat exchanger; 31% below a commercial design fluid bed heat exchanger; and 50% below a conventional plain tube heat exchanger. The comparisons being made for a 9.6 x 10/sup 6/ Btu/h waste heat boiler. The fluidized bed approach potentially has other advantages such as resistance to fouling. It is recommended that a study be conducted to develop a systematic selection of bed materials for fluidized bed heat exchanger applications, based upon findings of the study reported herein.

Not Available

1980-03-01T23:59:59.000Z

490

Radiation stability of biocompatibile magnetic fluid  

E-Print Network [OSTI]

The radiation stability of biocompatibile magnetic fluid used in nanomedicine after electron irradiation was studied. Two types of the water-based magnetic fluids were prepared. The first one was based on the magnetite nanoparticles stabilized by one surfactant natrium oleate. The second one was biocompatibile magnetic fluid stabilized with two surfactants, natrium oleate as a first surfactant and Poly(ethylene glycol) (PEG) as a second surfactant. The magnetization measurements showed that electron irradiation up to 1000Gy caused 50% reduction of saturation magnetization in the case of the first sample with only one surfactant while in the case of the second biocompatibile magnetic fluid, only 25% reduction of saturation magnetization was observed. In the first magnetic fluid the radiation caused the higher sedimentation of the magnetic particles than in the second case, when magnetic particles are covered also with PEG. The obtained results show that PEG behave as a protective element.

Natalia Tomasovicova; Ivan Haysak; Martina Koneracka; Jozef Kovac; Milan Timko; Vlasta Zavisova; Alexander Okunev; Alexander Parlag; Alexey Fradkin; Peter Kopcansky

2010-09-30T23:59:59.000Z

491

Fluid permeability measurement system and method  

DOE Patents [OSTI]

A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

Hallman, Jr., Russell Louis (Knoxville, TN); Renner, Michael John (Oak Ridge, TN)

2008-02-05T23:59:59.000Z

492

Static Isotropic Spacetimes with Radially Imperfect Fluids  

E-Print Network [OSTI]

When solving the equations of General Relativity in a symmetric sector, it is natural to consider the same symmetry for the geometry and stress-energy. This implies that for static and isotropic spacetimes, the most general natural stress-energy tensor is a sum of a perfect fluid and a radial imperfect fluid component. In the special situations where the perfect fluid component vanishes or is a spacetime constant, the solutions to Einstein's equations can be thought of as modified Schwarzschild and Schwarzschild-de Sitter spaces. Exact solutions of this type are derived and it is shown that whereas deviations from the unmodified solutions can be made small, among the manifestations of the imperfect fluid component is a shift in angular momentum scaling for orbiting test-bodies at large radius. Based on this effect, the question of whether the imperfect fluid component can feasibly describe dark matter phenomenology is addressed.

Tomasz Konopka

2009-08-25T23:59:59.000Z

493

Conformal higher-order viscoelastic fluid mechanics  

E-Print Network [OSTI]

We present a generally covariant formulation of conformal higher-order viscoelastic fluid mechanics with strain allowed to take arbitrarily large values. We give a general prescription to determine the dynamics of a relativistic viscoelastic fluid in a way consistent with the hypothesis of local thermodynamic equilibrium and the second law of thermodynamics. We then elaborately study the transient time scales at which the strain almost relaxes and becomes proportional to the gradients of velocity. We particularly show that a conformal second-order fluid with all possible parameters in the constitutive equations can be obtained without breaking the hypothesis of local thermodynamic equilibrium, if the conformal fluid is defined as the long time limit of a conformal second-order viscoelastic system. We also discuss how local thermodynamic equilibrium could be understood in the context of the fluid/gravity correspondence.

Masafumi Fukuma; Yuho Sakatani

2012-05-28T23:59:59.000Z

494

Extreme pressure fluid sample transfer pump  

DOE Patents [OSTI]

A transfer pump for samples of fluids at very low or very high pressures comprising a cylinder having a piston sealed with an O-ring, the piston defining forward and back chambers, an inlet and exit port and valve arrangement for the fluid to enter and leave the forward chamber, and a port and valve arrangement in the back chamber for adjusting the pressure across the piston so that the pressure differential across the piston is essentially zero and approximately equal to the pressure of the fluid so that the O-ring seals against leakage of the fluid and the piston can be easily moved, regardless of the pressure of the fluid. The piston may be actuated by a means external to the cylinder with a piston rod extending through a hole in the cylinder sealed with a bellows attached to the piston head and the interior of the back chamber.

Halverson, Justin E. (Grovertown, GA); Bowman, Wilfred W. (North Augusta, SC)

1990-01-01T23:59:59.000Z