National Library of Energy BETA

Sample records for fluid viscosity increases

  1. Viscosity of a nucleonic fluid

    E-Print Network [OSTI]

    Aram Z. Mekjian

    2012-03-21

    The viscosity of nucleonic matter is studied both classically and in a quantum mechanical description. The collisions between particles are modeled as hard sphere scattering as a baseline for comparison and as scattering from an attractive square well potential. Properties associated with the unitary limit are developed which are shown to be approximately realized for a system of neutrons. The issue of near perfect fluid behavior of neutron matter is remarked on. Using some results from hard sphere molecular dynamics studies near perfect fluid behavior is discussed further.

  2. Viscosity of High Energy Nuclear Fluids

    E-Print Network [OSTI]

    V. Parihar; A. Widom; D. Drosdoff; Y. N. Srivastava

    2007-03-15

    Relativistic high energy heavy ion collision cross sections have been interpreted in terms of almost ideal liquid droplets of nuclear matter. The experimental low viscosity of these nuclear fluids have been of considerable recent quantum chromodynamic interest. The viscosity is here discussed in terms of the string fragmentation models wherein the temperature dependence of the nuclear fluid viscosity obeys the Vogel-Fulcher-Tammann law.

  3. Viscosity correlations for binary supercritical fluids

    SciTech Connect (OSTI)

    Tilly, K.D.; Foster, N.R.; Macnaughton, S.J.; Tomasko, D.L. . School of Chemical Engineering and Industrial Chemistry)

    1994-03-01

    The viscosities and densities of supercritical mixtures of methanol, ethanol, n-propanol, isopropanol, n-pentane, n-hexane, n-heptane, and acetone in carbon dioxide, at concentrations between 1 and 5 mol %, were determined using a falling weight viscometer at pressures up to 240 bar and at temperatures between 313 and 328 K. The effects of pressure, temperature, cosolvent concentration, and the physical properties of the cosolvents on the mixture viscosity and density were examined. The viscosities and the densities of the mixtures were found to increase with the size, polarity, and concentration of the cosolvent molecule. The mixture viscosity was correlated with several empirical dense gas viscosity correlations. The best correlation was the Ely and Hanley technique modified with a density-dependent noncorrespondence factor. The Peng-Robinson equation of state was used to correlate the mixture densities.

  4. Non-invasive fluid density and viscosity measurement

    DOE Patents [OSTI]

    Sinha, Dipen N. (Los Alamos, NM)

    2012-05-01

    The noninvasively measurement of the density and viscosity of static or flowing fluids in a section of pipe such that the pipe performs as the sensing apparatus, is described. Measurement of a suitable structural vibration resonance frequency of the pipe and the width of this resonance permits the density and viscosity to be determined, respectively. The viscosity may also be measured by monitoring the decay in time of a vibration resonance in the pipe.

  5. 46.1 Shear Viscosity An important mechanical property of fluids is viscosity. Physical systems and applications as diverse as

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    46-1 46.1 Shear Viscosity An important mechanical property of fluids is viscosity. Physical systems, the internal friction of a fluid is analogous to the macroscopic mechanical friction, which causes an object. Kostic Northern Illinois University #12;46-2 Mechanical Variables top plate causes the fluid adjacent

  6. Drop Formation and Breakup of Low Viscosity Elastic Fluids: Effects of Molecular Weight and Concentration

    E-Print Network [OSTI]

    Tirtaatmadja, Viyada

    2007-01-23

    The dynamics of drop formation and pinch-off have been investigated for a series of low viscosity elastic fluids possessing similar shear viscosities, but differing substantially in elastic properties. On initial approach ...

  7. Determination of fluid viscosities from biconical annular geometries: Experimental and modeling studies 

    E-Print Network [OSTI]

    Rondon, Nolys Javier

    2009-05-15

    Knowledge of viscosity of flow streams is essential for the design and operation of production facilities, drilling operations and reservoir engineering calculations. The determination of the viscosity of a reservoir fluid ...

  8. The measurement of cross-linked fracture fluid viscosity using a pipe viscometer 

    E-Print Network [OSTI]

    Vermaelen, John Douglas

    1985-01-01

    THE MEASUREMENT OF CROSS-LINKED FRACTURE FLUID VISCOSITY USING A PIPE VISCOMETER A Thesis by JOHN DOUGLAS VERMAELEN Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degr ee..., B. S. , Texas A&M University Chairman of Advisory Committee: Dr. Stephen A. Holditch Due to the increased importance of hydraulic fracture ing as a means of well stimulation, there is a need for a better understanding of the viscous behavior of a...

  9. Buoyant mixing of miscible fluids of varying viscosities in vertical tubes M. Debacq,a)

    E-Print Network [OSTI]

    Hinch, John

    engineering,10 fire propagation in vertical shafts,11 drilling and completion fluids in petroleum engiBuoyant mixing of miscible fluids of varying viscosities in vertical tubes M. Debacq,a) J-P. Hulin,b) and D. Salin Laboratoire Fluides Automatique et Syste`mes Thermiques, UMR 7608, CNRS, Universite´s P. et

  10. Micromechanical transient sensor for measuring viscosity and density of a fluid

    DOE Patents [OSTI]

    Thundat, Thomas G. (Knoxville, TN); Oden, Patrick I. (Plano, TX); Warmack, Robert J. (Knoxville, TN); Finot, Eric Laurent (Torcy, FR)

    2001-01-01

    A method and apparatus for measuring the viscosity and/or specific density of a fluid utilizes a microcantilever vibrated in the analyte fluid. The source of vibration is switched on and off and the transient behavior or decay in amplitude of the vibration is monitored. The method is particularly useful for the measurement of process conditions in remote locations in real time.

  11. Influence of viscosity contrast on buoyantly unstable miscible fluids in porous media

    E-Print Network [OSTI]

    Pramanik, Satyajit; Mishra, Manoranjan

    2015-01-01

    The influence of viscosity contrast on buoyantly unstable miscible fluids in a porous medium is investigated through a linear stability analysis (LSA) as well as direct numerical simulations (DNS). The linear stability method implemented in this paper is based on an initial value approach, which helps to capture the onset of instability more accurately than the quasi-steady state analysis. In the absence of displacement, we show that viscosity contrast delays the onset of instability in buoyantly unstable miscible fluids. Further, it is observed that suitably choosing the viscosity contrast and injection velocity a gravitationally unstable miscible interface can be stabilized completely. Through LSA we draw a phase diagram, which shows three distinct stability regions in a parameter space spanned by the displacement velocity and the viscosity contrast. DNS are performed corresponding to parameters from each regime and the results obtained are in accordance with the linear stability results. Moreover, the conv...

  12. Computer simulation of effective viscosity of fluid-proppant mixture used in hydraulic fracturing

    E-Print Network [OSTI]

    Kuzkin, Vitaly A; Linkov, Aleksandr M

    2013-01-01

    The paper presents results of numerical experiments performed to evaluate the effective viscosity of a fluid-proppant mixture, used in hydraulic fracturing. The results, obtained by two complimenting methods (the particle dynamics and the smoothed particle hydrodynamics), coincide to the accuracy of standard deviation. They provide an analytical equation for the dependence of effective viscosity on the proppant concentration, needed for numerical simulation of the hydraulic fracture propagation.

  13. Study of shear-driven unsteady flows of a fluid with a pressure dependent viscosity 

    E-Print Network [OSTI]

    Srinivasan, Shriram

    2009-05-15

    -DRIVEN UNSTEADY FLOWS OF A FLUID WITH A PRESSURE DEPENDENT VISCOSITY A Thesis by SHRIRAM SRINIVASAN Submitted to the O ce of Graduate Studies of Texas A&M University in partial ful llment of the requirements for the degree of MASTER OF SCIENCE December 2008 Major... Subject: Mechanical Engineering STUDY OF SHEAR-DRIVEN UNSTEADY FLOWS OF A FLUID WITH A PRESSURE DEPENDENT VISCOSITY A Thesis by SHRIRAM SRINIVASAN Submitted to the O ce of Graduate Studies of Texas A&M University in partial ful llment of the requirements...

  14. Coalescence of Low-Viscosity Fluids in Air

    E-Print Network [OSTI]

    Sarah C. Case

    2008-09-09

    An electrical method is used to study the early stages of coalescence of two low-viscosity drops. A drop of aqueous NaCl solution is suspended in air above a second drop of the same solution which is grown until the drops touch. At that point a rapidly widening bridge forms between them. By measuring the resistance and capacitance of the system during this coalescence event, one can obtain information about the time dependence of the characteristic bridge radius and its characteristic height. At early times, a new asymptotic regime is observed that is inconsistent with previous theoretical predictions. The measurements at several drop radii and approach velocities are consistent with a model in which the two liquids coalesce with a slightly deformed interface.

  15. Analysis of hydraulic power transduction in regenerative rotary shock absorbers as function of working fluid kinematic viscosity

    E-Print Network [OSTI]

    Avadhany, Shakeel N

    2009-01-01

    This investigation seeks to investigate the relationship of kinematic fluid viscosity to the effective power transduction seen by a hydraulic motor. Applications of this research specifically relate to energy recovery from ...

  16. Topical viscosity control for light hydrocarbon displacing fluids in petroleum recovery and in fracturing fluids for well stimulation

    DOE Patents [OSTI]

    Heller, John P. (Socorro, NM); Dandge, Dileep K. (Socorro, NM)

    1986-01-01

    Solvent-type flooding fluids comprising light hydrocarbons in the range of ethane to hexane (and mixtures thereof) are used to displace crude oil in formations having temperatures of about 20 degrees to about 150 degrees Centigrade and pressures above about 650 psi, the light hydrocarbons having dissolved therein from about 0.05% to about 3% of an organotin compound of the formula R.sub.3 SnF where each R is independently an alkyl, aryl or alkyaryl group from 3 to 12 carbon atoms. Under the pressures and temperatures described, the organotin compounds become pentacoordinated and linked through the electronegative bridges, forming polymers within the light hydrocarbon flooding media to render them highly viscous. Under ambient conditions, the viscosity control agents will not readily be produced from the formation with either crude oil or water, since they are insoluble in the former and only sparingly soluble in the latter.

  17. Linearized fluid/gravity correspondence: from shear viscosity to all order hydrodynamics

    E-Print Network [OSTI]

    Yanyan Bu; Michael Lublinsky

    2015-03-09

    In ref. \\cite{1406.7222}, we reported a construction of all order linearized fluid dynamics with strongly coupled $\\mathcal{N}=4$ super-Yang-Mills theory as underlying microscopic description. The linearized fluid/gravity correspondence makes it possible to resum all order derivative terms in the fluid stress tensor. Dissipative effects are fully encoded by the shear term and a new one, emerging starting from third order in hydrodynamic derivative expansion. In this work, we provide all computational details omitted in \\cite{1406.7222} and present additional results. We derive closed-form linear holographic RG flow-type equations for momenta-dependent transport coefficient functions. Generalized Navier-Stokes equations are shown to emerge from the constraint components of the bulk Einstein equations. We perturbatively solve the RG equations for the viscosity functions, up to third order in derivative expansion, and up to this order compute spectrum of small fluctuations. Finally, we solve the RG equations numerically, thus accounting for all order derivative terms in the boundary stress tensor.

  18. Three-fluid, three-dimensional magnetohydrodynamic solar wind model with eddy viscosity and turbulent resistivity

    SciTech Connect (OSTI)

    Usmanov, Arcadi V.; Matthaeus, William H.; Goldstein, Melvyn L.

    2014-06-10

    We have developed a three-fluid, three-dimensional magnetohydrodynamic solar wind model that incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating. The solar wind plasma is described as a system of co-moving solar wind protons, electrons, and interstellar pickup protons, with separate energy equations for each species. Numerical steady-state solutions of Reynolds-averaged solar wind equations coupled with turbulence transport equations for turbulence energy, cross helicity, and correlation length are obtained by the time relaxation method in the corotating with the Sun frame of reference in the region from 0.3 to 100 AU (but still inside the termination shock). The model equations include the effects of electron heat conduction, Coulomb collisions, photoionization of interstellar hydrogen atoms and their charge exchange with the solar wind protons, turbulence energy generation by pickup protons, and turbulent heating of solar wind protons and electrons. The turbulence transport model is based on the Reynolds decomposition and turbulence phenomenologies that describe the conversion of fluctuation energy into heat due to a turbulent cascade. In addition to using separate energy equations for the solar wind protons and electrons, a significant improvement over our previous work is that the turbulence model now uses an eddy viscosity approximation for the Reynolds stress tensor and the mean turbulent electric field. The approximation allows the turbulence model to account for driving of turbulence by large-scale velocity gradients. Using either a dipole approximation for the solar magnetic field or synoptic solar magnetograms from the Wilcox Solar Observatory for assigning boundary conditions at the coronal base, we apply the model to study the global structure of the solar wind and its three-dimensional properties, including embedded turbulence, heating, and acceleration throughout the heliosphere. The model results are compared with plasma and magnetic field observations on WIND, Ulysses, and Voyager 2 spacecraft.

  19. Computer simulator of coiled tubing wellbore cleanouts in deviated wells recommends optimum pump rate and fluid viscosity

    SciTech Connect (OSTI)

    Walton, I.C.

    1995-12-31

    Key factors in the efficient removal of sand fill from deviated wells are the proper selection of a fluid and the pump rates. The operation should be designed to (1) reduce or eliminate the formation of beds of particles in the annulus between the casing and tubing, (2) maintain the particles in suspension and (3) transport the fill to the surface. A new design tool for coiled tubing (CT) cleanouts in deviated wells has been developed. Based on a mechanistic model of particle transport in deviated wells, it predicts the conditions under which a particle bed is formed, calculates the depth of the bed and determines whether the bed slides upward, remains stationary or slides back down the well. Moreover, it calculates the minimum pump rate required to achieve complete suspension of the fill for different fluid viscosities, sand pick-up rates and deviation angles, thereby allowing a simple assessment of the optimum design parameters.

  20. A numerical study of fluids with pressure dependent viscosity flowing through a rigid porous media

    E-Print Network [OSTI]

    Nakshatrala, K B

    2009-01-01

    In this paper we consider modifications to Darcy's equation wherein the drag coefficient is a function of pressure, which is a realistic model for technological applications like enhanced oil recovery and geological carbon sequestration. We first outline the approximations behind Darcy's equation and the modifications that we propose to Darcy's equation, and derive the governing equations through a systematic approach using mixture theory. We then propose a stabilized mixed finite element formulation for the modified Darcy's equation. To solve the resulting nonlinear equations we present a solution procedure based on the consistent Newton-Raphson method. We solve representative test problems to illustrate the performance of the proposed stabilized formulation. One of the objectives of this paper is also to show that the dependence of viscosity on the pressure can have a significant effect both on the qualitative and quantitative nature of the solution.

  1. Turbulent mixing, viscosity, diffusion and gravity in the formation of cosmological structures: the fluid mechanics of dark matter

    E-Print Network [OSTI]

    Carl H. Gibson

    2000-12-18

    Self-gravitational structure formation theory for astrophysics and cosmology is revised using nonlinear fluid mechanics. Gibson's 1996-2000 theory balances fluid mechanical forces with gravitational forces and density diffusion with gravitational diffusion at critical viscous, turbulent, magnetic, and diffusion length scales termed Schwarz scales. Instability occurs for scales larger than the largest Schwarz scale rather than only for scales larger than the acoustic scale introduced by Jeans 1902. From the new theory, the inner-halo-dark-matter of galaxies consists of dark proto-globular-star-cluster (PGC) clumps of small-planetary-mass objects called primordial fog particles (PFPs) formed soon after decoupling at 300,000 years. PFPs explain Schild's 1996 "rogue planets >... likely to be the missing mass" of a quasar lens-galaxy. WIMP dark matter fluid is super-diffusive and fragments at large L_SD scales to form outer-galaxy-halos. In the beginning of structure formation 30,000 years after the Big Bang the viscous Schwarz scale L_SV matched the horizon scale L_H at proto-galaxy-supercluster masses, decreasing to proto-galaxy fragments at 300,000 years. WIMP diffusivities from observed outer-halo (L_SD) scales indicate WIMP particle masses in the neutrino rather than neutralino range.

  2. Viscosity Measurement G.E. Leblanc

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    30 Viscosity Measurement G.E. Leblanc McMaster University R.A. Secco The University of Western and Non-Newtonian Fluids l Dimensions and Units of Viscosity l Viscometer Types l Capillary M. Kostic must be supplied (1) to create viscous flow units by breaking bonds between atoms and molecules, and (2

  3. Effective shear viscosity and dynamics of suspensions of micro-swimmers at moderate concentrations

    SciTech Connect (OSTI)

    Constantin, Lipnikov [Los Alamos National Laboratory; Gyrya, V [PENNSYLVANIA STATE UNIV.; Aronson, I [ANL; Berlyand, L [PENNSYLVANIA STATE UNIV.

    2009-01-01

    Recently, there have been a number of experimental studies suggesting that a suspension of self-propelled bacteria (microswimmers in general) may have an effective viscosity significantly smaller than the viscosity of the ambient fluid. This is in sharp contrast with suspensions of hard passive inclusions, whose presence always increases the viscosity. Here we present a 2D model for a suspension of microswimmers in a fluid and analyze it analytically in the dilute regime (no swimmer-swimmer interactions) and numerically using a Mimetic Finite Difference discretization. Our analysis shows that in the dilute regime the effective shear viscosity is not affected by self-propulsion. But at the moderate concentrations (due to swimmer-swimmer interactions) the effective viscosity decreases linearly as a function of the propulsion strength of the swimmers. These findings prove that (i) a physically observable decrease of viscosity for a suspension of self-propelled bacteria can be explained purely by hydrodynamic interactions and (ii) self-propulsion and interaction of swimmers are both essential to the reduction of the effective shear viscosity. We performed a number of numerical experiments analyzing the dynamics of swimmers resulting from pairwise interactions. The numerical results agree with the physically observed phenomena (e.g., attraction of swimmer to swimmer and swimmer to the wall). This is viewed as an additional validation of the model and the numerical scheme.

  4. Prominin-2 expression increases protrusions, decreases caveolae and inhibits Cdc42 dependent fluid phase endocytosis

    SciTech Connect (OSTI)

    Singh, Raman Deep Schroeder, Andreas S.; Scheffer, Luana; Holicky, Eileen L.; Wheatley, Christine L.; Marks, David L. Pagano, Richard E.

    2013-05-10

    Highlights: •Prominin-2 expression induced protrusions that co-localized with lipid raft markers. •Prominin-2 expression decreased caveolae, caveolar endocytosis and increased pCav1. •Prominin-2 expression inhibited fluid phase endocytosis by inactivation of Cdc42. •These endocytic effects can be reversed by adding exogenous cholesterol. •Caveolin1 knockdown restored fluid phase endocytosis in Prominin2 expressing cells. -- Abstract: Background: Membrane protrusions play important roles in biological processes such as cell adhesion, wound healing, migration, and sensing of the external environment. Cell protrusions are a subtype of membrane microdomains composed of cholesterol and sphingolipids, and can be disrupted by cholesterol depletion. Prominins are pentaspan membrane proteins that bind cholesterol and localize to plasma membrane (PM) protrusions. Prominin-1 is of great interest as a marker for stem and cancer cells, while Prominin-2 (Prom2) is reportedly restricted to epithelial cells. Aim: To characterize the effects of Prom-2 expression on PM microdomain organization. Methods: Prom2-fluorescent protein was transfected in human skin fibroblasts (HSF) and Chinese hamster ovary (CHO) cells for PM raft and endocytic studies. Caveolae at PM were visualized using transmission electron microscopy. Cdc42 activation was measured and caveolin-1 knockdown was performed using siRNAs. Results: Prom2 expression in HSF and CHO cells caused extensive Prom2-positive protrusions that co-localized with lipid raft markers. Prom2 expression significantly decreased caveolae at the PM, reduced caveolar endocytosis and increased caveolin-1 phosphorylation. Prom2 expression also inhibited Cdc42-dependent fluid phase endocytosis via decreased Cdc42 activation. Effects on endocytosis were reversed by addition of cholesterol. Knockdown of caveolin-1 by siRNA restored Cdc42 dependent fluid phase endocytosis in Prom2-expressing cells. Conclusions: Prom2 protrusions primarily localize to lipid rafts and recruit cholesterol into protrusions and away from caveolae, leading to increased phosphorylation of caveolin-1, which inhibits Cdc42-dependent endocytosis. This study provides a new insight for the role for prominins in the regulation of PM lipid organization.

  5. Thermal relics in cosmology with bulk viscosity

    E-Print Network [OSTI]

    A. Iorio; G. Lambiase

    2014-11-28

    In this paper we discuss some consequences of cosmological models in which the primordial cosmic matter is described by a relativistic imperfect fluid. The latter takes into account the dissipative effects (bulk viscosity) arising from different cooling rates of the fluid components in the expanding Universe. We discuss, in particular, the effects of the bulk viscosity on Big Bang Nucleosynthesis and on the thermal relic abundance of particles, looking at recent results of PAMELA experiment. The latter has determined an anomalous excess of positron events, that cannot be explained by the conventional cosmology and particle physics.

  6. Method for measuring liquid viscosity and ultrasonic viscometer

    DOE Patents [OSTI]

    Sheen, Shuh-Haw (Naperville, IL); Lawrence, William P. (Downers Grove, IL); Chien, Hual-Te (Naperville, IL); Raptis, Apostolos C. (Downers Grove, IL)

    1994-01-01

    An ultrasonic viscometer and method for measuring fluid viscosity are provided. Ultrasonic shear and longitudinal waves are generated and coupled to the fluid. Reflections from the generated ultrasonic shear and longitudinal waves are detected. Phase velocity of the fluid is determined responsive to the detected ultrasonic longitudinal waves reflections. Viscosity of the fluid is determined responsive to the detected ultrasonic shear waves reflections. Unique features of the ultrasonic viscometer include the use of a two-interface fluid and air transducer wedge to measure relative signal change and to enable self calibration and the use of a ratio of reflection coefficients for two different frequencies to compensate for environmental changes, such as temperature.

  7. Temperature dependence of bulk viscosity in water using acoustic spectroscopy

    E-Print Network [OSTI]

    M. J. Holmes; N. G. Parker; M. J. W. Povey

    2010-02-16

    Despite its fundamental role in the dynamics of compressible fluids, bulk viscosity has received little experimental attention and there remains a paucity of measured data. Acoustic spectroscopy provides a robust and accurate approach to measuring this parameter. Working from the Navier-Stokes model of a compressible fluid one can show that the bulk viscosity makes a significant and measurable contribution to the frequency-squared acoustic attenuation. Here we employ this methodology to determine the bulk viscosity of Millipore water over a temperature range of 7 to 50 degrees Celsius. The measured attenuation spectra are consistent with the theoretical predictions, while the bulk viscosity of water is found to be approximately three times larger than its shear counterpart, reinforcing its significance in acoustic propagation. Moreover, our results demonstrate that this technique can be readily and generally applied to fluids to accurately determine their temperature dependent bulk viscosities.

  8. Stabilizing Fluid-Fluid Displacements in Porous Media Through Wettability Alteration

    E-Print Network [OSTI]

    Trojer, Mathias

    We study experimentally how wettability impacts fluid-fluid-displacement patterns in granular media. We inject a low-viscosity fluid (air) into a thin bed of glass beads initially saturated with a more-viscous fluid (a ...

  9. Multipurpose Acoustic Sensor for Downhole Fluid Monitoring

    Broader source: Energy.gov [DOE]

    Novel sensor design based on acoustics. Determine in real-timeand in a single sensor packagemultiple parameters: temperature, pressure, fluid flow; and fluid properties, such as density, viscosity, fluid composition.

  10. INCREASE

    ScienceCinema (OSTI)

    None

    2013-07-22

    The Interdisciplinary Consortium for Research and Educational Access in Science and Engineering (INCREASE), assists minority-serving institutions in gaining access to world-class research facilities.

  11. Energy-momentum tensor correlators and viscosity

    E-Print Network [OSTI]

    Harvey B. Meyer

    2008-09-30

    Collective flow has been observed in heavy ion collisions, with a large anisotropic component, and ideal hydrodynamic calculations had significant successful in describing the distribution of produced particles at the RHIC experiments. In order to account for this near ideal fluid behavior, the shear and bulk viscosity of the quark gluon plasma (QGP) must be computed from first principles in a regime where the QGP is not weakly coupled. In this talk I describe recent progress in computing energy-momentum tensor correlators on the lattice from which the viscosities can be extracted via Kubo formulas. I also show how to cumulate information from several channels, including at non-vanishing spatial momentum, in order to best constrain the viscosities. These methods should soon yield predictions at the higher temperatures that will be explored at the LHC experiments.

  12. Viscosity-Induced Crossing of the Phantom Barrier

    E-Print Network [OSTI]

    Brevik, Iver

    2015-01-01

    We show explicitly, by using astrophysical data plus reasonable assumptions for the bulk viscosity in the cosmic fluid, how the magnitude of this viscosity may be high enough to drive the fluid from its position in the quintessence region at present time $t=0$ across the barrier $w=-1$ into the phantom region in the late universe. The phantom barrier is accordingly not a sharp mathematical divide, but rather a fuzzy concept. We also calculate the limiting forms of various thermodynamical quantities, including the rate of entropy production, for a dark energy fluid near the future Big Rip singularity.

  13. Full Life Wind Turbine Gearbox Lubricating Fluids

    SciTech Connect (OSTI)

    Lutz, Glenn A.; Jungk, Manfred; Bryant, Jonathan J.; Lauer, Rebecca S.; Chobot, Anthony; Mayer, Tyler; Palmer, Shane; Kauffman, Robert E.

    2012-02-28

    Industrial gear box lubricants typically are hydrocarbon based mineral oils with considerable amounts of additives to overcome the lack of base fluid properties like wear protection, oxidation stability, load carrying capacity, low temperature solidification and drop of viscosity at higher temperatures. For today's wind turbine gearboxes, the requirements are more severe and synthetic hydrocarbon oils are used to improve on this, but all such hydrocarbon based lubricants require significant amounts of Extreme Pressure (EP) additives to meet performance requirements. Perfluoropolyether (PFPE) fluids provide load carrying capacity as an inherent property. During the course of the project with the main tasks of 'Establish a Benchmark', 'Lubricant Evaluation', 'Full Scale Gearbox Trial' and 'Economic Evaluation', the PAO Reference oil exhibited significant changes after laboratory gear testing, in service operation in the field and full scale gearbox trial. Four hydrocarbon base oils were selected for comparison in the benchmarking exercise and showed variation with respect to meeting the requirements for the laboratory micro-pitting tests, while the PFPE fluid exceeded the requirements even with the material taken after the full scale gear box trial. This is remarkable for a lubricant without EP additives. Laboratory bearing tests performed on the PFPE fluids before and after the full scale gear box trial showed the results met requirements for the industry standard. The PFPE fluid successfully completed the full scale gear box test program which included baseline and progressive staged load testing. The evaluation of gears showed no micro-pitting or objectionable wear. By the final stage, lubricant film thickness had been reduced to just 21% of its original value, this was by design and resulted in a lambda ratio of well below 1. This test design scenario of a low lambda ratio is a very undesirable lubrication condition for real world but creates the ability to test the lubricating fluids performance under the most extreme conditions. The PAO Reference oil also passed its testing without any noticeable deterioration of the gear surface. However the PAO Reference oil was replaced midway through the progressive loading, as the lubricant was burned in an attempt to raise the sump temperature to the same levels as for the PFPE. Both materials experienced a decrease of viscosity during their respective run times. The viscosity index decreased for the PAO there while there was a slight increase for the PFPE. FZG laboratory gear tests and measurements of the drive motor's current during the full scale gear box trial were made to characterize the relative efficiency between the PFPE fluid and the PAO Reference oil. In the FZG laboratory efficiency test, the PFPE fluids show much higher churning losses due to their higher viscosity and density. The analysis seems to show that the efficiency correlates better to dynamic viscosity than any other of the measured metrics such as film thickness. In load stages where the load, speed and temperature are similar, the PFPE fluid has a greater film thickness and theoretical gear protection, but requires a larger current for the drive motor than the PAO. However in load stages where the film thickness is the same, the PFPE fluid's reduced dynamic viscosity gives it a slight efficiency advantage relative to the PAO reference oil. Ultimately, many factors such as temperature, rotational speed, and fluid viscosity combine in a complex fashion to influence the results. However, the PFPE's much lower change of viscosity with respect to temperature, allows variations in designing an optimum viscosity to balance efficiency versus gear protection. Economic analysis was done using Cost of Energy calculations. The results vary from 5.3% for a 'Likely Case' to 16.8% for a 'Best Case' scenario as potential cost improvement by using PFPE as the gearbox lubricating fluid. It is important to note the largest portion of savings comes in Levelized Replacement Cost, which is dictated by the assumption on gearb

  14. Viscosity of aqueous and cyanate ester suspensions containing alumina nanoparticles

    SciTech Connect (OSTI)

    Lawler, Katherine

    2009-08-05

    The viscosities of both aqueous and cyanate ester monomer (BECy) based suspensions of alumina nanoparticle were studied. The applications for these suspensions are different: aqueous suspensions of alumina nanoparticles are used in the production of technical ceramics made by slip casting or tape casting, and the BECy based suspensions are being developed for use in an injection-type composite repair resin. In the case of aqueous suspensions, it is advantageous to achieve a high solids content with low viscosity in order to produce a high quality product. The addition of a dispersant is useful so that higher solids content suspensions can be used with lower viscosities. For BECy suspensions, the addition of nanoparticles to the BECy resin is expected to enhance the mechanical properties of the cured composite. The addition of saccharides to aqueous suspensions leads to viscosity reduction. Through DSC measurements it was found that the saccharide molecules formed a solution with water and this resulted in lowering the melting temperature of the free water according to classic freezing point depression. Saccharides also lowered the melting temperature of the bound water, but this followed a different rule. The shear thinning and melting behaviors of the suspensions were used to develop a model based on fractal-type agglomeration. It is believed that the structure of the particle flocs in these suspensions changes with the addition of saccharides which leads to the resultant viscosity decrease. The viscosity of the BECy suspensions increased with solids content, and the viscosity increase was greater than predicted by the classical Einstein equation for dilute suspensions. Instead, the Mooney equation fits the viscosity behavior well from 0-20 vol% solids. The viscosity reduction achieved at high particle loadings by the addition of benzoic acid was also investigated by NMR. It appears that the benzoic acid interacts with the surface of the alumina particle which may be the cause of the viscosity reduction. The flow behavior of alumina particles in water and BECy is markedly different. Aqueous alumina suspensions are shear thinning at all alumina loadings and capable of 50 vol% loading before losing fluidity whereas BECy/alumina suspensions show Newtonian behavior up to 5 vol%, and above 5 vol% show shear thinning at all shear rates. Highly loaded suspensions (i.e. 20vol% alumina) exhibit shear thinning at low and moderate shear rates and shear thickening at higher shear rates. The maximum particle loading for a fluid suspension, in this case, appears to be about 20 vol%. The difference in the viscosity of these suspensions must be related to the solvent-particle interactions for each system. The reason is not exactly known, but there are some notable differences between BECy and water. Water molecules are {approx}0.28 nm in length and highly hydrogen bonded with a low viscosity (1 mPa's) whereas in the cyanate ester (BECy) system, the solvent molecule is about 1.2 nm, in the largest dimension, with surfaces of varied charge distribution throughout the molecule. The viscosity of the monomer is also reasonably low for organic polymer precursor, about 7 mPa's. Nanoparticles in water tend to agglomerate and form flocs which are broken with the shear force applied during viscosity measurement. The particle-particle interaction is very important in this system. In BECy, the particles appear to be well dispersed and not as interactive. The solvent-particle interaction appears to be most important. It is not known exactly how the alumina particles interact with the monomer, but NMR suggests hydrogen bonding. These hydrogen bonds between the particle and monomer could very well affect the viscosity. A conclusion that can be reached in this work is that the presence of hydroxyl groups on the surface of the alumina particles is significant and seems to affect the interactions between other particles and the solvent. Thus, the hydrogen bonding between particles, particle/additive and/or particle/solvent dictates the behavior of nanos

  15. Increased

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLAN FOR THE SITE-218in a V2O5 BatteryIncreased confinement

  16. Polyfunctional dispersants for controlling viscosity of phyllosilicates

    DOE Patents [OSTI]

    Chaiko, David J.

    2006-07-25

    This invention provides phyllosilicates and polyfunctional dispersants which can be manipulated to selectively control the viscosity of phyllosilicate slurries. The polyfunctional dispersants used in the present invention, which include at least three functional groups, increase the dispersion and exfoliation of phyllosilicates in polymers and, when used in conjunction with phyllosilicate slurries, significantly reduce the viscosity of slurries having high concentrations of phyllosilicates. The functional groups of the polyfunctional dispersants are capable of associating with multivalent metal cations and low molecular weight organic polymers, which can be manipulated to substantially increase or decrease the viscosity of the slurry in a concentration dependent manner. The polyfunctional dispersants of the present invention can also impart desirable properties on the phyllosilicate dispersions including corrosion inhibition and enhanced exfoliation of the phyllosilicate platelets.

  17. Shear viscosity, cavitation and hydrodynamics at LHC

    E-Print Network [OSTI]

    Bhatt, Jitesh R; Sreekanth, V

    2011-01-01

    We study evolution of quark-gluon matter in the ultrarelativistic heavy-ion collisions within the frame work of relativistic second-order viscous hydrodynamics. In particular, by using the various prescriptions of a temperature-dependent shear viscosity to the entropy ratio, we show that the hydrodynamic description of the relativistic fluid become invalid due to the phenomenon of cavitation. For most of the initial conditions relevant for LHC, the cavitation sets in very early during the evolution of the hydrodynamics in time $\\lesssim 2 $fm/c. The cavitation in this case is entirely driven by the large values of shear viscosity. Moreover we also demonstrate that the conformal term used in equations of the relativistic dissipative hydrodynamic can influence the cavitation time.

  18. Shear viscosity, cavitation and hydrodynamics at LHC

    E-Print Network [OSTI]

    Jitesh R. Bhatt; Hiranmaya Mishra; V. Sreekanth

    2011-09-28

    We study evolution of quark-gluon matter in the ultrarelativistic heavy-ion collisions within the frame work of relativistic second-order viscous hydrodynamics. In particular, by using the various prescriptions of a temperature-dependent shear viscosity to the entropy ratio, we show that the hydrodynamic description of the relativistic fluid become invalid due to the phenomenon of cavitation. For most of the initial conditions relevant for LHC, the cavitation sets in very early during the evolution of the hydrodynamics in time $\\lesssim 2 $fm/c. The cavitation in this case is entirely driven by the large values of shear viscosity. Moreover we also demonstrate that the conformal term used in equations of the relativistic dissipative hydrodynamic can influence the cavitation time.

  19. Post-processing of polymer foam tissue scaffolds with high power ultrasound: a route to increased pore interconnectivity, pore size and fluid transport

    E-Print Network [OSTI]

    N J Watson; R K Johal; Y Reinwald; L J White; A M Ghaemmaghami; S P Morgan; F R A J Rose; M J W Povey; N G Parker

    2013-02-18

    We expose thick polymer foam tissue scaffolds to high power ultrasound and study its effect on the openness of the pore architecture and fluid transport through the scaffold. Our analysis is supported by measurements of fluid uptake during insonification and imaging of the scaffold microstructure via x-ray computed tomography, scanning electron microscopy and acoustic microscopy. The ultrasonic treatment is found to increase the mean pore size by over 10%. More striking is the improvement in fluid uptake: for scaffolds with only 40% water uptake via standard immersion techniques, we can routinely achieve full saturation of the scaffold over approximately one hour of exposure. These desirable modifications occur with no loss of scaffold integrity and negligible mass loss, and are optimized when the ultrasound treatment is coupled to a pre-wetting stage with ethanol. Our findings suggest that high power ultrasound is a highly targetted and efficient means to promote pore interconnectivity and fluid transport in thick foam tissue scaffolds.

  20. Heat Transfer Fluids for Solar Water Heating Systems | Department...

    Broader source: Energy.gov (indexed) [DOE]

    a high boiling point. Viscosity and thermal capacity determine the amount of pumping energy required. A fluid with low viscosity and high specific heat is easier to pump, because...

  1. Accelerating cosmological expansion from shear and bulk viscosity

    E-Print Network [OSTI]

    Stefan Floerchinger; Nikolaos Tetradis; Urs Achim Wiedemann

    2015-03-10

    The dissipation of energy from local velocity perturbations in the cosmological fluid affects the time evolution of spatially averaged fluid dynamic fields and the cosmological solution of Einstein's field equations. We show how this backreaction effect depends on shear and bulk viscosity and other material properties of the dark sector, as well as the spectrum of perturbations. If sufficiently large, this effect could account for the acceleration of the cosmological expansion.

  2. A New Reference Correlation for the Viscosity of Methanol Hong Wei Xiang,a...

    E-Print Network [OSTI]

    Magee, Joseph W.

    A New Reference Correlation for the Viscosity of Methanol Hong Wei Xiang,a... Arno Laesecke for the viscosity of methanol is presented that is valid over the entire fluid region, including vapor, liquid coefficient is developed from experimental data and applied to methanol. The high-density contribution

  3. THERMOPHYSICAL PROPERTIES OF NANOPARTICLE-ENHANCED IONIC LIQUIDS HEAT TRANSFER FLUIDS

    SciTech Connect (OSTI)

    Fox, E.

    2013-04-15

    An experimental investigation was completed on nanoparticle enhanced ionic liquid heat transfer fluids as an alternative to conventional organic based heat transfer fluids (HTFs). These nanoparticle-based HTFs have the potential to deliver higher thermal conductivity than the base fluid without a significant increase in viscosity at elevated temperatures. The effect of nanoparticle morphology and chemistry on thermophysical properties was examined. Whisker shaped nanomaterials were found to have the largest thermal conductivity temperature dependence and were also less likely to agglomerate in the base fluid than spherical shaped nanomaterials.

  4. Bulk Viscosity and Cavitation in Boost-Invariant Hydrodynamic Expansion

    E-Print Network [OSTI]

    Krishna Rajagopal; Nilesh Tripuraneni

    2010-02-16

    We solve second order relativistic hydrodynamics equations for a boost-invariant 1+1-dimensional expanding fluid with an equation of state taken from lattice calculations of the thermodynamics of strongly coupled quark-gluon plasma. We investigate the dependence of the energy density as a function of proper time on the values of the shear viscosity, the bulk viscosity, and second order coefficients, confirming that large changes in the values of the latter have negligible effects. Varying the shear viscosity between zero and a few times s/(4 pi), with s the entropy density, has significant effects, as expected based on other studies. Introducing a nonzero bulk viscosity also has significant effects. In fact, if the bulk viscosity peaks near the crossover temperature Tc to the degree indicated by recent lattice calculations in QCD without quarks, it can make the fluid cavitate -- falling apart into droplets. It is interesting to see a hydrodynamic calculation predicting its own breakdown, via cavitation, at the temperatures where hadronization is thought to occur in ultrarelativistic heavy ion collisions.

  5. Bulk Viscosity and Cavitation in Boost-Invariant Hydrodynamic Expansion

    E-Print Network [OSTI]

    Rajagopal, Krishna

    2009-01-01

    We solve second order relativistic hydrodynamics equations for a boost-invariant 1+1-dimensional expanding fluid with an equation of state taken from lattice calculations of the thermodynamics of strongly coupled quark-gluon plasma. We investigate the dependence of the energy density as a function of proper time on the values of the shear viscosity, the bulk viscosity, and second order coefficients, confirming that large changes in the values of the latter have negligible effects. Varying the shear viscosity between zero and a few times s/(4 pi), with s the entropy density, has significant effects, as expected based on other studies. Introducing a nonzero bulk viscosity also has significant effects. In fact, if the bulk viscosity peaks near the crossover temperature Tc to the degree indicated by recent lattice calculations in QCD without quarks, it can make the fluid cavitate -- falling apart into droplets. It is interesting to see a hydrodynamic calculation predicting its own breakdown, via cavitation, at th...

  6. Transport coefficients of soft sphere fluids at high densities

    E-Print Network [OSTI]

    Yu. D. Fomin; V. V. Brazhkin; V. N. Ryzhov

    2010-03-19

    Molecular dynamics computer simulation has been used to compute the self-diffusion coefficient, and shear viscosity of soft-sphere fluids, in which the particles interact through the soft-sphere or inverse power pair potential. The calculations have been made along the melting line in a wide range of pressures and temperatures. The validity of scaling relations for thermodynamic parameters and kinetic coefficients was checked. It was shown that the Stokes-Einstein relationship is obeyed if the Barker diameter is used as a characteristic length scale. It was also shown that the viscosity is non-monotonic along the isochores as predicted by Ya. Rosenfeld. It was shown that the viscosity is strongly growing along the melting line, however, this increase does not stimulate the glass transition because the relaxation time is decreasing.

  7. Transmission Problem Between Two Herschel-Bulkley Fluids

    E-Print Network [OSTI]

    Farid Messelmi

    2011-02-28

    The paper is devoted to the study of transmission problem between two Herschel-Bulkley fluids with different viscosities, yield limits and power law index.

  8. Viscosity stabilization of SRC residual oil. Final technical report

    SciTech Connect (OSTI)

    Tewari, K.C.

    1984-05-01

    The use of SRC residual oils for No. 6 Fuel Oil substitutes has been proposed. The oils exhibit viscosity characteristics at elevated temperatures that allow this substitution with only minor modifications to the existing fuel oil infrastructure. However, loss of low-boiling materials causes an increase in the viscosity of the residual oils that is greater than expected from concentration changes. A process has been developed that minimizes the loss of volatiles and thus maintains the viscosity of these materials. The use of an additive (water, phenol, or an SRC light oil cut rich in low-boiling phenols in amounts up to 2.0 wt %) accomplishes this and hence stabilizes the pumping and atomizing characteristics for an extended period. During the course of the work, the components of the volatiles lost were identified and the viscosity change due to this loss was quantified. 3 references, 6 figures, 9 tables.

  9. Heat-Traced Fluid Transfer Lines 

    E-Print Network [OSTI]

    Schilling, R. E.

    1984-01-01

    or chemical), to maintain uniform fluid viscosity independent of ambient temperature, to establish uniform temperature above the dew point, and to maintain uniform temperature and prevent component dropout. water freeze protection is needed when a steam... of the parameters. A change in viscosity prJVides false readings and therefore results in unre iable process control. Viscosity control also helps provide uni form flow rates over a wide ran e of ambient temperatures, and in addition, pumps need not be oversized...

  10. Vertical two-phase flow regimes and pressure gradients: Effect of viscosity

    SciTech Connect (OSTI)

    Da Hlaing, Nan; Sirivat, Anuvat; Siemanond, Kitipat [The Petroleum and Petrochemical College, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok 10330 (Thailand); Wilkes, James O. [Department of Chemical Engineering, The University of Michigan, Ann Arbor, MI 48109-2136 (United States)

    2007-05-15

    The effect of liquid viscosity on the flow regimes and the corresponding pressure gradients along the vertical two-phase flow was investigated. Experiment was carried out in a vertical transparent tube of 0.019 m in diameter and 3 m in length and the pressure gradients were measured by a U-tube manometer. Water and a 50 vol.% glycerol solution were used as the working fluids whose kinematic viscosities were 0.85 x 10{sup -6} and 4.0 x 10{sup -6} m{sup 2}/s, respectively. In our air-liquid annular two-phase flow, the liquid film of various thicknesses flowed adjacent to the wall and the gas phase flowed at the center of the tube. The superficial air velocity, j{sub air}, was varied between 0.0021 and 58.7 m/s and the superficial liquid velocity, j{sub liquid}, was varied between 0 and 0.1053 m/s. In the bubble, the slug and the slug-churn flow regimes, the pressure gradients decreased with increasing Reynolds number. But in the annular and the mist flow regimes, pressure gradients increased with increasing Reynolds number. Finally, the experimentally measured pressure gradient values were compared and are in good agreement with the theoretical values. (author)

  11. Reversible shear thickening at low shear rates of electrorheological fluids under electric fields

    E-Print Network [OSTI]

    Yu Tian; Minliang Zhang; Jile Jiang; Noshir Pesika; Hongbo Zeng; Jacob Israelachvili; Yonggang Meng; Shizhu Wen

    2010-08-24

    Shear thickening is a phenomenon of significant viscosity increase of colloidal suspensions. While electrorheological (ER) fluids can be turned into a solid-like material by applying an electric field, their shear strength is widely represented by the attractive electrostatic interaction between ER particles. By shearing ER fluids between two concentric cylinders, we show a reversible shear thickening of ER fluids above a low critical shear rate (electric field strength (>100 V/mm), which could be characterized by a modified Mason number. Shear thickening and electrostatic particle interaction-induced inter-particle friction forces is considered to be the real origin of the high shear strength of ER fluids, while the applied electric field controls the extent of shear thickening. The electric field-controlled reversible shear thickening has implications for high-performance ER/magnetorheological (MR) fluid design, clutch fluids with high friction forces triggered by applying local electric field, other field-responsive materials and intelligent systems.

  12. Modeling multiphase flow for high viscosity liquids: a study of vertical/inclined zero net liquid flow 

    E-Print Network [OSTI]

    Rodriguez, Jose Ramon

    2001-01-01

    This experimental study investigates the effects of inclination angle and fluid viscosity on zero net liquid flow (ZNLF). Predicting liquid holdup under ZNLF conditions is necessary in several types of petroleum industry operations. These include...

  13. High Temperature, high pressure equation of state density correlations and viscosity correlations

    SciTech Connect (OSTI)

    Tapriyal, D.; Enick, R.; McHugh, M.; Gamwo, I.; Morreale, B.

    2012-07-31

    Global increase in oil demand and depleting reserves has derived a need to find new oil resources. To find these untapped reservoirs, oil companies are exploring various remote and harsh locations such as deep waters in Gulf of Mexico, remote arctic regions, unexplored deep deserts, etc. Further, the depth of new oil/gas wells being drilled has increased considerably to tap these new resources. With the increase in the well depth, the bottomhole temperature and pressure are also increasing to extreme values (i.e. up to 500 F and 35,000 psi). The density and viscosity of natural gas and crude oil at reservoir conditions are critical fundamental properties required for accurate assessment of the amount of recoverable petroleum within a reservoir and the modeling of the flow of these fluids within the porous media. These properties are also used to design appropriate drilling and production equipment such as blow out preventers, risers, etc. With the present state of art, there is no accurate database for these fluid properties at extreme conditions. As we have begun to expand this experimental database it has become apparent that there are neither equations of state for density or transport models for viscosity that can be used to predict these fundamental properties of multi-component hydrocarbon mixtures over a wide range of temperature and pressure. Presently, oil companies are using correlations based on lower temperature and pressure databases that exhibit an unsatisfactory predictive capability at extreme conditions (e.g. as great as {+-} 50%). From the perspective of these oil companies that are committed to safely producing these resources, accurately predicting flow rates, and assuring the integrity of the flow, the absence of an extensive experimental database at extreme conditions and models capable of predicting these properties over an extremely wide range of temperature and pressure (including extreme conditions) makes their task even more daunting.

  14. Anomalous-viscosity current drive

    DOE Patents [OSTI]

    Stix, T.H.; Ono, M.

    1986-04-25

    The present invention relates to a method and apparatus for maintaining a steady-state current for magnetically confining the plasma in a toroidal magnetic confinement device using anomalous viscosity current drive. A second aspect of this invention relates to an apparatus and method for the start-up of a magnetically confined toroidal plasma.

  15. Fourier's Law for a Granular Fluid

    E-Print Network [OSTI]

    James W. Dufty

    2007-07-07

    Newton' viscosity law for the momentum flux and Fourier's law for the heat flux define Navier-Stokes hydrodynamics for a simple, one component fluid. There is ample evidence that a hydrodynamic description applies as well to a mesoscopic granular fluid with the same form for Newton's viscosity law. However, theory predicts a qualitative difference for Fourier's law with an additional contribution from density gradients even at uniform temperature. The reasons for the absence of such terms for normal fluids are indicated, and a related microscopic explanation for their existence in granular fluids is presented.

  16. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    SciTech Connect (OSTI)

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  17. Effective Viscosity of Confined Hydrocarbons

    E-Print Network [OSTI]

    I. M. Sivebaek; V. N. Samoilov; B. N. J. Persson

    2012-01-24

    We present molecular dynamics friction calculations for confined hydrocarbon films with molecular lengths from 20 to 1400 carbon atoms. We find that the logarithm of the effective viscosity \\mu eff for nanometer-thin films depends linearly on the logarithm of the shear rate: log(effective viscosity) = C - n log (shear rate), where n varies from 1 (solidlike friction) at very low temperatures to 0 (Newtonian liquid) at very high temperatures, following an inverse sigmoidal curve. Only the shortest chain molecules melt, whereas the longer ones only show a softening in the studied temperature interval 0 < T < 900 K. The results are important for the frictional properties of very thin (nanometer) films and to estimate their thermal durability.

  18. A Smoothed Particle Hydrodynamics-Based Fluid Model With a Spatially...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of constant viscosity, this approach recovers an earlier model for Newtonian fluids of Espa Publication Date: September, 2010 Name of Publication Source: Rheologica Acta...

  19. Stress Tensor and Bulk Viscosity in Relativistic Nuclear Collisions

    E-Print Network [OSTI]

    Rainer J. Fries; Berndt Müller; Andreas Schäfer

    2008-08-30

    We discuss the influence of different initial conditions for the stress tensor and the effect of bulk viscosity on the expansion and cooling of the fireball created in relativistic heavy-ion collisions. In particular, we explore the evolution of longitudinal and transverse components of the pressure and the extent of dissipative entropy production in the one-dimensional, boost-invariant hydrodynamic model. We find that a bulk viscosity consistent with recent estimates from lattice QCD further slows the equilibration of the system, however it does not significantly increase the entropy produced.

  20. Falsification of dark energy by fluid mechanics

    E-Print Network [OSTI]

    Carl H. Gibson

    2012-03-23

    The 2011 Nobel Prize in Physics was awarded for the discovery of accelerating supernovae dimness, suggesting a remarkable change in the expansion rate of the Universe from a decrease since the big bang to an increase, driven by anti-gravity forces of a mysterious dark energy material comprising 70% of the Universe mass-energy. Fluid mechanical considerations falsify both the accelerating expansion and dark energy concepts. Kinematic viscosity is neglected in current standard models of self-gravitational structure formation, which rely on cold dark matter CDM condensations and clusterings that are also falsified by fluid mechanics. Weakly collisional CDM particles do not condense but diffuse away. Photon viscosity predicts superclustervoid fragmentation early in the plasma epoch and protogalaxies at the end. At the plasma-gas transition, the plasma fragments into Earth-mass gas planets in trillion planet clumps (proto-globular-star-cluster PGCs). The hydrogen planets freeze to form the dark matter of galaxies and merge to form their stars. Dark energy is a systematic dimming error for Supernovae Ia caused by dark matter planets near hot white dwarf stars at the Chandrasekhar carbon limit. Evaporated planet atmospheres may or may not scatter light from the events depending on the line of sight.

  1. Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities

    DOE Patents [OSTI]

    Karanikas, John Michael; Vinegar, Harold J

    2014-03-04

    A method for treating a tar sands formation includes providing heat to at least part of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat is allowed to transfer from the heaters to at least a portion of the formation. A viscosity of one or more zones of the hydrocarbon layer is assessed. The heating rates in the zones are varied based on the assessed viscosities. The heating rate in a first zone of the formation is greater than the heating rate in a second zone of the formation if the viscosity in the first zone is greater than the viscosity in the second zone. Fluids are produced from the formation through the production wells.

  2. Propulsion in a viscoelastic fluid

    E-Print Network [OSTI]

    Eric Lauga

    2007-03-21

    Flagella beating in complex fluids are significantly influenced by viscoelastic stresses. Relevant examples include the ciliary transport of respiratory airway mucus and the motion of spermatozoa in the mucus-filled female reproductive tract. We consider the simplest model of such propulsion and transport in a complex fluid, a waving sheet of small amplitude free to move in a polymeric fluid with a single relaxation time. We show that, compared to self-propulsion in a Newtonian fluid occurring at a velocity U_N, the sheet swims (or transports fluid) with velocity U / U_N = [1+De^2 (eta_s)/(eta) ]/[1+De^2], where eta_s is the viscosity of the Newtonian solvent, eta is the zero-shear-rate viscosity of the polymeric fluid, and De is the Deborah number for the wave motion, product of the wave frequency by the fluid relaxation time. Similar expressions are derived for the rate of work of the sheet and the mechanical efficiency of the motion. These results are shown to be independent of the particular nonlinear constitutive equations chosen for the fluid, and are valid for both waves of tangential and normal motion. The generalization to more than one relaxation time is also provided. In stark contrast with the Newtonian case, these calculations suggest that transport and locomotion in a non-Newtonian fluid can be conveniently tuned without having to modify the waving gait of the sheet but instead by passively modulating the material properties of the liquid.

  3. Petroleum Engineering 310 Reservoir Fluids

    E-Print Network [OSTI]

    of oilfield brine properties: Salinity, Bubble Point, formation volume factor, density and solution gas water12 Petroleum Engineering 310 Reservoir Fluids Credit 4: (3-3) Required for Juniors Catalog: Gas Formation Volume Factor. Viscosity. Wet Gas Gravity and Isothermal Compressibility. 5. Definition

  4. PHYSICAL REVIEW E 87, 013106 (2013) Longitudinal viscosity of two-dimensional Yukawa liquids

    E-Print Network [OSTI]

    Goree, John

    2013-01-01

    is obtained for a two-dimensional (2D) liquid using a Green-Kubo method with a molecular dynamics simulation characterize energy dissipation in a fluid. Bulk viscosity is for energy dissipation due to compression, in contrast, is for energy dissipation due to a gradient in the flow velocity. In the latter case, the energy

  5. PHYS 101 Lecture 29x -Viscosity 29x -1 2001 by David Boal, Simon Fraser University. All rights reserved; further copying or resale is strictly prohibited.

    E-Print Network [OSTI]

    Boal, David

    viscosity . In Lecture 8, this viscosity appears in Stokes' Law for the drag force on a sphere of radius R moving at a speed v FDRAG = 6Rv. The larger , the larger the drag force, all other things being equal of which the boundary exerts drag on the fluid motion. This is similar to the frictional force between two

  6. Short-lived lattice quasiparticles for strongly interacting fluids

    E-Print Network [OSTI]

    Mendoza, M

    2015-01-01

    It is shown that lattice kinetic theory based on short-lived quasiparticles proves very effective in simulating the complex dynamics of strongly interacting fluids (SIF). In particular, it is pointed out that the shear viscosity of lattice fluids is the sum of two contributions, one due to the usual interactions between particles (collision viscosity) and the other due to the interaction with the discrete lattice (propagation viscosity). Since the latter is {\\it negative}, the sum may turn out to be orders of magnitude smaller than each of the two contributions separately, thus providing a mechanism to access SIF regimes at ordinary values of the collisional viscosity. This concept, as applied to quantum superfluids in one-dimensional optical lattices, is shown to reproduce shear viscosities consistent with the AdS-CFT holographic bound on the viscosity/entropy ratio. This shows that lattice kinetic theory continues to hold for strongly coupled hydrodynamic regimes where continuum kinetic theory may no longer...

  7. Effect of Viscosity on the Microformability of Bulk Amorphous Alloy in Supercooled Liquid Region

    SciTech Connect (OSTI)

    Cheng Ming; Zhang Shihong; Wang Ruixue

    2010-06-15

    Previously published results have shown that viscosity greatly influences on the deformation behavior of the bulk amorphous alloy in supercooled liquid region during microforming process. And viscosity is proved to be a component of the evaluation index which indicating microformability. Based on the fluid flow theory and assumptions, bulk amorphous alloy can be regarded as the viscous materials with a certain viscosity. It is helpful to understand how the viscosity plays an important role in viscous materials with various viscosities by numerical simulation on the process. Analysis is carried out by linear state equation in FEM with other three materials, water, lubricant oil and polymer melt, whose viscosities are different obviously. The depths of the materials flow into the U-shaped groove during the microimprinting process are compared in this paper. The result shows that the deformation is quite different when surface tension effect is not considered in the case. With the lowest viscosity, water can reach the bottom of micro groove in a very short time. Lubricant oil and polymer melt slower than it. Moreover bulk amorphous alloys in supercooled liquid state just flow into the groove slightly. Among the alloys of different systems including Pd-, Mg- and Zr-based alloy, Pd-based alloy ranks largest in the depth. Mg-based alloy is the second. And Zr-based alloy is the third. Further more the rank order of the viscosities of the alloys is Pd-, Mg- and Zr-based. It agrees well with the results of calculation. Therefore viscosity plays an important role in the microforming of the bulk amorphous alloy in the supercooled liquid state.

  8. Development of neural network models for the prediction of dewpoint pressure of retrograde gases and saturated oil viscosity of black oil systems 

    E-Print Network [OSTI]

    Gonzalez Zambrano, Alfredo Antonio

    2002-01-01

    Accurate prediction of gas condensate and crude oil fluid properties are critical elements in reservoir-engineering calculations. Dewpoint pressure of gas condensate reservoirs and oil viscosity of black oil systems are some of the important...

  9. Heat Transfer in Complex Fluids

    SciTech Connect (OSTI)

    Mehrdad Massoudi

    2012-01-01

    Amongst the most important constitutive relations in Mechanics, when characterizing the behavior of complex materials, one can identify the stress tensor T, the heat flux vector q (related to heat conduction) and the radiant heating (related to the radiation term in the energy equation). Of course, the expression 'complex materials' is not new. In fact, at least since the publication of the paper by Rivlin & Ericksen (1955), who discussed fluids of complexity (Truesdell & Noll, 1992), to the recently published books (Deshpande et al., 2010), the term complex fluids refers in general to fluid-like materials whose response, namely the stress tensor, is 'non-linear' in some fashion. This non-linearity can manifest itself in variety of forms such as memory effects, yield stress, creep or relaxation, normal-stress differences, etc. The emphasis in this chapter, while focusing on the constitutive modeling of complex fluids, is on granular materials (such as coal) and non-linear fluids (such as coal-slurries). One of the main areas of interest in energy related processes, such as power plants, atomization, alternative fuels, etc., is the use of slurries, specifically coal-water or coal-oil slurries, as the primary fuel. Some studies indicate that the viscosity of coal-water mixtures depends not only on the volume fraction of solids, and the mean size and the size distribution of the coal, but also on the shear rate, since the slurry behaves as shear-rate dependent fluid. There are also studies which indicate that preheating the fuel results in better performance, and as a result of such heating, the viscosity changes. Constitutive modeling of these non-linear fluids, commonly referred to as non-Newtonian fluids, has received much attention. Most of the naturally occurring and synthetic fluids are non-linear fluids, for example, polymer melts, suspensions, blood, coal-water slurries, drilling fluids, mud, etc. It should be noted that sometimes these fluids show Newtonian (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a given temperature, an increase in {zeta} implies that the activation energy is smaller and thus, the reaction ra

  10. Magnetoreological Fluid Template for Basic Studies of Mechanical-Chemical Effects During Polishing

    SciTech Connect (OSTI)

    Miao, C.; Bristol, K. M.; Marino, A.E.; Shafrir, S.N.; DeGroote, J.E.; Jacobs, S.D.

    2008-01-07

    We developed a new magnetorheological (MR) fluid for studying the relative contributions of mechanics and chemistry in polishing hard materials. The base carrier fluid is a mixture of two non-aqueous liquids. At conventional carbonyl iron (CI) magnetic particle concentrations, removal rates with this formulation were unacceptably low for the polycrystalline optical ceramic aluminum oxynitride (ALON). We overcame this problem by creating a high magnetic solids concentration suspension consisting of blend of large and small CI particles. Our test bed for experiments was a magnetorheological finishing (MRF) spot-taking machine (STM) that can only polish spots into a non-rotating part. We demonstrated that, using this new MR fluid formation, we could substantially increase peak removal rates on ALON with small additions of nonmagnetic, nanodiamond abrasives. Material removal with this fluid was assumed to be predominately driven by mechanics. With the addition of small amounts of DI water to the base fluid containing nanodiamonds, the peak removal rate showed an additional increase, presumably due to the altered fluid rheology and possibly chemical interactions. In this paper we describe the difficult fluid viscosity issues that were addressed in creating a viable, high removal rate, non-aqueous MR fluid template that could be pumped in the STM for several days of experiments.

  11. Elongational viscosity of photo-oxidated LDPE

    SciTech Connect (OSTI)

    Rolón-Garrido, Víctor H. E-mail: manfred.wagner@tu-berlin.de; Wagner, Manfred H. E-mail: manfred.wagner@tu-berlin.de

    2014-05-15

    Sheets of low-density polyethylene (LDPE) were photo-oxidatively treated at room temperature, and subsequently characterized rheologically in the melt state by shear and uniaxial extensional experiments. For photo-oxidation, a xenon lamp was used to irradiate the samples for times between 1 day and 6 weeks. Linear-viscoelastic characterization was performed in a temperature range of 130 to 220°C to obtain the master curve at 170°C, the reference temperature at which the elongational viscosities were measured. Linear viscoelasticity is increasingly affected by increasing photo-oxidation due to crosslinking of LDPE, as corroborated by an increasing gel fraction as determined by a solvent extraction method. The elongational measurements reveal a strong enhancement of strain hardening until a saturation level is achieved. The elongational data are analyzed in the frame work of two constitutive equations, the rubber-like liquid and the molecular stress function models. Within the experimental window, timedeformation separability is confirmed for all samples, independent of the degree of photo-oxidation.

  12. Displacement of oil from reservoir rock using graded-viscosity water 

    E-Print Network [OSTI]

    Al-Atigi, Yosef A

    1974-01-01

    experiment a total of I pore volume (PV) of fluids was injected at a constant rate of 0. 766 cc/min. The oil used had a viscosity of 30 centipoise (cp). In one case, a 1 PV bank of plain water was injected. In another case, a 1 PV bank of 30 cp polymer... solution was injected. Between the two cases, 29% of the polymer used above was utilized to make a 1/2 PV bank of graded-viscosity polymer solution and, in a separate case, to make a 0. 29 PV bank of 30 cp polymer solution. The two banks were flushed...

  13. The Bulk Viscosity of a Pion Gas

    E-Print Network [OSTI]

    Egang Lu; Guy D. Moore

    2011-01-31

    We compute the bulk viscosity of a gas of pions at temperatures below the QCD crossover temperature, for the physical value of pion mass, to lowest order in chiral perturbation theory. Bulk viscosity is controlled by number-changing processes which become exponentially slow at low temperatures when the pions become exponentially dilute, leading to an exponentially large bulk viscosity zeta ~ (F_0^8/m_\\pi^5) exp(2m_\\pi/T), where F_0 = 93 MeV is the pion decay constant.

  14. Using supercritical fluids to refine hydrocarbons

    DOE Patents [OSTI]

    Yarbro, Stephen Lee

    2014-11-25

    This is a method to reactively refine hydrocarbons, such as heavy oils with API gravities of less than 20.degree. and bitumen-like hydrocarbons with viscosities greater than 1000 cp at standard temperature and pressure using a selected fluid at supercritical conditions. The reaction portion of the method delivers lighter weight, more volatile hydrocarbons to an attached contacting device that operates in mixed subcritical or supercritical modes. This separates the reaction products into portions that are viable for use or sale without further conventional refining and hydro-processing techniques. This method produces valuable products with fewer processing steps, lower costs, increased worker safety due to less processing and handling, allow greater opportunity for new oil field development and subsequent positive economic impact, reduce related carbon dioxide, and wastes typical with conventional refineries.

  15. Chaos, Transport, and Mesh Convergence for Fluid Mixing J. Glimm,1, 2

    E-Print Network [OSTI]

    New York at Stoney Brook, State University of

    Chaos, Transport, and Mesh Convergence for Fluid Mixing H. Lim,1 Y. Yu,1 J. Glimm,1, 2 X.-L. Li,1 in Fig. 1. The fluid interface, at late time, is volume filling. The transport coefficients (viscosity of distinct fluids produces a convoluted structure to the inter- face separating these fluids. For miscible

  16. Tsunamis, Viscosity and the HBT Puzzle

    E-Print Network [OSTI]

    Scott Pratt

    2007-11-13

    The equation of state and bulk and shear viscosities are shown to be able to affect the transverse dynamics of a central heavy ion collision. The net entropy, along with the femtoscopic radii are shown to be affected at the 10-20% level by both shear and bulk viscosity. The degree to which these effects help build a tsunami-like pulse is also discussed.

  17. High-Temperature Viscosity Of Commercial Glasses

    SciTech Connect (OSTI)

    Hrma, Pavel R.; See, Clem A.; Lam, Oanh P.; Minister, Kevin B.

    2005-01-01

    Viscosity was measured for six types of commercial glasses: low-expansion-borosilicate glasses, E glasses, fiberglass wool glasses, TV panel glasses, container glasses, and float glasses. Viscosity data were obtained with rotating spindle viscometers within the temperature range between 900°C and 1550°C; the viscosity varied from 1 Pa?s to 750 Pa?s. Arrhenius coefficients were calculated for individual glasses and linear models were applied to relate them to the mass fractions of 11 major components (SiO2, CaO, Na2O, Al2O3, B2O3, BaO, SrO, K2O, MgO, PbO, and ZrO2) and 12 minor components (Fe2O3, ZnO, Li2O, TiO2, CeO2, F, Sb2O3, Cr2O3, As2O3, MnO2, SO3, and Co3O4). The models are recommended for glasses containing 42 to 84 mass% SiO2 to estimate viscosities or temperatures at a constant viscosity for melts within both the temperature range from 1100°C to 1550°C and viscosity range from 10 to 400 Pa?s.

  18. Experimental Investigation of the Effective Foam Viscosity in Unsaturated Porous Media

    SciTech Connect (OSTI)

    Zhang, Z. F.; Zhong, Lirong; White, Mark D.; Szecsody, James E.

    2012-11-01

    Foam has the potential to effectively carry and distribute either aqueous or gaseous amendments to the deep vadose zone for contaminant remediation. However, the transport of foam in porous media is complicated because flow characteristics such as the effective viscosity are affected not only by foam properties but also by the sediment properties and flow conditions. We determined the average effective foam viscosity via a series of laboratory experiments and found that the effective foam viscosity increased with the liquid fraction in foam, the injection rate, and sediment permeability. These impacts are quantified with an empirical expression, which is further demonstrated with data from literature. The results show that the liquid fraction in foam and sediment permeability are two primary factors affecting effective foam viscosity. These results suggest that, when foam is used in deep vadose zone remediation, foam flow will not suffer from gravitational drainage and can distribute amendments uniformly in heterogeneous sediments.

  19. Shear Viscosity of a Hot Pion Gas

    E-Print Network [OSTI]

    Robert Lang; Norbert Kaiser; Wolfram Weise

    2012-09-04

    The shear viscosity of an interacting pion gas is studied using the Kubo formalism as a microscopic description of thermal systems close to global equilibrium. We implement the skeleton expansion in order to approximate the retarded correlator of the viscous part of the energy-momentum tensor. After exploring this in $g\\phi^4$ theory we show how the skeleton expansion can be consistently applied to pions in chiral perturbation theory. The shear viscosity $\\eta$ is determined by the spectral width, or equivalently, the mean free path of pions in the heat bath. We derive a new analytical result for the mean free path which is well-conditioned for numerical evaluation and discuss the temperature and pion-mass dependence of the mean free path and the shear viscosity. The ratio $\\eta/s$ of the interacting pion gas exceeds the lower bound $1/4\\pi$ from AdS/CFT correspondence.

  20. Transition to Turbulence in Shear-Thinning Fluids 

    E-Print Network [OSTI]

    Zhen, Ni

    2014-04-23

    In this dissertation, the effects of a shear-thinning fluid on the evolution of a hairpin vortex are investigated. The fluid viscosity is determined using a power law model and direct numerical simulations are performed using a pseudo-spectral code...

  1. Determination of several variables affecting laboratory measurements of cross-linked fracture fluids 

    E-Print Network [OSTI]

    Wilson, Matilda Jane

    1982-01-01

    Viscosity for Run 48 at 150'F . 23 Effect of Shear Rate and Time on Apparent Viscosity for Run Al at 190'F . . . . . . . . . . . . . . . . 42 24 Effect of Shear Rate and Time on Apparent Viscosity for Run 48 at 196'F . . . . . . . . . . . . . . . . 4 3... SHEAR RATE o) PSEUDOPLASTIC NEWTONIAN SHEAR RATE b) Figure 3 ? Fluid Flow Behavior shear rate. These fluids are also called shear-thinning fluids. The power law (Ostwald-dewaele) model is the most popular model used to describe the flow behavior...

  2. Phospholipase C activity increases in cerebrospinal fluid from migraineurs in proportion to the number of comorbid conditions: a case--control study

    E-Print Network [OSTI]

    Fonteh, Alfred N; Pogoda, Janice M; Chung, Rainbow; Cowan, Robert P; Harrington, Michael G

    2013-01-01

    from migraineurs in proportion to the number of comorbidcontrols, increases in proportion to the number of migrainefrom migraineurs in proportion to the number of comorbid

  3. Geothermal fracture stimulation technology. Volume III. Geothermal fracture fluids

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    A detailed study of all available and experimental frac fluid systems is presented. They have been examined and tested for physical properties that are important in the stimulation of hot water geothermal wells. These fluids consist of water-based systems containing high molecular weight polymers in the uncrosslinked and crosslinked state. The results of fluid testing for many systems are summarized specifically at geothermal conditions or until breakdown occurs. Some of the standard tests are ambient viscosity, static aging, high temperature viscosity, fluid-loss testing, and falling ball viscosity at elevated temperatures and pressures. Results of these tests show that unalterable breakdown of the polymer solutions begins above 300/sup 0/F. This continues at higher temperatures with time even if stabilizers or other high temperature additives are included.

  4. Supercritical fluids: Reactions, materials and applications

    SciTech Connect (OSTI)

    Tumas, W.; Jacobson, G.B.; Josephsohn, N.S.; Brown, G.H.

    1999-04-09

    A number of important processes utilizing supercritical fluids have been either implemented or are emerging for extractions, separations and a wide range of cleaning applications. Supercritical fluids can be reasonable solvents yet share many of the advantages of gases including miscibility with other gases (i.e. hydrogen and oxygen), low viscosities and high diffusivities. Carbon dioxide has the further advantages of being nontoxic, nonflammable, inexpensive and currently unregulated. The use of compressed gases, either as liquids or supercritical fluids, as reaction media offers the opportunity to replace conventional hazardous solvents and also to optimize and potentially control the effect of solvent on chemical and material processing. The last several years has seen a significant growth in advances in chemical synthesis, catalytic transformations and materials synthesis and processing. The authors report on results from an exploratory program at Los Alamos National Laboratory aimed at investigating the use of dense phase fluids, particularly carbon dioxide, as reaction media for homogeneous, heterogeneous and phase-separable catalytic reactions in an effort to develop new, environmentally-friendly methods for chemical synthesis and processing. This approach offers the possibility of opening up substantially different chemical pathways, increasing selectivity at higher reaction rates, facilitating downstream separations and mitigating the need for hazardous solvents. Developing and understanding chemical and catalytic transformations in carbon dioxide could lead to greener chemistry at three levels: (1) Solvent replacement; (2) Better chemistry (e.g. higher reactivity, selectivity, less energy consumption); and (3) New chemistry (e.g. novel separations, use of COP{sub 2} as a C-1 source).

  5. Computation of Shear Viscosity: A Systems Approach

    E-Print Network [OSTI]

    Wen, John Ting-Yung

    Institute Troy, NY 12180. Emails: {hurstj,wenj}@rpi.edu Abstract-- Macroscopic material transport properties. Linearizing this map about an equilibrated trajectory results in a linear time varying system. By freezing]. In particular, macroscopic transport properties such as viscosity, diffusivity, conductivity, etc., may

  6. On the settling of clouds of particles in viscous fluids Bloen Metzger, Maxime Nicolas & Elisabeth Guazzelli

    E-Print Network [OSTI]

    Metzger, Bloen

    particle of radius a settles in a viscous fluid of viscosity µ, the drag force D = -6µaU exerted). The amplitude of the generated flow field decays very slowly, like the inverse of the distance to the sphere. We of particles. When two identical spheres sediment in a viscous fluid, the fluid motion induced by the fall

  7. Fluid Fishbones Submitted by

    E-Print Network [OSTI]

    Bush, John W.M.

    , with the fluid sheet being the fish head and the tendrils its bones. Increasing the flow rate serves to broaden the fishbones. In the wake of the fluid fish, a regular array of drops obtains, the number and spacing of which

  8. Synthesis and characterization of molecular rotors as viscosity sensors and beta amyloid binding agents

    E-Print Network [OSTI]

    Sutharsan, Jeyanthy

    2009-01-01

    Synthesis and Evaluation as Viscosity Sensors IntroductionSynthesis and Evaluation as Viscosity Sensors14and evaluation of these compounds as viscosity sensors. The

  9. Test Method Extensional viscosity of a thermotropic liquid crystalline polymer

    E-Print Network [OSTI]

    Feng, James J.

    Test Method Extensional viscosity of a thermotropic liquid crystalline polymer measured by thread the extensional viscosity of thermotropic liquid crystalline polymer: disintegration of liquid crystalline polymer liquid crystalline polymer (TLCP) 1. Introduction The structure and orientation of thermotropic liquid

  10. Plasma Viscosity with Mass Transport in Spherical ICF Implosion Simulations

    E-Print Network [OSTI]

    Vold, Erik L; Ortega, Mario I; Moll, Ryan; Fenn, Daniel; Molvig, Kim

    2015-01-01

    The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion (ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. We have implemented a Lagrange hydrodynamic code in one-dimensional spherical geometry with plasma viscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasma viscosity and to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasma viscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Plasma viscosity reduc...

  11. Viscosities of natural gases at high pressures and high temperatures 

    E-Print Network [OSTI]

    Viswanathan, Anup

    2007-09-17

    Estimation of viscosities of naturally occurring petroleum gases provides the information needed to accurately work out reservoir-engineering problems. Existing models for viscosity prediction are limited by data, especially at high pressures...

  12. Relation between viscosity and stability for heavy oil emulsions 

    E-Print Network [OSTI]

    Ye, Sherry Qianwen

    1998-01-01

    The relation between viscosity and stability has been hics. found by investigating the effect of surfactant concentration on emulsion stability. Based on the Bingham plastic model for viscosity as a function of shear rate, ...

  13. Entropy production at freeze-out from dissipative fluids

    E-Print Network [OSTI]

    E. Molnar

    2007-09-17

    Entropy production due to shear viscosity during the continuous freeze-out of a longitudinally expanding dissipative fluid is addressed. Assuming the validity of the fluid dynamical description during the continuous removal of interacting matter we estimated a small entropy production as function of the freeze-out duration and the ratio of dissipative to non-dissipative quantities in case of a relativistic massless pion fluid.

  14. RELAP-7 Numerical Stabilization: Entropy Viscosity Method

    SciTech Connect (OSTI)

    R. A. Berry; M. O. Delchini; J. Ragusa

    2014-06-01

    The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The code is based on the INL's modern scientific software development framework, MOOSE (Multi-Physics Object Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5's capability and extends the analysis capability for all reactor system simulation scenarios. RELAP-7 utilizes a single phase and a novel seven-equation two-phase flow models as described in the RELAP-7 Theory Manual (INL/EXT-14-31366). The basic equation systems are hyperbolic, which generally require some type of stabilization (or artificial viscosity) to capture nonlinear discontinuities and to suppress advection-caused oscillations. This report documents one of the available options for this stabilization in RELAP-7 -- a new and novel approach known as the entropy viscosity method. Because the code is an ongoing development effort in which the physical sub models, numerics, and coding are evolving, so too must the specific details of the entropy viscosity stabilization method. Here the fundamentals of the method in their current state are presented.

  15. On the contribution of plasminos to the shear viscosity of a hot and dense Yukawa-Fermi gas

    E-Print Network [OSTI]

    N. Sadooghi; F. Taghinavaz

    2015-04-16

    Using the standard Green-Kubo formalism, we determine the shear viscosity $\\eta$ of a hot and dense Yukawa-Fermi gas. In particular, we study the effect of particle and plasmino excitations on thermal properties of the fermionic part of the shear viscosity, and explore the effects of thermal corrections to particle masses on bosonic and fermionic shear viscosities, $\\eta_b$ and $\\eta_f$. It turns out that the effects of plasminos on $\\eta_f$ become negligible with increasing (decreasing) temperature (chemical potential).

  16. Bulk viscosity of QCD matter near the critical temperature

    E-Print Network [OSTI]

    D. Kharzeev; K. Tuchin

    2007-05-29

    Kubo's formula relates bulk viscosity to the retarded Green's function of the trace of the energy-momentum tensor. Using low energy theorems of QCD for the latter we derive the formula which relates the bulk viscosity to the energy density and pressure of hot matter. We then employ the available lattice QCD data to extract the bulk viscosity as a function of temperature. We find that close to the deconfinement temperature bulk viscosity becomes large, with viscosity-to-entropy ratio zeta/s about 1.

  17. Pumping viscoelastic two-fluid media

    E-Print Network [OSTI]

    Hirofumi Wada

    2010-04-08

    Using a two-fluid model for viscoelastic polymer solutions, we study analytically fluid transport driven by a transverse, small amplitude traveling wave propagation. The pumping flow far from the waving boundary is shown to be strongly wave number and viscosity dependent, in contrast to a viscous Newtonian fluid. We find the two qualitatively different regimes: In one regime relevant to small wave numbers, the fluidic transport is almost the same as the Newtonian case, and uniform viscoelastic constitutive equations provide a good approximation. In the other regime, the pumping is substantially decreased because of the gel-like character. The boundary separating these two regimes is clarified. Our results suggest possible needs of two-fluid descriptions for the transport and locomotion in biological fluids with cilia and flagella.

  18. Flow regimes for fluid injection into a confined porous medium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Zhong; Guo, Bo; Christov, Ivan C.; Celia, Michael A.; Stone, Howard A.

    2015-02-24

    We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governingmore »equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.« less

  19. Thermal Chaotic Mixing of Power-Law Fluids in a Mixer with Alternately-Rotating Walls

    E-Print Network [OSTI]

    Omari, Kamal El

    2009-01-01

    We investigate the enhancement of both mixing and heat transfer in a two-rod mixer for highly-viscous non-Newtonian fluids. The mixer is composed of two vertical, circular rods in a cylindrical tank. Chaotic flows are obtained by imposing the temporal modulations of the rotational velocities of the walls. We study the effects of different stirring protocols, which lead to non-chaotic and chaotic flows, on the efficiency of both mixing and heat transfer for three different rheological fluid behaviors: shear-thinning, Newtonian and shear-thickening. For this purpose, we use statistical indicators that characterize the mean value of the fluid temperature and its homogenization. We find that chaotic mixing is suitable for shear-thickening fluids for which we observe a clear enhancement of the thermal mixing (heat extraction and homogenization). This is due to the increase in the apparent fluid viscosity in the vicinity of the rotating walls. This aspect confirms the relevance of chaotic mixing for highly-viscous ...

  20. Shear Viscosity Coefficient from Microscopic Models

    E-Print Network [OSTI]

    Azwinndini Muronga

    2003-12-02

    The transport coefficient of shear viscosity is studied for a hadron matter through microscopic transport model, the Ultra--relativistic Quantum Molecular Dynamics (UrQMD), using the Green--Kubo formulas. Molecular--dynamical simulations are performed for a system of light mesons in a box with periodic boundary conditions. Starting from an initial state composed of $\\pi, \\eta ,\\omega ,\\rho ,\\phi$ with a uniform phase--space distribution, the evolution takes place through elastic collisions, production and annihilation. The system approaches a stationary state of mesons and their resonances, which is characterized by common temperature. After equilibration, thermodynamic quantities such as the energy density, particle density, and pressure are calculated. From such an equilibrated state the shear viscosity coefficient is calculated from the fluctuations of stress tensor around equilibrium using Green--Kubo relations. We do our simulations here at zero net baryon density so that the equilibration times depend on the energy density. We do not include hadron strings as degrees of freedom so as to maintain detailed balance. Hence we do not get the saturation of temperature but this leads to longer equilibration times.

  1. Transport in non-conformal holographic fluids

    E-Print Network [OSTI]

    Shailesh Kulkarni; Bum-Hoon Lee; Jae-Hyuk Oh; Chanyong Park; Raju Roychowdhury

    2013-03-06

    We have considered non-conformal fluid dynamics whose gravity dual is a certain Einstein dilaton system with Liouville type dilaton potential, characterized by an intrinsic parameter $\\eta$. We have discussed the Hawking-Page transition in this framework using hard-wall model and it turns out that the critical temperature of the Hawking-Page transition encapsulates a non-trivial dependence on $\\eta$. We also obtained transport coefficients such as AC conductivity, shear viscosity and diffusion constant in the hydrodynamic limit, which show non-trivial $\\eta$ dependent deviations from those in conformal fluids, although the ratio of the shear viscosity to entropy density is found to saturate the universal bound. Some of the retarded correlators are also computed in the high frequency limit for case study.

  2. Hyperon bulk viscosity in the presence of antikaon condensate

    E-Print Network [OSTI]

    Debarati Chatterjee; Debades Bandyopadhyay

    2009-10-31

    We investigate the hyperon bulk viscosity due to the non-leptonic process $n + p \\rightleftharpoons p + \\Lambda $ in $K^-$ condensed matter and its effect on the r-mode instability in neutron stars. We find that the hyperon bulk viscosity coefficient in the presence of antikaon condensate is suppressed compared with the case without the condensate. The suppressed hyperon bulk viscosity in the superconducting phase is still an efficient mechanism to damp the r-mode instability in neutron stars.

  3. Computing the viscosity of the QGP on the lattice

    E-Print Network [OSTI]

    Harvey B. Meyer

    2008-05-29

    I review the recent progress made in calculating shear and bulk viscosity on the lattice, and discuss ways to improve the calculation.

  4. Coalescence of bubbles and drops in an outer fluid

    E-Print Network [OSTI]

    Joseph D. Paulsen; Rémi Carmigniani; Anerudh Kannan; Justin C. Burton; Sidney R. Nagel

    2014-07-24

    When two liquid drops touch, a microscopic connecting liquid bridge forms and rapidly grows as the two drops merge into one. Whereas coalescence has been thoroughly studied when drops coalesce in vacuum or air, many important situations involve coalescence in a dense surrounding fluid, such as oil coalescence in brine. Here we study the merging of gas bubbles and liquid drops in an external fluid. Our data indicate that the flows occur over much larger length scales in the outer fluid than inside the drops themselves. Thus we find that the asymptotic early regime is always dominated by the viscosity of the drops, independent of the external fluid. A phase diagram showing the crossovers into the different possible late-time dynamics identifies a dimensionless number that signifies when the external viscosity can be important.

  5. Coalescence of bubbles and drops in an outer fluid

    E-Print Network [OSTI]

    Paulsen, Joseph D; Kannan, Anerudh; Burton, Justin C; Nagel, Sidney R

    2014-01-01

    When two liquid drops touch, a microscopic connecting liquid bridge forms and rapidly grows as the two drops merge into one. Whereas coalescence has been thoroughly studied when drops coalesce in vacuum or air, many important situations involve coalescence in a dense surrounding fluid, such as oil coalescence in brine. Here we study the merging of gas bubbles and liquid drops in an external fluid. Our data indicate that the flows occur over much larger length scales in the outer fluid than inside the drops themselves. Thus we find that the asymptotic early regime is always dominated by the viscosity of the drops, independent of the external fluid. A phase diagram showing the crossovers into the different possible late-time dynamics identifies a dimensionless number that signifies when the external viscosity can be important.

  6. Fluid-Rock Characterization and Interactions in NMR Well Logging

    SciTech Connect (OSTI)

    Hirasaki, George J.; Mohanty, Kishore K.

    2003-02-10

    The objective of this project was to characterize the fluid properties and fluid-rock interactions which are needed for formation evaluation by NMR well logging. NMR well logging is finding wide use in formation evaluation. The formation parameters commonly estimated were porosity, permeability, and capillary bound water. Special cases include estimation of oil viscosity, residual oil saturation, location of oil/water contact, and interpretation on whether the hydrocarbon is oil or gas.

  7. Viscosity of ?-pinene secondary organic material and implications for particle growth and reactivity

    SciTech Connect (OSTI)

    Renbaum-Wolff, Lindsay; Grayson, James W.; Bateman, Adam P.; Kuwata, Mikinori; Sellier, Mathieu; Murray, Benjamin J.; Shilling, John E.; Martin, Scot T.; Bertram, Allan K.

    2013-05-14

    Particles composed of secondary organic material (SOM) are abundant in the lower troposphere and play important roles in climate, air quality, and health. The viscosity of these particles is a fundamental property that is presently poorly quantified for conditions relevant to the lower troposphere. Using two new techniques, namely a bead-mobility technique and a poke-flow technique, in conjunction with simulations of fluid flow, we measure the viscosity of the watersoluble component of SOM produced by ?-pinene ozonolysis. The viscosity is comparable to that of honey at 90% relative humidity (RH), comparable to that of peanut butter at 70% RH and greater than or comparable to that of bitumen for ? 30% RH, implying that the studied SOM ranges from liquid to semisolid/solid at ambient relative humidities. With the Stokes-Einstein relation, the measured viscosities further imply that the growth and evaporation of SOM by the exchange of organic molecules between the gas and condensed phases may be confined to the surface region when RH ? 30%, suggesting the importance of an adsorption-type mechanism for partitioning in this regime. By comparison, for RH ? 70% partitioning of organic molecules may effectively occur by an absorption mechanism throughout the bulk of the particle. Finally, the net uptake rates of semi-reactive atmospheric oxidants such as O3 are expected to decrease by two to five orders of magnitude for a change in RH from 90% to ? 30% RH, with possible implications for the rates of chemical aging of SOM particles in the atmosphere.

  8. 1 Visco-plastic rheology 1.1 Effective viscosity

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    1 Visco-plastic rheology 1.1 Effective viscosity Rheology specifies the relationship between viscosity eff, = 2eff , (2) which includes viscous and plastic components, 1 eff = 1 visc + 1 plast . (3) Also the strain rate tensor can be split into viscous and plastic part, = visc + plast , (4) where

  9. Type II Migration: Varying Planet Mass and Disc Viscosity

    E-Print Network [OSTI]

    Richard G. Edgar

    2008-07-03

    This paper continues an earlier study of giant planet migration, examining the effect of planet mass and disc viscosity on the migration rate. We find that the migration rate of a gap-opening planet varies systematically with the planet's mass, as predicted in our earlier work. However, the variation with disc viscosity appears to be much weaker than expected.

  10. Dynamic Particle Coupling for GPU-based Fluid Simulation

    E-Print Network [OSTI]

    Blanz, Volker

    -vi ¯j 2 W( Pi -Pj ,h). Here pj = k( ¯j - 0) is the pressure with gas constant k and rest density 0 for modeling dynamic particle coupling solely based on individual particle contributions. This technique does and µ is the fluid viscosity constant. To model the surface tension, M¨uller et.al. [MCG03] use the so

  11. Extensional viscosity of copper nanowire suspensions in an aqueous polymer solution

    E-Print Network [OSTI]

    Amarin G. McDonnell; Naveen N. Jason; Leslie Y. Yeo; James R. Friend; Wenlong Cheng; Ranganathan Prabhakar

    2015-08-05

    Suspensions of copper nanowires are emerging as new electronic inks for next-generation flexible electronics. Using a novel surface acoustic wave driven extensional flow technique we are able to perform currently lacking analysis of these suspensions and their complex buffer. We observe extensional viscosities from 3 mPa$\\cdot$s (1 mPa$\\cdot$s shear viscosity) to 37.2 Pa$\\cdot$s via changes in the suspension concentration, thus capturing low viscosities that have been historically very challenging to measure. These changes equate to an increase in the relative extensional viscosity of nearly 12,200 times at a volume fraction of just 0.027. We also find that interactions between the wires and the necessary polymer additive affect the rheology strongly. Polymer-induced elasticity shows a reduction as the buffer relaxation time falls from 819 to 59 $\\mu$s above a critical particle concentration. The results and technique presented here should aid in the future formulation of these promising nanowire suspensions and their efficient application as inks and coatings.

  12. Repetitive rebrightening of EG Cancri: evidence for viscosity decay in the quiescent disk?

    E-Print Network [OSTI]

    Yoji Osaki; Friedrich Meyer; Emmi Meyer-Hofmeister

    2001-02-20

    A WZ Sge-type dwarf nova, EG Cancri, exhibited six consecutive mini-outbursts with a mean interval of about seven days after the end of the main outburst in 1996/1997. Most unusual was that the star abruptly entered into a deep faint minimum after such frantic activities. We propose that this peculiar phenomenon may be understoodin terms of viscosity decay in the cold disk. In this picture, the viscosity is produced by MHD turbulence due to the magneto-rotational instability ('Balbus-Hawley instability') and dies down exponentially with time when the disk becomes cold because the magnetic fields decay due to finite conductivity in the cold disk (Gammie & Menou 1998). But the viscosity is refreshed to a high value every time when a mini-outburst occurs (i.e., the disk becomes hot again). It is argued that a sudden cessation of repetitive mini-outbursts may be brought about by a very small reduction in viscosity or a small increase in its decay rate, which may in turn be produced most likely by stochastic fluctuations of magnetic fields. Numerical simulations based on a simple model reproduce the observed light curve of EG Cancri very well. We discuss possible causes why the reflares after the main outburst occur mostly in the WZ Sge-type stars.

  13. Notes 09. Fluid inertia and turbulence in fluid film bearings 

    E-Print Network [OSTI]

    San Andres, Luis

    2009-01-01

    . Use the program to observe the effects of fluid inertia in the pressure field (shifting and increase/decrease) and the resulting forces. In addition, derive conclusions from the effects of the Gumbel cavitation condition on the fluid film forces.... Question to ponder: Does the physical modeling of liquid cavitation in superlaminar thin film flows must be revised? (Inertialess) Turbulent flow model for short length journal bearings Fluid inertia effects are not that important in a hydrodynamic...

  14. Is there a "most perfect fluid" consistent with quantum field theory?

    E-Print Network [OSTI]

    Thomas D. Cohen

    2007-03-05

    It was recently conjectured that the ratio of the shear viscosity to entropy density, $ \\eta/ s$, for any fluid always exceeds $\\hbar/(4 \\pi k_B)$. This conjecture was motivated by quantum field theoretic results obtained via the AdS/CFT correspondence and from empirical data with real fluids. A theoretical counterexample to this bound can be constructed from a nonrelativistic gas by increasing the number of species in the fluid while keeping the dynamics essentially independent of the species type. The question of whether the underlying structure of relativistic quantum field theory generically inhibits the realization of such a system and thereby preserves the possibility of a universal bound is considered here. Using rather conservative assumptions, it is shown here that a metastable gas of heavy mesons in a particular controlled regime of QCD provides a realization of the counterexample and is consistent with a well-defined underlying relativistic quantum field theory. Thus, quantum field theory appears to impose no lower bound on $\\eta/s$, at least for metastable fluids.

  15. A note on the meaning of mixture viscosity using the classical continuum theories of mixtures

    SciTech Connect (OSTI)

    Massoudi, Mehrdad

    2008-07-01

    In this paper we provide a brief review of the basic equations for the flow of two linearly viscous fluids using the mixture theory equations given in Atkin and Craine [R.J. Atkin, R.E. Craine, Continuum theories of mixtures: applications, J. Inst. Math. Appl. 17 (1976) 153; R.J. Atkin, R.E. Craine, Continuum theories of mixtures: basic theory and historical development, Quart. J. Mech. Appl. Math. 29 (1976) 290]. We then look at certain principles (or more accurately assumptions) due to Truesdell [C. Truesdell, Sulle basi della thermomeccanica, Rand Lincei, Series 8 22 (1957) 33–38, and 158–166] and Adkins [J.E. Adkins, Non-linear diffusion, 1. Diffusion and flow of mixtures of fluids, Philos. Trans. Roy. Soc. London A 255 (1963) 607–633; J.E. Adkins, Non-linear diffusion, 2. Constitutive equations for mixtures of isotropic fluids, Philos. Trans. Roy. Soc. London A 255 (1963) 635–648] and show that if the ‘assumption of the limiting cases’ of Adkins is to hold, then a very specific structure on the material properties of the two fluids has to be imposed. This new hypothesis provides one such condition for this requirement. An attempt is made to derive a relationship for the mixture viscosity using these ideas.

  16. Exploratory Characterization of a Perfluoropolyether Oil as a Possible Viscosity Standard at Deepwater Production Conditions of 533 K and 241 MPa

    SciTech Connect (OSTI)

    Baled, Hseen O.; Tapriyal, Deepak; Morreale, Bryan D.; Soong, Yee; Gamwo, Isaac; Krukonis, Val; Bamgbade, Babatunde A.; Wu, Yue; McHugh, Mark A.; Burgess, Ward A.; M Enick, Robert M.

    2013-10-01

    DuPont’s perfluoropolyether oil Krytox® GPL 102 is a promising candidate for the high-temperature, high-pressure Deepwater viscosity standard (DVS). The preferred DVS is a thermally stable liquid that exhibits a viscosity of roughly 20 mPa?s at 533 K and 241 MPa; a viscosity value representative of light oils found in ultra-deep formations beneath the deep waters of the Gulf of Mexico. A windowed rolling-ball viscometer designed by our team is used to determine the Krytox® GPL 102 viscosity at pressures to 245 MPa and temperatures of 311 K, 372 K, and 533 K. At 533 K and 243 MPa, the Krytox® GPL 102 viscosity is (27.2±1.3)mPa?s . The rolling-ball viscometer viscosity results for Krytox® GPL 102 are correlated with an empirical 10-parameter surface fitting function that yields an MAPD of 3.9 %. A Couette rheometer is also used to measure the Krytox® GPL 102 viscosity, yielding a value of (26.2±1)mPa?s at 533 K and 241 MPa. The results of this exploratory study suggest that Krytox® GPL 102 is a promising candidate for the DVS, primarily because this fluoroether oil is thermally stable and exhibits a viscosity closer to the targeted value of 20 mPa ? s at 533 K and 241 MPa than any other fluid reported to date. Nonetheless, further studies must be conducted by other researcher groups using various types of viscometers and rheometers on samples of Krytox GPL® 102 from the same lot to further establish the properties of Krytox GPL® 102.

  17. Viscosity prescription for gravitationally unstable accretion disks

    E-Print Network [OSTI]

    Rafikov, Roman R

    2015-01-01

    Gravitationally unstable accretion disks emerge in a variety of astrophysical contexts - giant planet formation, FU Orioni outbursts, feeding of AGNs, and the origin of Pop III stars. When a gravitationally unstable disk is unable to cool rapidly it settles into a quasi-stationary, fluctuating gravitoturbulent state, in which its Toomre Q remains close to a constant value Q_0~1. Here we develop an analytical formalism describing the evolution of such a disk, which is based on the assumptions of Q=Q_0 and local thermal equilibrium. Our approach works in the presence of additional sources of angular momentum transport (e.g. MRI), as well as external irradiation. Thermal balance dictates a unique value of the gravitoturbulent stress \\alpha_{gt} driving disk evolution, which is a function of the local surface density and angular frequency. We compare this approach with other commonly used gravitoturbulent viscosity prescriptions, which specify the explicit dependence of stress \\alpha_{gt} on Toomre Q in an ad hoc...

  18. Chaos, Transport, and Mesh Convergence for Fluid Mixing # H. Lim, 1 Y. Yu, 1 J. Glimm, 1, 2 X.L. Li, 1 and D. H. Sharp 3

    E-Print Network [OSTI]

    New York at Stoney Brook, State University of

    Chaos, Transport, and Mesh Convergence for Fluid Mixing # H. Lim, 1 Y. Yu, 1 J. Glimm, 1, 2 X in Fig. 1. The fluid interface, at late time, is volume filling. The transport coe#cients (viscosity) Chaotic mixing of distinct fluids produces a convoluted structure to the inter­ face separating

  19. A Brief Review of Viscosity Models for Slag in Coal Gasification

    SciTech Connect (OSTI)

    Massoudi, Mehrdad; Wang, Ping

    2011-11-01

    Many researchers have defined the phenomenon of 'slagging' as the deposition of ash in the radiative section of a boiler, while 'fouling' refers to the deposition of ash in the convective-pass region. Among the important parameters affecting ash deposition that need to be studied are ash chemistry, its transport, deposit growth, and strength development; removability of the ash deposit; heat transfer mechanisms; and the mode of operation for boilers. The heat transfer at the walls of a combustor depends on many parameters including ash deposition. This depends on the processes or parameters controlling the impact efficiency and the sticking efficiency. For a slagging combustor or furnace, however, the temperatures are so high that much of the coal particles are melted and the molten layer, in turn, captures more particles as it flows. The main problems with ash deposition are reduced heat transfer in the boiler and corrosion of the tubes. Common ways of dealing with these issues are soot blowing and wall blowing on a routine basis; however, unexpected or uncontrolled depositions can also complicate the situation, and there are always locations inaccessible to the use of such techniques. Studies have indicated that slag viscosity must be within a certain range of temperatures for tapping and the membrane wall to be accessible, for example, between 1300 C and 1500 C, the viscosity is approximately 25 Pa {center_dot} s. As the operating temperature decreases, the slag cools and solid crystals begin to form. In such cases the slag should be regarded as a non-Newtonian suspension, consisting of liquid silicate and crystals. A better understanding of the rheological properties of the slag, such as yield stress and shear-thinning, are critical in determining the optimum operating conditions. To develop an accurate heat transfer model in any type of coal combustion or gasification process, the heat transfer and to some extent the rheological properties of ash and slag, especially in high-temperature environments need to be understood and properly modeled. The viscosity of slag and the thermal conductivity of ash deposits are among two of the most important constitutive parameters that need to be studied. The accurate formulation or representations of the (transport) properties of coal (and biomass for co-firing cases) present a special challenge of modeling efforts in computational fluid dynamics applications. In this report, we first provide a brief review of the various approaches taken by different researchers in formulating or obtaining a slag viscosity model. In general, these models are based on experiments. Since slag behaves as a non-linear fluid, we discuss the constitutive modeling of slag and the important parameters that must be studied.

  20. Viscous quark-gluon plasma model through fluid QCD approach

    SciTech Connect (OSTI)

    Djun, T. P.; Soegijono, B.; Mart, T.; Handoko, L. T. E-mail: Laksana.tri.handoko@lipi.go.id

    2014-09-25

    A Lagrangian density for viscous quark-gluon plasma has been constructed within the fluid-like QCD framework. Gauge symmetry is preserved for all terms inside the Lagrangian, except for the viscous term. The transition mechanism from point particle field to fluid field, and vice versa, are discussed. The energy momentum tensor that is relevant to the gluonic plasma having the nature of fluid bulk of gluon sea is derived within the model. By imposing conservation law in the energy momentum tensor, shear viscosity appears as extractable from the equation.

  1. Cosmological fluctuations of a random field and radiation fluid

    SciTech Connect (OSTI)

    Bastero-Gil, Mar [Departamento de Física Teórica y del Cosmos, Campus de Fuentenueva, Universidad de Granada, Granada, 18071 (Spain); Berera, Arjun [SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3JZ (United Kingdom); Moss, Ian G. [School of Mathematics and Statistics, Newcastlle University, Newcastle upon Tyne, NE1 7RU (United Kingdom); Ramos, Rudnei O., E-mail: mbg@ugr.es, E-mail: ab@ph.ed.ac.uk, E-mail: ian.moss@ncl.ac.uk, E-mail: rudnei@uerj.br [Departamento de Física Teórica, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20550-013 Brazil (Brazil)

    2014-05-01

    A generalization of the random fluid hydrodynamic fluctuation theory due to Landau and Lifshitz is applied to describe cosmological fluctuations in systems with radiation and scalar fields. The viscous pressures, parametrized in terms of the bulk and shear viscosity coefficients, and the respective random fluctuations in the radiation fluid are combined with the stochastic and dissipative scalar evolution equation. This results in a complete set of equations describing the perturbations in both scalar and radiation fluids. These derived equations are then studied, as an example, in the context of warm inflation. Similar treatments can be done for other cosmological early universe scenarios involving thermal or statistical fluctuations.

  2. Transition between fragmentation and permeable outgassing of low viscosity magmas

    E-Print Network [OSTI]

    Manga, Michael

    Transition between fragmentation and permeable outgassing of low viscosity magmas Atsuko Namiki a; fragmentation; decompression; permeability; outgassing; basaltic magma; fire fountain 1. Introduction into discrete pieces (fragmentation) and the rate at which gases escape from the rising magma (outgassing

  3. Method for controlling the viscosity of siloxane oils

    DOE Patents [OSTI]

    Carey, A.A.; Shor, J.T.

    1984-09-12

    This invention relates to a method of controlling the viscosity of siloxane oils in the presence of lead by adding a small amount of a dione such as p-benzoquinone or 2,3-butanedione.

  4. Gas Viscosity at High Pressure and High Temperature 

    E-Print Network [OSTI]

    Ling, Kegang

    2012-02-14

    . Although viscosity of some pure components such as methane, ethane, propane, butane, nitrogen, carbon dioxide and binary mixtures of these components at low-intermediate pressure and temperature had been studied intensively and been understood thoroughly...

  5. Motility induced changes in viscosity of suspensions of swimming microbes in extensional flows

    E-Print Network [OSTI]

    Amarin G. McDonnell; Tilvawala C. Gopesh; Jennifer Lo; Moira O'Bryan; Leslie Y. Yeo; James R. Friend; Ranganathan Prabhakar

    2015-02-23

    Suspensions of motile cells are model systems for understanding the unique mechanical properties of living materials which often consist of ensembles of self-propelled particles. We present here a quantitative comparison of theory against experiment for the rheology of such suspensions. The influence of motility on viscosities of cell suspensions is studied using a novel acoustically-driven microfluidic capillary-breakup extensional rheometer. Motility increases the extensional viscosity of suspensions of algal pullers, but decreases it in the case of bacterial or sperm pushers. A recent model [Saintillan, Phys. Rev. E, 2010, 81:56307] for dilute active suspensions is extended to obtain predictions for higher concentrations, after independently obtaining parameters such as swimming speeds and diffusivities. We show that details of body and flagellar shape can significantly determine macroscale rheological behaviour.

  6. Mantle Dynamics in Super-Earths: Post-Perovskite Rheology and Self-Regulation of Viscosity

    E-Print Network [OSTI]

    Tackley, Paul J; Brodholt, John P; Dobson, David P; Valencia, Diana

    2012-01-01

    Simple scalings suggest that super-Earths are more likely than an equivalent Earth-sized planet to be undergoing plate tectonics. Generally, viscosity and thermal conductivity increase with pressure while thermal expansivity decreases, resulting in lower convective vigor in the deep mantle. According to conventional thinking, this might result in no convection in a super-Earth's deep mantle. Here we evaluate this. First, we here extend the density functional theory (DFT) calculations of post-perovskite activation enthalpy of to a pressure of 1 TPa. The activation volume for diffusion creep becomes very low at very high pressure, but nevertheless for the largest super-Earths the viscosity along an adiabat may approach 1030 Pa s in the deep mantle. Second, we use these calculated values in numerical simulations of mantle convection and lithosphere dynamics of planets with up to ten Earth masses. The models assume a compressible mantle including depth-dependence of material properties and plastic yielding induce...

  7. The effects of plasma diffusion and viscosity on turbulent instability growth

    SciTech Connect (OSTI)

    Haines, Brian M., E-mail: bmhaines@lanl.gov; Vold, Erik L.; Molvig, Kim; Aldrich, Charles; Rauenzahn, Rick [Los Alamos National Laboratory, MS T087, Los Alamos, New Mexico 87545 (United States)

    2014-09-15

    We perform two-dimensional simulations of strongly–driven compressible Rayleigh–Taylor and Kelvin–Helmholtz instabilities with and without plasma transport phenomena, modeling plasma species diffusion, and plasma viscosity in order to determine their effects on the growth of the hydrodynamic instabilities. Simulations are performed in hydrodynamically similar boxes of varying sizes, ranging from 1 ?m to 1?cm in order to determine the scale at which plasma effects become important. Our results suggest that these plasma effects become noticeable when the box size is approximately 100 ?m, they become significant in the 10 ?m box, and dominate when the box size is 1 ?m. Results suggest that plasma transport may be important at scales and conditions relevant to inertial confinement fusion, and that a plasma fluid model is capable of representing some of the kinetic transport effects.

  8. Pore fluid effects on seismic velocity in anisotropic rocks

    SciTech Connect (OSTI)

    Mukerji, T.; Mavko, G. (Stanford Univ., CA (United States). Dept. of Geophysics)

    1994-02-01

    A simple new technique predicts the high- and low-frequency saturated velocities in anisotropic rocks entirely in terms of measurable dry rock properties without the need for idealized crack geometries. Measurements of dry velocity versus pressure and porosity versus pressure contain all of the necessary information for predicting the frequency-dependent effects of fluid saturation. Furthermore, these measurements automatically incorporate all pore interaction, so there is no limitation to low crack density. The velocities are found to depend on five key interrelated variables: frequency, the distribution of compliant crack-like porosity, the intrinsic or noncrack anisotropy, fluid viscosity and compressibility, and effective pressure. The sensitivity of velocities to saturation is generally greater at high frequencies than low frequencies. The magnitude of the differences from dry to saturated and from low frequency to high frequency is determined by the compliant or crack-like porosity. Predictions of saturated velocities based on dry data for sandstone and granite show that compressional velocities generally increase with saturation and with frequency. However, the degree of compressional wave anisotropy may either increase or decrease upon saturation depending on the crack distribution, the effective pressure, and the frequency at which the measurements are made. Shear-wave velocities can either increase or decrease with saturation, and the degree of anisotropy depends on the microstructure, pressure, and frequency. Consequently great care must be taken when interpreting observed velocity anisotropy for measurements at low frequencies, typical of in situ observations, will generally be different from those at high frequencies, typical of the laboratory.

  9. Viscosity and scale invariance in the unitary Fermi gas

    E-Print Network [OSTI]

    Tilman Enss; Rudolf Haussmann; Wilhelm Zwerger

    2010-10-12

    We compute the shear viscosity of the unitary Fermi gas above the superfluid transition temperature, using a diagrammatic technique that starts from the exact Kubo formula. The formalism obeys a Ward identity associated with scale invariance which guarantees that the bulk viscosity vanishes identically. For the shear viscosity, vertex corrections and the associated Aslamazov-Larkin contributions are shown to be crucial to reproduce the full Boltzmann equation result in the high-temperature, low fugacity limit. The frequency dependent shear viscosity $\\eta(\\omega)$ exhibits a Drude-like transport peak and a power-law tail at large frequencies which is proportional to the Tan contact. The weight in the transport peak is given by the equilibrium pressure, in agreement with a sum rule due to Taylor and Randeria. Near the superfluid transition the peak width is of the order of $0.5 T_F$, thus invalidating a quasiparticle description. The ratio $\\eta/s$ between the static shear viscosity and the entropy density exhibits a minimum near the superfluid transition temperature whose value is larger than the string theory bound $\\hbar/(4\\pi k_B)$ by a factor of about seven.

  10. Dark goo: Bulk viscosity as an alternative to dark energy

    E-Print Network [OSTI]

    Jean-Sebastien Gagnon; Julien Lesgourgues

    2011-09-16

    We present a simple (microscopic) model in which bulk viscosity plays a role in explaining the present acceleration of the universe. The effect of bulk viscosity on the Friedmann equations is to turn the pressure into an "effective" pressure containing the bulk viscosity. For a sufficiently large bulk viscosity, the effective pressure becomes negative and could mimic a dark energy equation of state. Our microscopic model includes self-interacting spin-zero particles (for which the bulk viscosity is known) that are added to the usual energy content of the universe. We study both background equations and linear perturbations in this model. We show that a dark energy behavior is obtained for reasonable values of the two parameters of the model (i.e. the mass and coupling of the spin-zero particles) and that linear perturbations are well-behaved. There is no apparent fine tuning involved. We also discuss the conditions under which hydrodynamics holds, in particular that the spin-zero particles must be in local equilibrium today for viscous effects to be important.

  11. Dark goo: Bulk viscosity as an alternative to dark energy

    E-Print Network [OSTI]

    Gagnon, Jean-Sebastien

    2011-01-01

    We present a simple (microscopic) model in which bulk viscosity plays a role in explaining the present acceleration of the universe. The effect of bulk viscosity on the Friedmann equations is to turn the pressure into an "effective" pressure containing the bulk viscosity. For a sufficiently large bulk viscosity, the effective pressure becomes negative and could mimic a dark energy equation of state. Our microscopic model includes self-interacting spin-zero particles (for which the bulk viscosity is known) that are added to the usual energy content of the universe. We study both background equations and linear perturbations in this model. We show that a dark energy behavior is obtained for reasonable values of the two parameters of the model (i.e. the mass and coupling of the spin-zero particles) and that linear perturbations are well-behaved. There is no apparent fine tuning involved. We also discuss the conditions under which hydrodynamics holds, in particular that the spin-zero particles must be in local eq...

  12. Viscosity Determination of Molten Ash from Low-Grade US Coals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, Jingxi; Nakano, Jinichiro; Kaneko, Tetsuya Kenneth; Mu, Haoyuan; Bennett, James P.; Kwong, Kyei-Sing; Rozelle, Peter; Sridhar, Seetharaman

    2012-10-01

    In entrained slagging gasifiers, the fluidity of the molten ash is a critical factor for process control since it affects slag formation, the capture of inorganic constituents, refractory wear, and slag drainage along the gasification chamber walls. The use of western coal, or mixtures of eastern and western coals as gasifier feedstock, is likely to occur as western coals become available and technological issues that hinder their use are being resolved. In the present work, the viscosity of synthetic slags with ash chemistries simulating the western U.S. coals, was experimentally measured at a Po2 = 10- 8 atm in themore »temperature range of 1773–1573 K (1500–1300 °C) using a rotating-bob viscometer. Alumina spindles and containment crucibles of both alumina and zirconia were used. Crystallization studies of this slag using a confocal scanning laser microscope found that a (Mg,Fe)Al2O4-based spinel precipitated at temperatures below 1723 K (1450 °C), and this agreed with FactSage equilibrium phase prediction. The same spinels were observed in the post-viscometry experiment slags when ZrO2 crucibles were used and assumed to be in equilibrium with the slag at the higher temperatures. Zirconia dissolution resulted in a slight increase in the solid fraction present in slags at lower temperatures, compared to spinel fraction. Crystal precipitation changed the apparent activation energy and required a longer stabilization times for viscosity measurements. The viscosity results were used in predictive equations based on Veytsman and Einstein's models, with critical nucleation temperatures and the solid fraction calculated with FactSage. In the simulated eastern/western coal feedstock blends based on ash compositions, the fractions of the solid precipitates were also calculated using the thermodynamic program FactSage for each blend composition, and the plastic viscosity of each eastern/western coal slag blend was predicted using Veytsman's model and compared to available experimental data.« less

  13. Viscosity Determination of Molten Ash from Low-Grade US Coals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, Jingxi [National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States); URS Corp., Albany, OR (United States); Nakano, Jinichiro [National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States); URS Corp., Albany, OR (United States); Kaneko, Tetsuya Kenneth [National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States); Carnegie Mellon Univ., Pittsburgh, PA (United States); Mu, Haoyuan [Carnegie Mellon Univ., Pittsburgh, PA (United States); Bennett, James P. [National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States); Kwong, Kyei-Sing [National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States); Rozelle, Peter [US Dept. of Energy, Washington, DC (United States). Office of Clean Energy Systems; Sridhar, Seetharaman [National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV (United States); Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2011-10-01

    In entrained slagging gasifiers, the fluidity of the molten ash is a critical factor for process control since it affects slag formation, the capture of inorganic constituents, refractory wear, and slag drainage along the gasification chamber walls. The use of western coal, or mixtures of eastern and western coals as gasifier feedstock, is likely to occur as western coals become available and technological issues that hinder their use are being resolved. In the present work, the viscosity of synthetic slags with ash chemistries simulating the western U.S. coals, was experimentally measured at a Po2?=?10- 8 atm in the temperature range of 1773–1573 K (1500–1300 °C) using a rotating-bob viscometer. Alumina spindles and containment crucibles of both alumina and zirconia were used. Crystallization studies of this slag using a confocal scanning laser microscope found that a (Mg,Fe)Al2O4-based spinel precipitated at temperatures below 1723 K (1450 °C), and this agreed with FactSage equilibrium phase prediction. The same spinels were observed in the post-viscometry experiment slags when ZrO2 crucibles were used and assumed to be in equilibrium with the slag at the higher temperatures. Zirconia dissolution resulted in a slight increase in the solid fraction present in slags at lower temperatures, compared to spinel fraction. Crystal precipitation changed the apparent activation energy and required a longer stabilization times for viscosity measurements. The viscosity results were used in predictive equations based on Veytsman and Einstein's models, with critical nucleation temperatures and the solid fraction calculated with FactSage. In the simulated eastern/western coal feedstock blends based on ash compositions, the fractions of the solid precipitates were also calculated using the thermodynamic program FactSage for each blend composition, and the plastic viscosity of each eastern/western coal slag blend was predicted using Veytsman's model and compared to available experimental data.

  14. Using supercritical fluids to refine hydrocarbons

    DOE Patents [OSTI]

    Yarbro, Stephen Lee

    2015-06-09

    A system and method for reactively refining hydrocarbons, such as heavy oils with API gravities of less than 20 degrees and bitumen-like hydrocarbons with viscosities greater than 1000 cp at standard temperature and pressure, using a selected fluid at supercritical conditions. A reaction portion of the system and method delivers lightweight, volatile hydrocarbons to an associated contacting unit which operates in mixed subcritical/supercritical or supercritical modes. Using thermal diffusion, multiphase contact, or a momentum generating pressure gradient, the contacting unit separates the reaction products into portions that are viable for use or sale without further conventional refining and hydro-processing techniques.

  15. Effectiveness of continuous hot-fluid stimulation of high viscosity oil wells 

    E-Print Network [OSTI]

    Oetama, Teddy

    1983-01-01

    temperature of 170 and 180 'F the production his- tories follow the same paths. Higher than 180 'F will only speed up the recovery during the cycling period. In general, the net recovery after 15 D III I- //' I tll CL dl I/ O 0 D D C 'O 0 D L... lll CD CD 27 GJ i/I 0 C3 5- +J 0 o~ $o GJ \\ lg 5- QJ (gg) aauegsig ~asig~ap 28 100 80 60 O o Cl V (tl Ul 40 EJ u ) 20 u O CV 20 40 Radia1 Distance (Ft) 60 Fi gore 16. Temperature Di st& i bution at 400 Days for 100...

  16. Imaging fluids using magnetotellurics: Electrical conductivity as a proxy for viscosity?

    E-Print Network [OSTI]

    Jones, Alan G.

    method that can image lateral and vertical variations in electrical conductivity from the near kilometres (mineral exploration, geothermal exploration), the frequency band is typically 10 kHz ­ 10 Hz

  17. A geological fingerprint of low-viscosity fault fluids mobilized during an earthquake

    E-Print Network [OSTI]

    Brodsky, Emily E.; Rowe, Christie D.; Moore, J. Casey; Meneghini, Francesca

    2009-01-01

    Principles of Physical Sedimentology, George Allen andCalifornia, paper presented at Sedimentology of Gravels andcoarse-grained sediments, Sedimentology, 22(2), 157 – 204.

  18. Ionizing Electron Incidents as an Efficient Way to Reduce Viscosity of Heavy Petroleum Fluids 

    E-Print Network [OSTI]

    Alfi, Masoud

    2012-10-19

    , provides more promising results in heavy oil upgrading. Electron irradiation, as a method of delivering energy to a target molecule, ensures that most of the energy is absorbed by the molecule electronic structure. This leads to a very efficient generation...

  19. Shear Viscosity to Entropy within a Parton Cascade

    E-Print Network [OSTI]

    A. El; C. Greiner; Z. Xu

    2007-06-28

    The shear viscosity is calculated by means of the perturbative kinetic partonic cascade BAMPS with CGC initial conditons for various saturation momentum scale Q_s. eta/s ~ 0.15 stays approximately constant when going from RHIC to LHC.

  20. Stress tensor and bulk viscosity in relativistic nuclear collisions 

    E-Print Network [OSTI]

    Fries, Rainer J.; Mueller, Berndt; Schaefer, Andreas.

    2008-01-01

    REVIEW C 78, 034913 (2008) Stress tensor and bulk viscosity in relativistic nuclear collisions Rainer J. Fries,1,2,3 Berndt Mu?ller,3,4 and Andreas Scha?fer3,5 1Cyclotron Institute and Department of Physics, Texas A&M University, College Station, Texas...

  1. Author's personal copy Viscosity of magmatic liquids: A model

    E-Print Network [OSTI]

    Russell, Kelly

    for viscosity can also predict other transport properties including glass transition temperatures (Tg) and melt are effusive or explosive (Dingwell, 1996; Papale, 1999; Sparks, 2004). Other volatile components (CO2, Cl, Br assumes a common, high-T limit (A) for silicate melt viscosityand returns a value for this limit of -4

  2. Viscosity of magmatic liquids: A model Daniele Giordano a,

    E-Print Network [OSTI]

    Russell, Kelly

    also predict other transport properties including glass transition temperatures (Tg) and melt fragility are effusive or explosive (Dingwell, 1996; Papale, 1999; Sparks, 2004). Other volatile components (CO2, Cl, Br-dependence of viscosity is accounted for by the VFTequation [log =A+B/(T(K)-C)]. The optimization assumes a common, high

  3. Parameters Affecting Viscosity as a Quality Control for Frozen Fish

    E-Print Network [OSTI]

    at the International Sym- posium on Alterations in the Chemical Constitu- ents of Foods in Industrial Processing and preserved chilled, was purchased at a local market. The muscle was minced using a mincer with plate orfices/second and then vacuum-packed and stored at -24°C for the 5 days during which tests were made. The apparent viscosity (Y

  4. Thermal convection with large viscosity variation in an enclosure with localized heating

    SciTech Connect (OSTI)

    Chu, T.Y.; Hickox, C.E.

    1988-01-01

    The present study is undertaken in order to gain an understanding of convective transport in a magma chamber. We have chosen to represent the chamber by an enclosure with localized heating from below. Results of both laboratory experiments and computer modeling are reported. The experimental apparatus consists of a transparent enclosure with a square planform. An electrically heated strip, with a width equal to one-fourth of the length of a side of the enclosure, is centered on the lower inside surface of the enclosure. For the experiments reported here, the top of the fluid layer is maintained at a constant temperature and the depth of the layer is equal to the width of the heated strip. The large viscosity variation characteristic of magma convection is simulated by using corn syrup as the working fluid. Measured velocity and temperature distribution as well as overall heat transfer rates are presented. The experiment is numerically simulated through use of a finite element computer program. Numerically predicted streamlines, isotherms, and velocity distributions are presented for the transverse vertical midplane of the enclosure. Good agreement is demonstrated between predictions and measurements. 23 refs., 8 figs., 2 tabs.

  5. On the computational modeling of the viscosity of colloidal dispersions and its relation with basic molecular interactions

    E-Print Network [OSTI]

    A. Gama Goicochea; M. A. Balderas Altamirano; R. Lopez-Esparza; M. A. Waldo; E. Perez

    2015-06-20

    The connection between fundamental interactions acting in molecules in a fluid and macroscopically measured properties, such as the viscosity between colloidal particles coated with polymers, is studied here. The role that hydrodynamic and Brownian forces play in colloidal dispersions is also discussed. It is argued that many body systems in which all these interactions take place can be accurately solved using computational simulation tools. One of those modern tools is the technique known as dissipative particle dynamics, which incorporates Brownian and hydrodynamic forces, as well as basic conservative interactions. A case study is reported, as an example of the applications of this technique, which consists of the prediction of the viscosity and friction between two opposing parallel surfaces covered with polymer chains, under the influence of a steady flow. This work is intended to serve as an introduction to the subject of colloidal dispersions and computer simulations, for last year undergraduate students and beginning graduate students who are interested in beginning research in soft matter systems. To that end, a computational code is included that students can use right away to study complex fluids in equilibrium.

  6. Holographic fluids with perturbations of pressure and energy density at finite cutoff surface

    E-Print Network [OSTI]

    Ya-Peng Hu; Yu Tian; Xiao-Ning Wu; Hongsheng Zhang

    2015-07-30

    We investigate the holographic fluids with perturbations of pressure and energy density at finite cutoff surface in the scenario of gravity/fluid correspondence. Perturbing the Schwarzschild-AdS black brane solution in the Einstein gravity, we explore the stress tensor of the holographic fluids with transport coefficients at a finite cutoff surface. We set a non-zero boundary condition for the derivative of $h(r)$ with respect to the radius direction $r$. We find that this boundary condition is critical to break the apparent degeneration of bulk viscosity and perturbation of the pressure for the dual fluid at the finite cutoff surface in our previous work (Phys.Lett. B732 (2014) 298). After this apparent degeneration broken, the bulk viscosity disappears, which is confirmed by the consideration of sound velocity.

  7. Direct visualization of the hydration layer on alumina nanoparticles with the fluid cell STEM in situ

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Firlar, Emre; Ç?nar, Simge; Kashyap, Sanjay; Akinc, Mufit; Prozorov, Tanya

    2015-05-21

    Rheological behavior of aqueous suspensions containing nanometer-sized powders is of relevance to many branches of industry. Unusually high viscosities observed for suspensions of nanoparticles compared to those of micron size powders cannot be explained by current viscosity models. Formation of so-called hydration layer on alumina nanoparticles in water was hypothesized, but never observed experimentally. We report here on the direct visualization of aqueous suspensions of alumina with the fluid cell in situ. We observe the hydration layer formed over the particle aggregates and show that such hydrated aggregates constitute new particle assemblies and affect the flow behavior of the suspensions.more »We discuss how these hydrated nanoclusters alter the effective solid content and the viscosity of nanostructured suspensions. Our findings elucidate the source of high viscosity observed for nanoparticle suspensions and are of direct relevance to many industrial sectors including materials, food, cosmetics, pharmaceutical among others employing colloidal slurries with nanometer-scale particles.« less

  8. Relativistic Viscous Fluid Description of Microscopic Black Hole Wind

    E-Print Network [OSTI]

    J. I. Kapusta

    2001-05-25

    Microscopic black holes explode with their temperature varying inversely as their mass. Such explosions would lead to the highest temperatures in the present universe, all the way to the Planck energy. Whether or not a quasi-stationary shell of matter undergoing radial hydrodynamic expansion surrounds such black holes is been controversial. In this paper relativistic viscous fluid equations are applied to the problem. It is shown that a self-consistent picture emerges of a fluid just marginally kept in local thermal equilibrium; viscosity is a crucial element of the dynamics.

  9. Memory Effects and Transport Coefficients for Non-Newtonian Fluids

    E-Print Network [OSTI]

    T. Kodama; T. Koide

    2008-12-22

    We discuss the roles of viscosity in relativistic fluid dynamics from the point of view of memory effects. Depending on the type of quantity to which the memory effect is applied, different terms appear in higher order corrections. We show that when the memory effect applies on the extensive quantities, the hydrodynamic equations of motion become non-singular. We further discuss the question of memory effect in the derivation of transport coefficients from a microscopic theory. We generalize the application of the Green-Kubo-Nakano (GKN) to calculate transport coefficients in the framework of projection operator formalism, and derive the general formula when the fluid is non-Newtonian.

  10. Thermophysical Properties of Fluids and Fluid Mixtures

    SciTech Connect (OSTI)

    Sengers, Jan V.; Anisimov, Mikhail A.

    2004-05-03

    The major goal of the project was to study the effect of critical fluctuations on the thermophysical properties and phase behavior of fluids and fluid mixtures. Long-range fluctuations appear because of the presence of critical phase transitions. A global theory of critical fluctuations was developed and applied to represent thermodynamic properties and transport properties of molecular fluids and fluid mixtures. In the second phase of the project, the theory was extended to deal with critical fluctuations in complex fluids such as polymer solutions and electrolyte solutions. The theoretical predictions have been confirmed by computer simulations and by light-scattering experiments. Fluctuations in fluids in nonequilibrium states have also been investigated.

  11. Phase-separation models for swimming enhancement in complex fluids

    E-Print Network [OSTI]

    Man, Yi

    2015-01-01

    Swimming cells often have to self-propel through fluids displaying non-Newtonian rheology. While past theoretical work seems to indicate that stresses arising from complex fluids should systematically hinder low-Reynolds number locomotion, experimental observations suggest that locomotion enhancement is possible. In this paper we propose a physical mechanism for locomotion enhancement of microscopic swimmers in a complex fluid. It is based on the fact that micro-structured fluids will generically phase-separate near surfaces, leading to the presence of low-viscosity layers which promote slip and decrease viscous friction near the surface of the swimmer. We use two models to address the consequence of this phase separation: a nonzero apparent slip length for the fluid and then an explicit modeling of the change of viscosity in a thin layer near the swimmer. Considering two canonical setups for low-Reynolds number locomotion, namely the waving locomotion of a two-dimensional sheet and that of a three-dimensiona...

  12. Fluid Inclusion Gas Analysis

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dilley, Lorie

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  13. Fluid Inclusion Gas Analysis

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dilley, Lorie

    2013-01-01

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  14. Fluid dynamical equations and transport coefficients of relativistic gases with non-extensive statistics

    E-Print Network [OSTI]

    T. S. Biro; E. Molnar

    2012-01-28

    We derive equations for fluid dynamics from a non-extensive Boltzmann transport equation consistent with Tsallis' non-extensive entropy formula. We evaluate transport coefficients employing the relaxation time approximation and investigate non-extensive effects in leading order dissipative phenomena at relativistic energies, like heat conductivity, shear and bulk viscosity.

  15. Rideal Lecture Universal features of the fluid to solid transition for attractive colloidal

    E-Print Network [OSTI]

    Weeks, Eric R.

    interaction is essential to maintain stability. However, many technologically important colloidal suspensions The rheological properties of colloidal suspensions can vary enormously; they can range from low viscosity fluids, and represents one of the most interesting and important challenges in our understanding of colloidal suspensions

  16. Molecular rotors: synthesis and evaluation as viscosity sensors Jeyanthy Sutharsan a

    E-Print Network [OSTI]

    Theodorakis, Emmanuel

    Molecular rotors: synthesis and evaluation as viscosity sensors Jeyanthy Sutharsan a , Darcy-mechanical viscosity sensors. These compounds, referred to as molecular rotors, belong to a class of fluorescent probes present the synthesis and spectroscopic characterization of these compounds as viscosity sensors

  17. Process for stabilizing the viscosity characteristics of coal derived materials and the stabilized materials obtained thereby

    DOE Patents [OSTI]

    Bronfenbrenner, James C. (Allentown, PA); Foster, Edward P. (Allentown, PA); Tewari, Krishna (Allentown, PA)

    1985-01-01

    A process is disclosed for stabilizing the viscosity of coal derived materials such as an SRC product by adding up to 5.0% by weight of a light volatile phenolic viscosity repressor. The viscosity will remain stabilized for a period of time of up to 4 months.

  18. High Resolution Viscosity Measurement by Thermal Noise Detection

    E-Print Network [OSTI]

    Sandoval, Felipe Aguilar; Bellon, Ludovic; Melo, Francisco

    2015-01-01

    An interferometric method is implemented in order to accurately assess the thermal fluctuations of a micro-cantilever sensor in liquid environments. The power spectrum density (PSD) of thermal fluctuations together with Sader's model of the cantilever allow for the indirect measurement of the liquid viscosity with good accuracy. The good quality of the deflection signal and the characteristic low noise of the instrument allow for the detection and corrections of drawbacks due to both the cantilever shape irregularities and the uncertainties on the position of the laser spot at the fluctuating end of the cantilever. Variation of viscosity below 0.03 mPa$\\cdot$s was detected with the alternative to achieve measurements with a volume as low as 50 $\\mu$L.

  19. Apparatus and method for high temperature viscosity and temperature measurements

    DOE Patents [OSTI]

    Balasubramaniam, Krishnan (Mississippi State, MS); Shah, Vimal (Houston, TX); Costley, R. Daniel (Mississippi State, MS); Singh, Jagdish P. (Mississippi State, MS)

    2001-01-01

    A probe for measuring the viscosity and/or temperature of high temperature liquids, such as molten metals, glass and similar materials comprises a rod which is an acoustical waveguide through which a transducer emits an ultrasonic signal through one end of the probe, and which is reflected from (a) a notch or slit or an interface between two materials of the probe and (b) from the other end of the probe which is in contact with the hot liquid or hot melt, and is detected by the same transducer at the signal emission end. To avoid the harmful effects of introducing a thermally conductive heat sink into the melt, the probe is made of relatively thermally insulative (non-heat-conductive) refractory material. The time between signal emission and reflection, and the amplitude of reflections, are compared against calibration curves to obtain temperature and viscosity values.

  20. Extensional viscosity measurements of polyethylene using a melt flow indexer 

    E-Print Network [OSTI]

    Moffatt, Scott Gordon

    1999-01-01

    . . . . . . . . 142 APPENDIX C: CONSTANT STRESS RHEOMETER TESTING PROCEDURE. . . . . . APPENDIX D: MELT FLOW INDEXER DATA . . . . . 147 APPENDIX E: CAPILLARY RHEOMETER DATA. . . . . . 184 APPENDIX F: OSCILLATORY RHEOMETER DATA . . . . . . . . 213 APPENDIX G...) [Padmanabhan and Macosko (1997)] . . . . . 14 5 Bagley Correction Factor for the Capillary Rheometer. 23 6 Flow Index Determination. . . . . . . 28 7 Definitions of Lengths Used in the Darby Method. 8 Carreau-Yasuda Fit of Complex Viscosity Data for Resin E...

  1. An alternative approach to viscosity in an accretion disc

    E-Print Network [OSTI]

    R. G. Edgar

    2006-10-02

    Purely hydrodynamic numerical experiments into the evolution of astrophysical discs typically include some sort of viscosity in order to cause accretion. In this paper, we demonstrate an alternative method of implementing viscous forces, with extremely good angular momentum conservation properties. The method is based on altering the cell fluxes, rather than incorporating a viscous force. We test this method on the classical `ring spreading' problem, and demonstrate angular momentum conservation at the $10^{-8}$ level.

  2. Viscosity Determination of Molten Ash from Low-Grade US Coals

    SciTech Connect (OSTI)

    Zhu, Jingxi; Nakano, Jinichiro; Kaneko, Tetsuya Kenneth; Mu, Haoyuan; Bennett, James P.; Kwong, Kyei-Sing; Rozelle, Peter; Sridhar, Seetharaman

    2012-10-01

    In entrained slagging gasifiers, the fluidity of the molten ash is a critical factor for process control since it affects slag formation, the capture of inorganic constituents, refractory wear, and slag drainage along the gasification chamber walls. The use of western coal, or mixtures of eastern and western coals as gasifier feedstock, is likely to occur as western coals become available and technological issues that hinder their use are being resolved. In the present work, the viscosity of synthetic slags with ash chemistries simulating the western U.S. coals, was experimentally measured at a Po2 = 10- 8 atm in the temperature range of 1773–1573 K (1500–1300 °C) using a rotating-bob viscometer. Alumina spindles and containment crucibles of both alumina and zirconia were used. Crystallization studies of this slag using a confocal scanning laser microscope found that a (Mg,Fe)Al2O4-based spinel precipitated at temperatures below 1723 K (1450 °C), and this agreed with FactSage equilibrium phase prediction. The same spinels were observed in the post-viscometry experiment slags when ZrO2 crucibles were used and assumed to be in equilibrium with the slag at the higher temperatures. Zirconia dissolution resulted in a slight increase in the solid fraction present in slags at lower temperatures, compared to spinel fraction. Crystal precipitation changed the apparent activation energy and required a longer stabilization times for viscosity measurements. The viscosity results were used in predictive equations based on Veytsman and Einstein's models, with critical nucleation temperatures and the solid fraction calculated with FactSage. In the simulated eastern/western coal feedstock blends based on ash compositions, the fractions of the solid precipitates were also calculated using the thermodynamic program FactSage for each blend composition, and the plastic viscosity of each eastern/western coal slag blend was predicted using Veytsman's model and compared to available experimental data.

  3. Fluid transport container

    DOE Patents [OSTI]

    DeRoos, B.G.; Downing, J.P. Jr.; Neal, M.P.

    1995-11-14

    An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitting for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container. 13 figs.

  4. Procedure for Koehler Digital Constant Temperature Viscosity Bath This unit is designed to perform kinematic viscosity tests using glass capillary viscometers, for this lab

    E-Print Network [OSTI]

    Saskatchewan, University of

    Standard D-446. Viscosity Bath: The viscosity bath should be filled 5 cm (2") from the top of the bath tank - ASTM D446 - ASTM D2170 - IP 71 - IP 319 - ISO 3140 - DIN 51550 - FTM 791-305 Over Temperature

  5. Murray's law revisited with Qu\\'emada's fluids and fractal trees

    E-Print Network [OSTI]

    Benjamin, Mauroy

    2015-01-01

    In 1926, Murray proposed the first law for the optimal design of blood vessels. He minimized the power dissipation arising from the trade-off between fluid circulation and blood maintenance. The law, based on a constant fluid viscosity, states that in the optimal configuration the fluid flow rate inside the vessel is proportional to the cube of the vessel radius, implying that wall shear stress is not dependent on the vessel radius. Murray's law has been found to be true in blood macrocirculation, but not in microcirculation. In 2005, Alarc\\'on et al took into account the non monotonous dependence of viscosity on vessel radius - F{\\aa}hr{\\ae}us - Lindqvist effect - due to phase separation effect of blood. They were able to predict correctly the behavior of wall shear stresses in microcirculation. One last crucial step remains however: to account for the dependence of blood viscosity on shear rates. In this work, we investigate how viscosity dependence on shear rate affects Murray's law. We extended Murray's o...

  6. Bag breakup of low viscosity drops in the presence of a continuous air jet

    SciTech Connect (OSTI)

    Kulkarni, V. Sojka, P. E.

    2014-07-15

    This work examines the breakup of a single drop of various low viscosity fluids as it deforms in the presence of continuous horizontal air jet. Such a fragmentation typically occurs after the bulk liquid has disintegrated upon exiting the atomizer and is in the form of an ensemble of drops which undergo further breakup. The drop deformation and its eventual disintegration is important in evaluating the efficacy of a particular industrial process, be it combustion in automobile engines or pesticide spraying in agricultural applications. The interplay between competing influences of surface tension and aerodynamic disruptive forces is represented by the Weber number, We, and Ohnesorge number, Oh, and used to describe the breakup morphology. The breakup pattern considered in our study corresponds to that of a bag attached to a toroidal ring which occurs from ?12 < We < ?16. We aim to address several issues connected with this breakup process and their dependence on We and Oh which have been hitherto unexplored. The We boundary at which breakup begins is theoretically determined and the expression obtained, We=12(1+2/3Oh{sup 2}), is found to match well with experimental data ([L.-P. Hsiang and G. M. Faeth, Int. J. Multiphase Flow 21(4), 545–560 (1995)] and [R. S. Brodkey, “Formation of drops and bubbles,” in The Phenomena of Fluid Motions (Addison-Wesley, Reading, 1967)]). An exponential growth in the radial extent of the deformed drop and the streamline dimension of the bag is predicted by a theoretical model and confirmed by experimental findings. These quantities are observed to strongly depend on We. However, their dependence on Oh is weak.

  7. Measurement of surface tension and viscosity by open capillary techniques

    DOE Patents [OSTI]

    Rye,Robert R. (Albuquerque, NM), Yost,Frederick G. (Cedar Crest, NM)

    1998-01-01

    An open-channel capillary is provided, having preferably a v-shaped groove in a flat wettable surface. The groove has timing marks and a source marker in which the specimen to be tested is deposited. The time of passage between the timing marks is recorded, and the ratio of surface tension .gamma. to viscosity .mu. is determined from the equation given below: ##EQU1## where h.sub.0 is the groove depth, .alpha. is the groove angle, .theta. is the liquid/solid contact angle, and t is the flow time. It has been shown by the

  8. Standardization of Thermo-Fluid Modeling in Modelica.Fluid

    E-Print Network [OSTI]

    Franke, Rudiger

    2010-01-01

    Thermo-Fluid Systems, Modelica 2003 Conference, Linköping,H. Tummescheit: The Modelica Fluid and Media Library forThermo-Fluid Pipe Networks, Modelica 2006 Conference, Vi-

  9. Fluid Bed Combustion Applied to Industrial Waste 

    E-Print Network [OSTI]

    Mullen, J. F.; Sneyd, R. J.

    1985-01-01

    Because of its unique ability to handle a wide variety of liquids and solids in an energy efficient and environmentally acceptable manner, fluid bed combustion is being increasingly applied to the utilization of waste materials and low grade fuels...

  10. Bulk viscosity and cavitation in boost-invariant hydrodynamic expansion

    E-Print Network [OSTI]

    Rajagopal, Krishna

    We solve second order relativistic hydrodynamics equations for a boost-invariant 1+1-dimensional expanding fluid with an equation of state taken from lattice calculations of the thermodynamics of strongly coupled quark-gluon ...

  11. Computational fluid dynamics improves liner cementing operation

    SciTech Connect (OSTI)

    Barton, N.A.; Archer, G.L. ); Seymour, D.A. )

    1994-09-26

    The use of computational fluid dynamics (CFD), an analytical tool for studying fluid mechanics, helped plan the successful cementing of a critical liner in a North Sea extended reach well. The results from CFD analysis increased the confidence in the primary cementing of the liner. CFD modeling was used to quantify the effects of increasing the displacement rate and of rotating the liner on the mud flow distribution in the annulus around the liner.

  12. Journal of Fluid Mechanics http://journals.cambridge.org/FLM

    E-Print Network [OSTI]

    Marusic, Ivan

    prove that the drag in pipe and channel flows of an unforced laminar fluid constitutes a lower bound drag reduction due to added polymers in Poiseuille flow. Journal of Fluid Mechanics, 659, pp 473483 to laminar fluids invariably increases drag. This proof does not rely on the adoption of a particular

  13. Friction-Induced Fluid Heating in Nanoscale Helium Flows

    SciTech Connect (OSTI)

    Li Zhigang [Department of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2010-05-21

    We investigate the mechanism of friction-induced fluid heating in nanoconfinements. Molecular dynamics simulations are used to study the temperature variations of liquid helium in nanoscale Poiseuille flows. It is found that the fluid heating is dominated by different sources of friction as the external driving force is changed. For small external force, the fluid heating is mainly caused by the internal viscous friction in the fluid. When the external force is large and causes fluid slip at the surfaces of channel walls, the friction at the fluid-solid interface dominates over the internal friction in the fluid and is the major contribution to fluid heating. An asymmetric temperature gradient in the fluid is developed in the case of nonidentical walls and the general temperature gradient may change sign as the dominant heating factor changes from internal to interfacial friction with increasing external force.

  14. HEAT TRANSFER FLUIDS

    E-Print Network [OSTI]

    Lenert, Andrej

    2012-01-01

    The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

  15. Additive for drilling fluid

    SciTech Connect (OSTI)

    Forrest, G.T.

    1992-04-07

    This patent describes a product for use in the drilling of wells. It comprises a drilling fluid and peanut hulls ground to powder form added to the drilling fluid.

  16. Fluid sampling tool

    DOE Patents [OSTI]

    Johnston, Roger G. (Los Alamos, NM); Garcia, Anthony R. E. (Espanola, NM); Martinez, Ronald K. (Santa Cruz, NM)

    2001-09-25

    The invention includes a rotatable tool for collecting fluid through the wall of a container. The tool includes a fluid collection section with a cylindrical shank having an end portion for drilling a hole in the container wall when the tool is rotated, and a threaded portion for tapping the hole in the container wall. A passageway in the shank in communication with at least one radial inlet hole in the drilling end and an opening at the end of the shank is adapted to receive fluid from the container. The tool also includes a cylindrical chamber affixed to the end of the shank opposite to the drilling portion thereof for receiving and storing fluid passing through the passageway. The tool also includes a flexible, deformable gasket that provides a fluid-tight chamber to confine kerf generated during the drilling and tapping of the hole. The invention also includes a fluid extractor section for extracting fluid samples from the fluid collecting section.

  17. ME 413 Systems Dynamics & Control Chapter 7: Fluid Systems and Thermal Systems ChapterChapterChapterChapter 7777

    E-Print Network [OSTI]

    Al-Qahtani, Hussain M.

    & Control Chapter 7: Fluid Systems and Thermal Systems 2/9 laminar flow and is characterized by a smooth is compressible. 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS Steady State Flow Laminar Turbulent D Figure 7.1 (a) Velocity profile for laminar flow Flow dominated by viscosity forces is called Figure 7.1 (b

  18. European Journal of Mechanics B/Fluids 49 (2015) 217225 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Georgiou, Georgios

    2015-01-01

    only at low processing pressures and may introduce significant error when modeling flows involving high pressures or a large pressure range, such as polymer process- ing, crude oil and fuel oil pumping, fluid solutions of weakly compressible Newtonian Poiseuille flows with pressure-dependent viscosity Stella

  19. One Time-step Finite Element Discretization of the Equation of Motion of Two-fluid Flows

    E-Print Network [OSTI]

    Maury, Bertrand

    obtained at each time step when dis- cretizing the lubricated transportation of heavy crude oil in a horizontal pipeline. In the petroleum industry, an efficient way for transporting heavy crude oil to the pipe wall and it surrounds the fluid with high viscosity (heavy oil). It is assumed that the flow

  20. Inertial Coupling Method for particles in an incompressible fluctuating fluid

    E-Print Network [OSTI]

    F. Balboa Usabiaga; R. Delgado-Buscalioni; B. E. Griffith; A. Donev

    2015-07-28

    We develop an inertial coupling method for modeling the dynamics of point-like 'blob' particles immersed in an incompressible fluid, generalizing previous work for compressible fluids. The coupling consistently includes excess (positive or negative) inertia of the particles relative to the displaced fluid, and accounts for thermal fluctuations in the fluid momentum equation. The coupling between the fluid and the blob is based on a no-slip constraint equating the particle velocity with the local average of the fluid velocity, and conserves momentum and energy. We demonstrate that the formulation obeys a fluctuation-dissipation balance, owing to the non-dissipative nature of the no-slip coupling. We develop a spatio-temporal discretization that preserves, as best as possible, these properties of the continuum formulation. In the spatial discretization, the local averaging and spreading operations are accomplished using compact kernels commonly used in immersed boundary methods. We find that the special properties of these kernels make the discrete blob a particle with surprisingly physically-consistent volume, mass, and hydrodynamic properties. We develop a second-order semi-implicit temporal integrator that maintains discrete fluctuation-dissipation balance, and is not limited in stability by viscosity. Furthermore, the temporal scheme requires only constant-coefficient Poisson and Helmholtz linear solvers, enabling a very efficient and simple FFT-based implementation on GPUs. We numerically investigate the performance of the method on several standard test problems...

  1. Fluid Circulation and Heat Extraction from Engineered Geothermal...

    Open Energy Info (EERE)

    in less-confined reservoirs. Under such conditions, a downhole production-well pump may be employed to increase productivity by recovering more of the injected fluid at...

  2. A Strongly Coupled Anisotropic Fluid From Dilaton Driven Holography

    E-Print Network [OSTI]

    Sachin Jain; Nilay Kundu; Kallol Sen; Aninda Sinha; Sandip P. Trivedi

    2015-01-13

    We consider a system consisting of $5$ dimensional gravity with a negative cosmological constant coupled to a massless scalar, the dilaton. We construct a black brane solution which arises when the dilaton satisfies linearly varying boundary conditions in the asymptotically $AdS_5$ region. The geometry of this black brane breaks rotational symmetry while preserving translational invariance and corresponds to an anisotropic phase of the system. Close to extremality, where the anisotropy is big compared to the temperature, some components of the viscosity tensor become parametrically small compared to the entropy density. We study the quasi normal modes in considerable detail and find no instability close to extremality. We also obtain the equations for fluid mechanics for an anisotropic driven system in general, working upto first order in the derivative expansion for the stress tensor, and identify additional transport coefficients which appear in the constitutive relation. For the fluid of interest we find that the parametrically small viscosity can result in a very small force of friction, when the fluid is enclosed between appropriately oriented parallel plates moving with a relative velocity.

  3. Effects of pore fluids in the subsurface on ultrasonic wave propagation

    SciTech Connect (OSTI)

    Seifert, P.K.

    1998-05-01

    This thesis investigates ultrasonic wave propagation in unconsolidated sands in the presence of different pore fluids. Laboratory experiments have been conducted in the sub-MHz range using quartz sand fully saturated with one or two liquids. Elastic wave propagation in unconsolidated granular material is computed with different numerical models: in one-dimension a scattering model based on an analytical propagator solution, in two dimensions a numerical approach using the boundary integral equation method, in three dimensions the local flow model (LFM), the combined Biot and squirt flow theory (BISQ) and the dynamic composite elastic medium theory (DYCEM). The combination of theoretical and experimental analysis yields a better understanding of how wave propagation in unconsolidated sand is affected by (a) homogeneous phase distribution; (b) inhomogeneous phase distribution, (fingering, gas inclusions); (c) pore fluids of different viscosity; (d) wettabilities of a porous medium. The first study reveals that the main ultrasonic P-wave signatures, as a function of the fraction on nonaqueous-phase liquids in initially water-saturated sand samples, can be explained by a 1-D scattering model. The next study investigates effects of pore fluid viscosity on elastic wave propagation, in laboratory experiments conducted with sand samples saturated with fluids of different viscosities. The last study concentrates on the wettability of the grains and its effect on elastic wave propagation and electrical resistivity.

  4. Optimizing Blast Furnace Operation to Increase Efficiency and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimizing Blast Furnace Operation to Increase Efficiency and Lower Costs State-of-the-Art Computational Fluid Dynamics Model Optimizes Fuel Rate in Blast Furnaces The blast...

  5. Spinning fluids reactor

    DOE Patents [OSTI]

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  6. Shear viscosity to entropy density ratio in nuclear multifragmentation

    E-Print Network [OSTI]

    Subrata Pal

    2010-05-03

    Nuclear multifragmentation in intermediate energy heavy ion collisions has long been associated with liquid-gas phase transition. We calculate the shear viscosity to entropy density ratio eta/s for an equilibrated system of nucleons and fragments produced in multifragmentation within an extended statistical multifragmentation model. The temperature dependence of eta/s exhibits surprisingly similar behavior as that for water. In the coexistence phase of fragments and light particles, the ratio eta/s reaches a minimum of comparable depth as that for water in the vicinity of the critical temperature for liquid-gas phase transition. The effects of freeze-out volume and surface symmetry energy on eta/s in multifragmentation are studied.

  7. Cavitation from bulk viscosity in neutron stars and quark stars

    E-Print Network [OSTI]

    Jes Madsen

    2009-09-30

    The bulk viscosity in quark matter is sufficiently high to reduce the effective pressure below the corresponding vapor pressure during density perturbations in neutron stars and strange stars. This leads to mechanical instability where the quark matter breaks apart into fragments comparable to cavitation scenarios discussed for ultra-relativistic heavy-ion collisions. Similar phenomena may take place in kaon-condensed stellar cores. Possible applications to compact star phenomenology include a new mechanism for damping oscillations and instabilities, triggering of phase transitions, changes in gravitational wave signatures of binary star inspiral, and astrophysical formation of strangelets. At a more fundamental level it points to the possible inadequacy of a hydrodynamical treatment of these processes in compact stars.

  8. Cavitation from bulk viscosity in neutron stars and strange stars

    E-Print Network [OSTI]

    Madsen, Jes

    2009-01-01

    The bulk viscosity in quark matter is sufficiently high to reduce the effective pressure below the corresponding vapor pressure during density perturbations in neutron stars and strange stars. This leads to mechanical instability where the quark matter breaks apart into fragments comparable to cavitation scenarios discussed for ultra-relativistic heavy-ion collisions. Similar phenomena may take place in kaon-condensed stellar cores. Possible applications to compact star phenomenology include a new mechanism for damping oscillations and instabilities, triggering of phase transitions, changes in gravitational wave signatures of binary star inspiral, and astrophysical formation of strangelets. At a more fundamental level it points to the possible inadequacy of a hydrodynamical treatment of these processes in compact stars.

  9. Viscosity of the QGP from a virial expansion

    SciTech Connect (OSTI)

    Mattiello, S.

    2012-06-15

    In this work we calculate the shear viscosity {eta} in the quark-gluon plasma within a virial expansion approach with particular interest in the ratio of {eta} to the entropy density s, i.e. {eta}/s. We derive a realistic equation of state using a virial expansion approach which allows us to include the interactions between the partons in the deconfined phase. From the interaction we directly extract the effective coupling {alpha}{sub V} for the determination of {eta}. Our results for {eta}/s show a minimum near to T{sub c} very close with the lowest bound and, furthermore, in line with the experimental point from RHIC as well as with the lattice calculations.

  10. Low-melting point inorganic nitrate salt heat transfer fluid

    DOE Patents [OSTI]

    Bradshaw, Robert W. (Livermore, CA); Brosseau, Douglas A. (Albuquerque, NM)

    2009-09-15

    A low-melting point, heat transfer fluid made of a mixture of four inorganic nitrate salts: 9-18 wt % NaNO.sub.3, 40-52 wt % KNO.sub.3, 13-21 wt % LiNO.sub.3, and 20-27 wt % Ca(NO.sub.3).sub.2. These compositions can have liquidus temperatures less than 100 C; thermal stability limits greater than 500 C; and viscosity in the range of 5-6 cP at 300 C; and 2-3 cP at 400 C.

  11. Method of preparing a high solids content, low viscosity ceramic slurry

    DOE Patents [OSTI]

    Tiegs, T.N.; Wittmer, D.E.

    1995-10-10

    A method for producing a high solids content, low viscosity ceramic slurry composition comprises turbomilling a dispersion of a ceramic powder in a liquid to form a slurry having a viscosity less than 100 centipoise and a solids content equal to or greater than 48 volume percent.

  12. Experimental Investigation on High-pressure, High-temperature Viscosity of Gas Mixtures 

    E-Print Network [OSTI]

    Davani, Ehsan

    2012-02-14

    was used to measure the viscosity of mixtures of nitrogen and methane, and mixtures of CO2 and methane at a pressure range of 5,000 to 25,000 psi, and a temperature range of 100 to 360 degrees F. The viscosity of mixtures of nitrogen and methane...

  13. Bending Creep Test to Measure the Viscosity of Porous Materials during Sintering

    E-Print Network [OSTI]

    Messing, Gary L.

    Bending Creep Test to Measure the Viscosity of Porous Materials during Sintering Sang-Ho Lee creep test is proposed for measuring the change in viscosity of a porous material during densification be measured. Experiments with porous Y2O3-stabilized ZrO2 beams were used to illustrate the bending creep test

  14. Viscosity and reptation time in polystyrene-benzene semidilute solutions M. Adam and M. Delsanti

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    L-523 Viscosity and reptation time in polystyrene-benzene semidilute solutions M. Adam and M viscosity ~ and reptation time TR in semidilute polystyrene-benzene solutions. We have obtained, our aim is to study the viscoelastic properties of polystyrene-benzene systems in a well defined

  15. Creating fluid injectivity in tar sands formations

    DOE Patents [OSTI]

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2010-06-08

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons are produced from the portion.

  16. Creating fluid injectivity in tar sands formations

    DOE Patents [OSTI]

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2012-06-05

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons including mobilized hydrocarbons are produced from the portion.

  17. Measurement of solubility, viscosity, and density of R-410A refrigerant/lubricant mixtures

    SciTech Connect (OSTI)

    Cavestri, R.C.; Schafer, W.R.

    2000-07-01

    Measurements of the refrigerant vapor/liquid lubricant equilibrium viscosity reduction of four polyolester lubricants, viscosity grades 32 and 68 ISO VG, with the refrigerant R-410A were taken between {minus}13 F and 257 F and up to 700 psia. A high and low miscibility grade polyolester was analyzed for each viscosity. The viscosity, density, and composition of the solubilized gas mixture in solution with the lubricant was obtained with constant gas vapor composition in the viscometer head space. This refrigerant has a very small temperature glide but is considered a zeotropic blend nonetheless. The fractionation data presented were obtained from individual isothermal measurements. The isotherm for each temperature detailed the composition of the equilibrium gas fractionation of R-32 and R-125 in the lubricant, mixed vapor pressure, concentration of the total mixed blend (percent by weight) in the lubricant, and viscosity in centipoise (cP) and centistokes (cSt).

  18. Effects of fluid dynamics on cleaning efficacy of supercritical fluids

    SciTech Connect (OSTI)

    Phelps, M.R.; Willcox, W.A.; Silva, L.J.; Butner, R.S.

    1993-03-01

    Pacific Northwest Laboratory (PNL) and Boeing Aerospace Company are developing a process to clean metal parts using a supercritical solvent. This work is part of an effort to address issues inhibiting the rapid commercialization of Supercritical Fluid Parts Cleaning (SFPC). PNL assembled a SFPC test stand to observe the relationship between the fluid dynamics of the system and the mass transfer of a contaminant from the surface of a contaminated metal coupon into the bulk fluid. The bench-scale test stand consists of a ``Berty`` autoclave modified for these tests and supporting hardware to achieve supercritical fluids parts cleaning. Three separate sets of tests were conducted using supercritical carbon dioxide. For the first two tests, a single stainless steel coupon was cleaned with organic solvents to remove surface residue, doped with a single contaminant, and then cleaned in the SFPC test stand. Contaminants studied were Dow Corning 200 fluid (dimethylpolysiloxane) and Castle/Sybron X-448 High-temperature Oil (a polybutane/mineral oil mixture). A set of 5-minute cleaning runs was conducted for each dopant at various autoclave impeller speeds. Test results from the first two sets of experiments indicate that precision cleaning for difficult-to-remove contaminants can be dramatically improved by introducing and increasing turbulence within the system. Metal coupons that had been previously doped with aircraft oil were used in a third set of tests. The coupons were placed in the SFPC test stand and subjected to different temperatures, pressures, and run times at a constant impeller speed. The cleanliness of each part was measured by Optically Stimulated Electron Emission. The third set of tests show that levels of cleanliness attained with supercritical carbon dioxide compare favorably with solvent and aqueous cleaning levels.

  19. Effects of fluid dynamics on cleaning efficacy of supercritical fluids

    SciTech Connect (OSTI)

    Phelps, M.R.; Willcox, W.A.; Silva, L.J.; Butner, R.S.

    1993-03-01

    Pacific Northwest Laboratory (PNL) and Boeing Aerospace Company are developing a process to clean metal parts using a supercritical solvent. This work is part of an effort to address issues inhibiting the rapid commercialization of Supercritical Fluid Parts Cleaning (SFPC). PNL assembled a SFPC test stand to observe the relationship between the fluid dynamics of the system and the mass transfer of a contaminant from the surface of a contaminated metal coupon into the bulk fluid. The bench-scale test stand consists of a Berty'' autoclave modified for these tests and supporting hardware to achieve supercritical fluids parts cleaning. Three separate sets of tests were conducted using supercritical carbon dioxide. For the first two tests, a single stainless steel coupon was cleaned with organic solvents to remove surface residue, doped with a single contaminant, and then cleaned in the SFPC test stand. Contaminants studied were Dow Corning 200 fluid (dimethylpolysiloxane) and Castle/Sybron X-448 High-temperature Oil (a polybutane/mineral oil mixture). A set of 5-minute cleaning runs was conducted for each dopant at various autoclave impeller speeds. Test results from the first two sets of experiments indicate that precision cleaning for difficult-to-remove contaminants can be dramatically improved by introducing and increasing turbulence within the system. Metal coupons that had been previously doped with aircraft oil were used in a third set of tests. The coupons were placed in the SFPC test stand and subjected to different temperatures, pressures, and run times at a constant impeller speed. The cleanliness of each part was measured by Optically Stimulated Electron Emission. The third set of tests show that levels of cleanliness attained with supercritical carbon dioxide compare favorably with solvent and aqueous cleaning levels.

  20. Fluid dynamic propagation of initial baryon number perturbations on a Bjorken flow background

    E-Print Network [OSTI]

    Floerchinger, Stefan

    2015-01-01

    Baryon number density perturbations offer a possible route to experimentally measure baryon number susceptibilities and heat conductivity of the quark gluon plasma. We study the fluid dynamical evolution of local and event-by-event fluctuations of baryon number density, flow velocity and energy density on top of a (generalised) Bjorken expansion. To that end we use a background-fluctuation splitting and a Bessel-Fourier decomposition for the fluctuating part of the fluid dynamical fields with respect to the azimuthal angle, the radius in the transverse plane and rapidity. We examine how the time evolution of linear perturbations depends on the equation of state as well as on shear viscosity, bulk viscosity and heat conductivity for modes with different azimuthal, radial and rapidity wave numbers. Finally we discuss how this information is accessible to experiments in terms of the transverse and rapidity dependence of correlation functions for baryonic particles in high energy nuclear collisions.

  1. Fiber optic fluid detector

    DOE Patents [OSTI]

    Angel, S. Michael (Livermore, CA)

    1989-01-01

    Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.

  2. Fiber optic fluid detector

    DOE Patents [OSTI]

    Angel, S.M.

    1987-02-27

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  3. Direct Numerical Simulation of Surfactant-Stabilized Emulsions Morphology and Shear Viscosity in Starting Shear Flow

    SciTech Connect (OSTI)

    Roar Skartlien; Espen Sollum; Andreas Akselsen; Paul Meakin

    2012-07-01

    A 3D lattice Boltzmann model for two-phase flow with amphiphilic surfactant was used to investigate the evolution of emulsion morphology and shear stress in starting shear flow. The interfacial contributions were analyzed for low and high volume fractions and varying surfactant activity. A transient viscoelastic contribution to the emulsion rheology under constant strain rate conditions was attributed to the interfacial stress. For droplet volume fractions below 0.3 and an average capillary number of about 0.25, highly elliptical droplets formed. Consistent with affine deformation models, gradual elongation of the droplets increased the shear stress at early times and reduced it at later times. Lower interfacial tension with increased surfactant activity counterbalanced the effect of increased interfacial area, and the net shear stress did not change significantly. For higher volume fractions, co-continuous phases with a complex topology were formed. The surfactant decreased the interfacial shear stress due mainly to advection of surfactant to higher curvature areas. Our results are in qualitative agreement with experimental data for polymer blends in terms of transient interfacial stresses and limited enhancement of the emulsion viscosity at larger volume fractions where the phases are co-continuous.

  4. Metalworking and machining fluids

    DOE Patents [OSTI]

    Erdemir, Ali (Naperville, IL); Sykora, Frank (Caledon, ON, CA); Dorbeck, Mark (Brighton, MI)

    2010-10-12

    Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.

  5. Frequency-dependent processing and interpretation (FDPI) of seismic data for identifying, imaging and monitoring fluid-saturated underground reservoirs

    DOE Patents [OSTI]

    Goloshubin, Gennady M. (Sugar Land, TX); Korneev, Valeri A. (Lafayette, CA)

    2005-09-06

    A method for identifying, imaging and monitoring dry or fluid-saturated underground reservoirs using seismic waves reflected from target porous or fractured layers is set forth. Seismic imaging the porous or fractured layer occurs by low pass filtering of the windowed reflections from the target porous or fractured layers leaving frequencies below low-most corner (or full width at half maximum) of a recorded frequency spectra. Additionally, the ratio of image amplitudes is shown to be approximately proportional to reservoir permeability, viscosity of fluid, and the fluid saturation of the porous or fractured layers.

  6. Frequency-dependent processing and interpretation (FDPI) of seismic data for identifying, imaging and monitoring fluid-saturated underground reservoirs

    DOE Patents [OSTI]

    Goloshubin, Gennady M.; Korneev, Valeri A.

    2006-11-14

    A method for identifying, imaging and monitoring dry or fluid-saturated underground reservoirs using seismic waves reflected from target porous or fractured layers is set forth. Seismic imaging the porous or fractured layer occurs by low pass filtering of the windowed reflections from the target porous or fractured layers leaving frequencies below low-most corner (or full width at half maximum) of a recorded frequency spectra. Additionally, the ratio of image amplitudes is shown to be approximately proportional to reservoir permeability, viscosity of fluid, and the fluid saturation of the porous or fractured layers.

  7. Electrorheological fluids and methods

    DOE Patents [OSTI]

    Green, Peter F.; McIntyre, Ernest C.

    2015-06-02

    Electrorheological fluids and methods include changes in liquid-like materials that can flow like milk and subsequently form solid-like structures under applied electric fields; e.g., about 1 kV/mm. Such fluids can be used in various ways as smart suspensions, including uses in automotive, defense, and civil engineering applications. Electrorheological fluids and methods include one or more polar molecule substituted polyhedral silsesquioxanes (e.g., sulfonated polyhedral silsesquioxanes) and one or more oils (e.g., silicone oil), where the fluid can be subjected to an electric field.

  8. An Experimental Setup to Study the Settling Behavior of Epoxy Based Fluids 

    E-Print Network [OSTI]

    El-Mallawany, Ibrahim Ismail

    2012-07-16

    or liquid. It assumes that the settling object is a small sphere and that the difference in densities is not large. This is because Stokes? law takes into account only the viscous forces that cause drag and does not account for drag due to impact forces.... Therefore, Stokes? law only applies where Reynolds number is very low. Stokes? law is given by the following equation (Batchelor 1967) ??????.?. (1) where Fd is the drag force, ? is the fluid?s viscosity, R is the sphere?s radius and V...

  9. Holographic Screens and Transport Coefficients in the Fluid/Gravity Correspondence

    E-Print Network [OSTI]

    Christopher Eling; Yaron Oz

    2011-11-04

    We consider in the framework of the fluid/gravity correspondence the dynamics of hypersurfaces located in the holographic radial direction at r = r_0. We prove that these hypersurfaces evolve, to all orders in the derivative expansion and including all higher curvature corrections, according to the same hydrodynamics equations with identical transport coefficients. The analysis is carried out for normal fluids as well as for superfluids. Consequently, this proves the exactness of the bulk viscosity formula derived in arXiv:1103.1657 via the null horizon dynamics.

  10. Theory comparison and numerical benchmarking on neoclassical toroidal viscosity torque

    SciTech Connect (OSTI)

    Wang, Zhirui; Park, Jong-Kyu; Logan, Nikolas; Kim, Kimin; Menard, Jonathan E. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)] [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Liu, Yueqiang [Euratom/CCFE Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)] [Euratom/CCFE Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2014-04-15

    Systematic comparison and numerical benchmarking have been successfully carried out among three different approaches of neoclassical toroidal viscosity (NTV) theory and the corresponding codes: IPEC-PENT is developed based on the combined NTV theory but without geometric simplifications [Park et al., Phys. Rev. Lett. 102, 065002 (2009)]; MARS-Q includes smoothly connected NTV formula [Shaing et al., Nucl. Fusion 50, 025022 (2010)] based on Shaing's analytic formulation in various collisionality regimes; MARS-K, originally computing the drift kinetic energy, is upgraded to compute the NTV torque based on the equivalence between drift kinetic energy and NTV torque [J.-K. Park, Phys. Plasma 18, 110702 (2011)]. The derivation and numerical results both indicate that the imaginary part of drift kinetic energy computed by MARS-K is equivalent to the NTV torque in IPEC-PENT. In the benchmark of precession resonance between MARS-Q and MARS-K/IPEC-PENT, the agreement and correlation between the connected NTV formula and the combined NTV theory in different collisionality regimes are shown for the first time. Additionally, both IPEC-PENT and MARS-K indicate the importance of the bounce harmonic resonance which can greatly enhance the NTV torque when E×B drift frequency reaches the bounce resonance condition.

  11. Viscosity index improver-dispersant additive useful in oil compositions

    SciTech Connect (OSTI)

    Gardiner, J.B.; Dick, M.N.

    1988-10-25

    A process comprising grafting in the substantial absence of solvent a hydrocarbon polymer of C/sub 2/ to C/sub 28/ olefin, the polymer having a number average molecular weight in the range of about 5,000 to 500,000 with an unsaturated material selected from the group consisting of: (A) ethylenically unsaturated C/sub 3/ to C/sub 10/ carboxylic acid having 1 to 2 carboxylic acid groups or an anhydride group, and (B) nitrogen-containing ethylenically unsaturated monomers containing 6 to 30 carbon atoms and 1 to 4 nitrogen atoms, in the presence of a free radical initiator and a chain stopping agent comprising at least one member selected from the group consisting of alphatic mercaptans having 4 to 24 carbon atoms, deithyl hydroxyl amine cumene and phenols, the grafting being conducted in a manner and under conditions sufficient to form a substantially oil soluble graft copolymer useful as a viscosity index improver-dispersant additive for lubricating oil compositions.

  12. Hall viscosity from elastic gauge fields in Dirac crystals

    E-Print Network [OSTI]

    Alberto Cortijo; Yago Ferreirós; Karl Landsteiner; María A. H. Vozmediano

    2015-06-16

    The combination of Dirac physics and elasticity has been explored at length in graphene where the so--called "elastic gauge fields" have given rise to an entire new field of research and applications: Straintronics. The fact that these elastic fields couple to fermions as the electromagnetic field, implies that many electromagnetic responses will have elastic counterparts not explored before. In this work we will first show that the presence of elastic gauge fields will be the rule rather than the exception in most of the topologically non--trivial materials in two and three dimensions. In particular we will extract the elastic gauge fields associated to the recently observed Weyl semimetals, the "three dimensional graphene". As it is known, quantum electrodynamics suffers from the chiral anomaly whose consequences have been recently explored in matter systems. We will show that, associated to the physics of the anomalies, and as a counterpart of the Hall conductivity, elastic materials will have a Hall viscosity in two and three dimensions with a coefficient orders of magnitude bigger than the previously studied response. The magnitude and generality of the new effect will greatly improve the chances for the experimental observation of this topological, non dissipative response.

  13. Fluid delivery control system

    DOE Patents [OSTI]

    Hoff, Brian D.; Johnson, Kris William; Algrain, Marcelo C.; Akasam, Sivaprasad

    2006-06-06

    A method of controlling the delivery of fluid to an engine includes receiving a fuel flow rate signal. An electric pump is arranged to deliver fluid to the engine. The speed of the electric pump is controlled based on the fuel flow rate signal.

  14. Non-Newtonian fluid flow 

    E-Print Network [OSTI]

    Osinski, Charles Anthony

    1963-01-01

    the research. Assistance given the author by the staff of the Texas A. & M. Data Processing Center is also appreciated. I also wis'h to express my sincere appreciation to Colonel George E. Rath, USAF, without whose personal interest the opportunity... to the shearing rate, i. e. , or F/A & dv/dy dv dy or T (l) This is Newton's law of viscosity, where the constant of proportlonaltty, ~, is called the Newtonian viscosity. Newtonian viscosity is independent of shear under isothermal-isobaric conditions...

  15. Fluid blade disablement tool

    DOE Patents [OSTI]

    Jakaboski, Juan-Carlos (Albuquerque, NM); Hughs, Chance G. (Albuquerque, NM); Todd, Steven N. (Rio Rancho, NM)

    2012-01-10

    A fluid blade disablement (FBD) tool that forms both a focused fluid projectile that resembles a blade, which can provide precision penetration of a barrier wall, and a broad fluid projectile that functions substantially like a hammer, which can produce general disruption of structures behind the barrier wall. Embodiments of the FBD tool comprise a container capable of holding fluid, an explosive assembly which is positioned within the container and which comprises an explosive holder and explosive, and a means for detonating. The container has a concavity on the side adjacent to the exposed surface of the explosive. The position of the concavity relative to the explosive and its construction of materials with thicknesses that facilitate inversion and/or rupture of the concavity wall enable the formation of a sharp and coherent blade of fluid advancing ahead of the detonation gases.

  16. Accurate lubrication corrections for spherical and non-spherical particles in discretized fluid simulations

    E-Print Network [OSTI]

    Florian Janoschek; Jens Harting; Federico Toschi

    2013-08-29

    Discretized fluid solvers coupled to a Newtonian dynamics method are a popular tool to study suspension flow. As any simulation technique with finite resolution, the lattice Boltzmann method, when coupled to discrete particles using the momentum exchange method, resolves the diverging lubrication interactions between surfaces near contact only insufficiently. For spheres, it is common practice to account for surface-normal lubrication forces by means of an explicit correction term. A method that additionally covers all further singular interactions for spheres is present in the literature as well as a link-based approach that allows for more general shapes but does not capture non-normal interactions correctly. In this paper, lattice-independent lubrication corrections for aspherical particles are outlined, taking into account all leading divergent interaction terms. An efficient implementation for arbitrary spheroids is presented and compared to purely normal and link-based models. Good consistency with Stokesian dynamics simulations of spheres is found. The non-normal interactions affect the viscosity of suspensions of spheres at volume fractions \\Phi >= 0.3 but already at \\Phi >= 0.2 for spheroids. Regarding shear-induced diffusion of spheres, a distinct effect is found at 0.1 <= \\Phi <= 0.5 and even increasing the resolution of the radius to 8 lattice units is no substitute for an accurate modeling of non-normal interactions.

  17. Fluid sampling system

    DOE Patents [OSTI]

    Houck, Edward D. (Idaho Falls, ID)

    1994-01-01

    An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.

  18. Fluid sampling system

    DOE Patents [OSTI]

    Houck, E.D.

    1994-10-11

    An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to be decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank. 4 figs.

  19. Bench-mark solution for a penny-shaped hydraulic fracture driven by a thinning fluid

    E-Print Network [OSTI]

    Linkov, Aleksandr

    2015-01-01

    The paper presents a solution for axisymmetric propagation of a penny-shaped crack driven by a thinning fluid. The solution to the accuracy of four significant digits, at least, is obtained on the basis of the modified formulation of hydraulic fracture problem by employing the particle velocity, rather than conventionally used flux. This serves to properly organize iterations in the opening after reducing the problem to the self-similar form. Numerical results obtained show relatively small dependence of self-similar quantities (fracture radius, propagation speed, opening, particle velocity, pressure, flux) on the behavior index of a thinning fluid. The results provide bench marks for the accuracy control of truly 3D simulators and they serve for assigning an apparent viscosity when simulating the action of a thinning fluid by replacing it with an equivalent Newtonian fluid.

  20. Computer Vision in Fluid Mechanics

    E-Print Network [OSTI]

    Aminfar, AmirHessam

    2015-01-01

    layers," Journal of Fluid Mechanics, vol. 30, no. 04, pp.M. Princevac, "Fundamental fluid mechanics," 2014. C. W.Computer Vision in Fluid Mechanics A Thesis submitted in

  1. Computer Vision in Fluid Mechanics

    E-Print Network [OSTI]

    Aminfar, AmirHessam

    2015-01-01

    layers," Journal of Fluid Mechanics, vol. 30, no. 04, pp.Fundamental fluid mechanics," 2014. C. W. Enderlin, "MacroComputer Vision in Fluid Mechanics A Thesis submitted in

  2. Multiphase fluid characterization system

    DOE Patents [OSTI]

    Sinha, Dipen N.

    2014-09-02

    A measurement system and method for permitting multiple independent measurements of several physical parameters of multiphase fluids flowing through pipes are described. Multiple acoustic transducers are placed in acoustic communication with or attached to the outside surface of a section of existing spool (metal pipe), typically less than 3 feet in length, for noninvasive measurements. Sound speed, sound attenuation, fluid density, fluid flow, container wall resonance characteristics, and Doppler measurements for gas volume fraction may be measured simultaneously by the system. Temperature measurements are made using a temperature sensor for oil-cut correction.

  3. Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia

    E-Print Network [OSTI]

    Krishnan, Kannan M.

    Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia Marcela. & 2008 Published by Elsevier B.V. 1. Introduction Increased heating rates of magnetic fluids in magnetic fluid hyperthermia (MFH). Possible approaches to increase heating rates of super- paramagnetic

  4. The effect of various mixers on the viscosity and flow properties of an oil well drilling fluid 

    E-Print Network [OSTI]

    Spannagel, Johnny Allen

    1957-01-01

    . The Effect of Adding Water to Reduce the Density of Its Original Value 27 IV. The Effect of Aging on a B entonite Mud. 2B ABSTRACT This thesis presents a comparison of some of the common labora- tory mixers for use in agitating drilling muds to a mixer... designed as a part of this research to overcome evaporation of the water phase of the mud. The latter is termed the Lo-Speed mixer. The mud was agitated at speeds of 400, 610, and 1, 500 rpm in the Lo-Speed mixer, 15, 000 rpm in the Waring Blendor...

  5. Effects of petroleum distillate on viscosity, density and surface tension of intermediate and heavy crude oils 

    E-Print Network [OSTI]

    Abdullayev, Azer

    2009-06-02

    Experimental and analytical studies have been carried out to better understand the effects of additives on viscosity, density and surface tension of intermediate and heavy crude oils. The studies have been conducted for the following oil samples...

  6. Effects of lubricant viscosity and surface texturing on ring-pack performance in internal combustion engines

    E-Print Network [OSTI]

    Takata, Rosalind (Rosalind Kazuko), 1978-

    2006-01-01

    The piston ring-pack contributes approximately 25% of the mechanical losses in an internal combustion engine. Both lubricant viscosity and surface texturing were investigated in an effort to reduce this ring-pack friction ...

  7. The effective approach for predicting viscosity of saturated and undersaturated reservoir oil 

    E-Print Network [OSTI]

    Kulchanyavivat, Sawin

    2006-04-12

    with creating a large database of pressure-volumetemperature (PVT) reports and screening all possible erroneous data. The relationship between the oil viscosity and other field-measured parameters is intensively analyzed by using theoretical and empirical...

  8. An extension of Pedersen's viscosity model for saturated black oil systems 

    E-Print Network [OSTI]

    Adejuwon, Adeyemi

    2000-01-01

    when needed for simple regression. We also investigated a functional relationship amongst pressure, volume, temperature (PVT) properties and a set of variables required to describe the viscosity correlation using a nonparametric regression analysis...

  9. Role of viscosity in the accurate prediction of source-terms for high molecular weight substances 

    E-Print Network [OSTI]

    Shaikh, Irfan Yusuf

    1999-01-01

    This study shows that using better material property predictions results in better source-term modeling for high molecular weight substances. Viscosity, density, and enthalpy are used as a function of process variables, namely, temperature...

  10. Relationship of Viscosity, Surface Tensions, and Coefficient of Friction of Lubricating Oils

    E-Print Network [OSTI]

    Carson, Earl

    1914-01-01

    between the Coefficient of Friction and Viscosity. Relationship between Viscosity and Surface Tension. 6 B I B L I O G R A P H Y Lubrication and Lubricants, Archbutt & Deeley, London, 1900. * Friction, lubrication, Fats & Oils, Dietrichs. Steam... oils, is easily accounted for. Ilineral lubricating oils are not affected by high pressure steam or alkalies and these character- istics enable them to be used where other lubricants would be quite unfitted for the work. Animal Oils:-- These oils...

  11. On the "viscosity maximum" during the uniaxial extension of a low density polyethylene

    E-Print Network [OSTI]

    Teodor I. Burghelea; Zdenek Stary; Helmut Muenstedt

    2010-01-13

    An experimental investigation of the viscosity overshoot phenomenon observed during uniaxial extension of a low density polyethylene is pre- sented. For this purpose, traditional integral viscosity measurements on a Muenstedt type extensional rheometer are combined with local mea- surements based on the in-situ visualization of the sample under exten- sion. For elongational experiments at constant strain rates within a wide range of Weissenberg numbers (Wi), three distinct deformation regimes are identified. Corresponding to low values of Wi (regime I), the tensile stress displays a broad maximum. This maximum can be explained by simple mathematical arguments as a result of low deformation rates and it should not be confused with the viscosity overshoot phenomenon. Corre- sponding to intermediate values of Wi (regime II), a local maximum of the integral extensional viscosity is systematically observed. However, within this regime, the local viscosity measurements reveal no maximum, but a plateau. Careful inspection of the images of samples within this regime shows that, corresponding to the maximum of the integral viscosity, sec- ondary necks develop along the sample. The emergence of a maximum of the integral elongational viscosity is thus related to the distinct in- homogeneity of deformation states and is not related to the rheological properties of the material. In the fast stretching limit (high Wi, regime III), the overall geometric uniformity of the sample is well preserved, no secondary necks are observed and both the integral and the local transient elongational viscosity show no maximum. A detailed comparison of the experimental findings with results from literature is presented.

  12. Numerical implication of Riemann problem theory for fluid dynamics

    SciTech Connect (OSTI)

    Menikoff, R.

    1988-01-01

    The Riemann problem plays an important role in understanding the wave structure of fluid flow. It is also crucial step in some numerical algorithms for accurately and efficiently computing fluid flow; Godunov method, random choice method, and from tracking method. The standard wave structure consists of shock and rarefaction waves. Due to physical effects such as phase transitions, which often are indistinguishable from numerical errors in an equation of state, anomalkous waves may occur, ''rarefaction shocks'', split waves, and composites. The anomalous waves may appear in numerical calculations as waves smeared out by either too much artificial viscosity or insufficient resolution. In addition, the equation of state may lead to instabilities of fluid flow. Since these anomalous effects due to the equation of state occur for the continuum equations, they can be expected to occur for all computational algorithms. The equation of state may be characterized by three dimensionless variables: the adiabatic exponent ..gamma.., the Grueneisen coefficient GAMMA, and the fundamental derivative G. The fluid flow anomalies occur when inequalities relating these variables are violated. 18 refs.

  13. The Advantages of Sealless Pumps in Heat Transfer Fluid Services 

    E-Print Network [OSTI]

    Smith, M. D.

    1999-01-01

    OF SEALLESS PUMPS IN HEAT TRANSFER FLUID SERVICES Michael D. Smith Engineering Manager Sundstrand Fluid Handling Arvada, CO ABSTRACT The expectations for heat transfer fluid (HTF) system safety and reliability are continuing to increase... mechanical seals. In addition, one type of sealless pump, the canned motor pump, raises the thermal efficiency of HTF systems. Waste heat from the drive motors of m'ost pumps is dissipated to the air. A shaft driven fan wastes additional energy...

  14. Shear Banding of Complex Fluids

    E-Print Network [OSTI]

    Thibaut Divoux; Marc A. Fardin; Sébastien Manneville; Sandra Lerouge

    2015-03-13

    Even in simple geometries many complex fluids display non-trivial flow fields, with regions where shear is concentrated. The possibility for such shear banding has been known since several decades, but the recent years have seen an upsurge of studies offering an ever more precise understanding of the phenomenon. The development of new techniques to probe the flow on multiple scales and with increasing spatial and temporal resolution has opened the possibility for a synthesis of the many phenomena that could only have been thought of separately before. In this review, we bring together recent research on shear banding in polymeric and on soft glassy materials, and highlight their similarities and disparities.

  15. Basic fluid system trainer

    SciTech Connect (OSTI)

    Semans, J.P.; Johnson, P.G.; LeBoeuf, R.F. Jr.; Kromka, J.A.; Goron, R.H.; Hay, G.D.

    1991-04-30

    This invention, a trainer mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.

  16. Circulating Fluid Bed Combustor 

    E-Print Network [OSTI]

    Fraley, L. D.; Do, L. N.; Hsiao, K. H.

    1982-01-01

    The circulating bed combustor represents an alternative concept of burning coal in fluid bed technology, which offers distinct advantages over both the current conventional fluidized bed combustion system and the pulverized coal boilers equipped...

  17. Basic fluid system trainer

    DOE Patents [OSTI]

    Semans, Joseph P. (Uniontown, PA); Johnson, Peter G. (Pittsburgh, PA); LeBoeuf, Jr., Robert F. (Clairton, PA); Kromka, Joseph A. (Idaho Falls, ID); Goron, Ronald H. (Connellsville, PA); Hay, George D. (Venetia, PA)

    1993-01-01

    A trainer, mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.

  18. View dependent fluid dynamics 

    E-Print Network [OSTI]

    Barran, Brian Arthur

    2006-08-16

    physically based rendering method known as photon mapping is used in conjunction with ray tracing to generate realistic images of water with caustics. These methods were implemented as a C++ application framework capable of simulating and rendering fluid in a...

  19. Fluid pumping apparatus

    DOE Patents [OSTI]

    West, Phillip B. (Idaho Falls, ID)

    2006-01-17

    A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.

  20. Shear viscosity $?$ to electric conductivity $?_{el}$ ratio for the Quark-Gluon Plasma

    E-Print Network [OSTI]

    A. Puglisi; S. Plumari; V. Greco

    2015-05-04

    The transport coefficients of strongly interacting matter are currently subject of intense theoretical and phenomenological studies due to their relevance for the characterization of the quark-gluon plasma produced in ultra relativistic heavy-ion collisions (uRHIC). We discuss the connection between the shear viscosity to entropy density ratio, $\\eta/s$, and the electric conductivity, $\\sigma_{el}$. Once the relaxation time is tuned to have a minimum value of $\\eta/s=1/4\\pi$ near the critical temperature $T_c$, one simultaneously predicts $\\sigma_{el}/T$ very close to recent lQCD data. More generally, we discuss why the ratio of $(\\eta/s)/(\\sigma_{el}/T)$ supplies a measure of the quark to gluon scattering rates whose knowledge would allow to significantly advance in the understanding of the QGP phase. We also predict that $(\\eta/s)/(\\sigma_{el}/T)$, independently on the running coupling $\\alpha_s(T)$, should increase up to about $\\sim 20$ for $T \\rightarrow T_c$, while it goes down to a nearly flat behavior around $\\simeq 4$ for $T \\geq 4\\, T_c$. Therefore we in general predict a stronger T dependence of $\\sigma_{el}/T$ with respect to $\\eta/s$ that in a quasiparticle approach is constrained by lQCD thermodynamics. A conformal theory, instead, predicts a similar T dependence of $\\eta/s$ and $\\sigma_{el}/T$.

  1. Valve for fluid control

    DOE Patents [OSTI]

    Oborny, Michael C. (Albuquerque, NM); Paul, Phillip H. (Livermore, CA); Hencken, Kenneth R. (Pleasanton, CA); Frye-Mason, Gregory C. (Cedar Crest, NM); Manginell, Ronald P. (Albuquerque, NM)

    2001-01-01

    A valve for controlling fluid flows. This valve, which includes both an actuation device and a valve body provides: the ability to incorporate both the actuation device and valve into a unitary structure that can be placed onto a microchip, the ability to generate higher actuation pressures and thus control higher fluid pressures than conventional microvalves, and a device that draws only microwatts of power. An electrokinetic pump that converts electric potential to hydraulic force is used to operate, or actuate, the valve.

  2. Lecture notes Introductory fluid mechanics

    E-Print Network [OSTI]

    Malham, Simon J.A.

    Lecture notes Introductory fluid mechanics Simon J.A. Malham Simon J.A. Malham (15th September 2014 of fluid mechanics and along the way see lots of interesting applications. 2 Fluid flow, the Continuum are generally incompressible--a feature essential to all modern car braking mechanisms. Fluids can be further

  3. MQSN -Fluid queues Werner Scheinhardt

    E-Print Network [OSTI]

    Boucherie, Richard J.

    of Markov fluid sources is again Markov fluid. This idea can be formalized using Kronecker sums. #12;Burst information captured by number of sources that is on! #12;Burst-level models: Markov fluid Special case: sources are identical, for instance two-state on-off Markov-fluid sources. All state information captured

  4. Direct visualization of the hydration layer on alumina nanoparticles with the fluid cell STEM in situ

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Firlar, Emre; Ç?nar, Simge; Kashyap, Sanjay; Akinc, Mufit; Prozorov, Tanya

    2015-05-21

    Rheological behavior of aqueous suspensions containing nanometer-sized powders is of relevance to many branches of industry. Unusually high viscosities observed for suspensions of nanoparticles compared to those of micron size powders cannot be explained by current viscosity models. Formation of so-called hydration layer on alumina nanoparticles in water was hypothesized, but never observed experimentally. We report here on the direct visualization of aqueous suspensions of alumina with the fluid cell in situ. We observe the hydration layer formed over the particle aggregates and show that such hydrated aggregates constitute new particle assemblies and affect the flow behavior of the suspensions.more »We discuss how these hydrated nanoclusters alter the effective solid content and the viscosity of nanostructured suspensions. As a result, our findings elucidate the source of high viscosity observed for nanoparticle suspensions and are of direct relevance to many industrial sectors including materials, food, cosmetics, pharmaceutical among others employing colloidal slurries with nanometer-scale particles.« less

  5. Tailored Working Fluids for Enhanced Binary Geothermal Power Plants

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE Geothermal Program Peer Review 2010 - Presentation. Project Objective: To improve the utilization of available energy in geothermal resources and increase the energy conversion efficiency of systems employed by a) tailoring the subcritical and/or supercritical glide of enhanced working fluids to best match thermal resources, and b) identifying appropriate thermal system and component designs for the down-selected working fluids.

  6. Viscosity of neutron star matter and $r$-modes in rotating pulsars

    E-Print Network [OSTI]

    E. E. Kolomeitsev; D. N. Voskresensky

    2015-02-21

    We study viscosity of the neutron star matter and $r$-mode instability in rotating neutron stars. Contributions to the shear and bulk viscosities from various processes are calculated with account of in-medium modifications of the nucleon-nucleon interaction. A softening of the pion mode and a possibility of the pion condensation are included. The nucleon pairing is incorporated. In the shear viscosity we include the lepton contribution calculated with account of the Landau damping in the photon exchange, the nucleon contribution described by the medium-modified one pion exchange, and other terms, such as the novel phonon contribution in the 1S$_0$ superfluid neutron phase, and the neutrino term in the neutrino opacity region. The nucleon shear viscosity depends on the density rather moderately and proves to be much less than the lepton term. Among the terms contributing to the bulk viscosity, the term from the medium modified Urca reactions possesses strongest density dependence because of the pion softening. Contributions to the bulk viscosity arising from other reactions induced by charged weak currents are included. The radiative bulk viscosity induced by charged and neutral weak currents in the region of the neutrino transparency of the star is also calculated with account for in-medium effects. The computed frequency boundary of the $r$-mode stability for the stars with the mass $\\ge 1.8 M_{\\odot}$ proves to be above the frequencies of all rotating young pulsars. To explain the stability of rapid rotation of old pulsars in X-ray binaries we propose a novel efficient mechanism associated with appearance of condensates of low-lying modes of bosonic excitations with finite momentum and/or with an enhancement of the inhomogeneous pion/kaon condensates in some parts of the star, if the angular velocity exceeds a critical value.

  7. Fluid driven reciprocating apparatus

    DOE Patents [OSTI]

    Whitehead, J.C.

    1997-04-01

    An apparatus is described comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached. 13 figs.

  8. Fluid driven recipricating apparatus

    DOE Patents [OSTI]

    Whitehead, John C. (Davis, CA)

    1997-01-01

    An apparatus comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached.

  9. Completion and workover fluid

    SciTech Connect (OSTI)

    Block, J.

    1985-09-17

    An aqueous completion or workover fluid for oil or gas wells having at least two solid components. One component is a hydroxy containing aluminum compound represented by the formula AlO(OH).xH/sub 2/O. The second component is a fluid loss control agent which can be either a cross-linked polyvinyl alcohol or a cross-linked hydroxyalkyl cellulose reaction product. An acid soluble weighting agent can be added for wells having higher down hole pressures. Examples of the weighting agents include iron carbonates, iron oxides, calcium carbonates, dolomite, sodium or calcium chloride, zinc bromide and calcium bromide. After use, the fluid can be displaced from the well with acid, e.g. 15% HCl, and the cake previously deposited on the bore-hole wall is dissolved by the acid so that no damaging residue remains.

  10. Hazardous fluid leak detector

    DOE Patents [OSTI]

    Gray, Harold E. (Las Vegas, NV); McLaurin, Felder M. (Las Vegas, NV); Ortiz, Monico (Las Vegas, NV); Huth, William A. (Las Vegas, NV)

    1996-01-01

    A device or system for monitoring for the presence of leaks from a hazardous fluid is disclosed which uses two electrodes immersed in deionized water. A gas is passed through an enclosed space in which a hazardous fluid is contained. Any fumes, vapors, etc. escaping from the containment of the hazardous fluid in the enclosed space are entrained in the gas passing through the enclosed space and transported to a closed vessel containing deionized water and two electrodes partially immersed in the deionized water. The electrodes are connected in series with a power source and a signal, whereby when a sufficient number of ions enter the water from the gas being bubbled through it (indicative of a leak), the water will begin to conduct, thereby allowing current to flow through the water from one electrode to the other electrode to complete the circuit and activate the signal.

  11. Universal fluid droplet ejector

    DOE Patents [OSTI]

    Lee, Eric R. (Redwood City, CA); Perl, Martin L. (Palo Alto, CA)

    1999-08-24

    A droplet generator comprises a fluid reservoir having a side wall made of glass or quartz, and an end cap made from a silicon plate. The end cap contains a micromachined aperture through which the fluid is ejected. The side wall is thermally fused to the end cap, and no adhesive is necessary. This means that the fluid only comes into contact with the side wall and the end cap, both of which are chemically inert. Amplitudes of drive pulses received by reservoir determine the horizontal displacements of droplets relative to the ejection aperture. The drive pulses are varied such that the dropper generates a two-dimensional array of vertically-falling droplets. Vertical and horizontal interdroplet spacings may be varied in real time. Applications include droplet analysis experiments such as Millikan fractional charge searches and aerosol characterization, as well as material deposition applications.

  12. Universal fluid droplet ejector

    DOE Patents [OSTI]

    Lee, E.R.; Perl, M.L.

    1999-08-24

    A droplet generator comprises a fluid reservoir having a side wall made of glass or quartz, and an end cap made from a silicon plate. The end cap contains a micromachined aperture through which the fluid is ejected. The side wall is thermally fused to the end cap, and no adhesive is necessary. This means that the fluid only comes into contact with the side wall and the end cap, both of which are chemically inert. Amplitudes of drive pulses received by reservoir determine the horizontal displacements of droplets relative to the ejection aperture. The drive pulses are varied such that the dropper generates a two-dimensional array of vertically-falling droplets. Vertical and horizontal inter-droplet spacings may be varied in real time. Applications include droplet analysis experiments such as Millikan fractional charge searches and aerosol characterization, as well as material deposition applications. 8 figs.

  13. On the abrupt growth dynamics of nonlinear resistive tearing mode and the viscosity effects

    SciTech Connect (OSTI)

    Ali, A.; Li, Jiquan, E-mail: lijq@energy.kyoto-u.ac.jp [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kishimoto, Y. [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2014-05-15

    The nonlinear evolution of the resistive tearing mode exhibits an abrupt growth after an X-point collapse once the magnetic island exceeds a certain critical width ??w{sub c} for large instability parameter ??, leading to a current sheet formation [N. F. Loureiro et al., Phys. Rev. Lett. 95, 235003 (2005)]. In this work, we investigate the underlying mechanism of the X-point collapse as well as the current sheet formation including the viscosity effects, based on a secondary instability analysis. The secondary instability is excited due to the quasilinear current modification by the zonal current. In particular, it is identified that the current peaking effect is plausibly responsible for the onset of the X-point collapse and the current sheet formation, leading to the explosive growth of reconnected flux. In the presence of finite viscosity, the ??w{sub c} scaling with the resistivity gets modified. A transition behavior is revealed at P{sub r}?1 for the viscosity dependence of ??w{sub c} and the linear tearing instability. However, the explosive growth seems to be independent of the viscosity in the magnetic Prandtl number P{sub r}<1 regime, while large viscosity plays a strong dissipation role.

  14. Dynamics of a confined dusty fluid in a sheared ion flow

    SciTech Connect (OSTI)

    Laishram, Modhuchandra; Sharma, Devendra; Kaw, Predhiman K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2014-07-15

    Dynamics of an isothermally driven dust fluid is analyzed which is confined in an azimuthally symmetric cylindrical setup by an effective potential and is in equilibrium with an unconfined sheared flow of a streaming plasma. Cases are analyzed where the confining potential constitutes a barrier for the driven fluid, limiting its spatial extension and boundary velocity. The boundary effects entering the formulation are characterized by applying the appropriate boundary conditions and a range of solutions exhibiting single and multiple vortex are obtained. The equilibrium solutions considered in the cylindrical setup feature a transition from single to multiple vortex state of the driven flow. Effects of (i) the variation in dust viscosity, (ii) coupling between the driving and the driven fluid, and (iii) a friction determining the equilibrium dynamics of the driven system are characterized.

  15. Theory of wetting-induced fluid entrainment by advancing contact lines on dry surfaces

    E-Print Network [OSTI]

    Rodrigo Ledesma-Aguilar; Aurora Hernández-Machado; Ignacio Pagonabarraga

    2013-06-11

    We report on the onset of fluid entrainment when a contact line is forced to advance over a dry solid of arbitrary wettability. We show that entrainment occurs at a critical advancing speed beyond which the balance between capillary, viscous and contact line forces sustaining the shape of the interface is no longer satisfied. Wetting couples to the hydrodynamics by setting both the morphology of the interface at small scales and the viscous friction of the front. We find that the critical deformation that the interface can sustain is controlled by the friction at the contact line and the viscosity contrast between the displacing and displaced fluids, leading to a rich variety of wetting-entrainment regimes. We discuss the potential use of our theory to measure contact-line forces using atomic force microscopy, and to study entrainment under microfluidic conditions exploiting colloid-polymer fluids of ultra-low surface tension.

  16. Ultrasonic fluid densitometry and densitometer

    DOE Patents [OSTI]

    Greenwood, Margaret S. (Richland, WA); Lail, Jason C. (Conover, NC)

    1998-01-01

    The present invention is an ultrasonic fluid densitometer that uses a material wedge having an acoustic impedance that is near the acoustic impedance of the fluid, specifically less than a factor of 11 greater than the acoustic impedance of the fluid. The invention also includes a wedge having at least two transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.

  17. Ultrasonic fluid densitometry and densitometer

    DOE Patents [OSTI]

    Greenwood, M.S.; Lail, J.C.

    1998-01-13

    The present invention is an ultrasonic fluid densitometer that uses a material wedge having an acoustic impedance that is near the acoustic impedance of the fluid, specifically less than a factor of 11 greater than the acoustic impedance of the fluid. The invention also includes a wedge having at least two transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

  18. Structure evolution in electrorheological fluids flowing through microchannels

    E-Print Network [OSTI]

    , including valves2,3 , clutches4 and shock absorbers5 . Recently, custom-formulated ER fluids have been that the increasing shear stress passes through three sequential stages17 . In the first stage, the shear stress

  19. Controllable adhesion using field-activated fluids Randy H. Ewoldt

    E-Print Network [OSTI]

    Controllable adhesion using field-activated fluids Randy H. Ewoldt Institute for Mathematics for variable- strength controllable adhesion. The adhesive performance is measured experimentally in tensile magnet. Increasing the magnetic field strength induces higher peak adhesive forces. We hypothesize

  20. Reacting fluids in the expanding Universe: A new mechanism for entropy production

    E-Print Network [OSTI]

    Winfried Zimdahl

    1997-02-07

    It is shown that two reacting cosmological fluids, each of them perfect on its own, which exchange energy and momentum without preserving particle numbers, give rise to an entropy producing `reactive' bulk stress of the system as a whole, as soon as the detailed balance between decay and inverse decay processes is perturbed. This demonstrates explicitly that particle generation is dynamically equivalent to an effective bulk pressure. We derive a semiquantitative formula for the corresponding new kinetic coefficient and evaluate the latter for the out-of-equilibrium decay of heavy, nonrelativistic particles into radiation. It turns out that the associated reactive bulk viscosity may be more than one order of magnitude larger than the conventional bulk viscosity, calculated, e.g., in radiative hydrodynamics.

  1. The dilute Fermi gas is the most "perfect fluid" in Nature

    E-Print Network [OSTI]

    Gabriel Wlaz?owski; Wei Quan; Aurel Bulgac

    2015-07-03

    We present an ab initio calculation of the shear viscosity as a function of interaction strength in a two-component unpolarized Fermi gas near the unitary limit, within a finite temperature quantum Monte Carlo (QMC) framework and using the Kubo linear-response formalism. The shear viscosity decreases as we tune the interaction strength $1/ak_F$ from the Bardeen-Cooper-Schrieffer (BCS) side of the Feshbach resonance towards Bose-Einstein condensation (BEC) limit and it acquires the smallest value for $1/ak_F\\approx0.4$, with a minimum value of $\\left . \\frac{\\eta}{s}\\right |_{min} \\approx 0.2 \\frac{\\hbar}{k_B}$, which is about twice as small than the value reported for experiments in quark-gluon plasma $\\left . \\frac{\\eta}{s}\\right |_{QGP} \\lesssim 0.4\\frac{\\hbar}{k_B}$. The Fermi gas near unitarity thus emerges as the most "perfect fluid" so far in Nature.

  2. MECH 386 INDUSTRIAL FLUID MECHANICS INDUSTRIAL FLUID MECHANICS

    E-Print Network [OSTI]

    Phani, A. Srikantha

    technologies - Wind turbine - Wave energy (Wells turbine) - Tidal power 7. Flow in porous media - Darcy's law 8 fluid-mechanics research and its application, as well as the technology associated with fluid flow

  3. TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID...

    Open Energy Info (EERE)

    TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION GAS CHEMISTRY Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings:...

  4. Effect of surface viscosity, anchoring energy, and cell gap on the response time of nematic liquid crystals

    SciTech Connect (OSTI)

    Souza, R.F. de; Yang, D.-Ke; Lenzi, E.K.; Evangelista, L.R.; Zola, R.S.

    2014-07-15

    An analytical expression for the relaxation time of a nematic liquid crystal is obtained for the first time by considering the influence of surface viscosity, anchoring energy strength and cell gap, validated numerically by using the so-called relaxation method. This general equation for the molecular response time (?{sub 0}) was derived for a vertical aligned cell and by solving an eigenvalue equation coming from the usual balance of torque equation in the Derzhanskii and Petrov formulation, recovering the usual equations in the appropriate limit. The results show that ??d{sup b}, where b=2 is observed only for strongly anchored cells, while for moderate to weak anchored cells, the exponent lies between 1 and 2, depending on both, surface viscosity and anchoring strength. We found that the surface viscosity is important when calculating the response time, specially for thin cells, critical for liquid crystal devices. The surface viscosity’s effect on the optical response time with pretilt is also explored. Our results bring new insights about the role of surface viscosity and its effects in applied physics. - Highlights: • The relaxation of nematic liquid crystals is calculated by taking the surface viscosity into account. • An analytical expression for the relaxation time depending on surface viscosity, anchoring strength and cell gap is obtained. • The results are numerically verified. • Surface viscosity is crucial for thin and weak anchored cells. • The effect on optical time and pretilt angle is also studied.

  5. Anomalous Viscosity, Resistivity, and Thermal Diffusivity of the Solar Wind Plasma

    E-Print Network [OSTI]

    Mahendra K. Verma

    1995-09-05

    In this paper we have estimated typical anomalous viscosity, resistivity, and thermal difffusivity of the solar wind plasma. Since the solar wind is collsionless plasma, we have assumed that the dissipation in the solar wind occurs at proton gyro radius through wave-particle interactions. Using this dissipation length-scale and the dissipation rates calculated using MHD turbulence phenomenology [{\\it Verma et al.}, 1995a], we estimate the viscosity and proton thermal diffusivity. The resistivity and electron's thermal diffusivity have also been estimated. We find that all our transport quantities are several orders of magnitude higher than those calculated earlier using classical transport theories of {\\it Braginskii}. In this paper we have also estimated the eddy turbulent viscosity.

  6. Automation of a high-speed imaging setup for differential viscosity measurements

    SciTech Connect (OSTI)

    Hurth, C.; Duane, B.; Whitfield, D.; Smith, S.; Nordquist, A.; Zenhausern, F. [Center for Applied Nanobioscience and Medicine, The University of Arizona College of Medicine, 425 N 5th Street, Phoenix, Arizona 85004 (United States)] [Center for Applied Nanobioscience and Medicine, The University of Arizona College of Medicine, 425 N 5th Street, Phoenix, Arizona 85004 (United States)

    2013-12-28

    We present the automation of a setup previously used to assess the viscosity of pleural effusion samples and discriminate between transudates and exudates, an important first step in clinical diagnostics. The presented automation includes the design, testing, and characterization of a vacuum-actuated loading station that handles the 2 mm glass spheres used as sensors, as well as the engineering of electronic Printed Circuit Board (PCB) incorporating a microcontroller and their synchronization with a commercial high-speed camera operating at 10 000 fps. The hereby work therefore focuses on the instrumentation-related automation efforts as the general method and clinical application have been reported earlier [Hurth et al., J. Appl. Phys. 110, 034701 (2011)]. In addition, we validate the performance of the automated setup with the calibration for viscosity measurements using water/glycerol standard solutions and the determination of the viscosity of an “unknown” solution of hydroxyethyl cellulose.

  7. The Fluid Nature of Quark-Gluon Plasma

    E-Print Network [OSTI]

    W. A. Zajc

    2008-02-25

    Collisions of heavy nuclei at very high energies offer the exciting possibility of experimentally exploring the phase transformation from hadronic to partonic degrees of freedom which is predicted to occur at several times normal nuclear density and/or for temperatures in excess of $\\sim 170$ MeV. Such a state, often referred to as a quark-gluon plasma, is thought to have been the dominant form of matter in the universe in the first few microseconds after the Big Bang. Data from the first five years of heavy ion collisions of Brookhaven National Laboratory's Relativistic Heavy Ion Collider (RHIC) clearly demonstrate that these very high temperatures and densities have been achieved. While there are strong suggestions of the role of quark degrees of freedom in determining the final-state distributions of the produced matter, there is also compelling evidence that the matter does {\\em not} behave as a quasi-ideal state of free quarks and gluons. Rather, its behavior is that of a dense fluid with very low kinematic viscosity exhibiting strong hydrodynamic flow and nearly complete absorption of high momentum probes. The current status of the RHIC experimental studies is presented, with a special emphasis on the fluid properties of the created matter, which may in fact be the most perfect fluid ever studied in the laboratory.

  8. Relativistic viscoelastic fluid mechanics

    E-Print Network [OSTI]

    Masafumi Fukuma; Yuho Sakatani

    2011-09-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski spacetime become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  9. Supersymmetric Fluid Mechanics

    E-Print Network [OSTI]

    R. Jackiw; A. P. Polychronakos

    2000-07-17

    When anticommuting Grassmann variables are introduced into a fluid dynamical model with irrotational velocity and no vorticity, the velocity acquires a nonvanishing curl and the resultant vorticity is described by Gaussian potentials formed from the Grassmann variables. Upon adding a further specific interaction with the Grassmann degrees of freedom, the model becomes supersymmetric.

  10. Nanoparticle Assemblies at Fluid Interfaces

    SciTech Connect (OSTI)

    Russell, Thomas P.

    2015-03-10

    A systematic study of the structure and dynamics of nanoparticles (NP) and NP-surfactants was performed. The ligands attached to both the NPs and NP-surfactants dictate the manner in which the nanoscopic materials assemble at fluid interfaces. Studies have shown that a single layer of the nanoscpic materials form at the interface to reduce the interactions between the two immiscible fluids. The shape of the NP is, also, important, where for spherical particles, a disordered, liquid-like monolayer forms, and, for nanorods, ordered domains at the interface is found and, if the monolayers are compressed, the orientation of the nanorods with respect to the interface can change. By associating end-functionalized polymers to the NPs assembled at the interface, NP-surfactants are formed that increase the energetic gain in segregating each NP at the interface which allows the NP-surfactants to jam at the interface when compressed. This has opened the possibility of structuring the two liquids by freezing in shape changes of the liquids.

  11. The Mechanical Coupling of Fluid-Filled Granular Material Under Shear L. GOREN,1,2

    E-Print Network [OSTI]

    Einat, Aharonov

    The Mechanical Coupling of Fluid-Filled Granular Material Under Shear L. GOREN,1,2 E. AHARONOV,1 D. SPARKS,3 and R. TOUSSAINT 4 Abstract--The coupled mechanics of fluid-filled granular media controls of these geosystems increases. Despite the great importance of the coupled mechanics of grain­fluid systems, the basic

  12. Thermal and hydrodynamic effects in the ordering of lamellar fluids

    E-Print Network [OSTI]

    G. Gonnella; A. Lamura; A. Tiribocchi

    2011-02-15

    Phase separation in a complex fluid with lamellar order has been studied in the case of cold thermal fronts propagating diffusively from external walls. The velocity hydrodynamic modes are taken into account by coupling the convection-diffusion equation for the order parameter to a generalised Navier-Stokes equation. The dynamical equations are simulated by implementing a hybrid method based on a lattice Boltzmann algorithm coupled to finite difference schemes. Simulations show that the ordering process occurs with morphologies depending on the speed of the thermal fronts or, equivalently, on the value of the thermal conductivity {\\xi}. At large value of {\\xi}, as in instantaneous quenching, the system is frozen in entangled configurations at high viscosity while consists of grains with well ordered lamellae at low viscosity. By decreasing the value of {\\xi}, a regime with very ordered lamellae parallel to the thermal fronts is found. At very low values of {\\xi} the preferred orientation is perpendicular to the walls in d = 2, while perpendicular order is lost moving far from the walls in d = 3.

  13. Transport properties of the fluid produced at RHIC

    E-Print Network [OSTI]

    Rajeev S. Bhalerao

    2010-03-17

    It is by now well known that the relativistic heavy-ion collisions at RHIC, BNL have produced a strongly interacting fluid with remarkable properties, among them the lowest ever observed ratio of the coefficient of shear viscosity to entropy density. Arguments based on ideas from the String Theory, in particular the AdS/CFT correspondence, led to the conjecture --- now known to be violated --- that there is an absolute lower limit $1/4 \\pi$ on the value of this ratio. Causal viscous hydrodynamics calculations together with the RHIC data have put an upper limit on this ratio, a small multiple of $1/4 \\pi$, in the relevant temperature regime. Less well-determined is the ratio of the coefficient of bulk viscosity to entropy density. These transport coefficients have also been studied nonperturbatively in the lattice QCD framework, and perturbatively in the limit of high-temperature QCD. Another interesting transport coefficient is the coefficient of diffusion which is also being studied in this context. I review some of these recent developments and then discuss the opportunities presented by the anticipated LHC data, for the general nuclear physics audience.

  14. Lyapunov Stabilizability of Controlled Diffusions via a Superoptimality Principle for Viscosity Solutions

    SciTech Connect (OSTI)

    Cesaroni, Annalisa [Dipartimento di Matematica P. e A., Universita di Padova, via Belzoni 7, 35131 Padova (Italy)], E-mail: acesar@math.unipd.it

    2006-01-15

    We prove optimality principles for semicontinuous bounded viscosity solutions of Hamilton-Jacobi-Bellman equations. In particular, we provide a representation formula for viscosity supersolutions as value functions of suitable obstacle control problems. This result is applied to extend the Lyapunov direct method for stability to controlled Ito stochastic differential equations. We define the appropriate concept of the Lyapunov function to study stochastic open loop stabilizability in probability and local and global asymptotic stabilizability (or asymptotic controllability). Finally, we illustrate the theory with some examples.

  15. Viscosity, wave damping and shock wave formation in cold hadronic matter

    E-Print Network [OSTI]

    D. A. Fogaça; F. S. Navarra; L. G. Ferreira Filho

    2013-09-06

    We study linear and nonlinear wave propagation in a dense and cold hadron gas and also in a cold quark gluon plasma, taking viscosity into account and using the Navier-Stokes equation. The equation of state of the hadronic phase is derived from the nonlinear Walecka model in the mean field approximation. The quark gluon plasma phase is described by the MIT equation of state. We show that in a hadron gas viscosity strongly damps wave propagation and also hinders shock wave formation. This marked difference between the two phases may have phenomenological consequences and lead to new QGP signatures.

  16. Thermoelectric conductivities, shear viscosity, and stability in an anisotropic linear axion model

    E-Print Network [OSTI]

    Xian-Hui Ge; Yi Ling; Chao Niu; Sang-Jin Sin

    2015-11-16

    We study thermoelectric conductivities and shear viscosities in a holographically anisotropic model, which is dual to a spatially anisotropic $\\mathcal{N}=4$ super-Yang-Mills theory at finite chemical potential. Momentum relaxation is realized through perturbing the linear axion field. Ac conductivity exhibits a coherent/incoherent metal transition. Deviations from the Wiedemann-Franz law are also observed in our model. The longitudinal shear viscosity for prolate anisotropy violates the bound conjectured by Kovtun-Son-Starinets. We also find that thermodynamic and dynamical instabilities are not always equivalent by examining the Gubser-Mitra conjecture.

  17. EXPERIMENTAL BUBBLE FORMATION IN A LARGE SCALE SYSTEM FOR NEWTONIAN AND NONNEWTONIAN FLUIDS

    SciTech Connect (OSTI)

    Leishear, R; Michael Restivo, M

    2008-06-26

    The complexities of bubble formation in liquids increase as the system size increases, and a photographic study is presented here to provide some insight into the dynamics of bubble formation for large systems. Air was injected at the bottom of a 28 feet tall by 30 inch diameter column. Different fluids were subjected to different air flow rates at different fluid depths. The fluids were water and non-Newtonian, Bingham plastic fluids, which have yield stresses requiring an applied force to initiate movement, or shearing, of the fluid. Tests showed that bubble formation was significantly different in the two types of fluids. In water, a field of bubbles was formed, which consisted of numerous, distributed, 1/4 to 3/8 inch diameter bubbles. In the Bingham fluid, large bubbles of 6 to 12 inches in diameter were formed, which depended on the air flow rate. This paper provides comprehensive photographic results related to bubble formation in these fluids.

  18. Magnetically stimulated fluid flow patterns

    SciTech Connect (OSTI)

    Martin, Jim; Solis, Kyle

    2014-03-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  19. Fluid Flow Modeling in Fractures

    E-Print Network [OSTI]

    Sarkar, Sudipta

    2004-01-01

    In this paper we study fluid flow in fractures using numerical simulation and address the challenging issue of hydraulic property characterization in fractures. The methodology is based on Computational Fluid Dynamics, ...

  20. Magnetically stimulated fluid flow patterns

    ScienceCinema (OSTI)

    Martin, Jim; Solis, Kyle

    2014-08-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  1. Computer Vision in Fluid Mechanics

    E-Print Network [OSTI]

    Aminfar, AmirHessam

    2015-01-01

    Laminar flows are usually unidirectional flows, which the fluidlaminar flows ? Streak line: Streak line is locus of fluid

  2. Galilean relativistic fluid mechanics

    E-Print Network [OSTI]

    Ván, Péter

    2015-01-01

    Single component Galilean-relativistic (nonrelativistic) fluids are treated independently of reference frames. The basic fields are given, their balances, thermodynamic relations and the entropy production is calculated. The usual relative basic fields, the mass, momentum and energy densities, the diffusion current density, the pressure tensor and the heat flux are the time- and spacelike components of the third order mass-momentum-energy density tensor according to a velocity field. The transformation rules of the basic fields are derived and prove that the non-equilibrium thermodynamic background theory, that is the Gibbs relation, extensivity condition and the entropy production is absolute, that is independent of the reference frame and also of the fluid velocity. --- Az egykomponensu Galilei-relativisztikus (azaz nemrelativisztikus) disszipativ folyadekokat vonatkoztatasi rendszertol fuggetlenul targyaljuk. Megadjuk az alapmennyisegeket, ezek merlegeit, a termodinamikai osszefuggeseket es kiszamoljuk az ...

  3. Oscillating fluid power generator

    DOE Patents [OSTI]

    Morris, David C

    2014-02-25

    A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

  4. Drilling fluid filter

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe; Garner, Kory

    2007-01-23

    A drilling fluid filter for placement within a bore wall of a tubular drill string component comprises a perforated receptacle with an open end and a closed end. A hanger for engagement with the bore wall is mounted at the open end of the perforated receptacle. A mandrel is adjacent and attached to the open end of the perforated receptacle. A linkage connects the mandrel to the hanger. The linkage may be selected from the group consisting of struts, articulated struts and cams. The mandrel operates on the hanger through the linkage to engage and disengage the drilling fluid filter from the tubular drill string component. The mandrel may have a stationary portion comprising a first attachment to the open end of the perforated receptacle and a telescoping adjustable portion comprising a second attachment to the linkage. The mandrel may also comprise a top-hole interface for top-hole equipment.

  5. Mathematical thermodynamics of fluids Eduard Feireisl

    E-Print Network [OSTI]

    Krejcí, Pavel

    Mathematical thermodynamics of fluids Eduard Feireisl Institute of Mathematics, Academy of Sciences Agreement 320078 CIME courses, Cetraro 29 June - 4 July 2015 Eduard Feireisl Thermodynamics of fluids #12 Thermodynamics of fluids #12;Fluids at equilibrium Thermodynamic state variables mass density

  6. Downhole Fluid Analyzer Development

    SciTech Connect (OSTI)

    Bill Turner

    2006-11-28

    A novel fiber optic downhole fluid analyzer has been developed for operation in production wells. This device will allow real-time determination of the oil, gas and water fractions of fluids from different zones in a multizone or multilateral completion environment. The device uses near infrared spectroscopy and induced fluorescence measurement to unambiguously determine the oil, water and gas concentrations at all but the highest water cuts. The only downhole components of the system are the fiber optic cable and windows. All of the active components--light sources, sensors, detection electronics and software--will be located at the surface, and will be able to operate multiple downhole probes. Laboratory testing has demonstrated that the sensor can accurately determine oil, water and gas fractions with a less than 5 percent standard error. Once installed in an intelligent completion, this sensor will give the operating company timely information about the fluids arising from various zones or multilaterals in a complex completion pattern, allowing informed decisions to be made on controlling production. The research and development tasks are discussed along with a market analysis.

  7. Dynamics of Hemoglobin in Human Erythrocytes and in Solution: Influence of Viscosity Studied by Ultrafast

    E-Print Network [OSTI]

    Fayer, Michael D.

    Dynamics of Hemoglobin in Human Erythrocytes and in Solution: Influence of Viscosity Studied by Ultrafast Vibrational Echo Experiments Brian L. McClain, Ilya J. Finkelstein, and M. D. Fayer* Contribution experiments are used to measure the vibrational dephasing of the CO stretching mode of hemoglobin-CO (Hb

  8. Experimental and Theoretical Determination of Heavy Oil Viscosity Under Reservoir Conditions

    SciTech Connect (OSTI)

    Gabitto, Jorge; Barrufet, Maria

    2002-03-11

    The main objective of this research was to propose a simple procedure to predict heavy oil viscosity at reservoir conditions as a function of easily determined physical properties. This procedure will avoid costly experimental testing and reduce uncertainty in designing thermal recovery processes.

  9. Mantle dynamics in super-Earths: Post-perovskite rheology and self-regulation of viscosity

    E-Print Network [OSTI]

    Tackley, Paul J.

    Mantle dynamics in super-Earths: Post-perovskite rheology and self-regulation of viscosity P we evaluate this. First, as the mantle of a super-Earth is made mostly of post-perovskite we here extend the density functional theory (DFT) calculations of post- perovskite activation enthalpy

  10. A NOTE ON FRONT TRACKING AND THE EQUIVALENCE BETWEEN VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS

    E-Print Network [OSTI]

    A NOTE ON FRONT TRACKING AND THE EQUIVALENCE BETWEEN VISCOSITY SOLUTIONS OF HAMILTON-JACOBI solution of the Hamilton-Jacobi equation u t + H(ux ) = 0. In our proof we work directly with the de#12 conservation laws to Hamilton-Jacobi equations and derive some of its properties. 1. Introduction It is well

  11. Viscosity and mutual diffusion of deuterium-tritium mixtures in the warm-dense-matter regime

    SciTech Connect (OSTI)

    Kress, J. D.; Cohen, James S.; Horner, D. A.; Collins, L. A. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Lambert, F. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2010-09-15

    We have calculated viscosity and mutual diffusion of deuterium-tritium (DT) in the warm, dense matter regime for densities from 5 to 20 g/cm{sup 3} and temperatures from 2 to 10 eV, using both finite-temperature Kohn-Sham density-functional theory molecular dynamics (QMD) and orbital-free molecular dynamics (OFMD). The OFMD simulations are in generally good agreement with the benchmark QMD results, and we conclude that the simpler OFMD method can be used with confidence in this regime. For low temperatures (3 eV and below), one-component plasma (OCP) model simulations for diffusion agree with the QMD and OFMD calculations, but deviate by 30% at 10 eV. In comparison with the QMD and OFMD results, the OCP viscosities are not as good as for diffusion, especially for 5 g/cm{sup 3} where the temperature dependence is significantly different. The QMD and OFMD reduced diffusion and viscosity coefficients are found to depend largely, though not completely, only on the Coulomb coupling parameter {Gamma}, with a minimum in the reduced viscosity at {Gamma}{approx_equal}25, approximately the same position found in the OCP simulations. The QMD and OFMD equations of state (pressure) are also compared with the hydrogen two-component plasma model.

  12. Densification and Sintering Viscosity of Low-Temperature Co-Fired Ceramics

    E-Print Network [OSTI]

    Messing, Gary L.

    Densification and Sintering Viscosity of Low-Temperature Co-Fired Ceramics Aravind Mohanram,* Gary-temperature co-sintered ceramic systems, i.e., DuPont 951Tape (DU), Heraeus CT2000 (CT), and Ferro A6M (FE from 0.1 to 100 GPa . s between 73% and 95% density. Ceramic particle-filled glasses show a higher

  13. An optimal viscosity profile in enhanced oil recovery by polymer Prabir Daripa1,

    E-Print Network [OSTI]

    Daripa, Prabir

    An optimal viscosity profile in enhanced oil recovery by polymer flooding Prabir Daripa1, and G. Pa. 2029-2039, 2004 (Nov. Issue) Abstract Forced displacement of oil by polymer flooding in oil reservoir, polymer flooding, linear stability. Author for correspondence (e-mail: prabir.daripa@math.tamu.edu) 1 #12;

  14. An optimal viscosity profile in enhanced oil recovery by polymer flooding

    E-Print Network [OSTI]

    Daripa, Prabir

    An optimal viscosity profile in enhanced oil recovery by polymer flooding Prabir Daripa a,*, G; accepted 3 July 2004 (Communicated by L. DEBNATH) Abstract Forced displacement of oil by polymer flooding reserved. Keywords: Enhanced oil recovery; Polymer flooding; Linear stability 0020-7225/$ - see front

  15. Optical microstructure and viscosity enhancement for an epoxy resin matrix containing multiwall carbon

    E-Print Network [OSTI]

    Elliott, James

    dispersed in polycarbonate, where they reported a step change in viscosity for 2 wt % loading of MWCNTs in polycarbonate at low shear rates. The rheological behavior of MWCNTs in polypropylene, and their corresponding conductivity. Recently, Xu et al. 2005 again reported on the systematic development of viscoelasticity

  16. Acoustic concentration of particles in fluid flow

    DOE Patents [OSTI]

    Ward, Michael D. (Los Alamos, NM); Kaduchak, Gregory (Los Alamos, NM)

    2010-11-23

    An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  17. Thermalization and possible quantum relaxation times in "classical" fluids: theory and experiment

    E-Print Network [OSTI]

    Z. Nussinov; F. Nogueira; M. Blodgett; K. F. Kelton

    2015-09-07

    Quantum effects in material systems are often pronounced at low energies and become insignificant at high temperatures. We find that, perhaps counterintuitively, certain quantum effects may follow the opposite route and become sharp when extrapolated to high temperature within a "classical" liquid phase. In the current work, we suggest basic quantum bounds on relaxation (and thermalization) times, examine kinetic theory by taking into account such possible fundamental quantum time scales, find new general equalities connecting semi-classical dynamics and thermodynamics to Planck's constant, and compute current correlation functions. Our analysis suggests that, on average, the extrapolated high temperature dynamical viscosity of general liquids may tend to a value set by the product of the particle number density ${\\sf n}$ and Planck's constant $h$. We compare this theoretical result with experimental measurements of an ensemble of 23 metallic fluids where this seems to indeed be the case. The extrapolated high temperature viscosity of each of these liquids $\\eta$ divided (for each respective fluid by its value of ${\\sf n} h$) veers towards a Gaussian with an ensemble average value that is close to unity up to an error of size $0.6 \\%$. Inspired by the Eigenstate Thermalization Hypothesis, we suggest a relation between the lowest equilibration temperature to the melting or liquidus temperature and discuss a possible corollary concerning the absence of finite temperature "ideal glass" transitions. We suggest a general quantum mechanical derivation for the viscosity of glasses at general temperatures. We invoke similar ideas to discuss other transport properties and demonstrate how simple behaviors including resistivity saturation and linear $T$ resistivity may appear very naturally. Our approach suggests that minimal time lags may be present in fluid dynamics.

  18. It's The Fluids SEG Honorary Lecture

    E-Print Network [OSTI]

    T.P. Water Butane CO2 #12;Fluid ­ Density 800 1000 1200FluidDensity[kg/m3] Brine CO2 0 2 4 6 8 10 0 200 400 600 Fluid Pressure [MPa] FluidDensity[kg/m Butane CO2 #12;Fluid ­ Modulus 2000 2500 3000 FluidModulus[MPa] Brine 0 2 4 6 8 10 0 500 1000 1500 Fluid Pressure [MPa] FluidModulus[MPa] Butane CO2 #12;GENERAL PHASE

  19. The measurement of rheological characteristics of cross-linked fracturing fluids using a pipe viscometer 

    E-Print Network [OSTI]

    Tiainen, Ari Lauri

    1986-01-01

    stress is defined as force per unit area, and is distributed continuously throughout any continuous medium which is subjected to external i'oroes. Viscosity is a rheological property of a material sud is defined. as the ratio of shear stress to shear... of Rheologics1 Characteristics of Cross-Linked ~ing Fluids Using s pipe Visccmetm. (Deoanber 1986) Ari Lsuri ~, B. S. , Pari. 's Technical University Chairman of Advisory Committee: Dr, S. A. Eolditch In low perme~ty re~s the usual need for long hydraulic...

  20. Null Fluids - A New Viewpoint of Galilean Fluids

    E-Print Network [OSTI]

    Banerjee, Nabamita; Jain, Akash

    2015-01-01

    This article is a detailed version of our short letter `On equilibrium partition function for non-relativistic fluid' [arXiv:1505.05677] extended to include an anomalous $U(1)$ symmetry. We construct a relativistic system, which we call null fluid and show that it is in one-to-one correspondence with a Galilean fluid living in one lower dimension. The correspondence is based on light cone reduction, which is known to reduce the Poincare symmetry of a theory to Galilean in one lower dimension. We show that the proposed null fluid and the corresponding Galilean fluid have exactly same symmetries, thermodynamics, constitutive relations, and equilibrium partition to all orders in derivative expansion. We also devise a mechanism to introduce $U(1)$ anomaly in even dimensional Galilean theories using light cone reduction, and study its effect on the constitutive relations of a Galilean Fluid.

  1. Null Fluids - A New Viewpoint of Galilean Fluids

    E-Print Network [OSTI]

    Nabamita Banerjee; Suvankar Dutta; Akash Jain

    2015-09-15

    This article is a detailed version of our short letter `On equilibrium partition function for non-relativistic fluid' [arXiv:1505.05677] extended to include an anomalous $U(1)$ symmetry. We construct a relativistic system, which we call null fluid and show that it is in one-to-one correspondence with a Galilean fluid living in one lower dimension. The correspondence is based on light cone reduction, which is known to reduce the Poincare symmetry of a theory to Galilean in one lower dimension. We show that the proposed null fluid and the corresponding Galilean fluid have exactly same symmetries, thermodynamics, constitutive relations, and equilibrium partition to all orders in derivative expansion. We also devise a mechanism to introduce $U(1)$ anomaly in even dimensional Galilean theories using light cone reduction, and study its effect on the constitutive relations of a Galilean Fluid.

  2. M. Bahrami Fluid Mechanics (S 09) Fluid statics 9 Archimedes's 1st

    E-Print Network [OSTI]

    Bahrami, Majid

    M. Bahrami Fluid Mechanics (S 09) Fluid statics 9 Buoyancy Archimedes's 1st laws #12; M. Bahrami Fluid Mechanics (S 09) Fluid statics 10 Fig. 11: Archimedes second law. Bahrami Fluid Mechanics (S 09) Fluid statics 11 Pressure distribution in rigidbody motion Fluids

  3. Chemical and Microbial Characterization of North Slope Viscous Oils to Assess Viscosity Reduction and Enhanced Recovery

    SciTech Connect (OSTI)

    Shirish Patil; Abhijit Dandekar; Mary Beth Leigh

    2008-12-31

    A large proportion of Alaska North Slope (ANS) oil exists in the form of viscous deposits, which cannot be produced entirely using conventional methods. Microbially enhanced oil recovery (MEOR) is a promising approach for improving oil recovery for viscous deposits. MEOR can be achieved using either ex situ approaches such as flooding with microbial biosurfactants or injection of exogenous surfactant-producing microbes into the reservoir, or by in situ approaches such as biostimulation of indigenous surfactant-producing microbes in the oil. Experimental work was performed to analyze the potential application of MEOR to the ANS oil fields through both ex situ and in situ approaches. A microbial formulation containing a known biosurfactant-producing strain of Bacillus licheniformis was developed in order to simulate MEOR. Coreflooding experiments were performed to simulate MEOR and quantify the incremental oil recovery. Properties like viscosity, density, and chemical composition of oil were monitored to propose a mechanism for oil recovery. The microbial formulation significantly increased incremental oil recovery, and molecular biological analyses indicated that the strain survived during the shut-in period. The indigenous microflora of ANS heavy oils was investigated to characterize the microbial communities and test for surfactant producers that are potentially useful for biostimulation. Bacteria that reduce the surface tension of aqueous media were isolated from one of the five ANS oils (Milne Point) and from rock oiled by the Exxon Valdez oil spill (EVOS), and may prove valuable for ex situ MEOR strategies. The total bacterial community composition of the six different oils was evaluated using molecular genetic tools, which revealed that each oil tested possessed a unique fingerprint indicating a diverse bacterial community and varied assemblages. Collectively we have demonstrated that there is potential for in situ and ex situ MEOR of ANS oils. Future work should focus on lab and field-scale testing of ex situ MEOR using Bacillus licheniformis as well as the biosurfactant-producing strains we have newly isolated from the Milne Point reservoir and the EVOS environment.

  4. Heat recirculating cooler for fluid stream pollutant removal

    DOE Patents [OSTI]

    Richards, George A. (Morgantown, WV); Berry, David A. (Morgantown, WV)

    2008-10-28

    A process by which heat is removed from a reactant fluid to reach the operating temperature of a known pollutant removal method and said heat is recirculated to raise the temperature of the product fluid. The process can be utilized whenever an intermediate step reaction requires a lower reaction temperature than the prior and next steps. The benefits of a heat-recirculating cooler include the ability to use known pollutant removal methods and increased thermal efficiency of the system.

  5. Polymers with increased order

    DOE Patents [OSTI]

    Sawan, Samuel P. (Tyngsborough, MA); Talhi, Abdelhafid (Rochester, MI); Taylor, Craig M. (Jemez Springs, NM)

    1998-08-25

    The invention features polymers with increased order, and methods of making them featuring a dense gas.

  6. Ultrasonic fluid quality sensor system

    DOE Patents [OSTI]

    Gomm, Tyler J. (Meridian, ID); Kraft, Nancy C. (Idaho Falls, ID); Phelps, Larry D. (Pocatello, ID); Taylor, Steven C. (Idaho Falls, ID)

    2002-10-08

    A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.

  7. Ultrasonic Fluid Quality Sensor System

    DOE Patents [OSTI]

    Gomm, Tyler J. (Meridian, ID); Kraft, Nancy C. (Idaho Falls, ID); Phelps, Larry D. (Pocatello, ID); Taylor, Steven C. (Idaho Falls, ID)

    2003-10-21

    A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.

  8. Consequences of Urban Stability Conditions for Computational Fluid Dynamics Simulations of Urban Dispersion

    SciTech Connect (OSTI)

    Lundquist, J K; Chan, S T

    2005-11-30

    The validity of omitting stability considerations when simulating transport and dispersion in the urban environment is explored using observations from the Joint URBAN 2003 field experiment and computational fluid dynamics simulations of that experiment. Four releases of sulfur hexafluoride, during two daytime and two nighttime intensive observing periods, are simulated using the building-resolving computational fluid dynamics model, FEM3MP to solve the Reynolds Averaged Navier-Stokes equations with two options of turbulence parameterizations. One option omits stability effects but has a superior turbulence parameterization using a non-linear eddy viscosity (NEV) approach, while the other considers buoyancy effects with a simple linear eddy viscosity (LEV) approach for turbulence parameterization. Model performance metrics are calculated by comparison with observed winds and tracer data in the downtown area, and with observed winds and turbulence kinetic energy (TKE) profiles at a location immediately downwind of the central business district (CBD) in the area we label as the urban shadow. Model predictions of winds, concentrations, profiles of wind speed, wind direction, and friction velocity are generally consistent with and compare reasonably well with the field observations. Simulations using the NEV turbulence parameterization generally exhibit better agreement with observations. To further explore this assumption of a neutrally-stable atmosphere within the urban area, TKE budget profiles slightly downwind of the urban wake region in the 'urban shadow' are examined. Dissipation and shear production are the largest terms which may be calculated directly. The advection of TKE is calculated as a residual; as would be expected downwind of an urban area, the advection of TKE produced within the urban area is a very large term. Buoyancy effects may be neglected in favor of advection, shear production, and dissipation. For three of the IOPs, buoyancy production may be neglected entirely, and for one IOP, buoyancy production contributes approximately 25% of the total TKE at this location. For both nighttime releases, the contribution of buoyancy to the total TKE budget is always negligible though positive. Results from the simulations provide estimates of the average TKE values in the upwind, downtown, downtown shadow, and urban wake zones of the computational domain. These values suggest that building-induced turbulence can cause the average turbulence intensity in the urban area to increase by as much as much as seven times average 'upwind' values, explaining the minimal role of buoyant forcing in the downtown region. The downtown shadow exhibits an exponential decay in average TKE, while the distant downwind wake region approaches the average upwind values. For long-duration releases in downtown and downtown shadow areas, the assumption of neutral stability is valid because building-induced turbulence dominates the budget. However, further downwind in the urban wake region, which we find to be approximately 1500 m beyond the perimeter of downtown Oklahoma City, the levels of building-induced turbulence greatly subside, and therefore the assumption of neutral stability is less valid.

  9. Modeling and Algorithmic Approaches to Constitutively-Complex, Micro-structured Fluids

    SciTech Connect (OSTI)

    Forest, Mark Gregory [University of North Carolina at Chapel Hill] [University of North Carolina at Chapel Hill

    2014-05-06

    The team for this Project made significant progress on modeling and algorithmic approaches to hydrodynamics of fluids with complex microstructure. Our advances are broken down into modeling and algorithmic approaches. In experiments a driven magnetic bead in a complex fluid accelerates out of the Stokes regime and settles into another apparent linear response regime. The modeling explains the take-off as a deformation of entanglements, and the longtime behavior is a nonlinear, far-from-equilibrium property. Furthermore, the model has predictive value, as we can tune microstructural properties relative to the magnetic force applied to the bead to exhibit all possible behaviors. Wave-theoretic probes of complex fluids have been extended in two significant directions, to small volumes and the nonlinear regime. Heterogeneous stress and strain features that lie beyond experimental capability were studied. It was shown that nonlinear penetration of boundary stress in confined viscoelastic fluids is not monotone, indicating the possibility of interlacing layers of linear and nonlinear behavior, and thus layers of variable viscosity. Models, algorithms, and codes were developed and simulations performed leading to phase diagrams of nanorod dispersion hydrodynamics in parallel shear cells and confined cavities representative of film and membrane processing conditions. Hydrodynamic codes for polymeric fluids are extended to include coupling between microscopic and macroscopic models, and to the strongly nonlinear regime.

  10. Fluid relief and check valve

    DOE Patents [OSTI]

    Blaedel, K.L.; Lord, S.C.; Murray, I.

    1986-07-17

    A passive fluid pressure relief and check valve allows the relief pressure to be slaved to a reference pressure independently of the exhaust pressure. The pressure relief valve is embodied by a submerged vent line in a sealing fluid, the relief pressure being a function of the submerged depth. A check valve is embodied by a vertical column of fluid (the maximum back pressure being a function of the height of the column of fluid). The pressure is vented into an exhaust system which keeps the exhaust out of the area providing the reference pressure.

  11. Viscosity method for Homogenization of Parabolic Nonlinear Equations in Perforated Domains

    E-Print Network [OSTI]

    Kim, Sunghoon

    2011-01-01

    In this paper, we develop a viscosity method for Homogenization of Nonlinear Parabolic Equations constrained by highly oscillating obstacles or Dirichlet data in perforated domains. The Dirichlet data on the perforated domain can be considered as a constraint or an obstacle. Homogenization of nonlinear eigen value problems has been also considered to control the degeneracy of the Porous medium equation in perforated domains. For the simplicity, we consider obstacles that consist of cylindrical columns distributed periodically and perforated domains with punctured balls. If the decay rate of the capac- ity of columns or the capacity of punctured ball is too high or too small, the limit of u\\k{o} will converge to trivial solutions. The critical decay rates of having nontrivial solution are obtained with the construction of barriers. We also show the limit of u\\k{o} satisfies a homogenized equation with a term showing the effect of the highly oscillating obstacles or perforated domain in viscosity sense.

  12. Shear Viscosity and Phase Diagram from Polyakov$-$Nambu$-$Jona-Lasinio model

    E-Print Network [OSTI]

    Sanjay K. Ghosh; Sibaji Raha; Rajarshi Ray; Kinkar Saha; Sudipa Upadhaya

    2014-11-12

    We discuss a detailed study of the variation of shear viscosity, $\\eta$, with temperature and baryon chemical potential within the framework of Polyakov$-$Nambu$-$Jona-Lasinio model. $\\eta$ is found to depend strongly on the spectral width of the quasi-particles present in the model. The variation of $\\eta$ across the phase diagram has distinctive features for different kinds of transitions. These variations have been used to study the possible location of the Critical End Point (CEP), and cross-checked with similar studies of variation of specific heat. Finally using a parameterization of freeze-out surface in heavy-ion collision experiments, the variation of shear viscosity to entropy ratio has also been discussed as a function of the center of mass energy of collisions.

  13. Viscosity Solutions of Systems of PDEs with Interconnected Obstacles and Switching Problem

    SciTech Connect (OSTI)

    Hamadene, S. Morlais, M. A.

    2013-04-15

    This paper deals with existence and uniqueness of a solution in viscosity sense, for a system of m variational partial differential inequalities with inter-connected obstacles. A particular case is the Hamilton-Jacobi-Bellmann system of the Markovian stochastic optimal m-states switching problem. The switching cost functions depend on (t,x). The main tool is the notion of systems of reflected backward stochastic differential equations with oblique reflection.

  14. Viscosity of plant oils as a function of temperature, fatty acid chain length, and unsaturation 

    E-Print Network [OSTI]

    Neo, Tong Heng

    1988-01-01

    VISCOS1TY OF PLANT OILS AS A FUNCTION OF TEMPERATURE, FATIY ACID CHAIN LENGTH, AND UNSATURATION A Thesis by TONG HENG NEO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE December 1988 Major Subject: Agricultural Engineering VISCOSITY OF PLANT OILS AS A FUNCTION OF TEMPERATURE, FATTY ACID CHAIN LENGTH, AND UNSATURATION A Thesis by TONG HENG NEO Approved as to style and content by...

  15. Real viscosity effects in inertial confinement fusion target deuterium–tritium micro-implosions

    SciTech Connect (OSTI)

    Mason, R. J., E-mail: rodmason01@msn.com; Kirkpatrick, R. C.; Faehl, R. J. [Research Applications Corporation, Los Alamos, New Mexico 87544 (United States)] [Research Applications Corporation, Los Alamos, New Mexico 87544 (United States)

    2014-02-15

    We report on numerical studies of real viscous effects on the implosion characteristics of imploded DT micro-targets. We use the implicit ePLAS code to perform 2D simulations of spherical and slightly ellipsoidal DT shells on DT gas filled ?40??m diameter voids. Before their final implosions the shells have been nearly adiabatically compressed up to 10{sup 2} or 10{sup 3}?g/cm{sup 3} densities. While the use of conventional artificial viscosity can lead to high central densities for initially spherical shells, we find that a real physical viscosity from ion-ion collisions can give a high (>20?keV) central temperature but severely reduced central density (<200?g/cm{sup 3}), while the elliptical shells evidence p?=?2 distortion of the heated central fuel region. These results suggest that the general use of artificial viscosities in Inertial Confinement Fusion (ICF) modeling may have lead to overly optimistic yields for current NIF targets and that polar direct drive with more energy for the imploding capsule may be needed for ultimate ICF success.

  16. Catenaries in viscous fluid

    E-Print Network [OSTI]

    Chakrabarti, Brato

    2015-01-01

    This work explores a simple model of a slender, flexible structure in a uniform flow, providing analytical solutions for the translating, axially flowing equilibria of strings subjected to a uniform body force and drag forces linear in the velocities. The classical catenaries are extended to a five-parameter family of curves. A sixth parameter affects the tension in the curves. Generic configurations are planar, represented by a single first order equation for the tangential angle. The effects of varying parameters on representative shapes, orbits in angle-curvature space, and stress distributions are shown. As limiting cases, the solutions include configurations corresponding to "lariat chains" and the towing, reeling, and sedimentation of flexible cables in a highly viscous fluid. Regions of parameter space corresponding to infinitely long, semi-infinite, and finite length curves are delineated. Almost all curves subtend an angle less than $\\pi$ radians, but curious special cases with doubled or infinite ra...

  17. Comparing the first and second order theories of relativistic dissipative fluid dynamics using the 1+1 dimensional relativistic flux corrected transport algorithm

    E-Print Network [OSTI]

    Etele Molnar

    2009-02-15

    Focusing on the numerical aspects and accuracy we study a class of bulk viscosity driven expansion scenarios using the relativistic Navier-Stokes and truncated Israel-Stewart form of the equations of relativistic dissipative fluids in 1+1 dimensions. The numerical calculations of conservation and transport equations are performed using the numerical framework of flux corrected transport. We show that the results of the Israel-Stewart causal fluid dynamics are numerically much more stable and smoother than the results of the standard relativistic Navier-Stokes equations.

  18. Fluid jet electric discharge source

    DOE Patents [OSTI]

    Bender, Howard A. (Ripon, CA)

    2006-04-25

    A fluid jet or filament source and a pair of coaxial high voltage electrodes, in combination, comprise an electrical discharge system to produce radiation and, in particular, EUV radiation. The fluid jet source is composed of at least two serially connected reservoirs, a first reservoir into which a fluid, that can be either a liquid or a gas, can be fed at some pressure higher than atmospheric and a second reservoir maintained at a lower pressure than the first. The fluid is allowed to expand through an aperture into a high vacuum region between a pair of coaxial electrodes. This second expansion produces a narrow well-directed fluid jet whose size is dependent on the size and configuration of the apertures and the pressure used in the reservoir. At some time during the flow of the fluid filament, a high voltage pulse is applied to the electrodes to excite the fluid to form a plasma which provides the desired radiation; the wavelength of the radiation being determined by the composition of the fluid.

  19. Adequate description of heavy oil viscosities and a method to assess optimal steam cyclic periods for thermal reservoir simulation 

    E-Print Network [OSTI]

    Mago, Alonso Luis

    2006-08-16

    exceeding 2.5 trillion barrels. Management decisions and production strategies from thermal oil recovery processes are frequently based on reservoir simulation. A proper description of the physical properties, particularly oil viscosity, is essential...

  20. Discontinuous Galerkin Finite Element Method for the Nonlinear Hyperbolic Problems with Entropy-Based Artificial Viscosity Stabilization 

    E-Print Network [OSTI]

    Zingan, Valentin Nikolaevich

    2012-07-16

    This work develops a discontinuous Galerkin finite element discretization of non- linear hyperbolic conservation equations with efficient and robust high order stabilization built on an entropy-based artificial viscosity approximation...

  1. Effects of nanopore and fluid structure on anomalies and phase transitions of confined core-softened fluids

    E-Print Network [OSTI]

    Leandro B. Krott; José Rafael Bordin; Ney Marçal Barraz Jr; Marcia C. Barbosa

    2015-02-11

    We use Molecular Dynamics simulations to study how the nanopore and the fluid structures affects the dynamic, thermodynamic and structural properties of a confined anomalous fluid. The fluid is modeled using an effective pair potential derived from the ST4 atomistic model for water. This system exhibits density, structural and dynamical anomalies and the vapor-liquid and liquid-liquid critical points similar to the quantities observed in bulk water. The confinement is modeled both by smooth and structured walls. The temperatures of extremum density and diffusion for the confined fluid show a shift to lower values while the pressures move to higher amounts for both smooth and structured confinement. In the case of smooth walls, the critical points and the limit between fluid and amorphous phases show a non-monotonic change in the temperatures and pressures when the the nanopore size is increase. In the case of structured walls the pressures and temperatures of the critical points varies monotonicaly with the porous size. Our results are explained on basis of the competition between the different length scales of the fluid and the wall-fluid interaction.

  2. QUALITATIVE REASONING ABOUT FLUIDS AND MECHANICS

    E-Print Network [OSTI]

    Forbus, Kenneth D.

    QUALITATIVE REASONING ABOUT FLUIDS AND MECHANICS Hyeonkyeong Kim November 1993 The Institute and North West Water, Institute Partners . #12;QUALITATIVE REASONING ABOUT FLUIDS AND MECHANICS #12;()Copyright by Hyeonkyeong Kim 1993 #12;QUALITATIVE REASONING ABOUT FLUIDS AND MECHANICS

  3. Inserting Group Variables into Fluid Mechanics

    E-Print Network [OSTI]

    R. Jackiw

    2004-10-28

    A fluid, like a quark-gluon plasma, may possess degrees of freedom indexed by a group variable, which retains its identity even in the fluid/continuum description. Conventional Eulerian fluid mechanics is extended to encompass this possibility.

  4. Finite element simulation of electrorheological fluids

    E-Print Network [OSTI]

    Rhyou, Chanryeol, 1973-

    2005-01-01

    Electrorheological (ER) fluids change their flow properties dramatically when an electric field is applied. These fluids are usually composed of dispersions of polarizable particles in an insulating base fluid or composed ...

  5. Fe{sub 3}O{sub 4}/Zeolite nanocomposites synthesized by microwave assisted coprecipitation and its performance in reducing viscosity of heavy oil

    SciTech Connect (OSTI)

    Iskandar, Ferry; Fitriani, Pipit; Merissa, Shanty; Khairurrijal,; Abdullah, Mikrajuddin; Mukti, Rino R.

    2014-02-24

    Fe{sub 3}O{sub 4}/Zeolite nanocomposites have been synthesized via microwave assisted coprecipitation method and show to be efficient in reducing viscosity of heavy oil compared to other Fe{sub 3}O{sub 4}/Zeolite nanocomposites prepared by conventional method. The following precursors such as FeCl{sub 3}?6H{sub 2}O, FeSO{sub 4}?7H{sub 2}O, NH{sub 4}OH, and natural zeolite of heulandite type were used in the sample preparation. In this study, the effect of Fe{sub 3}O{sub 4} composition in the composite and microwave time heating were investigated. Fe{sub 3}O{sub 4}/Zeolite nanocomposites were then characterized to study the influence on crystal structures, morphology and physicochemical properties. The characterization techniques include X-ray diffraction (XRD), scanning electron microscopy (SEM) and nitrogen physisorption. The results show that by increasing the microwave heating time, the degree of nanocomposite intergrowth can be enhanced. The nanocomposite was tested in catalytic aquathermolysis of heavy oil at 200°C for 6 h and the Fe{sub 3}O{sub 4}/zeolite of 1 to 4 ratios performed the highest viscosity reduction of heavy oil reaching 92%.

  6. Managing Increased Charging Demand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing Increased Charging Demand Carrie Giles ICF International, Supporting the Workplace Charging Challenge Workplace Charging Challenge Do you already own an EV? Are you...

  7. Does Deinstitutionalization Increase Suicide?

    E-Print Network [OSTI]

    Yoon, Jangho; Bruckner, Tim A

    2009-01-01

    RESEARCH ARTICLE Does Deinstitutionalization IncreaseHowever, the literature does not support this notion ofsupply. If privatization does not influence the availability

  8. Computational fluid dynamic applications

    SciTech Connect (OSTI)

    Chang, S.-L.; Lottes, S. A.; Zhou, C. Q.

    2000-04-03

    The rapid advancement of computational capability including speed and memory size has prompted the wide use of computational fluid dynamics (CFD) codes to simulate complex flow systems. CFD simulations are used to study the operating problems encountered in system, to evaluate the impacts of operation/design parameters on the performance of a system, and to investigate novel design concepts. CFD codes are generally developed based on the conservation laws of mass, momentum, and energy that govern the characteristics of a flow. The governing equations are simplified and discretized for a selected computational grid system. Numerical methods are selected to simplify and calculate approximate flow properties. For turbulent, reacting, and multiphase flow systems the complex processes relating to these aspects of the flow, i.e., turbulent diffusion, combustion kinetics, interfacial drag and heat and mass transfer, etc., are described in mathematical models, based on a combination of fundamental physics and empirical data, that are incorporated into the code. CFD simulation has been applied to a large variety of practical and industrial scale flow systems.

  9. Fluid flow monitoring device

    DOE Patents [OSTI]

    McKay, M.D.; Sweeney, C.E.; Spangler, B.S. Jr.

    1993-11-30

    A flow meter and temperature measuring device are described comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips. 7 figures.

  10. Fluid flow monitoring device

    DOE Patents [OSTI]

    McKay, Mark D. (1426 Socastee Dr., North Augusta, SC 29841); Sweeney, Chad E. (3600 Westhampton Dr., Martinez, GA 30907-3036); Spangler, Jr., B. Samuel (2715 Margate Dr., Augusta, GA 30909)

    1993-01-01

    A flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.

  11. Violation of Bell's inequality in fluid mechanics

    E-Print Network [OSTI]

    Robert Brady; Ross Anderson

    2013-05-28

    We show that a classical fluid mechanical system can violate Bell's inequality because the fluid motion is correlated over large distances.

  12. Detachment Energies of Spheroidal Particles from Fluid-Fluid Interfaces

    E-Print Network [OSTI]

    Gary B. Davies; Timm Krüger; Peter V. Coveney; Jens Harting

    2014-10-28

    The energy required to detach a single particle from a fluid-fluid interface is an important parameter for designing certain soft materials, for example, emulsions stabilised by colloidal particles, colloidosomes designed for targeted drug delivery, and bio-sensors composed of magnetic particles adsorbed at interfaces. For a fixed particle volume, prolate and oblate spheroids attach more strongly to interfaces because they have larger particle-interface areas. Calculating the detachment energy of spheroids necessitates the difficult measurement of particle-liquid surface tensions, in contrast with spheres, where the contact angle suffices. We develop a simplified detachment energy model for spheroids which depends only on the particle aspect ratio and the height of the particle centre of mass above the fluid-fluid interface. We use lattice Boltzmann simulations to validate the model and provide quantitative evidence that the approach can be applied to simulate particle-stabilized emulsions, and highlight the experimental implications of this validation.

  13. Adsorption of soft particles at fluid interfaces

    E-Print Network [OSTI]

    Robert W. Style; Lucio Isa; Eric R. Dufresne

    2015-07-14

    Soft particles can be better emulsifiers than hard particles because they stretch at fluid interfaces. This deformation can increase adsorption energies by orders of magnitude relative to rigid particles. The deformation of a particle at an interface is governed by a competition of bulk elasticity and surface tension. When particles are partially wet by the two liquids, deformation is localized within a material-dependent distance $L$ from the contact line. At the contact line, the particle morphology is given by a balance of surface tensions. When the particle radius $R \\ll L$, the particle adopts a lenticular shape identical to that of an adsorbed fluid droplet. Particle deformations can be elastic or plastic, depending on the relative values of the Young modulus, $E$, and yield stress, $\\sigma_p$. When surface tensions favour complete spreading of the particles at the interface, plastic deformation can lead to unusual fried-egg morphologies. When deformable particles have surface properties that are very similar to one liquid phase, adsorption can be extremely sensitive to small changes of their affinity for the other liquid phase. These findings have implications for the adsorption of microgel particles at fluid interfaces and the performance of stimuli-responsive Pickering emulsions.

  14. High-density fluid compositions

    SciTech Connect (OSTI)

    Sanders, D.C.

    1981-09-29

    Clear, high-density fluids suitable for use as well completion, packing, and perforation media comprise aqueous solutions of zinc bromide and calcium bromide having densities lying in the range of about 14.5 up to about 18.0 pounds per gallon and measured PH's lying in the range of about 3.5 up to about 6.0. Optionally, such fluids may also comprise calcium chloride and/or a soluble film-forming amine-based corrosion inhibitor. Such fluids under conditions of ordinary use exhibit low corrosion rates and have crystallization points lying well below the range of temperatures under which they are used.

  15. Standardization of Thermo-Fluid Modeling in Modelica.Fluid

    SciTech Connect (OSTI)

    Franke, Rudiger; Casella, Francesco; Sielemann, Michael; Proelss, Katrin; Otter, Martin; Wetter, Michael

    2009-09-01

    This article discusses the Modelica.Fluid library that has been included in the Modelica Standard Library 3.1. Modelica.Fluid provides interfaces and basic components for the device-oriented modeling of onedimensional thermo-fluid flow in networks containing vessels, pipes, fluid machines, valves and fittings. A unique feature of Modelica.Fluid is that the component equations and the media models as well as pressure loss and heat transfer correlations are decoupled from each other. All components are implemented such that they can be used for media from the Modelica.Media library. This means that an incompressible or compressible medium, a single or a multiple substance medium with one or more phases might be used with one and the same model as long as the modeling assumptions made hold. Furthermore, trace substances are supported. Modeling assumptions can be configured globally in an outer System object. This covers in particular the initialization, uni- or bi-directional flow, and dynamic or steady-state formulation of mass, energy, and momentum balance. All assumptions can be locally refined for every component. While Modelica.Fluid contains a reasonable set of component models, the goal of the library is not to provide a comprehensive set of models, but rather to provide interfaces and best practices for the treatment of issues such as connector design and implementation of energy, mass and momentum balances. Applications from various domains are presented.

  16. Event-by-event fluctuations in perturbative QCD + saturation + hydro model: pinning down QCD matter shear viscosity in ultrarelativistic heavy-ion collisions

    E-Print Network [OSTI]

    H. Niemi; K. J. Eskola; R. Paatelainen

    2015-05-11

    We introduce an event-by-event perturbative-QCD + saturation + hydro ("EKRT") framework for ultrarelativistic heavy-ion collisions, where we compute the produced fluctuating QCD-matter energy densities from next-to-leading order perturbative QCD using a saturation conjecture to control soft particle production, and describe the space-time evolution of the QCD matter with dissipative fluid dynamics, event by event. We perform a simultaneous comparison of the centrality dependence of hadronic multiplicities, transverse momentum spectra, and flow coefficients of the azimuth-angle asymmetries, against the LHC and RHIC measurements. We compare also the computed event-by-event probability distributions of relative fluctuations of elliptic flow, and event-plane angle correlations, with the experimental data from Pb+Pb collisions at the LHC. We show how such a systematic multi-energy and multi-observable analysis tests the initial state calculation and the applicability region of hydrodynamics, and in particular how it constrains the temperature dependence of the shear viscosity-to-entropy ratio of QCD matter in its different phases in a remarkably consistent manner.

  17. Insertable fluid flow passage bridgepiece and method

    DOE Patents [OSTI]

    Jones, Daniel O. (Glenville, NV)

    2000-01-01

    A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.

  18. Quantum Field Theory of Fluids

    E-Print Network [OSTI]

    Ben Gripaios; Dave Sutherland

    2015-04-23

    The quantum theory of fields is largely based on studying perturbations around non-interacting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is `freer', in the sense that the non-interacting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree- and loop-level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behaviour is radically different to both classical fluids and quantum fields, with interesting physical consequences for fluids in the low temperature regime.

  19. Elliptic Flow and Shear Viscosity within a Transport Approach from RHIC to LHC Energy

    E-Print Network [OSTI]

    S. Plumari; V. Greco

    2011-10-11

    We have investigated the build up of anisotropic flows within a parton cascade approach at fixed shear viscosity to entropy density \\eta/s to study the generation of collective flows in ultra-relativistic heavy ion collisions. We present a study of the impact of a temperature dependent \\eta/s(T) on the generation of the elliptic flow at both RHIC and LHC. Finally we show that the transport approach, thanks to its wide validity range, is able to describe naturally the rise - fall and saturation of the v_2(p_T) observed at LHC.

  20. Global Solutions of Viscous Transonic Flows in Kerr Geometry I: Weak Viscosity Limit

    E-Print Network [OSTI]

    Sandip K. Chakrabarti

    1996-11-04

    We present fully general relativistic equations governing viscous transonic flows in vertical equilibrium in Kerr geometry. We find the complete set of global solutions (both for Optically thick and optically thin flows) in the weak viscosity limit. We show that for a large region of parameter space, centrifugal pressure supported standing shocks can form in accretion and winds very close to the black hole horizon, both for co-rotating and contra-rotating flows. We compute the nature of the shear tensor for complete transonic solutions and discuss the consequences of its reversal properties.

  1. Study of shear viscosity of SU (2)-gluodynamics within lattice simulation

    E-Print Network [OSTI]

    N. Yu. Astrakhantsev; V. V. Braguta; A. Yu. Kotov

    2015-07-22

    This paper is devoted to the study of two-point correlation function of the energy-momentum tensor T_{12}T_{12} for SU(2)-gluodynamics within lattice simulation of QCD. Using multilevel algorithm we carried out the measurement of the correlation function at the temperature T/T_c = 1.2. It is shown that lattice data can be described by spectral functions which interpolate between hydrodynamics at low frequencies and asymptotic freedom at high frequencies. The results of the study of spectral functions allowed us to estimate the ratio of shear viscosity to the entropy density {\\eta}/s = 0.134 +- 0.057.

  2. Shear viscosity to entropy density ratio in the Boltzmann-Uehling-Uhlenbeck model

    E-Print Network [OSTI]

    S. X. Li; D. Q. Fang; Y. G. Ma; C. L. Zhou

    2011-08-11

    The ratio of shear viscosity ($\\eta$) to entropy density ($s$) for an equilibrated system is investigated in intermediate energy heavy ion collisions below 100$A$ MeV within the framework of the Boltzmann-Uehling-Uhlenbeck (BUU) model . After the collision system almost reaches a local equilibration, the temperature, pressure and energy density are obtained from the phase space information and {$\\eta/s$} is calculated using the Green-Kubo formulas. The results show that {$\\eta$}/$s$ decreases with incident energy and tend towards a smaller value around 0.5, which is not so drastically different from the BNL Relativistic Heavy Ion Collider results in the present model.

  3. Bulk viscosity : a study from Polyakov-Nambu-Jona-Lasinio model

    E-Print Network [OSTI]

    Kinkar Saha; Sudipa Upadhaya

    2015-05-01

    We present an extensive study of the bulk viscosity, $\\zeta$ using the framework of Kubo formalism within 2+1 flavored Polyakov-Nambu-Jona-Lasinio model. Alongwith, we have discussed the kinetic approaches in order to estimate the bulk viscous effects in the strongly interacting systems analogous to the situation in various high energy heavy-ion collisions. Our work strengthens the motivation for the proper incorporation of $\\zeta$ into the analysis of such systems. We also provide justification for such incorporation becoming more significant when density is substantially high.

  4. CO2-based mixtures as working fluids for geothermal turbines.

    SciTech Connect (OSTI)

    Wright, Steven Alan; Conboy, Thomas M.; Ames, David E.

    2012-01-01

    Sandia National Laboratories is investigating advanced Brayton cycles using supercritical working fluids for application to a variety of heat sources, including geothermal, solar, fossil, and nuclear power. This work is centered on the supercritical CO{sub 2} (S-CO{sub 2}) power conversion cycle, which has the potential for high efficiency in the temperature range of interest for these heat sources and is very compact-a feature likely to reduce capital costs. One promising approach is the use of CO{sub 2}-based supercritical fluid mixtures. The introduction of additives to CO{sub 2} alters the equation of state and the critical point of the resultant mixture. A series of tests was carried out using Sandia's supercritical fluid compression loop that confirmed the ability of different additives to increase or lower the critical point of CO{sub 2}. Testing also demonstrated that, above the modified critical point, these mixtures can be compressed in a turbocompressor as a single-phase homogenous mixture. Comparisons of experimental data to the National Institute of Standards and Technology (NIST) Reference Fluid Thermodynamic and Transport Properties (REFPROP) Standard Reference Database predictions varied depending on the fluid. Although the pressure, density, and temperature (p, {rho}, T) data for all tested fluids matched fairly well to REFPROP in most regions, the critical temperature was often inaccurate. In these cases, outside literature was found to provide further insight and to qualitatively confirm the validity of experimental findings for the present investigation.

  5. Slow Waves in Fractures Filled with Viscous Fluid

    SciTech Connect (OSTI)

    Korneev, Valeri

    2008-01-08

    Stoneley guided waves in a fluid-filled fracture generally have larger amplitudes than other waves, and therefore, their properties need to be incorporated in more realistic models. In this study, a fracture is modeled as an infinite layer of viscous fluid bounded by two elastic half-spaces with identical parameters. For small fracture thickness, I obtain a simple dispersion equation for wave-propagation velocity. This velocity is much smaller than the velocity of a fluid wave in a Biot-type solution, in which fracture walls are assumed to be rigid. At seismic prospecting frequencies and realistic fracture thicknesses, the Stoneley guided wave has wavelengths on the order of several meters and an attenuation Q factor exceeding 10, which indicates the possibility of resonance excitation in fluid-bearing rocks. The velocity and attenuation of Stoneley guided waves are distinctly different at low frequencies for water and oil. The predominant role of fractures in fluid flow at field scales is supported by permeability data showing an increase of several orders of magnitude when compared to values obtained at laboratory scales. These data suggest that Stoneley guided waves should be taken into account in theories describing seismic wave propagation in fluid-saturated rocks.

  6. Tracing Geothermal Fluids

    SciTech Connect (OSTI)

    Michael C. Adams Greg Nash

    2004-03-31

    Chemical compounds have been designed under this contract that can be used to trace water that has been injected into vapor-dominated and two-phase geothermal fields. Increased knowledge of the injection flow is provided by the tracers, and this augments the power that can be produced. Details on the stability and use of these tracers are included in this report.

  7. Study of ebullated bed fluid dynamics. Final progress report, September 1980-July 1983

    SciTech Connect (OSTI)

    Schaefer, R.J.; Rundell, D.N.; Shou, J.K.

    1983-07-01

    The fluid dynamics occurring in HRI's H-coal process development unit coal liquefaction reactor during Run PDU-10 were measured and compared with Amoco Oil cold-flow fluidization results. It was found that catalyst bed expansions and gas holdups are higher in the PDU than those observed in the cold-flow tests for slurries having the same nominal viscosity. Comparison of PDU results with cold-flow results shows that the bulk of the operating reactor gas flow lies in the ideal bubbly regime. It also appears that the gas bubbles in these PDU tests are rising quite slowly. Only two of the operating points in our test program on the PDU were found to lie in the churn turbulent regime. Existence of churn turbulent behavior during these two experiments is consistent with trends observed in earlier cold-flow experiments. Two- and three-phase fluidization experiments were carried out in Amoco's cold-flow fluid dynamics unit. The data base now includes fluidization results for coal char/kerosene slurry concentrations of 4.0, 9.8, and 20.7 vol% in addition to the 15.5 and 17.8 vol% data from our earlier work. Both HDS-2A and Amocat-1A catalysts were used in the tests. Bed expansion is primarily a function of slurry velocity, with gas velocity having only a weak effect. Bed contractions have been observed in some cases at sufficiently high gas velocity. Gas and liquid holdups were found to be uniform across the cross-section of the Amoco cold-flow fluid dynamics pilot plant. A viscometer was adapted for measurement of the viscosity of coal slurries at high temperature and pressure. Based on experiments carried out in the Amoco cold-flow unit, a significant degree of backmixing was found to occur in the H-Coal system. 70 references, 93 figures, 32 tables.

  8. Pitch-catch only ultrasonic fluid densitometer

    DOE Patents [OSTI]

    Greenwood, Margaret S. (Richland, WA); Harris, Robert V. (Pasco, WA)

    1999-01-01

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.

  9. FLUID MECHANICS AND MATHEMATICAL STRUCTURES PHILIP BOYLAND

    E-Print Network [OSTI]

    Boyland, Philip

    FLUID MECHANICS AND MATHEMATICAL STRUCTURES PHILIP BOYLAND Department of Mathematics University in the most basic models of fluid motion. 1. Introduction Fluid mechanics is the source of many of the ideas, Lagrange, . . .. Mathematicians have abstracted and vastly generalized ba- sic fluid mechanical concepts

  10. Mechanical Engineering ME 3720 FLUID MECHANICS

    E-Print Network [OSTI]

    Panchagnula, Mahesh

    Mechanical Engineering ME 3720 FLUID MECHANICS Pre-requisite: ME 2330 Co-requisite: ME 3210) to develop an understanding of the physical mechanisms and the mathematical models of fluid mechanics of fluid mechanics problems in engineering practice. The basic principles of fluid mechanics

  11. Lecture notes Introductory incompressible fluid mechanics

    E-Print Network [OSTI]

    Malham, Simon J.A.

    Lecture notes Introductory incompressible fluid mechanics Simon J.A. Malham Simon J.A. Malham (23rd of fluid mechanics and along the way see lots of interesting applications. 2 Fluid flow, the Continuum. Liquids are generally incompressible--a feature essential to all modern car braking mechanisms. Fluids can

  12. Pitch-catch only ultrasonic fluid densitometer

    DOE Patents [OSTI]

    Greenwood, M.S.; Harris, R.V.

    1999-03-23

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

  13. Fluid Imaging of Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Project objectives: Attempting to Image EGS Fracture & Fluid Networks; Employing joint Geophysical Imaging Technologies.

  14. Fluid Mechanics IB Lecturer: Dr Natalia Berloff

    E-Print Network [OSTI]

    : hydroelectric power, chemical processing, jet-driven cutting tools · our fluid environment: ozone loss, climate

  15. Identifying Fracture Types and Relative Ages Using Fluid Inclusion Stratigraphy

    SciTech Connect (OSTI)

    Dilley, Lorie M.; Norman, David; Owens, Lara

    2008-06-30

    Enhanced Geothermal Systems (EGS) are designed to recover heat from the subsurface by mechanically creating fractures in subsurface rocks. Understanding the life cycle of a fracture in a geothermal system is fundamental to the development of techniques for creating fractures. Recognizing the stage of a fracture, whether it is currently open and transmitting fluids; if it recently has closed; or if it is an ancient fracture would assist in targeting areas for further fracture stimulation. Identifying dense fracture areas as well as large open fractures from small fracture systems will also assist in fracture stimulation selection. Geothermal systems are constantly generating fractures, and fluids and gases passing through rocks in these systems leave small fluid and gas samples trapped in healed microfractures. Fluid inclusions trapped in minerals as the fractures heal are characteristic of the fluids that formed them, and this signature can be seen in fluid inclusion gas analysis. Our hypothesis is that fractures over their life cycle have different chemical signatures that we can see in fluid inclusion gas analysis and by using the new method of fluid inclusion stratigraphy (FIS) the different stages of fractures, along with an estimate of fracture size can be identified during the well drilling process. We have shown with this study that it is possible to identify fracture locations using FIS and that different fractures have different chemical signatures however that signature is somewhat dependent upon rock type. Open, active fractures correlate with increase concentrations of CO2, N2, Ar, and to a lesser extent H2O. These fractures would be targets for further enhancement. The usefulness of this method is that it is low cost alternative to current well logging techniques and can be done as a well is being drilled.

  16. Generalised Smarr Formula and the Viscosity Bound for Einstein-Maxwell-Dilaton Black Holes

    E-Print Network [OSTI]

    Liu, Hai-Shan; Pope, C N

    2015-01-01

    We study the shear viscosity to entropy ratio $\\eta/S$ in the boundary field theories dual to black hole backgrounds in theories of gravity coupled to a scalar field, and generalisations including a Maxwell field and non-minimal scalar couplings. Motivated by the observation in simple examples that the saturation of the $\\eta/S\\ge 1/(4\\pi)$ bound is correlated with the existence of a generalised Smarr relation for the planar black-hole solutions, we investigate this in detail for the general black-hole solutions in these theories, focusing especially on the cases where the scalar field plays a non-trivial role and gives rise to an additional parameter in the space of solutions. We find that a generalised Smarr relation holds in all cases, and in fact it can be viewed as the bulk gravity dual of the statement of the saturation of the viscosity to entropy bound. We obtain the generalised Smarr relation, whose existence depends upon a scaling symmetry of the planar black-hole solutions, by two different but rela...

  17. Journal of Fluid Mechanics http://journals.cambridge.org/FLM

    E-Print Network [OSTI]

    Marusic, Ivan

    Terms of use : Click here Laminar and turbulent comparisons for channel flow and flow control IVAN and turbulent comparisons for channel flow and flow control. Journal of Fluid Mechanics, 570, pp 467477 doi:10 the discrepancy between the volume flux in laminar and in turbulent flow at the same pressure gradient increases

  18. Method for removing impurities from an impurity-containing fluid stream

    DOE Patents [OSTI]

    Ginosar, Daniel M.; Fox, Robert V.

    2010-04-06

    A method of removing at least one polar component from a fluid stream. The method comprises providing a fluid stream comprising at least one nonpolar component and at least one polar component. The fluid stream is contacted with a supercritical solvent to remove the at least one polar component. The at least one nonpolar component may be a fat or oil and the at least one polar component may be water, dirt, detergents, or mixtures thereof. The supercritical solvent may decrease solubility of the at least one polar component in the fluid stream. The supercritical solvent may function as a solvent or as a gas antisolvent. The supercritical solvent may dissolve the nonpolar components of the fluid stream, such as fats or oils, while the polar components may be substantially insoluble. Alternatively, the supercritical solvent may be used to increase the nonpolarity of the fluid stream.

  19. Laboratory development and field application of a novel water-based drill-in fluid for geopressured horizontal wells

    SciTech Connect (OSTI)

    Dobson, J.W.; Harrison, J.C.; Hale, A.H.

    1996-12-31

    Research has identified a novel water-based drill-in fluid for drilling and completing geopressured horizontal wells. This fluid has a unique combination of properties which make it especially suitable for geopressured applications. They include the use of calcium and/or zinc bromide as a base brine, minimal concentration of calcium carbonate as bridging material, low plastic viscosity, tight fluid loss control, good filter cake properties, and excellent return permeability. This drill-in fluid has been used successfully to drill a 1,200 foot production interval, 4.75 inch diameter wellbore in the Gulf of Mexico with a system weight of 13.2 lbm/gal, bottom hole temperature of 185{degrees} F., and a 1400 to 1700 psi overbalance. The system functioned very well in both the drilling and completion operations. Fluid rheology was easily maintainable and the hole conditions were excellent without torque or drag problems. Initial production data suggests that the well is producing at expected rates with low drawdown pressure.

  20. Cold dark matter cosmology conflicts with fluid mechanics and observations

    E-Print Network [OSTI]

    Carl H. Gibson

    2006-10-23

    Cold dark matter hierarchical clustering (CDMHC) cosmology based on the Jeans 1902 criterion for gravitational instability gives predictions about the early universe contrary to fluid mechanics and observations. Jeans neglected viscosity, diffusivity, and turbulence: factors that determine gravitational structure formation and contradict small structures (CDM halos) forming from non-baryonic dark matter particle candidates. From hydro-gravitational-dynamics (HGD) cosmology, viscous-gravitational fragmentation produced supercluster (10^46 kg), cluster, and galaxy-mass (10^42 kg) clouds in the primordial plasma with the large fossil density turbulence (rho_o ~ 3x10-17 kg m-3) of the first fragmentation at 10^12 s, and a protogalaxy linear and spiral clump morphology reflecting maximum stretching near vortex lines of the plasma turbulence at the 10^13 s plasma-gas transition. Gas protogalaxies fragmented into proto-globular-star-cluster mass (10^36 kg) clumps of protoplanet gas clouds that are now frozen as earth-mass (10^24-^25 kg) Jovian planets of the baryonic dark matter, about 30,000,000 rogue planets per star. Observations contradict the CDMHCC prediction of large explosive Population III first stars at 10^16 s, but support the immediate gentle formation of small Population II first stars at 10^13 s in globular-star-clusters from HGD.

  1. Well completion and servicing fluid

    SciTech Connect (OSTI)

    Grimsley, R.L.

    1990-09-25

    This patent describes a well completion servicing fluid for controlling formation pressure during completion or servicing of a well. It comprises: an aqueous solution of calcium chloride, a solid weighing agent suspended in the solution and being selected from the group consisting of zinc, zinc oxide, and mixtures thereof; and a viscosifier dissolved in the solution in an amount effective to suspend the weighing agent. The fluid has a density of greater than 15 pounds per gallon and being substantially free of bromide ions and being substantially free of solid material which is not soluble in hydrochloric acid.

  2. Wellbottom fluid implosion treatment system

    DOE Patents [OSTI]

    Brieger, Emmet F. (HC 67 Box 58, Nogal, NM 88341)

    2001-01-01

    A system for inducing implosion shock forces on perforation traversing earth formations with fluid pressure where an implosion tool is selected relative to a shut in well pressure and a tubing pressure to have a large and small area piston relationship in a well tool so that at a predetermined tubing pressure the pistons move a sufficient distance to open an implosion valve which permits a sudden release of well fluid pressure into the tubing string and produces an implosion force on the perforations. A pressure gauge on the well tool records tubing pressure and well pressure as a function of time.

  3. Fluid-solid contact vessel having fluid distributors therein

    DOE Patents [OSTI]

    Jones, Jr., John B. (Rifle, CO)

    1980-09-09

    Rectangularly-shaped fluid distributors for large diameter, vertical vessels include reinforcers for high heat operation, vertical sides with gas distributing orifices and overhanging, sloped roofs. Devices are provided for cleaning the orifices from a buildup of solid deposits resulting from the reactions in the vessel.

  4. DECOUPLED TIME STEPPING METHODS FOR FLUID-FLUID INTERACTION

    E-Print Network [OSTI]

    Kasman, Alex

    -fluid interaction, atmosphere-ocean, implicit-explicit method. 1. Introduction. The dynamic core in atmosphere-ocean to the coupled system using only (uncoupled) atmosphere and ocean solves, (see e.g. [4, 6, 17, 18, 19 their shared interface I by a rigid-lid coupling condition, i.e. no penetration and a slip with friction

  5. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating oilpropanepropane price increases

  6. Residential propane price increases

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating oilpropanepropane price increases4,

  7. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014propane prices increase The

  8. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014propane prices increase

  9. Diesel prices increase nationally

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas UsageDiesel prices increase nationally The

  10. Diesel prices slightly increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas UsageDiesel prices increaseDieselDieselDiesel

  11. Solvability via viscosity solutions for a model of phase transitions driven by configurational forces

    E-Print Network [OSTI]

    Zhu, Peicheng

    2009-01-01

    In the present article, we are interested in an initial boundary value problem for a coupled system of partial differential equations arising in martensitic phase transition theory of elastically deformable solid materials, e.g., steel. This model was proposed and investigated in previous work by Alber and Zhu in which the weak solutions are defined in a standard way, however the key technique is not applicable to multi-dimensional problem. Intending to solve this multi-dimensional problem and to investigate the sharp interface limits of our models, we thus define weak solutions in a different way by using the notion of viscosity solution, then prove the existence of weak solutions to this problem in one space dimension, yet the multi-dimensional problem is still open.

  12. Bulk viscosity in a hyperonic star and r-mode instability

    SciTech Connect (OSTI)

    Jha, T. K.; Mishra, H.; Sreekanth, V.

    2010-08-15

    We consider a rotating neutron star with the presence of hyperons in its core. We use an equation of state in an effective chiral model within the relativistic mean-field approximation. We calculate the hyperonic bulk viscosity coefficient caused by nonleptonic weak interactions. By estimating the damping time scales of the dissipative processes, we investigate its role in the suppression of gravitationally driven instabilities in the r mode. We observe that r-mode instability remains very significant for hyperon core temperatures of around 10{sup 8} K, which results in a comparatively larger instability window. We find that such instability can reduce the angular velocity of the rapidly rotating star considerably up to {approx}0.04{Omega}{sub K}, with {Omega}{sub K} as the Keplerian angular velocity.

  13. Direct Measurements of Pore Fluid Density by Vibrating Tube Densimetry

    SciTech Connect (OSTI)

    Gruszkiewicz, Miroslaw {Mirek} S; Rother, Gernot; Wesolowski, David J; Cole, David R; Wallacher, Dirk

    2012-01-01

    The densities of pore-confined fluids were measured for the first time by means of a vibrating tube method. Isotherms of total adsorption capacity were measured directly making the method complementary to the conventional gravimetric or volumetric/piezometric adsorption techniques, which yield the excess adsorption (the Gibbsian surface excess). A custom-made high-pressure, high-temperature vibrating tube densimeter (VTD) was used to measure the densities of subcritical and supercritical propane (between 35 C and 97 C) and supercritical carbon dioxide (between 32 C and 50 C) saturating hydrophobic silica aerogel (0.2 g/cm3, 90% porosity) synthesized inside Hastelloy U-tubes. Additionally, excess adsorption isotherms for supercritical CO2 and the same porous solid were measured gravimetrically using a precise magnetically-coupled microbalance. Pore fluid densities and total adsorption isotherms increased monotonically with increasing density of the bulk fluid, in contrast to excess adsorption isotherms, which reached a maximum at a subcritical density of the bulk fluid, and then decreased towards zero or negative values at supercritical densities. Compression of the confined fluid significantly beyond the density of the bulk liquid at the same temperature was observed at subcritical temperatures. The features of the isotherms of confined fluid density are interpreted to elucidate the observed behavior of excess adsorption. The maxima of excess adsorption were found to occur below the critical density of the bulk fluid at the conditions corresponding to the beginning of the plateau of total adsorption, marking the end of the transition of pore fluid to a denser, liquid-like pore phase. The results for propane and carbon dioxide showed similarity in the sense of the principle of corresponding states. No measurable effect of pore confinement on the liquid-vapor critical point was found. Quantitative agreement was obtained between excess adsorption isotherms determined from VTD total adsorption results and those measured gravimetrically at the same temperature, confirming the validity of the vibrating tube measurements. Vibrating tube densimetry was demonstrated as a novel experimental approach capable of providing the average density of pore-confined fluids.

  14. A theoretical approach for assessing the role of rock and fluid properties in the development of abnormal fluid pressures 

    E-Print Network [OSTI]

    Hastings, Thomas Worcester

    1985-01-01

    /at = (ar/aT)mG (30) where m is a thermal loading rate (L/t), G is the geothermal gradient and dP/dT can be for any of the four boundary conditions. Equation (30) wi 11 give the rate of pressure production due to temperature increases during burial... and shales. The important parameters determining the extent of fluid pressure preservation are the geothermal gradient, the thermal loading rate, and the hydraulic diffusivity, K/Ss, of the rock . The highest fluid pressure development is expected...

  15. Compressor bleed cooling fluid feed system

    DOE Patents [OSTI]

    Donahoo, Eric E; Ross, Christopher W

    2014-11-25

    A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.

  16. The Effects of Fluid Flow On Shear Localization and Frictional Strength From Dynamic Models Of Fault Gouge During Earthquakes 

    E-Print Network [OSTI]

    Bianco, Ronald

    2013-12-02

    have an increased localization toward the boundaries of the gouge layer (type III), and no occurrence of distributed (type I) shear. Systems with lower N and k show liquefaction events. Liquefaction events originate from increases in fluid pressure...

  17. Bulk viscous Zel'dovich fluid model and it's asymptotic behavior

    E-Print Network [OSTI]

    K., Rajagopalan Nair

    2015-01-01

    In this paper we have considered a flat FLRW universe with bulk viscous Zel'dovich as the cosmic component. Being considered the bulk viscosity as per the Eckart formalism, we have analyzed the evolution of the Hubble parameter and constrained the model with the Type Ia Supernovae data thus extracting the constant bulk viscous parameter and present Hubble parameter. Further we have analyzed the scale factor, equation of state and deceleration parameter. The model predicts the late time acceleration and is also compatible with the age of the universe as given by the oldest globular clusters. We have also studied the phase-space behavior of the model and found that a universe dominated by bulk viscous Zel'dovich fluid is stable. But on the inclusion of radiation component in addition to the Zel'dovich fluid, makes the model unstable. Hence, even though the bulk viscous Zel'dovich fluid dominated universe is a feasible one, the model as such failed to predict a prior radiation dominated phase.

  18. Fluid flow effects on electroplating

    SciTech Connect (OSTI)

    Kirkpatrick, J.R.

    1990-09-01

    The effects of fluid flow patterns on the electroplating of rotating cylindrically symmetric objects are examined. Ways are outlined for preventing undesirable spiral patterns on the plated surface. Estimates are given for the diffusion boundary later thickness for cylinders, disks, spheres, and cones. 16 refs., 7 figs., 1 tab.

  19. Directed flow fluid rinse trough

    DOE Patents [OSTI]

    Kempka, Steven N. (9504 Lona La., Albuquerque, NM 87111); Walters, Robert N. (11872 LaGrange St., Boise, ID 83709)

    1996-01-01

    Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs.

  20. Directed flow fluid rinse trough

    DOE Patents [OSTI]

    Kempka, S.N.; Walters, R.N.

    1996-07-02

    Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs. 9 figs.

  1. Drug transport in brain via the cerebrospinal fluid

    E-Print Network [OSTI]

    Pardridge, William M

    2011-01-01

    diffusion. Drug transport into cerebrospinal fluid vs. brainDrug transport from blood to interstitial fluid (ISF) isDrug transport in brain via the cerebrospinal fluid William

  2. Formulation of the Chip Cleanability Mechanics from fluid transport

    E-Print Network [OSTI]

    Garg, Saurabh; Dornfeld, David; Berger, K.

    2009-01-01

    Mechanics from Fluid Transport Author: Garg, Saurabh,Mechanics from fluid transport", International Conference onsimply relying on the fluid transport energy of high

  3. Helium measurements of pore-fluids obtained from SAFOD drillcore

    E-Print Network [OSTI]

    Ali, S.

    2010-01-01

    ionized water (DI) as drilling fluid. This procedure avoidsbeen contaminated with drilling fluids during recovery ofenough fluid inflow throughout scheduled drilling phases to

  4. Male gender, increased blood viscosity, body mass index and triglyceride levels are independently associated with systemic relative hypertension in sickle cell anemia

    E-Print Network [OSTI]

    Boyer, Edmond

    , Centre Hospitalier Universitaire de Pointe-à-Pitre, Pointe- à-Pitre, Guadeloupe; 2 Université des'Iinvestigation Clinique - Epidémiologie Clinique 802 Inserm Antilles-Guyane, Centre Hospitalier Universitaire de Pointe-à-Pitre, Pointe-à-Pitre, Guadeloupe; 5 Unité Transversale de la Drépanocytose, Centre Hospitalier Universitaire de

  5. density and rigidity, and under tension. There is also no role for viscosity in Ray-

    E-Print Network [OSTI]

    Finnerty, John R.

    between the experimental soap- film flow and a theoretical two-dimensional fluid. For a start, air. Such effectsareprobablynotveryimportantinthis experiment because, over short timescales, the thread experiences a nearly laminar flow. But even in their 1935 review article13 , swimmingfishcastoffcounter-rotatingvor- tices, which induce a jet-like flow

  6. The effective viscosity of rocksalt: implementation of steady-state creep laws in numerical

    E-Print Network [OSTI]

    van Keken, Peter

    of salt tectonics have received renewed attention in the last few years. This has been stimulated in numerical models of salt diapirism P.E. van Keken, C.J. Spiers, A.P. van den Berg and E.J. Muyzert and fluid-enhanced grain-boundary diffusion creep, has been used in numerical models of salt diapirism

  7. WindDriven Currents in a Sea with a Variable Eddy Viscosity Calculated via a SincGalerkin

    E-Print Network [OSTI]

    Bowers, Kenneth L.

    Wind­Driven Currents in a Sea with a Variable Eddy Viscosity Calculated via a Sinc.S.A. November 17, 1999 Short title: Wind­Driven Currents Calculated via a Sinc­Galerkin Technique Keywords: wind, a Sinc­Galerkin procedure is used to infer the sensitivity of wind­driven subsur­ face currents

  8. PHYSICAL REVIEW E 85, 066402 (2012) Frequency-dependent shear viscosity of a liquid two-dimensional dusty plasma

    E-Print Network [OSTI]

    Goree, John

    2012-01-01

    of a liquid for a particular time scale -1 . A simple model of the frequency-dependent viscosity is predicted-feng@uiowa.edu magnetically in a Penning trap [16], vortex arrays in the mixed state of type II superconductors [17], and strongly coupled dusty plasmas levitated in a single layer [11,18]. A dusty plasma [19­25], sometimes

  9. PHYSICAL REVIEW E 87, 012403 (2013) Layer with reduced viscosity at water-oil interfaces probed by fluorescence correlation spectroscopy

    E-Print Network [OSTI]

    Chan, Derek Y C

    2013-01-01

    PHYSICAL REVIEW E 87, 012403 (2013) Layer with reduced viscosity at water-oil interfaces probed-dimensional diffusion of isolated molecular tracers at the water­n-alkane interface was studied with fluorescence. INTRODUCTION Water is the most common liquid on Earth and con- stitutes a major part of living organisms

  10. 2015 GRADUATE STUDIES ENVIRONMENTAL FLUID MECHANICS

    E-Print Network [OSTI]

    · Climate change and impact assessments Environmental Fluid Mechanics and Hydraulic Engi- neering research generated by winds, landslide, avalanche, or earthquake · Marine Hydrokinetic Energy · Circulation2015 GRADUATE STUDIES ENVIRONMENTAL FLUID MECHANICS AND WATER RESOURCES ENGINEERING RESEARCH AREAS

  11. Fluid&ParticulateSystems 424514/2010

    E-Print Network [OSTI]

    Zevenhoven, Ron

    " Ron Zevenhoven ÅA Thermal and Flow Engineering ron.zevenhoven@abo.fi 9Fluid&ParticulateSystems 424514 Being often a low temperature process, better energy economy than, for example, distillation Fluid

  12. Fluid sampling system for a nuclear reactor

    DOE Patents [OSTI]

    Lau, L.K.; Alper, N.I.

    1994-11-22

    A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump. 1 fig.

  13. Fluid sampling system for a nuclear reactor

    DOE Patents [OSTI]

    Lau, Louis K. (Monroeville, PA); Alper, Naum I. (Monroeville, PA)

    1994-01-01

    A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump.

  14. Quantifying the stimuli of photorheological fluids

    E-Print Network [OSTI]

    Bates, Sarah Woodring

    2010-01-01

    We develop a model to predict the dynamics of photorheological fluids and, more generally, photoresponsive fluids for monochromatic and polychromatic light sources. Derived from first principles, the model relates the ...

  15. Fluid&ParticulateSystems 424514/2010

    E-Print Network [OSTI]

    Zevenhoven, Ron

    · A c c s s S S-1 S S-1 ),,( ),,( 1 )1( fluid csfluid csfluid s s c c fluid SSf whereSSfV S S S Sw Vw

  16. Equilibrium calculation of transport coefficients for a fluid-particle model

    E-Print Network [OSTI]

    Thomas Ihle; Erkan Tuzel; Daniel M. Kroll

    2005-09-26

    A recently introduced particle-based model for fluid flow, called Stochastic Rotation Dynamics, can be made Galilean invariant by introducing a random shift of the computational grid before collisions. In this paper, it is shown how the Green-Kubo relations derived previously can be resummed to obtain exact expressions for the collisional contributions to the transport coefficients. It is also shown that the collisional contribution to the microscopic stress tensor is not symmetric, and that this leads to an additional viscosity. The resulting identification of the transport coefficients for the hydrodynamic modes is discussed in detail, and it is shown that this does not impose restrictions on the applicability of the model. The collisional contribution to the thermal conductivity, which becomes important for small mean free path and small average particle number per cell, is also derived.

  17. Ultrasonic fluid densitometer for process control

    DOE Patents [OSTI]

    Greenwood, Margaret S. (Richland, WA)

    2000-01-01

    The present invention is an ultrasonic fluid densitometer that uses at least one pair of transducers for transmitting and receiving ultrasonic signals internally reflected within a material wedge. A temperature sensor is provided to monitor the temperature of the wedge material. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface and comparing a transducer voltage and wedge material temperature to a tabulation as a function of density.

  18. Seismic and infrasonic source processes in volcanic fluid systems

    E-Print Network [OSTI]

    Matoza, Robin S.

    2009-01-01

    into a volcano-seismic source process in low-viscosityDIEGO Seismic and infrasonic source processes in volcanicTHE DISSERTATION Seismic and infrasonic source processes in

  19. INTRODUCTION TO FLUID MECHANICS Spring 2011

    E-Print Network [OSTI]

    Bahrami, Majid

    Experiment 3: Basics of Fluid Mechanics, Friction in Laminar and Turbulent Pipe Flow Experiment:20, Wed 2:30 ­ 5:20, Fri 8:30 ­ 11:20, Lab 4302 Course Outline: Properties of fluids. Basic flow1 ENSC 283 INTRODUCTION TO FLUID MECHANICS Spring 2011 Instructor: Dr. Majid Bahrami 4372

  20. Foundations of Fluid Mechanics Giovanni Gallavotti

    E-Print Network [OSTI]

    Roma "La Sapienza", Università di

    1 Foundations of Fluid Mechanics Giovanni Gallavotti 4 Roma 2000 20/novembre/2011; 22:03 #12, harmonic analysis, elasticity, general relativity or fluid mechanics and chaos in turbulence. So that when in 1988 I was made chair of Fluid Mechanics at the Universit`a La Sapienza, not to recognize work I did

  1. MECH 502: Fluid Mechanics Winter semester 2010

    E-Print Network [OSTI]

    Phani, A. Srikantha

    MECH 502: Fluid Mechanics Winter semester 2010 Instructor: I.A. Frigaard Times: Tuesdays week of semester. Location: CHBE 103 Synopsis: This course will focus primarily on fluid mechanics will be to look at fluid mechanics fundamentals, and at the mathematical modeling & analysis of simplified flow

  2. New Methods to Transport Fluids in

    E-Print Network [OSTI]

    Herr, Hugh

    New Methods to Transport Fluids in Micro-Sized Devices Shaun Berry and Jakub Kedzierski control and transport fluid in micro-sized structures presents its own unique set of challenges fluidic operations that are essential to the functionality of the system-- such as fluid transport, mixing

  3. SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW

    E-Print Network [OSTI]

    Santos, Juan

    SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW J. E. Santos1, G. B. Savioli2, J. M. Carcione3, D´e, Argentina SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12;Introduction. I Storage of CO2). SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12;Introduction. II CO2 is separated from natural

  4. SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW

    E-Print Network [OSTI]

    Santos, Juan

    SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW J. E. Santos1 1 Department of Mathematics, Purdue University, USA Purdue University, March 1rst, 2013 SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12 (North Sea). SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12;Introduction. II CO2 is separated

  5. Calculation of large scale relative permeabilities from stochastic properties of the permeability field and fluid properties

    SciTech Connect (OSTI)

    Lenormand, R.; Thiele, M.R.

    1997-08-01

    The paper describes the method and presents preliminary results for the calculation of homogenized relative permeabilities using stochastic properties of the permeability field. In heterogeneous media, the spreading of an injected fluid is mainly sue to the permeability heterogeneity and viscosity fingering. At large scale, when the heterogeneous medium is replaced by a homogeneous one, we need to introduce a homogenized (or pseudo) relative permeability to obtain the same spreading. Generally, is derived by using fine-grid numerical simulations (Kyte and Berry). However, this operation is time consuming and cannot be performed for all the meshes of the reservoir. We propose an alternate method which uses the information given by the stochastic properties of the field without any numerical simulation. The method is based on recent developments on homogenized transport equations (the {open_quotes}MHD{close_quotes} equation, Lenormand SPE 30797). The MHD equation accounts for the three basic mechanisms of spreading of the injected fluid: (1) Dispersive spreading due to small scale randomness, characterized by a macrodispersion coefficient D. (2) Convective spreading due to large scale heterogeneities (layers) characterized by a heterogeneity factor H. (3) Viscous fingering characterized by an apparent viscosity ration M. In the paper, we first derive the parameters D and H as functions of variance and correlation length of the permeability field. The results are shown to be in good agreement with fine-grid simulations. The are then derived a function of D, H and M. The main result is that this approach lead to a time dependent . Finally, the calculated are compared to the values derived by history matching using fine-grid numerical simulations.

  6. PHYSICS OF FLUIDS 24, 043102 (2012) A numerical investigation of the fluid mechanical

    E-Print Network [OSTI]

    Audoly, Basile

    2012-01-01

    PHYSICS OF FLUIDS 24, 043102 (2012) A numerical investigation of the fluid mechanical sewing or jet of liquid falling onto a fixed surface is one of the simplest situations in fluid mechanics, yet by Chiu-Webster and Lister9 (henceforth CWL), who called it the "fluid mechanical sewing machine

  7. Transport in inhomogeneous quantum critical fluids and in the Dirac fluid in graphene

    E-Print Network [OSTI]

    -impurity scattering. We use this formalism to compute transport coe cients in the Dirac fluid in clean sampleseaster egg Transport in inhomogeneous quantum critical fluids and in the Dirac fluid in graphene-perturbative in the strength of long wavelength fluctuations in the background charge density of the electronic fluid

  8. Introduction to Computational Fluid Dynamics 424512 E #1 -rz Introduction to Computational Fluid Dynamics

    E-Print Network [OSTI]

    Zevenhoven, Ron

    Introduction to Computational Fluid Dynamics 424512 E #1 - rz Introduction to Computational Fluid to Computational Fluid Dynamics 424512 E #1 - rz maj 2015 Åbo Akademi Univ - Thermal and Flow Engineering - Piispankatu 8, 20500 Turku 2 / 68 1.0 Course content / Time table #12;Introduction to Computational Fluid

  9. Transport coefficients of gluonic fluid

    E-Print Network [OSTI]

    Santosh K Das; Jan-e Alam

    2011-06-14

    The shear ($\\eta$) and bulk ($\\zeta$) viscous coefficients have been evaluated for a gluonic fluid. The elastic, $gg \\rightarrow gg$ and the inelastic, number non-conserving, $gg\\rightarrow ggg$ processes have been considered as the dominant perturbative processes in evaluating the viscous co-efficients to entropy density ($s$) ratios. Recently the processes: $gg \\rightarrow ggg$ has been revisited and a correction to the widely used Gunion-Bertsch (GB) formula has been obtained. The $\\eta$ and $\\zeta$ have been evaluated for gluonic fluid with the formula derived recently. The sensitivity of the quantity, $\\eta/s$ on the running coupling constant is also discussed. At $\\alpha_s=0.3$ we get $\\eta/s=0.24$ which is close to the value obtained from the analysis of the elliptic flow at RHIC experiments.

  10. Ellipsoidal particles at fluid interfaces

    E-Print Network [OSTI]

    H. Lehle; E. Noruzifar; M. Oettel

    2008-01-18

    For partially wetting, ellipsoidal colloids trapped at a fluid interface, their effective, interface--mediated interactions of capillary and fluctuation--induced type are analyzed. For contact angles different from 90$^o$, static interface deformations arise which lead to anisotropic capillary forces that are substantial already for micrometer--sized particles. The capillary problem is solved using an efficient perturbative treatment which allows a fast determination of the capillary interaction for all distances between and orientations of two particles. Besides static capillary forces, fluctuation--induced forces caused by thermally excited capillary waves arise at fluid interfaces. For the specific choice of a spatially fixed three--phase contact line, the asymptotic behavior of the fluctuation--induced force is determined analytically for both the close--distance and the long--distance regime and compared to numerical solutions.

  11. Electrokinetic micro-fluid mixer

    DOE Patents [OSTI]

    Paul, Phillip H. (Livermore, CA); Rakestraw, David J. (Fremont, CA)

    2000-01-01

    A method and apparatus for efficiently and rapidly mixing liquids in a system operating in the creeping flow regime such as would be encountered in capillary-based systems. By applying an electric field to each liquid, the present invention is capable of mixing together fluid streams in capillary-based systems, where mechanical or turbulent stirring cannot be used, to produce a homogeneous liquid.

  12. Hydrostatic bearings for a turbine fluid flow metering device

    DOE Patents [OSTI]

    Fincke, J.R.

    1982-05-04

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion. 3 figs.

  13. Numerical studies of fluid-rock interactions in Enhanced Geothermal Systems (EGS) with CO2 as working fluid

    E-Print Network [OSTI]

    Xu, Tianfu; Pruess, Karsten; Apps, John

    2008-01-01

    instead of water as heat transmission fluid. Initial studies2 ) instead of water as heat transmission fluid, and would

  14. The Dynamics of a Two-Fluid Bianchi Type I Universe

    E-Print Network [OSTI]

    Ikjyot Singh Kohli; Michael C. Haslam

    2015-07-19

    We use a dynamical systems approach based on the method of orthonormal frames to study the dynamics of a two-fluid, non-tilted Bianchi Type I cosmological model. In our model, one of the fluids is a fluid with bulk viscosity, while the other fluid assumes the role of a cosmological constant and represents nonnegative vacuum energy. We begin by completing a detailed fixed-points analysis of the system which gives information about the local sinks, sources and saddles. We then proceeded to analyze the global features of the dynamical system by using topological methods by finding the $\\alpha$- and $\\omega$-limit sets. The fixed points found are a flat FLRW universe, an Einstein-de Sitter universe, a de Sitter universe, a mixed FLRW universe with both vacuum and non-vacuum energy, and a Kasner universe. We then find conditions for which each equilibrium point was a saddle, sink, or source, and attempt to describe the global and past asymptotic behaviour of the model with respect to each fixed point. The flat FLRW universe solution we found with both vacuum and non-vacuum energy is clearly of primary importance with respect to modelling the present-day universe. In particular, we show that this equilibrium point is a local sink and a saddle of the dynamical system, so there are orbits that approach this equilibrium point in the future. Therefore, there exists a time period for which our cosmological model will isotropize and be compatible with present-day observations of a high degree of isotropy of the cosmic microwave background in addition to the existence of both vacuum and non-vacuum energy.

  15. Silica recovery and control in Hawaiian geothermal fluids. Final report

    SciTech Connect (OSTI)

    Thomas, D.M.

    1992-06-01

    A series of experiments was performed to investigate methods of controlling silica in waste geothermal brines produced at the HGP-A Generator Facility. Laboratory testing has shown that the rate of polymerization of silica in the geothermal fluids is highly pH dependent. At brine pH values in excess of 8.5 the suspension of silica polymers flocculated and rapidly precipitated a gelatinous silica mass. Optimum flocculation and precipitation rates were achieved at pH values in the range of 10.5 to 11.5. The addition of transition metal salts to the geothermal fluids similarly increased the rate of polymerization as well as the degree of precipitation of the silica polymer from suspension. A series of experiments performed on the recovered silica solids demonstrated that methanol extraction of the water in the gels followed by critical point drying yielded surface areas in excess of 300 M{sup 2}/g and that treatment of the dried solids with 2 N HCl removed most of the adsorbed impurities in the recovered product. A series of experiments tested the response of the waste brines to mixing with steam condensate and non-condensable gases.The results demonstrated that the addition of condensate and NCG greatly increased the stability of the silica in the geothermal brines. They also indicated that the process could reduce the potential for plugging of reinjection wells receiving waste geothermal fluids from commercial geothermal facilities in Hawaii. Conceptual designs were proposed to apply the gas re-combination approach to the disposal of geothermal waste fluids having a range of chemical compositions. Finally, these designs were applied to the geothermal fluid compositions found at Cerro Prieto, Ahuachapan, and Salton Sea.

  16. Silica recovery and control in Hawaiian geothermal fluids

    SciTech Connect (OSTI)

    Thomas, D.M.

    1992-06-01

    A series of experiments was performed to investigate methods of controlling silica in waste geothermal brines produced at the HGP-A Generator Facility. Laboratory testing has shown that the rate of polymerization of silica in the geothermal fluids is highly pH dependent. At brine pH values in excess of 8.5 the suspension of silica polymers flocculated and rapidly precipitated a gelatinous silica mass. Optimum flocculation and precipitation rates were achieved at pH values in the range of 10.5 to 11.5. The addition of transition metal salts to the geothermal fluids similarly increased the rate of polymerization as well as the degree of precipitation of the silica polymer from suspension. A series of experiments performed on the recovered silica solids demonstrated that methanol extraction of the water in the gels followed by critical point drying yielded surface areas in excess of 300 M{sup 2}/g and that treatment of the dried solids with 2 N HCl removed most of the adsorbed impurities in the recovered product. A series of experiments tested the response of the waste brines to mixing with steam condensate and non-condensable gases.The results demonstrated that the addition of condensate and NCG greatly increased the stability of the silica in the geothermal brines. They also indicated that the process could reduce the potential for plugging of reinjection wells receiving waste geothermal fluids from commercial geothermal facilities in Hawaii. Conceptual designs were proposed to apply the gas re-combination approach to the disposal of geothermal waste fluids having a range of chemical compositions. Finally, these designs were applied to the geothermal fluid compositions found at Cerro Prieto, Ahuachapan, and Salton Sea.

  17. Trace element and isotope geochemistry of geothermal fluids, East Rift Zone, Kilauea, Hawaii

    SciTech Connect (OSTI)

    West, H.B.; Delanoy, G.A.; Thomas, D.M. . Hawaii Inst. of Geophysics); Gerlach, D.C. ); Chen, B.; Takahashi, P.; Thomas, D.M. Evans and Associates, Redwood City, CA )

    1992-01-01

    A research program has been undertaken in an effort to better characterize the composition and the precipitation characteristic of the geothermal fluids produced by the HGP-A geothermal well located on the Kilauea East Rift Zone on the Island of Hawaii. The results of these studies have shown that the chemical composition of the fluids changed over the production life of the well and that the fluids produced were the result of mixing of at least two, and possibly three, source fluids. These source fluids were recognized as: a sea water composition modified by high temperature water-rock reactions; meteoric recharge; and a hydrothermal fluid that had been equilibrated with high temperature reservoir rocks and magmatic volatiles. Although the major alkali and halide elements show clearly increasing trends with time, only a few of the trace transition metals show a similar trend. The rare earth elements, were typically found at low concentrations and appeared to be highly variable with time. Studies of the precipitation characteristics of silica showed that amorphous silica deposition rates were highly sensitive to fluid pH and that increases in fluid pH above about 8.5 could flocculate more than 80% of the suspended colloidal silica in excess of its solubility. Addition of transition metal salts were also found to enhance the recovery fractions of silica from solution. The amorphous silica precipitate was also found to strongly scavenge the alkaline earth and transition metal ions naturally present in the brines; mild acid treatments were shown to be capable of removing substantial fractions of the scavenged metals from the silica flocs yielding a moderately pure gelatinous by-product. Further work on the silica precipitation process is recommended to improve our ability to control silica scaling from high temperature geothermal fluids or to recover a marketable silica by-product from these fluids prior to reinjection.

  18. Mechanistic modeling of increased oxygen transport using functionalized magnetic fluids in bioreactors

    E-Print Network [OSTI]

    Ollé Pocurull, Bernat

    2007-01-01

    Absorption of gases into a liquid is of crucial importance to multiphase reactions because diffusion of a sparingly soluble gas across a gas-liquid interface generally limits the relevant reaction rates. Pertinent examples ...

  19. Local pressure of confined fluids inside nanoslit pores -- A density functional theory prediction

    E-Print Network [OSTI]

    F. Heidari; G. A. Mansoori; E. Keshavarzi

    2013-07-18

    In this work, the local pressure of fluids confined inside nanoslit pores is predicted within the framework of the density functional theory. The Euler-Lagrange equation in the density functional theory of statistical mechanics is used to obtain the force balance equation which leads to a general equation to predict the local normal component of the pressure tensor. Our approach yields a general equation for predicting the normal pressure of confined fluids and it satisfies the exact bulk thermodynamics equation when the pore width approaches infinity. As two basic examples, we report the solution of the general equation for hard-sphere (HS) and Lennard-Jones (LJ) fluids confined between two parallel-structureless hard walls. To do so, we use the modified fundamental measure theory (mFMT) to obtain the normal pressure for hard-sphere confined fluid and mFMT incorporated with the Rosenfeld perturbative DFT for the LJ fluid. Effects of different variables including pore width, bulk density and temperature on the behavior of normal pressure are studied and reported. Our predicted results show that in both HS and LJ cases the confined fluids normal pressure has an oscillatory behavior and the number of oscillations increases with bulk density and temperature. The oscillations also become broad and smooth with pore width at a constant temperature and bulk density. In comparison with the HS confined fluid, the values of normal pressure for the LJ confined fluid as well as its oscillations at all distances from the walls are less profound.

  20. A biomechanical model of swallowing for understanding the influence of saliva and food bolus viscosity on flavour release

    E-Print Network [OSTI]

    De Loubens, Clément; Doyennette, Marion; Tréléa, Ioan Cristian; Souchon, Isabelle

    2013-01-01

    After swallowing a liquid or a semi-liquid food product, a thin film responsible for the dynamic profile of aroma release coats the pharyngeal mucosa. The objective of the present article was to understand and quantify physical mechanisms explaining pharyngeal mucosa coating. An elastohydrodynamic model of swallowing was developed for Newtonian liquids that focused on the most occluded region of the pharyngeal peristaltic wave. The model took lubrication by a saliva film and mucosa deformability into account. Food bolus flow rate and generated load were predicted as functions of three dimensionless variables: the dimensionless saliva flow rate, the viscosity ratio between saliva and the food bolus, and the elasticity number. Considering physiological conditions, the results were applied to predict aroma release kinetics. Two sets of conditions were distinguished. The first one was obtained when the saliva film is thin, in which case food bolus viscosity has a strong impact on mucosa coating and on flavour rel...

  1. Viscosity of NaCl and other solutions up to 350{sup 0}C and 50 MPa pressures

    SciTech Connect (OSTI)

    Phillips, S.L.; Ozbek, H.; Igbene, A.; Litton, G.

    1980-11-01

    Experimental values for the viscosity of sodium chloride solutions are critically reviewed for application to geothermal energy. Data published recently by Kestin, Los, Pepinov, and Semenyuk as well as earlier data are included. A theoretically based equation for calculating relative viscosity was developed, and used to generate tables of smoothed values over the ranges 20{sup 0}C to 350{sup 0}C, 0 to 5 m and pressures up to 50 MPa. The equation reproduces selected data to an average of better than 2 percent over the entire range of temperatures and pressures. Selected tables of data are included for KCl up to 150{sup 0}C, CaCl{sub 2} solutions up to 100{sup 0}C, and for mixtures of NaCl with KCl and CaCl{sub 2}. Recommendations are given for additional data needs.

  2. The Start Of Ebullition In Quiescent, Yield-Stress Fluids

    SciTech Connect (OSTI)

    Reed, G. R.; Sherwood, David J.; Saez, A. Eduardo

    2012-08-30

    Non-Newtonian rheology is typical for the high-level radioactive waste (HLW) slurries processed in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Hydrogen and other flammable gases are generated in the aqueous phase by radiolytic and chemical reactions. HLW slurries have a capacity for retaining gas characterized by the shear strength holding the bubbles still. The sizes and degassing characteristics of flammable gas bubbles in the HLW slurries expected to be processed by the WTP are important considerations for designing equipment and operating procedures. Slurries become increasingly susceptible to degassing as the bubble concentration increases. This susceptibility and the process of ebullitive bubble enlargement are described here. When disturbed, the fluid undergoes localized flow around neighboring bubbles which are dragged together and coalesce, producing an enlarged bubble. For the conditions considered in this work, bubble size increase is enough to displace the weight required to overcome the fluid shear strength and yield the surroundings. The buoyant bubble ascends and accumulates others within a zone of influence, enlarging by a few orders of magnitude. This process describes how the first bubbles appear on the surface of a 7 Pa shear strength fluid a few seconds after being jarred.

  3. Heat pump/refrigerator using liquid working fluid

    DOE Patents [OSTI]

    Wheatley, John C. (Del Mar, CA); Paulson, Douglas N. (Del Mar, CA); Allen, Paul C. (Solana Beach, CA); Knight, William R. (Corvallis, OR); Warkentin, Paul A. (San Diego, CA)

    1982-01-01

    A heat transfer device is described that can be operated as a heat pump or refrigerator, which utilizes a working fluid that is continuously in a liquid state and which has a high temperature-coefficient of expansion near room temperature, to provide a compact and high efficiency heat transfer device for relatively small temperature differences as are encountered in heating or cooling rooms or the like. The heat transfer device includes a pair of heat exchangers that may be coupled respectively to the outdoor and indoor environments, a regenerator connecting the two heat exchangers, a displacer that can move the liquid working fluid through the heat exchangers via the regenerator, and a means for alternately increasing and decreasing the pressure of the working fluid. The liquid working fluid enables efficient heat transfer in a compact unit, and leads to an explosion-proof smooth and quiet machine characteristic of hydraulics. The device enables efficient heat transfer as the indoor-outdoor temperature difference approaches zero, and enables simple conversion from heat pumping to refrigeration as by merely reversing the direction of a motor that powers the device.

  4. Computerized tomographic analysis of fluid flow in fractured tuff

    SciTech Connect (OSTI)

    Felice, C.W.; Sharer, J.C.; Springer, E.P.

    1992-05-01

    The purpose of this summary is to demonstrate the usefulness of X-ray computerized tomography to observe fluid flow down a fracture and rock matrix imbibition in a sample of Bandelier tuff. This was accomplished by using a tuff sample 152.4 mm long and 50.8 mm in diameter. A longitudinal fracture was created by cutting the core with a wire saw. The fractured piece was then coupled to its adjacent section to that the fracture was not expected. Water was injected into a dry sample at five flow rates and CT scanning performed at set intervals during the flow. Cross sectional images and longitudinal reconstructions were built and saturation profiles calculated for the sample at each time interval at each flow rate. The results showed that for the test conditions, the fracture was not a primary pathway of fluid flow down the sample. At a slow fluid injection rate into the dry sample, the fluid was imbibed into the rock uniformly down the length of the core. With increasing injection rates, the flow remained uniform over the core cross section through complete saturation.

  5. Computerized tomographic analysis of fluid flow in fractured tuff

    SciTech Connect (OSTI)

    Felice, C.W.; Sharer, J.C. ); Springer, E.P. )

    1992-01-01

    The purpose of this summary is to demonstrate the usefulness of X-ray computerized tomography to observe fluid flow down a fracture and rock matrix imbibition in a sample of Bandelier tuff. This was accomplished by using a tuff sample 152.4 mm long and 50.8 mm in diameter. A longitudinal fracture was created by cutting the core with a wire saw. The fractured piece was then coupled to its adjacent section to that the fracture was not expected. Water was injected into a dry sample at five flow rates and CT scanning performed at set intervals during the flow. Cross sectional images and longitudinal reconstructions were built and saturation profiles calculated for the sample at each time interval at each flow rate. The results showed that for the test conditions, the fracture was not a primary pathway of fluid flow down the sample. At a slow fluid injection rate into the dry sample, the fluid was imbibed into the rock uniformly down the length of the core. With increasing injection rates, the flow remained uniform over the core cross section through complete saturation.

  6. Fluid cooled vehicle drive module

    DOE Patents [OSTI]

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.

    2005-11-15

    An electric vehicle drive includes a support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EM/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  7. Immersible solar heater for fluids

    DOE Patents [OSTI]

    Kronberg, James W. (Aiken, SC)

    1995-01-01

    An immersible solar heater comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

  8. Fluid Dynamics and Solid Mechanics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article) |FinalIndustrial Technologies Industrial3 Fluid Dynamics

  9. A note on entropy production by advective and diffusive processes in the Madelung quantum fluid

    E-Print Network [OSTI]

    Eyal Heifetz; Eliahu Cohen; Zohar Nussinov

    2015-09-03

    The Madelung equations map the non-relativistic time-dependent Schrodinger equation into hydrodynamic equations of a virtual fluid. In this short note we show that an increase of the quantum fluid's Gibbs entropy is proportional to the expectation value of the Madelung fluid divergence results from advective processes. Therefore, it must be accompanied by expansion of the Madelung fluid. This intuitive result stands in agreement with the consequence of previous energy considerations of the Madelung fluid in which adiabatic expansion increases "disorder" and decreases the internal energy represented by the Fisher information. We also show that unlike diffusive processes, the entropy production is not proportional to the Fisher information, simply because the quantum continuity equation does not obey Fick's second law. Nonetheless, the entropy production is also equal to the expectation value of the inner product between the advective and the diffusive velocities of the Madelung fluid, which are proportional respectively to the real and imaginary parts of the complex momentum. Furthermore, the diffusion coefficient of the Madelung fluid, in its simplest form of ideal gas, gives rise to the lower bound of Heisenberg's uncertainty principle in terms of the gas mean free path and the Brownian momentum.

  10. Constraints on the second order transport coefficients of an uncharged fluid

    E-Print Network [OSTI]

    Sayantani Bhattacharyya

    2012-06-29

    In this note we have tried to determine how the existence of a local entropy current with non-negative divergence constrains the second order transport coefficients of an uncharged fluid, following the procedure described in \\cite{Romatschke:2009kr}. Just on symmetry ground the stress tensor of an uncharged fluid can have 15 transport coefficients at second order in derivative expansion. The condition of entropy-increase gives five relations among these 15 coefficients. So finally the relativistic stress tensor of an uncharged fluid can have 10 independent transport coefficients at second order.

  11. Split driveshaft pump for hazardous fluids

    DOE Patents [OSTI]

    Evans, II, Thomas P. (Aiken, SC); Purohit, Jwalit J. (Evans, GA); Fazio, John M. (Orchard Park, NY)

    1995-01-01

    A pump having a split driveshaft for use in pumping hazardous fluids wherein only one driveshaft becomes contaminated by the fluid while the second remains isolated from the fluid. The pump has a first portion and a second portion. The first portion contains a pump motor, the first driveshaft, a support pedestal, and vapor barriers and seals. The second portion contains a second, self-lubricating driveshaft and an impeller. The first and second driveshafts are connected together by a releasable coupling. A shield and a slinger deployed below the coupling prevent fluid from the second portion from reaching the first portion. In operation, only the second assembly comes into contact with the fluid being pumped, so the risk of contamination of the first portion by the hazardous fluid is reduced. The first assembly can be removed for repairs or routine maintenance by decoupling the first and second driveshafts and disconnecting the motor from the casing.

  12. System and method for filling a plurality of isolated vehicle fluid circuits through a common fluid fill port

    DOE Patents [OSTI]

    Sullivan, Scott C; Fansler, Douglas

    2014-10-14

    A vehicle having multiple isolated fluid circuits configured to be filled through a common fill port includes a first fluid circuit disposed within the vehicle, the first fluid circuit having a first fill port, a second fluid circuit disposed within the vehicle, and a conduit defining a fluid passageway between the first fluid circuit and second fluid circuit, the conduit including a valve. The valve is configured such that the first and second fluid circuits are fluidly coupled via the passageway when the valve is open, and are fluidly isolated when the valve is closed.

  13. Fluid control structures in microfluidic devices

    DOE Patents [OSTI]

    Mathies, Richard A. (Moraga, CA); Grover, William H. (Berkeley, CA); Skelley, Alison (Berkeley, CA); Lagally, Eric (Oakland, CA); Liu, Chung N. (Albany, CA)

    2008-11-04

    Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.

  14. Vibratory pumping of a free fluid stream

    DOE Patents [OSTI]

    Merrigan, M.A.; Woloshun, K.A.

    1990-11-13

    A vibratory fluid pump is described having a force generator for generating asymmetric periodic waves or oscillations connected to one end of one or more fluid conveyance means, such as filaments. The opposite ends of the filaments are connected to springs. Fluid introduced onto the filaments will traverse along the filaments according to the magnitude of the positive and negative excursions of the periodic waves or oscillations, and can be recovered from the filaments. 3 figs.

  15. Localization of Shear in Saturated Granular Media: Insights from a Multi-Scaled Granular-Fluid Model

    E-Print Network [OSTI]

    Aharonov, Einat; Sparks, David; Toussaint, Renaud

    2013-01-01

    The coupled mechanics of fluid-filled granular media controls the behavior of many natural systems such as saturated soils, fault gouge, and landslides. The grain motion and the fluid pressure influence each other: It is well established that when the fluid pressure rises, the shear resistance of fluid-filled granular systems decreases, and as a result catastrophic events such as soil liquefaction, earthquakes, and accelerating landslides may be triggered. Alternatively, when the pore pressure drops, the shear resistance of these systems increases. Despite the great importance of the coupled mechanics of grains-fluid systems, the basic physics that controls this coupling is far from understood. We developed a new multi-scaled model based on the discrete element method, coupled with a continuum model of fluid pressure, to explore this dynamical system. The model was shown recently to capture essential feedbacks between porosity changes arising from rearrangement of grains, and local pressure variations due to ...

  16. Hydrostatic bearings for a turbine fluid flow metering device

    DOE Patents [OSTI]

    Fincke, J.R.

    1980-05-02

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

  17. Stress relaxation and creep experiments with the atomic force microscope: a unified method to calculate elastic moduli and viscosities of biomaterials (and cells)

    E-Print Network [OSTI]

    Moreno-Flores, Susana; Vivanco, Maria dM; Toca-Herrera, Jose Luis

    2010-01-01

    We show that the atomic force microscope can perform stress relaxation and creep compliance measurements on living cells. We propose a method to obtain the mechanical properties of the studied biomaterial: the relaxation time, the elastic moduli and the viscosity.

  18. Gas powered fluid gun with recoil mitigation

    SciTech Connect (OSTI)

    Grubelich, Mark C; Yonas, Gerold

    2013-11-12

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  19. Fluid casting of particle-based articles

    DOE Patents [OSTI]

    Menchhofer, Paul (Oak Ridge, TN)

    1995-01-01

    A method for the production of articles made of a particle-based material; e.g., ceramics and sintered metals. In accordance with one aspect of the invention, a thermally settable slurry containing a relatively high concentration of the particles is introduced into an immiscible, heated fluid. The slurry sets or hardens into a shape determined by the physical characteristics of the fluid and the manner of introduction of the slurry into the fluid. For example, the slurry is pulse injected into the fluid to provide spherical articles. The hardened spheres may then be sintered to consolidate the particles and provide a high density product.

  20. Methodologies for Reservoir Characterization Using Fluid Inclusion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Surveys Chemical Signatures of and Precursors to Fractures Using Fluid Inclusion Stratigraphy Creation of an Engineered Geothermal System through Hydraulic and Thermal...

  1. DISPLAYING AND INTERPRETING FLUID INCLUSION STRATIGRAPHY ANALYSES...

    Open Energy Info (EERE)

    DISPLAYING AND INTERPRETING FLUID INCLUSION STRATIGRAPHY ANALYSES ON MUDLOG GRAPHS Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings:...

  2. Solution generating theorems for perfect fluid spheres

    E-Print Network [OSTI]

    Petarpa Boonserm; Matt Visser; Silke Weinfurtner

    2006-09-20

    The first static spherically symmetric perfect fluid solution with constant density was found by Schwarzschild in 1918. Generically, perfect fluid spheres are interesting because they are first approximations to any attempt at building a realistic model for a general relativistic star. Over the past 90 years a confusing tangle of specific perfect fluid spheres has been discovered, with most of these examples seemingly independent from each other. To bring some order to this collection, we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres. In addition, we develop new ``solution generating'' theorems for the TOV, whereby any given solution can be ``deformed'' to a new solution. Because these TOV-based theorems work directly in terms of the pressure profile and density profile it is relatively easy to impose regularity conditions at the centre of the fluid sphere.

  3. PRECISION CLEANING OF SEMICONDUCTOR SURFACES USING CARBON DIOXIDE-BASED FLUIDS

    SciTech Connect (OSTI)

    J. RUBIN; L. SIVILS; A. BUSNAINA

    1999-07-01

    The Los Alamos National Laboratory, on behalf of the Hewlett-Packard Company, is conducting tests of a closed-loop CO{sub 2}-based supercritical fluid process, known as Supercritical CO{sub 2} Resist Remover (SCORR). We have shown that this treatment process is effective in removing hard-baked, ion-implanted photoresists, and appears to be fully compatible with metallization systems. We are now performing experiments on production wafers to assess not only photoresist removal, but also residual surface contamination due to particulate and trace metals. Dense-phase (liquid or supercritical) CO{sub 2}, since it is non-polar, acts like an organic solvent and therefore has an inherently high volubility for organic compounds such as oils and greases. Also, dense CO{sub 2} has a low-viscosity and a low dielectric constant. Finally, CO{sub 2} in the liquid and supercritical fluid states can solubilize metal completing agents and surfactants. This combination of properties has interesting implications for the removal not only of organic films, but also trace metals and inorganic particulate. In this paper we discuss the possibility of using CO{sub 2} as a precision-cleaning solvent, with particular emphasis on semiconductor surfaces.

  4. Fluid-Particle and Fluid-Structure Interactions in Inertial Microfluidics

    E-Print Network [OSTI]

    Amini, Hamed

    2012-01-01

    large-inertia laminar pipe flow. Journal of Fluid Mechanicsfluid are finite, still lies within the realm of laminar flow (

  5. Calculation of the ultracold neutron upscattering loss probability in fluid walled storage bottles using experimental measurements of the thermomechanical properties of Fomblin

    E-Print Network [OSTI]

    S. K. Lamoreaux; R. Golub

    2002-08-09

    We present experimental measurements of the properties of a liquid "Fomblin" surface obtained by the quasielastic scattering of laser light. The properties include the surface tension and viscosity as a function of temperature. The results are compared to the measurements of the bulk fluid properties. We then calculate the upscattering rate of ultracold neutrons (UCN) from thermally excited surface capillary waves on the liquid surface and compare the results to experimental measurements of the UCN lifetime in Fomblin fluid-walled UCN storage bottles, and show that the excess loss rate for UCN energies near the Fomblin potential can be explained. The rapid temperature dependence of the Fomblin storage lifetime is explained by our analysis.

  6. Influence of Fluid Velocity and Cell Concentration on the Transport of

    E-Print Network [OSTI]

    and Environmental Engineering, The Pennsylvania State University, 212 Sackett Building, University Park fluid velocity in a porous medium increases the number of collisions of passive colloids with particles/day). For passive colloids, the fractional retention (if R is a constant equal to 0.01) would increase by more than

  7. Temperature dependent vibrational lifetimes in supercritical fluids near the critical point

    E-Print Network [OSTI]

    Fayer, Michael D.

    also initially increases with increasing temperature. However, in supercritical CO2 at the critical, fluoroform, and CO2 solvents are presented and analyzed. The measurements are made at constant densityTemperature dependent vibrational lifetimes in supercritical fluids near the critical point D. J

  8. Under consideration for publication in J. Fluid Mech. 1 Hydroelastic waves on fluid sheets

    E-Print Network [OSTI]

    Parau, Emilian I.

    ). In particular our work may find application in flat plate-type fuel assemblies found in nuclear reactor coolingUnder consideration for publication in J. Fluid Mech. 1 Hydroelastic waves on fluid sheets M. G. B 6BT, UK (Received 26 March 2012) Nonlinear travelling waves on a two-dimensional inviscid fluid

  9. Journal of Fluids and Structures (1996) 10, 395420 FLUID-STRUCTURE INTERACTION AND

    E-Print Network [OSTI]

    Tijsseling, A.S.

    1996-01-01

    of cooling-water systems in nuclear power stations, the reliability of fuel injection systems in aircraftJournal of Fluids and Structures (1996) 10, 395­420 FLUID-STRUCTURE INTERACTION AND CAVITATION) The simultaneous occurrence of fluid-structure interaction (FSI) and vaporous cavitation in the transient vibration

  10. Laser microfluidics : fluid actuation by light Laser microfluidics: fluid actuation by light

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Laser microfluidics : fluid actuation by light Laser microfluidics: fluid actuation by light Jean.delville@cpmoh.u-bordeaux1.fr Abstract: The development of microfluidic devices is still hindered by the lack of robust to extend this concept to microfluidic two-phase flows. First, we investigate the destabilization of fluid

  11. Immersible solar heater for fluids

    DOE Patents [OSTI]

    Hazen, T.C.; Fliermans, C.B.

    1994-01-01

    An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

  12. Immersible solar heater for fluids

    DOE Patents [OSTI]

    Kronberg, J.W.

    1995-07-11

    An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater. 11 figs.

  13. Pressurized-fluid-operated engine

    SciTech Connect (OSTI)

    Holleyman, J.E.

    1990-01-30

    This patent describes a pressurized-fluid-operated reciprocating engine for providing output power by use of a pressurized gas that expands within the engine without combustion. It comprises: an engine block having a plurality of cylinders within which respective pistons are reciprocatable to provide a rotary power output; gas inlet means connected with the engine block for introducing a pressurized gas into the respective cylinders in a predetermined, timed relationship to provide a smooth power output from the engine; gas outlet means connected with the engine block for conveying exhaust gas from the respective cylinders after the gas expanded to move the pistons within the cylinders; and recirculation means extending between the inlet means and the outlet means for recirculation a predetermined quantity of exhaust gas. The recirculation means including ejector means for drawing exhaust gas into the recirculation means.

  14. Order-Disorder structural transition in a confined fluid

    E-Print Network [OSTI]

    Elsa M. de la Calleja-Mora; Leandro B. Krott; Marcia C. Barbosa

    2015-08-07

    In this paper the amorphous/solid to disorder liquid structural phase transitions of an anomalous confined fluid is analyzed using their local fractal dimension. The model is a system of particles interacting through a two length scales potentials confined by two infinite plates. In the bulk, this fluid exhibit water-like anomalies and under confinement forms layers of particles. The particle distributions of them, present different arrangements related to amorphous/solid phases. Here only the contact layer is analyzed through fractal singularity spectrum. At high densities the structural transition its quantify by the order degree to determine the phases affected by the confinement. This mapping shows that the system as the temperature increased, the fractal dimension decreases, which is consistent with the behavior studying in such systems. This result suggests that under thermodynamic perturbations, an anomalous confined liquid, presents different phase transitions achieving be characterized by its fractality.

  15. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2012; 00:114

    E-Print Network [OSTI]

    Hartmann, Ralf

    R. Hartmann SUMMARY Discontinuous Galerkin (DG) methods allow high-order flow solutions. The proposed artificial viscosity term is a combination of the shock-capturing scheme developed in Hartmann [2.00] #12;2 R. HARTMANN for the laminar compressible Navier-Stokes equations and the shock-capturing scheme

  16. Fluid substitution in rocks saturated with viscoelastic fluids Dina Makarynska1

    E-Print Network [OSTI]

    , Jyoti Behura3 , and Mike Batzle4 ABSTRACT Heavy oils have high densities and extremely high viscosities sands.We model the viscoelastic properties of a heavy- oil-saturated rock sample using CPA and a measured frequency- dependent complex shear modulus of the heavy oil. Comparison of modeled results

  17. MEC E 230 Introduction to thermo-fluid sciences

    E-Print Network [OSTI]

    Flynn, Morris R.

    . Introduction to fluid mechanics. Fluid properties. Fluid statics. Use of control volumes. Internal flows. Pre in mechanical engineering. The physics of heat transfer and fluid mechanics are introduced. · Understand tension in calculating pressure in a fluid · Calculate static pressure and forces on immersed objects

  18. William Benton and Jim Turner, Cabot Specialty Fluids

    E-Print Network [OSTI]

    Laughlin, Robert B.

    with a range of beneficial properties. This makes them ideally suited for use as drilling and completion fluids for use as a drilling fluid, which are stable to 160°C. Drilling fluids made up of formate-based fluids materials, whereas a typical drilling fluid will contain up to 40% by volume of solids to obtain

  19. Foam vessel for cryogenic fluid storage

    DOE Patents [OSTI]

    Spear, Jonathan D (San Francisco, CA)

    2011-07-05

    Cryogenic storage and separator vessels made of polyolefin foams are disclosed, as are methods of storing and separating cryogenic fluids and fluid mixtures using these vessels. In one embodiment, the polyolefin foams may be cross-linked, closed-cell polyethylene foams with a density of from about 2 pounds per cubic foot to a density of about 4 pounds per cubic foot.

  20. It's The Fluids SEG Honorary Lecture

    E-Print Network [OSTI]

    information please visit: #12;·WATER and BRINE (BRINE = H2O + Salt) ·HYDROCARBONS Oil Gas TYPES of PORE FLUIDS Gas Mixtures ·DRILLING MUD ·PRODUCTION FLUIDS Miscible Injectants (CO2, Enriched Gas) #12;From Ivar = Porosity = Density sat = 0 (1- ) + f Density: #12;·WATER and BRINE (BRINE = H2O + Salt) ·HYDROCARBONS Oil

  1. Fluid Neutral Momentum Transport Reference Problem

    E-Print Network [OSTI]

    Budny, Robert

    Fluid Neutral Momentum Transport Reference Problem D. P. Stotler, PPPL S. I. Krasheninnikov, UCSD 1 Summary Type of problem: kinetic or fluid neutral transport Physics or algorithm stressed: thermal force term (spatial resolution) in momentum transport equation and treatment of collisions (charge ex- change

  2. PKN problem for non-Newtonian fluid

    E-Print Network [OSTI]

    Linkov, Alexander

    2012-01-01

    The paper presents analytical solution for hydraulic fracture driven by a non-Newtonian fluid and propagating under plane strain conditions in cross sections parallel to the fracture front. Conclusions are drawn on the influence of the fluid properties on the fracture propagation.

  3. Thermal System Design Thermal/Fluids

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    of thermodynamics, heat transfer, and fluid mechanics ? Hardware: fans, pumps, compressors, engines, heat exchangers, fluids transport, and food, chemical, and process industries #12;3 Basic Course Topics ? Analysis networks ? Thermodynamics: modeling and optimization of a refrigeration system ? Heat Transfer: design

  4. Fluid&ParticulateSystems 424514/2010

    E-Print Network [OSTI]

    Zevenhoven, Ron

    Åbo / Turku Finland Source: C06 #12;Fluid&ParticulateSystems 424514/2010 Fluid&ParticulateSystems ÅA below ~5 m Problems above ~ 400 °C februari 2014 RoNz 7Åbo Akademi University - Värme- och d dd For a certain cyclone and a certain gas, the separation efficiency c is a function

  5. Extreme pressure fluid sample transfer pump

    DOE Patents [OSTI]

    Halverson, Justin E. (Grovertown, GA); Bowman, Wilfred W. (North Augusta, SC)

    1990-01-01

    A transfer pump for samples of fluids at very low or very high pressures comprising a cylinder having a piston sealed with an O-ring, the piston defining forward and back chambers, an inlet and exit port and valve arrangement for the fluid to enter and leave the forward chamber, and a port and valve arrangement in the back chamber for adjusting the pressure across the piston so that the pressure differential across the piston is essentially zero and approximately equal to the pressure of the fluid so that the O-ring seals against leakage of the fluid and the piston can be easily moved, regardless of the pressure of the fluid. The piston may be actuated by a means external to the cylinder with a piston rod extending through a hole in the cylinder sealed with a bellows attached to the piston head and the interior of the back chamber.

  6. Fluid transport by active elastic membranes

    E-Print Network [OSTI]

    Arthur A. Evans; Eric Lauga

    2013-02-10

    A flexible membrane deforming its shape in time can self-propel in a viscous fluid. Alternatively, if the membrane is anchored, its deformation will lead to fluid transport. Past work in this area focused on situations where the deformation kinematics of the membrane were prescribed. Here we consider models where the deformation of the membrane is not prescribed, but instead the membrane is internally forced. Both the time-varying membrane shape, and the resulting fluid motion, result then from a balance between prescribed internal active stresses, internal passive resistance, and external viscous stresses. We introduce two specific models for such active internal forcing: one where a distribution of active bending moments is prescribed, and one where active inclusions exert normal stresses on the membrane by pumping fluid through it. In each case, we asymptotically calculate the membrane shape and the fluid transport velocities for small forcing amplitudes, and recover our results using scaling analysis.

  7. Modelling anisotropic fluid spheres in general relativity

    E-Print Network [OSTI]

    Petarpa Boonserm; Tritos Ngampitipan; Matt Visser

    2015-02-03

    We argue that an arbitrary general relativistic anisotropic fluid sphere, (spherically symmetric but with transverse pressure not equal to radial pressure), can nevertheless be successfully modelled by suitable linear combinations of quite ordinary classical matter: an isotropic perfect fluid, a classical electromagnetic field, and a classical (minimally coupled) scalar field. While the most general decomposition is not unique, a preferred minimal decomposition can be constructed that is unique. We show how the classical energy conditions for the anisotropic fluid sphere can be related to energy conditions for the isotropic perfect fluid, electromagnetic field, and scalar field components of the model. Furthermore we show how this decomposition relates to the distribution of electric charge density and scalar charge density throughout the model that is used to mimic the anisotropic fluid sphere. Consequently, we can build physically reasonable matter models for almost any spherically symmetric spacetime.

  8. Euler's fluid equations: Optimal Control vs Optimization

    E-Print Network [OSTI]

    Darryl D. Holm

    2009-09-28

    An optimization method used in image-processing (metamorphosis) is found to imply Euler's equations for incompressible flow of an inviscid fluid, without requiring that the Lagrangian particle labels exactly follow the flow lines of the Eulerian velocity vector field. Thus, an optimal control problem and an optimization problem for incompressible ideal fluid flow both yield the \\emph {same} Euler fluid equations, although their Lagrangian parcel dynamics are \\emph{different}. This is a result of the \\emph{gauge freedom} in the definition of the fluid pressure for an incompressible flow, in combination with the symmetry of fluid dynamics under relabeling of their Lagrangian coordinates. Similar ideas are also illustrated for SO(N) rigid body motion.

  9. Fluid permeability measurement system and method

    DOE Patents [OSTI]

    Hallman, Jr., Russell Louis (Knoxville, TN); Renner, Michael John (Oak Ridge, TN)

    2008-02-05

    A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

  10. Conformal higher-order viscoelastic fluid mechanics

    E-Print Network [OSTI]

    Masafumi Fukuma; Yuho Sakatani

    2012-05-28

    We present a generally covariant formulation of conformal higher-order viscoelastic fluid mechanics with strain allowed to take arbitrarily large values. We give a general prescription to determine the dynamics of a relativistic viscoelastic fluid in a way consistent with the hypothesis of local thermodynamic equilibrium and the second law of thermodynamics. We then elaborately study the transient time scales at which the strain almost relaxes and becomes proportional to the gradients of velocity. We particularly show that a conformal second-order fluid with all possible parameters in the constitutive equations can be obtained without breaking the hypothesis of local thermodynamic equilibrium, if the conformal fluid is defined as the long time limit of a conformal second-order viscoelastic system. We also discuss how local thermodynamic equilibrium could be understood in the context of the fluid/gravity correspondence.

  11. Systems, compositions, and methods for fluid purification

    DOE Patents [OSTI]

    Ho, W.S. Winston; Verweij, Hendrik; Shqau, Krenar; Ramasubranian, Kartik

    2015-12-22

    Disclosed herein are membranes comprising a substrate, a support layer, and a selective layer. In some embodiments the membrane may further comprise a permeable layer. Methods of forming membranes are also disclosed comprising forming a support layer on a substrate, removing adsorbed species from the support layer, preparing a solution containing inorganic materials of a selective layer, contacting the support layer with the solution, drying the membrane, and exposing the membrane to rapid thermal processing. Also disclosed are methods of fluid purification comprising providing a membrane having a feed side and a permeable side, passing a fluid mixture across the feed side of the membrane, providing a driving force for transmembrane permeation, removing from the permeate side a permeate stream enriched in a purified fluid, and withdrawing from the feed side a fluid that is depleted in a purified fluid.

  12. Modelling anisotropic fluid spheres in general relativity

    E-Print Network [OSTI]

    Boonserm, Petarpa; Visser, Matt

    2015-01-01

    We argue that an arbitrary general relativistic anisotropic fluid sphere, (spherically symmetric but with transverse pressure not equal to radial pressure), can nevertheless be successfully modelled by suitable linear combinations of quite ordinary classical matter: an isotropic perfect fluid, a classical electromagnetic field, and a classical (minimally coupled) scalar field. While the most general decomposition is not unique, a preferred minimal decomposition can be constructed that is unique. We show how the classical energy conditions for the anisotropic fluid sphere can be related to energy conditions for the isotropic perfect fluid, electromagnetic field, and scalar field components of the model. Furthermore we show how this decomposition relates to the distribution of electric charge density and scalar charge density throughout the model that is used to mimic the anisotropic fluid sphere. Consequently, we can build physically reasonable matter models for almost any spherically symmetric spacetime.

  13. Chapter 17 in Encyclopedia of Computational Mechanics, Volume 3: Fluids Finite Element Methods for Fluid Dynamics with

    E-Print Network [OSTI]

    Tezduyar, Tayfun E.

    Chapter 17 in Encyclopedia of Computational Mechanics, Volume 3: Fluids Finite Element Methods surfaces, two-fluid interfaces, fluid­object and fluid­structure in- teractions, and moving mechanical in Encyclopedia of Computational Mechanics, Volume 3: Fluids (eds. E. Stein, R. De Borst and T.J.R. Hughes), John

  14. Fluid dynamic effects on precision cleaning with supercritical fluids

    SciTech Connect (OSTI)

    Phelps, M.R.; Hogan, M.O.; Silva, L.J.

    1994-06-01

    Pacific Northwest Laboratory staff have assembled a small supercritical fluids parts cleaning test stand to characterize how system dynamics affect the efficacy of precision cleaning with supercritical carbon dioxide. A soiled stainless steel coupon, loaded into a ``Berty`` autoclave, was used to investigate how changes in system turbulence and solvent temperature influenced the removal of test dopants. A pulsed laser beam through a fiber optic was used to investigate real-time contaminant removal. Test data show that cleaning efficiency is a function of system agitation, solvent density, and temperature. These data also show that high levels of cleaning efficiency can generally be achieved with high levels of system agitation at relatively low solvent densities and temperatures. Agitation levels, temperatures, and densities needed for optimal cleaning are largely contaminant dependent. Using proper system conditions, the levels of cleanliness achieved with supercritical carbon dioxide compare favorably with conventional precision cleaning methods. Additional research is currently being conducted to generalize the relationship between cleaning performance and parameters such as contaminant solubilities, mass transfer rates, and solvent agitation. These correlations can be used to optimize cleaning performance, system design, and time and energy consumption for particular parts cleaning applications.

  15. Fluid-rock interaction: A reactive transport approach

    E-Print Network [OSTI]

    Steefel, C.

    2009-01-01

    to coupled mass transport and fluid-rock interaction in aof a reactive transport approach in fluid-rock interaction,reactive transport models for fluid-rock interaction. Case

  16. Formulation of the Chip Cleanability Mechanics from Fluid Transport

    E-Print Network [OSTI]

    Garg, Saurabh; Dornfeld, David; Klaus Berger

    2009-01-01

    Mechanics from fluid transport S. Garg , D. Dornfeld , K.simply relying on the fluid transport energy of highagain aids in their transport in the fluid stream. For a

  17. Effect of inertia on laminar swimming and flying of an assembly of rigid spheres in an incompressible viscous fluid

    E-Print Network [OSTI]

    Felderhof, B U

    2015-01-01

    A mechanical model of swimming and flying in an incompressible viscous fluid is studied on the basis of assumed equations of motion. The system is modeled as an assembly of rigid spheres subject to elastic direct interactions and to periodic actuating forces which sum to zero. Hydrodynamic interactions are taken into account in the virtual mass matrix and in the friction matrix of the assembly. An equation of motion is derived for the velocity of the geometric center of the assembly. The mean power is calculated as the sum of the mean rate of dissipation and a mean energy loss which is related to the rate of change of the virtual mass. The full range of viscosity is covered, so that the theory can be applied to the flying of birds, as well as to the swimming of fish or bacteria. As an example a system of three equal spheres moving along a common axis is studied.

  18. On the Representation of Dissipation as a Symplectic Process, with Application to sliding Friction and 2D viscous Fluid Mechanics

    E-Print Network [OSTI]

    Blender, Richard

    2015-01-01

    Dissipation can be represented in Hamiltonian mechanics in an extended phase space, as suggested by [Morse and Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York, 1953, Vol I, pp. 298-299]. The method uses an unphysical auxiliary variable which represents the excitation of unresolved dynamics (subscales) and a Hamiltonian for the interaction between the resolved dynamics and the auxiliary variable. This method is here applied both to a finite dimensional system, where dissipation takes the form of friction, and to an infinite dimensional system, namely viscous dissipation (including hyper-viscosity) in a two-dimensional fluid, for which the dynamics is non-canonical. We derive a metriplectic representation and suggest a measure for the entropy of the system.

  19. On the Representation of Dissipation as a Symplectic Process, with Application to sliding Friction and 2D viscous Fluid Mechanics

    E-Print Network [OSTI]

    Richard Blender; Gualtiero Badin

    2015-10-20

    Dissipation can be represented in Hamiltonian mechanics in an extended phase space, as suggested by [Morse and Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York, 1953, Vol I, pp. 298-299]. The method uses an unphysical auxiliary variable which represents the excitation of unresolved dynamics (subscales) and a Hamiltonian for the interaction between the resolved dynamics and the auxiliary variable. This method is here applied both to a finite dimensional system, where dissipation takes the form of friction, and to an infinite dimensional system, namely viscous dissipation (including hyper-viscosity) in a two-dimensional fluid, for which the dynamics is non-canonical. We derive a metriplectic representation and suggest a measure for the entropy of the system.

  20. Fluid processing device and method

    DOE Patents [OSTI]

    Whyatt, Greg A. (West Richland, WA); Davis, James M. (Richland, WA)

    2006-02-07

    A fluid processing unit having first and second interleaved flow paths in a cross flow configuration is disclosed. The first flow paths are substantially longer than the second flow paths such that the pressure drop in the second flow paths can be maintained at a relatively low level and temperature variations across the second flow paths are reduced. One or more of the flow paths can be microchannels. When used as a vaporizer and/or superheater, the longer first flow paths include an upstream liquid flow portion and a downstream vapor flow portion of enlarged cross sectional area. A substantial pressure drop is maintained through the upstream liquid flow portion for which one or more tortuous flow channels can be utilized. The unit is a thin panel, having a width substantially less its length or height, and is manufactured together with other thin units in a bonded stack of thin metal sheets. The individual units are then separated from the stack after bonding.

  1. Lagrangian perfect fluids and black hole mechanics

    E-Print Network [OSTI]

    Vivek Iyer

    1996-10-15

    The first law of black hole mechanics (in the form derived by Wald), is expressed in terms of integrals over surfaces, at the horizon and spatial infinity, of a stationary, axisymmetric black hole, in a diffeomorphism invariant Lagrangian theory of gravity. The original statement of the first law given by Bardeen, Carter and Hawking for an Einstein-perfect fluid system contained, in addition, volume integrals of the fluid fields, over a spacelike slice stretching between these two surfaces. When applied to the Einstein-perfect fluid system, however, Wald's methods yield restricted results. The reason is that the fluid fields in the Lagrangian of a gravitating perfect fluid are typically nonstationary. We therefore first derive a first law-like relation for an arbitrary Lagrangian metric theory of gravity coupled to arbitrary Lagrangian matter fields, requiring only that the metric field be stationary. This relation includes a volume integral of matter fields over a spacelike slice between the black hole horizon and spatial infinity, and reduces to the first law originally derived by Bardeen, Carter and Hawking when the theory is general relativity coupled to a perfect fluid. We also consider a specific Lagrangian formulation for an isentropic perfect fluid given by Carter, and directly apply Wald's analysis. The resulting first law contains only surface integrals at the black hole horizon and spatial infinity, but this relation is much more restrictive in its allowed fluid configurations and perturbations than that given by Bardeen, Carter and Hawking. In the Appendix, we use the symplectic structure of the Einstein-perfect fluid system to derive a conserved current for perturbations of this system: this current reduces to one derived ab initio for this system by Chandrasekhar and Ferrari.

  2. Modeling fluid flow in deformation bands with stabilized localization...

    Office of Scientific and Technical Information (OSTI)

    Modeling fluid flow in deformation bands with stabilized localization mixed finite elements. Citation Details In-Document Search Title: Modeling fluid flow in deformation bands...

  3. Microfluidics: Kinetics of Hybridized DNA With Fluid Flow Variations...

    Office of Scientific and Technical Information (OSTI)

    Conference: Microfluidics: Kinetics of Hybridized DNA With Fluid Flow Variations. Citation Details In-Document Search Title: Microfluidics: Kinetics of Hybridized DNA With Fluid...

  4. Application of Neutron Imaging and Scattering to Fluid Flow and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS...

  5. Synovial fluid homeostasis : bulk flow, lubricant transport, and biophysical restoration

    E-Print Network [OSTI]

    McCarty, William Joseph

    2012-01-01

    of synovial fluid lubricants hyaluronan and proteoglycan 4HOMEOSTASIS: BULK FLOW, LUBRICANT TRANSPORT, AND BIOPHYSICALmodel of synovial fluid lubricant composition in normal and

  6. Electric Power Generation from Coproduced Fluids from Oil and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power Generation from Coproduced Fluids from Oil and Gas Wells Electric Power Generation from Coproduced Fluids from Oil and Gas Wells The primary objective of this...

  7. Development of Molten-Salt Heat Trasfer Fluid Technology for...

    Energy Savers [EERE]

    Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar Power Plants Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar...

  8. ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID INCLUSION...

    Open Energy Info (EERE)

    > 0.001 mol % typically have ethane > ethylene, propane > propylene, and butane > butylene. There are three end member fluid compositions: type 1 fluids in which...

  9. Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (Rao...

    Open Energy Info (EERE)

    Fluid At Valles Caldera - Redondo Area (Rao, Et Al., 1996) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Valles...

  10. Property:FluidMechanicsMeasurement | Open Energy Information

    Open Energy Info (EERE)

    Property Name FluidMechanicsMeasurement Property Type String Description MHK Fluid Mechanics Measurement Categories Used in FormTemplate MHKSensor Allows Values Differential...

  11. Fracture Network and Fluid Flow Imaging for EGS Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure Fracture Network and Fluid Flow Imaging for EGS Applications from...

  12. Evaluation of Biodiesel Fuels from Supercritical Fluid Processing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel Fuels from Supercritical Fluid Processing with the Advanced Distillation Curve Method Evaluation of Biodiesel Fuels from Supercritical Fluid Processing with the Advanced...

  13. ITP Chemicals: Technology Roadmap for Computational Fluid Dynamics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fluid Dynamics, January 1999 ITP Chemicals: Technology Roadmap for Computational Fluid Dynamics, January 1999 cfdroadmap.pdf More Documents & Publications 3-D Combustion...

  14. A STOCHASTIC METHOD FOR MODELING FLUID DISPLACEMENT IN PETROLEUM RESERVOIRS

    E-Print Network [OSTI]

    Anderson, C.

    2011-01-01

    FLUID DISPLACEMENT IN PETROLEUM RESERVOIRS C. Anderson andFLUID DISPLACEMENT IN PETROLEUM RESERVOIRS C. Anderson andachieve optimal recovery of petroleum from a reservoir, it

  15. Volatiles in hydrothermal fluids- A mass spectrometric study...

    Open Energy Info (EERE)

    Volatiles in hydrothermal fluids- A mass spectrometric study of fluid inclusions from active geothermal systems Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  16. Fluid Inclusion Stratigraphy Interpretation of New Wells in the...

    Open Energy Info (EERE)

    Fluid Inclusion Stratigraphy Interpretation of New Wells in the Coso Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Fluid...

  17. High Operating Temperature Heat Transfer Fluids for Solar Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Operating Temperature Heat Transfer Fluids for Solar Thermal Power Generation FY13 Q1 High Operating Temperature Heat Transfer Fluids for Solar Thermal Power Generation FY13...

  18. Hamiltonian description of the ideal fluid

    SciTech Connect (OSTI)

    Morrison, P.J.

    1994-01-01

    Fluid mechanics is examined from a Hamiltonian perspective. The Hamiltonian point of view provides a unifying framework; by understanding the Hamiltonian perspective, one knows in advance (within bounds) what answers to expect and what kinds of procedures can be performed. The material is organized into five lectures, on the following topics: rudiments of few-degree-of-freedom Hamiltonian systems illustrated by passive advection in two-dimensional fluids; functional differentiation, two action principles of mechanics, and the action principle and canonical Hamiltonian description of the ideal fluid; noncanonical Hamiltonian dynamics with examples; tutorial on Lie groups and algebras, reduction-realization, and Clebsch variables; and stability and Hamiltonian systems.

  19. Apparatus and method for fluid analysis

    DOE Patents [OSTI]

    Wilson, Bary W.; Peters, Timothy J.; Shepard, Chester L.; Reeves, James H.

    2004-11-02

    The present invention is an apparatus and method for analyzing a fluid used in a machine or in an industrial process line. The apparatus has at least one meter placed proximate the machine or process line and in contact with the machine or process fluid for measuring at least one parameter related to the fluid. The at least one parameter is a standard laboratory analysis parameter. The at least one meter includes but is not limited to viscometer, element meter, optical meter, particulate meter, and combinations thereof.

  20. The Super-Higgs Mechanism in Fluids

    E-Print Network [OSTI]

    Karim Benakli; Yaron Oz; Giuseppe Policastro

    2013-10-18

    Supersymmetry is spontaneously broken when the field theory stress-energy tensor has a non-zero vacuum expectation value. In local supersymmetric field theories the massless gravitino and goldstino combine via the super-Higgs mechanism to a massive gravitino. We study this mechanism in four-dimensional fluids, where the vacuum expectation value of the stress-energy tensor breaks spontaneously both supersymmetry and Lorentz symmetry. We consider both constant as well as space-time dependent ideal fluids. We derive a formula for the gravitino mass in terms of the fluid velocity, energy density and pressure. We discuss some of the phenomenological implications.