Two-fluid Hydrodynamic Model for Fluid-Flow Simulation in Fluid-Solids Systems
Energy Science and Technology Software Center (OSTI)
1994-06-20
FLUFIX is a two-dimensional , transient, Eulerian, and finite-difference program, based on a two-fluid hydrodynamic model, for fluid flow simulation in fluid-solids systems. The software is written in a modular form using the Implicit Multi-Field (IMF) numerical technique. Quantities computed are the spatial distribution of solids loading, gas and solids velocities, pressure, and temperatures. Predicted are bubble formation, bed frequencies, and solids recirculation. Applications include bubbling and circulating atmospheric and pressurized fluidized bed reactors, combustors,more » gasifiers, and FCC (Fluid Catalytic Cracker) reactors.« less
Carrillo, Jose-Antonio Goudon, Thierry Lafitte, Pauline
2008-08-10
In this work, we propose asymptotic preserving numerical schemes for the bubbling and flowing regimes of particles immersed in a fluid treated by two-phase flow models. The description comprises compressible Euler equations for the dense phase (fluid) and a kinetic Fokker-Planck equation for the disperse phase (particles) coupled through friction terms. We show numerical simulations in the relevant case of gravity in the one-dimensional case demonstrating the overall behavior of the schemes.
Multiscale Simulation Framework for Coupled Fluid Flow and Mechanical Deformation
Tchelepi, Hamdi
2014-11-14
A multiscale linear-solver framework for the pressure equation associated with flow in highly heterogeneous porous formations was developed. The multiscale based approach is cast in a general algebraic form, which facilitates integration of the new scalable linear solver in existing flow simulators. The Algebraic Multiscale Solver (AMS) is employed as a preconditioner within a multi-stage strategy. The formulations investigated include the standard MultiScale Finite-Element (MSFE) andMultiScale Finite-Volume (MSFV) methods. The local-stage solvers include incomplete factorization and the so-called Correction Functions (CF) associated with the MSFV approach. Extensive testing of AMS, as an iterative linear solver, indicate excellent convergence rates and computational scalability. AMS compares favorably with advanced Algebraic MultiGrid (AMG) solvers for highly detailed three-dimensional heterogeneous models. Moreover, AMS is expected to be especially beneficial in solving time-dependent problems of coupled multiphase flow and transport in large-scale subsurface formations.
Gen Purpose 1-D Finite Element Network Fluid Flow Heat Transfer System Simulator
Energy Science and Technology Software Center (OSTI)
1993-08-02
SAFSIM (System Analysis Flow Simulator) is a FORTRAN computer program to simulate the integrated performance of systems involving fluid mechanics, heat transfer, and reactor dynamics. SAFSIM provides sufficient versatility to allow the engineering simulation of almost any system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary SAFSIM development goals. SAFSIM contains three basic physics modules: (1) a one-dimensional finite element fluid mechanicsmore » module with multiple flow network capability; (2) a one-dimensional finite element structure heat transfer module with multiple convection and radiation exchange capability; and (3) a point reactor dynamics module with reactivity feedback and decay heat capability. SAFSIM can be used for compressible and incompressible, single-phase, multicomponent flow systems.« less
TOUGH Simulations of the Updegraff's Set of Fluid and Heat Flow Problems
Moridis, G.J.; Pruess , K.
1992-11-01
The TOUGH code [Pruess, 1987] for two-phase flow of water, air, and heat in penneable media has been exercised on a suite of test problems originally selected and simulated by C. D. Updegraff [1989]. These include five 'verification' problems for which analytical or numerical solutions are available, and three 'validation' problems that model laboratory fluid and heat flow experiments. All problems could be run without any code modifications (*). Good and efficient numerical performance, as well as accurate results were obtained throughout. Additional code verification and validation problems from the literature are briefly summarized, and suggestions are given for proper applications of TOUGH and related codes.
Direct numerical simulations of fluid flow, heat transfer and phase changes
Juric, D.; Tryggvason, G.; Han, J.
1997-04-01
Direct numerical simulations of fluid flow, heat transfer, and phase changes are presented. The simulations are made possible by a recently developed finite difference/front tracking method based on the one-field formulation of the governing equations where a single set of conservation equations is written for all the phases involved. The conservation equations are solved on a fixed rectangular grid, but the phase boundaries are kept sharp by tracking them explicitly by a moving grid of lower dimension. The method is discussed and applications to boiling heat transfer and the solidification of drops colliding with a wall are shown.
Tartakovsky, Alexandre M.
2010-06-24
A new Lagrangian particle model based on smoothed particle hydrodynamics (SPH) was developed and used to simulate Darcy scale flow and transport in porous media. The proposed numerical method has excellent conservation properties and treats advection exactly. The method was used in stochastic analysis of miscible density driven fluid flows. It was found that heterogeneity significantly increases dispersion and slows development of Rayleigh-Taylor instability. The presented numerical examples illustrate the advantages of Lagrangian methods for stochastic transport simulations.
Multi-material incompressible flow simulation using the moment-of-fluid method
Garimella, R V; Schofield, S P; Lowrie, R B; Swartz, B K; Christon, M A; Dyadechko, V
2009-01-01
The Moment-of-Fluid interface reconstruction technique is implemented in a second order accurate, unstructured finite element variable density incompressible Navier-Stokes solver. For flows with multiple materials, MOF significantly outperforms existing first and second order interface reconstruction techniques. For two material flows, the performance of MOF is similar to other interface reconstruction techniques. For strongly driven bouyant flows, the errors in the flow solution dominate and all the interface reconstruction techniques perform similarly.
Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.
1976-01-01
A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.
Crandall, Dustin; Bromhal, Grant; Karpyn, Zuleima T.
2010-07-01
Understanding how fracture wall-roughness affects fluid flow is important when modeling many subsurface transport problems. Computed tomography scanning provides a unique view of rock fractures, allowing the measurement of fracture wall-roughness, without destroying the initial rock sample. For this computational fluid dynamics study, we used several different methods to obtain three-dimensional meshes of a computed tomography scanned fracture in Berea sandstone. These volumetric meshes had different wall-roughnesses, which we characterized using the Joint Roughness Coefficient and the fractal dimension of the fracture profiles. We then related these macroscopic roughness parameters to the effective flow through the fractures, as determined from Navier-Stokes numerical models. Thus, we used our fracture meshes to develop relationships between the observed roughness properties of the fracture geometries and flow parameters that are of importance for modeling flow through fractures in field scale models. Fractures with high Joint Roughness Coefficients and fractal dimensions were shown to exhibit tortuous flow paths, be poorly characterized by the mean geometric aperture, and have a fracture transmissivity 35 times smaller than the smoother modeled fracture flows.
Magnetically stimulated fluid flow patterns
Martin, Jim; Solis, Kyle
2014-03-06
Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.
Magnetically stimulated fluid flow patterns
Martin, Jim; Solis, Kyle
2014-08-06
Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.
Rutqvist, J.
2010-06-01
This paper presents recent advancement in and applications of TOUGH-FLAC, a simulator for multiphase fluid flow and geomechanics. The TOUGH-FLAC simulator links the TOUGH family multiphase fluid and heat transport codes with the commercial FLAC{sup 3D} geomechanical simulator. The most significant new TOUGH-FLAC development in the past few years is a revised architecture, enabling a more rigorous and tight coupling procedure with improved computational efficiency. The applications presented in this paper are related to modeling of crustal deformations caused by deep underground fluid movements and pressure changes as a result of both industrial activities (the In Salah CO{sub 2} Storage Project and the Geysers Geothermal Field) and natural events (the 1960s Matsushiro Earthquake Swarm). Finally, the paper provides some perspectives on the future of TOUGH-FLAC in light of its applicability to practical problems and the need for high-performance computing capabilities for field-scale problems, such as industrial-scale CO{sub 2} storage and enhanced geothermal systems. It is concluded that despite some limitations to fully adapting a commercial code such as FLAC{sup 3D} for some specialized research and computational needs, TOUGH-FLAC is likely to remain a pragmatic simulation approach, with an increasing number of users in both academia and industry.
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
The Center for Computational Sciences and Engineering (CCSE) develops and applies advanced computational methodologies to solve large-scale scientific and engineering problems arising in the Department of Energy (DOE) mission areas involving energy, environmental, and industrial technology. The primary focus is in the application of structured-grid finite difference methods on adaptive grid hierarchies for compressible, incompressible, and low Mach number flows. The diverse range of scientific applications that drive the research typically involve a large range of spatial and temporal scales (e.g. turbulent reacting flows) and require the use of extremely large computing hardware, such as the 153,000-core computer, Hopper, at NERSC. The CCSE approach to these problems centers on the development and application of advanced algorithms that exploit known separations in scale; for many of the application areas this results in algorithms are several orders of magnitude more efficient than traditional simulation approaches.
Lopez, A.R.; Gritzo, L.A.; Hassan, B.
1997-06-01
For the purposes of designing improved Halon-alternative fire suppression strategies for aircraft applications, Computational Fluid Dynamics (CFD) simulations of the air flow, suppressant transport, and air-suppressant mixing within an uncluttered F18 engine nacelle were performed. The release of inert gases from a Solid Propellant Gas Generator (SPGG) was analyzed at two different injection locations in order to understand the effect of injection position on the flow patterns and the mixing of air and suppression agent. An uncluttered engine nacelle was simulated to provide insight into the global flow features as well as to promote comparisons with previous nacelle fire tests and recent water tunnel tests which included little or no clutter. Oxygen concentration levels, fuel/air residence times that would exist if a small fuel leak were present, velocity contours, and streamline patterns are presented inside the engine nacelle. The numerical results show the influence of the gent release location on regions of potential flame extinction due to oxygen inerting and high flame strain. The occurrence of inflow through the exhaust ducts on the aft end of the nacelle is also predicted. As expected, the predicted oxygen concentration levels were consistently higher than the measured levels since a fire was not modeled in this analysis. Despite differences in the conditions of these simulations and the experiments, good agreement was obtained between the CFD predictions and the experimental measurements.
McKay, Mark D.; Sweeney, Chad E.; Spangler, Jr., B. Samuel
1993-01-01
A flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.
McKay, M.D.; Sweeney, C.E.; Spangler, B.S. Jr.
1993-11-30
A flow meter and temperature measuring device are described comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips. 7 figures.
PROBABILISTIC SIMULATION OF SUBSURFACE FLUID FLOW: A STUDY USING A NUMERICAL SCHEME
Buscheck, Timothy Eric
1980-03-01
There has been an increasing interest in probabilistic modeling of hydrogeologic systems. The classical approach to groundwater modeling has been deterministic in nature, where individual layers and formations are assumed to be uniformly homogeneous. Even in the case of complex heterogeneous systems, the heterogeneities describe the differences in parameter values between various layers, but not within any individual layer. In a deterministic model a single-number is assigned to each hydrogeologic parameter, given a particular scale of interest. However, physically there is no such entity as a truly uniform and homogeneous unit. Single-number representations or deterministic predictions are subject to uncertainties. The approach used in this work models such uncertainties with probabilistic parameters. The resulting statistical distributions of output variables are analyzed. A numerical algorithm, based on axiomatic principles of probability theory, performs arithmetic operations between probability distributions. Two subroutines are developed from the algorithm and incorporated into the computer program TERZAGI, which solves groundwater flow problems in saturated, multi-dimensional systems. The probabilistic computer program is given the name, PROGRES. The algorithm has been applied to study the following problems: one-dimensional flow through homogeneous media, steady-state and transient flow conditions, one-dimensional flow through heterogeneous media, steady-state and transient flow conditions, and two-dimensional steady-stte flow through heterogeneous media. The results are compared with those available in the literature.
Fakcharoenphol, Perapon; Xiong, Yi; Hu, Litang; Winterfeld, Philip H.; Xu, Tianfu; Wu, Yu-Shu
2013-05-01
TOUGH2-EGS is a numerical simulation program coupling geomechanics and chemical reactions for fluid and heat flows in porous media and fractured reservoirs of enhanced geothermal systems. The simulator includes the fully-coupled geomechanical (THM) module, the fully-coupled geochemical (THC) module, and the sequentially coupled reactive geochemistry (THMC) module. The fully-coupled flow-geomechanics model is developed from the linear elastic theory for the thermo-poro-elastic system and is formulated with the mean normal stress as well as pore pressure and temperature. The chemical reaction is sequentially coupled after solution of flow equations, which provides the flow velocity and phase saturation for the solute transport calculation at each time step. In addition, reservoir rock properties, such as porosity and permeability, are subjected to change due to rock deformation and chemical reactions. The relationships between rock properties and geomechanical and chemical effects from poro-elasticity theories and empirical correlations are incorporated into the simulator. This report provides the user with detailed information on both mathematical models and instructions for using TOUGH2-EGS for THM, THC or THMC simulations. The mathematical models include the fluid and heat flow equations, geomechanical equation, reactive geochemistry equations, and discretization methods. Although TOUGH2-EGS has the capability for simulating fluid and heat flows coupled with both geomechanical and chemical effects, it is up to the users to select the specific coupling process, such as THM, THC, or THMC in a simulation. There are several example problems illustrating the applications of this program. These example problems are described in details and their input data are presented. The results demonstrate that this program can be used for field-scale geothermal reservoir simulation with fluid and heat flow, geomechanical effect, and chemical reaction in porous and fractured media.
Acoustic concentration of particles in fluid flow
Ward, Michael D.; Kaduchak, Gregory
2010-11-23
An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.
Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
in EGS Reservoirs | Department of Energy Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs Project objectives: Improve image resolution for microseismicimaging and time-lapse active seismic imaging; Enhance the prediction of fluid flow and temperature distributions and stress changes by coupling fracture flow simulations with reservoir flow simulations; and
Xiong, Yi; Fakcharoenphol, Perapon; Wang, Shihao; Winterfeld, Philip H.; Zhang, Keni; Wu, Yu-Shu
2013-12-01
TOUGH2-EGS-MP is a parallel numerical simulation program coupling geomechanics with fluid and heat flow in fractured and porous media, and is applicable for simulation of enhanced geothermal systems (EGS). TOUGH2-EGS-MP is based on the TOUGH2-MP code, the massively parallel version of TOUGH2. In TOUGH2-EGS-MP, the fully-coupled flow-geomechanics model is developed from linear elastic theory for thermo-poro-elastic systems and is formulated in terms of mean normal stress as well as pore pressure and temperature. Reservoir rock properties such as porosity and permeability depend on rock deformation, and the relationships between these two, obtained from poro-elasticity theories and empirical correlations, are incorporated into the simulation. This report provides the user with detailed information on the TOUGH2-EGS-MP mathematical model and instructions for using it for Thermal-Hydrological-Mechanical (THM) simulations. The mathematical model includes the fluid and heat flow equations, geomechanical equation, and discretization of those equations. In addition, the parallel aspects of the code, such as domain partitioning and communication between processors, are also included. Although TOUGH2-EGS-MP has the capability for simulating fluid and heat flows coupled with geomechanical effects, it is up to the user to select the specific coupling process, such as THM or only TH, in a simulation. There are several example problems illustrating applications of this program. These example problems are described in detail and their input data are presented. Their results demonstrate that this program can be used for field-scale geothermal reservoir simulation in porous and fractured media with fluid and heat flow coupled with geomechanical effects.
Fluid Flow Phenomena during Welding
Zhang, Wei
2011-01-01
MOLTEN WELD POOLS are dynamic. Liquid in the weld pool in acted on by several strong forces, which can result in high-velocity fluid motion. Fluid flow velocities exceeding 1 m/s (3.3 ft/s) have been observed in gas tungsten arc (GTA) welds under ordinary welding conditions, and higher velocities have been measured in submerged arc welds. Fluid flow is important because it affects weld shape and is related to the formation of a variety of weld defects. Moving liquid transports heat and often dominates heat transport in the weld pool. Because heat transport by mass flow depends on the direction and speed of fluid motion, weld pool shape can differ dramatically from that predicted by conductive heat flow. Temperature gradients are also altered by fluid flow, which can affect weld microstructure. A number of defects in GTA welds have been attributed to fluid flow or changes in fluid flow, including lack of penetration, top bead roughness, humped beads, finger penetration, and undercutting. Instabilities in the liquid film around the keyhole in electron beam and laser welds are responsible for the uneven penetration (spiking) characteristic of these types of welds.
Insertable fluid flow passage bridgepiece and method
Jones, Daniel O.
2000-01-01
A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.
Fluid Flow Within Fractured Porous Media
Crandall, D.M.; Ahmadi, G.; Smith, D.H.; Bromhal, G.S.
2006-10-01
Fractures provide preferential flow paths to subterranean fluid flows. In reservoir scale modeling of geologic flows fractures must be approximated by fairly simple formulations. Often this is accomplished by assuming fractures are parallel plates subjected to an applied pressure gradient. This is known as the cubic law. An induced fracture in Berea sandstone has been digitized to perform numerical flow simulations. A commercially available computational fluid dynamics software package has been used to solve the flow through this model. Single phase flows have been compared to experimental works in the literature to evaluate the accuracy with which this model can be applied. Common methods of fracture geometry classification are also calculated and compared to experimentally obtained values. Flow through regions of the fracture where the upper and lower fracture walls meet (zero aperture) are shown to induce a strong channeling effect on the flow. This model is expanded to include a domain of surrounding porous media through which the flow can travel. The inclusion of a realistic permeability in this media shows that the regions of small and zero apertures contribute to the greatest pressure losses over the fracture length and flow through the porous media is most prevalent in these regions. The flow through the fracture is shown to be the largest contributor to the net flow through the media. From this work, a novel flow relationship is proposed for flow through fractured media.
2-Phase Fluid Flow & Heat Transport
Energy Science and Technology Software Center (OSTI)
1993-03-13
GEOTHER is a three-dimensional, geothermal reservoir simulation code. The model describes heat transport and flow of a single component, two-phase fluid in porous media. It is based on the continuity equations for steam and water, which are reduced to two nonlinear partial differential equations in which the dependent variables are fluid pressure and enthalpy. GEOTHER can be used to simulate the fluid-thermal interaction in rock that can be approximated by a porous media representation. Itmore » can simulate heat transport and the flow of compressed water, two-phase mixtures, and superheated steam in porous media over a temperature range of 10 to 300 degrees C. In addition, it can treat the conversion from single to two-phase flow, and vice versa. It can be used for evaluation of a near repository spatial scale and a time scale of a few years to thousands of years. The model can be used to investigate temperature and fluid pressure changes in response to thermal loading by waste materials.« less
2-Phase Fluid Flow & Heat Transport
Energy Science and Technology Software Center (OSTI)
1993-03-13
GEOTHER is a three-dimensional, geothermal reservoir simulation code. The model describes heat transport and flow of a single component, two-phase fluid in porous media. It is based on the continuity equations for steam and water, which are reduced to two nonlinear partial differential equations in which the dependent variables are fluid pressure and enthalpy. GEOTHER can be used to simulate the fluid-thermal interaction in rock that can be approximated by a porous media representation. Itmorecan simulate heat transport and the flow of compressed water, two-phase mixtures, and superheated steam in porous media over a temperature range of 10 to 300 degrees C. In addition, it can treat the conversion from single to two-phase flow, and vice versa. It can be used for evaluation of a near repository spatial scale and a time scale of a few years to thousands of years. The model can be used to investigate temperature and fluid pressure changes in response to thermal loading by waste materials.less
Energy Science and Technology Software Center (OSTI)
2015-10-05
Virtual Flow Simulator (VFS) is a state-of-the-art computational fluid mechanics (CFD) package that is capable of simulating multi-physics/multi-phase flows with the most advanced turbulence models (RANS, LES) over complex terrains. The flow solver is based on the Curvilinear Immersed Boundary (CURVIB) method to handle geometrically complex and moving domains. Different modules of the VFS package can provide different simulation capabilities for specific applications ranging from the fluid-structure interaction (FSI) of solid and deformable bodies, themore » two-phase free surface flow solver based on the level set method for ocean waves, sediment transport models in rivers and the large-scale models of wind farms based on actuator lines and surfaces. All numerical features of VFS package have been validated with known analytical and experimental data as reported in the related journal articles. VFS package is suitable for a broad range of engineering applications within different industries. VFS has been used in different projects with applications in wind and hydrokinetic energy, offshore and near-shore ocean studies, cardiovascular and biological flows, and natural streams and river morphodynamics. Over the last decade, the development of VFS has been supported and assisted with the help of various United States companies and federal agencies that are listed in the sponsor lists. In this version, VFS-Wind contains all the necessary modeling tools for wind energy applications, including land-based and offshore wind farms. VFS is highly scalable to run on either desktop computers or high performance clusters (up to 16,000 CPUs). This released version comes with a detailed user’s manual and a set of case studies designed to facilitate the learning of the various aspects of the code in a comprehensive manner. The included documentation and support material has been elaborated in a collaboration effort with Sandia National Labs under the contract DE-EE0005482
General Transient Fluid Flow Algorithm
Energy Science and Technology Software Center (OSTI)
1992-03-12
SALE2D calculates two-dimensional fluid flows at all speeds, from the incompressible limit to highly supersonic. An implicit treatment of the pressure calculation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique provides this flow speed flexibility. In addition, the computing mesh may move with the fluid in a typical Lagrangian fashion, be held fixed in an Eulerian manner, or move in some arbitrarily specified way to provide a continuous rezoning capability. This latitude resultsmore » from use of an Arbitrary Lagrangian-Eulerian (ALE) treatment of the mesh. The partial differential equations solved are the Navier-Stokes equations and the mass and internal energy equations. The fluid pressure is determined from an equation of state and supplemented with an artificial viscous pressure for the computation of shock waves. The computing mesh consists of a two-dimensional network of quadrilateral cells for either cylindrical or Cartesian coordinates, and a variety of user-selectable boundary conditions are provided in the program.« less
Mesoscale Simulations of Particulate Flows with Parallel Distributed...
Office of Scientific and Technical Information (OSTI)
Title: Mesoscale Simulations of Particulate Flows with Parallel Distributed Lagrange Multiplier Technique Fluid particulate flows are common phenomena in nature and industry. ...
Transient Wellbore Fluid Flow Model
Energy Science and Technology Software Center (OSTI)
1982-04-06
WELBORE is a code to solve transient, one-dimensional two-phase or single-phase non-isothermal fluid flow in a wellbore. The primary thermodynamic variables used in solving the equations are the pressure and specific energy. An equation of state subroutine provides the density, quality, and temperature. The heat loss out of the wellbore is calculated by solving a radial diffusion equation for the temperature changes outside the bore. The calculation is done at each node point in themore » wellbore.« less
Nonequilibrium molecular dynamics simulations of confined fluids...
Office of Scientific and Technical Information (OSTI)
A nonequilibrium molecular dynamics (MD) ... in a single simulation upon compression, whereas fluid molecules in the bulk ... for weak fluid -- wall interactions. ...
Molecular dynamics simulations of microscale fluid transport
Wong, C.C.; Lopez, A.R.; Stevens, M.J.; Plimpton, S.J.
1998-02-01
Recent advances in micro-science and technology, like Micro-Electro-Mechanical Systems (MEMS), have generated a group of unique liquid flow problems that involve characteristic length scales of a Micron. Also, in manufacturing processes such as coatings, current continuum models are unable to predict microscale physical phenomena that appear in these non-equilibrium systems. It is suspected that in these systems, molecular-level processes can control the interfacial energy and viscoelastic properties at the liquid/solid boundary. A massively parallel molecular dynamics (MD) code has been developed to better understand microscale transport mechanisms, fluid-structure interactions, and scale effects in micro-domains. Specifically, this MD code has been used to analyze liquid channel flow problems for a variety of channel widths, e.g. 0.005-0.05 microns. This report presents results from MD simulations of Poiseuille flow and Couette flow problems and addresses both scaling and modeling issues. For Poiseuille flow, the numerical predictions are compared with existing data to investigate the variation of the friction factor with channel width. For Couette flow, the numerical predictions are used to determine the degree of slip at the liquid/solid boundary. Finally, the results also indicate that shear direction with respect to the wall lattice orientation can be very important. Simulation results of microscale Couette flow and microscale Poiseuille flow for two different surface structures and two different shear directions will be presented.
Friction-Induced Fluid Heating in Nanoscale Helium Flows
Li Zhigang [Department of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)
2010-05-21
We investigate the mechanism of friction-induced fluid heating in nanoconfinements. Molecular dynamics simulations are used to study the temperature variations of liquid helium in nanoscale Poiseuille flows. It is found that the fluid heating is dominated by different sources of friction as the external driving force is changed. For small external force, the fluid heating is mainly caused by the internal viscous friction in the fluid. When the external force is large and causes fluid slip at the surfaces of channel walls, the friction at the fluid-solid interface dominates over the internal friction in the fluid and is the major contribution to fluid heating. An asymmetric temperature gradient in the fluid is developed in the case of nonidentical walls and the general temperature gradient may change sign as the dominant heating factor changes from internal to interfacial friction with increasing external force.
Fracture Network and Fluid Flow Imaging for EGS Applications from
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Multi-Dimensional Electrical Resistivity Structure | Department of Energy Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure Fracture Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure Project objectives: Develop a 3-D code for simulating EM responses at the surface of the earth with topographic variations. To start; two platform choices will be pursued to determine the superior
Value for controlling flow of cryogenic fluid
Knapp, Philip A.
1996-01-01
A valve is provided for accurately controlling the flow of cryogenic fluids such as liquid nitrogen. The valve comprises a combination of disc and needle valves affixed to a valve stem in such a manner that the disc and needle are free to rotate about the stem, but are constrained in lateral and vertical movements. This arrangement provides accurate and precise fluid flow control and positive fluid isolation.
Broader source: Energy.gov [DOE]
This research will develop a fully coupled, fully implicit approach for EGS stimulation and reservoir simulation. Solve all governing equations simultaneously in fully implicit way. Enable massively parallel performance and scalability. Apply state of the art nonlinear PDE solvers: Jacobian Free Newton Krylov (JFNK) method.
Fluid properties determine flow line blockage potential
Hunt, A.
1996-07-15
A thorough understanding of fluid properties helps in determining the potential of hydrates, paraffins, or asphaltenes to block subsea flow lines. Thermal, chemical, and mechanical methods are the main ways for preventing deposition. Already in both the North Sea and the Gulf of Mexico, blockages have led to significant losses in production and reserves recovery. This first article in a two-part series discusses thermal and chemical methods in overcoming fluid behavior problems caused by hydrate and other fluid constituents in subsea multiphase flow. The paper discusses subsea production, possible problems, nucleation, growth, deposition, preventing deposition, hydrate predictions, multiphase flow, and hydrate inhibition.
Flow regimes for fluid injection into a confined porous medium
Zheng, Zhong; Guo, Bo; Christov, Ivan C.; Celia, Michael A.; Stone, Howard A.
2015-02-24
We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convectiondiffusion equation is derived to describe the time evolution of the fluidfluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governing equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convectiondiffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.
Method and device for measuring fluid flow
Atherton, Richard; Marinkovich, Phillip S.; Spadaro, Peter R.; Stout, J. Wilson
1976-11-23
This invention is a fluid flow measuring device for determining the coolant flow at the entrance to a specific nuclear reactor fuel region. The device comprises a plurality of venturis having the upstream inlet and throat pressure of each respectively manifolded together to provide one static pressure signal for each region monitored. The device provides accurate flow measurement with low pressure losses and uniform entrance and discharge flow distribution.
Temperature distribution and fluid flow in an enclosure with...
Office of Scientific and Technical Information (OSTI)
Temperature distribution and fluid flow in an enclosure with localized heating and cooling Citation Details In-Document Search Title: Temperature distribution and fluid flow in an ...
Fracture Propagation, Fluid Flow, and Geomechanics of Water-Based...
Office of Scientific and Technical Information (OSTI)
Conference: Fracture Propagation, Fluid Flow, and Geomechanics of Water-Based Hydraulic ... Citation Details In-Document Search Title: Fracture Propagation, Fluid Flow, and ...
Controlling Subsurface Fractures and Fluid Flow: A Basic Research...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda PDF icon BES Report Controlling ...
Application of Neutron Imaging and Scattering to Fluid Flow and...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS ...
Microfluidics: Kinetics of Hybridized DNA With Fluid Flow Variations...
Office of Scientific and Technical Information (OSTI)
Microfluidics: Kinetics of Hybridized DNA With Fluid Flow Variations. Citation Details In-Document Search Title: Microfluidics: Kinetics of Hybridized DNA With Fluid Flow ...
Modeling fluid flow in deformation bands with stabilized localization...
Office of Scientific and Technical Information (OSTI)
Modeling fluid flow in deformation bands with stabilized localization mixed finite elements. Citation Details In-Document Search Title: Modeling fluid flow in deformation bands...
Fracture Propagation, Fluid Flow, and Geomechanics of Water-Based...
Office of Scientific and Technical Information (OSTI)
Conference: Fracture Propagation, Fluid Flow, and Geomechanics of Water-Based Hydraulic ... Title: Fracture Propagation, Fluid Flow, and Geomechanics of Water-Based Hydraulic ...
Modeling Fluid Flow in Natural Systems, Model Validation and...
Modeling Fluid Flow in Natural Systems, Model Validation and Demonstration Modeling Fluid Flow in Natural Systems, Model Validation and Demonstration Clay and granitic units are ...
Flow regimes for fluid injection into a confined porous medium
Zheng, Zhong; Guo, Bo; Christov, Ivan C.; Celia, Michael A.; Stone, Howard A.
2015-02-24
We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governing equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.
Flow regimes for fluid injection into a confined porous medium
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Zheng, Zhong; Guo, Bo; Christov, Ivan C.; Celia, Michael A.; Stone, Howard A.
2015-02-24
We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governingmore » equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.« less
Apparatus for measuring fluid flow
Smith, Jack E.; Thomas, David G.
1984-01-01
Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.
Apparatus for measuring fluid flow
Smith, J.E.; Thomas, D.G.
Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.
Directed flow fluid rinse trough
Kempka, S.N.; Walters, R.N.
1996-07-02
Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs. 9 figs.
Directed flow fluid rinse trough
Kempka, Steven N.; Walters, Robert N.
1996-01-01
Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs.
MEANS FOR VISUALIZING FLUID FLOW PATTERNS
Lynch, F.E.; Palmer, L.D.; Poppendick, H.F.; Winn, G.M.
1961-05-16
An apparatus is given for determining both the absolute and relative velocities of a phosphorescent fluid flowing through a transparent conduit. The apparatus includes a source for exciting a narrow trsnsverse band of the fluid to phosphorescence, detecting means such as a camera located downstream from the exciting source to record the shape of the phosphorescent band as it passes, and a timer to measure the time elapsed between operation of the exciting source and operation of the camera.
Molecular Dynamics Simulation of Binary Fluid in a Nanochannel
Mullick, Shanta; Ahluwalia, P. K. [Department of Physics, Himachal Pradesh University, SummerHill, Shimla - 171005 (India); Pathania, Y. [Chitkara University, Atal Shiksha Kunj, Atal Nagar, Barotiwala, Dist Solan, Himachal Pradesh - 174103 (India)
2011-12-12
This paper presents the results from a molecular dynamics simulation of binary fluid (mixture of argon and krypton) in the nanochannel flow. The computational software LAMMPS is used for carrying out the molecular dynamics simulations. Binary fluids of argon and krypton with varying concentration of atom species were taken for two densities 0.65 and 0.45. The fluid flow takes place between two parallel plates and is bounded by horizontal walls in one direction and periodic boundary conditions are imposed in the other two directions. To drive the flow, a constant force is applied in one direction. Each fluid atom interacts with other fluid atoms and wall atoms through Week-Chandler-Anderson (WCA) potential. The velocity profile has been looked at for three nanochannel widths i.e for 12{sigma}, 14{sigma} and 16{sigma} and also for the different concentration of two species. The velocity profile of the binary fluid predicted by the simulations agrees with the quadratic shape of the analytical solution of a Poiseuille flow in continuum theory.
Method and apparatus for controlling fluid flow
Miller, J.R.
1980-06-27
A method and apparatus for precisely controlling the rate (and hence amount) of fluid flow are given. The controlled flow rate is finely adjustable, can be extremely small (on the order of microliter-atmospheres per second), can be adjusted to zero (flow stopped), and is stable to better than 1% with time. The dead volume of the valve can be made arbitrarily small, in fact essentially zero. The valve employs no wearing mechanical parts (including springs, stems, or seals). The valve is finely adjustable, has a flow rate dynamic range of many decades, can be made compatible with any fluid, and is suitable for incorporation into an open or closed loop servo-control system.
International Collaborations on Fluid Flows in Fractured Crystalline...
Office of Scientific and Technical Information (OSTI)
International Collaborations on Fluid Flows in Fractured Crystalline Rocks: FY14 Progress Report. Citation Details In-Document Search Title: International Collaborations on Fluid ...
Ultrasonic fluid flow measurement method and apparatus
Kronberg, James W.
1993-01-01
An apparatus for measuring the flow of a fluid in a pipe using ultrasonic waves. The apparatus comprises an ultrasonic generator, a lens for focusing the sound energy produced by the generator, and means for directing the focused energy into the side of the pipe through an opening and in a direction close to parallel to the long axis of the pipe. A cone carries the sound energy to the lens from the generator. Depending on the choice of materials, there may be a quarter-wave, acoustic impedance matching section between the generator and the cone to reduce the reflections of energy at the cone boundary. The lens material has an acoustic impedance similar to that of the cone material but a different sonic velocity so that the lens can converge the sound waves in the fluid. A transition section between the lens and the fluid helps to couple the energy to the fluid and assures it is directed as close to parallel to the fluid flow direction as possible.
Ultrasonic fluid flow measurement method and apparatus
Kronberg, J.W.
1993-10-12
An apparatus for measuring the flow of a fluid in a pipe using ultrasonic waves. The apparatus comprises an ultrasonic generator, a lens for focusing the sound energy produced by the generator, and means for directing the focused energy into the side of the pipe through an opening and in a direction close to parallel to the long axis of the pipe. A cone carries the sound energy to the lens from the generator. Depending on the choice of materials, there may be a quarter-wave, acoustic impedance matching section between the generator and the cone to reduce the reflections of energy at the cone boundary. The lens material has an acoustic impedance similar to that of the cone material but a different sonic velocity so that the lens can converge the sound waves in the fluid. A transition section between the lens and the fluid helps to couple the energy to the fluid and assures it is directed as close to parallel to the fluid flow direction as possible. 3 figures.
Can We Accurately Model Fluid Flow in Shale?
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Can We Accurately Model Fluid Flow in Shale? Can We Accurately Model Fluid Flow in Shale? Print Thursday, 03 January 2013 00:00 Over 20 trillion cubic meters of natural gas are...
Celik, I.; Chattree, M.
1988-07-01
An assessment of the theoretical and numerical aspects of the computer code, PCGC-2, is made; and the results of the application of this code to the Morgantown Energy Technology Center (METC) advanced gasification facility entrained-flow reactor, ''the gasifier,'' are presented. PCGC-2 is a code suitable for simulating pulverized coal combustion or gasification under axisymmetric (two-dimensional) flow conditions. The governing equations for the gas and particulate phase have been reviewed. The numerical procedure and the related programming difficulties have been elucidated. A single-particle model similar to the one used in PCGC-2 has been developed, programmed, and applied to some simple situations in order to gain insight to the physics of coal particle heat-up, devolatilization, and char oxidation processes. PCGC-2 was applied to the METC entrained-flow gasifier to study numerically the flash pyrolysis of coal, and gasification of coal with steam or carbon dioxide. The results from the simulations are compared with measurements. The gas and particle residence times, particle temperature, and mass component history were also calculated and the results were analyzed. The results provide useful information for understanding the fundamentals of coal gasification and for assessment of experimental results performed using the reactor considered. 69 refs., 35 figs., 23 tabs.
Mesoscale Simulations of Particulate Flows with Parallel Distributed
Office of Scientific and Technical Information (OSTI)
Lagrange Multiplier Technique (Conference) | SciTech Connect Mesoscale Simulations of Particulate Flows with Parallel Distributed Lagrange Multiplier Technique Citation Details In-Document Search Title: Mesoscale Simulations of Particulate Flows with Parallel Distributed Lagrange Multiplier Technique Fluid particulate flows are common phenomena in nature and industry. Modeling of such flows at micro and macro levels as well establishing relationships between these approaches are needed to
Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir |
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Department of Energy EGS Reservoir Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir Project objectives: Better understand and model fluid injection into a tight reservoir on the edges of a hydrothermal field. Use seismic data to constrain geomechanical/hydrologic/thermal model of reservoir. seismic_fehler_fluid_flow.pdf (1.15 MB) More Documents & Publications Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs Detection and
Chang, F.C.; Hull, J.R.; Wang, Y.H.; Blazek, K.E.
1996-02-01
A computer model was developed to predict eddy currents and fluid flows in molten steel. The model was verified by comparing predictions with experimental results of liquid-metal containment and fluid flow in electromagnetic (EM) edge dams (EMDs) designed at Inland Steel for twin-roll casting. The model can optimize the EMD design so it is suitable for application, and minimize expensive, time-consuming full-scale testing. Numerical simulation was performed by coupling a three-dimensional (3-D) finite-element EM code (ELEKTRA) and a 3-D finite-difference fluids code (CaPS-EM) to solve heat transfer, fluid flow, and turbulence transport in a casting process that involves EM fields. ELEKTRA is able to predict the eddy- current distribution and the electromagnetic forces in complex geometries. CaPS-EM is capable of modeling fluid flows with free surfaces. Results of the numerical simulation compared well with measurements obtained from a static test.
Geomechanical Simulation of Fluid-Driven Fractures
Makhnenko, R.; Nikolskiy, D.; Mogilevskaya, S.; Labuz, J.
2012-11-30
The project supported graduate students working on experimental and numerical modeling of rock fracture, with the following objectives: (a) perform laboratory testing of fluid-saturated rock; (b) develop predictive models for simulation of fracture; and (c) establish educational frameworks for geologic sequestration issues related to rock fracture. These objectives were achieved through (i) using a novel apparatus to produce faulting in a fluid-saturated rock; (ii) modeling fracture with a boundary element method; and (iii) developing curricula for training geoengineers in experimental mechanics, numerical modeling of fracture, and poroelasticity.
Energy Science and Technology Software Center (OSTI)
1996-07-30
PLUG is a computer program that solves the coupled steady state continuity, momentum, energy, and species balance equations for a plug flow reactor. Both homogeneous (gas-phase) and heterogenous (surface) reactions can be accommodated. The reactor may be either isothermal or adiabatic or may have a specified axial temperature or heat flux profile; alternatively, an ambient temperature and an overall heat-transfer coefficient can be specified. The crosssectional area and surface area may vary with axial position,more » and viscous drag is included. Ideal gas behavior and surface site conservation are assumed.« less
Fracture Network and Fluid Flow Imaging for EGS Applications from
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Multi-Dimensional Electrical Resistivity Structure | Department of Energy Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure Fracture Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure Fracture Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure presentation at the April 2013 peer review meeting held in Denver, Colorado.
Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda |
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Department of Energy Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda BES Report Controlling Subsurface Fractures and Fluid Flow.pdf (815.56 KB) More Documents & Publications AGU SubTER Town Hall Presentation 2015 SubTER Grand Challenge Roundtable: Imaging Geophysical and Geochemical Signals in the Subsurface SubTER Jason Report
Monitoring and Modeling Fluid Flow in a Developing Enhanced Geothermal...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Enhanced Geothermal System (EGS) Reservoir; 2010 Geothermal Technology Program Peer Review Report Monitoring and Modeling Fluid Flow in a Developing Enhanced Geothermal System ...
Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
EGS Reservoir Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir Project ... More Documents & Publications Imaging, Characterizing, and Modeling of Fracture Networks ...
Fluid flow plate for decreased density of fuel cell assembly
Vitale, N.G.
1999-11-09
A fluid flow plate includes first and second outward faces. Each of the outward faces has a flow channel thereon for carrying respective fluid. At least one of the fluids serves as reactant fluid for a fuel cell of a fuel cell assembly. One or more pockets are formed between the first and second outward faces for decreasing density of the fluid flow plate. A given flow channel can include one or more end sections and an intermediate section. An interposed member can be positioned between the outward faces at an interface between an intermediate section, of one of the outward faces, and an end section, of that outward face. The interposed member can serve to isolate the reactant fluid from the opposing outward face. The intermediate section(s) of flow channel(s) on an outward face are preferably formed as a folded expanse.
Fluid flow plate for decreased density of fuel cell assembly
Vitale, Nicholas G.
1999-01-01
A fluid flow plate includes first and second outward faces. Each of the outward faces has a flow channel thereon for carrying respective fluid. At least one of the fluids serves as reactant fluid for a fuel cell of a fuel cell assembly. One or more pockets are formed between the first and second outward faces for decreasing density of the fluid flow plate. A given flow channel can include one or more end sections and an intermediate section. An interposed member can be positioned between the outward faces at an interface between an intermediate section, of one of the outward faces, and an end section, of that outward face. The interposed member can serve to isolate the reactant fluid from the opposing outward face. The intermediate section(s) of flow channel(s) on an outward face are preferably formed as a folded expanse.
Large-Scale Condensed Matter and Fluid Dynamics Simulations in...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Simulations in Three Diverse Areas: Whole Brain Blood Flow Simulations PI Name: Peter ... blood flow behavior in the neighborhood of bifurcations and aneurysms within the brain. ...
Computational Modeling of Fluid Flow through a Fracture in Permeable Rock
Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H
2010-01-01
Laminar, single-phase, finite-volume solutions to the Navier–Stokes equations of fluid flow through a fracture within permeable media have been obtained. The fracture geometry was acquired from computed tomography scans of a fracture in Berea sandstone, capturing the small-scale roughness of these natural fluid conduits. First, the roughness of the two-dimensional fracture profiles was analyzed and shown to be similar to Brownian fractal structures. The permeability and tortuosity of each fracture profile was determined from simulations of fluid flow through these geometries with impermeable fracture walls. A surrounding permeable medium, assumed to obey Darcy’s Law with permeabilities from 0.2 to 2,000 millidarcies, was then included in the analysis. A series of simulations for flows in fractured permeable rocks was performed, and the results were used to develop a relationship between the flow rate and pressure loss for fractures in porous rocks. The resulting frictionfactor, which accounts for the fracture geometric properties, is similar to the cubic law; it has the potential to be of use in discrete fracture reservoir-scale simulations of fluid flow through highly fractured geologic formations with appreciable matrix permeability. The observed fluid flow from the surrounding permeable medium to the fracture was significant when the resistance within the fracture and the medium were of the same order. An increase in the volumetric flow rate within the fracture profile increased by more than 5% was observed for flows within high permeability-fractured porous media.
Moridis, George; Freeman, Craig
2013-09-30
We developed two new EOS additions to the TOUGH+ family of codes, the RealGasH2O and RealGas . The RealGasH2O EOS option describes the non-isothermal two-phase flow of water and a real gas mixture in gas reservoirs, with a particular focus in ultra-tight (such as tight-sand and shale gas) reservoirs. The gas mixture is treated as either a single-pseudo-component having a fixed composition, or as a multicomponent system composed of up to 9 individual real gases. The RealGas option has the same general capabilities, but does not include water, thus describing a single-phase, dry-gas system. In addition to the standard capabilities of all members of the TOUGH+ family of codes (fully-implicit, compositional simulators using both structured and unstructured grids), the capabilities of the two codes include: coupled flow and thermal effects in porous and/or fractured media, real gas behavior, inertial (Klinkenberg) effects, full micro-flow treatment, Darcy and non-Darcy flow through the matrix and fractures of fractured media, single- and multi-component gas sorption onto the grains of the porous media following several isotherm options, discrete and fracture representation, complex matrix-fracture relationships, and porosity-permeability dependence on pressure changes. The two options allow the study of flow and transport of fluids and heat over a wide range of time frames and spatial scales not only in gas reservoirs, but also in problems of geologic storage of greenhouse gas mixtures, and of geothermal reservoirs with multi-component condensable (H2O and CH4) and non-condensable gas mixtures. The codes are verified against available analytical and semi-analytical solutions. Their capabilities are demonstrated in a series of problems of increasing complexity, ranging from isothermal flow in simpler 1D and 2D conventional gas reservoirs, to non-isothermal gas flow in 3D fractured shale gas reservoirs involving 4 types of fractures, micro-flow, non-Darcy flow and gas
Signatures in flowing fluid electric conductivity logs (Journal...
Office of Scientific and Technical Information (OSTI)
including analysis of natural regional flowin the permeable layer. A numerical model simulates flow and transport inthe wellbore during flowing FEC logging, and fracture ...
Fluid simulations of edge turbulence for stellarators and axisymmetric configurations
Kleiber, R.; Scott, B.
2005-10-01
Nonlinear electromagnetic fluid simulations in a flux tube are used to compute the edge turbulence for a family of axisymmetric configurations with different rotational transform profiles ({iota}) and the stellarator Wendelstein 7-X (W7-X) [Grieger et al., Plasma Physics and Controlled Nuclear Fusion Research, 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525]. The influence of the {iota} profile on anomalous transport and the strength of zonal flows in these axisymmetric equilibria are studied and the results are connected to simulations for the W7-X equilibrium. A strong decrease in transport is found by increasing {iota} or switching the sign of the shear from tokamak-({iota}{sup '}<0) to stellarator-like ({iota}{sup '}>0). The effect of pressure-induced changes in the W7-X equilibrium geometry on the transport at fixed parameters is studied and a decrease in the transport following changes in the zonal flows is found.
Method and apparatus for chemically altering fluids in continuous flow
Heath, William O.; Virden, Jr., Judson W.; Richardson, R. L.; Bergsman, Theresa M.
1993-01-01
The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation.
Method and apparatus for chemically altering fluids in continuous flow
Heath, W.O.; Virden, J.W. Jr.; Richardson, R.L.; Bergsman, T.M.
1993-10-19
The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation. 4 figures.
Fracture Network and Fluid Flow Imaging for EGS Applications...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Structure FRAC-STIM: A Physics-Based Fracture Simulation, reservoir Flow and Heat Transport Simulator(aka FALCON) Integration of Noise and Coda Correlation Data into ...
Cardiovascular Flow Simulations at Extreme Scale | Argonne Leadership
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Computing Facility Cardiovascular Flow Simulations at Extreme Scale Authors: Zhou, M., Sahni, O., Kim, H.J., Figueroa, C.A., Taylor, C.A., Shephard, M.S., Jansen, K.E. As cardiovascular models grow more sophisticated in terms of the geometry considered, and more physiologically realistic boundary conditions are applied, and fluid flow is coupled to structural models, the computational complexity grows. Massively parallel adaptivity and flow solvers with extreme scalability enable
PArallel Reacting Multiphase FLOw Computational Fluid Dynamic Analysis
Energy Science and Technology Software Center (OSTI)
2002-06-01
PARMFLO is a parallel multiphase reacting flow computational fluid dynamics (CFD) code. It can perform steady or unsteady simulations in three space dimensions. It is intended for use in engineering CFD analysis of industrial flow system components. Its parallel processing capabilities allow it to be applied to problems that use at least an order of magnitude more computational cells than the number that can be used on a typical single processor workstation (about 106 cellsmore » in parallel processing mode versus about io cells in serial processing mode). Alternately, by spreading the work of a CFD problem that could be run on a single workstation over a group of computers on a network, it can bring the runtime down by an order of magnitude or more (typically from many days to less than one day). The software was implemented using the industry standard Message-Passing Interface (MPI) and domain decomposition in one spatial direction. The phases of a flow problem may include an ideal gas mixture with an arbitrary number of chemical species, and dispersed droplet and particle phases. Regions of porous media may also be included within the domain. The porous media may be packed beds, foams, or monolith catalyst supports. With these features, the code is especially suited to analysis of mixing of reactants in the inlet chamber of catalytic reactors coupled to computation of product yields that result from the flow of the mixture through the catalyst coaled support structure.« less
Simulation of water flow in terrestrial systems
Energy Science and Technology Software Center (OSTI)
2008-12-18
ParFlow is a parallel, variabley saturated groundwater flow code that is especially suitable for large scale problem. ParFlow simulates the three-dimensional saturated and variably saturated subsurface flow in heterogeneous porous media in three spatial dimensions. ParFlow's developemt and appkication has been on-ging for more than 10 uear. ParFlow has recently been extended to coupled surface-subsurface flow to enabel the simulation of hillslope runoff and channel routing in a truly integrated fashion. ParFlow simulates the three-dimensionalmore » varably saturated subsurface flow in strongly heterogeneous porous media in three spatial dimension.« less
Computational Fluid Dynamics Simulation of Fluidized Bed Polymerization Reactors
Rong Fan
2006-08-09
Fluidized beds (FB) reactors are widely used in the polymerization industry due to their superior heat- and mass-transfer characteristics. Nevertheless, problems associated with local overheating of polymer particles and excessive agglomeration leading to FB reactors defluidization still persist and limit the range of operating temperatures that can be safely achieved in plant-scale reactors. Many people have been worked on the modeling of FB polymerization reactors, and quite a few models are available in the open literature, such as the well-mixed model developed by McAuley, Talbot, and Harris (1994), the constant bubble size model (Choi and Ray, 1985) and the heterogeneous three phase model (Fernandes and Lona, 2002). Most these research works focus on the kinetic aspects, but from industrial viewpoint, the behavior of FB reactors should be modeled by considering the particle and fluid dynamics in the reactor. Computational fluid dynamics (CFD) is a powerful tool for understanding the effect of fluid dynamics on chemical reactor performance. For single-phase flows, CFD models for turbulent reacting flows are now well understood and routinely applied to investigate complex flows with detailed chemistry. For multiphase flows, the state-of-the-art in CFD models is changing rapidly and it is now possible to predict reasonably well the flow characteristics of gas-solid FB reactors with mono-dispersed, non-cohesive solids. This thesis is organized into seven chapters. In Chapter 2, an overview of fluidized bed polymerization reactors is given, and a simplified two-site kinetic mechanism are discussed. Some basic theories used in our work are given in detail in Chapter 3. First, the governing equations and other constitutive equations for the multi-fluid model are summarized, and the kinetic theory for describing the solid stress tensor is discussed. The detailed derivation of DQMOM for the population balance equation is given as the second section. In this section
On fluid flow in a heterogeneous medium under nonisothermal conditions
D.W., Vasco
2010-11-01
An asymptotic technique, valid in the presence of smoothly-varying heterogeneity, provides explicit expressions for the velocity of a propagating pressure and temperature disturbance. The governing equations contain nonlinear terms due to the presence of temperature-dependent coefficients and due to the advection of fluids with differing temperatures. Two cases give well-defined expressions in terms of the parameters of the porous medium: the uncoupled propagation of a pressure disturbance and the propagation of a fully coupled temperature and pressure disturbance. The velocity of the coupled disturbance or front, depends upon the medium parameters and upon the change in temperature and pressure across the front. For uncoupled flow, the semi-analytic expression for the front velocity reduces to that associated with a linear diffusion equation. A comparison of the asymptotic travel time estimates with calculations from a numerical simulator indicates reasonably good agreement for both uncoupled and coupled disturbances.
Feedback regulated induction heater for a flowing fluid
Migliori, A.; Swift, G.W.
1984-06-13
A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable porportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005/sup 0/C at a flow rate of 50 cm/sup 3//sec with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.
Feedback regulated induction heater for a flowing fluid
Migliori, Albert; Swift, Gregory W.
1985-01-01
A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable proportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005.degree. C. at a flow rate of 50 cm.sup.3 /second with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.
Apparatus for irradiating a continuously flowing stream of fluid
Speir, Leslie G.; Adams, Edwin L.
1984-01-01
An apparatus for irradiating a continuously flowing stream of fluid is diosed. The apparatus consists of a housing having a spherical cavity and a spherical moderator containing a radiation source positioned within the spherical cavity. The spherical moderator is of lesser diameter than the spherical cavity so as to define a spherical annular volume around the moderator. The housing includes fluid intake and output conduits which open onto the spherical cavity at diametrically opposite positions. Fluid flows through the cavity around the spherical moderator and is uniformly irradiated due to the 4.pi. radiation geometry. The irradiation source, for example a .sup.252 CF neutron source, is removable from the spherical moderator through a radial bore which extends outwardly to an opening on the outside of the housing. The radiation source may be routinely removed without interrupting the flow of fluid or breaching the containment of the fluid.
Collapsible sheath fluid reservoirs for flow cytometers
Mark, Graham A. (Los Alamos, NM)
2000-01-01
The present invention is a container in the form of a single housing for holding fluid, including a first collapsible reservoir having a first valve. The first reservoir initially contains a volume of fluid. The container also includes a second reservoir, initially empty (or substantially empty), expandable to a second volume. The second reservoir has a second valve. As the volume of said first reservoir decreases, the volume of the second reservoir proportionally increases.
Monitoring and Modeling Fluid Flow in a Developing EGS
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
3 Peer Review Insert photo of your choice Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir April 24, 2013 Michael Fehler Massachusetts Institute of Technology Monitoring and Monitoring Fluid Flow This presentation does not contain any proprietary confidential, or otherwise restricted information. Relevance/Impact of Research 2 | US DOE Geothermal Program eere.energy.gov Project Objective Use Chevron's high-quality data from a long-term injection in the Salak geothermal field to
Direct pore-level modeling of incompressible fluid flow in porous media
Ovaysi, Saeed; Piri, Mohammad
2010-09-20
We present a dynamic particle-based model for direct pore-level modeling of incompressible viscous fluid flow in disordered porous media. The model is capable of simulating flow directly in three-dimensional high-resolution micro-CT images of rock samples. It is based on moving particle semi-implicit (MPS) method. We modify this technique in order to improve its stability for flow in porous media problems. Using the micro-CT image of a rock sample, the entire medium, i.e., solid and fluid, is discretized into particles. The incompressible Navier-Stokes equations are then solved for each particle using the MPS summations. The model handles highly irregular fluid-solid boundaries effectively. An algorithm to split and merge fluid particles is also introduced. To handle the computational load, we present a parallel version of the model that runs on distributed memory computer clusters. The accuracy of the model is validated against the analytical, numerical, and experimental data available in the literature. The validated model is then used to simulate both unsteady- and steady-state flow of an incompressible fluid directly in a representative elementary volume (REV) size micro-CT image of a naturally-occurring sandstone with 3.398 {mu}m resolution. We analyze the quality and consistency of the predicted flow behavior and calculate absolute permeability using the steady-state flow rate.
The effect of fluid flow on coiled tubing reach
Bhalla, K.; Walton, I.C.
1996-12-31
A critical parameter to the success of many coiled tubing (CT) operations in highly deviated or horizontal wells is the depth penetration that can be attained before the CT buckles and locks up. Achieving a desired depth is always critical in CT operations and attaining an additional reach of a few hundred feet can be crucial. This paper addresses the effect of fluid flow in the CT and in the CT/wellbore annulus on the state of force and stress in the CT, and thereby predicts its effect on the reach attainable by the CT. The flow of fluid through the CT and annulus between the CT and borehole modifies the pressures and the effective force which governs the mechanical stability of the CT. The net force per unit length due to fluid flow in the coiled tubing and annulus between the coiled tubing casing/well is calculated in terms of the shear stress and its effect on the onset of buckling and lockup is determined. The model is then implemented in a full tubing forces calculation and the effect of flowing fluids and producing fluids on reach is analyzed. The new model is utilized in the design of commercial jobs. The exact analytic model shows that fluid flow inside the CT has zero impact on reach, that downward flow in the annulus has a favourable impact, and upward flow in the annulus reduces the maximum attainable reach. Using the full tubing forces model, a coiled tubing job can be designed taking into account the flow of a fluid with a specified rheology, density and flow rate. Thus the feasibility of attaining a given reach can be more accurately determined. Results are presented in the form of the surface weight for commercial wells and compared to field jobs.
System and method measuring fluid flow in a conduit
Ortiz, M.G.; Kidd, T.G.
1999-05-18
A system is described for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements. 3 figs.
System and method measuring fluid flow in a conduit
Ortiz, Marcos German; Kidd, Terrel G.
1999-01-01
A system for measuring fluid mass flow in a conduit in which there exists a pressure differential in the fluid between at least two spaced-apart locations in the conduit. The system includes a first pressure transducer disposed in the side of the conduit at a first location for measuring pressure of fluid at that location, a second or more pressure transducers disposed in the side of the conduit at a second location, for making multiple measurements of pressure of fluid in the conduit at that location, and a computer for computing the average pressure of the multiple measurements at the second location and for computing flow rate of fluid in the conduit from the pressure measurement by the first pressure transducer and from the average pressure calculation of the multiple measurements.
A preliminary study to Assess Model Uncertainties in Fluid Flows
Marc Oliver Delchini; Jean C. Ragusa
2009-09-01
The goal of this study is to assess the impact of various flow models for a simplified primary coolant loop of a light water nuclear reactor. The various fluid flow models are based on the Euler equations with an additional friction term, gravity term, momentum source, and energy source. The geometric model is purposefully chosen simple and consists of a one-dimensional (1D) loop system in order to focus the study on the validity of various fluid flow approximations. The 1D loop system is represented by a rectangle; the fluid is heated up along one of the vertical legs and cooled down along the opposite leg. A pressurizer and a pump are included in the horizontal legs. The amount of energy transferred and removed from the system is equal in absolute value along the two vertical legs. The various fluid flow approximations are compressible vs. incompressible, and complete momentum equation vs. Darcys approximation. The ultimate goal is to compute the fluid flow models uncertainties and, if possible, to generate validity ranges for these models when applied to reactor analysis. We also limit this study to single phase flows with low-Mach numbers. As a result, sound waves carry a very small amount of energy in this particular case. A standard finite volume method is used for the spatial discretization of the system.
Method, apparatus and system for controlling fluid flow
McMurtrey, Ryan D.; Ginosar, Daniel M.; Burch, Joesph V.
2007-10-30
A system, apparatus and method of controlling the flow of a fluid are provided. In accordance with one embodiment of the present invention, a flow control device includes a valve having a flow path defined therethrough and a valve seat in communication with the flow path with a valve stem disposed in the valve seat. The valve stem and valve seat are cooperatively configured to cause mutual relative linear displacement thereof in response to rotation of the valve stem. A gear member is coupled with the rotary stem and a linear positioning member includes a portion which complementarily engages the gear member. Upon displacement of the linear positioning member along a first axis, the gear member and rotary valve stem are rotated about a second axis and the valve stem and valve seat are mutually linearly displaced to alter the flow of fluid through the valve.
Computerized tomographic analysis of fluid flow in fractured tuff
Felice, C.W.; Sharer, J.C.; Springer, E.P.
1992-05-01
The purpose of this summary is to demonstrate the usefulness of X-ray computerized tomography to observe fluid flow down a fracture and rock matrix imbibition in a sample of Bandelier tuff. This was accomplished by using a tuff sample 152.4 mm long and 50.8 mm in diameter. A longitudinal fracture was created by cutting the core with a wire saw. The fractured piece was then coupled to its adjacent section to that the fracture was not expected. Water was injected into a dry sample at five flow rates and CT scanning performed at set intervals during the flow. Cross sectional images and longitudinal reconstructions were built and saturation profiles calculated for the sample at each time interval at each flow rate. The results showed that for the test conditions, the fracture was not a primary pathway of fluid flow down the sample. At a slow fluid injection rate into the dry sample, the fluid was imbibed into the rock uniformly down the length of the core. With increasing injection rates, the flow remained uniform over the core cross section through complete saturation.
Computerized tomographic analysis of fluid flow in fractured tuff
Felice, C.W.; Sharer, J.C. ); Springer, E.P. )
1992-01-01
The purpose of this summary is to demonstrate the usefulness of X-ray computerized tomography to observe fluid flow down a fracture and rock matrix imbibition in a sample of Bandelier tuff. This was accomplished by using a tuff sample 152.4 mm long and 50.8 mm in diameter. A longitudinal fracture was created by cutting the core with a wire saw. The fractured piece was then coupled to its adjacent section to that the fracture was not expected. Water was injected into a dry sample at five flow rates and CT scanning performed at set intervals during the flow. Cross sectional images and longitudinal reconstructions were built and saturation profiles calculated for the sample at each time interval at each flow rate. The results showed that for the test conditions, the fracture was not a primary pathway of fluid flow down the sample. At a slow fluid injection rate into the dry sample, the fluid was imbibed into the rock uniformly down the length of the core. With increasing injection rates, the flow remained uniform over the core cross section through complete saturation.
Apparatus for controlling fluid flow in a conduit wall
Glass, S. Jill; Nicolaysen, Scott D.; Beauchamp, Edwin K.
2003-05-13
A frangible rupture disk and mounting apparatus for use in blocking fluid flow, generally in a fluid conducting conduit such as a well casing, a well tubing string or other conduits within subterranean boreholes. The disk can also be utilized in above-surface pipes or tanks where temporary and controllable fluid blockage is required. The frangible rupture disk is made from a pre-stressed glass with controllable rupture properties wherein the strength distribution has a standard deviation less than approximately 5% from the mean strength. The frangible rupture disk has controllable operating pressures and rupture pressures.
Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
in EGS Reservoirs; II: Full-Waveform Inversion of 3D-9C VSP data from Bradys EGS Site and Update of the Brady Reservoir Scale Model | Department of Energy Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs; II: Full-Waveform Inversion of 3D-9C VSP data from Bradys EGS Site and Update of the Brady Reservoir Scale Model Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs; II: Full-Waveform Inversion of 3D-9C
Monitoring and Modeling Fluid Flow in a Developing EGS | Department of
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Energy and Modeling Fluid Flow in a Developing EGS Monitoring and Modeling Fluid Flow in a Developing EGS Monitoring and Modeling Fluid Flow in a Developing EGS presentation at the April 2013 peer review meeting held in Denver, Colorado. modeling_fluid_flow_egs_peer2013.pdf (1.35 MB) More Documents & Publications Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir Integration of Noise and Coda Correlation Data into Kinematic and Waveform Inversions
Predictions of bubbly flows in vertical pipes using two-fluid models in CFDS-FLOW3D code
Banas, A.O.; Carver, M.B.; Unrau, D.
1995-09-01
This paper reports the results of a preliminary study exploring the performance of two sets of two-fluid closure relationships applied to the simulation of turbulent air-water bubbly upflows through vertical pipes. Predictions obtained with the default CFDS-FLOW3D model for dispersed flows were compared with the predictions of a new model (based on the work of Lee), and with the experimental data of Liu. The new model, implemented in the CFDS-FLOW3D code, included additional source terms in the {open_quotes}standard{close_quotes} {kappa}-{epsilon} transport equations for the liquid phase, as well as modified model coefficients and wall functions. All simulations were carried out in a 2-D axisymmetric format, collapsing the general multifluid framework of CFDS-FLOW3D to the two-fluid (air-water) case. The newly implemented model consistently improved predictions of radial-velocity profiles of both phases, but failed to accurately reproduce the experimental phase-distribution data. This shortcoming was traced to the neglect of anisotropic effects in the modelling of liquid-phase turbulence. In this sense, the present investigation should be considered as the first step toward the ultimate goal of developing a theoretically sound and universal CFD-type two-fluid model for bubbly flows in channels.
Understanding heat and fluid flow in linear GTA welds
Zacharia, T.; David, S.A.; Vitek, J.M.
1992-12-31
A transient heat flow and fluid flow model was used to predict the development of gas tungsten arc (GTA) weld pools in 1.5 mm thick AISI 304 SS. The welding parameters were chosen so as to correspond to an earlier experimental study which produced high-resolution surface temperature maps. The motivation of the present study was to verify the predictive capability of the computational model. Comparison of the numerical predictions and experimental observations indicate good agreement.
Understanding heat and fluid flow in linear GTA welds
Zacharia, T.; David, S.A.; Vitek, J.M.
1992-01-01
A transient heat flow and fluid flow model was used to predict the development of gas tungsten arc (GTA) weld pools in 1.5 mm thick AISI 304 SS. The welding parameters were chosen so as to correspond to an earlier experimental study which produced high-resolution surface temperature maps. The motivation of the present study was to verify the predictive capability of the computational model. Comparison of the numerical predictions and experimental observations indicate good agreement.
Tracking interface and common curve dynamics for two-fluid flow in porous media
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Mcclure, James E.; Miller, Cass T.; Gray, W. G.; Berrill, Mark A.
2016-04-29
Pore-scale studies of multiphase flow in porous medium systems can be used to understand transport mechanisms and quantitatively determine closure relations that better incorporate microscale physics into macroscale models. Multiphase flow simulators constructed using the lattice Boltzmann method provide a means to conduct such studies, including both the equilibrium and dynamic aspects. Moving, storing, and analyzing the large state space presents a computational challenge when highly-resolved models are applied. We present an approach to simulate multiphase flow processes in which in-situ analysis is applied to track multiphase flow dynamics at high temporal resolution. We compute a comprehensive set of measuresmore » of the phase distributions and the system dynamics, which can be used to aid fundamental understanding and inform closure relations for macroscale models. The measures computed include microscale point representations and macroscale averages of fluid saturations, the pressure and velocity of the fluid phases, interfacial areas, interfacial curvatures, interface and common curve velocities, interfacial orientation tensors, phase velocities and the contact angle between the fluid-fluid interface and the solid surface. Test cases are studied to validate the approach and illustrate how measures of system state can be obtained and used to inform macroscopic theory.« less
MPSalsa 3D Simulations of Chemically Reacting Flows
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Many important scientific and engineering applications require a detailed analysis of complex systems with coupled fluid flow, thermal energy transfer, mass transfer and nonequilibrium chemical reactions. Currently, computer simulations of these complex reacting flow problems are limited to idealized systems in one or two spatial dimensions when coupled with a detailed, fundamental chemistry model. The goal of our research is to develop, analyze and implement advanced MP numerical algorithms that will allow high resolution 3D simulations with an equal emphasis on fluid flow and chemical kinetics modeling. In our research, we focus on the development of new, fully coupled, implicit solution strategies that are based on robust MP iterative solution methods (copied from http://www.cs.sandia.gov/CRF/MPSalsa/). These simulations are needed for scientific and technical areas such as: combustion research for transportation, atmospheric chemistry modeling for pollution studies, chemically reacting flow models for analysis and control of manufacturing processes, surface catalytic reactors for methane to methanol conversion and chemical vapor deposition (CVD) process modeling for production of advanced semiconductor materials (http://www.cs.sandia.gov/CRF/MPSalsa/).
This project website provides six QuickTime videos of these simulations, along with a small image gallery and slideshow animations. A list of related publications and conference presentations is also made available.
Production of Natural Gas and Fluid Flow in Tight Sand Reservoirs
Maria Cecilia Bravo
2006-06-30
This document reports progress of this research effort in identifying relationships and defining dependencies between macroscopic reservoir parameters strongly affected by microscopic flow dynamics and production well performance in tight gas sand reservoirs. These dependencies are investigated by identifying the main transport mechanisms at the pore scale that should affect fluids flow at the reservoir scale. A critical review of commercial reservoir simulators, used to predict tight sand gas reservoir, revealed that many are poor when used to model fluid flow through tight reservoirs. Conventional simulators ignore altogether or model incorrectly certain phenomena such as, Knudsen diffusion, electro-kinetic effects, ordinary diffusion mechanisms and water vaporization. We studied the effect of Knudsen's number in Klinkenberg's equation and evaluated the effect of different flow regimes on Klinkenberg's parameter b. We developed a model capable of explaining the pressure dependence of this parameter that has been experimentally observed, but not explained in the conventional formalisms. We demonstrated the relevance of this, so far ignored effect, in tight sands reservoir modeling. A 2-D numerical simulator based on equations that capture the above mentioned phenomena was developed. Dynamic implications of new equations are comprehensively discussed in our work and their relative contribution to the flow rate is evaluated. We performed several simulation sensitivity studies that evidenced that, in general terms, our formalism should be implemented in order to get more reliable tight sands gas reservoirs' predictions.
Noninvasive characterization of a flowing multiphase fluid using ultrasonic interferometry
Sinha, Dipen N.
2007-06-12
An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.
Noninvasive characterization of a flowing multiphase fluid using ultrasonic interferometry
Sinha, Dipen N.
2003-11-11
An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.
Noninvasive Characterization Of A Flowing Multiphase Fluid Using Ultrasonic Interferometry
Sinha, Dipen N.
2005-05-10
An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.
Mesoscale Simulations of Particulate Flows with Parallel Distributed
Office of Scientific and Technical Information (OSTI)
Distributed Lagrange Multiplier Technique Kanarska, Y 71 CLASSICAL AND QUANTUMM MECHANICS, GENERAL PHYSICS; ACCURACY; CONVERGENCE; FLUID FLOW; IMPLEMENTATION; MODIFICATIONS;...
Sandia Energy - Computational Fluid Dynamics Simulations Provide...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
from a VWiS large-eddy simulation. One of the primary roles of Sandia's Scaled Wind Farm Technology (SWiFT) facility will be to conduct detailed experiments on turbine wakes and...
Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter
Ortiz, M.G.; Boucher, T.J.
1997-06-24
A system is described for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit. 2 figs.
Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter
Ortiz, Marcos G.; Boucher, Timothy J.
1997-01-01
A system for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit.
Highly simplified lateral flow-based nucleic acid sample preparation and passive fluid flow control
Cary, Robert E.
2015-12-08
Highly simplified lateral flow chromatographic nucleic acid sample preparation methods, devices, and integrated systems are provided for the efficient concentration of trace samples and the removal of nucleic acid amplification inhibitors. Methods for capturing and reducing inhibitors of nucleic acid amplification reactions, such as humic acid, using polyvinylpyrrolidone treated elements of the lateral flow device are also provided. Further provided are passive fluid control methods and systems for use in lateral flow assays.
Monitoring and Modeling Fluid Flow in a Developing Enhanced Geothermal
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
System (EGS) Reservoir; 2010 Geothermal Technology Program Peer Review Report | Department of Energy Enhanced Geothermal System (EGS) Reservoir; 2010 Geothermal Technology Program Peer Review Report Monitoring and Modeling Fluid Flow in a Developing Enhanced Geothermal System (EGS) Reservoir; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review seismic_025_fehler.pdf (195.11 KB) More Documents & Publications Analysis of Geothermal
Draft: Modeling Two-Phase Flow in Porous Media Including Fluid-Fluid Interfacial Area
Crandall, Dustin; Niessner, Jennifer; Hassanizadeh, S Majid
2008-01-01
We present a new numerical model for macro-scale twophase flow in porous media which is based on a physically consistent theory of multi-phase flow.The standard approach for modeling the flow of two fluid phases in a porous medium consists of a continuity equation for each phase, an extended form of Darcy’s law as well as constitutive relationships for relative permeability and capillary pressure. This approach is known to have a number of important shortcomings and, in particular, it does not account for the presence and role of fluid - fluid interfaces. An alternative is to use an extended model which is founded on thermodynamic principles and is physically consistent. In addition to the standard equations, the model uses a balance equation for specific interfacial area. The constitutive relationship for capillary pressure involves not only saturation, but also specific interfacial area. We show how parameters can be obtained for the alternative model using experimental data from a new kind of flow cell and present results of a numerical modeling study
Other: Multiscale Simulation of Blood Flow in Brain Arteries...
Office of Scientific and Technical Information (OSTI)
Multiscale Simulation of Blood Flow in Brain Arteries with an Aneurysm Citation Details Title: Multiscale Simulation of Blood Flow in Brain Arteries with an Aneurysm
ASCR Workshop on Turbulent Flow Simulations at the Exascale:...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
ASCR Workshop on Turbulent Flow Simulations at the Exascale: Opportunities and Challenges ASCR Workshop on Turbulent Flow Simulations at the Exascale: Opportunities and Challenges...
Final report [Molecular simulations of complex fluids in confined geometrics
Gehrke, Stevin H.; Jiang, Shaoyi
2002-07-22
This award supports collaborative research between Kansas State University and Sandia National Laboratories on the topic ''Molecular simulations of complex fluids in confined geometries.'' The objectives of this work are to develop new methodologies for fast and accurate simulations, and to apply simulations to various problems of interest to DOE. The success of this work will address several deficiencies in Sandia's capabilities in the area of molecular simulations. In addition, it provides educational opportunities for students and will enhance the science and technology capabilities at Kansas State through partnership with the national laboratories.
GMINC: a mesh generator for flow simulations in fractured reservoirs
Pruess, K.
1983-03-01
GMINC is a pre-processor computer program for generating geometrical meshes to be used in modeling fluid and heat flow in fractured porous media. It is based on the method of multiple interacting continua (MINC) as developed by Pruess and Narasimhan. The meshes generated by GMINC are in integral finite difference form, and are compatible with the simulators SHAFT79 and MULKOM. Applications with other integral finite difference simulators are possible, and require slight modifications in input/output formats. This report describes methodology and application of GMINC, including preparation of input decks and sample problems. A rather comprehensive overview of the MINC-method is also provided to make the presentation self-contained as a guide for modeling of flow in naturally fractured media.
Reducing or stopping the uncontrolled flow of fluid such as oil from a well
Hermes, Robert E
2014-02-18
The uncontrolled flow of fluid from an oil or gas well may be reduced or stopped by injecting a composition including 2-cyanoacrylate ester monomer into the fluid stream. Injection of the monomer results in a rapid, perhaps instantaneous, polymerization of the monomer within the flow stream of the fluid. This polymerization results in formation of a solid plug that reduces or stops the flow of additional fluid from the well.
Carter, K.E.; Dworkin, S.I. )
1990-08-01
Geochemical and petrographic studies of the Triassic Portoro limestone of the Tuscan nappe in Liguria, Italy, indicate that fluid flow was channeled through interlayered bedding-parallel shear zones during Miocene shearing and low-grade metamorphism. Carbon, oxygen, and strontium isotopic compositions and trace element concentrations in the Portoro indicate that it was precipitated from normal marine waters. In sheared and unsheared layers these isotopic compositions are indistinguishable, yet sheared layers of microspar contain less than half the amount of strontium preserved in undeformed layers. Wavy grain boundaries and a dimensional preferred orientation of elongated grains indicate that calcite within sheared zones was dynamically recrystallized. On the basis of these observations we suggest that during burial, extraformational fluids were buffered into oxygen isotopic, but not strontium-concentration, equilibrium with the Portoro. These syndeformational fluids were channeled through discrete 1- to 15-cm-thick shear zones in which strontium was expelled from calcite and incorporated into grain-boundary fluids during dynamic recrystallization.
Fluid mechanics experiments in oscillatory flow. Volume 1
Seume, J.; Friedman, G.; Simon, T.W.
1992-03-01
Results of a fluid mechanics measurement program is oscillating flow within a circular duct are present. The program began with a survey of transition behavior over a range of oscillation frequency and magnitude and continued with a detailed study at a single operating point. Such measurements were made in support of Stirling engine development. Values of three dimensionless parameters, Re{sub max}, Re{sub W}, and A{sub R}, embody the velocity amplitude, frequency of oscillation and mean fluid displacement of the cycle, respectively. Measurements were first made over a range of these parameters which included operating points of all Stirling engines. Next, a case was studied with values of these parameters that are representative of the heat exchanger tubes in the heater section of NASA`s Stirling cycle Space Power Research Engine (SPRE). Measurements were taken of the axial and radical components of ensemble-averaged velocity and rms-velocity fluctuation and the dominant Reynolds shear stress, at various radial positions for each of four axial stations. In each run, transition from laminar to turbulent flow, and in reverse, were identified and sufficient data was gathered to propose the transition mechanism. Models of laminar and turbulent boundary layers were used to process the data into wall coordinates and to evaluate skin friction coefficients. Such data aids in validating computational models and is useful in comparing oscillatory flow characteristics to those of fully-developed steady flow. Data were taken with a contoured entry to each end of the test section and with flush square inlets so that the effects of test section inlet geometry on transition and turbulence are documented. The following is presented in two-volumes. Volume I contains the text of the report including figures and supporting appendices. Volume II contains data reduction program listings and tabulated data (including its graphical presentation).
Gyro-fluid and two-fluid theory and simulations of edge-localized-modes
Xu, X. Q.; Dimits, A.; Joseph, I.; Umansky, M. V.; Xi, P. W.; School of Physics, Peking University, Beijing ; Xia, T. Y.; Gui, B.; Institute of Plasma Physics, Chinese Academy of Sciences, Hefei ; Kim, S. S.; Park, G. Y.; Rhee, T.; Jhang, H.; Diamond, P. H.; Center for Astrophysics and Space Sciences and Department of Physics, University of California, San Diego, La Jolla, California 92093-0424 ; Dudson, B.; Snyder, P. B.
2013-05-15
This paper reports on the theoretical and simulation results of a gyro-Landau-fluid extension of the BOUT++ code, which contributes to increasing the physics understanding of edge-localized-modes (ELMs). Large ELMs with low-to-intermediate-n peeling-ballooning (P-B) modes are significantly suppressed due to finite Larmor radius (FLR) effects when the ion temperature increases. For type-I ELMs, it is found from linear simulations that retaining complete first order FLR corrections as resulting from the incomplete “gyroviscous cancellation” in Braginskii's two-fluid model is necessary to obtain good agreement with gyro-fluid results for high ion temperature cases (T{sub i}≽3 keV) when the ion density has a strong radial variation, which goes beyond the simple local model of ion diamagnetic stabilization of ideal ballooning modes. The maximum growth rate is inversely proportional to T{sub i} because the FLR effect is proportional to T{sub i}. The FLR effect is also proportional to toroidal mode number n, so for high n cases, the P-B mode is stabilized by FLR effects. Nonlinear gyro-fluid simulations show results that are similar to those from the two-fluid model, namely that the P-B modes trigger magnetic reconnection, which drives the collapse of the pedestal pressure. Due to the additional FLR-corrected nonlinear E × B convection of the ion gyro-center density, for a ballooning-dominated equilibrium the gyro-fluid model further limits the radial spreading of ELMs. In six-field two fluid simulations, the parallel thermal diffusivity is found to prevent the ELM encroachment further into core plasmas and therefore leads to steady state L-mode profiles. The simulation results show that most energy is lost via ion channel during an ELM event, followed by particle loss and electron energy loss. Because edge plasmas have significant spatial inhomogeneities and complicated boundary conditions, we have developed a fast non-Fourier method for the computation of Landau-fluid
Hydrostatic bearings for a turbine fluid flow metering device
Fincke, James R.
1982-01-01
A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.
Hydrostatic bearings for a turbine fluid flow metering device
Fincke, J.R.
1982-05-04
A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion. 3 figs.
A review of interaction mechanisms in fluid-solid flows
Johnson, G.; Rajagopal, K.R. . Dept. of Mechanical Engineering); Massoudi, M. )
1990-09-01
Multiphase flows have become the subject of considerable attention because of their importance in many industrial applications, such as fluidized beds, pneumatic transport of solids, coal combustion, etc. Fundamental research into the nature of pneumatic transport has made significant progress in identifying key parameters controlling the characteristics of these processes. The emphasis of this study is on a mixture composed of spherical particles of uniform size and a linearly viscous fluid. Section 1 introduces our approach and the importance of this study. In Section 2, the dynamics of a single particle as studied in classical hydrodynamics and fluid dynamics is presented. This has been a subject of study for more than 200 years. In Section 3, we review the literature for the constitutive relations as given in multiphase studies, i.e., generalization of single particle and as given in literature concerning the continuum theories of mixtures or multicomponent systems. In Section 4, a comparison between these representations and the earlier approach, i.e., forces acting on a single particle will be made. The importance of flow regimes, particle concentration, particle size and shape, rotation of the particle, effect of solid walls, etc. are discussed. 141 refs.
Paul Meakin; Zhijie Xu
2008-06-01
Particle methods are much less computationally efficient than grid based numerical solution of the Navier Stokes equation, and they have been used much less extensively, particularly for engineering applications. However, they have important advantages for some applications. These advantages include rigorous mast conservation, momentum conservation and isotropy. In addition, there is no need for explicit interface tracking/capturing. Code development effort is relatively low, and it is relatively simple to simulate flows with moving boundaries. In addition, it is often quite easy to include coupling of fluid flow with other physical phenomena such a phase separation. Here we describe the application of three particle methods: molecular dynamics, dissipative particle dynamics and smoothed particle hydrodynamics. While these methods were developed to simulate fluids and other materials on three quite different scales the molecular, meso and continuum scales, they are very closely related from a computational point of view. The mesoscale (between the molecular and continuum scales) dissipative particle dynamics method can be used to simulate systems that are too large to simulate using molecular dynamics but small enough for thermal fluctuations to play an important role. Important examples include polymer solutions, gels, small particle suspensions and membranes. In these applications inter particle and intra molecular hydrodynamic interactions are automatically included
Hydrostatic bearings for a turbine fluid flow metering device
Fincke, J.R.
1980-05-02
A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.
Aoki, Shigehisa; Ikeda, Satoshi; Takezawa, Toshiaki; Kishi, Tomoya; Makino, Junichi; Uchihashi, Kazuyoshi; Matsunobu, Aki; Noguchi, Mitsuru; Sugihara, Hajime; Toda, Shuji
2011-12-16
Highlights: Black-Right-Pointing-Pointer Late-onset peritoneal fibrosis leading to EPS remains to be elucidated. Black-Right-Pointing-Pointer Fluid streaming is a potent factor for peritoneal fibrosis in PD. Black-Right-Pointing-Pointer We focused on the prolonged effect of fluid streaming on mesothelial cell kinetics. Black-Right-Pointing-Pointer A history of fluid streaming exposure promoted mesothelial proliferative activity. Black-Right-Pointing-Pointer We have thus identified a potent new factor for late-onset peritoneal fibrosis. -- Abstract: Encapsulating peritoneal sclerosis (EPS) often develops after transfer to hemodialysis and transplantation. Both termination of peritoneal dialysis (PD) and transplantation-related factors are risks implicated in post-PD development of EPS, but the precise mechanism of this late-onset peritoneal fibrosis remains to be elucidated. We previously demonstrated that fluid flow stress induced mesothelial proliferation and epithelial-mesenchymal transition via mitogen-activated protein kinase (MAPK) signaling. Therefore, we speculated that the prolonged bioactive effect of fluid flow stress may affect mesothelial cell kinetics after cessation of fluid streaming. To investigate how long mesothelial cells stay under the bioactive effect brought on by fluid flow stress after removal of the stress, we initially cultured mesothelial cells under fluid flow stress and then cultured the cells under static conditions. Mesothelial cells exposed to fluid flow stress for a certain time showed significantly high proliferative activity compared with static conditions after stoppage of fluid streaming. The expression levels of protein phosphatase 2A, which dephosphorylates MAPK, in mesothelial cells changed with time and showed a biphasic pattern that was dependent on the duration of exposure to fluid flow stress. There were no differences in the fluid flow stress-related bioactive effects on mesothelial cells once a certain time had passed
The Properties of Confined Water and Fluid Flow at the Nanoscale
Schwegler, E; Reed, J; Lau, E; Prendergast, D; Galli, G; Grossman, J C; Cicero, G
2009-03-09
This project has been focused on the development of accurate computational tools to study fluids in confined, nanoscale geometries, and the application of these techniques to probe the structural and electronic properties of water confined between hydrophilic and hydrophobic substrates, including the presence of simple ions at the interfaces. In particular, we have used a series of ab-initio molecular dynamics simulations and quantum Monte Carlo calculations to build an understanding of how hydrogen bonding and solvation are modified at the nanoscale. The properties of confined water affect a wide range of scientific and technological problems - including protein folding, cell-membrane flow, materials properties in confined media and nanofluidic devices.
System and method for bidirectional flow and controlling fluid flow in a conduit
Ortiz, Marcos German
1999-01-01
A system for measuring bidirectional flow, including backflow, of fluid in a conduit. The system utilizes a structural mechanism to create a pressure differential in the conduit. Pressure sensors are positioned upstream from the mechanism, at the mechanism, and downstream from the mechanism. Data from the pressure sensors are transmitted to a microprocessor or computer, and pressure differential detected between the pressure sensors is then used to calculate the backflow. Control signals may then be generated by the microprocessor or computer to shut off valves located in the conduit, upon the occurrence of backflow, or to control flow, total material dispersed, etc. in the conduit.
System and method for bidirectional flow and controlling fluid flow in a conduit
Ortiz, M.G.
1999-03-23
A system for measuring bidirectional flow, including backflow, of fluid in a conduit is disclosed. The system utilizes a structural mechanism to create a pressure differential in the conduit. Pressure sensors are positioned upstream from the mechanism, at the mechanism, and downstream from the mechanism. Data from the pressure sensors are transmitted to a microprocessor or computer, and pressure differential detected between the pressure sensors is then used to calculate the backflow. Control signals may then be generated by the microprocessor or computer to shut off valves located in the conduit, upon the occurrence of backflow, or to control flow, total material dispersed, etc. in the conduit. 3 figs.
de Stadler, M; Chand, K
2007-11-12
Gas centrifuges exhibit very complex flows. Within the centrifuge there is a rarefied region, a transition region, and a region with an extreme density gradient. The flow moves at hypersonic speeds and shock waves are present. However, the flow is subsonic in the axisymmetric plane. The analysis may be simplified by treating the flow as a perturbation of wheel flow. Wheel flow implies that the fluid is moving as a solid body. With the very large pressure gradient, the majority of the fluid is located very close to the rotor wall and moves at an azimuthal velocity proportional to its distance from the rotor wall; there is no slipping in the azimuthal plane. The fluid can be modeled as incompressible and subsonic in the axisymmetric plane. By treating the centrifuge as long, end effects can be appropriately modeled without performing a detailed boundary layer analysis. Onsager's pancake approximation is used to construct a simulation to model fluid flow in a gas centrifuge. The governing 6th order partial differential equation is broken down into an equivalent coupled system of three equations and then solved numerically. In addition to a discussion on the baseline solution, known problems and future work possibilities are presented.
Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
EGS Environments | Department of Energy Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments presentation at the April 2013 peer review meeting held in Denver, Colorado. neutrons_peer2013.pdf (1.51 MB) More Documents & Publications Development of a Geological and
STRUCTURAL HETEROGENEITIES AND PALEO FLUID FLOW IN AN ANALOG SANDSTONE RESERVOIR 2001-2004
Pollard, David; Aydin, Atilla
2005-02-22
simulation of fluid flow to study a typical sandstone aquifer/reservoir at a variety of scales. We have produced many tools and insights which can be applied to active subsurface flow systems and practical problems of pressing global importance.
Simulation of Flow and Transport at the Micro (Pore) Scale
Trebotich, D; Miller, G H
2007-04-05
An important problem in porous media involves the ability of micron and submicron-sized biological particles such as viruses or bacteria to move in groundwater systems through geologic media characterized by rock or mixed gravel, clay and sand materials. Current simulation capabilities require properly upscaled (continuum) models of colloidal filtration and adsorption to augment existing theories of fluid flow and chemical transport. Practical models typically address flow and transport behavior in aquifers over distances of 1 to 10 km where, for example, fluid momentum balance is governed by the simple Darcy's Law as a function of a pressure gradient, elevation gradient and a medium-dependent permeability parameter. In addition to fluid advection, there are multiple transport processes occurring in these systems including diffusion, dispersion and chemical interactions with solids or other aqueous chemical species. Particle transport is typically modeled in the same way as dissolved species, except that additional loss terms are incorporated to model particle filtration (physical interception), adsorption (chemical interception) and inactivation. Proper resolution of these processes at the porous medium continuum scale constitutes an important closure problem in subsurface science. We present a new simulation capability based on enabling technologies developed for microfluidics applications to model transport of colloidal-sized particles at the microscale, with relevance to the pore scale in geophysical subsurface systems. Particulate is represented by a bead-rod polymer model and is fully-coupled to a Newtonian solvent described by Navier-Stokes. Finite differences are used to discretize the interior of the domain; a Cartesian grid embedded boundary/volume-of-fluid method is used near boundaries and interfaces. This approach to complex geometry is amenable to direct simulation on grids obtained from surface extractions of tomographic image data. Short
Modeling two-fluid-phase flow and species transport in porous...
Office of Scientific and Technical Information (OSTI)
Publisher's Accepted Manuscript: Modeling two-fluid-phase flow and species transport in porous media This content will become publicly available on March 3, 2017 Title: Modeling ...
Flume simulation of sedimentation in recirculating flow
Schmidt, J.C. (Middlebury College, VT (USA)); Rubin, D.M. (Geological Survey, Menlo Park, CA (USA)); Ikeda, H. (Univ. of Tsukuba (Japan))
1990-05-01
A 4-m-wide flume at the University of Tsukuba Environmental Research Center was used to simulate flow conditions near debris fans in bedrock gorges. Flow was constricted to 2 m by a semicircular obstruction. During the authors experiments (discharge = 600 L/sec; Froude number of constricted flow = 1) a zone of recirculating current extended 25-30 m downstream from the separation point at the constriction. The pattern and velocity of surface flow was determined using time-lapse photography; subsurface velocity was measured with a two-dimensional electromagnetic current meter. During 32-hr of run time, a fine, very coarse sand mixture was fed into the flow at a rate between 0.5-1 kg/sec. Oscillation ripples developed beneath the separation surface that bounds the recirculation zone, and upstream-migrating dunes and ripples developed within the recirculation zone upstream from the reattachment point. A mid-channel expansion bar was deposited downstream from the reattachment point. Sedimentation within the recirculation zone continued by vertical aggradation and by upstream migration of dunes and ripples. Sediments within the recirculation zone were areally sorted with the finest sediment deposited near the separation point. These patterns are consistent with field observations of bars along the Colorado River in the Grand Canyon.
A Multidimensional Eulerian Model for Simulating Gas-Solids Flow
Energy Science and Technology Software Center (OSTI)
1993-12-13
FORCE2 is a fundamentally based three-dimensional numerical model for simulating fluid-bed hydrodynamics for a wide range of fluid beds, from laboratory to plant scale. It is based upon the ''two-fluid'' modeling approach and includes surface permeabilities, volume porosities, and distributed resistances.
Adaptive LES Methodology for Turbulent Flow Simulations
Oleg V. Vasilyev
2008-06-12
Although turbulent flows are common in the world around us, a solution to the fundamental equations that govern turbulence still eludes the scientific community. Turbulence has often been called one of the last unsolved problem in classical physics, yet it is clear that the need to accurately predict the effect of turbulent flows impacts virtually every field of science and engineering. As an example, a critical step in making modern computational tools useful in designing aircraft is to be able to accurately predict the lift, drag, and other aerodynamic characteristics in numerical simulations in a reasonable amount of time. Simulations that take months to years to complete are much less useful to the design cycle. Much work has been done toward this goal (Lee-Rausch et al. 2003, Jameson 2003) and as cost effective accurate tools for simulating turbulent flows evolve, we will all benefit from new scientific and engineering breakthroughs. The problem of simulating high Reynolds number (Re) turbulent flows of engineering and scientific interest would have been solved with the advent of Direct Numerical Simulation (DNS) techniques if unlimited computing power, memory, and time could be applied to each particular problem. Yet, given the current and near future computational resources that exist and a reasonable limit on the amount of time an engineer or scientist can wait for a result, the DNS technique will not be useful for more than 'unit' problems for the foreseeable future (Moin & Kim 1997, Jimenez & Moin 1991). The high computational cost for the DNS of three dimensional turbulent flows results from the fact that they have eddies of significant energy in a range of scales from the characteristic length scale of the flow all the way down to the Kolmogorov length scale. The actual cost of doing a three dimensional DNS scales as Re{sup 9/4} due to the large disparity in scales that need to be fully resolved. State-of-the-art DNS calculations of isotropic turbulence
Othman, M. N. K. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Zuradzman, M. Razlan E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Hazry, D. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Khairunizam, Wan E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Shahriman, A. B. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Yaacob, S. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Ahmed, S. Faiz E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; and others
2014-12-04
This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.
DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 2
Not Available
1992-06-01
The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems.
DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 1
Not Available
1992-06-01
The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems.
DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 3
Not Available
1992-06-01
The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems.
Device and method for measuring fluid flow in a conduit having a gradual bend
Ortiz, M.G.; Boucher, T.J.
1998-11-10
A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.
Device and method for measuring fluid flow in a conduit having a gradual bend
Ortiz, Marcos German; Boucher, Timothy J
1998-01-01
A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.
Multiscale Simulation of Moist Global Atmospheric Flows
Grabowski, Wojciech W.; Smolarkiewicz, P. K.
2015-04-13
The overarching goal of this award was to include phase changes of the water substance and accompanying latent heating and precipitation processes into the all-scale nonhydrostatic atmospheric dynamics EUlerian/LAGrangian (EULAG) model. The model includes fluid flow solver that is based on either an unabbreviated set of the governing equations (i.e., compressible dynamics) or a simplified set of equations without sound waves (i.e., sound-proof, either anelastic or pseudo-incompressible). The latter set has been used in small-scale dynamics for decades, but its application to the all-scale dynamics (from small-scale to planetary) has never been studied in practical implementations. The highlight of the project is the development of the moist implicit compressible model that can be run by applying time steps, as long as the anelastic model is limited only by the computational stability of the fluid flow and not by the speed of sound waves that limit the stability of explicit compressible models. Applying various versions of the EULAG model within the same numerical framework allows for an unprecedented comparison of solutions obtained with various sets of the governing equations and straightforward evaluation of the impact of various physical parameterizations on the model solutions. The main outcomes of this study are reported in three papers, two published and one currently under review. These papers include comparisons between model solutions for idealized moist problems across the range of scales from small to planetary. These tests include: moist thermals rising in the stable-stratified environment (following Grabowski and Clark, J. Atmos. Sci. 1991) and in the moist-neutral environment (after Bryan and Fritsch, Mon. Wea. Rev. 2002), moist flows over a mesoscale topography (as in Grabowski and Smolarkiewicz, Mon. Wea. Rev. 2002), deep convection in a sheared environment (following Weisman and Klemp, Mon. Wea. Rev. 1982), moist extension of the baroclinic wave on
Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda
Pyrak-Nolte, Laura J; DePaolo, Donald J.; Pietraß, Tanja
2015-05-22
From beneath the surface of the earth, we currently obtain about 80-percent of the energy our nation consumes each year. In the future we have the potential to generate billions of watts of electrical power from clean, green, geothermal energy sources. Our planet’s subsurface can also serve as a reservoir for storing energy produced from intermittent sources such as wind and solar, and it could provide safe, long-term storage of excess carbon dioxide, energy waste products and other hazardous materials. However, it is impossible to underestimate the complexities of the subsurface world. These complexities challenge our ability to acquire the scientific knowledge needed for the efficient and safe exploitation of its resources. To more effectively harness subsurface resources while mitigating the impacts of developing and using these resources, the U.S. Department of Energy established SubTER – the Subsurface Technology and Engineering RD&D Crosscut team. This DOE multi-office team engaged scientists and engineers from the national laboratories to assess and make recommendations for improving energy-related subsurface engineering. The SubTER team produced a plan with the overall objective of “adaptive control of subsurface fractures and fluid flow.”This plan revolved around four core technological pillars—Intelligent Wellbore Systems that sustain the integrity of the wellbore environment; Subsurface Stress and Induced Seismicity programs that guide and optimize sustainable energy strategies while reducing the risks associated with subsurface injections; Permeability Manipulation studies that improve methods of enhancing, impeding and eliminating fluid flow; and New Subsurface Signals that transform our ability to see into and characterize subsurface systems. The SubTER team developed an extensive R&D plan for advancing technologies within these four core pillars and also identified several areas where new technologies would require additional basic research
Fluid-structure interactions in compressible cavity flows
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.; Hunter, Patrick S.; Spillers, Russell Wayne; Henfling, John F.; Mayes, Randall L.
2015-06-08
Experiments were performed to understand the complex fluid-structure interactions that occur during aircraft internal store carriage. A cylindrical store was installed in a rectangular cavity having a length-to-depth ratio of 3.33 and a length-to-width ratio of 1. The Mach number ranged from 0.6 to 2.5 and the incoming boundary layer was turbulent. Fast-response pressure measurements provided aeroacoustic loading in the cavity, while triaxial accelerometers provided simultaneous store response. Despite occupying only 6% of the cavity volume, the store significantly altered the cavity acoustics. The store responded to the cavity flow at its natural structural frequencies, and it exhibited a directionallymore » dependent response to cavity resonance. Specifically, cavity tones excited the store in the streamwise and wall-normal directions consistently, whereas a spanwise response was observed only occasionally. Also, the streamwise and wall-normal responses were attributed to the longitudinal pressure waves and shear layer vortices known to occur during cavity resonance. Although the spanwise response to cavity tones was limited, broadband pressure fluctuations resulted in significant spanwise accelerations at store natural frequencies. As a result, the largest vibrations occurred when a cavity tone matched a structural natural frequency, although energy was transferred more efficiently to natural frequencies having predominantly streamwise and wall-normal motions.« less
Fluid-structure interactions in compressible cavity flows
Wagner, Justin L.; Casper, Katya Marie; Beresh, Steven J.; Hunter, Patrick S.; Spillers, Russell Wayne; Henfling, John F.; Mayes, Randall L.
2015-06-08
Experiments were performed to understand the complex fluid-structure interactions that occur during aircraft internal store carriage. A cylindrical store was installed in a rectangular cavity having a length-to-depth ratio of 3.33 and a length-to-width ratio of 1. The Mach number ranged from 0.6 to 2.5 and the incoming boundary layer was turbulent. Fast-response pressure measurements provided aeroacoustic loading in the cavity, while triaxial accelerometers provided simultaneous store response. Despite occupying only 6% of the cavity volume, the store significantly altered the cavity acoustics. The store responded to the cavity flow at its natural structural frequencies, and it exhibited a directionally dependent response to cavity resonance. Specifically, cavity tones excited the store in the streamwise and wall-normal directions consistently, whereas a spanwise response was observed only occasionally. Also, the streamwise and wall-normal responses were attributed to the longitudinal pressure waves and shear layer vortices known to occur during cavity resonance. Although the spanwise response to cavity tones was limited, broadband pressure fluctuations resulted in significant spanwise accelerations at store natural frequencies. As a result, the largest vibrations occurred when a cavity tone matched a structural natural frequency, although energy was transferred more efficiently to natural frequencies having predominantly streamwise and wall-normal motions.
Simulation of FCC riser flow with multiphase heat transfer and cracking reactions.
Chang, S. L.; Zhou, C. Q.; Energy Systems
2003-08-01
A validated Computational Fluid Dynamics (CFD) code ICRKFLO was developed for simulations of three-dimensional three-phase reacting flows in Fluid Catalytic Cracking (FCC) riser reactors. It calculates the product yields based on local flow properties by solving the fundamental conservation principles of mass, momentum, and energy for the flow properties associated with the gas, liquid, and solid phases. Unique phenomenological models and numerical techniques were developed specifically for the FCC flow simulation. The models include a spray vaporization model, a particle-solid interaction model, and an interfacial heat transfer model. The numerical techniques include a time-integral approach to overcome numerical stiffness problems in chemical kinetics rate calculations and a hybrid hydrodynamic-kinetic treatment to facilitate detailed kinetics calculations of cracking reactions. ICRKFLO has been validated with extensive test data from two pilot and one commercial FCC units. It is proven to be useful for advanced development of FCC riser reactors.
Sun Qi; Groth, Alexandra; Bertram, Matthias; Waechter, Irina; Bruijns, Tom; Hermans, Roel; Aach, Til
2010-09-15
Purpose: Recently, image-based computational fluid dynamics (CFD) simulation has been applied to investigate the hemodynamics inside human cerebral aneurysms. The knowledge of the computed three-dimensional flow fields is used for clinical risk assessment and treatment decision making. However, the reliability of the application specific CFD results has not been thoroughly validated yet. Methods: In this work, by exploiting a phantom aneurysm model, the authors therefore aim to prove the reliability of the CFD results obtained from simulations with sufficiently accurate input boundary conditions. To confirm the correlation between the CFD results and the reality, virtual angiograms are generated by the simulation pipeline and are quantitatively compared to the experimentally acquired angiograms. In addition, a parametric study has been carried out to systematically investigate the influence of the input parameters associated with the current measuring techniques on the flow patterns. Results: Qualitative and quantitative evaluations demonstrate good agreement between the simulated and the real flow dynamics. Discrepancies of less than 15% are found for the relative root mean square errors of time intensity curve comparisons from each selected characteristic position. The investigated input parameters show different influences on the simulation results, indicating the desired accuracy in the measurements. Conclusions: This study provides a comprehensive validation method of CFD simulation for reproducing the real flow field in the cerebral aneurysm phantom under well controlled conditions. The reliability of the CFD is well confirmed. Through the parametric study, it is possible to assess the degree of validity of the associated CFD model based on the parameter values and their estimated accuracy range.
Thermal Storage and Advanced Heat Transfer Fluids (Fact Sheet)
Not Available
2010-08-01
Fact sheet describing NREL CSP Program capabilities in the area of thermal storage and advanced heat transfer fluids: measuring thermophysical properties, measuring fluid flow and heat transfer, and simulating flow of thermal energy and fluid.
Closures for Course-Grid Simulation of Fluidized Gas-Particle Flows
Sankaran Sundaresan
2010-02-14
Gas-particle flows in fluidized beds and riser reactors are inherently unstable, and they manifest fluctuations over a wide range of length and time scales. Two-fluid models for such flows reveal unstable modes whose length scale is as small as ten particle diameters. Yet, because of limited computational resources, gas-particle flows in large fluidized beds are invariably simulated by solving discretized versions of the two-fluid model equations over a coarse spatial grid. Such coarse-grid simulations do not resolve the small-scale spatial structures which are known to affect the macroscale flow structures both qualitatively and quantitatively. Thus there is a need to develop filtered two-fluid models which are suitable for coarse-grid simulations and capturing the effect of the small-scale structures through closures in terms of the filtered variables. The overall objective of the project is to develop validated closures for filtered two-fluid models for gas-particle flows, with the transport gasifier as a primary, motivating example. In this project, highly resolved three-dimensional simulations of a kinetic theory based two-fluid model for gas-particle flows have been performed and the statistical information on structures in the 100-1000 particle diameters length scale has been extracted. Based on these results, closures for filtered two-fluid models have been constructed. The filtered model equations and closures have been validated against experimental data and the results obtained in highly resolved simulations of gas-particle flows. The proposed project enables more accurate simulations of not only the transport gasifier, but also many other non-reacting and reacting gas-particle flows in a variety of chemical reactors. The results of this study are in the form of closures which can readily be incorporated into existing multi-phase flow codes such as MFIX (www.mfix.org). Therefore, the benefits of this study can be realized quickly. The training provided
Flow Of Mantle Fluids Through The Ductile Lower Crust- Helium...
ratios and active transtensional deformation indicates a deformation-enhanced permeability and that mantle fluids can penetrate the ductile lithosphere, even in regions where...
Crandall, Dustin; Bromhal, Grant; McIntyre, Dustin
2010-01-01
Combining CT imaging of geomaterials with computational fluid dynamics provides substantial benefits to researchers. With simulations, geometric parameters can be varied in systematic ways that are not possible in the lab. This paper details the conversion of micro-CT images of a physical fracture in Berea sandstone to several tractable finite volume meshes. By computationally varying the level of detail captured from the scans we produced several realistic fracture geometries with different degrees of wall-roughness and various geometric properties. Simulations were performed and it was noted that increasing roughness increased the resistance to fluid flow. Also, as the distance between walls was increased the mean aperture approached the effective aperture.
Fluid Flow and Infiltration in Structured Fibrous Porous Media
Papathanasiou, Thanasis D.
2006-08-09
Present the results of an extensive computational investigation of flow through structured fibrous media.
Method and apparatus for measuring the mass flow rate of a fluid
Evans, Robert P.; Wilkins, S. Curtis; Goodrich, Lorenzo D.; Blotter, Jonathan D.
2002-01-01
A non invasive method and apparatus is provided to measure the mass flow rate of a multi-phase fluid. An accelerometer is attached to a pipe carrying a multi-phase fluid. Flow related measurements in pipes are sensitive to random velocity fluctuations whose magnitude is proportional to the mean mass flow rate. An analysis of the signal produced by the accelerometer shows a relationship between the mass flow of a fluid and the noise component of the signal of an accelerometer. The noise signal, as defined by the standard deviation of the accelerometer signal allows the method and apparatus of the present invention to non-intrusively measure the mass flow rate of a multi-phase fluid.
Simulation of katabatic flow and mountain waves
Poulos, G.S.
1995-05-01
It is well-known that both mountain waves and katabatic flows frequently form in the severe relief of the Front Range of the Rocky Mountains. Occasionally these phenomena have been found to occur simultaneously. Generally, however, the large body of literature regarding them has treated each individually, seldom venturing into the regime of their potential interaction. The exceptions to this rule are Arritt and Pielke (1986), Barr and Orgill (1989). Gudiksen et al. (1992), Moriarty (1984), Orgill et al. (1992), Orgill and Schreck (1985). Neff and King (1988), Stone and Hoard (1989), Whiteman and Doran (1993) and Ying and Baopu (1993). The simulations overviewed here attempt to reproduce both atmospheric features simultaneously for two case days during the 1993 ASCOT observational program near Rocky Flats, Colorado.
Computational fluid dynamics modeling of two-phase flow in a BWR fuel assembly. Final CRADA Report.
Tentner, A.; Nuclear Engineering Division
2009-10-13
A direct numerical simulation capability for two-phase flows with heat transfer in complex geometries can considerably reduce the hardware development cycle, facilitate the optimization and reduce the costs of testing of various industrial facilities, such as nuclear power plants, steam generators, steam condensers, liquid cooling systems, heat exchangers, distillers, and boilers. Specifically, the phenomena occurring in a two-phase coolant flow in a BWR (Boiling Water Reactor) fuel assembly include coolant phase changes and multiple flow regimes which directly influence the coolant interaction with fuel assembly and, ultimately, the reactor performance. Traditionally, the best analysis tools for this purpose of two-phase flow phenomena inside the BWR fuel assembly have been the sub-channel codes. However, the resolution of these codes is too coarse for analyzing the detailed intra-assembly flow patterns, such as flow around a spacer element. Advanced CFD (Computational Fluid Dynamics) codes provide a potential for detailed 3D simulations of coolant flow inside a fuel assembly, including flow around a spacer element using more fundamental physical models of flow regimes and phase interactions than sub-channel codes. Such models can extend the code applicability to a wider range of situations, which is highly important for increasing the efficiency and to prevent accidents.
Fluid flow structure around the mixer in a reactor with mechanical mixing
Lecheva, A.; Zheleva, I.
2015-10-28
Fluid flow structure around the mixer in a cylindrical reactor with mechanical mixing is studied and numerical results are presented in this article. The model area is complex because of the presence of convex corners of the mixer in the fluid flow. Proper boundary conditions for the vorticity calculated on the base of the stream function values near solid boundaries of the examined area are presented. The boundary value problem of motion of swirling incompressible viscous fluid in a vertical tank reactor with a mixer is solved numerically. The calculations are made by a computer code, written in MATLAB. The complex structure of the flow around the mixing disk is described and commented.
Large scale condensed matter and fluid dynamics simulations | Argonne
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Leadership Computing Facility , (a)Snapshots of the vorticity field of a UPO located in weakly turbulent flow with Re=371 and period equal to 26864 LB time steps. The quantity shown is the magnitude of vorticity above a given cut-off level. Red corresponds to large negative vorticity (clockwise rotation), and blue to large positive vorticity (counter-clockwise rotation). (b)Initial stucture of the large LDH-nucleic acid models, (a) System, at the start of the simulation. For clarity, water
Moller, Nancy; Weare J. H.
2008-05-29
Successful exploitation of the vast amount of heat stored beneath the earth’s surface in hydrothermal and fluid-limited, low permeability geothermal resources would greatly expand the Nation’s domestic energy inventory and thereby promote a more secure energy supply, a stronger economy and a cleaner environment. However, a major factor limiting the expanded development of current hydrothermal resources as well as the production of enhanced geothermal systems (EGS) is insufficient knowledge about the chemical processes controlling subsurface fluid flow. With funding from past grants from the DOE geothermal program and other agencies, we successfully developed advanced equation of state (EOS) and simulation technologies that accurately describe the chemistry of geothermal reservoirs and energy production processes via their free energies for wide XTP ranges. Using the specific interaction equations of Pitzer, we showed that our TEQUIL chemical models can correctly simulate behavior (e.g., mineral scaling and saturation ratios, gas break out, brine mixing effects, down hole temperatures and fluid chemical composition, spent brine incompatibilities) within the compositional range (Na-K-Ca-Cl-SO4-CO3-H2O-SiO2-CO2(g)) and temperature range (T < 350°C) associated with many current geothermal energy production sites that produce brines with temperatures below the critical point of water. The goal of research carried out under DOE grant DE-FG36-04GO14300 (10/1/2004-12/31/2007) was to expand the compositional range of our Pitzer-based TEQUIL fluid/rock interaction models to include the important aluminum and silica interactions (T < 350°C). Aluminum is the third most abundant element in the earth’s crust; and, as a constituent of aluminosilicate minerals, it is found in two thirds of the minerals in the earth’s crust. The ability to accurately characterize effects of temperature, fluid mixing and interactions between major rock-forming minerals and hydrothermal and
Direct numerical simulation of turbulent reacting flows
Chen, J.H.
1993-12-01
The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.
Oort, E. van; Hale, A.H.; Mody, F.K.
1995-12-31
Coupled osmotic flows have been studied as a means of stabilising shales exposed to water-based muds. The prime factor that governs the magnitude of chemical osmotic flow, i.e. the shale-fluid membrane efficiency, was investigated in detail. Its dependence on shale parameters, fluid parameters and external conditions was quantified. Membrane efficiency was found to increase with an increase in (hydrated) solute-to-pore-size ratio, with an increase in the shale`s high-surface area clay content and with a decrease shale permeability when increasing effective confining stress. Moreover, new drilling fluid chemistries for improving the efficiencies of low- and non-selective shale-fluid systems were identified. Induced osmotic flow with optimised shale-fluid membrane efficiencies in water-based environments is presented as a new strategy for improving wellbore stability in shales.
Apparatus for irradiating a continuously flowing stream of fluid. [For neutron activation analysis
Speir, L.G.; Adams, E.L.
1982-05-13
An apparatus for irradiating a continuously flowing stream of fluid is disclosed. The apparatus consists of a housing having a spherical cavity and a spherical moderator containing a radiation source positioned within the spherical cavity. The spherical moderator is of lesser diameter than the spherical cavity so as to define a spherical annular volume around the moderator. The housing includes fluid intake and output conduits which open onto the spherical cavity at diametrically opposite positions. Fluid flows through the cavity around the spherical moderator and is uniformly irradiated due to the 4..pi.. radiation geometry. The irradiation source, for example a /sup 252/Cf neutron source, is removable from the spherical moderator through a radial bore which extends outwardly to an opening on the outside of the housing. The radiation source may be routinely removed without interrupting the flow of fluid or breaching the containment of the fluid.
Inhomogeneity of fluid flow in Stirling engine regenerators
Jones, J.D. )
1989-10-01
The literature relating to inhomogeneity of flow regenerators is briefly reviewed. It is noted that, in contrast to other applications of regenerators, relatively little attention has been paid to the consequences of flow inhomogeneity for thermal regeneration in Stirling cycle machines. The construction of regenerator capsules for a large stationary Stirling engine is described. A test rig is developed to measure the gas velocity profile across the face of the packed regenerator capsules under steady flow conditions. Measured flow profiles for a number of different matrix materials and construction techniques are presented, and it is noted that stacked-mesh regenerator matrices tend to display marked inhomogeneities of flow. The consequences of flow inhomogeneity for flow friction and regenerator effectiveness are analyzed theoretically, and approximate formulae deduced. One method for reducing flow inhomogeneity in stacked-screen matrice
Developing highly scalable fluid solvers for enabling multiphysics simulation.
Clausen, Jonathan
2013-03-01
We performed an investigation into explicit algorithms for the simulation of incompressible flows using methods with a finite, but small amount of compressibility added. Such methods include the artificial compressibility method and the lattice-Boltzmann method. The impetus for investigating such techniques stems from the increasing use of parallel computation at all levels (processors, clusters, and graphics processing units). Explicit algorithms have the potential to leverage these resources. In our investigation, a new form of artificial compressibility was derived. This method, referred to as the Entropically Damped Artificial Compressibility (EDAC) method, demonstrated superior results to traditional artificial compressibility methods by damping the numerical acoustic waves associated with these methods. Performance nearing that of the lattice- Boltzmann technique was observed, without the requirement of recasting the problem in terms of particle distribution functions; continuum variables may be used. Several example problems were investigated using a finite-di erence and finite-element discretizations of the EDAC equations. Example problems included lid-driven cavity flow, a convecting Taylor-Green vortex, a doubly periodic shear layer, freely decaying turbulence, and flow over a square cylinder. Additionally, a scalability study was performed using in excess of one million processing cores. Explicit methods were found to have desirable scaling properties; however, some robustness and general applicability issues remained.
GPU accelerated flow solver for direct numerical simulation of turbulent flows
Salvadore, Francesco; Botti, Michela
2013-02-15
Graphical processing units (GPUs), characterized by significant computing performance, are nowadays very appealing for the solution of computationally demanding tasks in a wide variety of scientific applications. However, to run on GPUs, existing codes need to be ported and optimized, a procedure which is not yet standardized and may require non trivial efforts, even to high-performance computing specialists. In the present paper we accurately describe the porting to CUDA (Compute Unified Device Architecture) of a finite-difference compressible Navier–Stokes solver, suitable for direct numerical simulation (DNS) of turbulent flows. Porting and validation processes are illustrated in detail, with emphasis on computational strategies and techniques that can be applied to overcome typical bottlenecks arising from the porting of common computational fluid dynamics solvers. We demonstrate that a careful optimization work is crucial to get the highest performance from GPU accelerators. The results show that the overall speedup of one NVIDIA Tesla S2070 GPU is approximately 22 compared with one AMD Opteron 2352 Barcelona chip and 11 compared with one Intel Xeon X5650 Westmere core. The potential of GPU devices in the simulation of unsteady three-dimensional turbulent flows is proved by performing a DNS of a spatially evolving compressible mixing layer.
Stress and Fluid-Flow Interaction for the Coso Geothermal Field...
Fluid-Flow Interaction for the Coso Geothermal Field Derived from 3D Numerical Models Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings:...
IN SITU STRESS, FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C...
FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C-9:AN ENHANCED GEOTHERMAL SYSTEM IN THE COSO GEOTHERMAL FIELD Jump to: navigation, search OpenEI Reference LibraryAdd to library...
Tracking interface and common curve dynamics for two-fluid flow...
Office of Scientific and Technical Information (OSTI)
Tracking interface and common curve dynamics for two-fluid flow in porous media This content will become publicly available on April 29, 2017 Title: Tracking interface and common ...
Modeling two-fluid-phase flow and species transport in porous...
Office of Scientific and Technical Information (OSTI)
Modeling two-fluid-phase flow and species transport in porous media Citation Details In-Document Search This content will become publicly available on March 3, 2017 Title: Modeling ...
Similarity Solution for Multi-Phase Fluid and Heat Flow in Radial Geometry
Energy Science and Technology Software Center (OSTI)
1994-12-02
SIMSOL calculates transient fluid and heat flow for a uniform geologic medium containing water (in both liquid and vapor phases) and air, surrounding a constant-strength linear heat source.
Design, construction and evaluation of a simulated geothermal flow system
Mackanic, J.C.
1980-07-28
A system was designed and built to simulate the flow from a geothermal well. The simulated flow will be used to power a Lysholm engine, the performance of which will then be evaluated for different simulated geothermal flows. Two main subjects are covered: 1) the design, construction and evaluation of the behavior of the system that simulates the geothermal flow; included in that topic is a discussion of the probable behavior of the Lysholm engine when it is put into operation, and 2) the investigation of the use of dynamic modeling techniques to determine whether they can provide a suitable means for predicting the behavior of the system.
Fluid simulations with atomistic resolution: a hybrid multiscale method with field-wise coupling
Borg, Matthew K. [Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ (United Kingdom)] [Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ (United Kingdom); Lockerby, Duncan A., E-mail: duncan.lockerby@warwick.ac.uk [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom); Reese, Jason M., E-mail: jason.reese@strath.ac.uk [Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ (United Kingdom)
2013-12-15
We present a new hybrid method for simulating dense fluid systems that exhibit multiscale behaviour, in particular, systems in which a NavierStokes model may not be valid in parts of the computational domain. We apply molecular dynamics as a local microscopic refinement for correcting the NavierStokes constitutive approximation in the bulk of the domain, as well as providing a direct measurement of velocity slip at bounding surfaces. Our hybrid approach differs from existing techniques, such as the heterogeneous multiscale method (HMM), in some fundamental respects. In our method, the individual molecular solvers, which provide information to the macro model, are not coupled with the continuum grid at nodes (i.e. point-wise coupling), instead coupling occurs over distributed heterogeneous fields (here referred to as field-wise coupling). This affords two major advantages. Whereas point-wise coupled HMM is limited to regions of flow that are highly scale-separated in all spatial directions (i.e. where the state of non-equilibrium in the fluid can be adequately described by a single strain tensor and temperature gradient vector), our field-wise coupled HMM has no such limitations and so can be applied to flows with arbitrarily-varying degrees of scale separation (e.g. flow from a large reservoir into a nano-channel). The second major advantage is that the position of molecular elements does not need to be collocated with nodes of the continuum grid, which means that the resolution of the microscopic correction can be adjusted independently of the resolution of the continuum model. This in turn means the computational cost and accuracy of the molecular correction can be independently controlled and optimised. The macroscopic constraints on the individual molecular solvers are artificial body-force distributions, used in conjunction with standard periodicity. We test our hybrid method on the Poiseuille flow problem for both Newtonian (Lennard-Jones) and non
Temperature distribution in a flowing fluid heated in a microwave resonant cavity
Thomas, J.R. Jr. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States); Nelson, E.M.; Kares, R.J.; Stringfield, R.M. [Los Alamos National Lab., NM (United States)
1996-04-01
This paper presents results of an analytical study of microwave heating of a fluid flowing through a tube situated along the axis of a cylindrical microwave applicator. The interaction of the microwave field pattern and the fluid velocity profiles is illustrated for both laminar and turbulent flow. Resulting temperature profiles are compared with those generated by conventional heating through a surface heat flux. It is found that microwave heating offers several advantages over conventional heating.
Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments Yarom Polsky Oak Ridge National Laboratory Track Name Project Officer: Greg Stillman Total Project Funding: $300K April 23, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Office eere.energy.gov Relevance/Impact of Research Goals: 1) Develop an experimental capability to image/characterize fluid flow through fractures 2)
Dissolution of metal tritides in a simulated lung fluid
Cheng, Yung-Sung; Dahl, A.R.; Jow, Hong Nian
1997-10-01
Metal tritides including titanium tritide (Ti {sup 3}H{sub x}) and erbium tritide (Er {sup 3}H{sub x}) have been used as components of neutron generators. The current understanding of metal tritides and their radiation dosimetry for internal exposure is very limited, and the ICRP Publication 30 does not provide for tritium dosimetry in metal tritide form. However, a few papers in the literature suggest that the solubility of metal tritides could be low. The current radiation protection guidelines for metal tritide particles are based on the assumption that their biological behavior is similar to tritiated water, which could be easily absorbed into body fluid. Therefore, these particles could have relatively short biological half-lives (10 d). If the solubility is low, the biological half-life of metal tritide particles and the dosimetry of an inhalation exposure to these particles could be quite different from tritiated water. This paper describes experiments on the dissolution rate of titanium tritide particles in a simulated lung fluid. Titanium tritide particles with mean sizes of 103 {mu}m (coarse) and 0.95 {mu}m (fine) were used. The results showed that the coarse particles dissolved much more slowly than the fine particles. The long-term dissolution half times were 361 and 33 d for the coarse and fine particles, respectively. Dissolution data of the fine particles were consistent with the diffusion theory. The dissolution half times were longer than the 10-d biological half time for tritiated water in the body. This finding has significant implications for the current health protection guidelines, including annual limits of intakes and derived air concentrations.
Numerical simulation model for vertical flow in geothermal wells
Tachimori, M.
1982-01-01
A numerical simulation model for vertical flow in geothermal wells is presented. The model consists of equations for the conservation of mass, momentum, and energy, for thermodynamic state of water, for friction losses, for slip velocity relations, and of the criteria for various flow regimes. A new set of correlations and criteria is presented for two-phase flow to improve the accuracy of predictions; bubbly flow - Griffith and Wallis correlation, slug flow - Nicklin et al. one, annular-mist flow - Inoue and Aoki and modified by the author. The simulation method was verified by data from actual wells.
Kim, Jihoon; Um, Evan; Moridis, George
2014-12-01
We investigate fracture propagation induced by hydraulic fracturing with water injection, using numerical simulation. For rigorous, full 3D modeling, we employ a numerical method that can model failure resulting from tensile and shear stresses, dynamic nonlinear permeability, leak-off in all directions, and thermo-poro-mechanical effects with the double porosity approach. Our numerical results indicate that fracture propagation is not the same as propagation of the water front, because fracturing is governed by geomechanics, whereas water saturation is determined by fluid flow. At early times, the water saturation front is almost identical to the fracture tip, suggesting that the fracture is mostly filled with injected water. However, at late times, advance of the water front is retarded compared to fracture propagation, yielding a significant gap between the water front and the fracture top, which is filled with reservoir gas. We also find considerable leak-off of water to the reservoir. The inconsistency between the fracture volume and the volume of injected water cannot properly calculate the fracture length, when it is estimated based on the simple assumption that the fracture is fully saturated with injected water. As an example of flow-geomechanical responses, we identify pressure fluctuation under constant water injection, because hydraulic fracturing is itself a set of many failure processes, in which pressure consistently drops when failure occurs, but fluctuation decreases as the fracture length grows. We also study application of electromagnetic (EM) geophysical methods, because these methods are highly sensitive to changes in porosity and pore-fluid properties due to water injection into gas reservoirs. Employing a 3D finite-element EM geophysical simulator, we evaluate the sensitivity of the crosswell EM method for monitoring fluid movements in shaly reservoirs. For this sensitivity evaluation, reservoir models are generated through the coupled flow
Dispersed Fluid Flow in Fractured Reservoirs- an Analysis of...
Reservoirs- an Analysis of Tracer-Determined Residence Time Distributions Abstract A methodology for analyzing the internal flow characteristics of a fractured geothermal reservoir...
Use of Geophysical Techniques to Characterize Fluid Flow in a...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Project objectives: Joint inversion of geophysical data for ground water flow imaging; ... More Documents & Publications Time-lapse Joint Inversion of Geophysical Data and its ...
Controls on Fault-Hosted Fluid Flow: Preliminary Results from...
Flow: Preliminary Results from the Coso Geothermal Field, CA Abstract cap rock, permeability, fault, fracture, clay, Coso Authors Davatzes, N.C.; Hickman and S.H. Published...
Method of measuring the mass flow rate of a substance entering a cocurrent fluid stream
Cochran, Jr., Henry D.
1978-04-11
This invention relates to an improved method of monitoring the mass flow rate of a substance entering a cocurrent fluid stream. The method very basically consists of heating equal sections of the fluid stream above and below the point of entry of the substance to be monitored, and measuring and comparing the resulting change in temperature of the sections. Advantage is taken of the difference in thermal characteristics of the fluid and the substance to be measured to correlate temperature differences in the sections above and below the substance feed point for providing an indication of the mass flow rate of the substance.
Fracture Network and Fluid Flow Imaging for EGS Applications...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Create 3-D code for simulating EM responses at the surface of the earth with topographic ... quantitative EM geophysical research, statistics, finite element code development, SAGE ...
Fluid Flow Model Development for Representative Geologic Media
Office of Energy Efficiency and Renewable Energy (EERE)
Clay and granitic geologic rock units are potential host media for future repositories for used nuclear fuel and high level waste. This report addresses the representation of flow in these two media within numerical process (discrete fracture network) models.
Modeling Fluid Flow in Natural Systems, Model Validation and Demonstration
Office of Energy Efficiency and Renewable Energy (EERE)
Clay and granitic units are potential host media for future repositories for used nuclear fuel. The report addresses the representation and characterization of flow in these two media within...
Ortiz, M.G.; Boucher, T.J.
1998-10-27
A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.
Ortiz, Marcos German; Boucher, Timothy J.
1998-01-01
A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.
Mukhopadhyay, S.; Tsang, Y.; Finsterle, S.
2009-01-15
A simple conceptual model has been recently developed for analyzing pressure and temperature data from flowing fluid temperature logging (FFTL) in unsaturated fractured rock. Using this conceptual model, we developed an analytical solution for FFTL pressure response, and a semianalytical solution for FFTL temperature response. We also proposed a method for estimating fracture permeability from FFTL temperature data. The conceptual model was based on some simplifying assumptions, particularly that a single-phase airflow model was used. In this paper, we develop a more comprehensive numerical model of multiphase flow and heat transfer associated with FFTL. Using this numerical model, we perform a number of forward simulations to determine the parameters that have the strongest influence on the pressure and temperature response from FFTL. We then use the iTOUGH2 optimization code to estimate these most sensitive parameters through inverse modeling and to quantify the uncertainties associated with these estimated parameters. We conclude that FFTL can be utilized to determine permeability, porosity, and thermal conductivity of the fracture rock. Two other parameters, which are not properties of the fractured rock, have strong influence on FFTL response. These are pressure and temperature in the borehole that were at equilibrium with the fractured rock formation at the beginning of FFTL. We illustrate how these parameters can also be estimated from FFTL data.
Bluff Body Flow Simulation Using a Vortex Element Method
Anthony Leonard; Phillippe Chatelain; Michael Rebel
2004-09-30
Heavy ground vehicles, especially those involved in long-haul freight transportation, consume a significant part of our nation's energy supply. it is therefore of utmost importance to improve their efficiency, both to reduce emissions and to decrease reliance on imported oil. At highway speeds, more than half of the power consumed by a typical semi truck goes into overcoming aerodynamic drag, a fraction which increases with speed and crosswind. Thanks to better tools and increased awareness, recent years have seen substantial aerodynamic improvements by the truck industry, such as tractor/trailer height matching, radiator area reduction, and swept fairings. However, there remains substantial room for improvement as understanding of turbulent fluid dynamics grows. The group's research effort focused on vortex particle methods, a novel approach for computational fluid dynamics (CFD). Where common CFD methods solve or model the Navier-Stokes equations on a grid which stretches from the truck surface outward, vortex particle methods solve the vorticity equation on a Lagrangian basis of smooth particles and do not require a grid. They worked to advance the state of the art in vortex particle methods, improving their ability to handle the complicated, high Reynolds number flow around heavy vehicles. Specific challenges that they have addressed include finding strategies to accurate capture vorticity generation and resultant forces at the truck wall, handling the aerodynamics of spinning bodies such as tires, application of the method to the GTS model, computation time reduction through improved integration methods, a closest point transform for particle method in complex geometrics, and work on large eddy simulation (LES) turbulence modeling.
Grossman, S.A.; Trump, D.L.; Chen, D.C.; Thompson, G.; Camargo, E.E.
1982-11-01
Cerebrospinal fluid flow dynamics were evaluated by /sup 111/In-diethylenetriamine pentaacetic acid (/sup 111/In-DTPA) ventriculography in 27 patients with neoplastic meningitis. Nineteen patients (70 percent) had evidence of cerebrospinal fluid flow disturbances. These occurred as ventricular outlet obstructions, abnormalities of flow in the spinal canal, or flow distrubances over the cortical convexities. Tumor histology, physical examination, cerebrospinal fluid analysis, myelograms, and computerized axial tomographic scans were not sufficient to predict cerebrospinal fluid flow patterns. These data indicate that cerebrospinal fluid flow abnormalities are common in patients with neoplastic meningitis and that /sup 111/In-DTPA cerebrospinal fluid flow imaging is useful in characterizing these abnormalities. This technique provides insight into the distribution of intraventricularly administered chemotherapy and may provide explanations for treatment failure and drug-induced neurotoxicity in patients with neoplastic meningitis.
Liu, Haihu; Zhang, Yonghao; Valocchi, Albert J.
2015-05-15
Injection of anthropogenic carbon dioxide (CO{sub 2}) into geological formations is a promising approach to reduce greenhouse gas emissions into the atmosphere. Predicting the amount of CO{sub 2} that can be captured and its long-term storage stability in subsurface requires a fundamental understanding of multiphase displacement phenomena at the pore scale. In this paper, the lattice Boltzmann method is employed to simulate the immiscible displacement of a wetting fluid by a non-wetting one in two microfluidic flow cells, one with a homogeneous pore network and the other with a randomly heterogeneous pore network. We have identified three different displacement patterns, namely, stable displacement, capillary fingering, and viscous fingering, all of which are strongly dependent upon the capillary number (Ca), viscosity ratio (M), and the media heterogeneity. The non-wetting fluid saturation (S{sub nw}) is found to increase nearly linearly with logCa for each constant M. Increasing M (viscosity ratio of non-wetting fluid to wetting fluid) or decreasing the media heterogeneity can enhance the stability of the displacement process, resulting in an increase in S{sub nw}. In either pore networks, the specific interfacial length is linearly proportional to S{sub nw} during drainage with equal proportionality constant for all cases excluding those revealing considerable viscous fingering. Our numerical results confirm the previous experimental finding that the steady state specific interfacial length exhibits a linear dependence on S{sub nw} for either favorable (M ? 1) or unfavorable (M < 1) displacement, and the slope is slightly higher for the unfavorable displacement.
Computational Methods for Analyzing Fluid Flow Dynamics from Digital Imagery
Luttman, A.
2012-03-30
The main goal (long term) of this work is to perform computational dynamics analysis and quantify uncertainty from vector fields computed directly from measured data. Global analysis based on observed spatiotemporal evolution is performed by objective function based on expected physics and informed scientific priors, variational optimization to compute vector fields from measured data, and transport analysis proceeding with observations and priors. A mathematical formulation for computing flow fields is set up for computing the minimizer for the problem. An application to oceanic flow based on sea surface temperature is presented.
Jong Chull Jo; Myung Jo Jhung; Woong Sik Kim; Hho Jung Kim
2004-07-01
This study investigates the fluid-elastic instability characteristics of steam generator helical type tubes in operating nuclear power plants. The thermal-hydraulic conditions of both tube side and shell side flow fields are predicted by a general purpose computational fluid dynamics code employing the finite volume element modeling. To get the natural frequency, corresponding mode shape and participation factor, modal analyses are performed for helical type tubes with various conditions. Investigated are the effects of the helix angle, the number of supports and the status of the inner fluid on the modal, and fluid-elastic instability characteristics of the tubes, which are expressed in terms of the natural frequency, corresponding mode shape, and stability ratio. (authors)
TOUGH2: A general-purpose numerical simulator for multiphase nonisothermal flows
Pruess, K.
1991-06-01
Numerical simulators for multiphase fluid and heat flows in permeable media have been under development at Lawrence Berkeley Laboratory for more than 10 yr. Real geofluids contain noncondensible gases and dissolved solids in addition to water, and the desire to model such `compositional` systems led to the development of a flexible multicomponent, multiphase simulation architecture known as MULKOM. The design of MULKOM was based on the recognition that the mass-and energy-balance equations for multiphase fluid and heat flows in multicomponent systems have the same mathematical form, regardless of the number and nature of fluid components and phases present. Application of MULKOM to different fluid mixtures, such as water and air, or water, oil, and gas, is possible by means of appropriate `equation-of-state` (EOS) modules, which provide all thermophysical and transport parameters of the fluid mixture and the permeable medium as a function of a suitable set of primary thermodynamic variables. Investigations of thermal and hydrologic effects from emplacement of heat-generating nuclear wastes into partially water-saturated formations prompted the development and release of a specialized version of MULKOM for nonisothermal flow of water and air, named TOUGH. TOUGH is an acronym for `transport of unsaturated groundwater and heat` and is also an allusion to the tuff formations at Yucca Mountain, Nevada. The TOUGH2 code is intended to supersede TOUGH. It offers all the capabilities of TOUGH and includes a considerably more general subset of MULKOM modules with added capabilities. The paper briefly describes the simulation methodology and user features.
Magnetohydrodynamic pump with a system for promoting flow of fluid in one direction
Lemoff, Asuncion V.; Lee, Abraham P.
2010-07-13
A magnetohydrodynamic pump for pumping a fluid. The pump includes a microfluidic channel for channeling the fluid, a MHD electrode/magnet system operatively connected to the microfluidic channel, and a system for promoting flow of the fluid in one direction in the microfluidic channel. The pump has uses in the medical and biotechnology industries for blood-cell-separation equipment, biochemical assays, chemical synthesis, genetic analysis, drug screening, an array of antigen-antibody reactions, combinatorial chemistry, drug testing, medical and biological diagnostics, and combinatorial chemistry. The pump also has uses in electrochromatography, surface micromachining, laser ablation, inkjet printers, and mechanical micromilling.
Hamel, William R.
1984-01-01
This invention relates to a new method and new apparatus for determining fluid mass flowrate and density. In one aspect of the invention, the fluid is passed through a straight cantilevered tube in which transient oscillation has been induced, thus generating Coriolis damping forces on the tube. The decay rate and frequency of the resulting damped oscillation are measured, and the fluid mass flowrate and density are determined therefrom. In another aspect of the invention, the fluid is passed through the cantilevered tube while an electrically powered device imparts steady-state harmonic excitation to the tube. This generates Coriolis tube-damping forces which are dependent on the mass flowrate of the fluid. Means are provided to respond to incipient flow-induced changes in the amplitude of vibration by changing the power input to the excitation device as required to sustain the original amplitude of vibration. The fluid mass flowrate and density are determined from the required change in power input. The invention provides stable, rapid, and accurate measurements. It does not require bending of the fluid flow.
Solution Algorithms for Effective-Field Models of Multi-Fluid Flows
Office of Scientific and Technical Information (OSTI)
(Technical Report) | SciTech Connect Technical Report: Solution Algorithms for Effective-Field Models of Multi-Fluid Flows Citation Details In-Document Search Title: Solution Algorithms for Effective-Field Models of Multi-Fluid Flows Authors: Robert Nourgaliev ; Mark Christon Publication Date: 2012-09-01 OSTI Identifier: 1058095 Report Number(s): INL/EXT-12-27187 DOE Contract Number: DE-AC07-05ID14517 Resource Type: Technical Report Research Org: Idaho National Laboratory (INL) Sponsoring
L3:MPO.CRUD.P8.02 Two-Phase Fluid Flow
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
CRUD.P8.02 Two-Phase Fluid Flow Modeling in CRUD using MAMBA-BDM Miaomiao Jina and Michael Short Massachusetts Institute of Technology February 17, 2014 CASL-U-2014-0143-000 Two-Phase Fluid Flow Modeling in CRUD using MAMBA-BDM Miaomiao Jin a , Prof. Michael Short a,∗ a Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 Abstract CRUD is a CASL challenge problem with a significant component in the Materials Performance and Optimization (MPO) focus area. CRUD
Direct Numerical Simulation of Compressible, Turbulent Flow ...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
The computational mesh for this direct numerical simulation was over 33 billion cells, and was run on up to 102,400 cores under a DoD HPCMP Frontier Project. Nicholas Bisek and ...
Multiscale Blood Flow Simulations | Argonne Leadership Computing Facility
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
a continuum model Brain blood flow simulation with NekTar; a continuum model. Leopold Grinberg, George Em. Karniadakis, Brown University; Vitali Morozov, Joseph A. Insley, Michael E. Papka, Kalyan Kumaran; Argonne National Laboratory; Dmitry A Fedosov, Forschungszentrum Juelich Multiscale Blood Flow Simulations PI Name: George Karniadakis PI Email: gk@dam.brown.edu Institution: Brown University Allocation Program: INCITE Allocation Hours at ALCF: 71 Million Year: 2013 Research Domain: Biological
Mesoscale simulations of particulate flows with parallel distributed
Office of Scientific and Technical Information (OSTI)
Lagrange multiplier technique (Journal Article) | SciTech Connect Journal Article: Mesoscale simulations of particulate flows with parallel distributed Lagrange multiplier technique Citation Details In-Document Search Title: Mesoscale simulations of particulate flows with parallel distributed Lagrange multiplier technique Authors: Kanarska, Y ; Lomov, I ; Antoun, T Publication Date: 2010-09-10 OSTI Identifier: 1120915 Report Number(s): LLNL-JRNL-455392 DOE Contract Number: W-7405-ENG-48
Large Eddy Simulations of Combustor Liner Flows | Argonne Leadership
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Computing Facility Turbulent flow going through a multi-hole coupon geometry Turbulent flow going through a multi-hole coupon geometry. Density iso surface colored by velocity magnitude. Joseph Insley, Argonne National Laboratory; Lee Shunn, Cascade Technologies; Anne Dord, GE Aviation; and Yonduck Sung, GE Global Research Large Eddy Simulations of Combustor Liner Flows PI Name: Anne Dord PI Email: anne.dord@ge.com Institution: GE Aviation Allocation Program: INCITE Allocation Hours at ALCF:
Simulations of vibrational relaxation in dense molecular fluids
Holian, B.L.
1985-07-01
In the understanding of high-temperatre and -pressure chemistry in explosives, first step is the study of the transfer of energy from translational degrees of freedom into internal vibrations of the molecules. We present new methods using nonequilibrium molecular dynamics (NEMD) for measuring vibrational relaxation in a diatomic fluid, where we expect a classical treatment of many-body collisions to be relevant because of the high densities (2 to 3 times compressed compared to the normal fluid) and high temperatures (2000 to 4000 K) involved behind detonation waves. NEMD techniques are discussed, including their limitations, and qualitative results presented.
Michael R. Gross; Kajari Ghosh; Alex K. Manda; Sumanjit Aich
2006-05-08
The theory behind how chemically reactive tracers are used to characterize the velocity and temperature distribution in steady flowing systems is reviewed. Kinetic parameters are established as a function of reservoir temperatures and fluid residence times for selecting appropriate reacting systems. Reactive tracer techniques are applied to characterize the temperature distribution in a laminar-flow heat exchanger. Models are developed to predict reactive tracer behavior in fractured geothermal reservoirs of fixed and increasing size.
Large-Scale Condensed Matter and Fluid Dynamics Simulations in Three
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Diverse Areas: Whole Brain Blood Flow Simulations | Argonne Leadership Computing Facility A snapshot of blood flow simulated and visualized within a digitally reconstructed patient-specific middle cerebral artery aneurysm. The figure depicts a snapshot of blood flow simulated and visualized using the parallel LB code HemeLB within a digitally reconstructed patient-specific middle cerebral artery aneurysm. The top-left and top-right images show the volume rendering of the velocity field and
Xu, Ben; Li, Peiwen; Waller, Peter; Huesemann, Michael H.
2015-02-27
This paper analyzes and evaluates the flow mixing in an open channel algal raceway for biofuel production. The flow mixing governs the frequency of how algae cells are exposed to sunlight, due to the fluid movement between the surface and the bottom of the algal raceway, thereby affecting algal growth rate. In this work, we investigated the flow mixing performance in a table-sized model of the High Velocity Algae Raceway Integrated Design (ARID-HV). Various geometries of the raceway channels and dams were considered in both the CFD analysis and experimental flowvisualization. In the CFD simulation, the pathlines of fluid particleswere analyzed to obtain the distribution of the number of times that particles passed across a critical water depth, Dc, defined as a cycle count. In addition, the distribution of the time period fraction that the fluid particles stayed in the zones above and below Dc was recorded. Such information was used to evaluate the flow mixing in the raceway. The CFD evaluation of the flow mixing was validated using experimental flow visualization, which showed a good qualitative agreement with the numerical results. In conclusion, this CFD-based evaluation methodology is recommended for flow field optimization for open channel algal raceways, as well as for other engineering applications in which flow mixing is an important concern.
Dynamics of a confined dusty fluid in a sheared ion flow
Laishram, Modhuchandra; Sharma, Devendra; Kaw, Predhiman K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)
2014-07-15
Dynamics of an isothermally driven dust fluid is analyzed which is confined in an azimuthally symmetric cylindrical setup by an effective potential and is in equilibrium with an unconfined sheared flow of a streaming plasma. Cases are analyzed where the confining potential constitutes a barrier for the driven fluid, limiting its spatial extension and boundary velocity. The boundary effects entering the formulation are characterized by applying the appropriate boundary conditions and a range of solutions exhibiting single and multiple vortex are obtained. The equilibrium solutions considered in the cylindrical setup feature a transition from single to multiple vortex state of the driven flow. Effects of (i) the variation in dust viscosity, (ii) coupling between the driving and the driven fluid, and (iii) a friction determining the equilibrium dynamics of the driven system are characterized.
Flow induced migration in polymer melts – Theory and simulation
Dorgan, John Robert Rorrer, Nicholas Andrew
2015-04-28
Flow induced migration, whereby polymer melts are fractionated by molecular weight across a flow field, represents a significant complication in the processing of polymer melts. Despite its long history, such phenomena remain relatively poorly understood. Here a simple analytical theory is presented which predicts the phenomena based on well-established principles of non-equilibrium thermodynamics. It is unambiguously shown that for purely viscous materials, a gradient in shear rate is needed to drive migration; for purely viscometric flows no migration is expected. Molecular scale simulations of flow migration effects in dense polymer melts are also presented. In shear flow the melts exhibit similar behavior as the quiescent case; a constant shear rate across the gap does not induce chain length based migration. In comparison, parabolic flow causes profound migration for both unentangled and entangled melts. These findings are consistent with the analytical theory. The picture that emerges is consistent with flow induced migration mechanisms predominating over competing chain degradation mechanisms.
Flow of mantle fluids through the ductile lower crust: Heliumisotope trends
Kennedy, B. Mack; van Soest, Matthijs C.
2007-10-07
Heat and mass are injected into the shallow crust when mantle fluids are able to flow through the ductile lower crust. Minimum 3He/4He ratios in surface fluids from the northern Basin and Range province, western North America increase systematically from low, crustal values in the east to high, mantle values in the west, a regional trend that correlates with the rates of active crustal deformation. The highest ratios occur where the extension and shear strain rates are greatest. The correspondence of helium isotope ratios and active trans-tensional deformation indicates a deformation enhanced permeability and that mantle fluids can penetrate the ductile lithosphere in regions even where there is no significant magmatism. Superimposed on the regional trend are local, high-{sup 3}He/{sup 4}He anomalies signifying hidden magmatic activity and/or deep fluid production with locally enhanced permeability, identifying zones with high resource potential, particularly for geothermal energy development.
Marc Cremer; Dave Wang; Connie Senior; Andrew Chiodo; Steven Hardy; Paul Wolff
2005-07-01
This is the Final Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project was to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. The focus of this project was to quantify the potential impacts of ''fine level'' controls rather than that of ''coarse level'' controls (i.e. combustion tuning). Although it is well accepted that combustion tuning will generally improve efficiency and emissions of an ''out of tune'' boiler, it is not as well understood what benefits can be derived through active multiburner measurement and control systems in boiler that has coarse level controls. The approach used here was to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner air and fuel flow rates. The Electric Power Research Institute (EPRI) provided co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center have been active participants in this project. CFD simulations were completed for five coal fired boilers as planned: (1) 150 MW wall fired, (2) 500 MW opposed wall fired, (3) 600 MW T-Fired, (4) 330 MW cyclone-fired, and (5) 200 MW T-Fired Twin Furnace. In all cases, the unit selections were made in order to represent units that were descriptive of the utility industry as a whole. For each unit, between 25 and 44 furnace simulations were completed in order to evaluate impacts of burner to burner variations in: (1) coal and primary air flow rate, and (2) secondary air flow rate. The parametric matrices of cases that were completed were
Deiterding, Ralf; Wood, Stephen L
2013-01-01
We pursue a level set approach to couple an Eulerian shock-capturing fluid solver with space-time refinement to an explicit solid dynamics solver for large deformations and fracture. The coupling algorithms considering recursively finer fluid time steps as well as overlapping solver updates are discussed in detail. Our ideas are implemented in the AMROC adaptive fluid solver framework and are used for effective fluid-structure coupling to the general purpose solid dynamics code DYNA3D. Beside simulations verifying the coupled fluid-structure solver and assessing its parallel scalability, the detailed structural analysis of a reinforced concrete column under blast loading and the simulation of a prototypical blast explosion in a realistic multistory building are presented.
Numerical simulation of laminar plasma dynamos in a cylindrical von Karman flow
Khalzov, I. V.; Brown, B. P.; Schnack, D. D.; Forest, C. B. [University of Wisconsin, 1150 University Avenue, Madison, Wisconsin 53706 (United States); Ebrahimi, F. [University of New Hampshire, 8 College Road, Durham, New Hampshire 03824 (United States)
2011-03-15
The results of a numerical study of the magnetic dynamo effect in cylindrical von Karman plasma flow are presented with parameters relevant to the Madison Plasma Couette Experiment. This experiment is designed to investigate a broad class of phenomena in flowing plasmas. In a plasma, the magnetic Prandtl number Pm can be of order unity (i.e., the fluid Reynolds number Re is comparable to the magnetic Reynolds number Rm). This is in contrast to liquid metal experiments, where Pm is small (so, Re>>Rm) and the flows are always turbulent. We explore dynamo action through simulations using the extended magnetohydrodynamic NIMROD code for an isothermal and compressible plasma model. We also study two-fluid effects in simulations by including the Hall term in Ohm's law. We find that the counter-rotating von Karman flow results in sustained dynamo action and the self-generation of magnetic field when the magnetic Reynolds number exceeds a critical value. For the plasma parameters of the experiment, this field saturates at an amplitude corresponding to a new stable equilibrium (a laminar dynamo). We show that compressibility in the plasma results in an increase of the critical magnetic Reynolds number, while inclusion of the Hall term in Ohm's law changes the amplitude of the saturated dynamo field but not the critical value for the onset of dynamo action.
Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend
Ortiz, M.G.
1998-02-10
A system is described for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.
Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend
Ortiz, Marcos German
1998-01-01
A system for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.
Goldberg, L.F.
1990-08-01
The activities described in this report do not constitute a continuum but rather a series of linked smaller investigations in the general area of one- and two-dimensional Stirling machine simulation. The initial impetus for these investigations was the development and construction of the Mechanical Engineering Test Rig (METR) under a grant awarded by NASA to Dr. Terry Simon at the Department of Mechanical Engineering, University of Minnesota. The purpose of the METR is to provide experimental data on oscillating turbulent flows in Stirling machine working fluid flow path components (heater, cooler, regenerator, etc.) with particular emphasis on laminar/turbulent flow transitions. Hence, the initial goals for the grant awarded by NASA were, broadly, to provide computer simulation backup for the design of the METR and to analyze the results produced. This was envisaged in two phases: First, to apply an existing one-dimensional Stirling machine simulation code to the METR and second, to adapt a two-dimensional fluid mechanics code which had been developed for simulating high Rayleigh number buoyant cavity flows to the METR. The key aspect of this latter component was the development of an appropriate turbulence model suitable for generalized application to Stirling simulation. A final-step was then to apply the two-dimensional code to an existing Stirling machine for which adequate experimental data exist. The work described herein was carried out over a period of three years on a part-time basis. Forty percent of the first year`s funding was provided as a match to the NASA funds by the Underground Space Center, University of Minnesota, which also made its computing facilities available to the project at no charge.
Simulations of Turbulent Flows with Strong Shocks and Density Variations
Zhong, Xiaolin
2012-12-13
In this report, we present the research efforts made by our group at UCLA in the SciDAC project Simulations of turbulent flows with strong shocks and density variations. We use shock-fitting methodologies as an alternative to shock-capturing schemes for the problems where a well defined shock is present. In past five years, we have focused on development of high-order shock-fitting Navier-Stokes solvers for perfect gas flow and thermochemical non-equilibrium flow and simulation of shock-turbulence interaction physics for very strong shocks. Such simulation has not been possible before because the limitation of conventional shock capturing methods. The limitation of shock Mach number is removed by using our high-order shock-fitting scheme. With the help of DOE and TeraGrid/XSEDE super computing resources, we have obtained new results which show new trends of turbulence statistics behind the shock which were not known before. Moreover, we are also developing tools to consider multi-species non-equilibrium flows. The main results are in three areas: (1) development of high-order shock-fitting scheme for perfect gas flow, (2) Direct Numerical Simulation (DNS) of interaction of realistic turbulence with moderate to very strong shocks using super computing resources, and (3) development and implementation of models for computation of mutli-species non-quilibrium flows with shock-fitting codes.
Armstrong, William D.; Naughton, Jonathan; Lindberg, William R.
2008-09-02
A shear stress sensor for measuring fluid wall shear stress on a test surface is provided. The wall shear stress sensor is comprised of an active sensing surface and a sensor body. An elastic mechanism mounted between the active sensing surface and the sensor body allows movement between the active sensing surface and the sensor body. A driving mechanism forces the shear stress sensor to oscillate. A measuring mechanism measures displacement of the active sensing surface relative to the sensor body. The sensor may be operated under periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor measurably changes the amplitude or phase of the motion of the active sensing surface, or changes the force and power required from a control system in order to maintain constant motion. The device may be operated under non-periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor change the transient motion of the active sensor surface or change the force and power required from a control system to maintain a specified transient motion of the active sensor surface.
Non-Invasive Characterization Of A Flowing Multi-Phase Fluid Using Ultrasonic Interferometry
Sinha, Dipen N.
2005-11-01
An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.
SALE: a simplified ALE computer program for fluid flow at all speeds
Amsden, A.A.; Ruppel, H.M.; Hirt, C.W.
1980-06-01
A simplified numerical fluid-dynamics computing technique is presented for calculating two-dimensional fluid flows at all speeds. It combines an implicit treatment of the pressure equation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique with the grid rezoning philosophy of the Arbitrary Lagrangian-Eulerian (ALE) method. As a result, it can handle flow speeds from supersonic to the incompressible limit in a grid that may be moved with the fluid in typical Lagrangian fashion, or held fixed in an Eulerian manner, or moved in some arbitrary way to give a continuous rezoning capability. The report describes the combined (ICEd-ALE) technique in the framework of the SALE (Simplified ALE) computer program, for which a general flow diagram and complete FORTRAN listing are included. A set of sample problems show how to use or modify the basic code for a variety of applications. Numerical listings are provided for a sample problem run with the SALE program.
Computational fluid dynamics simulations of a glass melting furnace
Egelja, A.; Lottes, S. A.
2000-05-09
The glass production industry is one of the major users of natural gas in the US, and approximately 75% of the energy produced from natural gas is used in the melting process. Industrial scale glass melting furnaces are large devices, typically 5 or more meters wide, and twice as long. To achieve efficient heat transfer to the glass melt below, the natural gas flame must extend over a large portion of the glass melt. Therefore modern high efficiency burners are not used in these furnaces. The natural gas is injected as a jet, and a jet flame forms in the flow of air entering the furnace. In most current glass furnaces the energy required to melt the batch feed stock is about twice the theoretical requirement. An improved understanding of the heat transfer and two phase flow processes in the glass melt and solid batch mix offers a substantial opportunity for energy savings and consequent emission reductions. The batch coverage form and the heat flux distribution have a strong influence on the glass flow pattern. This flow pattern determines to a significant extent the melting rate and the quality of glass.
Nelson, John Stuart; Milner, Thomas Edward; Chen, Zhongping
1999-01-01
Optical Doppler tomography permits imaging of fluid flow velocity in highly scattering media. The tomography system combines Doppler velocimetry with high spatial resolution of partially coherent optical interferometry to measure fluid flow velocity at discrete spatial locations. Noninvasive in vivo imaging of blood flow dynamics and tissue structures with high spatial resolutions of the order of 2 to 10 microns is achieved in biological systems. The backscattered interference signals derived from the interferometer may be analyzed either through power spectrum determination to obtain the position and velocity of each particle in the fluid flow sample at each pixel, or the interference spectral density may be analyzed at each frequency in the spectrum to obtain the positions and velocities of the particles in a cross-section to which the interference spectral density corresponds. The realized resolutions of optical Doppler tomography allows noninvasive in vivo imaging of both blood microcirculation and tissue structure surrounding the vessel which has significance for biomedical research and clinical applications.
High Fidelity Simulation of Complex Suspension Flow for Practical Rheometry
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
| Argonne Leadership Computing Facility A visualization of the flow of concrete, a complex suspension A visualization of the flow of concrete, a complex suspension. In this snapshot of the simulation, the stress on each suspended particle is shown color-coded with its specific value drawn on its surface. Suspended particles that have a stress value below a specific threshold value are shown in outline form in order to better view those particles that are carrying the majority of the stress
Toward parallel, adaptive mesh refinement for chemically reacting flow simulations
Devine, K.D.; Shadid, J.N.; Salinger, A.G. Hutchinson, S.A.; Hennigan, G.L.
1997-12-01
Adaptive numerical methods offer greater efficiency than traditional numerical methods by concentrating computational effort in regions of the problem domain where the solution is difficult to obtain. In this paper, the authors describe progress toward adding mesh refinement to MPSalsa, a computer program developed at Sandia National laboratories to solve coupled three-dimensional fluid flow and detailed reaction chemistry systems for modeling chemically reacting flow on large-scale parallel computers. Data structures that support refinement and dynamic load-balancing are discussed. Results using uniform refinement with mesh sequencing to improve convergence to steady-state solutions are also presented. Three examples are presented: a lid driven cavity, a thermal convection flow, and a tilted chemical vapor deposition reactor.
Large Eddy Simulations of Combustor Liner Flows | Argonne Leadership
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Computing Facility droplets. Large Eddy Simulations of a GE CFM combustor, temperature distribution and liquid fuel droplets. Anne Dord, GE Global Research Large Eddy Simulations of Combustor Liner Flows PI Name: Anne Dord PI Email: anne.dord@ge.com Institution: GE Global Research Allocation Program: INCITE Allocation Hours at ALCF: 75 Million Year: 2014 Research Domain: Engineering Aviation gas turbine engines are an essential part of the transportation industry. In 2012, the commercial
Large Eddy Simulations of Combustor Liner Flows | Argonne Leadership
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Computing Facility droplets Large Eddy Simulations of a GE CFM combustor, temperature distribution and liquid fuel droplets. Credit: Anne Dord, GE Global Research Large Eddy Simulations of Combustor Liner Flows PI Name: Anne Dord PI Email: anne.dord@ge.com Institution: GE Global Research Allocation Program: INCITE Allocation Hours at ALCF: 89 Million Year: 2015 Research Domain: Engineering In 2012, the commercial aviation industry spent an estimated $207 billion on fuel, or about 33 percent
Carrington, David Bradley; Monayem, A. K. M.; Mazumder, H.; Heinrich, Juan C.
2015-03-05
A three-dimensional finite element method for the numerical simulations of fluid flow in domains containing moving rigid objects or boundaries is developed. The method falls into the general category of Arbitrary Lagrangian Eulerian methods; it is based on a fixed mesh that is locally adapted in the immediate vicinity of the moving interfaces and reverts to its original shape once the moving interfaces go past the elements. The moving interfaces are defined by separate sets of marker points so that the global mesh is independent of interface movement and the possibility of mesh entanglement is eliminated. The results is a fully robust formulation capable of calculating on domains of complex geometry with moving boundaries or devises that can also have a complex geometry without danger of the mesh becoming unsuitable due to its continuous deformation thus eliminating the need for repeated re-meshing and interpolation. Moreover, the boundary conditions on the interfaces are imposed exactly. This work is intended to support the internal combustion engines simulator KIVA developed at Los Alamos National Laboratories. The model's capabilities are illustrated through application to incompressible flows in different geometrical settings that show the robustness and flexibility of the technique to perform simulations involving moving boundaries in a three-dimensional domain.
Fluid flow modeling of resin transfer molding for composite material wind turbine blade structures.
Cairns, Douglas S. (Montana State University, Bozeman, MT); Rossel, Scott M. (Montana State University, Bozeman, MT)
2004-06-01
Resin transfer molding (RTM) is a closed mold process for making composite materials. It has the potential to produce parts more cost effectively than hand lay-up or other methods. However, fluid flow tends to be unpredictable and parts the size of a wind turbine blade are difficult to engineer without some predictive method for resin flow. There were five goals of this study. The first was to determine permeabilities for three fabrics commonly used for RTM over a useful range of fiber volume fractions. Next, relations to estimate permeabilities in mixed fabric lay-ups were evaluated. Flow in blade substructures was analyzed and compared to predictions. Flow in a full-scale blade was predicted and substructure results were used to validate the accuracy of a full-scale blade prediction.
Use of Geophysical Techniques to Characterize Fluid Flow in a Geothermal
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Reservoir; 2010 Geothermal Technology Program Peer Review Report | Department of Energy Reservoir; 2010 Geothermal Technology Program Peer Review Report Use of Geophysical Techniques to Characterize Fluid Flow in a Geothermal Reservoir; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review reservoir_029_revil.pdf (195.46 KB) More Documents & Publications Detection and Characterization of Natural and Induced Fractures for the
Wang, Liang Germaschewski, K.; Hakim, Ammar H.; Bhattacharjee, A.
2015-01-15
We introduce an extensible multi-fluid moment model in the context of collisionless magnetic reconnection. This model evolves full Maxwell equations and simultaneously moments of the Vlasov-Maxwell equation for each species in the plasma. Effects like electron inertia and pressure gradient are self-consistently embedded in the resulting multi-fluid moment equations, without the need to explicitly solving a generalized Ohm's law. Two limits of the multi-fluid moment model are discussed, namely, the five-moment limit that evolves a scalar pressures for each species and the ten-moment limit that evolves the full anisotropic, non-gyrotropic pressure tensor for each species. We first demonstrate analytically and numerically that the five-moment model reduces to the widely used Hall magnetohydrodynamics (Hall MHD) model under the assumptions of vanishing electron inertia, infinite speed of light, and quasi-neutrality. Then, we compare ten-moment and fully kinetic particle-in-cell (PIC) simulations of a large scale Harris sheet reconnection problem, where the ten-moment equations are closed with a local linear collisionless approximation for the heat flux. The ten-moment simulation gives reasonable agreement with the PIC results regarding the structures and magnitudes of the electron flows, the polarities and magnitudes of elements of the electron pressure tensor, and the decomposition of the generalized Ohm's law. Possible ways to improve the simple local closure towards a nonlocal fully three-dimensional closure are also discussed.
Large-eddy simulations of turbulent flow for grid-to-rod fretting in nuclear reactors
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Bakosi, J.; Christon, M. A.; Lowrie, R. B.; Pritchett-Sheats, L. A.; Nourgaliev, R. R.
2013-07-12
The grid-to-rod fretting (GTRF) problem in pressurized water reactors is a flow-induced vibration problem that results in wear and failure of the fuel rods in nuclear assemblies. In order to understand the fluid dynamics of GTRF and to build an archival database of turbulence statistics for various configurations, implicit large-eddy simulations of time-dependent single-phase turbulent flow have been performed in 3 × 3 and 5 × 5 rod bundles with a single grid spacer. To assess the computational mesh and resolution requirements, a method for quantitative assessment of unstructured meshes with no-slip walls is described. The calculations have been carriedmore » out using Hydra-TH, a thermal-hydraulics code developed at Los Alamos for the Consortium for Advanced Simulation of Light water reactors, a United States Department of Energy Innovation Hub. Hydra-TH uses a second-order implicit incremental projection method to solve the singlephase incompressible Navier-Stokes equations. The simulations explicitly resolve the large scale motions of the turbulent flow field using first principles and rely on a monotonicity-preserving numerical technique to represent the unresolved scales. Each series of simulations for the 3 × 3 and 5 × 5 rod-bundle geometries is an analysis of the flow field statistics combined with a mesh-refinement study and validation with available experimental data. Our primary focus is the time history and statistics of the forces loading the fuel rods. These hydrodynamic forces are believed to be the key player resulting in rod vibration and GTRF wear, one of the leading causes for leaking nuclear fuel which costs power utilities millions of dollars in preventive measures. As a result, we demonstrate that implicit large-eddy simulation of rod-bundle flows is a viable way to calculate the excitation forces for the GTRF problem.« less
FRAC-STIM: A Physics-Based Fracture Simulation, /reservoir Flow...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
FRAC-STIM: A Physics-Based Fracture Simulation, reservoir Flow and Heat Transport Simulator(aka FALCON) FRAC-STIM: A Physics-Based Fracture Simulation, reservoir Flow and Heat ...
Intercomparison of 3D pore-scale flow and solute transport simulation methods
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Mehmani, Yashar; Schoenherr, Martin; Pasquali, Andrea; Perkins, William A.; Kim, Kyungjoo; Perego, Mauro; Parks, Michael L.; Balhoff, Matthew T.; Richmond, Marshall C.; Geier, Martin; et al
2015-09-28
Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based onmore » the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This paper provides support for
Intercomparison of 3D pore-scale flow and solute transport simulation methods
Mehmani, Yashar; Schoenherr, Martin; Pasquali, Andrea; Perkins, William A.; Kim, Kyungjoo; Perego, Mauro; Parks, Michael L.; Balhoff, Matthew T.; Richmond, Marshall C.; Geier, Martin; Krafczyk, Manfred; Luo, Li -Shi; Tartakovsky, Alexandre M.; Yang, Xiaofan; Scheibe, Timothy D.; Trask, Nathaniel
2015-09-28
Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based on the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This paper provides support for confidence
Large-eddy simulation of turbulent circular jet flows
Jones, S. C.; Sotiropoulos, F.; Sale, M. J.
2002-07-01
This report presents a numerical method for carrying out large-eddy simulations (LES) of turbulent free shear flows and an application of a method to simulate the flow generated by a nozzle discharging into a stagnant reservoir. The objective of the study was to elucidate the complex features of the instantaneous flow field to help interpret the results of recent biological experiments in which live fish were exposed to the jet shear zone. The fish-jet experiments were conducted at the Pacific Northwest National Laboratory (PNNL) under the auspices of the U.S. Department of Energys Advanced Hydropower Turbine Systems program. The experiments were designed to establish critical thresholds of shear and turbulence-induced loads to guide the development of innovative, fish-friendly hydropower turbine designs.
Richard W. Johnson; Hugh M. McIlroy
2010-08-01
The U. S. Department of Energy (DOE) is supporting the development of a next generation nuclear plant (NGNP), which will be based on a very high temperature reactor (VHTR) design. The VHTR is a single-phase helium-cooled reactor wherein the helium will be heated initially to 750 °C and later to temperatures approaching 1000 °C. The high temperatures are desired to increase reactor efficiency and to provide a heat source for the manufacture of hydrogen and other applications. While computational fluid dynamics (CFD) has not been used in the past to design or license nuclear reactors in the U. S., it is expected that CFD will be used in the design and safety analysis of forthcoming designs. This is partly because of the maturity of CFD and partly because detailed information is desired of the flow and heat transfer inside the reactor to avoid hot spots and other conditions that might compromise reactor safety. Numerical computations of turbulent flow should be validated against experimental data for flow conditions that contain some or all of the physics expected in the thermal fluid machinery of interest. To this end, a scaled model of a narrow slice of the lower plenum of the prismatic VHTR was constructed and installed in the Idaho National Laboratory’s (INL) matched index of refraction (MIR) test facility and data were taken. The data were then studied and compared to CFD calculations to help determine their suitability for validation data. One of the main findings was that the inlet data, which were measured and controlled by calibrated mass flow rotameters and were also measured using detailed stereo particle image velocimetry (PIV) showed considerable discrepancies in mass flow rate between the two methods. The other finding was that a randomly unstable recirculation zone occurs in the flow. This instability has a very significant effect on the flow field in the vicinity of the inlet jets. Because its time scale is long and because it is apparently a
Methods for simulation-based analysis of fluid-structure interaction.
Barone, Matthew Franklin; Payne, Jeffrey L.
2005-10-01
Methods for analysis of fluid-structure interaction using high fidelity simulations are critically reviewed. First, a literature review of modern numerical techniques for simulation of aeroelastic phenomena is presented. The review focuses on methods contained within the arbitrary Lagrangian-Eulerian (ALE) framework for coupling computational fluid dynamics codes to computational structural mechanics codes. The review treats mesh movement algorithms, the role of the geometric conservation law, time advancement schemes, wetted surface interface strategies, and some representative applications. The complexity and computational expense of coupled Navier-Stokes/structural dynamics simulations points to the need for reduced order modeling to facilitate parametric analysis. The proper orthogonal decomposition (POD)/Galerkin projection approach for building a reduced order model (ROM) is presented, along with ideas for extension of the methodology to allow construction of ROMs based on data generated from ALE simulations.
Donald M. McEligot; Stefan Becker; Hugh M. McIlroy, Jr.
2010-07-01
In recent international collaboration, INL and Uni. Erlangen have developed large MIR flow systems which can be ideal for joint graduate student education and research. The benefit of the MIR technique is that it permits optical measurements to determine flow characteristics in complex passages and around objects to be obtained without locating a disturbing transducer in the flow field and without distortion of the optical paths. The MIR technique is not new itself; others employed it earlier. The innovation of these MIR systems is their large size relative to previous experiments, yielding improved spatial and temporal resolution. This report will discuss the benefits of the technique, characteristics of the systems and some examples of their applications to complex situations. Typically their experiments have provided new fundamental understanding plus benchmark data for assessment and possible validation of computational thermal fluid dynamic codes.
DENSE MULTIPHASE FLOW SIMULATION: CONTINUUM MODEL FOR POLY-DISPERSED SYSTEMS USING KINETIC THEORY
Moses Bogere
2011-08-31
The overall objective of the project was to verify the applicability of the FCMOM approach to the kinetic equations describing the particle flow dynamics. For monodispersed systems the fundamental equation governing the particle flow dynamics is the Boltzmann equation. During the project, the FCMOM was successfully applied to several homogeneous and in-homogeneous problems in different flow regimes, demonstrating that the FCMOM has the potential to be used to solve efficiently the Boltzmann equation. However, some relevant issues still need to be resolved, i.e. the homogeneous cooling problem (inelastic particles cases) and the transition between different regimes. In this report, the results obtained in homogeneous conditions are discussed first. Then a discussion of the validation results for in-homogeneous conditions is provided. And finally, a discussion will be provided about the transition between different regimes. Alongside the work on development of FCMOM approach studies were undertaken in order to provide insights into anisotropy or particles kinetics in riser hydrodynamics. This report includes results of studies of multiphase flow with unequal granular temperatures and analysis of momentum re-distribution in risers due to particle-particle and fluid-particle interactions. The study of multiphase flow with unequal granular temperatures entailed both simulation and experimental studies of two particles sizes in a riser and, a brief discussion of what was accomplished will be provided. And finally, a discussion of the analysis done on momentum re-distribution of gas-particles flow in risers will be provided. In particular a discussion of the remaining work needed in order to improve accuracy and predictability of riser hydrodynamics based on two-fluid models and how they can be used to model segregation in risers.
Harvego, Edwin Allan; Siefken, Larry James
2000-04-01
The SCDAP/RELAP5 code is being developed at the Idaho National Engineering and Environmental Laboratory under the primary sponsorship of the U.S. Nuclear Regulatory Commission (NRC) to provide best-estimate transient simulations of light water reactor coolant systems during severe accidents. This paper describes the modeling approach used in the SCDAP/RELAP5 code to calculate fluid heat transfer and flow losses through porous debris that has accumulated in the vessel lower head and core regions during the latter stages of a severe accident. The implementation of heat transfer and flow loss correlations into the code is discussed, and calculations performed to assess the validity of the modeling approach are described. The different modes of heat transfer in porous debris include: (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, (5) film boiling, and (6) transition from film boiling to convection to vapor. The correlations for flow losses in porous debris include frictional and form losses. The correlations for flow losses were integrated into the momentum equations in the RELAP5 part of the code. Since RELAP5 is a very general non-homogeneous non-equilibrium thermal-hydraulics code, the resulting modeling methodology is applicable to a wide range of debris thermal-hydraulic conditions. Assessment of the SCDAP/RELAP5 debris bed thermal-hydraulic models included comparisons with experimental measurements and other models available in the open literature. The assessment calculations, described in the paper, showed that SCDAP/RELAP5 is capable of calculating the heat transfer and flow losses occurring in porous debris regions that may develop in a light water reactor during a severe accident.
E. A. Harvego; L. J. Siefken
2000-04-02
The SCDAP/RELAP5 code is being developed at the Idaho National Engineering and Environmental Laboratory under the primary sponsorship of the U.S. Nuclear Regulatory Commission (NRC) to provide best-estimate transient simulations of light water reactor coolant systems during severe accidents. This paper describes the modeling approach used in the SCDAP/RELAP5 code to calculate fluid heat transfer and flow losses through porous debris that has accumulated in the vessel lower head and core regions during the latter stages of a severe accident. The implementation of heat transfer and flow loss correlations into the code is discussed, and calculations performed to assess the validity of the modeling approach are described. The different modes of heat transfer in porous debris include: (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, (5) film boiling, and (6) transition from film boiling to convection to vapor. The correlations for flow losses in porous debris include frictional and form losses. The correlations for flow losses were integrated into the momentum equations in the RELAP5 part of the code. Since RELAP5 is a very general non-homogeneous non-equilibrium thermal-hydraulics code, the resulting modeling methodology is applicable to a wide range of debris thermal-hydraulic conditions. Assessment of the SCDAP/RELAP5 debris bed thermal-hydraulic models included comparisons with experimental measurements and other models available in the open literature. The assessment calculations, described in the paper, showed that SCDAP/RELAP5 is capable of calculating the heat transfer and flow losses occurring in porous debris regions that may develop in a light water reactor during a severe accident.
Obied Allah, M. H.
2013-04-15
In this work, a viscous potential flow analysis is used to investigate capillary surface waves between two horizontal finite fluid layers. The two layers have finite conductivities and admit mass and heat transfer. A general dispersion relation is derived. The presence of finite conductivities together with the dielectric permeabilities makes the horizontal electric field play a dual role in the stability criterion. The phenomenon of negative viscosity is observed. A new growth rate parameter, depending on the kinematical viscosity of the lower fluid layer, is found and has a stabilizing effect on the unstable modes. The growth rates and neutral stability curve are given and applied to air-water interface. The effects of various parameters are discussed for the Kelvin-Helmholtz and the Rayleigh-Taylor instabilities.
Simulations of ductile flow in brittle material processing
Luh, M.H.; Strenkowski, J.S.
1988-12-01
Research is continuing on the effects of thermal properties of the cutting tool and workpiece on the overall temperature distribution. Using an Eulerian finite element model, diamond and steel tools cutting aluminum have been simulated at various, speeds, and depths of cut. The relative magnitude of the thermal conductivity of the tool and the workpiece is believed to be a primary factor in the resulting temperature distribution in the workpiece. This effect is demonstrated in the change of maximum surface temperatures for diamond on aluminum vs. steel on aluminum. As a preliminary step toward the study of ductile flow in brittle materials, the relative thermal conductivities of diamond on polycarbonate is simulated. In this case, the maximum temperature shifts from the rake face of the tool to the surface of the machined workpiece, thus promoting ductile flow in the workpiece surface.
Development of the T+M coupled flow-geomechanical simulator to...
Office of Scientific and Technical Information (OSTI)
Development of the T+M coupled flow-geomechanical simulator to describe fracture propagation and coupled flow-thermal-geomechanical processes in tightshale gas systems Citation ...
Direct Numerical Simulations of High Reynolds Number Turbulent Channel Flow
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
| Argonne Leadership Computing Facility Visualization of the spanwise vorticity in a turbulent channel. S. Hoyas and O. Flores while they were at Universidad Politecnica de Madrid Direct Numerical Simulations of High Reynolds Number Turbulent Channel Flow PI Name: Robert Moser PI Email: rmoser@ices.utexas.edu Institution: University of Texas Allocation Program: INCITE Allocation Hours at ALCF: 175 Million Year: 2013 Research Domain: Engineering Approximately 28% of U.S. energy resources are