Relativistic fluid mechanics, Kahler manifolds and supersymmetry
T. S. Nyawelo; J. W. van Holten; S. Groot Nibbelink
2003-09-11
We propose an alternative for the Clebsch decomposition of currents in fluid mechanics, in terms of complex potentials taking values in a Kahler manifold. We reformulate classical relativistic fluid mechanics in terms of these complex potentials and rederive the existence of an infinite set of conserved currents. We perform a canonical analysis to find the explicit form of the algebra of conserved charges. The Kahler-space formulation of the theory has a natural supersymmetric extension in 4-D space-time. It contains a conserved current, but also a number of additional fields complicating the interpretation. Nevertheless, we show that an infinite set of conserved currents emerges in the vacuum sector of the additional fields. This sector can therefore be identified with a regime of supersymmetric fluid mechanics. Explicit expressions for the current and the density are obtained.
Dual manifold system and method for fluid transfer
Doktycz, Mitchel J. (Knoxville, TN); Bryan, William Louis (Knoxville, TN); Kress, Reid (Oak Ridge, TN)
2003-05-27
A dual-manifold assembly is provided for the rapid, parallel transfer of liquid reagents from a microtiter plate to a solid state microelectronic device having biological sensors integrated thereon. The assembly includes aspiration and dispense manifolds connected by a plurality of conduits. In operation, the aspiration manifold is actuated such that the aspiration manifold is seated onto an array of reagent-filled wells of the microtiter plate. The wells are pressurized to force reagent through conduits toward the dispense manifold. A pressure pulse provided by a standard ink-jet printhead ejects nanoliter-to-picoliter droplets of reagent through an array of printhead orifices and onto test sites on the surface of the microelectronic device.
Dual manifold system and method for fluid transfer
Doktycz, Mitchel J.; Bryan, William Louis; Kress, Reid
2003-09-30
A dual-manifold assembly is provided for the rapid, parallel transfer of liquid reagents from a microtiter plate to a solid state microelectronic device having biological sensors integrated thereon. The assembly includes aspiration and dispense manifolds connected by a plurality of conduits. In operation, the aspiration manifold is actuated such that the aspiration manifold is seated onto an array of reagent-filled wells of the microtiter plate. The wells are pressurized to force reagent through conduits toward the dispense manifold. A pressure pulse provided by a standard ink-jet printhead ejects nanoliter-to-picoliter droplets of reagent through an array of printhead orifices and onto test sites on the surface of the microelectronic device.
Dispersed Fluid Flow in Fractured Reservoirs- an Analysis of...
Dispersed Fluid Flow in Fractured Reservoirs- an Analysis of Tracer-Determined Residence Time Distributions Jump to: navigation, search OpenEI Reference LibraryAdd to library...
Daraio, Chiara
expectation of laminar flow in electronic cooling, high flow rate and high fluid temperatures result in tur- bulent flow conditions in the inlet and outlet manifolds of the heat sink with predominantly laminar flow hot water as working fluid Chander Shekhar Sharma a , Manish K. Tiwari a , Bruno Michel b , Dimos
Rehman, Abdul
2012-02-14
This thesis provides a detailed evaluation of different environmentally friendly dispersants in invert-emulsion drilling fluids that can be used to drill wells under difficult conditions such as HPHT. The drilling fluid is weighted by manganese...
Quantization of the relativistic fluid in physical phase space on Kaehler manifolds
Holender, L.; Vancea, I. V. [Departamento de Fisica, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Cx. Postal 23851, 23890-000 Seropedica (Brazil); Santos, M. A. [Departamento de Fisica e Quimica, Universidade Federal do Espirito Santo (UFES), Avenida Fernando Ferarri S/N-Goiabeiras, 29060-900 Vitoria (Brazil)
2008-02-15
We discuss the quantization of a class of relativistic fluid models defined in terms of one real and two complex conjugate potentials with values on a Kaehler manifold, and parametrized by the Kaehler potential K(z,z) and a real number {lambda}. In the Hamiltonian formulation, the canonical conjugate momenta of the potentials are subjected to second-class constraints which allow us to apply the symplectic projector method in order to find the physical degrees of freedom and the physical Hamiltonian. We construct the quantum theory for that class of models by employing the canonical quantization methods. We also show that a semiclassical theory in which the Kaehler and the complex potentials are not quantized has a highly degenerate vacuum. We define and compute the quantum topological number (quantum linking number) operator which has nonvanishing contributions from the Kaehler and complex potentials only. Also, we show that the vacuum and the states formed by tensoring the number operators eigenstates have zero linking number, and show that linear combinations of the tensor product of number operators eigenstates which have the form of entangled states have nonzero linking number.
Dispersion and Filter Cake Removal of Manganese Tetroxide-Based Drilling Fluids
Al Mojil, Abdullah M
2015-08-07
and noncontaminated drilling fluids (17.5 and 20 lbm/gal) before/after heat aging at 400°F were improved in the presence of dispersants. The presence of NaCl and CaCl 2 had varying interactions with compatibility and particle settling. Dispersants for oil -based...
Accepted for publication in J. Fluid Mech. 1 Stable Manifolds and the Transition to
Cvitanovc', Predrag
that the threshold scaled as Re with = -1, when the laminar flow was disturbed by a single boxcar pulse of fluid of fluid. For different disturbances of the laminar flow, Peixinho and Mullin (2007) found and other shear flows appear intermediate between turbulent and laminar motions. We take a step towards
On the application of computational fluid dynamics codes for liquefied natural gas dispersion.
Luketa-Hanlin, Anay Josephine; Koopman, Ronald P.; Ermak, Donald
2006-02-01
Computational fluid dynamics (CFD) codes are increasingly being used in the liquefied natural gas (LNG) industry to predict natural gas dispersion distances. This paper addresses several issues regarding the use of CFD for LNG dispersion such as specification of the domain, grid, boundary and initial conditions. A description of the k-{var_epsilon} model is presented, along with modifications required for atmospheric flows. Validation issues pertaining to the experimental data from the Burro, Coyote, and Falcon series of LNG dispersion experiments are also discussed. A description of the atmosphere is provided as well as discussion on the inclusion of the Coriolis force to model very large LNG spills.
Dual manifold heat pipe evaporator
Adkins, Douglas R. (Albuquerque, NM); Rawlinson, K. Scott (Albuquerque, NM)
1994-01-01
An improved evaporator section for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes.
Dual manifold heat pipe evaporator
Adkins, D.R.; Rawlinson, K.S.
1994-01-04
An improved evaporator section is described for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes. 1 figure.
Measurement of average density and relative volumes in a dispersed two-phase fluid
Sreepada, Sastry R. (Clifton Park, NY); Rippel, Robert R. (late of Scotia, NY)
1992-01-01
An apparatus and a method are disclosed for measuring the average density and relative volumes in an essentially transparent, dispersed two-phase fluid. A laser beam with a diameter no greater than 1% of the diameter of the bubbles, droplets, or particles of the dispersed phase is directed onto a diffraction grating. A single-order component of the diffracted beam is directed through the two-phase fluid and its refraction is measured. Preferably, the refracted beam exiting the fluid is incident upon a optical filter with linearly varing optical density and the intensity of the filtered beam is measured. The invention can be combined with other laser-based measurement systems, e.g., laser doppler anemometry.
Laprea-Bigott, Marcelo
1976-01-01
SIMULATION OF FLUID DISPLACEMENT IN POROUS MEDIA ? IMPROVED METHODS TO MINIMIZE NUMERICAL DISPERSION AND GRID ORIENTATION EFFECTS A Thesis by MARCELO LAPREA-BIGOTT Submitted to the Graduate College of Texas A8M University in partial... fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1976 Major Subject: Petroleum Engineering SIMULATION OF FLUID DISPLACEMENT IN POROUS MEDIA - IMPROVED METHODS TO MINIMIZE NUMERICAL DISPERSION AND GRID ORIENTATION EFFECTS A...
Method for electrically producing dispersions of a nonconductive fluid in a conductive medium
DePaoli, David W. (Knoxville, TN); Tsouris, Constantinos (Oak Ridge, TN); Feng, James Q. (Fairport, NY)
1998-01-01
A method for use in electrically forming dispersions of a nonconducting fluid in a conductive medium that minimizes power consumption, gas generation, and sparking between the electrode of the nozzle and the conductive medium. The method utilizes a nozzle having a passageway, the wall of which serves as the nozzle electrode, for the transport of the nonconducting fluid into the conductive medium. A second passageway provides for the transport of a flowing low conductivity buffer fluid which results in a region of the low conductivity buffer fluid immediately adjacent the outlet from the first passageway to create the necessary protection from high current drain and sparking. An electrical potential difference applied between the nozzle electrode and an electrode in contact with the conductive medium causes formation of small droplets or bubbles of the nonconducting fluid within the conductive medium. A preferred embodiment has the first and second passageways arranged in a concentric configuration, with the outlet tip of the first passageway withdrawn into the second passageway.
Method for electrically producing dispersions of a nonconductive fluid in a conductive medium
DePaoli, D.W.; Tsouris, C.; Feng, J.Q.
1998-06-09
A method is described for use in electrically forming dispersions of a nonconducting fluid in a conductive medium that minimizes power consumption, gas generation, and sparking between the electrode of the nozzle and the conductive medium. The method utilizes a nozzle having a passageway, the wall of which serves as the nozzle electrode, for the transport of the nonconducting fluid into the conductive medium. A second passageway provides for the transport of a flowing low conductivity buffer fluid which results in a region of the low conductivity buffer fluid immediately adjacent the outlet from the first passageway to create the necessary protection from high current drain and sparking. An electrical potential difference applied between the nozzle electrode and an electrode in contact with the conductive medium causes formation of small droplets or bubbles of the nonconducting fluid within the conductive medium. A preferred embodiment has the first and second passageways arranged in a concentric configuration, with the outlet tip of the first passageway withdrawn into the second passageway. 4 figs.
Lundquist, J K; Chan, S T
2005-11-30
The validity of omitting stability considerations when simulating transport and dispersion in the urban environment is explored using observations from the Joint URBAN 2003 field experiment and computational fluid dynamics simulations of that experiment. Four releases of sulfur hexafluoride, during two daytime and two nighttime intensive observing periods, are simulated using the building-resolving computational fluid dynamics model, FEM3MP to solve the Reynolds Averaged Navier-Stokes equations with two options of turbulence parameterizations. One option omits stability effects but has a superior turbulence parameterization using a non-linear eddy viscosity (NEV) approach, while the other considers buoyancy effects with a simple linear eddy viscosity (LEV) approach for turbulence parameterization. Model performance metrics are calculated by comparison with observed winds and tracer data in the downtown area, and with observed winds and turbulence kinetic energy (TKE) profiles at a location immediately downwind of the central business district (CBD) in the area we label as the urban shadow. Model predictions of winds, concentrations, profiles of wind speed, wind direction, and friction velocity are generally consistent with and compare reasonably well with the field observations. Simulations using the NEV turbulence parameterization generally exhibit better agreement with observations. To further explore this assumption of a neutrally-stable atmosphere within the urban area, TKE budget profiles slightly downwind of the urban wake region in the 'urban shadow' are examined. Dissipation and shear production are the largest terms which may be calculated directly. The advection of TKE is calculated as a residual; as would be expected downwind of an urban area, the advection of TKE produced within the urban area is a very large term. Buoyancy effects may be neglected in favor of advection, shear production, and dissipation. For three of the IOPs, buoyancy production may be neglected entirely, and for one IOP, buoyancy production contributes approximately 25% of the total TKE at this location. For both nighttime releases, the contribution of buoyancy to the total TKE budget is always negligible though positive. Results from the simulations provide estimates of the average TKE values in the upwind, downtown, downtown shadow, and urban wake zones of the computational domain. These values suggest that building-induced turbulence can cause the average turbulence intensity in the urban area to increase by as much as much as seven times average 'upwind' values, explaining the minimal role of buoyant forcing in the downtown region. The downtown shadow exhibits an exponential decay in average TKE, while the distant downwind wake region approaches the average upwind values. For long-duration releases in downtown and downtown shadow areas, the assumption of neutral stability is valid because building-induced turbulence dominates the budget. However, further downwind in the urban wake region, which we find to be approximately 1500 m beyond the perimeter of downtown Oklahoma City, the levels of building-induced turbulence greatly subside, and therefore the assumption of neutral stability is less valid.
Plume Rise and Dispersion of Emissions from Low Level Buoyant Sources in Urban Areas
Pournazeri, Sam
2012-01-01
fluid modeling of liquefied natural gas cloud dispersion -fluid modeling of liquefied natural gas cloud dispersion -
Liquefied Natural Gas (LNG) Vapor Dispersion Modeling with Computational Fluid Dynamics Codes
Qi, Ruifeng
2012-10-19
Federal regulation 49 CFR 193 and standard NFPA 59A require the use of validated consequence models to determine the vapor cloud dispersion exclusion zones for accidental liquefied natural gas (LNG) releases. For modeling purposes, the physical...
Application of Computational Fluid Dynamics in the Forced Dispersion Modeling of LNG Vapor Clouds
Kim, Byung-Kyu
2013-05-31
The safety and security of liquefied natural gas (LNG) facilities has prompted the need for continued study of LNG mitigation systems. Water spray systems are widely recognized as an effective measure for dispersing LNG vapor clouds. Currently...
Platfoot, J.H.; Wendel, M.W.; Williams, P.T.
1996-10-01
This report describes the simulation of the dispersion and dilution of dissolved or finely suspended contaminants entering the Clinch river from White Oak Creek. The work is accomplished through the application of a commercial computational fluid dynamics (CFD) solver. This study assumes that contaminants originating in the White Oak Creed watershed, which drains Oak Ridge National Laboratory, will eventually reach the mouth of White Oak Creek and be discharged into the clinch River. The numerical model was developed to support the analysis of the off-site consequences of releases from the ORNL liquid low-level waste system. The system contains storage tanks and transfer lines in Bethel Valley and Melton Valley. Under certain failure modes, liquid low-level waste could be released to White Oak Creek or Melton Branch to White Oak Creek and eventually be discharged to the Clinch River. Since the Clinch River has unrestricted access by the public and water usage from the Clinch River is not controlled by the Department of Energy, such a liquid low-level waste spill would create the possibility of public exposure to the contaminant. This study is limited to the dispersion of the contaminants downstream of the confluence of White Oak Creek.
HARMONIC MORPHISMS BETWEEN RIEMANNIAN MANIFOLDS
Gudmundsson, Sigmundur
HARMONIC MORPHISMS BETWEEN RIEMANNIAN MANIFOLDS SIGMUNDUR GUDMUNDSSON AND MARTIN SVENSSON theory of harmonic morphisms between Riemannian manifolds. This research field has developed rapidly geometry a harmonic morphism is a map : (M, g) (N, h) between Riemannian manifolds with the property
Hildebrand, Richard J. (Edgemere, MD); Wozniak, John J. (Columbia, MD)
2001-01-01
A compressed gas storage cell interconnecting manifold including a thermally activated pressure relief device, a manual safety shut-off valve, and a port for connecting the compressed gas storage cells to a motor vehicle power source and to a refueling adapter. The manifold is mechanically and pneumatically connected to a compressed gas storage cell by a bolt including a gas passage therein.
Nozzle for electric dispersion reactor
Sisson, Warren G. (Oak Ridge, TN); Harris, Michael T. (Knoxville, TN); Scott, Timothy C. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN)
1996-01-01
A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.
Nozzle for electric dispersion reactor
Sisson, Warren G. (Oak Ridge, TN); Basaran, Osman A. (Oak Ridge, TN); Harris, Michael T. (Knoxville, TN)
1998-01-01
A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.
Nozzle for electric dispersion reactor
Sisson, Warren G. (Oak Ridge, TN); Harris, Michael T. (Knoxville, TN); Scott, Timothy C. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN)
1998-01-01
A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.
Nozzle for electric dispersion reactor
Sisson, W.G.; Harris, M.T.; Scott, T.C.; Basaran, O.A.
1996-04-02
A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 5 figs.
Nozzle for electric dispersion reactor
Sisson, W.G.; Harris, M.T.; Scott, T.C.; Basaran, O.A.
1998-06-02
A nozzle for an electric dispersion reactor includes two coaxial cylindrical bodies, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 5 figs.
Nozzle for electric dispersion reactor
Sisson, W.G.; Basaran, O.A.; Harris, M.T.
1998-04-14
A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 4 figs.
Nozzle for electric dispersion reactor
Sisson, W.G.; Basaran, O.A.; Harris, M.T.
1995-11-07
A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode. 4 figs.
Nozzle for electric dispersion reactor
Sisson, Warren G. (Oak Ridge, TN); Basaran, Osman A. (Oak Ridge, TN); Harris, Michael T. (Knoxville, TN)
1995-01-01
A nozzle for an electric dispersion reactor includes two concentric electrodes, the inner one of the two delivering disperse phase fluid into a continuous phase fluid. A potential difference generated by a voltage source creates a dispersing electric field at the end of the inner electrode.
Frobenius manifolds and algebraic integrability
L. K. Hoevenaars
2007-06-26
We give a short review of Frobenius manifolds and algebraic integrability and study their intersection. The simplest case is the relation between the Frobenius manifold of simple singularities, which is almost dual to the integrable open Toda chain. New types of manifolds called extra special Kaehler and special F-manifolds are introduced which capture the intersection.
Manifold Integration: Data Integration on Multiple Manifolds
Choi, Hee Youl
2011-08-08
. Hammond, 2008, Association for the Advanced of Artiflcial Intelligence (AAAI-08), Copyright 2008 by AAAI. c 2005 IEEE. Partially reprinted, with permission, from IEEE Int. Conf. on Devel- opment and Learning \\Kernel Isomap on Noisy Manifold" H. Choi... and S. Choi. For more information go to http://thesis.tamu.edu/forms/IEEE permission note.pdf. c 2010 IEEE. Partially reprinted, with permission, from IEEE Int. Conf. Acoustics, Speech and Signal Processing \\Learning Alpha-Integration with Partially...
Djordjevic, A.
1983-12-27
A tool guide is described that makes possible the insertion of cleaning and/or inspection tools into a manifold pipe that will dislocate and extract the accumulated sediment in such manifold pipes. The tool guide basically comprises a right angled tube (or other angled tube as required) which can be inserted in a large tube and locked into a radially extending cross pipe by adjustable spacer rods and a spring-loaded cone, whereby appropriate cleaning tools can be inserted into the cross pipe for cleaning, inspection, etc. 3 figs.
Djordjevic, A.
1982-07-08
A tool guide that makes possible the insertion of cleaning and/or inspection tools into a manifold pipe that will dislocate and extract the accumulated sediment in such manifold pipes. The tool guide basically comprises a right angled tube (or other angled tube as required) which can be inserted in a large tube and locked into a radially extending cross pipe by adjustable spacer rods and a spring-loaded cone, whereby appropriate cleaning tools can be inserted into to cross pipe for cleaning, inspection, etc.
Djordjevic, Aleksandar (Thousand Oaks, CA)
1983-12-27
A tool guide that makes possible the insertion of cleaning and/or inspection tools into a manifold pipe that will dislocate and extract the accumulated sediment in such manifold pipes. The tool guide basically comprises a right angled tube (or other angled tube as required) which can be inserted in a large tube and locked into a radially extending cross pipe by adjustable spacer rods and a spring-loaded cone, whereby appropriate cleaning tools can be inserted into to cross pipe for cleaning, inspection, etc.
Partially integrated exhaust manifold
Hayman, Alan W; Baker, Rodney E
2015-01-20
A partially integrated manifold assembly is disclosed which improves performance, reduces cost and provides efficient packaging of engine components. The partially integrated manifold assembly includes a first leg extending from a first port and terminating at a mounting flange for an exhaust gas control valve. Multiple additional legs (depending on the total number of cylinders) are integrally formed with the cylinder head assembly and extend from the ports of the associated cylinder and terminate at an exit port flange. These additional legs are longer than the first leg such that the exit port flange is spaced apart from the mounting flange. This configuration provides increased packaging space adjacent the first leg for any valving that may be required to control the direction and destination of exhaust flow in recirculation to an EGR valve or downstream to a catalytic converter.
EQUALITY CONSTRAINTS, RIEMANNIAN MANIFOLDS AND ...
2007-07-27
Jul 27, 2007 ... Key words: Direct search methods, Riemannian manifolds, equality ...... enter into a small enough neighborhood Ux? ? N of x? at the point y ...
Dispersant solutions for dispersing hydrocarbons
Tyndall, R.L.
1997-03-11
A dispersant solution includes a hydrocarbon dispersing solution derived from a bacterium from ATCC 75527, ATCC 75529, or ATCC 55638.
Dispersant solutions for dispersing hydrocarbons
Tyndall, Richard L. (Clinton, TN)
1997-01-01
A dispersant solution includes a hydrocarbon dispersing solution derived from a bacterium from ATCC 75527, ATCC 75529, or ATCC 55638.
Insertable fluid flow passage bridgepiece and method
Jones, Daniel O. (Glenville, NV)
2000-01-01
A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.
Special Holonomy Manifolds in Physics
Luis J. Boya
2006-12-01
This is a pedagogical exposition of holonomy groups intended for physicists. After some pertinent definitions, we focus on special holonomy manifolds, two per division algebras, and comment upon several cases of interest in physics, associated with compactification from F-, M- and string theory, on manifolds of 8, 7 and 6 dimensions respectively.
Shelling in low dimensional manifolds
Murray, William Owen
1974-01-01
SHELLING IN LOW DIMENSIONAL MANIFOLDS A Thesis by WILLIAM OWEN MURRAY IV Approved as to style and content by: (Chairman of Committee) c (Head of /g" 7 Department) (Member) (Memge May 1974 ABSTRACT Shelling in Low Dimensional Manifolds. (May... f*d~ f b. g of M is a finite collection of closed n-cells Cl, C2, n that S = U C and C and C have disjoint interiors for i i=1 C such n Now let M be an n-manifold with boundary. If h is an n-cell in The citations on the following pages follow...
Finite element simulation of electrorheological fluids
Rhyou, Chanryeol, 1973-
2005-01-01
Electrorheological (ER) fluids change their flow properties dramatically when an electric field is applied. These fluids are usually composed of dispersions of polarizable particles in an insulating base fluid or composed ...
Manifold seal structure for fuel cell stack
Collins, William P. (South Windsor, CT)
1988-01-01
The seal between the sides of a fuel cell stack and the gas manifolds is improved by adding a mechanical interlock between the adhesive sealing strip and the abutting surface of the manifolds. The adhesive is a material which can flow to some extent when under compression, and the mechanical interlock is formed providing small openings in the portion of the manifold which abuts the adhesive strip. When the manifolds are pressed against the adhesive strips, the latter will flow into and through the manifold openings to form buttons or ribs which mechanically interlock with the manifolds. These buttons or ribs increase the bond between the manifolds and adhesive, which previously relied solely on the adhesive nature of the adhesive.
Nanoparticle enhanced ionic liquid heat transfer fluids
Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.
2014-08-12
A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.
Fluid control structures in microfluidic devices
Mathies, Richard A. (Moraga, CA); Grover, William H. (Berkeley, CA); Skelley, Alison (Berkeley, CA); Lagally, Eric (Oakland, CA); Liu, Chung N. (Albany, CA)
2008-11-04
Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.
INVERSE PROBLEMS FOR EINSTEIN MANIFOLDS 1. Introduction ...
2008-12-11
principle is that Einstein's equation becomes a non-linear elliptic system with real ...... manifolds with boundary, Communications in Analysis and Geometry 11 ...
From the Boltzmann equation to fluid mechanics on a manifold
Peter J. Love; Donato Cianci
2012-08-27
We apply the Chapman-Enskog procedure to derive hydrodynamic equations on an arbitrary surface from the Boltzmann equation on the surface.
3-MANIFOLDS AFTER PERELMAN STEFAN FRIEDL
Friedl, Stefan
and hyperbolic 3Âmanifolds does not necessarily lead imme- diately to a good understanding of 3Âmanifolds statements should in partic- ular be taken with a grain of salt. Also note that Wise's results have not been
On the geography of symplectic manifolds Proefschrift
Pasquotto, Federica
On the geography of symplectic manifolds Proefschrift ter verkrijging van de graad van Doctor aan the geography of symplectic manifolds. #12;Federica Pasquotto Mathematisch Instituut, Universiteit Leiden of symplectic geography. Symplectic geography is a suitable subject of study when considering symplectic
Heat transfer to impacting drops and post critical heat flux dispersed flow
Kendall, Gail E.
1978-01-01
Heat transfer to drops impacting on a hot surface is examined in context of dispersions of flowing, boiling fluids. The liquid contribution to heat transfer from a hot tube to a two-phase dispersion is formulated in terms ...
Stiefel and Grassmann manifolds in Quantum Chemistry
Eduardo Chiumiento; Michael Melgaard
2011-05-09
We establish geometric properties of Stiefel and Grassmann manifolds which arise in relation to Slater type variational spaces in many-particle Hartree-Fock theory and beyond. In particular, we prove that they are analytic homogeneous spaces and submanifolds of the space of bounded operators on the single-particle Hilbert space. As a by-product we obtain that they are complete Finsler manifolds. These geometric properties underpin state-of-the-art results on existence of solutions to Hartree-Fock type equations.
Hair treatment process providing dispersed colors by light diffraction
Lamartine, Bruce Carvell; Orler, E. Bruce; Sutton, Richard Matthew Charles; Song, Shuangqi
2014-11-11
Hair was coated with polymer-containing fluid and then hot pressed to form a composite of hair and a polymer film imprinted with a nanopattern. Polychromatic light incident on the nanopattern is diffracted into dispersed colored light.
Hair treatment process providing dispersed colors by light diffraction
Lamartine, Bruce Carvell; Orler, E. Bruce; Sutton, Richard Matthew Charles; Song, Shuangqi
2013-12-17
Hair was coated with polymer-containing fluid and then hot pressed to form a composite of hair and a polymer film imprinted with a nanopattern. Polychromatic light incident on the nanopattern is diffracted into dispersed colored light.
NUMERICAL CONSTRAINTS FOR EMBEDDED PROJECTIVE MANIFOLDS
Besana, Gian Mario
an n- fold X in P2n is related to the number of double points of a generic projection of X from P2n+1. Double point formulas, expressing these constraints in terms of Chern classes of the manifolds and its case of the Laksov-Todd double point formula, [37]. An excellent general reference is due to Kleiman
Subsea manifolds become a practical matter
Not Available
1985-05-01
Norwegian deep waters are providing a powerful incentive for using subsea manifolds. Some of the most important conceptual and practical work is being done by ACB, Nantes. ACB's ''Reliability through Simplicity'' philosophy could ultimately help to bring down subsea costs. This might be used to open up the UK's large number of marginal fields in moderate depths by tying production back to existing installations.
A Generalized Construction of Mirror Manifolds
P. Berglund; T. Hübsch
1992-01-09
We generalize the known method for explicit construction of mirror pairs of $(2,2)$-superconformal field theories, using the formalism of Landau-Ginzburg orbifolds. Geometrically, these theories are realized as Calabi-Yau hypersurfaces in weighted projective spaces. This generalization makes it possible to construct the mirror partners of many manifolds for which the mirror was not previously known.
Drilling long geodesics in hyperbolic 3-manifolds K. Bromberg
Bromberg, Kenneth
Drilling long geodesics in hyperbolic 3-manifolds K. Bromberg September 22, 2006 1 Introduction to such a deformation as drilling and results which compare the geometry of the original manifold to the geometry of the drilled manifold as drilling theorems. The first results of this type are due to Hodgson and Kerckhoff
Manifold gasket accommodating differential movement of fuel cell stack
Kelley, Dana A. (New Milford, CT); Farooque, Mohammad (Danbury, CT)
2007-11-13
A gasket for use in a fuel cell system having at least one externally manifolded fuel cell stack, for sealing the manifold edge and the stack face. In accordance with the present invention, the gasket accommodates differential movement between the stack and manifold by promoting slippage at interfaces between the gasket and the dielectric and between the gasket and the stack face.
Charron, Richard; Pierce, Daniel
2015-08-11
A shaft cover support for a gas turbine engine is disclosed. The shaft cover support not only provides enhanced support to a shaft cover of the gas turbine engine, but also includes a cooling fluid chamber for passing fluids from a rotor air cooling supply conduit to an inner ring cooling manifold. Furthermore, the shaft cover support may include a cooling shield supply extending from the cooling fluid chamber between the radially outward inlet and the radially inward outlet on the radially extending region and in fluid communication with the cooling fluid chamber for providing cooling fluids to a transition section. The shaft cover support may also provide additional stiffness and reduce interference of the flow from the compressor. In addition, the shaft cover support accommodates a transition section extending between compressor and turbine sections of the gas turbine engine.
Manifold free multiple sheet superplastic forming
Elmer, John W. (Danville, CA); Bridges, Robert L. (Knoxville, TN)
2001-01-01
Fluid-forming compositions in a container attached to enclosed adjacent sheets are heated to relatively high temperatures to generate fluids (gases) that effect inflation of the sheets. Fluid rates to the enclosed space between the sheets can be regulated by the canal from the container. Inflated articles can be produced by a continuous, rather than batch-type, process.
Manifold free multiple sheet superplastic forming
Elmer, John W.; Bridges, Robert L.
2004-01-13
Fluid-forming compositions in a container attached to enclosed adjacent sheets are heated to relatively high temperatures to generate fluids (gases) that effect inflation of the sheets. Fluid rates to the enclosed space between the sheets can be regulated by the canal from the container. Inflated articles can be produced by a continuous, rather than batch-type, process.
Magnetorheology in an aging, yield stress matrix fluid
et al. 2001), precision polishing (Kordonski and Golini 1999), and drilling fluids (Zitha 2004). MR1 Magnetorheology in an aging, yield stress matrix fluid Jason P. Rich,a Patrick S. Doyle,a Gareth) suspensions in an aging, yield stress matrix fluid composed of an aqueous dispersion of Laponite® clay. Using
Global expenditure on subsea manifolds is estimated to reach...
demand. The global subsea manifold market is growing at a high pace as several oil and gas exploration companies working in offshore locations prefer installing subsea...
Engine Air Intake Manifold Having Built In Intercooler
Freese, V, Charles E. (Westland, MI)
2000-09-12
A turbocharged V type engine can be equipped with an exhaust gas recirculation cooler integrated into the intake manifold, so as to achieve efficiency, cost reductions and space economization improvements. The cooler can take the form of a tube-shell heat exchanger that utilizes a cylindrical chamber in the air intake manifold as the heat exchanger housing. The intake manifold depends into the central space formed by the two banks of cylinders on the V type engine, such that the central space is effectively utilized for containing the manifold and cooler.
Controlled differential pressure system for an enhanced fluid blending apparatus
Hallman, Jr., Russell Louis (Knoxville, TN)
2009-02-24
A system and method for producing a controlled blend of two or more fluids. Thermally-induced permeation through a permeable tube is used to mix a first fluid from outside the tube with a second fluid flowing through the tube. Mixture ratios may be controlled by adjusting the temperature of the first fluid or by adjusting the pressure drop through the permeable tube. The combination of a back pressure control valve and a differential regulator is used to control the output pressure of the blended fluid. The combination of the back pressure control valve and differential regulator provides superior flow control of the second dry gas. A valve manifold system may be used to mix multiple fluids, and to adjust the volume of blended fluid produced, and to further modify the mixture ratio.
Optical manifold for light-emitting diodes
Chaves, Julio C.; Falicoff, Waqidi; Minano, Juan C.; Benitez, Pablo; Parkyn, Jr., William A.; Alvarez, Roberto; Dross, Oliver
2008-06-03
An optical manifold for efficiently combining a plurality of blue LED outputs to illuminate a phosphor for a single, substantially homogeneous output, in a small, cost-effective package. Embodiments are disclosed that use a single or multiple LEDs and a remote phosphor, and an intermediate wavelength-selective filter arranged so that backscattered photoluminescence is recycled to boost the luminance and flux of the output aperture. A further aperture mask is used to boost phosphor luminance with only modest loss of luminosity. Alternative non-recycling embodiments provide blue and yellow light in collimated beams, either separately or combined into white.
Subsea Manifolds Market | OpenEI Community
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfinMarket StudiesStrategic EnergyStresniManifolds Market
Subsea Manifolds | OpenEI Community
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfinMarket StudiesStrategic EnergyStresniManifolds
NASH-STAMPACCHIA EQUILIBRIUM POINTS ON MANIFOLDS ALEXANDRU KRISTALY
NASH-STAMPACCHIA EQUILIBRIUM POINTS ON MANIFOLDS ALEXANDRU KRIST´ALY Abstract. Motivated by Nash equilibrium problems on 'curved' strategy sets, the concept of Nash-Stampacchia equilibrium points Riemannian manifolds. Characterization, existence, and stability of Nash- Stampacchia equilibria are studied
ASYMPTOTIC PROPERTIES OF THE HEAT KERNEL ON CONIC MANIFOLDS
Loya, Paul
ASYMPTOTIC PROPERTIES OF THE HEAT KERNEL ON CONIC MANIFOLDS PAUL LOYA Abstract. We derive Foundation Fellowship. 1 #12; 2 PAUL LOYA Trace expansions of cone operators has a long history stemming from on conic manifolds; see for instance, Callias [5], Cheeger [7], Chou [9], BrË?uning--Seeley [3], Br
General relativity calculus with SageManifolds Eric Gourgoulhon1
Gourgoulhon, Eric
, Poland http://users.camk.edu.pl/bejger/ CoCoNuT Meeting 2013 Observatoire de Paris, Meudon 4 December 2013 ´Eric Gourgoulhon, Michal Bejger (LUTH, CAMK) SageManifolds CoCoNuT Meeting, 4 Dec. 2013 1 / 21 Gourgoulhon, Michal Bejger (LUTH, CAMK) SageManifolds CoCoNuT Meeting, 4 Dec. 2013 2 / 21 #12;An overview
Manifold to uniformly distribute a solid-liquid slurry
Kern, Kenneth C. (Lake Hiawatha, NJ)
1983-01-01
This invention features a manifold that divides a stream of coal particles and liquid into several smaller streams maintaining equal or nearly equal mass compositions. The manifold consists of a horizontal, variable area header having sharp-edged, right-angled take-offs which are oriented on the bottom of the header.
RESONANCES AND SCATTERING POLES ON ASYMPTOTICALLY HYPERBOLIC MANIFOLDS
Guillarmou, Colin
RESONANCES AND SCATTERING POLES ON ASYMPTOTICALLY HYPERBOLIC MANIFOLDS COLIN GUILLARMOU Abstract. On an asymptotically hyperbolic manifold (X; g), we show that the poles (called resonances) of the meromorphic extension of the resolvent (#1;g #21;(n #21;)) 1 coincide, with multiplicities, with the poles (called
Gorenz, Heather M. (Albuquerque, NM); Brockmann, John E. (Albuquerque, NM); Lucero, Daniel A. (Albuquerque, NM)
2011-09-20
A powder dispersion method and apparatus comprising an air eductor and a powder dispensing syringe inserted into a suction connection of the air eductor.
Manifold corrections on spinning compact binaries
Zhong Shuangying; Wu Xin [Nanchang University, Nanchang 330031 (China)
2010-05-15
This paper deals mainly with a discussion of three new manifold correction methods and three existing ones, which can numerically preserve or correct all integrals in the conservative post-Newtonian Hamiltonian formulation of spinning compact binaries. Two of them are listed here. One is a new momentum-position scaling scheme for complete consistency of both the total energy and the magnitude of the total angular momentum, and the other is the Nacozy's approach with least-squares correction of the four integrals including the total energy and the total angular momentum vector. The post-Newtonian contributions, the spin effects, and the classification of orbits play an important role in the effectiveness of these six manifold corrections. They are all nearly equivalent to correct the integrals at the level of the machine epsilon for the pure Kepler problem. Once the third-order post-Newtonian contributions are added to the pure orbital part, three of these corrections have only minor effects on controlling the errors of these integrals. When the spin effects are also included, the effectiveness of the Nacozy's approach becomes further weakened, and even gets useless for the chaotic case. In all cases tested, the new momentum-position scaling scheme always shows the optimal performance. It requires a little but not much expensive additional computational cost when the spin effects exist and several time-saving techniques are used. As an interesting case, the efficiency of the correction to chaotic eccentric orbits is generally better than one to quasicircular regular orbits. Besides this, the corrected fast Lyapunov indicators and Lyapunov exponents of chaotic eccentric orbits are large as compared with the uncorrected counterparts. The amplification is a true expression of the original dynamical behavior. With the aid of both the manifold correction added to a certain low-order integration algorithm as a fast and high-precision device and the fast Lyapunov indicators of two nearby trajectories, phase space scans for chaos in the spinning compact binary system are given.
Dispersion strengthened copper
Sheinberg, H.; Meek, T.T.; Blake, R.D.
1990-01-09
A composition of matter is described which is comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide. A method for making this composition of matter is also described. This invention relates to the art of powder metallurgy and, more particularly, it relates to dispersion strengthened metals.
HARMONIC MAPPINGS BETWEEN RIEMANNIAN MANIFOLDS Anand Arvind Joshi
Leahy, Richard M.
HARMONIC MAPPINGS BETWEEN RIEMANNIAN MANIFOLDS by Anand Arvind Joshi A Thesis Presented ii Abstract iv 1 Harmonic Mappings 1 1.1 Space of Maps Variation Formula . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4 Harmonic Maps
Classification of Certain Compact Riemannian Manifolds with Harmonic Curvature a...
Derdzinski, Andrzej
Classification of Certain Compact Riemannian Manifolds with Harmonic Curvature a... Derdzinski and University Library provides access to digitized documents strictly for noncommercial educational, research) requires prior written permission from the Goettingen State- and University Library. Each copy of any part
Fixed points, stable manifolds, weather regimes, and their predictability
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Deremble, Bruno; D'Andrea, Fabio; Ghil, Michael
2009-10-27
In a simple, one-layer atmospheric model, we study the links between low-frequency variability and the model’s fixed points in phase space. The model dynamics is characterized by the coexistence of multiple ''weather regimes.'' To investigate the transitions from one regime to another, we focus on the identification of stable manifolds associated with fixed points. We show that these manifolds act as separatrices between regimes. We track each manifold by making use of two local predictability measures arising from the meteorological applications of nonlinear dynamics, namely, ''bred vectors'' and singular vectors. These results are then verified in the framework of ensemblemore »forecasts issued from clouds (ensembles) of initial states. The divergence of the trajectories allows us to establish the connections between zones of low predictability, the geometry of the stable manifolds, and transitions between regimes.« less
Motion planning and reactive control on learnt skill manifolds
Havoutis, Ioannis
2012-06-25
We propose a novel framework for motion planning and control that is based on a manifold encoding of the desired solution set. We present an alternate, model-free, approach to path planning, replanning and control. Our ...
Jacobi Fields on Statistical Manifolds of Negative Curvature
Carlo Cafaro; S. A. Ali
2007-02-14
Two entropic dynamical models are considered. The geometric structure of the statistical manifolds underlying these models is studied. It is found that in both cases, the resulting metric manifolds are negatively curved. Moreover, the geodesics on each manifold are described by hyperbolic trajectories. A detailed analysis based on the Jacobi equation for geodesic spread is used to show that the hyperbolicity of the manifolds leads to chaotic exponential instability. A comparison between the two models leads to a relation among statistical curvature, stability of geodesics and relative entropy-like quantities. Finally, the Jacobi vector field intensity and the entropy-like quantity are suggested as possible indicators of chaoticity in the ED models due to their similarity to the conventional chaos indicators based on the Riemannian geometric approach and the Zurek-Paz criterion of linear entropy growth, respectively.
Fixed points, stable manifolds, weather regimes, and their predictability
Deremble, Bruno [Laboratoire de Meteorologie Dynamique (CNRS and IPSL), Paris (France); D'Andrea, Fabio [Laboratoire de Meteorologie Dynamique (CNRS and IPSL), Paris (France); Ghil, Michael [Univ. of California, Los Angeles, CA (United Staes). Atmospheric and Oceanic Sciences and Inst. of Geophysics and Planetary Physics
2009-10-27
In a simple, one-layer atmospheric model, we study the links between low-frequency variability and the model’s fixed points in phase space. The model dynamics is characterized by the coexistence of multiple ''weather regimes.'' To investigate the transitions from one regime to another, we focus on the identification of stable manifolds associated with fixed points. We show that these manifolds act as separatrices between regimes. We track each manifold by making use of two local predictability measures arising from the meteorological applications of nonlinear dynamics, namely, ''bred vectors'' and singular vectors. These results are then verified in the framework of ensemble forecasts issued from clouds (ensembles) of initial states. The divergence of the trajectories allows us to establish the connections between zones of low predictability, the geometry of the stable manifolds, and transitions between regimes.
3-MANIFOLDS, TANGLES AND PERSISTENT INVARIANTS JOZEF H. PRZYTYCKI
Silver, Dan
in the last section. We are grateful to J. Scott Carter, Mietek D¸abkowski and Seiichi Kamada for stimu3-MANIFOLDS, TANGLES AND PERSISTENT INVARIANTS J´OZEF H. PRZYTYCKI Department of Mathematics
Fixed points, stable manifolds, weather regimes, and their predictability
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Deremble, Bruno [Laboratoire de Meteorologie Dynamique (CNRS and IPSL), Paris (France); D'Andrea, Fabio [Laboratoire de Meteorologie Dynamique (CNRS and IPSL), Paris (France); Ghil, Michael [Univ. of California, Los Angeles, CA (United Staes). Atmospheric and Oceanic Sciences and Inst. of Geophysics and Planetary Physics
2009-01-01
In a simple, one-layer atmospheric model, we study the links between low-frequency variability and the model’s fixed points in phase space. The model dynamics is characterized by the coexistence of multiple ''weather regimes.'' To investigate the transitions from one regime to another, we focus on the identification of stable manifolds associated with fixed points. We show that these manifolds act as separatrices between regimes. We track each manifold by making use of two local predictability measures arising from the meteorological applications of nonlinear dynamics, namely, ''bred vectors'' and singular vectors. These results are then verified in the framework of ensemble forecasts issued from clouds (ensembles) of initial states. The divergence of the trajectories allows us to establish the connections between zones of low predictability, the geometry of the stable manifolds, and transitions between regimes.
Dispersion strengthened copper
Sheinberg, Haskell (Los Alamos, NM); Meek, Thomas T. (Knoxville, TN); Blake, Rodger D. (Santa Fe, NM)
1990-01-01
A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.
Dispersion strengthened copper
Sheinberg, Haskell (Los Alamos, NM); Meek, Thomas T. (Knoxville, TN); Blake, Rodger D. (Santa Fe, NM)
1989-01-01
A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.
Yoder, Graydon L.
1980-01-01
Dispersed flow consists of small liquid droplets entrained in a flowing vapor. This flow regime can occur in cryogenic equipment, in steam generators, and during nuclear reactor loss of coolant accidents. A theoretical ...
Double Field Theory on Group Manifolds (Thesis)
Hassler, Falk
2015-01-01
This thesis deals with Double Field Theory (DFT), an effective field theory capturing the low energy dynamics of closed strings on a torus. It renders T-duality on a torus manifest by adding $D$ winding coordinates in addition to the $D$ space time coordinates. An essential consistency constraint of the theory, the strong constraint, only allows for field configurations which depend on half of the coordinates of the arising doubled space. I derive DFT${}_\\mathrm{WZW}$, a generalization of the current formalism. It captures the low energy dynamics of a closed bosonic string propagating on a compact group manifold. Its classical action and the corresponding gauge transformations arise from Closed String Field Theory up to cubic order in the massless fields. These results are rewritten in terms of a generalized metric and extended to all orders in the fields. There is an explicit distinction between background and fluctuations. For the gauge algebra to close, the latter have to fulfill a modified strong constrai...
The world problem: on the computability of the topology of 4-manifolds
James R. van Meter
2005-06-03
Topological classification of the 4-manifolds bridges computation theory and physics. A proof of the undecidability of the homeomorphy problem for 4-manifolds is outlined here in a clarifying way. It is shown that an arbitrary Turing machine with an arbitrary input can be encoded into the topology of a 4-manifold, such that the 4-manifold is homeomorphic to a certain other 4-manifold if and only if the corresponding Turing machine halts on the associated input. Physical implications are briefly discussed.
A model for P-wave attenuation and dispersion in a porous medium ...
lll
2005-09-05
with a liquid this material exhibits significant attenuation and velocity dispersion ... instances, natural fractures control the permeability of the reservoir, and hence the ...... anisotropic layered fluid- and gas-saturated sediments, Geophysics, 62,.
Truong, Bao H. (Bao Hoai)
2008-01-01
Nanofluids are engineered colloidal dispersions of nanoparticles (1-100nm) in common fluids (water, refrigerants, or ethanol...). Materials used for nanoparticles include chemically stable metals (e.g., gold, silver, ...
Short communication Study of pollution dispersion in urban areas using
Yu, Peter K.N.
wind directions and wind speeds. 2. Model validation The developed models have to be verified before they can be applied to real life simulations. To test the performance of the present wind field modelShort communication Study of pollution dispersion in urban areas using Computational Fluid Dynamics
Finite-time barriers to front propagation in two-dimensional fluid flows
Mahoney, John R
2015-01-01
Recent theoretical and experimental investigations have demonstrated the role of certain invariant manifolds, termed burning invariant manifolds (BIMs), as one-way dynamical barriers to reaction fronts propagating within a flowing fluid. These barriers form one-dimensional curves in a two-dimensional fluid flow. In prior studies, the fluid velocity field was required to be either time-independent or time-periodic. In the present study, we develop an approach to identify prominent one-way barriers based only on fluid velocity data over a finite time interval, which may have arbitrary time-dependence. We call such a barrier a burning Lagrangian coherent structure (bLCS) in analogy to Lagrangian coherent structures (LCSs) commonly used in passive advection. Our approach is based on the variational formulation of LCSs using curves of stationary "Lagrangian shear", introduced by Farazmand, Blazevski, and Haller [Physica D 278-279, 44 (2014)] in the context of passive advection. We numerically validate our techniqu...
Analysis of Thermal Dispersion in an Array of Parallel Plates with Fully-Developed Laminar Flow
Fleck, Norman A.
basic heat transfer problems are addressed, each for steady fully-developed laminar fluid flow: (a1 Analysis of Thermal Dispersion in an Array of Parallel Plates with Fully-Developed Laminar Flow dispersion, parallel plate array, fully-developed laminar flow, Peclet number #12;2 Notation a molecular
Ensemble Atmospheric Dispersion Modeling
Addis, R.P.
2002-06-24
Prognostic atmospheric dispersion models are used to generate consequence assessments, which assist decision-makers in the event of a release from a nuclear facility. Differences in the forecast wind fields generated by various meteorological agencies, differences in the transport and diffusion models, as well as differences in the way these models treat the release source term, result in differences in the resulting plumes. Even dispersion models using the same wind fields may produce substantially different plumes. This talk will address how ensemble techniques may be used to enable atmospheric modelers to provide decision-makers with a more realistic understanding of how both the atmosphere and the models behave.
Dispersed Fluid Flow in Fractured Reservoirs- an Analysis of
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsArea (DOE GTP)
Circumferential creeping waves around a fluid-filled cylindrical cavity in an elastic medium
Nagy, Peter B.
of fluid fuel trapped in these rather small approximately 67 mm in diameter holes would strongly affectCircumferential creeping waves around a fluid-filled cylindrical cavity in an elastic medium Waled The dispersion behavior of circumferential creeping waves around a fluid-filled cylindrical cavity in an infinite
Self-dual metrics on toric 4-manifolds: extending the Joyce construction
Griffiths, Hugh Norman
2009-01-01
Toric geometry studies manifolds M2n acted on effectively by a torus of half their dimension, Tn. Joyce shows that for such a 4-manifold sufficient conditions for a conformal class of metrics on the free part of the ...
Modeling and applications of two-phase flow distribution in manifolds under microgravity conditions
Young, Cale Hollis
1998-01-01
associated with the flow throughout a manifold was developed. This calculational procedure was developed in order to calculate the flow distribution throughout a system, given only the inlet flow conditions and an arbitrary manifold geometry. Sample...
Thermorheological properties of nanostructured dispersions
Gordon, Jeremy B
2007-01-01
Nanostructured dispersions, which consist of nanometer-sized particles, tubes, sheets, or droplets that are dispersed in liquids, have exhibited substantially higher thermal conductivities over those of the liquids alone. ...
Enhancing thermal conductivity of fluids with graphite nanoparticles and carbon nanotube
Zhang, Zhiqiang (Lexington, KY); Lockwood, Frances E. (Georgetown, KY)
2008-03-25
A fluid media such as oil or water, and a selected effective amount of carbon nanomaterials necessary to enhance the thermal conductivity of the fluid. One of the preferred carbon nanomaterials is a high thermal conductivity graphite, exceeding that of the neat fluid to be dispersed therein in thermal conductivity, and ground, milled, or naturally prepared with mean particle size less than 500 nm, and preferably less than 200 nm, and most preferably less than 100 nm. The graphite is dispersed in the fluid by one or more of various methods, including ultrasonication, milling, and chemical dispersion. Carbon nanotubes with graphitic structure is another preferred source of carbon nanomaterial, although other carbon nanomaterials are acceptable. To confer long term stability, the use of one or more chemical dispersants is preferred. The thermal conductivity enhancement, compared to the fluid without carbon nanomaterial, is proportional to the amount of carbon nanomaterials (carbon nanotubes and/or graphite) added.
Dispersive analysis of ?/? ? 3?, ??*
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Danilkin, Igor V.; Fernandez Ramirez, Cesar; Guo, Peng; Mathieu, Vincent; Schott, Diane M.; Shi, Meng; Szczepaniak, Adam P.
2015-05-01
The decays ?/? ? 3? are considered in the dispersive framework that is based on the isobar decomposition and subenergy unitarity. The inelastic contributions are parametrized by the power series in a suitably chosen conformal variable that properly accounts for the analytic properties of the amplitude. The Dalitz plot distributions and integrated decay widths are presented. Our results indicate that the final- state interactions may be sizable. As a further application of the formalism we also compute the electromagnetic transition form factors of ?/? ? ???*.
Euler-Characteristic and signature of K"ahler hyperbolic manifolds
Schick, Thomas
manifolds Thomas Schick* Fachbereich". Then __________________________________________ *e-mail: thomas.schick@math.uni-muenster.de 1 #12
Harmonic Functions for Quadrilateral Remeshing of Arbitrary Manifolds
Garland, Michael
Harmonic Functions for Quadrilateral Remeshing of Arbitrary Manifolds S. Dong , S. Kircher, M on the use of smooth harmonic scalar fields defined over the mesh. Given such a field, we compute its for cutting the surface into patches. Key words: quad-dominant remeshing, gradient flow tracing, harmonic
Energy-Minimizing Splines in Manifolds Michael Hofer
Pottmann, Helmut
Energy-Minimizing Splines in Manifolds Michael Hofer Vienna Univ. of Technology Helmut Pottmann Vienna Univ. of Technology Abstract Variational interpolation in curved geometries has many applica of surfaces. This list is more comprehensive than it looks, because it includes variational motion design
FUSION OF HAMILTONIAN LOOP GROUP MANIFOLDS AND COBORDISM
Woodward, Christopher
FUSION OF HAMILTONIAN LOOP GROUP MANIFOLDS AND COBORDISM E. MEINRENKEN AND C. WOODWARD Abstract. We References 32 1. Introduction Let G be a compact, connected, simply connected, simple Lie group and \\Sigma. In a sequel [15] to this paper, we apply our method to compute the coefficients of the fusion ring (Verlinde
Geometric Integration: Numerical Solution of Differential Equations on Manifolds
Scheichl, Robert
and the solar system. Conserved quantities of a Hamiltonian system, such as energy, linear and angular momentumGeometric Integration: Numerical Solution of Differential Equations on Manifolds C.J. Budd 1 & A riches. Psalms 104:24 Since their introduction by Sir Isaac Newton, differential equations have played
Improving Exploration in UCT Using Local Manifolds Sriram Srinivasan
Bowling, Michael
Improving Exploration in UCT Using Local Manifolds Sriram Srinivasan University of Alberta ssriram of Alberta mbowling@cs.ualberta.ca Abstract Monte Carlo planning has been proven successful in many 4 actions available - move UP, DOWN, LEFT and RIGHT that work as suggested by their names
Subsea manifolds optimization -- The combination of mature and new technologies
Paulo, C.A.S.
1996-12-31
Subsea equipment can now be considered a mature option for offshore field developments. In Brazil, since the first oil in Campos Basin, different concepts ranging from one-atmosphere chambers to deepwater guidelineless X-mas trees, have been tested, contributing to this development. The experience acquired during these years makes it possible to combine the proven systems with new technologies being developed, for the design of subsea manifolds. The main target is more efficiency and cost reduction. When choosing a manifold concept, a usual rule is applicable: the simpler the better. The maturity, confidence and reliability obtained, allow the usage of resident hydraulically actuated valves, simplifying considerably the manifold arrangement. Other contributions come from: the reduction of piping bend radius allowed by the new pigs; the increased reliability of subsea instrumentation and chokes, allowing elimination of the gas-lift-test flowline; and the development of the direct vertical connection, that turns subsea tie-ins into very fast and easy operations. Combining all that with the new technology of a multiphase meter (to eliminate the test flowline and even the test separator on the platform), one can achieve a cost effective solution. This paper describes the possibilities of simplifying the subsea manifolds and presents a comparison of different designs. The usage of mature technology combined with the new developments, can help the industry to make deep water developments profitable, worldwide.
Weldability Of New Ferritic Stainless Steel For Exhaust Manifold Application
Paris-Sud XI, Université de
Weldability Of New Ferritic Stainless Steel For Exhaust Manifold Application Vincent Villaret1-2, a-marie.fortain@airliquide.com, e gilles.fras@iut-nimes.fr, f fabien.januard@airliquide.com Keywords: ferritic stainless steel, efficiency and small size. To achieve such requirements, ferritic stainless steels with high chromium content
Tuning manifold harmonics filters Thomas Lewiner, Thales Vieira, Alex Bordignon,
DÃaz, Lorenzo J.
Tuning manifold harmonics filters Thomas Lewiner, Thales Vieira, Alex Bordignon, Allyson Cabral : Thomas Lewiner, Thales Vieira, Alex Bordignon, Allyson Cabral, Clarissa Marques, Jo~ao Paix~ao, Lis Cust CABRAL1 , CLARISSA MARQUES1 , JO ~AO PAIX ~AO1 , LIS CUST Â´ODIO1 , MARCOS LAGE1 , MARIA ANDRADE1 , RENATA
ALMOST JET STRUCTURES AND FIRST JET-EXTENSIONS OF FIBRED MANIFOLDS
Pasquero, Stefano
ALMOST JET STRUCTURES AND FIRST JET-EXTENSIONS OF FIBRED MANIFOLDS Paola Morando Dipartimento di conditions for a manifold M to be diffeomorphic to the first jetÂextension j1(N) of a fibred manifold N O are given in terms of almost jet structures, i.e. pairs (S, A), where S is a suitable type (2, 1) tensor
Thermophysical Properties of Fluids and Fluid Mixtures
Sengers, Jan V.; Anisimov, Mikhail A.
2004-05-03
The major goal of the project was to study the effect of critical fluctuations on the thermophysical properties and phase behavior of fluids and fluid mixtures. Long-range fluctuations appear because of the presence of critical phase transitions. A global theory of critical fluctuations was developed and applied to represent thermodynamic properties and transport properties of molecular fluids and fluid mixtures. In the second phase of the project, the theory was extended to deal with critical fluctuations in complex fluids such as polymer solutions and electrolyte solutions. The theoretical predictions have been confirmed by computer simulations and by light-scattering experiments. Fluctuations in fluids in nonequilibrium states have also been investigated.
L. A. Falkovsky
2007-08-11
Taking into account the constraints imposed by the lattice symmetry, the phonon dispersion is calculated for graphene with interactions between the first and second nearest neighbors in the framework of the Born-von Karman model. Analytical expressions are obtained for the out-of-plane (bending) modes determined only by two force constants as well as for the in-plane modes with four force constants. Values of the force constants are found in fitting to elastic constants and Raman frequencies observed in graphite.
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Dilley, Lorie
Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Dilley, Lorie
2013-01-01
Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.
Dispersion of Passive Tracers in the Surfzone
Fedderson, Falk; Guza, Robert T.
2007-01-01
Dispersion of passive tracers in the surfzone Feddersen andThe dispersion of passive tracers, such as pollutants, in
The relation between seismic P- and S-wave velocity dispersion in saturated rocks
Mavko, G. [Stanford Univ., CA (United States). Dept. of Geophysics] [Stanford Univ., CA (United States). Dept. of Geophysics; Jizba, D. [CSTJF, Pau (France)] [CSTJF, Pau (France)
1994-01-01
Seismic velocity dispersion in fluid-saturated rocks appears to be dominated by two mechanisms: the large scale mechanism modeled by Biot, and the local flow or squirt mechanism. The two mechanisms can be distinguished by the ratio of P- to S-wave dispersions, or more conveniently, by the ratio of dynamic bulk to shear compliance dispersions derived from the wave velocities. The authors` formulation suggests that when local flow dominates, the dispersion of the shear compliance will be approximately 4/15 the dispersion of the compressibility. When the Biot mechanism dominates, the constant of proportionality is much smaller. Their examination of ultrasonic velocities from 40 sandstones and granites shows that most, but not all, of the samples were dominated by local flow dispersion, particularly at effective pressures below 40 MPa.
Geometrical Interpretation of Electromagnetism in 5-Dimensional Manifold
Kim, TaeHun
2015-01-01
In this paper Kaluza-Klein theory is revisited and its implications are elaborated. We show that electromagnetic 4-potential is a deformation factor of a 5-dimensional (5D) manifold along the fifth (5th) axis. The charge-to-mass ratio has a physical meaning as the ratio of the movement along the direction of the 5th axis to the movement in the 4D space-time. Examinations on the interaction between particles registered by different observers suggest a covariance breaking of the 5th dimension. In order to have a 5D matter which is consistent with the construction of the 5D manifold, a notion of particle-thread is considered. Finally, the field equations which extend the Einstein field equations give the total energy-momentum tensor as a sum of that of matter, electromagnetic field, and the interaction between electric current and electromagnetic field.
Geometrical Interpretation of Electromagnetism in 5-Dimensional Manifold
TaeHun Kim; Hyunbyuk Kim
2015-07-12
In this paper Kaluza-Klein theory is revisited and its implications are elaborated. We show that electromagnetic 4-potential is a deformation factor of a 5-dimensional (5D) manifold along the fifth (5th) axis. The charge-to-mass ratio has a physical meaning as the ratio of the movement along the direction of the 5th axis to the movement in the 4D space-time. Examinations on the interaction between particles registered by different observers suggest a covariance breaking of the 5th dimension. In order to have a 5D matter which is consistent with the construction of the 5D manifold, a notion of particle-thread is considered. Finally, the field equations which extend the Einstein field equations give the total energy-momentum tensor as a sum of that of matter, electromagnetic field, and the interaction between electric current and electromagnetic field.
A volumetric Penrose inequality for conformally flat manifolds
Fernando Schwartz
2011-04-11
We consider asymptotically flat Riemannian manifolds with nonnegative scalar curvature that are conformal to $\\R^{n}\\setminus \\Omega, n\\ge 3$, and so that their boundary is a minimal hypersurface. (Here, $\\Omega\\subset \\R^{n}$ is open bounded with smooth mean-convex boundary.) We prove that the ADM mass of any such manifold is bounded below by $(V/\\beta_{n})^{(n-2)/n}$, where $V$ is the Euclidean volume of $\\Omega$ and $\\beta_{n}$ is the volume of the Euclidean unit $n$-ball. This gives a partial proof to a conjecture of Bray and Iga \\cite{brayiga}. Surprisingly, we do not require the boundary to be outermost.
Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter
Ortiz, M.G.; Boucher, T.J.
1997-06-24
A system is described for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit. 2 figs.
Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter
Ortiz, Marcos G. (Idaho Falls, ID); Boucher, Timothy J. (Helena, MT)
1997-01-01
A system for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit.
DeepStar evaluation of subsea trees and manifold concepts
Kirkland, K.G.; Richardson, E.M.; Hey, C.
1996-12-31
This paper reviews the results of a study performed for the DeepStar Project, CTR A802-2, Concept Study and Investigation of Key Areas of Interest for Subsea Systems in Deepwater. The report documents the results of a study of subsea manifold systems as applied to the deepwater Gulf of Mexico. Of particular interest is the development of a range of system level philosophies based on recent and ongoing experience from the operators and vendors.
SeaStar: Subsea cluster manifold system design and installation
Mason, P.G.T.; Upchurch, J.L.
1996-12-31
The SeaStar Cluster Manifold system was engineered as a low cost alternative to larger and more expensive completion template designs. Utilizing field-proven equipment and installation techniques, it was the first of its kind to be installed in the Gulf of Mexico. The Cluster Manifold system allows the connection of flowlines from adjacent satellite wells and numerous infield flowlines consisting of export, service, and methanol lines. With new technological advances, and a variety of flowline connection systems on the market today, deep water completions are being used with increasing frequency. Subsea operations are becoming more routine and installation times are being reduced. The SeaStar system was successfully installed in Garden Banks Block 70/71 in the Gulf of Mexico during the first quarter of 1995. Currently two 4 x 2-in. 10,000 psi lay-away trees are installed and connected to the manifold. Production is being processed at a Marathon platform in Vermilion Block 386B approximately 13.5 miles away from the subsea installation.
Ohbuchi, Ryutarou
printers,... User generated. T i bl 3D h· Trimble 3D warehouse... 3D model retrieval is essentialRanking on Cross Domain Manifold forRanking on Cross-Domain Manifold for Sketch-based 3D model Retrieval Takahiko FuruyaRyutarou Ohbuchi University of Yamanashi #12;IntroductionIntroduction 3D models
Ohbuchi, Ryutarou
printers,... User generated. T i bl 3D h· Trimble 3D warehouse... 3D model retrieval is essential scanners, 3D printers,... User generated. T i bl 3D h· Trimble 3D warehouse... 3D model retrievalRanking on Cross Domain Manifold forRanking on Cross-Domain Manifold for Sketch-based 3D model
Environmental Pollution Air Pollution Dispersion Practical Air Pollution Dispersion
Moncrieff, John B.
Environmental Pollution Air Pollution Dispersion 1 of 5 Practical Air Pollution Dispersion in the lectures how such models can be used to explain observed concentrations of air pollutants in an area and to test `what-if' scenarios for pollution control and reduction. You will use the Gaussian Plume Model
Fluid/Gravity Correspondence, Second Order Transport and Gravitational Anomaly
Eugenio Megias; Francisco Pena-Benitez
2013-07-29
We study the transport properties of a relativistic fluid affected by chiral and gauge-gravitational anomalies. The computation is performed in the framework of the fluid/gravity correspondence for a 5 dim holographic model with Chern-Simons terms in the action. We find new anomalous and non anomalous transport coefficients, as well as new contributions to the existing ones coming from the mixed gauge-gravitational anomaly. Consequences for the shear waves dispersion relation are analyzed.
Confined zone dispersion flue gas desulfurization demonstration
Not Available
1992-02-27
The confined zone dispersion (CZD) process involves flue gas post-treatment, physically located between a boiler's outlet and its particulate collector, which in the majority of cases is an electrostatic precipitator. The features that distinguish this process from other similar injection processes are: Injection of an alkaline slurry directly into the duct, instead of injection of dry solids into the duct ahead of a fabric filter. Use of an ultrafine calcium/magnesium hydroxide, type S pressure-hydrated dolomitic lime. This commercial product is made from plentiful, naturally occurring dolomite. Low residence time, made possible by the high effective surface area of the Type S lime. Localized dispersion of the reagent. Slurry droplets contact only part of the gas while the droplets are drying, to remove up to 50 percent of the S0{sub 2} and significant amounts of NO{sub x}. The process uses dual fluid rather than rotary atomizers. Improved electrostatic precipitator performance via gas conditioning from the increased water vapor content, and lower temperatures. Supplemental conditioning with S0{sub 3} is not believed necessary for satisfactory removal of particulate matter.
DeRoos, B.G.; Downing, J.P. Jr.; Neal, M.P.
1995-11-14
An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitting for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container. 13 figs.
Modeling volcanic ash dispersal
None
2011-10-06
Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.
Odd Jacobi manifolds: general theory and applications to generalised Lie algebroids
Andrew James Bruce
2012-06-28
In this paper we define a Grassmann odd analogue of Jacobi structure on a supermanifold. The basic properties are explored. The construction of odd Jacobi manifolds is then used to reexamine the notion of a Jacobi algebroid. It is shown that Jacobi algebroids can be understood in terms of a kind of curved Q-manifold, which we will refer to as a quasi Q-manifold.
Notes on Feynman path integral-like methods of quantization on Riemannian manifolds
Yoshihisa Miyanishi
2015-12-20
We propose an alternative method for Feynman path integrals on compact Riemannian manifolds. Our method employs action integrals along the shortest paths. In the case of rank 1 locally symmetric Riemannian manifolds, we prove the strong convergence of time slicing products of oscillatory integrals for low energy functions. Moreover, the strong limit includes Dewitt curvature $R/6$, where $R$ denotes the scalar curvature of a Riemannian manifold.
Standardization of Thermo-Fluid Modeling in Modelica.Fluid
Franke, Rudiger
2010-01-01
Thermo-Fluid Systems, Modelica 2003 Conference, Linköping,H. Tummescheit: The Modelica Fluid and Media Library forThermo-Fluid Pipe Networks, Modelica 2006 Conference, Vi-
Chakrabarti, Nikhil; Maity, Chandan; Schamel, Hans
2011-04-08
Compressional waves in a magnetized plasma of arbitrary resistivity are treated with the Lagrangian fluid approach. An exact nonlinear solution with a nontrivial space and time dependence is obtained with boundary conditions as in Harris' current sheet. The solution shows competition among hydrodynamic convection, magnetic field diffusion, and dispersion. This results in a collapse of density and the magnetic field in the absence of dispersion. The dispersion effects arrest the collapse of density but not of the magnetic field. A possible application is in the early stage of magnetic star formation.
Method And Apparatus For Atomizing Fluids With A Multi-Fluid Nozzle
Novick, Vincent J. (Downers Grove, IL); Ahluwalia, Rajesh K. (Burr Ridge, IL)
2004-12-07
The invention relates to a method an apparatus for atomizing liquids. In particular, the present invention relates to a method and apparatus for atomizing heavy hydrocarbon fuels such as diesel, as part of a fuel reforming process. During normal operating conditions the fuel is atomized by a high pressure fluid. Under start-up conditions when only a low pressure gas is available the fuel films across part of the nozzle and is subsequently atomized by a radially directed low pressure dispersion gas.
Effects of operating conditions on a heat transfer fluid aerosol
Sukmarg, Passaporn
2000-01-01
fluids are used as hot liquids at elevated pressures. If loss of containment does occur, the liquid will leak under pressure and may disperse as a fine aerosol mist. Though it has been recognized that aerosol mists can explode, very little is known about...
Dispersion of swimming algae in laminar and turbulent channel flows: theory and simulations
Croze, O A; Ahmed, M; Bees, M A; Brandt, L
2012-01-01
Algal swimming is often biased by environmental cues, e.g. gravitational and viscous torques drive cells towards downwelling fluid (gyrotaxis). In view of biotechnological applications, it is important to understand how such biased swimming affects cell dispersion in a flow. Here, we study the dispersion of gyrotactic swimming algae in laminar and turbulent channel flows. By direct numerical simulation (DNS) of cell motion within upwelling and downwelling channel flows, we evaluate time-dependent measures of dispersion for increasing values of the flow Peclet (Reynolds) numbers, Pe (Re). Furthermore, we derive an analytical `swimming Taylor-Aris dispersion' theory, using flow-dependent transport parameters given by existing microscopic models. In the laminar regime, DNS results and analytical predictions compare very well, providing the first confirmation that cells' response to flow is best described by the generalized-Taylor-dispersion microscopic model. We predict that cells drift along a channel faster th...
Lenert, Andrej
2012-01-01
The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...
Forrest, G.T.
1992-04-07
This patent describes a product for use in the drilling of wells. It comprises a drilling fluid and peanut hulls ground to powder form added to the drilling fluid.
Johnston, Roger G. (Los Alamos, NM); Garcia, Anthony R. E. (Espanola, NM); Martinez, Ronald K. (Santa Cruz, NM)
2001-09-25
The invention includes a rotatable tool for collecting fluid through the wall of a container. The tool includes a fluid collection section with a cylindrical shank having an end portion for drilling a hole in the container wall when the tool is rotated, and a threaded portion for tapping the hole in the container wall. A passageway in the shank in communication with at least one radial inlet hole in the drilling end and an opening at the end of the shank is adapted to receive fluid from the container. The tool also includes a cylindrical chamber affixed to the end of the shank opposite to the drilling portion thereof for receiving and storing fluid passing through the passageway. The tool also includes a flexible, deformable gasket that provides a fluid-tight chamber to confine kerf generated during the drilling and tapping of the hole. The invention also includes a fluid extractor section for extracting fluid samples from the fluid collecting section.
Microscale fluid transport using optically controlled marangoni effect
Thundat, Thomas G (Knoxville, TN); Passian, Ali (Knoxville, TN); Farahi, Rubye H (Oak Ridge, TN)
2011-05-10
Low energy light illumination and either a doped semiconductor surface or a surface-plasmon supporting surface are used in combination for manipulating a fluid on the surface in the absence of any applied electric fields or flow channels. Precise control of fluid flow is achieved by applying focused or tightly collimated low energy light to the surface-fluid interface. In the first embodiment, with an appropriate dopant level in the semiconductor substrate, optically excited charge carriers are made to move to the surface when illuminated. In a second embodiment, with a thin-film noble metal surface on a dispersive substrate, optically excited surface plasmons are created for fluid manipulation. This electrode-less optical control of the Marangoni effect provides re-configurable manipulations of fluid flow, thereby paving the way for reprogrammable microfluidic devices.
Flow networks: A characterization of geophysical fluid transport
Enrico Ser-Giacomi; Vincent Rossi; Cristobal Lopez; Emilio Hernandez-Garcia
2015-03-05
We represent transport between different regions of a fluid domain by flow networks, constructed from the discrete representation of the Perron-Frobenius or transfer operator associated to the fluid advection dynamics. The procedure is useful to analyze fluid dynamics in geophysical contexts, as illustrated by the construction of a flow network associated to the surface circulation in the Mediterranean sea. We use network-theory tools to analyze the flow network and gain insights into transport processes. In particular we quantitatively relate dispersion and mixing characteristics, classically quantified by Lyapunov exponents, to the degree of the network nodes. A family of network entropies is defined from the network adjacency matrix, and related to the statistics of stretching in the fluid, in particular to the Lyapunov exponent field. Finally we use a network community detection algorithm, Infomap, to partition the Mediterranean network into coherent regions, i.e. areas internally well mixed, but with little fluid interchange between them.
Model building with intersecting D6-branes on smooth Calabi-Yau manifolds
Eran Palti
2009-02-20
We study intersecting D6-branes in Calabi-Yau manifolds that are smooth hypersurfaces in weighted projective spaces. We develop the techniques for calculating intersection numbers between special Lagrangian sub-manifolds defined as fixed loci of anti-holomorphic involutions. We present global Pati-Salam and MSSM-like models that are supersymmetric up to a decoupled hidden sector.
Learning from Manifold-Valued Data: An Application to Seismic Signal Processing
Meyer, Francois
Learning from Manifold-Valued Data: An Application to Seismic Signal Processing by Juan Ramirez Jr to Seismic Signal Processing written by Juan Ramirez Jr. has been approved for the Department of Electrical., Juan (M.S., Electrical Engineering) Learning from Manifold-Valued Data: An Application to Seismic
Hamilton-Jacobi Equations on a Manifold and Applications to Grid Generation or Re nement.
Hamilton-Jacobi Equations on a Manifold and Applications to Grid Generation or Re#28;nement. Ph Hamilton-Jacobi equations on a manifold, typically on the graph of some previously computed function z method. Keywords: Hamilton-Jacobi equations, viscosity solutions, level set method, adaptative meshes
Tensor calculus with open-source software: the SageManifolds project
Eric Gourgoulhon; Michal Bejger; Marco Mancini
2014-12-21
The SageManifolds project aims at extending the mathematics software system Sage towards differential geometry and tensor calculus. Like Sage, SageManifolds is free, open-source and is based on the Python programming language. We discuss here some details of the implementation, which relies on Sage's parent/element framework, and present a concrete example of use.
Miller, Jan D; Hupka, Jan; Aranowski, Robert
2012-11-20
A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.
Accounting for Finite-Size Effects in Simulations of Disperse Particle-Laden Flows
Mahesh, Krishnan
. Typical applications (e.g. spray combustion, liquid atomization, fluidized bed combustion, aerosol flowfield: a) gravitational settling, b) fluidization by a gaseous jet, and c) fluidization by lift, solid particles, or bubbles are dispersed in a continuum (gaseous or liquid) fluid. Numerical
Weakly Dispersive Hydraulic Flows in a Contraction -Parametric Solutions and Linear Stability
Ee, Bernard Kuowei
Weakly Dispersive Hydraulic Flows in a Contraction - Parametric Solutions and Linear Stability typically results is a transition of flow characteristics within the contraction yielding hydraulic flows of the contraction. As considered here, a hydraulic solution is generally one where the fluid response is a function
Free energy landscapes and volumes of coexisting phases for a colloidal dispersion
Free energy landscapes and volumes of coexisting phases for a colloidal dispersion Trinh Hoa Lang are the ultimate target, we employ the free energy density minimization approach G. F. Wang and S. K. Lai, Phys. In this work, we first examine the change in structures of the fluid and solid free energy density landscapes
Printed circuit dispersive transmission line
Ikezi, H.; Lin-Liu, Y.R.; DeGrassie, J.S.
1991-08-27
A printed circuit dispersive transmission line structure is disclosed comprising an insulator, a ground plane formed on one surface of the insulator, a first transmission line formed on a second surface of the insulator, and a second transmission line also formed on the second surface of the insulator and of longer length than the first transmission line and periodically intersecting the first transmission line. In a preferred embodiment, the transmission line structure exhibits highly dispersive characteristics by designing the length of one of the transmission line between two adjacent periodic intersections to be longer than the other. 5 figures.
Printed circuit dispersive transmission line
Ikezi, Hiroyuki (Rancho Santa Fe, CA); Lin-Liu, Yuh-Ren (San Diego, CA); DeGrassie, John S. (Encinitas, CA)
1991-01-01
A printed circuit dispersive transmission line structure is disclosed comprising an insulator, a ground plane formed on one surface of the insulator, a first transmission line formed on a second surface of the insulator, and a second transmission line also formed on the second surface of the insulator and of longer length than the first transmission line and periodically intersecting the first transmission line. In a preferred embodiment, the transmission line structure exhibits highly dispersive characteristics by designing the length of one of the transmission line between two adjacent periodic intersections to be longer than the other.
Dispersion-compensated fresnel lens
Johnson, Kenneth C. (1215 Brewster Dr., El Cerrito, CA 94530)
1992-01-01
A transmission grating is used to reduce chromatic aberration in a Fresnel lens, wherein the lens chromatic dispersion is offset and substantially canceled by the grating's diffraction-induced dispersion. The grating comprises a Fresnel-type pattern of microscopic facets molded directly into the lens surface. The facets would typically have a profile height of around 4.multidot.10.sup.-5 inch and a profile width of at least 10.sup.-3 inch. In its primary intended application, the invention would function to improve the optical performance of a Fresnel lens used to concentrate direct sunlight.
Dispersion-compensated Fresnel lens
Johnson, K.C.
1992-11-03
A transmission grating is used to reduce chromatic aberration in a Fresnel lens, wherein the lens chromatic dispersion is offset and substantially canceled by the grating's diffraction-induced dispersion. The grating comprises a Fresnel-type pattern of microscopic facets molded directly into the lens surface. The facets would typically have a profile height of around 4[times]10[sup [minus]5] inch and a profile width of at least 10[sup [minus]3] inch. In its primary intended application, the invention would function to improve the optical performance of a Fresnel lens used to concentrate direct sunlight. 10 figs.
Grant L. Hawkes; James E. O'Brien; Greg Tao
2011-11-01
A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in an internally manifolded planar solid oxide electrolysis cell (SOEC) stack. This design is being evaluated at the Idaho National Laboratory for hydrogen production from nuclear power and process heat. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, operating potential, steam-electrode gas composition, oxygen-electrode gas composition, current density and hydrogen production over a range of stack operating conditions. Single-cell and five-cell results will be presented. Flow distribution through both models is discussed. Flow enters from the bottom, distributes through the inlet plenum, flows across the cells, gathers in the outlet plenum and flows downward making an upside-down ''U'' shaped flow pattern. Flow and concentration variations exist downstream of the inlet holes. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, oxygen-electrode and steam-electrode current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal efficiency, cell electrical efficiency, and Gibbs free energy are discussed and reported herein.
Angel, S. Michael (Livermore, CA)
1989-01-01
Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.
Angel, S.M.
1987-02-27
Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.
Metalworking and machining fluids
Erdemir, Ali (Naperville, IL); Sykora, Frank (Caledon, ON, CA); Dorbeck, Mark (Brighton, MI)
2010-10-12
Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.
Electrorheological fluids and methods
Green, Peter F.; McIntyre, Ernest C.
2015-06-02
Electrorheological fluids and methods include changes in liquid-like materials that can flow like milk and subsequently form solid-like structures under applied electric fields; e.g., about 1 kV/mm. Such fluids can be used in various ways as smart suspensions, including uses in automotive, defense, and civil engineering applications. Electrorheological fluids and methods include one or more polar molecule substituted polyhedral silsesquioxanes (e.g., sulfonated polyhedral silsesquioxanes) and one or more oils (e.g., silicone oil), where the fluid can be subjected to an electric field.
Nonlinear stability of ideal fluid equilibria
Holm, D.D.
1988-01-01
The Lyapunov method for establishing stability is related to well- known energy principles for nondissipative dynamical systems. A development of the Lyapunov method for Hamiltonian systems due to Arnold establishes sufficient conditions for Lyapunov stability by using the energy plus other conserved quantities, together with second variations and convexity estimates. When treating the stability of ideal fluid dynamics within the Hamiltonian framework, a useful class of these conserved quantities consists of the Casimir functionals, which Poisson-commute with all functionals of the dynamical fluid variables. Such conserved quantities, when added to the energy, help to provide convexity estimates that bound the growth of perturbations. These convexity estimates, in turn, provide norms necessary for establishing Lyapunov stability under the nonlinear evolution. In contrast, the commonly used second variation or spectral stability arguments only prove linearized stability. As ideal fluid examples, in these lectures we discuss planar barotropic compressible fluid dynamics, the three-dimensional hydrostatic Boussinesq model, and a new set of shallow water equations with nonlinear dispersion due to Basdenkov, Morosov, and Pogutse(1985). Remarkably, all three of these samples have the same Hamiltonian structure and, thus, possess the same Casimir functionals upon which their stability analyses are based. We also treat stability of modified quasigeostrophic flow, a problem whose Hamiltonian structure and Casimirs closely resemble Arnold's original example. Finally, we discuss some aspects of conditional stability and the applicability of Arnold's development of the Lyapunov technique. 100 refs.
Toric data and Killing forms on homogeneous Sasaki-Einstein manifold $T^{1,1}$
Vladimir Slesar; Mihai Visinescu; Gabriel Eduard Vilcu
2015-03-02
Throughout this paper we investigate the complex structure of the conifold $C(T^{1,1})$ basically making use of the interplay between symplectic and complex approaches of the K\\"{a}hler toric manifolds. The description of the Calabi-Yau manifold $C(T^{1,1})$ using toric data allows us to write explicitly the complex coordinates and apply standard methods for extracting special Killing forms on the base manifold. As an outcome, we obtain the complete set of special Killing forms on the five-dimensional Sasaki-Einstein space $T^{1,1}$.
Bush, John W.M.
, with the fluid sheet being the fish head and the tendrils its bones. Increasing the flow rate serves to broaden the fishbones. In the wake of the fluid fish, a regular array of drops obtains, the number and spacing of which
Hoff, Brian D.; Johnson, Kris William; Algrain, Marcelo C.; Akasam, Sivaprasad
2006-06-06
A method of controlling the delivery of fluid to an engine includes receiving a fuel flow rate signal. An electric pump is arranged to deliver fluid to the engine. The speed of the electric pump is controlled based on the fuel flow rate signal.
Determination of dispersivities from a natural-gradient dispersion test
Hoover, Caroline Marie
1985-01-01
Model DESCRIPTION OF THE NATURAL-GRADIENT DISPERSION TEST. Site Geology. Methodology Summary of Results. APPLICATION OF METHODS. Ideal Pl ume Study. Characterization of the Iterative Diagrams. . . Sensitivity Analyses. Field Tracer Study... with contaminant hydrogeology. Cherry et al. (1975) defines contaminant hydrogeology as the application of hydrogeological and geochemical theory and practice to the protection of aquifers and surface waters from contamination, and to the design and monitoring...
Jakaboski, Juan-Carlos (Albuquerque, NM); Hughs, Chance G. (Albuquerque, NM); Todd, Steven N. (Rio Rancho, NM)
2012-01-10
A fluid blade disablement (FBD) tool that forms both a focused fluid projectile that resembles a blade, which can provide precision penetration of a barrier wall, and a broad fluid projectile that functions substantially like a hammer, which can produce general disruption of structures behind the barrier wall. Embodiments of the FBD tool comprise a container capable of holding fluid, an explosive assembly which is positioned within the container and which comprises an explosive holder and explosive, and a means for detonating. The container has a concavity on the side adjacent to the exposed surface of the explosive. The position of the concavity relative to the explosive and its construction of materials with thicknesses that facilitate inversion and/or rupture of the concavity wall enable the formation of a sharp and coherent blade of fluid advancing ahead of the detonation gases.
Mechanical Systems on an almost Kähler model of a Finsler Manifold
Mehmet Tekkoyun; O?uzhan Çelik
2012-11-06
In this study, we present a new analogue of Euler-Lagrange and Hamilton equations on an almost K\\"ahler model of a Finsler manifold. Also, we give some corollories about the related mechanical systems and equations.
Asymptotic behavior of complete Ricci-flat metrics on open manifolds
Santoro, Bianca
2006-01-01
In this thesis, we describe the asymptotic behavior of complete Ricci-flat Kihler metrics on open manifolds that can be compactified by adding a smooth, ample divisor. This result provides an answer to a question addressed ...
Characterization and parameterization of the singular manifold of a simple 6-6 Stewart platform
T. Charters; P. Freitas
2008-11-07
This paper presents a study of the characterization of the singular manifold of the six-degree-of-freedom parallel manipulator commonly known as the Stewart platform. We consider a platform with base vertices in a circle and for which the bottom and top plates are related by a rotation and a contraction. It is shown that in this case the platform is always in a singular configuration and that the singular manifold can be parameterized by a scalar parameter.
Computer Vision in Fluid Mechanics
Aminfar, AmirHessam
2015-01-01
layers," Journal of Fluid Mechanics, vol. 30, no. 04, pp.M. Princevac, "Fundamental fluid mechanics," 2014. C. W.Computer Vision in Fluid Mechanics A Thesis submitted in
Computer Vision in Fluid Mechanics
Aminfar, AmirHessam
2015-01-01
layers," Journal of Fluid Mechanics, vol. 30, no. 04, pp.Fundamental fluid mechanics," 2014. C. W. Enderlin, "MacroComputer Vision in Fluid Mechanics A Thesis submitted in
Superization of Homogeneous Spin Manifolds and Geometry of Homogeneous Supermanifolds
Andrea Santi
2009-05-24
Let M_0=G_0/H be a (pseudo)-Riemannian homogeneous spin manifold, with reductive decomposition g_0=h+m and let S(M_0) be the spin bundle defined by the spin representation Ad:H->\\GL_R(S) of the stabilizer H. This article studies the superizations of M_0, i.e. its extensions to a homogeneous supermanifold M=G/H whose sheaf of superfunctions is isomorphic to Lambda(S^*(M_0)). Here G is the Lie supergroup associated with a certain extension of the Lie algebra of symmetry g_0 to an algebra of supersymmetry g=g_0+g_1=g_0+S via the Kostant-Koszul construction. Each algebra of supersymmetry naturally determines a flat connection nabla^{S} in the spin bundle S(M_0). Killing vectors together with generalized Killing spinors (i.e. nabla^{S}-parallel spinors) are interpreted as the values of appropriate geometric symmetries of M, namely even and odd Killing fields. An explicit formula for the Killing representation of the algebra of supersymmetry is obtained, generalizing some results of Koszul. The generalized spin connection nabla^{S} defines a superconnection on M, via the super-version of a theorem of Wang.
Phonon dispersion of graphene revisited
Sahoo, Rasmita, E-mail: sahoorasmita@yahoo.com; Mishra, Rashmi Ranjan [Birla Institute of Technology and Science, Department of Physics (India)
2012-05-15
The phonon dispersion of graphene is derived by using a simple mass spring model and considering up to the first, second, third, and fourth nearest-neighbor interactions. The results obtained from different nearest-neighbor interactions are compared and it is shown that the k{sup 2} dependence for the out-of-plane transverse acoustic mode obtained in other sophisticated methods as well as experiment occurs only after including the fourth nearest-neighbor interaction.
Shear dispersion in dense granular flows
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Christov, Ivan C.; Stone, Howard A.
2014-04-18
We formulate and solve a model problem of dispersion of dense granular materials in rapid shear flow down an incline. The effective dispersivity of the depth-averaged concentration of the dispersing powder is shown to vary as the Péclet number squared, as in classical Taylor–Aris dispersion of molecular solutes. An extension to generic shear profiles is presented, and possible applications to industrial and geological granular flows are noted.
Dispersion enhanced metal/zeolite catalysts
Sachtler, W.M.H.; Tzou, M.S.; Jiang, H.J.
1987-03-31
Dispersion stabilized zeolite supported metal catalysts are provided as bimetallic catalyst combinations. The catalyst metal is in a reduced zero valent form while the dispersion stabilizer metal is in an unreduced ionic form. Representative catalysts are prepared from platinum or nickel as the catalyst metal and iron or chromium dispersion stabilizer.
Multiphase fluid characterization system
Sinha, Dipen N.
2014-09-02
A measurement system and method for permitting multiple independent measurements of several physical parameters of multiphase fluids flowing through pipes are described. Multiple acoustic transducers are placed in acoustic communication with or attached to the outside surface of a section of existing spool (metal pipe), typically less than 3 feet in length, for noninvasive measurements. Sound speed, sound attenuation, fluid density, fluid flow, container wall resonance characteristics, and Doppler measurements for gas volume fraction may be measured simultaneously by the system. Temperature measurements are made using a temperature sensor for oil-cut correction.
Semans, J.P.; Johnson, P.G.; LeBoeuf, R.F. Jr.; Kromka, J.A.; Goron, R.H.; Hay, G.D.
1991-04-30
This invention, a trainer mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.
Circulating Fluid Bed Combustor
Fraley, L. D.; Do, L. N.; Hsiao, K. H.
1982-01-01
The circulating bed combustor represents an alternative concept of burning coal in fluid bed technology, which offers distinct advantages over both the current conventional fluidized bed combustion system and the pulverized coal boilers equipped...
Semans, Joseph P. (Uniontown, PA); Johnson, Peter G. (Pittsburgh, PA); LeBoeuf, Jr., Robert F. (Clairton, PA); Kromka, Joseph A. (Idaho Falls, ID); Goron, Ronald H. (Connellsville, PA); Hay, George D. (Venetia, PA)
1993-01-01
A trainer, mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.
Barran, Brian Arthur
2006-08-16
physically based rendering method known as photon mapping is used in conjunction with ray tracing to generate realistic images of water with caustics. These methods were implemented as a C++ application framework capable of simulating and rendering fluid in a...
West, Phillip B. (Idaho Falls, ID)
2006-01-17
A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.
Oborny, Michael C. (Albuquerque, NM); Paul, Phillip H. (Livermore, CA); Hencken, Kenneth R. (Pleasanton, CA); Frye-Mason, Gregory C. (Cedar Crest, NM); Manginell, Ronald P. (Albuquerque, NM)
2001-01-01
A valve for controlling fluid flows. This valve, which includes both an actuation device and a valve body provides: the ability to incorporate both the actuation device and valve into a unitary structure that can be placed onto a microchip, the ability to generate higher actuation pressures and thus control higher fluid pressures than conventional microvalves, and a device that draws only microwatts of power. An electrokinetic pump that converts electric potential to hydraulic force is used to operate, or actuate, the valve.
Application of optimal homotopy asymptotic method to nonlinear Bingham fluid dampers
Marinca, Vasile; Bereteu, Liviu
2015-01-01
Magnetorheological fluids (MR) are stable suspensions of magnetizable microparticles, characterized by the property to change the rheological characteristics when subjected to the action of magnetic field. Together with another class of materials that change their rheological characteristics in the presence of an electric field, called electrorheological materials are known in the literature as the smart materials or controlled materials. In the absence of a magnetic field the particles in MR fluid are dispersed in the base fluid and its flow through the apertures is behaves as a Newtonian fluid having a constant shear stress. When the magnetic field is applying a MR fluid behavior change, and behaves like a Bingham fluid with a variable shear stress. Dynamic response time is an important characteristic for determining the performance of MR dampers in practical civil engineering applications. The purpose of this paper is to show how to use the Optimal Homotopy Asymptotic Method (OHAM) to solve the nonlinear d...
Lecture notes Introductory fluid mechanics
Malham, Simon J.A.
Lecture notes Introductory fluid mechanics Simon J.A. Malham Simon J.A. Malham (15th September 2014 of fluid mechanics and along the way see lots of interesting applications. 2 Fluid flow, the Continuum are generally incompressible--a feature essential to all modern car braking mechanisms. Fluids can be further
MQSN -Fluid queues Werner Scheinhardt
Boucherie, Richard J.
of Markov fluid sources is again Markov fluid. This idea can be formalized using Kronecker sums. #12;Burst information captured by number of sources that is on! #12;Burst-level models: Markov fluid Special case: sources are identical, for instance two-state on-off Markov-fluid sources. All state information captured
Carrillo, Jose-Antonio Goudon, Thierry Lafitte, Pauline
2008-08-10
In this work, we propose asymptotic preserving numerical schemes for the bubbling and flowing regimes of particles immersed in a fluid treated by two-phase flow models. The description comprises compressible Euler equations for the dense phase (fluid) and a kinetic Fokker-Planck equation for the disperse phase (particles) coupled through friction terms. We show numerical simulations in the relevant case of gravity in the one-dimensional case demonstrating the overall behavior of the schemes.
Carter, Troy
The dispersive Alfvén wave in the time-stationary limit with a focus on collisional and warm-plasma May 2008 A nonlinear, collisional, two-fluid model of uniform plasma convection across a field showed that, for cold, collisionless plasma D. J. Knudsen, J. Geophys. Res. 101, 10761 1996
Slow Waves in Fractures Filled with Viscous Fluid
Korneev, Valeri
2008-01-08
Stoneley guided waves in a fluid-filled fracture generally have larger amplitudes than other waves, and therefore, their properties need to be incorporated in more realistic models. In this study, a fracture is modeled as an infinite layer of viscous fluid bounded by two elastic half-spaces with identical parameters. For small fracture thickness, I obtain a simple dispersion equation for wave-propagation velocity. This velocity is much smaller than the velocity of a fluid wave in a Biot-type solution, in which fracture walls are assumed to be rigid. At seismic prospecting frequencies and realistic fracture thicknesses, the Stoneley guided wave has wavelengths on the order of several meters and an attenuation Q factor exceeding 10, which indicates the possibility of resonance excitation in fluid-bearing rocks. The velocity and attenuation of Stoneley guided waves are distinctly different at low frequencies for water and oil. The predominant role of fractures in fluid flow at field scales is supported by permeability data showing an increase of several orders of magnitude when compared to values obtained at laboratory scales. These data suggest that Stoneley guided waves should be taken into account in theories describing seismic wave propagation in fluid-saturated rocks.
Fluid driven reciprocating apparatus
Whitehead, J.C.
1997-04-01
An apparatus is described comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached. 13 figs.
Fluid driven recipricating apparatus
Whitehead, John C. (Davis, CA)
1997-01-01
An apparatus comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached.
Methods for dispersing hydrocarbons using autoclaved bacteria
Tyndall, Richard L. (Clinton, TN)
1996-01-01
A method of dispersing a hydrocarbon includes the steps: providing a bacterium selected from the following group: ATCC 85527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures thereof; autoclaving the bacterium to derive a dispersant solution therefrom; and contacting the dispersant solution with a hydrocarbon to disperse the hydrocarbon. Moreover, a method for preparing a dispersant solution includes the following steps: providing a bacterium selected from the following group: ATCC 75527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures thereof; and autoclaving the bacterium to derive a dispersant solution therefrom.
Methods for dispersing hydrocarbons using autoclaved bacteria
Tyndall, R.L.
1996-11-26
A method of dispersing a hydrocarbon includes the following steps: providing a bacterium selected from the following group: ATCC 85527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures; autoclaving the bacterium to derive a dispersant solution; and contacting the dispersant solution with a hydrocarbon to disperse the hydrocarbon. Moreover, a method for preparing a dispersant solution includes the following steps: providing a bacterium selected from the following group: ATCC 75527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures; and autoclaving the bacterium to derive a dispersant solution.
Polyfunctional dispersants for controlling viscosity of phyllosilicates
Chaiko, David J.
2006-07-25
This invention provides phyllosilicates and polyfunctional dispersants which can be manipulated to selectively control the viscosity of phyllosilicate slurries. The polyfunctional dispersants used in the present invention, which include at least three functional groups, increase the dispersion and exfoliation of phyllosilicates in polymers and, when used in conjunction with phyllosilicate slurries, significantly reduce the viscosity of slurries having high concentrations of phyllosilicates. The functional groups of the polyfunctional dispersants are capable of associating with multivalent metal cations and low molecular weight organic polymers, which can be manipulated to substantially increase or decrease the viscosity of the slurry in a concentration dependent manner. The polyfunctional dispersants of the present invention can also impart desirable properties on the phyllosilicate dispersions including corrosion inhibition and enhanced exfoliation of the phyllosilicate platelets.
Block, J.
1985-09-17
An aqueous completion or workover fluid for oil or gas wells having at least two solid components. One component is a hydroxy containing aluminum compound represented by the formula AlO(OH).xH/sub 2/O. The second component is a fluid loss control agent which can be either a cross-linked polyvinyl alcohol or a cross-linked hydroxyalkyl cellulose reaction product. An acid soluble weighting agent can be added for wells having higher down hole pressures. Examples of the weighting agents include iron carbonates, iron oxides, calcium carbonates, dolomite, sodium or calcium chloride, zinc bromide and calcium bromide. After use, the fluid can be displaced from the well with acid, e.g. 15% HCl, and the cake previously deposited on the bore-hole wall is dissolved by the acid so that no damaging residue remains.
Gray, Harold E. (Las Vegas, NV); McLaurin, Felder M. (Las Vegas, NV); Ortiz, Monico (Las Vegas, NV); Huth, William A. (Las Vegas, NV)
1996-01-01
A device or system for monitoring for the presence of leaks from a hazardous fluid is disclosed which uses two electrodes immersed in deionized water. A gas is passed through an enclosed space in which a hazardous fluid is contained. Any fumes, vapors, etc. escaping from the containment of the hazardous fluid in the enclosed space are entrained in the gas passing through the enclosed space and transported to a closed vessel containing deionized water and two electrodes partially immersed in the deionized water. The electrodes are connected in series with a power source and a signal, whereby when a sufficient number of ions enter the water from the gas being bubbled through it (indicative of a leak), the water will begin to conduct, thereby allowing current to flow through the water from one electrode to the other electrode to complete the circuit and activate the signal.
Universal fluid droplet ejector
Lee, Eric R. (Redwood City, CA); Perl, Martin L. (Palo Alto, CA)
1999-08-24
A droplet generator comprises a fluid reservoir having a side wall made of glass or quartz, and an end cap made from a silicon plate. The end cap contains a micromachined aperture through which the fluid is ejected. The side wall is thermally fused to the end cap, and no adhesive is necessary. This means that the fluid only comes into contact with the side wall and the end cap, both of which are chemically inert. Amplitudes of drive pulses received by reservoir determine the horizontal displacements of droplets relative to the ejection aperture. The drive pulses are varied such that the dropper generates a two-dimensional array of vertically-falling droplets. Vertical and horizontal interdroplet spacings may be varied in real time. Applications include droplet analysis experiments such as Millikan fractional charge searches and aerosol characterization, as well as material deposition applications.
Universal fluid droplet ejector
Lee, E.R.; Perl, M.L.
1999-08-24
A droplet generator comprises a fluid reservoir having a side wall made of glass or quartz, and an end cap made from a silicon plate. The end cap contains a micromachined aperture through which the fluid is ejected. The side wall is thermally fused to the end cap, and no adhesive is necessary. This means that the fluid only comes into contact with the side wall and the end cap, both of which are chemically inert. Amplitudes of drive pulses received by reservoir determine the horizontal displacements of droplets relative to the ejection aperture. The drive pulses are varied such that the dropper generates a two-dimensional array of vertically-falling droplets. Vertical and horizontal inter-droplet spacings may be varied in real time. Applications include droplet analysis experiments such as Millikan fractional charge searches and aerosol characterization, as well as material deposition applications. 8 figs.
Natural star-products on symplectic manifolds and related quantum mechanical operators
B?aszak, Maciej, E-mail: blaszakm@amu.edu.pl; Doma?ski, Ziemowit, E-mail: ziemowit@amu.edu.pl
2014-05-15
In this paper is considered a problem of defining natural star-products on symplectic manifolds, admissible for quantization of classical Hamiltonian systems. First, a construction of a star-product on a cotangent bundle to an Euclidean configuration space is given with the use of a sequence of pair-wise commuting vector fields. The connection with a covariant representation of such a star-product is also presented. Then, an extension of the construction to symplectic manifolds over flat and non-flat pseudo-Riemannian configuration spaces is discussed. Finally, a coordinate free construction of related quantum mechanical operators from Hilbert space over respective configuration space is presented. -- Highlights: •Invariant representations of natural star-products on symplectic manifolds are considered. •Star-products induced by flat and non-flat connections are investigated. •Operator representations in Hilbert space of considered star-algebras are constructed.
IS-321-312-001 TEP-to-HTEP manifold interface sheet
Willms, R Scott; Carlson, Bryan J; Coons, James E; Kubic, William L
2008-01-01
The Tokamak Exhaust Processing System (TEP) receives hydrogen-like and air-like gas streams from the High Tritium Exhaust Processing (HTEP) manifold. Gases from the torus roughing pump are pumped into the HTEP manifold before entering TEP. This interface sheet describes the TEP-HTEP material stream interface, both the physical elements that make up the interface as well as the gas streams that will flow through the interface. The functions of this interface are to: Provide a physical connection for the transport of hydrogen-like and air-like gases from the HTEP manifold to TEP. Provide seals to prevent the unncessary release of tritium to the surrounding environment. Provide valves that can be actuated to stop or prevent the flow of gas into TEP.
Weyl Tensor Classification in Four-dimensional Manifolds of All Signatures
Carlos Batista
2013-02-07
It is well known that the classification of the Weyl tensor in Lorentzian manifolds of dimension four, the so called Petrov classification, was a great tool to the development of general relativity. Using the bivector approach it is shown in this article a classification for the Weyl tensor in all four-dimensional manifolds, including all signatures and the complex case, in an unified and simple way. The important Petrov classification then emerges just as a particular case in this scheme. The boost weight classification is also extended here to all signatures as well to complex manifolds. For the Weyl tensor in four dimensions it is established that this last approach produces a classification equivalent to the one generated by the bivector method.
5D Super Yang-Mills on $Y^{p,q}$ Sasaki-Einstein manifolds
Jian Qiu; Maxim Zabzine
2015-02-27
On any simply connected Sasaki-Einstein five dimensional manifold one can construct a super Yang-Mills theory which preserves at least two supersymmetries. We study the special case of toric Sasaki-Einstein manifolds known as $Y^{p,q}$ manifolds. We use the localisation technique to compute the full perturbative part of the partition function. The full equivariant result is expressed in terms of certain special function which appears to be a curious generalisation of the triple sine function. As an application of our general result we study the large $N$ behaviour for the case of single hypermultiplet in adjoint representation and we derive the $N^3$-behaviour in this case.
Atmospheric Dispersion Modeling in Safety Analyses; GENII
Office of Environmental Management (EM)
Comparison 9 GENII Dispersion Adjustments Plume rise from buoyancy andor momentum Wind Speed Profiling Adjusts the measured wind speed to final plume height Diabatic wind...
Modulus dispersion and attenuation in tuff and granite
Haupt, R.W.; Martin, R.J. III; Tang, X.; Dupree, W.J. [New England Research, Inc., White River Junction, VT (United States); Price, R.H. [Sandia National Labs., Albuquerque, NM (United States)
1991-12-23
The effects of loading frequency, strain amplitude, and saturation on elastic moduli and attenuation have been measured in samples of the Topopah Spring Member welded tuff. Four different laboratory techniques have been used to determine Young`s modulus and extensional wave attenuation at frequencies ranging from 10{sup {minus}2} to 10{sup 6} Hz. The results are compared with data acquired for Sierra White granite under the same conditions. The modulus and attenuation in room dry samples remain relatively constant over frequency. Frequency dependent attenuation and modulus dispersion are observed in the saturated samples and are attributed to fluid flow and sample size. The properties of tuff were independent of strain amplitude in room dry and saturated conditions.
Ultrasonic fluid densitometry and densitometer
Greenwood, Margaret S. (Richland, WA); Lail, Jason C. (Conover, NC)
1998-01-01
The present invention is an ultrasonic fluid densitometer that uses a material wedge having an acoustic impedance that is near the acoustic impedance of the fluid, specifically less than a factor of 11 greater than the acoustic impedance of the fluid. The invention also includes a wedge having at least two transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.
Ultrasonic fluid densitometry and densitometer
Greenwood, M.S.; Lail, J.C.
1998-01-13
The present invention is an ultrasonic fluid densitometer that uses a material wedge having an acoustic impedance that is near the acoustic impedance of the fluid, specifically less than a factor of 11 greater than the acoustic impedance of the fluid. The invention also includes a wedge having at least two transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.
An integral manifold approach to reduced order dynamic modeling of synchronous machines
Sauer, P.W.; Ahmed-Zaid, S.; Kokotovic, P.V.
1988-02-01
The concept of integral manifolds is used to systematically create improved reduced order models of synchronous machines. The approach is illustrated through a detailed example of a single machine connected to an infinite bus. The example shows the advantages of the manifold approach and also clarifies several issues about reduced order models of synchronous machines. The basic objective of the method is to include the effects of more complex models without actually including the additional differential equations. This is illustrated by including the effects of stator transients and damper windings on the swing equation without including the differential equations.
Kahler Potential for M-theory on a G_2 Manifold
Andre Lukas; Stephen Morris
2003-11-21
We compute the moduli Kahler potential for M-theory on a compact manifold of G_2 holonomy in a large radius approximation. Our method relies on an explicit G_2 structure with small torsion, its periods and the calculation of the approximate volume of the manifold. As a verification of our result, some of the components of the Kahler metric are computed directly by integration over harmonic forms. We also discuss the modification of our result in the presence of co-dimension four singularities and derive the gauge-kinetic functions for the massless gauge fields that arise in this case.
A new approach for magnetic curves in 3D Riemannian manifolds
Bozkurt, Zehra Gök, Ismail Yayl?, Yusuf Ekmekci, F. Nejat
2014-05-15
A magnetic field is defined by the property that its divergence is zero in a three-dimensional oriented Riemannian manifold. Each magnetic field generates a magnetic flow whose trajectories are curves called as magnetic curves. In this paper, we give a new variational approach to study the magnetic flow associated with the Killing magnetic field in a three-dimensional oriented Riemann manifold, (M{sup 3}, g). And then, we investigate the trajectories of the magnetic fields called as N-magnetic and B-magnetic curves.
Pompano subsea development: Template/manifold, tree and ROV intervention systems
Beckmann, M.M.; Byrd, M.L.; Holt, J.; Riley, J.W.; Snell, C.K.; Tyer, C.; Brewster, D.
1996-12-31
BP Exploration`s Pompano Subsea Development, in 1,865 ft of water in the Gulf of Mexico, uses a subsea production system to produce oil to a host platform 4{1/2} miles away. The 10-slot subsea template/manifold supports Through FlowLine (TFL) wells, which are controlled by means of an electrohydraulic control system. All process components of the system are retrievable with ROV intervention. This paper describes the template/manifold system, TFL tree system and ROV intervention systems.
MECH 386 INDUSTRIAL FLUID MECHANICS INDUSTRIAL FLUID MECHANICS
Phani, A. Srikantha
technologies - Wind turbine - Wave energy (Wells turbine) - Tidal power 7. Flow in porous media - Darcy's law 8 fluid-mechanics research and its application, as well as the technology associated with fluid flow
TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID...
TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION GAS CHEMISTRY Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings:...
Relativistic viscoelastic fluid mechanics
Masafumi Fukuma; Yuho Sakatani
2011-09-01
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski spacetime become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
Supersymmetric Fluid Mechanics
R. Jackiw; A. P. Polychronakos
2000-07-17
When anticommuting Grassmann variables are introduced into a fluid dynamical model with irrotational velocity and no vorticity, the velocity acquires a nonvanishing curl and the resultant vorticity is described by Gaussian potentials formed from the Grassmann variables. Upon adding a further specific interaction with the Grassmann degrees of freedom, the model becomes supersymmetric.
Marco Ghimenti; Anna Maria Micheletti
2014-01-21
Given a 3-dimensional Riemannian manifold (M,g), we investigate the existence of positive solutions of the nonlinear Klein-Gordon-Maxwell system and nonlinear Schroedinger-Maxwell system with subcritical nonlinearity. We prove that the number of one peak solutions depends on the topological properties of the manifold M, by means of the Lusternik Schnirelmann category.
Wisconsin at Madison, University of
Multivariate General Linear Models (MGLM) on Riemannian Manifolds with Applications to Statistical range of such methods by deriv- ing schemes for multivariate multiple linear regression -- a manifold ] , ^ = ¯y - ^¯x. (2) If x and y are multivariates, one can easily replace the mul- tiplication and division
Needell, Deanna
CS Applications CS Math MR Applications MR Math MR Theory Proof Bridging Matrix Recovery Gaps using #12;CS Applications CS Math MR Applications MR Math MR Theory Proof Outline Compressed Sensing (CS manifold theory Deanna Needell Bridging Matrix Recovery Gaps using Manifolds #12;CS Applications CS Math MR
Kirby, James T.
Dispersive tsunami waves in the ocean: Model equations and sensitivity to dispersion and Coriolis online 19 December 2012 Keywords: Boussinesq wave model Tsunami Dispersive effect Coriolis effect a bKutta scheme in time. In the context of tsunami generation and propagation over trans-oceanic distances
Broadband dispersion extraction using simultaneous sparse penalization
Saligrama, Venkatesh
the borehole and thus dispersion analysis is of considerable interest to the geophysical and oilfield services community. A brief survey of borehole acoustic waves and their use in mechanical characterization is a function of frequency. This function characterizes the mode and is referred to as a dispersion curve
Method of dispersing a hydrocarbon using bacteria
Tyndall, Richard L. (Clinton, TN)
1996-01-01
New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.
Method of dispersing a hydrocarbon using bacteria
Tyndall, R.L.
1996-09-24
A new protozoan derived microbial consortia and method for their isolation are provided. The isolated consortia and bacteria are useful for treating wastes such as trichloroethylene and trinitrotoluene. The isolated consortia, bacteria, and dispersants are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.
Magnetically stimulated fluid flow patterns
Martin, Jim; Solis, Kyle
2014-03-06
Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.
Fluid Flow Modeling in Fractures
Sarkar, Sudipta
2004-01-01
In this paper we study fluid flow in fractures using numerical simulation and address the challenging issue of hydraulic property characterization in fractures. The methodology is based on Computational Fluid Dynamics, ...
Magnetically stimulated fluid flow patterns
Martin, Jim; Solis, Kyle
2014-08-06
Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.
A multifaceted approach to applying dispersants
Crain, O.L.
1982-10-01
A comprehensive oil spill response plan has been developed partially to deal with accidental discharges of oil into the Arabian Gulf. The spill response capabilities of contractor companies in the area are fairly limited. The response plan relies on chemical agents and recovery as cleanup tools. The key to effective response is a rapid response and deployment of cleanup equipment. Initially, marine vessels equipped with portable dispersant spray booms patterned after the Warren Springs equipment were used. To improve existing oil spill response, an extensive modernization of dispersant deployment equipment has been developed. The areas of modernization include upgrading the marine vessel equipment, dedicating boats and vessels of opportunity for dispersant application, using helicopters for spill response, using large fixed-wing aircraft for spill response, and establishing dispersant and refueling stockpiles. This paper discusses the use of dispersants in response to an oil spill. It is intended not as a scientific paper but as a paper on a local response capability.
Computer Vision in Fluid Mechanics
Aminfar, AmirHessam
2015-01-01
Laminar flows are usually unidirectional flows, which the fluidlaminar flows ? Streak line: Streak line is locus of fluid
Harmonic Exponential Families on Manifolds Taco S. Cohen T.S.COHEN@UVA.NL
Welling, Max
Harmonic Exponential Families on Manifolds Taco S. Cohen T.S.COHEN@UVA.NL University of Amsterdam applications to Bayesian cam- era motion estimation (where harmonic exponen- tial families serve as conjugate experimental re- sults show that harmonic densities yield a signif- icantly higher likelihood than the best
Symmetry operators for Dirac's equation on two-dimensional spin manifolds
Lorenzo Fatibene; Raymond G. McLenaghan; Giovanni Rastelli; Shane N. Smith
2008-12-17
It is shown that the second order symmetry operators for the Dirac equation on a general two-dimensional spin manifold may be expressed in terms of Killing vectors and valence two Killing tensors. The role of these operators in the theory of separation of variables for the Dirac equation is studied.
Krysl, Svatopluk
C -algebras Oscillator or Segal-Shale-Weil representation Geometry: Associating the oscillator or Segal-Shale-Weil representation Geometry: Associating the oscillator to symplectic manifolds Global and (x) = 0 implies x = 0 2 S. KrÃ½sl #12;C -algebras Oscillator or Segal-Shale-Weil representation
Minimal Riesz energy point configurations for rectifiable d-dimensional manifolds
Hardin, Doug
, these results are new. Key words: Minimal discrete Riesz energy, Best-packing, Hausdorff measure, Rectifiable best-packing, mini- mization of energy (e.g., Coulomb potentials), spherical t-designs (cubatureMinimal Riesz energy point configurations for rectifiable d-dimensional manifolds D.P. Hardin
Invariant Manifolds for the Station Keeping of Solar Sails Ariadna Farres, AJ
Boyer, Edmond
Invariant Manifolds for the Station Keeping of Solar Sails Ariadna Farr´es, AJ Universitat de 2 / 45 inria-00585612,version1-14Apr2011 #12;Background What is a Solar Sail ? Solar Sails are a new concept of spacecraft propulsion that takes ad- vantage of the Solar radiation pressure to propel
Hierarchical brain mapping via a generalized Dirichlet solution for mapping brain manifolds
Christensen, Gary E.
a coarse-to- ne approach for the transformation of digital anatomical textbooks from the ideal to the individual that uni es the work on landmark deformations and volume based transformation. The Hierarchical- manifolds. We follow the approach that the highest dimensional transformation is a result from the solution
IEEE TRANSACTIONS ON POWER SYSTEMS, CHEN, DENG AND HUO. 1 Electricity Price Curve Modeling by Manifold Learning Jie Chen, Student Member, IEEE, Shi-Jie Deng, Senior Member, IEEE, and Xiaoming Huo, Senior Member, IEEE Abstract-- This paper proposes a novel non-parametric ap- proach for the analysis
Learning Manifolds with K-Means and K-Flats Guille D. Canas ,
Poggio, Tomaso
geometry, but in a setting in which typically the manifold is a hyper-surface in a low-dimensional space (e study is broadly motivated by questions in high-dimensional learning. As is well known, learning in high such assumption is that the data distribution lies on, or is close to, a low-dimensional set embedded in a high
A Unified Kernel Regression for Diffusion Wavelets on Manifolds Detects Aging-Related
Chung, Moo K.
for constructing wavelets on manifolds using a complicated machinery employed in previous studies [6,7]. Although as a solution to penalized regressions, which significantly differ from our framework that does not have any] that projects the statistical results to a surface for interpretation. 2 Kernel Regression and Wavelets
Mechanics Systems on Para-Kaehlerian Manifolds of Constant J-Sectional Curvature
Mehmet Tekkoyun
2009-02-20
The goal of this paper is to present Euler-Lagrange and Hamiltonian equations on R2n which is a model of para-Kaehlerian manifolds of constant J-sectional curvature. In conclusion, some differential geometrical and physical results on the related mechanic systems have been given.
Machine Learning for Seismic Signal Processing: Seismic Phase Classification on a Manifold
Meyer, Francois
Machine Learning for Seismic Signal Processing: Seismic Phase Classification on a Manifold Juan--In this research, we consider the supervised learning problem of seismic phase classification. In seismology, knowledge of the seismic activity arrival time and phase leads to epicenter localization and surface
Multiple-Food Recognition Considering Co-occurrence Employing Manifold Ranking
Yanai, Keiji
Multiple-Food Recognition Considering Co-occurrence Employing Manifold Ranking Yuji Matsuda-y@mm.cs.uec.ac.jp, yanai@cs.uec.ac.jp Abstract In this paper, we propose a method to recog- nize food images which include multiple food items considering co-occurrence statistics of food items. The proposed method employs
On the classical geometry of embedded manifolds in terms of Nambu brackets
Joakim Arnlind; Jens Hoppe; Gerhard Huisken
2010-03-31
We prove that many aspects of the differential geometry of embedded Riemannian manifolds can be formulated in terms of a multi-linear algebraic structure on the space of smooth functions. In particular, we find algebraic expressions for Weingarten's formula, the Ricci curvature and the Codazzi-Mainardi equations.
Bounding the bending of a hyperbolic 3-manifold Martin Bridgeman and Richard D. Canary
Canary, Dick
, 2015 Abstract In this paper we obtain bounds on the total bending of the boundary of the convex coreBounding the bending of a hyperbolic 3-manifold Martin Bridgeman and Richard D. Canary April 19 the bending lamination. The bending lamination inherits a transverse measure which keeps track of how much
Bounding the bending of a hyperbolic 3manifold Martin Bridgeman and Richard D. Canary \\Lambda
Canary, Dick
September 29, 2002 Abstract In this paper we obtain bounds on the total bending of the boundaryBounding the bending of a hyperbolic 3Âmanifold Martin Bridgeman and Richard D. Canary \\Lambda, called the bending lamination. The bending lamination inherits a transverse measure which keeps track
Computing Lyapunov exponents on a Stiefel manifold by Thomas J. Bridges and Sebastian Reich
Reich, Sebastian
Computing Lyapunov exponents on a Stiefel manifold by Thomas J. Bridges and Sebastian Reich The problem of numerical computation of a few Lyapunov exponents of #12;nite-dimensional dynamical systems computes one, many or all Lyapunov exponents of a continuous dynamical system by time integration, discrete
Side branch absorber for exhaust manifold of two-stroke internal combustion engine
Harris, Ralph E. (San Antonio, TX); Broerman, III, Eugene L. (San Antonio, TX); Bourn, Gary D. (Laramie, WY)
2011-01-11
A method of improving scavenging operation of a two-stroke internal combustion engine. The exhaust pressure of the engine is analyzed to determine if there is a pulsation frequency. Acoustic modeling is used to design an absorber. An appropriately designed side branch absorber may be attached to the exhaust manifold.
ESTIMATION OF EXHAUST MANIFOLD PRESSURE IN TURBOCHARGED GASOLINE ENGINES WITH VARIABLE VALVE TIMING
Grizzle, Jessy W.
ESTIMATION OF EXHAUST MANIFOLD PRESSURE IN TURBOCHARGED GASOLINE ENGINES WITH VARIABLE VALVE TIMING in turbocharged gasoline engines with variable valve timing requires knowledge of exhaust mani- fold pressure, Pe strict emissions regulations. For turbocharged applica- tions, it has been shown [1] that knowledge
Integrability of D1-brane on Group Manifold with Mixed Three Form Flux
Kluson, J
2015-01-01
We consider D1-brane as a natural probe of the group manifold with mixed three form fluxes. We determine Lax connection for given theory. Then we switch to the canonical analysis and calculate the Poisson brackets between spatial components of Lax connections and we argue for integrability of given theory.
Pose Estimation via Gauss-Newton-on-manifold Pei Yean Lee and John B. Moore
Moore, John Barratt
on the smooth manifold of rotation matrices, namely the special orthogonal matrices SO3, depicted as the surface of a cone in Fig. 1. Also, in Fig. 1, the feasible domain is depicted as the intersection SO3 K. The cost
Kazhdan, Michael
Hierarchical Volumetric Multi-view Stereo Reconstruction of Manifold Surfaces based on Dual Graph://www.rwth-graphics.de Abstract This paper presents a new volumetric stereo algorithm to reconstruct the 3D shape of an arbitrary into the volumetric grid, which establishes a well defined relationship between the integrated photo
Galilean relativistic fluid mechanics
Ván, Péter
2015-01-01
Single component Galilean-relativistic (nonrelativistic) fluids are treated independently of reference frames. The basic fields are given, their balances, thermodynamic relations and the entropy production is calculated. The usual relative basic fields, the mass, momentum and energy densities, the diffusion current density, the pressure tensor and the heat flux are the time- and spacelike components of the third order mass-momentum-energy density tensor according to a velocity field. The transformation rules of the basic fields are derived and prove that the non-equilibrium thermodynamic background theory, that is the Gibbs relation, extensivity condition and the entropy production is absolute, that is independent of the reference frame and also of the fluid velocity. --- Az egykomponensu Galilei-relativisztikus (azaz nemrelativisztikus) disszipativ folyadekokat vonatkoztatasi rendszertol fuggetlenul targyaljuk. Megadjuk az alapmennyisegeket, ezek merlegeit, a termodinamikai osszefuggeseket es kiszamoljuk az ...
Oscillating fluid power generator
Morris, David C
2014-02-25
A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.
Hall, David R.; Fox, Joe; Garner, Kory
2007-01-23
A drilling fluid filter for placement within a bore wall of a tubular drill string component comprises a perforated receptacle with an open end and a closed end. A hanger for engagement with the bore wall is mounted at the open end of the perforated receptacle. A mandrel is adjacent and attached to the open end of the perforated receptacle. A linkage connects the mandrel to the hanger. The linkage may be selected from the group consisting of struts, articulated struts and cams. The mandrel operates on the hanger through the linkage to engage and disengage the drilling fluid filter from the tubular drill string component. The mandrel may have a stationary portion comprising a first attachment to the open end of the perforated receptacle and a telescoping adjustable portion comprising a second attachment to the linkage. The mandrel may also comprise a top-hole interface for top-hole equipment.
Vlasov Fluid stability of a 2-D plasma with a linear magnetic field null
Kim, J.S.
1984-01-01
Vlasov Fluid stability of a 2-dimensional plasma near an O type magnetic null is investigated. Specifically, an elongated Z-pinch is considered, and applied to Field Reversed Configurations at Los Alamos National Laboratory by making a cylindrical approximation of the compact torus. The orbits near an elliptical O type null are found to be very complicated; the orbits are large and some are stochastic. The kinetic corrections to magnetohydrodynamics (MHD) are investigated by evaluating the expectation values of the growth rates of a Vlasov Fluid dispersion functional by using a set of trial functions based on ideal MHD. The dispersion functional involves fluid parts and orbit dependent parts. The latter involves phase integral of two time correlations. The phase integral is replaced by the time integral both for the regular and for the stochastic orbits. Two trial functions are used; one has a large displacement near the null and the other away from the null.
Mathematical thermodynamics of fluids Eduard Feireisl
KrejcÃ, Pavel
Mathematical thermodynamics of fluids Eduard Feireisl Institute of Mathematics, Academy of Sciences Agreement 320078 CIME courses, Cetraro 29 June - 4 July 2015 Eduard Feireisl Thermodynamics of fluids #12 Thermodynamics of fluids #12;Fluids at equilibrium Thermodynamic state variables mass density
Downhole Fluid Analyzer Development
Bill Turner
2006-11-28
A novel fiber optic downhole fluid analyzer has been developed for operation in production wells. This device will allow real-time determination of the oil, gas and water fractions of fluids from different zones in a multizone or multilateral completion environment. The device uses near infrared spectroscopy and induced fluorescence measurement to unambiguously determine the oil, water and gas concentrations at all but the highest water cuts. The only downhole components of the system are the fiber optic cable and windows. All of the active components--light sources, sensors, detection electronics and software--will be located at the surface, and will be able to operate multiple downhole probes. Laboratory testing has demonstrated that the sensor can accurately determine oil, water and gas fractions with a less than 5 percent standard error. Once installed in an intelligent completion, this sensor will give the operating company timely information about the fluids arising from various zones or multilaterals in a complex completion pattern, allowing informed decisions to be made on controlling production. The research and development tasks are discussed along with a market analysis.
Acoustic concentration of particles in fluid flow
Ward, Michael D. (Los Alamos, NM); Kaduchak, Gregory (Los Alamos, NM)
2010-11-23
An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.
It's The Fluids SEG Honorary Lecture
T.P. Water Butane CO2 #12;Fluid Density 800 1000 1200FluidDensity[kg/m3] Brine CO2 0 2 4 6 8 10 0 200 400 600 Fluid Pressure [MPa] FluidDensity[kg/m Butane CO2 #12;Fluid Modulus 2000 2500 3000 FluidModulus[MPa] Brine 0 2 4 6 8 10 0 500 1000 1500 Fluid Pressure [MPa] FluidModulus[MPa] Butane CO2 #12;GENERAL PHASE
Electromagnetic Media with no Dispersion Equation
Ismo V. Lindell; Alberto Favaro
2013-03-25
It has been known through some examples that parameters of an electromagnetic medium can be so defined that there is no dispersion equation (Fresnel equation) to restrict the choice of the wave vector of a plane wave in such a medium, i.e., that the dispersion equation is satisfied identically for any wave vector. In the present paper, a more systematic study to define classes of media with no dispersion equation is attempted. The analysis makes use of coordinate-free four-dimensional formalism in terms of multivectors, multiforms and dyadics.
Galen Sasaki University of Hawaii 1 Chromatic Dispersion
Sasaki, Galen H.
1 Galen Sasaki University of Hawaii 1 Chromatic Dispersion Galen Sasaki University of Hawaii 2 Galen Sasaki University of Hawaii 3 Outline · Introduction · Chirped Gaussian Pulses · System Limitations · Controlling the Dispersion Profile Galen Sasaki University of Hawaii 4 Chromatic Dispersion
Dense gas dispersion modeling for aqueous releases
Lara, Armando
1999-01-01
concern since they disperse at ground level. Toxic or combustible materials with boiling points below ambient temperature, such as chlorine and ammonia, are usually stored or transported as a saturated liquid. A release from such a system is likely...
Spatial dispersion of multilayer fishnet metamaterials
Spatial dispersion of multilayer fishnet metamaterials Sergey S. Kruk, David A. Powell, Alexander the anisotropic properties of multilayer fishnet optical metamaterials and describe topological transitions fishnet metamaterials may have negative components not only in the effective permittivity tensor but also
Null Fluids - A New Viewpoint of Galilean Fluids
Banerjee, Nabamita; Jain, Akash
2015-01-01
This article is a detailed version of our short letter `On equilibrium partition function for non-relativistic fluid' [arXiv:1505.05677] extended to include an anomalous $U(1)$ symmetry. We construct a relativistic system, which we call null fluid and show that it is in one-to-one correspondence with a Galilean fluid living in one lower dimension. The correspondence is based on light cone reduction, which is known to reduce the Poincare symmetry of a theory to Galilean in one lower dimension. We show that the proposed null fluid and the corresponding Galilean fluid have exactly same symmetries, thermodynamics, constitutive relations, and equilibrium partition to all orders in derivative expansion. We also devise a mechanism to introduce $U(1)$ anomaly in even dimensional Galilean theories using light cone reduction, and study its effect on the constitutive relations of a Galilean Fluid.
Null Fluids - A New Viewpoint of Galilean Fluids
Nabamita Banerjee; Suvankar Dutta; Akash Jain
2015-09-15
This article is a detailed version of our short letter `On equilibrium partition function for non-relativistic fluid' [arXiv:1505.05677] extended to include an anomalous $U(1)$ symmetry. We construct a relativistic system, which we call null fluid and show that it is in one-to-one correspondence with a Galilean fluid living in one lower dimension. The correspondence is based on light cone reduction, which is known to reduce the Poincare symmetry of a theory to Galilean in one lower dimension. We show that the proposed null fluid and the corresponding Galilean fluid have exactly same symmetries, thermodynamics, constitutive relations, and equilibrium partition to all orders in derivative expansion. We also devise a mechanism to introduce $U(1)$ anomaly in even dimensional Galilean theories using light cone reduction, and study its effect on the constitutive relations of a Galilean Fluid.
Diesel Exhaust Dispersion in a Phospholipid Lung Surfactant ...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Exhaust Dispersion in a Phospholipid Lung Surfactant Diesel Exhaust Dispersion in a Phospholipid Lung Surfactant 2005 Diesel Engine Emissions Reduction (DEER) Conference...
Critique of Burnett-Frind dispersion tensor for axisymmetric...
Office of Scientific and Technical Information (OSTI)
to perpendicular to the axis of symmetry. A new form of the dispersion tensor is derived for axially symmetric porous media involving four dispersivity coefficients...
Notes 09. Fluid inertia and turbulence in fluid film bearings
San Andres, Luis
2009-01-01
. Use the program to observe the effects of fluid inertia in the pressure field (shifting and increase/decrease) and the resulting forces. In addition, derive conclusions from the effects of the Gumbel cavitation condition on the fluid film forces.... Question to ponder: Does the physical modeling of liquid cavitation in superlaminar thin film flows must be revised? (Inertialess) Turbulent flow model for short length journal bearings Fluid inertia effects are not that important in a hydrodynamic...
M. Bahrami Fluid Mechanics (S 09) Fluid statics 9 Archimedes's 1st
Bahrami, Majid
M. Bahrami Fluid Mechanics (S 09) Fluid statics 9 Buoyancy Archimedes's 1st laws #12; M. Bahrami Fluid Mechanics (S 09) Fluid statics 10 Fig. 11: Archimedes second law. Bahrami Fluid Mechanics (S 09) Fluid statics 11 Pressure distribution in rigidbody motion Fluids
Nonlinear finite-Larmor-radius effects in reduced fluid models
Brizard, A. J. [Department of Chemistry and Physics, Saint Michael's College, Colchester, Vermont 05439 (United States); Denton, R. E.; Rogers, B. [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Lotko, W. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States)
2008-08-15
The polarization magnetization effects associated with the dynamical reduction leading to the nonlinear gyrokinetic Vlasov-Maxwell equations are shown to introduce nonlinear finite-Larmor-radius (FLR) effects into a set of nonlinear reduced-fluid equations previously derived by the Lagrangian variational method [A. J. Brizard, Phys. Plasmas 12, 092302 (2005)]. These intrinsically nonlinear FLR effects, which are associated with the transformation from guiding-center phase-space dynamics to gyrocenter phase-space dynamics, are different from the standard FLR corrections associated with the transformation from particle to guiding-center phase-space dynamics. We also present the linear dispersion relation results from a nonlinear simulation code using these reduced-fluid equations. The simulation results (in both straight dipole geometries) demonstrate that the equations describe the coupled dynamics of Alfven sound waves and that the total simulation energy is conserved.
Ultrasonic fluid quality sensor system
Gomm, Tyler J. (Meridian, ID); Kraft, Nancy C. (Idaho Falls, ID); Phelps, Larry D. (Pocatello, ID); Taylor, Steven C. (Idaho Falls, ID)
2002-10-08
A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.
Ultrasonic Fluid Quality Sensor System
Gomm, Tyler J. (Meridian, ID); Kraft, Nancy C. (Idaho Falls, ID); Phelps, Larry D. (Pocatello, ID); Taylor, Steven C. (Idaho Falls, ID)
2003-10-21
A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.
Blaedel, K.L.; Lord, S.C.; Murray, I.
1986-07-17
A passive fluid pressure relief and check valve allows the relief pressure to be slaved to a reference pressure independently of the exhaust pressure. The pressure relief valve is embodied by a submerged vent line in a sealing fluid, the relief pressure being a function of the submerged depth. A check valve is embodied by a vertical column of fluid (the maximum back pressure being a function of the height of the column of fluid). The pressure is vented into an exhaust system which keeps the exhaust out of the area providing the reference pressure.
Propulsion in a viscoelastic fluid
Eric Lauga
2007-03-21
Flagella beating in complex fluids are significantly influenced by viscoelastic stresses. Relevant examples include the ciliary transport of respiratory airway mucus and the motion of spermatozoa in the mucus-filled female reproductive tract. We consider the simplest model of such propulsion and transport in a complex fluid, a waving sheet of small amplitude free to move in a polymeric fluid with a single relaxation time. We show that, compared to self-propulsion in a Newtonian fluid occurring at a velocity U_N, the sheet swims (or transports fluid) with velocity U / U_N = [1+De^2 (eta_s)/(eta) ]/[1+De^2], where eta_s is the viscosity of the Newtonian solvent, eta is the zero-shear-rate viscosity of the polymeric fluid, and De is the Deborah number for the wave motion, product of the wave frequency by the fluid relaxation time. Similar expressions are derived for the rate of work of the sheet and the mechanical efficiency of the motion. These results are shown to be independent of the particular nonlinear constitutive equations chosen for the fluid, and are valid for both waves of tangential and normal motion. The generalization to more than one relaxation time is also provided. In stark contrast with the Newtonian case, these calculations suggest that transport and locomotion in a non-Newtonian fluid can be conveniently tuned without having to modify the waving gait of the sheet but instead by passively modulating the material properties of the liquid.
Menzie, D.E.
1992-04-01
Since reservoirs are heterogeneous, nonuniform, and anisotropic, the success or failure of many enhanced oil recovery techniques rests on our prediction of internal variability and the paths of fluid flow in the reservoir. The main objective of this project is to develop a greater understanding of reservoir heterogeneities through dispersion measurement. In this annual report, an approach to ways to estimate the dispersivities of reservoir rocks from well logs is presented. From a series of rock property measurements and dispersion tests the following studies have been made: A measure of rock heterogeneity is developed by using the effluent concentration at one pore volume injection in a matched viscosity miscible displacement. By this approach, a heterogeneity factor is determined from the measured S-shaped dispersion curve. The parameter f in the Coats-Smith capacitance model is redefined as the dispersion fraction f{sub d} (or mechanical mixing fraction). At the f{sub d} pore volume injection, the dynamic miscible displacement efficiency reaches maximum. Reflected on the dispersion curve, this number corresponds to the peak of the first derivative of concentration. With the concept of dispersion fraction, a unique solution to the capacitance model is obtained, and then an equivalent dispersivity is defined. Through experimental data on Berea and Brown sandstone samples, it has been found that the equivalent dispersivity is an exponential function of the heterogeneity factor and can be used as a reservoir characteristic. Through a key parameter of tortuosity, dispersivity is related to rock petrophysical properties. This semi-theoretical relationship forms the basis for determining dispersivities from well logs. The approach is validated through experimental studies on Berea and Brown sandstone samples. It has been found that the equivalent dispersivity is an exponential function of the heterogeneity factor and can be used as a reservoir characteristic.
Flow and axial dispersion in a sinusoidal-walled tube: Effects of inertial and unsteady flows
Richmond, Marshall C.; Perkins, William A.; Scheibe, Timothy D.; Lambert, Adam; Wood, Brian D.
2013-12-01
Dispersion in porous media flows has been the subject of much experimental, theoretical and numerical study. Here we consider a wavy-walled tube (a three-dimensional tube with sinusoidally-varying diameter) as a simplified conceptualization of flow in porous media, where constrictions represent pore throats and expansions pore bodies. A theoretical model for effective (macroscopic) longitudinal dispersion in this system has been developed by volume averaging the microscale velocity field. Direct numerical simulation using computational fluid dynamics (CFD) methods was used to compute velocity fields by solving the Navier-Stokes equations, and also to numerically solve the volume averaging closure problem, for a range of Reynolds numbers (Re) spanning the low-Re to inertial flow regimes, including one simulation at Re = 449 for which unsteady flow was observed. Dispersion values were computed using both the volume averaging solution and a random walk particle tracking method, and results of the two methods were shown to be consistent. Our results are compared to experimental measurements of dispersion in porous media and to previous theoretical results for the low-Re, Stokes flow regime. In the steady inertial regime we observe an power-law increase in effective longitudinal dispersion (DL) with Re, consistent with previous results. This rapid rate of increase is caused by trapping of solute in expansions due to flow separation (eddies). For the unsteady case (Re = 449), the rate of increase of DL with Re was smaller than that observed at lower Re. Velocity fluctuations in this regime lead to increased rates of solute mass transfer between the core flow and separated flow regions, thus diminishing the amount of tailing caused by solute trapping in eddies and thereby reducing longitudinal dispersion.
Computational fluid dynamics for LNG vapor dispersion modeling: a key parameters study
Cormier, Benjamin Rodolphe
2009-05-15
The increased demand for liquefied natural gas (LNG) has led to the construction of several new LNG terminals in the United States (US) and around the world. To ensure the safety of the public, consequence modeling is used to estimate the exclusion...
Method and apparatus for fluid dispersion (Patent) | SciTech Connect
Office of Scientific and Technical Information (OSTI)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(JournalspectroscopyReport) | SciTechelementPatent: MetalConnectConnect
Method and apparatus for fluid dispersion (Patent) | SciTech Connect
Office of Scientific and Technical Information (OSTI)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(JournalspectroscopyReport) | SciTechelementPatent: MetalConnectConnectA ; Anna,
Method and apparatus for fluid dispersion (Patent) | SciTech Connect
Office of Scientific and Technical Information (OSTI)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(JournalspectroscopyReport) | SciTechelementPatent: MetalConnectConnectA ;
Method and apparatus for fluid dispersion (Patent) | SciTech Connect
Office of Scientific and Technical Information (OSTI)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(JournalspectroscopyReport) | SciTechelementPatent: MetalConnectConnectA
Method and apparatus for fluid dispersion (Patent) | SciTech Connect
Office of Scientific and Technical Information (OSTI)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(JournalspectroscopyReport) | SciTechelementPatent: MetalConnectConnectAA ;
Method and apparatus for fluid dispersion (Patent) | SciTech Connect
Office of Scientific and Technical Information (OSTI)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(JournalspectroscopyReport) | SciTechelementPatent: MetalConnectConnectAA ;A. ;
Spinorial description of $\\mathrm{SU}(3)$- and $G_2$-manifolds
Ilka Agricola; Simon G. Chiossi; Thomas Friedrich; Jos Höll
2015-09-16
We present a uniform description of $\\mathrm{SU}(3)$-structures in dimension $6$ as well as $G_2$-structures in dimension $7$ in terms of a characterising spinor and the spinorial field equations it satisfies. We apply the results to hypersurface theory to obtain new embedding theorems, and give a general recipe for building conical manifolds. The approach also enables one to subsume all variations of the notion of a Killing spinor.
Energy identity of approximate biharmonic maps to Riemannian manifolds and its application
Wang, Changyou
2011-01-01
We consider in dimension four weakly convergent sequences of approximate biharmonic maps to a Riemannian manifold with bi-tension fields bounded in $L^p$ for $p>\\frac43$. We prove an energy identity that accounts for the loss of hessian energies by the sum of hessian energies over finitely many nontrivial biharmonic maps on $\\mathbb R^4$. As a corollary, we obtain an energy identity for the heat flow of biharmonic maps at time infinity.
Quantization of a particle on a two-dimensional manifold of constant curvature
Bracken, Paul [Department of Mathematics, University of Texas, Edinburg, Texas 78540 (United States)
2014-10-15
The formulation of quantum mechanics on spaces of constant curvature is studied. It is shown how a transition from a classical system to the quantum case can be accomplished by the quantization of the Noether momenta. These can be determined by means of Lie differentiation of the metric which defines the manifold. For the metric examined here, it is found that the resulting Schrödinger equation is separable and the spectrum and eigenfunctions can be investigated in detail.
Hunt, Julian
Electrostatically charged spraying of a plant-an industrial and environmental flow problem (choice of flow process, design of device, dispersion in the environment, and impaction on the plant surface). wwwReviews Inc. All rights reserved INDUSTRIAL AND ENVIRONMENTAL FLUID MECHANICS J. C. R. Hunt Department
A direct numerical simulation method for complex modulus of particle dispersions
T. Iwashita; T. Kumagai; R. Yamamoto
2010-04-24
We report an extension of the smoothed profile method (SPM)[Y. Nakayama, K. Kim, and R. Yamamoto, Eur. Phys. J. E {\\bf 26}, 361(2008)], a direct numerical simulation method for calculating the complex modulus of the dispersion of particles, in which we introduce a temporally oscillatory external force into the system. The validity of the method was examined by evaluating the storage $G'(\\omega)$ and loss $G"(\\omega)$ moduli of a system composed of identical spherical particles dispersed in an incompressible Newtonian host fluid at volume fractions of $\\Phi=0$, 0.41, and 0.51. The moduli were evaluated at several frequencies of shear flow; the shear flow used here has a zigzag profile, as is consistent with the usual periodic boundary conditions.
Chakrabarti, Brato
2015-01-01
This work explores a simple model of a slender, flexible structure in a uniform flow, providing analytical solutions for the translating, axially flowing equilibria of strings subjected to a uniform body force and drag forces linear in the velocities. The classical catenaries are extended to a five-parameter family of curves. A sixth parameter affects the tension in the curves. Generic configurations are planar, represented by a single first order equation for the tangential angle. The effects of varying parameters on representative shapes, orbits in angle-curvature space, and stress distributions are shown. As limiting cases, the solutions include configurations corresponding to "lariat chains" and the towing, reeling, and sedimentation of flexible cables in a highly viscous fluid. Regions of parameter space corresponding to infinitely long, semi-infinite, and finite length curves are delineated. Almost all curves subtend an angle less than $\\pi$ radians, but curious special cases with doubled or infinite ra...
Fluid jet electric discharge source
Bender, Howard A. (Ripon, CA)
2006-04-25
A fluid jet or filament source and a pair of coaxial high voltage electrodes, in combination, comprise an electrical discharge system to produce radiation and, in particular, EUV radiation. The fluid jet source is composed of at least two serially connected reservoirs, a first reservoir into which a fluid, that can be either a liquid or a gas, can be fed at some pressure higher than atmospheric and a second reservoir maintained at a lower pressure than the first. The fluid is allowed to expand through an aperture into a high vacuum region between a pair of coaxial electrodes. This second expansion produces a narrow well-directed fluid jet whose size is dependent on the size and configuration of the apertures and the pressure used in the reservoir. At some time during the flow of the fluid filament, a high voltage pulse is applied to the electrodes to excite the fluid to form a plasma which provides the desired radiation; the wavelength of the radiation being determined by the composition of the fluid.
Stabilizing Fluid-Fluid Displacements in Porous Media Through Wettability Alteration
Trojer, Mathias
We study experimentally how wettability impacts fluid-fluid-displacement patterns in granular media. We inject a low-viscosity fluid (air) into a thin bed of glass beads initially saturated with a more-viscous fluid (a ...
Ceramics containing dispersants for improved fracture toughness
Nevitt, Michael V. (Wheaton, IL); Aldred, Anthony T. (Wheaton, IL); Chan, Sai-Kit (Darien, IL)
1987-01-01
The invention is a ceramic composition containing a new class of dispersant for hindering crack propagation by means of one or more energy-dissipative mechanisms. The composition is composed of a ceramic matrix with dispersed particles of a transformation-prone rare-earth niobate, tantalate or mixtures of these with each other and/or with a rare-earth vanadate. The dispersants, having a generic composition tRMO.sub.4, where R is a rare-earth element, B is Nb or Ta and O is oxygen, are mixed in powder form with a powder of the matrix ceramic and sintered to produce a ceramic form or body. The crack-hindering mechanisms operates to provide improved performance over a wide range of temperature and operating conditions.
AFDM: An Advanced Fluid-Dynamics Model
Bohl, W.R.; Parker, F.R. (Los Alamos National Lab., NM (USA)); Wilhelm, D. (Kernforschungszentrum Karlsruhe GmbH (Germany, F.R.). Inst. fuer Neutronenphysik und Reaktortechnik); Berthier, J. (CEA Centre d'Etudes Nucleaires de Grenoble, 38 (France)); Goutagny, L. (CEA Centre d'Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Inst. de Protection et de Surete Nucleaire); Ninokata,
1990-09-01
AFDM, or the Advanced Fluid-Dynamics Model, is a computer code that investigates new approaches simulating the multiphase-flow fluid-dynamics aspects of severe accidents in fast reactors. The AFDM formalism starts with differential equations similar to those in the SIMMER-II code. These equations are modified to treat three velocity fields and supplemented with a variety of new models. The AFDM code has 12 topologies describing what material contacts are possible depending on the presence or absence of a given material in a computational cell, on the dominant liquid, and on the continuous phase. Single-phase, bubbly, churn-turbulent, cellular, and dispersed flow regimes are permitted for the pool situations modeled. Virtual mass terms are included for vapor in liquid-continuous flow. Interfacial areas between the continuous and discontinuous phases are convected to allow some tracking of phenomenological histories. Interfacial areas are also modified by models of nucleation, dynamic forces, turbulence, flashing, coalescence, and mass transfer. Heat transfer is generally treated using engineering correlations. Liquid-vapor phase transitions are handled with the nonequilibrium, heat-transfer-limited model, whereas melting and freezing processes are based on equilibrium considerations. Convection is treated using a fractional-step method of time integration, including a semi-implicit pressure iteration. A higher-order differencing option is provided to control numerical diffusion. The Los Alamos SESAME equation-of-state has been implemented using densities and temperatures as the independent variables. AFDM programming has vectorized all computational loops consistent with the objective of producing an exportable code. 24 refs., 4 figs.
Valery P. Dmitriyev
1999-04-17
A discontinuity of a turbulent ideal fluid is considered. It is supposed to be split and dispersed, or spread in the stochastic environment forming a gas without hydrostatic pressure. Two equal-mass fragments of a discontinuity are indistinguishable from each other. A gas, that possesses such properties, must behave itself as the Madelung medium.
Dispersion corrections to parity violating electron scattering
Gorchtein, M.; Horowitz, C. J. [Nuclear Theory Center, Indiana University, Bloomington, IN 47408 (United States); Ramsey-Musolf, M. J. [University of Wisconsin-Madison, Madison, WI 53706 (United States)
2010-08-04
We consider the dispersion correction to elastic parity violating electron-proton scattering due to {gamma}Z exchange. In a recent publication, this correction was reported to be substantially larger than the previous estimates. In this paper, we study the dispersion correction in greater detail. We confirm the size of the disperion correction to be {approx}6% for the QWEAK experiment designed to measure the proton weak charge. We enumerate parameters that have to be constrained to better than relative 30% in order to keep the theoretical uncertainty for QWEAK under control.
SOLVENT DISPERSION AND FLOW METER CALCULATION RESULTS
Nash, C.; Fondeur, F.; Peters, T.
2013-06-21
Savannah River National Laboratory (SRNL) found that the dispersion numbers for the six combinations of CSSX:Next Generation Solvent (NGS) “blend” and pure NGS versus salt solution, caustic wash, and strip aqueous solutions are all good. The dispersion numbers are indications of processability with centrifugal contactors. A comparison of solvent physical and thermal properties shows that the Intek™ solvent flow meter in the plant has a reading biased high versus calibrated flow when NGS is used, versus the standard CSSX solvent. The flow meter, calibrated for CSSX solvent, is predicted to read 2.8 gpm of NGS in a case where the true flow of NGS is 2.16 gpm.
Geometry-induced phase transition in fluids: capillary prewetting
Petr Yatsyshin; Nikos Savva; Serafim Kalliadasis
2013-03-01
We report a new first-order phase transition preceding capillary condensation and corresponding to the discontinuous formation of a curved liquid meniscus. Using a mean-field microscopic approach based on the density functional theory we compute the complete phase diagram of a prototypical two-dimensional system exhibiting capillary condensation, namely that of a fluid with long-ranged dispersion intermolecular forces which is spatially confined by a substrate forming a semi-infinite rectangular pore exerting long-ranged dispersion forces on the fluid. In the T-mu plane the phase line of the new transition is tangential to the capillary condensation line at the capillary wetting temperature, Tcw. The surface phase behavior of the system maps to planar wetting with the phase line of the new transition, termed capillary prewetting, mapping to the planar prewetting line. If capillary condensation is approached isothermally with T>Tcw, the meniscus forms at the capping wall and unbinds continuously, making capillary condensation a second-order phenomenon. We compute the corresponding critical exponent for the divergence of adsorption.
QUALITATIVE REASONING ABOUT FLUIDS AND MECHANICS
Forbus, Kenneth D.
QUALITATIVE REASONING ABOUT FLUIDS AND MECHANICS Hyeonkyeong Kim November 1993 The Institute and North West Water, Institute Partners . #12;QUALITATIVE REASONING ABOUT FLUIDS AND MECHANICS #12;()Copyright by Hyeonkyeong Kim 1993 #12;QUALITATIVE REASONING ABOUT FLUIDS AND MECHANICS
Inserting Group Variables into Fluid Mechanics
R. Jackiw
2004-10-28
A fluid, like a quark-gluon plasma, may possess degrees of freedom indexed by a group variable, which retains its identity even in the fluid/continuum description. Conventional Eulerian fluid mechanics is extended to encompass this possibility.
Multipurpose Acoustic Sensor for Downhole Fluid Monitoring
Broader source: Energy.gov [DOE]
Novel sensor design based on acoustics. Determine in real-timeand in a single sensor packagemultiple parameters: temperature, pressure, fluid flow; and fluid properties, such as density, viscosity, fluid composition.
Balajewicz, Maciej; Dowell, Earl
2015-01-01
For a projection-based reduced order model (ROM) to be stable and accurate, the dynamics of the truncated subspace must be taken into account. This paper proposes an approach for stabilizing and enhancing projection-based fluid ROMs in which truncated modes are accounted for \\textit{a priori} via a minimal rotation of the projection subspace. Attention is focused on the full non-linear compressible Navier-Stokes equations in specific volume form as a step toward a more general formulation for problems with generic non-linearities. Unlike traditional approaches, no empirical turbulence modeling terms are required, and consistency between the ROM and the full order model from which the ROM is derived is maintained. Mathematically, the approach is formulated as a quadratic matrix program on the Stiefel manifold. The reproductive as well as predictive capabilities of the method are evaluated on several compressible flow problems, including a problem involving laminar flow over an airfoil with a high angle of atta...
The Impact of Dust Evolution and Photoevaporation on Disk Dispersal
Gorti, Uma; Dullemond, Cornelis
2015-01-01
Protoplanetary disks are dispersed by viscous evolution and photoevaporation in a few million years; in the interim small, sub-micron sized dust grains must grow and form planets. The time-varying abundance of small grains in an evolving disk directly affects gas heating by far-ultraviolet photons, while dust evolution affects photoevaporation by changing the disk opacity and resulting penetration of FUV photons in the disk. Photoevaporative flows, in turn, selectively carry small dust grains leaving the larger particles---which decouple from the gas---behind in the disk. We study these effects by investigating the evolution of a disk subject to viscosity, photoevaporation by EUV, FUV and X-rays, dust evolution, and radial drift using a 1-D multi-fluid approach (gas + different dust grain sizes) to solve for the evolving surface density distributions. The 1-D evolution is augmented by 1+1D models constructed at each epoch to obtain the instantaneous disk structure and determine photoevaporation rates. The imp...
Garn, Troy G; Law, Jack D; Greenhalgh, Mitchell R; Tranter, Rhonda
2014-04-01
A composite media including at least one crystalline aluminosilicate material in polyacrylonitrile. A method of forming a composite media is also disclosed. The method comprises dissolving polyacrylonitrile in an organic solvent to form a matrix solution. At least one crystalline aluminosilicate material is combined with the matrix solution to form a composite media solution. The organic solvent present in the composite media solution is diluted. The composite media solution is solidified. In addition, a method of processing a fluid stream is disclosed. The method comprises providing a beads of a composite media comprising at least one crystalline aluminosilicate material dispersed in a polyacrylonitrile matrix. The beads of the composite media are contacted with a fluid stream comprising at least one constituent. The at least one constituent is substantially removed from the fluid stream.
Computational fluid dynamic applications
Chang, S.-L.; Lottes, S. A.; Zhou, C. Q.
2000-04-03
The rapid advancement of computational capability including speed and memory size has prompted the wide use of computational fluid dynamics (CFD) codes to simulate complex flow systems. CFD simulations are used to study the operating problems encountered in system, to evaluate the impacts of operation/design parameters on the performance of a system, and to investigate novel design concepts. CFD codes are generally developed based on the conservation laws of mass, momentum, and energy that govern the characteristics of a flow. The governing equations are simplified and discretized for a selected computational grid system. Numerical methods are selected to simplify and calculate approximate flow properties. For turbulent, reacting, and multiphase flow systems the complex processes relating to these aspects of the flow, i.e., turbulent diffusion, combustion kinetics, interfacial drag and heat and mass transfer, etc., are described in mathematical models, based on a combination of fundamental physics and empirical data, that are incorporated into the code. CFD simulation has been applied to a large variety of practical and industrial scale flow systems.
McKay, M.D.; Sweeney, C.E.; Spangler, B.S. Jr.
1993-11-30
A flow meter and temperature measuring device are described comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips. 7 figures.
McKay, Mark D. (1426 Socastee Dr., North Augusta, SC 29841); Sweeney, Chad E. (3600 Westhampton Dr., Martinez, GA 30907-3036); Spangler, Jr., B. Samuel (2715 Margate Dr., Augusta, GA 30909)
1993-01-01
A flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.
Houck, Edward D. (Idaho Falls, ID)
1994-01-01
An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.
Houck, E.D.
1994-10-11
An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to be decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank. 4 figs.
Reaction plane dispersion at intermediate energies
J. Lukasik; W. Trautmann
2006-03-29
A method to derive the corrections for the dispersion of the reaction plane at intermediate energies is proposed. The method is based on the correlated, non-isotropic Gaussian approximation. It allowed to construct the excitation function of genuine flow values for the Au+Au reactions at 40-150 MeV/nucleon measured with the INDRA detector at GSI.
Kelley; Dana A. (New Milford, CT), Farooque; Mohammad (Danbury, CT), Davis; Keith (Southbury, CT)
2007-10-02
A fuel cell system with improved electrical isolation having a fuel cell stack with a positive potential end and a negative potential, a manifold for use in coupling gases to and from a face of the fuel cell stack, an electrical isolating assembly for electrically isolating the manifold from the stack, and a unit for adjusting an electrical potential of the manifold such as to impede the flow of electrolyte from the stack across the isolating assembly.
Violation of Bell's inequality in fluid mechanics
Robert Brady; Ross Anderson
2013-05-28
We show that a classical fluid mechanical system can violate Bell's inequality because the fluid motion is correlated over large distances.
Detachment Energies of Spheroidal Particles from Fluid-Fluid Interfaces
Gary B. Davies; Timm Krüger; Peter V. Coveney; Jens Harting
2014-10-28
The energy required to detach a single particle from a fluid-fluid interface is an important parameter for designing certain soft materials, for example, emulsions stabilised by colloidal particles, colloidosomes designed for targeted drug delivery, and bio-sensors composed of magnetic particles adsorbed at interfaces. For a fixed particle volume, prolate and oblate spheroids attach more strongly to interfaces because they have larger particle-interface areas. Calculating the detachment energy of spheroids necessitates the difficult measurement of particle-liquid surface tensions, in contrast with spheres, where the contact angle suffices. We develop a simplified detachment energy model for spheroids which depends only on the particle aspect ratio and the height of the particle centre of mass above the fluid-fluid interface. We use lattice Boltzmann simulations to validate the model and provide quantitative evidence that the approach can be applied to simulate particle-stabilized emulsions, and highlight the experimental implications of this validation.
High-density fluid compositions
Sanders, D.C.
1981-09-29
Clear, high-density fluids suitable for use as well completion, packing, and perforation media comprise aqueous solutions of zinc bromide and calcium bromide having densities lying in the range of about 14.5 up to about 18.0 pounds per gallon and measured PH's lying in the range of about 3.5 up to about 6.0. Optionally, such fluids may also comprise calcium chloride and/or a soluble film-forming amine-based corrosion inhibitor. Such fluids under conditions of ordinary use exhibit low corrosion rates and have crystallization points lying well below the range of temperatures under which they are used.
Standardization of Thermo-Fluid Modeling in Modelica.Fluid
Franke, Rudiger; Casella, Francesco; Sielemann, Michael; Proelss, Katrin; Otter, Martin; Wetter, Michael
2009-09-01
This article discusses the Modelica.Fluid library that has been included in the Modelica Standard Library 3.1. Modelica.Fluid provides interfaces and basic components for the device-oriented modeling of onedimensional thermo-fluid flow in networks containing vessels, pipes, fluid machines, valves and fittings. A unique feature of Modelica.Fluid is that the component equations and the media models as well as pressure loss and heat transfer correlations are decoupled from each other. All components are implemented such that they can be used for media from the Modelica.Media library. This means that an incompressible or compressible medium, a single or a multiple substance medium with one or more phases might be used with one and the same model as long as the modeling assumptions made hold. Furthermore, trace substances are supported. Modeling assumptions can be configured globally in an outer System object. This covers in particular the initialization, uni- or bi-directional flow, and dynamic or steady-state formulation of mass, energy, and momentum balance. All assumptions can be locally refined for every component. While Modelica.Fluid contains a reasonable set of component models, the goal of the library is not to provide a comprehensive set of models, but rather to provide interfaces and best practices for the treatment of issues such as connector design and implementation of energy, mass and momentum balances. Applications from various domains are presented.
Vortex in a weakly relativistic Bose gas at zero temperature and relativistic fluid approximation
B. Boisseau
2004-09-14
The Bogoliubov procedure in quantum field theory is used to describe a relativistic almost ideal Bose gas at zero temperature. Special attention is given to the study of a vortex. The radius of the vortex in the field description is compared to that obtained in the relativistic fluid approximation. The Kelvin waves are studied and, for long wavelengths, the dispersion relation is obtained by an asymptotic matching method and compared with the non relativistic result.
Quantum Field Theory of Fluids
Ben Gripaios; Dave Sutherland
2015-04-23
The quantum theory of fields is largely based on studying perturbations around non-interacting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is `freer', in the sense that the non-interacting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree- and loop-level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behaviour is radically different to both classical fluids and quantum fields, with interesting physical consequences for fluids in the low temperature regime.
SO(10) Grand Unification in M theory on a G2 manifold
Bobby S. Acharya; Krzysztof Bozek; Miguel Crispim Romao; Stephen F. King; Chakrit Pongkitivanichkul
2015-02-05
We consider Grand Unified Theories based on $SO(10)$ which originate from string/$M$ theory on $G_2$ manifolds or Calabi-Yau spaces with discrete symmetries. In this framework we are naturally led to a novel solution of the doublet-triplet splitting problem previously considered by Dvali which involves an extra vector-like Standard Model family and light, but weakly coupled colour triplets. These additional states are predicted to be accessible at the LHC and also induce R-parity violation. Gauge coupling unification occurs with a larger GUT coupling.
SO(10) Grand Unification in M theory on a G2 manifold
Acharya, Bobby S; Romao, Miguel Crispim; King, Stephen F; Pongkitivanichkul, Chakrit
2015-01-01
We consider Grand Unified Theories based on $SO(10)$ which originate from string/$M$ theory on $G_2$ manifolds or Calabi-Yau spaces with discrete symmetries. In this framework we are naturally led to a novel solution of the doublet-triplet splitting problem previously considered by Dvali which involves an extra vector-like Standard Model family and light, but weakly coupled colour triplets. These additional states are predicted to be accessible at the LHC and also induce R-parity violation. Gauge coupling unification occurs with a larger GUT coupling.
Eigenvalues of Killing Tensors and Separable Webs on Riemannian and Pseudo-Riemannian Manifolds
Claudia Chanu; Giovanni Rastelli
2007-02-12
Given a $n$-dimensional Riemannian manifold of arbitrary signature, we illustrate an algebraic method for constructing the coordinate webs separating the geodesic Hamilton-Jacobi equation by means of the eigenvalues of $m \\leq n$ Killing two-tensors. Moreover, from the analysis of the eigenvalues, information about the possible symmetries of the web foliations arises. Three cases are examined: the orthogonal separation, the general separation, including non-orthogonal and isotropic coordinates, and the conformal separation, where Killing tensors are replaced by conformal Killing tensors. The method is illustrated by several examples and an application to the L-systems is provided.
Angular Momentum Transport in Particle and Fluid Disks
Eliot Quataert; Eugene I. Chiang
2000-08-23
We examine the angular momentum transport properties of disks composed of macroscopic particles whose velocity dispersions are externally enhanced (``stirred''). Our simple Boltzmann equation model serves as an analogy for unmagnetized fluid disks in which turbulence may be driven by thermal convection. We show that interparticle collisions in particle disks play the same role as fluctuating pressure forces and viscous dissipation in turbulent disks: both transfer energy in random motions associated with one direction to those associated with another, and convert kinetic energy into heat. The direction of angular momentum transport in stirred particle and fluid disks is determined by the direction of external stirring and by the properties of the collision term in the Boltzmann equation (or its analogue in the fluid problem). In particular, our model problem yields inward transport for vertically or radially stirred disks, provided collisions are suitably inelastic; the transport is outwards in the elastic limit. Numerical simulations of hydrodynamic turbulence driven by thermal convection find inward transport; this requires that fluctuating pressure forces do little to no work, and is analogous to an externally stirred particle disk in which collisions are highly inelastic.
Falicoff, Waqidi; Chaves, Julio C.; Minano, Juan Carlos; Benitez, Pablo; Dross, Oliver; Parkyn, Jr., William A.
2010-02-23
Optical systems are described that have at least one source of a beam of blue light with divergence under 15.degree.. A phosphor emits yellow light when excited by the blue light. A collimator is disposed with the phosphor and forms a yellow beam with divergence under 15.degree.. A dichroic filter is positioned to transmit the beam of blue light to the phosphor and to reflect the beam of yellow light to an exit aperture. In different embodiments, the beams of blue and yellow light are incident upon said filter with central angles of 15.degree., 22.degree., and 45.degree.. The filter may reflect all of one polarization and part of the other polarization, and a polarization rotating retroreflector may then be provided to return the unreflected light to the filter.
Pitch-catch only ultrasonic fluid densitometer
Greenwood, Margaret S. (Richland, WA); Harris, Robert V. (Pasco, WA)
1999-01-01
The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.
FLUID MECHANICS AND MATHEMATICAL STRUCTURES PHILIP BOYLAND
Boyland, Philip
FLUID MECHANICS AND MATHEMATICAL STRUCTURES PHILIP BOYLAND Department of Mathematics University in the most basic models of fluid motion. 1. Introduction Fluid mechanics is the source of many of the ideas, Lagrange, . . .. Mathematicians have abstracted and vastly generalized ba- sic fluid mechanical concepts
Mechanical Engineering ME 3720 FLUID MECHANICS
Panchagnula, Mahesh
Mechanical Engineering ME 3720 FLUID MECHANICS Pre-requisite: ME 2330 Co-requisite: ME 3210) to develop an understanding of the physical mechanisms and the mathematical models of fluid mechanics of fluid mechanics problems in engineering practice. The basic principles of fluid mechanics
Lecture notes Introductory incompressible fluid mechanics
Malham, Simon J.A.
Lecture notes Introductory incompressible fluid mechanics Simon J.A. Malham Simon J.A. Malham (23rd of fluid mechanics and along the way see lots of interesting applications. 2 Fluid flow, the Continuum. Liquids are generally incompressible--a feature essential to all modern car braking mechanisms. Fluids can
Pitch-catch only ultrasonic fluid densitometer
Greenwood, M.S.; Harris, R.V.
1999-03-23
The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.
Fluid Imaging of Enhanced Geothermal Systems
Broader source: Energy.gov [DOE]
Project objectives: Attempting to Image EGS Fracture & Fluid Networks; Employing joint Geophysical Imaging Technologies.
Fluid Mechanics IB Lecturer: Dr Natalia Berloff
: hydroelectric power, chemical processing, jet-driven cutting tools · our fluid environment: ozone loss, climate
Broadband dispersion engineered microresonator on-a-chip
Yang, Ki Youl; Cole, Daniel C; Yi, Xu; Del'Haye, Pascal; Lee, Hansuek; Li, Jiang; Oh, Dong Yoon; Diddams, Scott A; Papp, Scott B; Vahala, Kerry J
2015-01-01
Control of dispersion in fibre optical waveguides is of critical importance to optical fibre communications systems and more recently for continuum generation from the ultraviolet to the mid-infrared. The wavelength at which the group velocity dispersion crosses zero can be set by varying fibre core diameter or index step. Moreover, sophisticated methods to manipulate higher-order dispersion so as shape and even flatten dispersion over wide bandwidths are possible using multi-cladding fibre. Here we introduce design and fabrication techniques that allow analogous dispersion control in chip-integrated optical microresonators, and thereby demonstrate higher-order, wide-bandwidth dispersion control over an octave of spectrum. Importantly, the fabrication method we employ for dispersion control simultaneously permits optical Q factors above 100 million, which is critical for efficient operation of nonlinear optical oscillators. Dispersion control in high Q systems has taken on greater importance in recent years w...
Geographic dispersion in teams : its history, experience, measurement, and change
O'Leary, Michael Boyer, 1969-
2002-01-01
This thesis begins with the simple argument that geographic dispersion has gone surprisingly unexamined despite its role as the domain-defining construct for geographically dispersed teams (a.k.a. "virtual teams"). The ...
Dispersion modeling of ground-level area sources of particulate
Fritz, Bradley Keith
1998-01-01
The use of dispersion modeling by State Air Pollution hics. Regulatory Agencies (SAPRAS) is increasing. Dispersion modeling provides a quick and efficient means of determining the downwind impact of pollutant release from a source. The SAPRAS...
Thermal boundary layer development in dispersed flow film boiling
Hull, Lawrence M.
1982-01-01
Dispersed flow film boiling consists of a dispersion of droplets which are carried over a very hot surface by their vapor. This process occurs in cryogenic equipment and wet steam turbines. It is also of interest in the ...
On the reduction of oxygen from dispersed media
Roushdy, Omar H., 1977-
2007-01-01
The reduction of oxygen from an organic phase dispersed in a concentrated electrolyte is investigated. Dispersed organic phases are used to enhance oxygen transport in fermenters and artificial blood substitutes. This work ...
Update 2 to: A Dispersion Modeling Analysis of Downwash from...
Update 2 to: A Dispersion Modeling Analysis of Downwash from Mirant's Potomac River Power Plant, Modeling Unit 1 Emissions at Maximum and Minimum Loads Update 2 to: A Dispersion...
Update 3 to: A Dispersion Modeling Analysis of Downwash from...
3 to: A Dispersion Modeling Analysis of Downwash from Mirant's Potomac River Power Plant, Modeling Units 1 and 4 Together Update 3 to: A Dispersion Modeling Analysis of Downwash...
Update 6 to: A Dispersion Modeling Analysis of Downwash from...
Office of Environmental Management (EM)
6 to: A Dispersion Modeling Analysis of Downwash from Mirant's Potomac River Power Plant Modeling Baseload Units 3,4,5 Update 6 to: A Dispersion Modeling Analysis of Downwash from...
Update 1 to: A Dispersion Modeling Analysis of Downwash from...
Office of Environmental Management (EM)
1 to: A Dispersion Modeling Analysis of Downwash from Mirant's Potomac River Power Plant, Modeling Unit 1 Emissions in a Cycling Mode Update 1 to: A Dispersion Modeling Analysis of...
Dispersion-free radial transmission lines
Caporaso, George J. (Livermore, CA); Nelson, Scott D. (Patterson, CA)
2011-04-12
A dispersion-free radial transmission line ("DFRTL") preferably for linear accelerators, having two plane conductors each with a central hole, and an electromagnetically permeable material ("EPM") between the two conductors and surrounding a channel connecting the two holes. At least one of the material parameters of relative magnetic permeability, relative dielectric permittivity, and axial width of the EPM is varied as a function of radius, so that the characteristic impedance of the DFRTL is held substantially constant, and pulse transmission therethrough is substantially dispersion-free. Preferably, the EPM is divided into concentric radial sections, with the varied material parameters held constant in each respective section but stepwise varied between sections as a step function of the radius. The radial widths of the concentric sections are selected so that pulse traversal time across each section is the same, and the varied material parameters of the concentric sections are selected to minimize traversal error.
Externally Dispersed Interferometry for Precision Radial Velocimetry
Erskine, D J; Muterspaugh, M W; Edelstein, J; Lloyd, J; Herter, T; Feuerstein, W M; Muirhead, P; Wishnow, E
2007-03-27
Externally Dispersed Interferometry (EDI) is the series combination of a fixed-delay field-widened Michelson interferometer with a dispersive spectrograph. This combination boosts the spectrograph performance for both Doppler velocimetry and high resolution spectroscopy. The interferometer creates a periodic spectral comb that multiplies against the input spectrum to create moire fringes, which are recorded in combination with the regular spectrum. The moire pattern shifts in phase in response to a Doppler shift. Moire patterns are broader than the underlying spectral features and more easily survive spectrograph blurring and common distortions. Thus, the EDI technique allows lower resolution spectrographs having relaxed optical tolerances (and therefore higher throughput) to return high precision velocity measurements, which otherwise would be imprecise for the spectrograph alone.
Fuel cell assembly unit for promoting fluid service and electrical conductivity
Jones, Daniel O. (Glenville, NY)
1999-01-01
Fluid service and/or electrical conductivity for a fuel cell assembly is promoted. Open-faced flow channel(s) are formed in a flow field plate face, and extend in the flow field plate face between entry and exit fluid manifolds. A resilient gas diffusion layer is located between the flow field plate face and a membrane electrode assembly, fluidly serviced with the open-faced flow channel(s). The resilient gas diffusion layer is restrained against entering the open-faced flow channel(s) under a compressive force applied to the fuel cell assembly. In particular, a first side of a support member abuts the flow field plate face, and a second side of the support member abuts the resilient gas diffusion layer. The support member is formed with a plurality of openings extending between the first and second sides of the support member. In addition, a clamping pressure is maintained for an interface between the resilient gas diffusion layer and a portion of the membrane electrode assembly. Preferably, the support member is spikeless and/or substantially flat. Further, the support member is formed with an electrical path for conducting current between the resilient gas diffusion layer and position(s) on the flow field plate face.
Composite materials with improved phyllosilicate dispersion
Chaiko, David J.
2004-09-14
The present invention provides phyllosilicates edge modified with anionic surfactants, composite materials made from the edge modified phyllosilicates, and methods for making the same. In various embodiments the phyllosilicates are also surface-modified with hydrophilic lipophilic balance (HLB) modifying agents, polymeric hydrotropes, and antioxidants. The invention also provides blends of edge modified phyllosilicates and semicrystalline waxes. The composite materials are made by dispersing the edge modified phyllosilicates with polymers, particularly polyolefins and elastomers.
Plasmon dispersion in strongly correlated superlattices
Lu, D. [Department for Intensive Instruction, Nanjing University, Nanjing 210093, People`s Republic of (China)] [Department for Intensive Instruction, Nanjing University, Nanjing 210093, People`s Republic of (China); Golden, K.I. [Department of Mathematics and Statistics, University of Vermont, Burlington, Vermont 05405 (United States)] [Department of Mathematics and Statistics, University of Vermont, Burlington, Vermont 05405 (United States); Kalman, G. [Department of Physics, Boston College, Chestnut Hill, Massachusetts 02167 (United States)] [Department of Physics, Boston College, Chestnut Hill, Massachusetts 02167 (United States); Wyns, P. [Hewlett-Packard Colorado Integrated Circuits Division, M.S. 64, 3404 East Harmony Road, Fort Collins, Colorado 80525 (United States)] [Hewlett-Packard Colorado Integrated Circuits Division, M.S. 64, 3404 East Harmony Road, Fort Collins, Colorado 80525 (United States); Miao, L. [Department of Computer Science and Electrical Engineering, University of Vermont, Burlington, Vermont 05405 (United States)] [Department of Computer Science and Electrical Engineering, University of Vermont, Burlington, Vermont 05405 (United States); Shi, X. [Department of Physics, Nanjing University, Nanjing 210008, People`s Republic of (China)] [Department of Physics, Nanjing University, Nanjing 210008, People`s Republic of (China)
1996-10-01
The dielectric response function of a strongly correlated superlattice is calculated in the quasilocalized charge (QLC) approximation. The resulting QLC static local-field correction, which contains both intralayer and interlayer pair-correlational effects, is identical to the correlational part of the third-frequency-moment sum-rule coefficient. This approximation treats the interlayer and intralayer couplings on an equal footing. The resulting dispersion relation is first analyzed to determine the effect of intralayer coupling on the out-of-phase acoustic-mode dispersion; in this approximation the interlayer coupling is suppressed and the mutual interaction of the layers is taken into account only through the average random-phase approximation (RPA) field. In the resulting mode dispersion, the onset of a finite-{ital k} ({ital k} being the in-plane wave number) reentrant low-frequency excitation developing (with decreasing {ital d}/{ital a}) into a dynamical instability is indicated ({ital a} being the in-plane Wigner-Seitz radius and {ital d} the distance between adjacent lattice planes). This dynamical instability parallels a static structural instability reported earlier both for a bilayer electron system and a superlattice and presumably indicates a structural change in the electron liquid. If one takes account of interlayer correlations beyond the RPA, the acoustic excitation spectrum is dramatically modified by the appearance of an energy gap which also has a stabilizing effect on the instability. We extend a previous energy gap study at {ital k}=0 [G. Kalman, Y. Ren, and K. I. Golden, Phys Rev. B {bold 50}, 2031 (1994)] to a calculation of the dispersion of the gapped acoustic excitation spectrum in the long-wavelength domain. {copyright} {ital 1996 The American Physical Society.}
Carmeline J. Dsilva; Ronen Talmon; Ronald R. Coifman; Ioannis G. Kevrekidis
2015-05-22
Nonlinear manifold learning algorithms, such as diffusion maps, have been fruitfully applied in recent years to the analysis of large and complex data sets. However, such algorithms still encounter challenges when faced with real data. One such challenge is the existence of "repeated eigendirections," which obscures the detection of the true dimensionality of the underlying manifold and arises when several embedding coordinates parametrize the same direction in the intrinsic geometry of the data set. We propose an algorithm, based on local linear regression, to automatically detect coordinates corresponding to repeated eigendirections. We construct a more parsimonious embedding using only the eigenvectors corresponding to unique eigendirections, and we show that this reduced diffusion maps embedding induces a metric which is equivalent to the standard diffusion distance. We first demonstrate the utility and flexibility of our approach on synthetic data sets. We then apply our algorithm to data collected from a stochastic model of cellular chemotaxis, where our approach for factoring out repeated eigendirections allows us to detect changes in dynamical behavior and the underlying intrinsic system dimensionality directly from data.
Global dynamics and inflationary center manifold and slow-roll approximants
Artur Alho; Claes Uggla
2015-01-15
We consider the familiar problem of a minimally coupled scalar field with quadratic potential in flat Friedmann-Lema\\^itre-Robertson-Walker cosmology to illustrate a number of techniques and tools, which can be applied to a wide range of scalar field potentials and problems in e.g. modified gravity. We present a global and regular dynamical systems description that yields a global understanding of the solution space, including asymptotic features. We introduce dynamical systems techniques such as center manifold expansions and use Pad\\'e approximants to obtain improved approximations for the `attractor solution' at early times. We also show that future asymptotic behavior is associated with a limit cycle, which shows that manifest self-similarity is asymptotically broken toward the future, and give approximate expressions for this behavior. We then combine these results to obtain global approximations for the attractor solution, which, e.g., might be used in the context of global measures. In addition we elucidate the connection between slow-roll based approximations and the attractor solution, and compare these approximations with the center manifold based approximants.
Thierry Daude; Damien Gobin; François Nicoleau
2015-01-15
In this paper, we adapt the well-known \\emph{local} uniqueness results of Borg-Marchenko type in the inverse problems for one dimensional Schr{\\"o}dinger equation to prove \\emph{local} uniqueness results in the setting of inverse \\emph{metric} problems. More specifically, we consider a class of spherically symmetric manifolds having two asymptotically hyperbolic ends and study the scattering properties of massless Dirac waves evolving on such manifolds. Using the spherical symmetry of the model, the stationary scattering is encoded by a countable family of one-dimensional Dirac equations. This allows us to define the corresponding transmission coefficients $T(\\lambda,n)$ and reflection coefficients $L(\\lambda,n)$ and $R(\\lambda,n)$ of a Dirac wave having a fixed energy $\\lambda$ and angular momentum $n$. For instance, the reflection coefficients $L(\\lambda,n)$ correspond to the scattering experiment in which a wave is sent from the \\emph{left} end in the remote past and measured in the same left end in the future. The main result of this paper is an inverse uniqueness result local in nature. Namely, we prove that for a fixed $\\lambda \
Urban dispersion : challenges for fast response modeling
Brown, M. J. (Michael J.)
2004-01-01
There is renewed interest in urban dispersion modeling due to the need for tools that can be used for responding to, planning for, and assessing the consequences of an airborne release of toxic materials. Although not an everyday phenomenon, releases of hazardous gases and aerosols have occurred in populated urban environments and are potentially threatening to human life. These releases may stem from on-site accidents as in the case of industrial chemical releases, may result during transport of hazardous chemicals as in tanker truck or railroad spills, or may be premeditated as in a chemical, biological, or radiological (CBR) agent terrorist attack. Transport and dispersion in urban environments is extremely complicated. Buildings alter the flow fields and deflect the wind, causing updrafts and downdrafts, channeling between buildings, areas of calm winds adjacent to strong winds, and horizontally and vertically rotating-eddies between buildings, at street corners, and other places within the urban canopy (see review by Hosker, 1984). Trees, moving vehicles, and exhaust vents among other things further complicate matters. The distance over which chemical, biological, or radiological releases can be harmful varies from tens of meters to many kilometers depending on the amount released, the toxicity of the agent, and the atmospheric conditions. As we will show later, accounting for the impacts of buildings on the transport and dispersion is crucial in estimating the travel direction, the areal extent, and the toxicity levels of the contaminant plume, and ultimately for calculating exposures to the population.
Tropical cyclone energy dispersion under vertical shears Xuyang Ge,1
Li, Tim
Tropical cyclone energy dispersion under vertical shears Xuyang Ge,1 Tim Li,1,2 and Xiaqiong Zhou1] Tropical cyclone Rossby wave energy dispersion under easterly and westerly vertical shears is investigated, and X. Zhou (2007), Tropical cyclone energy dispersion under vertical shears, Geophys. Res. Lett., 34, L
Biogenic Hydroxylated Carboxylate Monomers Serve as Dispersants for
Aksay, Ilhan A.
Biogenic Hydroxylated Carboxylate Monomers Serve as Dispersants for Ceramic Particles Tao Ren1, I hydroxyl groups were able to disperse ct-A120 3 particles in aqueous suspensions. Detailed studies of two and hydroxyl groups are both important for dispersion of the ceramic particles. Hydroxyl groups increased
A Smooth Interface Method for Simulating Liquid Crystal Colloid Dispersions
A Smooth Interface Method for Simulating Liquid Crystal Colloid Dispersions Ryoichi Yamamoto is presented for mesoscopic simulations of particle dispersions in liquid crystal solvents. It allows efficient mediated by the solvents. Demonstrations have been performed for the aggregation of colloid dispersions
Scannell, Kevin Patrick
that compact oriented orthochronous 2 + 1 AdS spacetime with non-empty spacelike boundary S a product S × [0, 1] and embeds in a domain of dependence. Is it possible to construct a singular AdS manifold with more than two constant curvature spacetime. (3) (Schlenker) Let M be a compact AdS cone manifold with m singular curves
Cirpka, Olaf Arie
of transverse dispersion (e.g. Grane and Gardner [1961]; Robbins [1989]) in which a quantity is measured
EXPONENTIAL INSTABILITY FOR A CLASS OF DISPERSING LUCHEZAR STOYANOV
of the manifold M . Let S t be the billiard flow on M (see [CFS]). Given x = (q; v) 2 M , the trajectory fl(x) = f [Si1], [Si3], [CFS], [DS], [BSC], [Ch], [CvE], [Wo] and the references there). The motivation
Well completion and servicing fluid
Grimsley, R.L.
1990-09-25
This patent describes a well completion servicing fluid for controlling formation pressure during completion or servicing of a well. It comprises: an aqueous solution of calcium chloride, a solid weighing agent suspended in the solution and being selected from the group consisting of zinc, zinc oxide, and mixtures thereof; and a viscosifier dissolved in the solution in an amount effective to suspend the weighing agent. The fluid has a density of greater than 15 pounds per gallon and being substantially free of bromide ions and being substantially free of solid material which is not soluble in hydrochloric acid.
Viscosity of a nucleonic fluid
Aram Z. Mekjian
2012-03-21
The viscosity of nucleonic matter is studied both classically and in a quantum mechanical description. The collisions between particles are modeled as hard sphere scattering as a baseline for comparison and as scattering from an attractive square well potential. Properties associated with the unitary limit are developed which are shown to be approximately realized for a system of neutrons. The issue of near perfect fluid behavior of neutron matter is remarked on. Using some results from hard sphere molecular dynamics studies near perfect fluid behavior is discussed further.
Wellbottom fluid implosion treatment system
Brieger, Emmet F. (HC 67 Box 58, Nogal, NM 88341)
2001-01-01
A system for inducing implosion shock forces on perforation traversing earth formations with fluid pressure where an implosion tool is selected relative to a shut in well pressure and a tubing pressure to have a large and small area piston relationship in a well tool so that at a predetermined tubing pressure the pistons move a sufficient distance to open an implosion valve which permits a sudden release of well fluid pressure into the tubing string and produces an implosion force on the perforations. A pressure gauge on the well tool records tubing pressure and well pressure as a function of time.
Fluid-solid contact vessel having fluid distributors therein
Jones, Jr., John B. (Rifle, CO)
1980-09-09
Rectangularly-shaped fluid distributors for large diameter, vertical vessels include reinforcers for high heat operation, vertical sides with gas distributing orifices and overhanging, sloped roofs. Devices are provided for cleaning the orifices from a buildup of solid deposits resulting from the reactions in the vessel.
DECOUPLED TIME STEPPING METHODS FOR FLUID-FLUID INTERACTION
Kasman, Alex
-fluid interaction, atmosphere-ocean, implicit-explicit method. 1. Introduction. The dynamic core in atmosphere-ocean to the coupled system using only (uncoupled) atmosphere and ocean solves, (see e.g. [4, 6, 17, 18, 19 their shared interface I by a rigid-lid coupling condition, i.e. no penetration and a slip with friction
Atmospheric Dispersion Effects in Weak Lensing Measurements
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Plazas, Andrés Alejandro; Bernstein, Gary
2012-10-01
The wavelength dependence of atmospheric refraction causes elongation of finite-bandwidth images along the elevation vector, which produces spurious signals in weak gravitational lensing shear measurements unless this atmospheric dispersion is calibrated and removed to high precision. Because astrometric solutions and PSF characteristics are typically calibrated from stellar images, differences between the reference stars' spectra and the galaxies' spectra will leave residual errors in both the astrometric positions (dr) and in the second moment (width) of the wavelength-averaged PSF (dv) for galaxies.We estimate the level of dv that will induce spurious weak lensing signals in PSF-corrected galaxy shapes that exceed themore »statistical errors of the DES and the LSST cosmic-shear experiments. We also estimate the dr signals that will produce unacceptable spurious distortions after stacking of exposures taken at different airmasses and hour angles. We also calculate the errors in the griz bands, and find that dispersion systematics, uncorrected, are up to 6 and 2 times larger in g and r bands,respectively, than the requirements for the DES error budget, but can be safely ignored in i and z bands. For the LSST requirements, the factors are about 30, 10, and 3 in g, r, and i bands,respectively. We find that a simple correction linear in galaxy color is accurate enough to reduce dispersion shear systematics to insignificant levels in the r band for DES and i band for LSST,but still as much as 5 times than the requirements for LSST r-band observations. More complex corrections will likely be able to reduce the systematic cosmic-shear errors below statistical errors for LSST r band. But g-band effects remain large enough that it seems likely that induced systematics will dominate the statistical errors of both surveys, and cosmic-shear measurements should rely on the redder bands.« less
Atmospheric Dispersion Effects in Weak Lensing Measurements
Plazas, Andrés Alejandro; Bernstein, Gary
2012-10-01
The wavelength dependence of atmospheric refraction causes elongation of finite-bandwidth images along the elevation vector, which produces spurious signals in weak gravitational lensing shear measurements unless this atmospheric dispersion is calibrated and removed to high precision. Because astrometric solutions and PSF characteristics are typically calibrated from stellar images, differences between the reference stars' spectra and the galaxies' spectra will leave residual errors in both the astrometric positions (dr) and in the second moment (width) of the wavelength-averaged PSF (dv) for galaxies.We estimate the level of dv that will induce spurious weak lensing signals in PSF-corrected galaxy shapes that exceed the statistical errors of the DES and the LSST cosmic-shear experiments. We also estimate the dr signals that will produce unacceptable spurious distortions after stacking of exposures taken at different airmasses and hour angles. We also calculate the errors in the griz bands, and find that dispersion systematics, uncorrected, are up to 6 and 2 times larger in g and r bands,respectively, than the requirements for the DES error budget, but can be safely ignored in i and z bands. For the LSST requirements, the factors are about 30, 10, and 3 in g, r, and i bands,respectively. We find that a simple correction linear in galaxy color is accurate enough to reduce dispersion shear systematics to insignificant levels in the r band for DES and i band for LSST,but still as much as 5 times than the requirements for LSST r-band observations. More complex corrections will likely be able to reduce the systematic cosmic-shear errors below statistical errors for LSST r band. But g-band effects remain large enough that it seems likely that induced systematics will dominate the statistical errors of both surveys, and cosmic-shear measurements should rely on the redder bands.
Effects of fluid dynamics on cleaning efficacy of supercritical fluids
Phelps, M.R.; Willcox, W.A.; Silva, L.J.; Butner, R.S.
1993-03-01
Pacific Northwest Laboratory (PNL) and Boeing Aerospace Company are developing a process to clean metal parts using a supercritical solvent. This work is part of an effort to address issues inhibiting the rapid commercialization of Supercritical Fluid Parts Cleaning (SFPC). PNL assembled a SFPC test stand to observe the relationship between the fluid dynamics of the system and the mass transfer of a contaminant from the surface of a contaminated metal coupon into the bulk fluid. The bench-scale test stand consists of a ``Berty`` autoclave modified for these tests and supporting hardware to achieve supercritical fluids parts cleaning. Three separate sets of tests were conducted using supercritical carbon dioxide. For the first two tests, a single stainless steel coupon was cleaned with organic solvents to remove surface residue, doped with a single contaminant, and then cleaned in the SFPC test stand. Contaminants studied were Dow Corning 200 fluid (dimethylpolysiloxane) and Castle/Sybron X-448 High-temperature Oil (a polybutane/mineral oil mixture). A set of 5-minute cleaning runs was conducted for each dopant at various autoclave impeller speeds. Test results from the first two sets of experiments indicate that precision cleaning for difficult-to-remove contaminants can be dramatically improved by introducing and increasing turbulence within the system. Metal coupons that had been previously doped with aircraft oil were used in a third set of tests. The coupons were placed in the SFPC test stand and subjected to different temperatures, pressures, and run times at a constant impeller speed. The cleanliness of each part was measured by Optically Stimulated Electron Emission. The third set of tests show that levels of cleanliness attained with supercritical carbon dioxide compare favorably with solvent and aqueous cleaning levels.
Effects of fluid dynamics on cleaning efficacy of supercritical fluids
Phelps, M.R.; Willcox, W.A.; Silva, L.J.; Butner, R.S.
1993-03-01
Pacific Northwest Laboratory (PNL) and Boeing Aerospace Company are developing a process to clean metal parts using a supercritical solvent. This work is part of an effort to address issues inhibiting the rapid commercialization of Supercritical Fluid Parts Cleaning (SFPC). PNL assembled a SFPC test stand to observe the relationship between the fluid dynamics of the system and the mass transfer of a contaminant from the surface of a contaminated metal coupon into the bulk fluid. The bench-scale test stand consists of a Berty'' autoclave modified for these tests and supporting hardware to achieve supercritical fluids parts cleaning. Three separate sets of tests were conducted using supercritical carbon dioxide. For the first two tests, a single stainless steel coupon was cleaned with organic solvents to remove surface residue, doped with a single contaminant, and then cleaned in the SFPC test stand. Contaminants studied were Dow Corning 200 fluid (dimethylpolysiloxane) and Castle/Sybron X-448 High-temperature Oil (a polybutane/mineral oil mixture). A set of 5-minute cleaning runs was conducted for each dopant at various autoclave impeller speeds. Test results from the first two sets of experiments indicate that precision cleaning for difficult-to-remove contaminants can be dramatically improved by introducing and increasing turbulence within the system. Metal coupons that had been previously doped with aircraft oil were used in a third set of tests. The coupons were placed in the SFPC test stand and subjected to different temperatures, pressures, and run times at a constant impeller speed. The cleanliness of each part was measured by Optically Stimulated Electron Emission. The third set of tests show that levels of cleanliness attained with supercritical carbon dioxide compare favorably with solvent and aqueous cleaning levels.
Pope, Christopher
Geometry and Group Theory ABSTRACT In this course, we develop the basic notions of Manifolds and Geometry, with applications in physics, and also we develop the basic notions of the theory of Lie Groups . . . . . . . . . . . . . . . . . . . . . 66 2 General Relativity; Einstein's Theory of Gravitation 73 2.1 The Equivalence Principle
Lapeyre, Guillaume
Comment on ``Finding finite-time invariant manifolds in two-dimensional velocity fields'' Chaos 10 for transport and mixing in periodic and aperi- odic flows. For aperiodic two-dimensional flows, several the hyperbolic point. He further claims that this is generally sufficient to accurately identify the hyper- bolic
Wisconsin at Madison, University of
for constructing wavelets on manifolds using a complicated machinery employed in previous studies [6, 7]. Although as a solution to penalized regressions, which significantly differ from our framework that does not have any] that projects the statistical results to a surface for interpretation. 2 Kernel Regression and Wavelets
Fern, Xiaoli Zhang
of organization. Audio classification systems typically begin by extract- ing acoustic features from audio signalsAudio Classification of Bird Species: a Statistical Manifold Approach Forrest Briggs, Raviv Raich}@eecs.oregonstate.edu Abstract Our goal is to automatically identify which species of bird is present in an audio recording using
Pless, Robert
Manifold Learning for 4D CT Reconstruction of the Lung Manfred Georg*, Richard Souvenir, Andrew, Canada Andrew.Hope@rmp.uhn.on.ca Abstract Computed Tomography is used to create models of lung dynamics because it provides high contrast images of lung tissue. Creating 4D CT models which capture dynamics
Compressor bleed cooling fluid feed system
Donahoo, Eric E; Ross, Christopher W
2014-11-25
A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.
$SO(10)$ Grand Unification from $M$ theory on a $G_2$ manifold
Miguel Crispim Romão
2015-02-20
We consider Grand Unified Theories based on $SO(10)$ which originate from $M$ theory on $G_2$ manifolds. In this framework we are naturally led to a novel solution of the doublet-triplet splitting problem involving an extra $\\overline{{\\bf 16}}_X+{\\bf 16}_X$ vector-like pair by considering discrete symmetries of the extra dimensions and preserving unification. Since Wilson line breaking preserves the rank of the gauge group, the necessary $U(1)$ gauge breaking is generated from extra multiplets. The main prediction of the approach is the existence of light states with the quantum numbers of a $\\overline{{\\bf 16}}_X+{\\bf 16}_X$ vector-like pair which could show up in future LHC searches.
$SO(10)$ Grand Unification from $M$ theory on a $G_2$ manifold
Romão, Miguel Crispim
2015-01-01
We consider Grand Unified Theories based on $SO(10)$ which originate from $M$ theory on $G_2$ manifolds. In this framework we are naturally led to a novel solution of the doublet-triplet splitting problem involving an extra $\\overline{{\\bf 16}}_X+{\\bf 16}_X$ vector-like pair by considering discrete symmetries of the extra dimensions and preserving unification. Since Wilson line breaking preserves the rank of the gauge group, the necessary $U(1)$ gauge breaking is generated from extra multiplets. The main prediction of the approach is the existence of light states with the quantum numbers of a $\\overline{{\\bf 16}}_X+{\\bf 16}_X$ vector-like pair which could show up in future LHC searches.
Solid oxide fuel cell having monolithic cross flow core and manifolding
Poeppel, R.B.; Dusek, J.T.
1983-10-12
This invention discloses a monolithic core construction having the flow passageways for the fuel and for the oxidant gases extended transverse to one another, whereby full face core manifolding can be achieved for these gases and their reaction products. The core construction provides that only anode material surround each fuel passageway and only cathode material surround each oxidant passageway, each anode and each cathode further sandwiching at spaced opposing sides electrolyte and interconnect materials to define electrolyte and interconnect walls. Webs of the cathode and anode material hold the electrolyte and interconnect walls spaced apart to define the flow passages. The composite anode and cathode wall structures are further alternately stacked on one another (with the separating electrolyte or interconnect material typically being a single common layer) whereby the fuel passageways and the oxidant passageways are disposed transverse to one another.
Numerical Computation of the Stable and Unstable Manifolds of Invariant Tori
Derin B. Wysham; James D. Meiss
2005-04-26
We develop an iterative technique for computing the unstable and stable eigenfunctions of the invariant tori of diffeomorphisms. Using the approach of Jorba, the linearized equations are rewritten as a generalized eigenvalue problem. Casting the system in this light allows us to take advantage of the speed of eigenvalue solvers and create an efficient method for finding the first order approximations to the invariant manifolds of the torus. We present a numerical scheme based on the power method that can be used to determine the behavior normal to such tori, and give some examples of the application of the method. We confirm the qualitative conclusions of the Melnikov calculations of Lomel\\'i and Meiss (2003) for a volume-preserving mapping.
Solid oxide fuel cell having monolithic cross flow core and manifolding
Poeppel, Roger B. (Glen Ellyn, IL); Dusek, Joseph T. (Downers Grove, IL)
1984-01-01
This invention discloses a monolithic core construction having the flow passageways for the fuel and for the oxidant gases extended transverse to one another, whereby full face core manifolding can be achieved for these gases and their reaction products. The core construction provides that only anode material surround each fuel passageway and only cathode material surround each oxidant passageway, each anode and each cathode further sandwiching at spaced opposing sides electrolyte and interconnect materials to define electrolyte and interconnect walls. Webs of the cathode and anode material hold the electrolyte and interconnect walls spaced apart to define the flow passages. The composite anode and cathode wall structures are further alternately stacked on one another (with the separating electrolyte or interconnect material typically being a single common layer) whereby the fuel passageway and the oxidant passageways are disposed transverse to one another.
Self-organized manifold learning and heuristic charting via adaptive metrics
Horvath, Denis; Brutovsky, Branislav
2014-01-01
Classical metric and non-metric multidimensional scaling (MDS) variants are widely known manifold learning (ML) methods which enable construction of low dimensional representation (projections) of high dimensional data inputs. However, their use is crucially limited to the cases when data are inherently reducible to low dimensionality. In general, drawbacks and limitations of these, as well as pure, MDS variants become more apparent when the exploration (learning) is exposed to the structured data of high intrinsic dimension. As we demonstrate on artificial and real-world datasets, the over-determination problem can be solved by means of the hybrid and multi-component discrete-continuous multi-modal optimization heuristics. Its remarkable feature is, that projections onto 2D are constructed simultaneously with the data categorization (classification) compensating in part for the loss of original input information. We observed, that the optimization module integrated with ML modeling, metric learning and categ...
Manifold, bus support and coupling arrangement for solid oxide fuel cells
Parry, G.W.
1988-04-21
Individual, tubular solid oxide fuel cells (SOFCs) are assembled into bundles called a module within a housing, with a plurality of modules arranged end-to-end in a linear, stacked configuration called a string. A common set of piping comprised of a suitable high temperature resistant material (1) provides fuel and air to each module housing, (2) serves as electrically conducting buses, and (3) provides structural support for a string of SOFC modules. Ceramic collars are used to connect fuel and air inlet piping to each of the electrodes in an SOFC module and provide (1) electrical insulation for the current carrying bus bars and gas manifolds, (2) damping for the fuel and air inlet piping, and (3) proper spacing between the fuel and air inlet piping to prevent contact between these tubes and possible damage to the SOFC. 11 figs.
P. M. Sutter; Tsunefumi Tanaka
2006-10-11
Although the observed universe appears to be geometrically flat, it could have one of 18 global topologies. A constant-time slice of the spacetime manifold could be a torus, Mobius strip, Klein bottle, or others. This global topology of the universe imposes boundary conditions on quantum fields and affects the vacuum energy density via Casimir effect. In a spacetime with such a nontrivial topology, the vacuum energy density is shifted from its value in a simply-connected spacetime. In this paper, the vacuum expectation value of the stress-energy tensor for a massless scalar field is calculated in all 17 multiply-connected, flat and homogeneous spacetimes with different global topologies. It is found that the vacuum energy density is lowered relative to the Minkowski vacuum level in all spacetimes and that the stress-energy tensor becomes position-dependent in spacetimes that involve reflections and rotations.
Fluid flow effects on electroplating
Kirkpatrick, J.R.
1990-09-01
The effects of fluid flow patterns on the electroplating of rotating cylindrically symmetric objects are examined. Ways are outlined for preventing undesirable spiral patterns on the plated surface. Estimates are given for the diffusion boundary later thickness for cylinders, disks, spheres, and cones. 16 refs., 7 figs., 1 tab.
Directed flow fluid rinse trough
Kempka, Steven N. (9504 Lona La., Albuquerque, NM 87111); Walters, Robert N. (11872 LaGrange St., Boise, ID 83709)
1996-01-01
Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs.
Directed flow fluid rinse trough
Kempka, S.N.; Walters, R.N.
1996-07-02
Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs. 9 figs.
Petroleum Engineering 310 Reservoir Fluids
of oilfield brine properties: Salinity, Bubble Point, formation volume factor, density and solution gas water12 Petroleum Engineering 310 Reservoir Fluids Credit 4: (3-3) Required for Juniors Catalog: Gas Formation Volume Factor. Viscosity. Wet Gas Gravity and Isothermal Compressibility. 5. Definition
Flow Equations for Uplifting Half-Flat to Spin(7) Manifolds
Aalok Misra
2006-01-28
In this short supplement to [1], we discuss the uplift of half-flat six-folds to Spin(7) eight-folds by fibration of the former over a product of two intervals. We show that the same can be done in two ways - one, such that the required Spin(7) eight-fold is a double G_2 seven-fold fibration over an interval, the G_2 seven-fold itself being the half-flat six-fold fibered over the other interval, and second, by simply considering the fibration of the half-flat six-fold over a product of two intervals. The flow equations one gets are an obvious generalization of the Hitchin's flow equations (to obtain seven-folds of G_2 holonomy from half-flat six-folds [2]). We explicitly show the uplift of the Iwasawa using both methods, thereby proposing the form of the new Spin(7) metrics. We give a plausibility argument ruling out the uplift of the Iwasawa manifold to a Spin(7) eight fold at the "edge", using the second method. For $Spin(7)$ eight-folds of the type $X_7\\times S^1$, $X_7$ being a seven-fold of SU(3) structure, we motivate the possibility of including elliptic functions into the "shape deformation" functions of seven-folds of SU(3) structure of [1] via some connections between elliptic functions, the Heisenberg group, theta functions, the already known $D7$-brane metric [3] and hyper-K\\"{a}hler metrics obtained in twistor spaces by deformations of Atiyah-Hitchin manifolds by a Legendre transform in [4].
Drug transport in brain via the cerebrospinal fluid
Pardridge, William M
2011-01-01
diffusion. Drug transport into cerebrospinal fluid vs. brainDrug transport from blood to interstitial fluid (ISF) isDrug transport in brain via the cerebrospinal fluid William
Formulation of the Chip Cleanability Mechanics from fluid transport
Garg, Saurabh; Dornfeld, David; Berger, K.
2009-01-01
Mechanics from Fluid Transport Author: Garg, Saurabh,Mechanics from fluid transport", International Conference onsimply relying on the fluid transport energy of high
Helium measurements of pore-fluids obtained from SAFOD drillcore
Ali, S.
2010-01-01
ionized water (DI) as drilling fluid. This procedure avoidsbeen contaminated with drilling fluids during recovery ofenough fluid inflow throughout scheduled drilling phases to
Heat Transfer in Complex Fluids
Mehrdad Massoudi
2012-01-01
Amongst the most important constitutive relations in Mechanics, when characterizing the behavior of complex materials, one can identify the stress tensor T, the heat flux vector q (related to heat conduction) and the radiant heating (related to the radiation term in the energy equation). Of course, the expression 'complex materials' is not new. In fact, at least since the publication of the paper by Rivlin & Ericksen (1955), who discussed fluids of complexity (Truesdell & Noll, 1992), to the recently published books (Deshpande et al., 2010), the term complex fluids refers in general to fluid-like materials whose response, namely the stress tensor, is 'non-linear' in some fashion. This non-linearity can manifest itself in variety of forms such as memory effects, yield stress, creep or relaxation, normal-stress differences, etc. The emphasis in this chapter, while focusing on the constitutive modeling of complex fluids, is on granular materials (such as coal) and non-linear fluids (such as coal-slurries). One of the main areas of interest in energy related processes, such as power plants, atomization, alternative fuels, etc., is the use of slurries, specifically coal-water or coal-oil slurries, as the primary fuel. Some studies indicate that the viscosity of coal-water mixtures depends not only on the volume fraction of solids, and the mean size and the size distribution of the coal, but also on the shear rate, since the slurry behaves as shear-rate dependent fluid. There are also studies which indicate that preheating the fuel results in better performance, and as a result of such heating, the viscosity changes. Constitutive modeling of these non-linear fluids, commonly referred to as non-Newtonian fluids, has received much attention. Most of the naturally occurring and synthetic fluids are non-linear fluids, for example, polymer melts, suspensions, blood, coal-water slurries, drilling fluids, mud, etc. It should be noted that sometimes these fluids show Newtonian (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a given temperature, an increase in {zeta} implies that the activation energy is smaller and thus, the reaction ra
2015 GRADUATE STUDIES ENVIRONMENTAL FLUID MECHANICS
· Climate change and impact assessments Environmental Fluid Mechanics and Hydraulic Engi- neering research generated by winds, landslide, avalanche, or earthquake · Marine Hydrokinetic Energy · Circulation2015 GRADUATE STUDIES ENVIRONMENTAL FLUID MECHANICS AND WATER RESOURCES ENGINEERING RESEARCH AREAS
Fluid&ParticulateSystems 424514/2010
Zevenhoven, Ron
" Ron Zevenhoven ÅA Thermal and Flow Engineering ron.zevenhoven@abo.fi 9Fluid&ParticulateSystems 424514 Being often a low temperature process, better energy economy than, for example, distillation Fluid
Fluid sampling system for a nuclear reactor
Lau, L.K.; Alper, N.I.
1994-11-22
A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump. 1 fig.
Fluid sampling system for a nuclear reactor
Lau, Louis K. (Monroeville, PA); Alper, Naum I. (Monroeville, PA)
1994-01-01
A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump.
Quantifying the stimuli of photorheological fluids
Bates, Sarah Woodring
2010-01-01
We develop a model to predict the dynamics of photorheological fluids and, more generally, photoresponsive fluids for monochromatic and polychromatic light sources. Derived from first principles, the model relates the ...
Fluid&ParticulateSystems 424514/2010
Zevenhoven, Ron
· A c c s s S S-1 S S-1 ),,( ),,( 1 )1( fluid csfluid csfluid s s c c fluid SSf whereSSfV S S S Sw Vw
Locating an atmospheric contamination source using slow manifolds Wenbo Tang,1
Tang, Wenbo
-dimensional atmospheric wind field in an urban street canyon. © 2009 American Institute of Physics. DOI: 10 in the limit of infinitesimally small particle size. Because of this singularity, finding the source of a dispersed set of small particles is a numerically ill-posed problem that leads to exponential blowup. Here
Ultrasonic fluid densitometer for process control
Greenwood, Margaret S. (Richland, WA)
2000-01-01
The present invention is an ultrasonic fluid densitometer that uses at least one pair of transducers for transmitting and receiving ultrasonic signals internally reflected within a material wedge. A temperature sensor is provided to monitor the temperature of the wedge material. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface and comparing a transducer voltage and wedge material temperature to a tabulation as a function of density.
INTRODUCTION TO FLUID MECHANICS Spring 2011
Bahrami, Majid
Experiment 3: Basics of Fluid Mechanics, Friction in Laminar and Turbulent Pipe Flow Experiment:20, Wed 2:30 5:20, Fri 8:30 11:20, Lab 4302 Course Outline: Properties of fluids. Basic flow1 ENSC 283 INTRODUCTION TO FLUID MECHANICS Spring 2011 Instructor: Dr. Majid Bahrami 4372
Foundations of Fluid Mechanics Giovanni Gallavotti
Roma "La Sapienza", Università di
1 Foundations of Fluid Mechanics Giovanni Gallavotti 4 Roma 2000 20/novembre/2011; 22:03 #12, harmonic analysis, elasticity, general relativity or fluid mechanics and chaos in turbulence. So that when in 1988 I was made chair of Fluid Mechanics at the Universit`a La Sapienza, not to recognize work I did
MECH 502: Fluid Mechanics Winter semester 2010
Phani, A. Srikantha
MECH 502: Fluid Mechanics Winter semester 2010 Instructor: I.A. Frigaard Times: Tuesdays week of semester. Location: CHBE 103 Synopsis: This course will focus primarily on fluid mechanics will be to look at fluid mechanics fundamentals, and at the mathematical modeling & analysis of simplified flow
New Methods to Transport Fluids in
Herr, Hugh
New Methods to Transport Fluids in Micro-Sized Devices Shaun Berry and Jakub Kedzierski control and transport fluid in micro-sized structures presents its own unique set of challenges fluidic operations that are essential to the functionality of the system-- such as fluid transport, mixing
SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW
Santos, Juan
SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW J. E. Santos1, G. B. Savioli2, J. M. Carcione3, D´e, Argentina SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW p. #12;Introduction. I Storage of CO2). SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW p. #12;Introduction. II CO2 is separated from natural
SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW
Santos, Juan
SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW J. E. Santos1 1 Department of Mathematics, Purdue University, USA Purdue University, March 1rst, 2013 SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW p. #12 (North Sea). SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW p. #12;Introduction. II CO2 is separated
Modeling and Algorithmic Approaches to Constitutively-Complex, Micro-structured Fluids
Forest, Mark Gregory [University of North Carolina at Chapel Hill] [University of North Carolina at Chapel Hill
2014-05-06
The team for this Project made significant progress on modeling and algorithmic approaches to hydrodynamics of fluids with complex microstructure. Our advances are broken down into modeling and algorithmic approaches. In experiments a driven magnetic bead in a complex fluid accelerates out of the Stokes regime and settles into another apparent linear response regime. The modeling explains the take-off as a deformation of entanglements, and the longtime behavior is a nonlinear, far-from-equilibrium property. Furthermore, the model has predictive value, as we can tune microstructural properties relative to the magnetic force applied to the bead to exhibit all possible behaviors. Wave-theoretic probes of complex fluids have been extended in two significant directions, to small volumes and the nonlinear regime. Heterogeneous stress and strain features that lie beyond experimental capability were studied. It was shown that nonlinear penetration of boundary stress in confined viscoelastic fluids is not monotone, indicating the possibility of interlacing layers of linear and nonlinear behavior, and thus layers of variable viscosity. Models, algorithms, and codes were developed and simulations performed leading to phase diagrams of nanorod dispersion hydrodynamics in parallel shear cells and confined cavities representative of film and membrane processing conditions. Hydrodynamic codes for polymeric fluids are extended to include coupling between microscopic and macroscopic models, and to the strongly nonlinear regime.
Positive and negative effects of dielectric breakdown in transformer oil based magnetic fluids
Lee, Jong-Chul, E-mail: jclee01@gwnu.ac.kr [School of Mechanical and Automotive Engineering, Gangneung-Wonju National University, Wonju 220711 (Korea, Republic of)] [School of Mechanical and Automotive Engineering, Gangneung-Wonju National University, Wonju 220711 (Korea, Republic of); Lee, Won-Ho [Graduate School of Automotive Engineering, Gangneung-Wonju National University, Wonju 220711 (Korea, Republic of)] [Graduate School of Automotive Engineering, Gangneung-Wonju National University, Wonju 220711 (Korea, Republic of); Lee, Se-Hee [Department of Electrical Engineering, Kyungpook National University, Daegu 702701 (Korea, Republic of)] [Department of Electrical Engineering, Kyungpook National University, Daegu 702701 (Korea, Republic of); Lee, Sangyoup, E-mail: sangyoup@kist.re.kr [Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136791 (Korea, Republic of)] [Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136791 (Korea, Republic of)
2012-10-15
The transformer oil based magnetic fluids can be considered as the next-generation insulation fluids because they offer exciting new possibilities to enhance dielectric breakdown voltage as well as heat transfer performance compared to pure transformer oils. In this study, we have investigated the dielectric breakdown strength of the fluids with the various volume concentrations of nanoparticles in accordance with IEC 156 standard and have tried to find the reason for changing the dielectric breakdown voltage of the fluids from the magnetic field analysis. It was found that the dielectric breakdown voltage of pure transformer oil is around 12 kV with the gap distance of 1.5 mm. In the case of our transformer oil-based magnetic fluids with 0.08% < ? < 0.6% (? means the volume concentration of magnetic nanoparticles), the dielectric breakdown voltage shows above 40 kV, which is 3.3 times higher positively than that of pure transformer oil. Negatively in the case when the volume concentration of magnetic nanoparticles is above 0.65%, the dielectric breakdown voltage decreases reversely. From the magnetic field analysis, the reason might be considered as two situations: the positive is for the conductive nanoparticles dispersed well near the electrodes, which play an important role in converting fast electrons to slow negatively charged particles, and the negative is for the agglomeration of the particles near the electrodes, which leads to the breakdown initiation.
PHYSICS OF FLUIDS 24, 043102 (2012) A numerical investigation of the fluid mechanical
Audoly, Basile
2012-01-01
PHYSICS OF FLUIDS 24, 043102 (2012) A numerical investigation of the fluid mechanical sewing or jet of liquid falling onto a fixed surface is one of the simplest situations in fluid mechanics, yet by Chiu-Webster and Lister9 (henceforth CWL), who called it the "fluid mechanical sewing machine
Transport in inhomogeneous quantum critical fluids and in the Dirac fluid in graphene
-impurity scattering. We use this formalism to compute transport coe cients in the Dirac fluid in clean sampleseaster egg Transport in inhomogeneous quantum critical fluids and in the Dirac fluid in graphene-perturbative in the strength of long wavelength fluctuations in the background charge density of the electronic fluid
Zevenhoven, Ron
Introduction to Computational Fluid Dynamics 424512 E #1 - rz Introduction to Computational Fluid to Computational Fluid Dynamics 424512 E #1 - rz maj 2015 Åbo Akademi Univ - Thermal and Flow Engineering - Piispankatu 8, 20500 Turku 2 / 68 1.0 Course content / Time table #12;Introduction to Computational Fluid
Hyper dispersion pulse compressor for chirped pulse amplification systems
Barty, Christopher P. J. (Hayward, CA)
2011-11-29
A grating pulse compressor configuration is introduced for increasing the optical dispersion for a given footprint and to make practical the application for chirped pulse amplification (CPA) to quasi-narrow bandwidth materials, such as Nd:YAG. The grating configurations often use cascaded pairs of gratings to increase angular dispersion an order of magnitude or more. Increased angular dispersion allows for decreased grating separation and a smaller compressor footprint.
A Smooth Interface Method for Simulating Liquid Crystal Colloid Dispersions
Ryoichi Yamamoto; Yasuya Nakayama; Kang Kim
2003-10-30
A new method is presented for mesoscopic simulations of particle dispersions in liquid crystal solvents. It allows efficient first-principle simulations of the dispersions involving many particles with many-body interactions mediated by the solvents. Demonstrations have been performed for the aggregation of colloid dispersions in two-dimensional nematic and smectic-C* solvents neglecting hydrodynamic effects, which will be taken into account in the near future.
Process for producing dispersed particulate composite materials
Henager, Jr., Charles H. (Richland, WA); Hirth, John P. (Viola, ID)
1995-01-01
This invention is directed to a process for forming noninterwoven dispersed particulate composite products. In one case a composite multi-layer film product comprises a substantially noninterwoven multi-layer film having a plurality of discrete layers. This noninterwoven film comprises at least one discrete layer of a first material and at least one discrete layer of a second material. In another case the first and second materials are blended together with each other. In either case, the first material comprises a metalloid and the second material a metal compound. At least one component of a first material in one discrete layer undergoes a solid state displacement reaction with at least one component of a second material thereby producing the requisite noninterwoven composite film product. Preferably, the first material comprises silicon, the second material comprises Mo.sub.2 C, the third material comprises SiC and the fourth material comprises MoSi.sub.2.
Dispersion compensation in chirped pulse amplification systems
Bayramian, Andrew James; Molander, William A.
2014-07-15
A chirped pulse amplification system includes a laser source providing an input laser pulse along an optical path. The input laser pulse is characterized by a first temporal duration. The system also includes a multi-pass pulse stretcher disposed along the optical path. The multi-pass pulse stretcher includes a first set of mirrors operable to receive input light in a first plane and output light in a second plane parallel to the first plane and a first diffraction grating. The pulse stretcher also includes a second set of mirrors operable to receive light diffracted from the first diffraction grating and a second diffraction grating. The pulse stretcher further includes a reflective element operable to reflect light diffracted from the second diffraction grating. The system further includes an amplifier, a pulse compressor, and a passive dispersion compensator disposed along the optical path.
Method for dispersing catalyst onto particulate material
Utz, Bruce R. (Pittsburgh, PA); Cugini, Anthony V. (Pittsburgh, PA)
1992-01-01
A method for dispersing finely divided catalyst precursors onto the surface of coal or other particulate material includes the steps of forming a wet paste mixture of the particulate material and a liquid solution containing a dissolved transition metal salt, for instance a solution of ferric nitrate. The wet paste mixture is in a state of incipient wetness with all of this solution adsorbed onto the surfaces of the particulate material without the presence of free moisture. On adding a precipitating agent such as ammonia, a catalyst precursor such as hydrated iron oxide is deposited on the surfaces of the coal. The catalyst is activated by converting it to the sulfide form for the hydrogenation or direct liquefaction of the coal.
Powder diffraction studies using anomalous dispersion
Cox, D.E. [Brookhaven National Lab., Upton, NY (United States); Wilkinson, A.P. [California Univ., Santa Barbara, CA (United States). Dept. of Materials
1993-05-01
With the increasing availability and accessibility of high resolution powder diffractometers at many synchrotron radiation sources throughout the world, there is rapidly-growing interest in the exploitation of anomalous dispersion techniques for structural studies of polycrystalline materials. In conjunction with the Rietveld profile method for structure refinement, such studies are especially useful for the determination of the site distributions of two or more atoms which are near neighbors in the periodic table, or atoms which are distributed among partially occupied sites. Additionally, it is possible to (1) determine the mean-square displacements associated with different kinds of atoms distributed over a single set of sites, (2) distinguish between different oxidation states and coordination geometries of a particular atom in a compound and (3) to determine f` for a wide range of atomic species as a function of energy in the vicinity of an absorption edge. Experimental methods for making anomalous dispersion measurements are described in some detail, including data collection strategies, data analysis and correlation problems, possible systematic errors, and the accuracy of the results. Recent work in the field is reviewed, including cation site-distribution studies (e.g. doped high {Tc} superconductors, ternary alloys, FeCo{sub 2}(PO{sub 4}){sub 3}, FeNi{sub 2}BO{sub 5}), oxidation-state contrast (e.g. YBa{sub 2}Cu{sub 3}O{sub 6+x}, Eu{sub 3}O{sub 4}, GaCl{sub 2}, Fe{sub 2}PO{sub 5}), and the effect of coordination geometry (e.g. Y{sub 3}Ga{sub 5}O{sub l2}).
Powder diffraction studies using anomalous dispersion
Cox, D.E. (Brookhaven National Lab., Upton, NY (United States)); Wilkinson, A.P. (California Univ., Santa Barbara, CA (United States). Dept. of Materials)
1993-01-01
With the increasing availability and accessibility of high resolution powder diffractometers at many synchrotron radiation sources throughout the world, there is rapidly-growing interest in the exploitation of anomalous dispersion techniques for structural studies of polycrystalline materials. In conjunction with the Rietveld profile method for structure refinement, such studies are especially useful for the determination of the site distributions of two or more atoms which are near neighbors in the periodic table, or atoms which are distributed among partially occupied sites. Additionally, it is possible to (1) determine the mean-square displacements associated with different kinds of atoms distributed over a single set of sites, (2) distinguish between different oxidation states and coordination geometries of a particular atom in a compound and (3) to determine f' for a wide range of atomic species as a function of energy in the vicinity of an absorption edge. Experimental methods for making anomalous dispersion measurements are described in some detail, including data collection strategies, data analysis and correlation problems, possible systematic errors, and the accuracy of the results. Recent work in the field is reviewed, including cation site-distribution studies (e.g. doped high [Tc] superconductors, ternary alloys, FeCo[sub 2](PO[sub 4])[sub 3], FeNi[sub 2]BO[sub 5]), oxidation-state contrast (e.g. YBa[sub 2]Cu[sub 3]O[sub 6+x], Eu[sub 3]O[sub 4], GaCl[sub 2], Fe[sub 2]PO[sub 5]), and the effect of coordination geometry (e.g. Y[sub 3]Ga[sub 5]O[sub l2]).
Update 5 to: A Dispersion Modeling Analysis of Downwash from...
Broader source: Energy.gov (indexed) [DOE]
Update 5 to: A Dispersion Modeling Analysis of Downwash from Mirant's Potomac River Power Plant: Modeling Cycling Units 1, 2 plus One Baseload Unit More Documents & Publications...
Update 4 to: A Dispersion Modeling Analysis of Downwash from...
Broader source: Energy.gov (indexed) [DOE]
Update 4 to: A Dispersion Modeling Analysis of Downwash from Mirant's Potomac River Power Plant, Modeling Unit 4 Emissions at Maximum and Minimum Loads More Documents &...
Electronic dispersion in two overlapping graphene sheets: Impacts...
Office of Scientific and Technical Information (OSTI)
Conference: Electronic dispersion in two overlapping graphene sheets: Impacts of long-range atomic ordering and periodic potentials. Citation Details In-Document Search Title:...
Dispersivity estimates from a tracer experiment in a sandy aquifer
Mallants, D.; Espino, A.; Van Hoorick, M.; Feyen, J.; Vandenberghe, N.; Loy, W.
2000-04-01
The success or failure of transport models in predicting the migration of a contaminant plume is ground water depends to a large extent on the quality of flow and transport parameters used. In this study, the authors investigate the spatial variability in the tracer velocity and dispersivity in a shallow sandy aquifer in northern Belgium. Based on hydraulic conductivity measurements on cores sampled along a vertical profile, the aquifer was found to be mildly heterogeneous, i.e., with the variance of the log-transformed conductivity K, {sigma}{sup 2}{sub lnK}, equal to 0.22. By means of a natural gradient tracer experiment, transport of a chloride tracer was investigated in a three-dimensional network of multilevel point samplers (MLS). Least squares fitting of a two-dimensional transport model to the individual breakthrough curves resulted in an average longitudinal dispersivity that was 10 times larger than the transverse dispersivity. The results further showed the existence of a dispersion-scale effect whereby the depth-averaged longitudinal dispersivity increases with increasing travel distance. The average longitudinal dispersivity corresponding to a travel distance of 10 m was equal to 0.2 m. The authors finally show that theoretical expressions for the macroscopic dispersivity tensor, which require input on hydraulic conductivity heterogeneity, could be used here to approximate the observed dispersive behavior. These conceptually simple models are useful to estimate macroscopic dispersivities when no tracer data are available.
Transport coefficients of gluonic fluid
Santosh K Das; Jan-e Alam
2011-06-14
The shear ($\\eta$) and bulk ($\\zeta$) viscous coefficients have been evaluated for a gluonic fluid. The elastic, $gg \\rightarrow gg$ and the inelastic, number non-conserving, $gg\\rightarrow ggg$ processes have been considered as the dominant perturbative processes in evaluating the viscous co-efficients to entropy density ($s$) ratios. Recently the processes: $gg \\rightarrow ggg$ has been revisited and a correction to the widely used Gunion-Bertsch (GB) formula has been obtained. The $\\eta$ and $\\zeta$ have been evaluated for gluonic fluid with the formula derived recently. The sensitivity of the quantity, $\\eta/s$ on the running coupling constant is also discussed. At $\\alpha_s=0.3$ we get $\\eta/s=0.24$ which is close to the value obtained from the analysis of the elliptic flow at RHIC experiments.
Ellipsoidal particles at fluid interfaces
H. Lehle; E. Noruzifar; M. Oettel
2008-01-18
For partially wetting, ellipsoidal colloids trapped at a fluid interface, their effective, interface--mediated interactions of capillary and fluctuation--induced type are analyzed. For contact angles different from 90$^o$, static interface deformations arise which lead to anisotropic capillary forces that are substantial already for micrometer--sized particles. The capillary problem is solved using an efficient perturbative treatment which allows a fast determination of the capillary interaction for all distances between and orientations of two particles. Besides static capillary forces, fluctuation--induced forces caused by thermally excited capillary waves arise at fluid interfaces. For the specific choice of a spatially fixed three--phase contact line, the asymptotic behavior of the fluctuation--induced force is determined analytically for both the close--distance and the long--distance regime and compared to numerical solutions.
Three-wave interactions of dispersive plasma waves propagating parallel to the magnetic field
F. Spanier; R. Vainio
2008-10-31
Three-wave interactions of plasma waves propagating parallel to the mean magnetic field at frequencies below the electron cyclotron frequency are considered. We consider Alfv\\'en--ion-cyclotron waves, fast-magnetosonic--whistler waves, and ion-sound waves. Especially the weakly turbulent low-beta plasmas like the solar corona are studied, using the cold-plasma dispersion relation for the transverse waves and the fluid-description of the warm plasma for the longitudinal waves. We analyse the resonance conditions for the wave frequencies $\\omega$ and wavenumbers $k$, and the interaction rates of the waves for all possible combinations of the three wave modes, and list those reactions that are not forbidden.
Electrokinetic micro-fluid mixer
Paul, Phillip H. (Livermore, CA); Rakestraw, David J. (Fremont, CA)
2000-01-01
A method and apparatus for efficiently and rapidly mixing liquids in a system operating in the creeping flow regime such as would be encountered in capillary-based systems. By applying an electric field to each liquid, the present invention is capable of mixing together fluid streams in capillary-based systems, where mechanical or turbulent stirring cannot be used, to produce a homogeneous liquid.
Fischer-Tropsch synthesis in supercritical fluids. Final report
Akgerman, A.; Bukur, D.B.
1998-12-31
The objective of this study was to investigate Fischer-Tropsch Synthesis (FTS) in the supercritical phase employing a commercial precipitated iron catalysts. As the supercritical fluid the authors used propane and n-hexane. The catalyst had a nominal composition of 100 Fe/5 Cu/4.2 K/25 SiO{sub 2} on mass basis and was used in a fixed bed reactor under both normal (conventional) and supercritical conditions. Experimental data were obtained at different temperatures (235 C, 250 C, and 260 C) and synthesis gas feed compositions (H{sub 2}/CO molar feed ratio of 0.67, 1.0 and 2.0) in both modes of operation under steady state conditions. The authors compared the performance of the precipitated iron catalyst in the supercritical phase, with the data obtained in gas phase (fixed bed reactor) and slurry phase (STS reactor). Comparisons were made in terms of bulk catalyst activity and various aspects of product selectivity (e.g. lumped hydrocarbon distribution and olefin content as a function of carbon number). In order to gain better understanding of the role of intraparticle mass transfer during FTS under conventional or supercritical conditions, the authors have measured diffusivities of representative hydrocarbon products in supercritical fluids, as well as their effective diffusion rates into the pores of catalyst at the reaction conditions. They constructed a Taylor dispersion apparatus to measure diffusion coefficients of hydrocarbon products of FTS in sub and supercritical ethane, propane, and hexane. In addition, they developed a tracer response technique to measure the effective diffusivities in the catalyst pores at the same conditions. Based on these results they have developed an equation for prediction of diffusion in supercritical fluids, which is based on the rough hard sphere theory.
Hydrostatic bearings for a turbine fluid flow metering device
Fincke, J.R.
1982-05-04
A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion. 3 figs.
Gary D. Bourn; Ford A. Phillips; Ralph E. Harris
2005-12-01
This document provides results and conclusions for Task 15.0--Detailed Analysis of Air Balance & Conceptual Design of Improved Air Manifolds in the ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure'' project. SwRI{reg_sign} is conducting this project for DOE in conjunction with Pipeline Research Council International, Gas Machinery Research Council, El Paso Pipeline, Cooper Compression, and Southern Star, under DOE contract number DE-FC26-02NT41646. The objective of Task 15.0 was to investigate the perceived imbalance in airflow between power cylinders in two-stroke integral compressor engines and develop solutions via manifold redesign. The overall project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity.
Xu, Tianfu; Pruess, Karsten; Apps, John
2008-01-01
instead of water as heat transmission fluid. Initial studies2 ) instead of water as heat transmission fluid, and would
ORIGINAL ARTICLE Dispersal in microbes: fungi in indoor air are
ORIGINAL ARTICLE Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA The indoor microbiome is a complex system that is thought to depend on dispersal from the outdoor biome and the occupants' microbiome
Passive Tracer Dispersion with Random or Periodic Source \\Lambda
Passive Tracer Dispersion with Random or Periodic Source \\Lambda Jinqiao Duan Clemson University sources on the pattern formation and longÂtime behavior of concentration proÂ files of passive tracers Introduction The dispersion of passive tracers (or passive scalars) occur in various geoÂ physical
Passive Tracer Dispersion with Random or Periodic Source
Passive Tracer Dispersion with Random or Periodic Source Jinqiao Duan Clemson University sources on the pattern formation and long-time behavior of concentration pro- #12;les of passive tracers #12;1 Introduction The dispersion of passive tracers (or passive scalars) occur in various geo
Liquid-glass Transition in Charge-stabilized Colloidal Dispersions
Liquid-glass Transition in Charge-stabilized Colloidal Dispersions S.K. Lai, G.F. Wang and W Abstract. We model the inter-colloidal interactions in a charge-stabilized col- loidal dispersion by a hard the loci of the liquid-glass transition phase boundary for a salt-free suspension of charged colloids
Antagonistic effects of seed dispersal and herbivory on plant migration
Vellend, Mark
LETTER Antagonistic effects of seed dispersal and herbivory on plant migration Mark Vellend,1@interchange.ubc.ca Abstract The two factors that determine plant migration rates seed dispersal and population growth are generally treated independently, despite the fact that many animals simultaneously enhance plant migration
Quantum theory of dispersive electromagnetic modes P. D. Drummond
Queensland, University of
Quantum theory of dispersive electromagnetic modes P. D. Drummond Department of Physics proposals--have the character of fundamental tests of the quantum theory of interacting fields 7 Received 15 June 1998 A quantum theory of dispersion for an inhomogeneous solid is obtained, from
Analysis of Tracer Dispersion During a Prescribed Forest Burn
Collins, Gary S.
to manage global warming (Wiedinmyer, 2010) As land managers consider increased burning, air quality our understanding of pollutant emission rates associated with prescribed forest burns. Methods Site tracer and pollutant dispersion patterns. Modeling The WindTrax stochastic particle dispersion model
A study of micro fiber dispersion using digital image analysis
Hendrarsakti, Jooned
2004-11-15
of this dissertation is to investigate the use of texture analysis as a tool to micro fiber dispersion measurement. Micro fiber dispersion can be found in many applications such as in paper and industry powder engineering. Three cases related to micro fiber...
On the dispersion theory of {pi}{pi} scattering
Leutwyler, H.
2007-02-27
Recent developments in low energy pion physics are reviewed, emphasizing the strength of dispersion theory in this context. As an illustration of the method, I discuss some consequences of the forward dispersion relation obeyed by the isoscalar component of the scattering amplitude.
Constructing vacuum spacetimes by generating manifolds of revolution around a curve
Vee-Liem Saw
2015-06-23
We develop a general perturbative analysis on vacuum spacetimes which can be constructed by generating manifolds of revolution around a curve, and apply it to the Schwarzschild metric. The following different perturbations are carried out separately: 1) Non-rotating 2-spheres are added along a plane curve slightly deviated from the "Schwarzschild line"; 2) General non-rotating topological 2-spheres are added along the "Schwarzschild line" 3) Slow-rotating 2-spheres are added along the "Schwarzschild line". For (1), we obtain the first order vacuum solution and show that no higher order solution exists. This linearised vacuum solution turns out however to be just a gauge transformation of the Schwarzschild metric. For (2), we solve the general linearised vacuum equations under several special cases. In particular, there exist linearised vacuum solutions with signature-changing metrics (though these do not correspond to adding topological 2-spheres). For (3), we find that the first order vacuum solution is equivalent to the slowly rotating Kerr metric. This is hence a much simpler and geometrically insightful derivation as compared to the gravitomagnetic one, where this rotating-shells construction is a direct manifestation of the frame-dragging phenomenon. We also show that the full Kerr however, cannot be obtained via adding rotating ellipsoids.
Dynamical Casimir Effect in a small compact manifold for the Maxwell vacuum
Ariel R. Zhitnitsky
2015-01-29
We study novel type of contributions to the partition function of the Maxwell system defined on a small compact manifold ${\\mathbb{M}}$ such as torus. These new terms can not be described in terms of the physical propagating photons with two transverse polarizations. Rather, these novel contributions emerge as a result of tunnelling events when transitions occur between topologically different but physically identical vacuum winding states. These new terms give an extra contribution to the Casimir pressure, yet to be measured. We argue that if the same system is considered in the background of a small external time-dependent magnetic field, than there will be emission of photons from the vacuum, similar to the Dynamical Casimir Effect (DCE) when real particles are radiated from the vacuum due to the time-dependent boundary conditions. The difference with conventional DCE is that the dynamics of the vacuum in our system is not related to the fluctuations of the conventional degrees of freedom, the virtual photons. Rather, the radiation in our case occurs as a result of tunnelling events between topologically different but physically identical $|k>$ sectors in a time -dependent background. We comment on relation of this novel effect with the well-known, experimentally observed, and theoretically understood phenomena of the persistent currents in normal metal rings. We also comment on possible cosmological applications of this effect.
The landscape of G-structures in eight-manifold compactifications of M-theory
Babalic, Elena Mirela
2015-01-01
We consider spaces of "virtual" constrained generalized Killing spinors, i.e. spaces of Majorana spinors which correspond to "off-shell" $s$-extended supersymmetry in compactifications of eleven-dimensional supergravity based on eight-manifolds $M$. Such spaces naturally induce two stratifications of $M$, called the chirality and stabilizer stratification. For the case $s=2$, we describe the former using the canonical Whitney stratification of a three-dimensional semi-algebraic set ${\\cal R}$. We also show that the stabilizer stratification coincides with the rank stratification of a cosmooth generalized distribution ${\\cal D}_0$ and describe it explicitly using the Whitney stratification of a four-dimensional semi-algebraic set $\\mathfrak{P}$. The stabilizer groups along the strata are isomorphic with $\\mathrm{SU}(2)$, $\\mathrm{SU}(3)$, $\\mathrm{G}_2$ or $\\mathrm{SU}(4)$, where $\\mathrm{SU(2)}$ corresponds to the open stratum, which is generically non-empty. We also determine the rank stratification of a lar...
The landscape of G-structures in eight-manifold compactifications of M-theory
Elena Mirela Babalic; Calin Iuliu Lazaroiu
2015-05-09
We consider spaces of "virtual" constrained generalized Killing spinors, i.e. spaces of Majorana spinors which correspond to "off-shell" $s$-extended supersymmetry in compactifications of eleven-dimensional supergravity based on eight-manifolds $M$. Such spaces naturally induce two stratifications of $M$, called the chirality and stabilizer stratification. For the case $s=2$, we describe the former using the canonical Whitney stratification of a three-dimensional semi-algebraic set ${\\cal R}$. We also show that the stabilizer stratification coincides with the rank stratification of a cosmooth generalized distribution ${\\cal D}_0$ and describe it explicitly using the Whitney stratification of a four-dimensional semi-algebraic set $\\mathfrak{P}$. The stabilizer groups along the strata are isomorphic with $\\mathrm{SU}(2)$, $\\mathrm{SU}(3)$, $\\mathrm{G}_2$ or $\\mathrm{SU}(4)$, where $\\mathrm{SU(2)}$ corresponds to the open stratum, which is generically non-empty. We also determine the rank stratification of a larger generalized distribution ${\\cal D}$ which turns out to be integrable in the case of compactifications down to $\\mathrm{AdS}_3$.
Space-Time as an Orderparameter Manifold in Random Networks and the Emergence of Physical Points
Manfred Requardt
1999-02-11
In the following we are going to describe how macroscopic space-time is supposed to emerge as an orderparameter manifold or superstructure floating in a stochastic discrete network structure. As in preceeding work (mentioned below), our analysis is based on the working philosophy that both physics and the corresponding mathematics have to be genuinely discrete on the primordial (Planck scale) level. This strategy is concretely implemented in the form of cellular networks and random graphs. One of our main themes is the development of the concept of physical (proto)points as densely entangled subcomplexes of the network and their respective web, establishing something like (proto)causality. It max perhaps be said that certain parts of our programme are realisations of some old and qualitative ideas of Menger and more recent ones sketched by Smolin a couple of years ago. We briefly indicate how this two-story-concept of space-time can be used to encode the (at least in our view) existing non-local aspects of quantum theory without violating macroscopic space-time causality!
Manifold, bus support and coupling arrangement for solid oxide fuel cells
Parry, Gareth W. (East Windsor, CT)
1989-01-01
Individual, tubular solid oxide fuel cells (SOFCs) are assembled into bundles called a module within a housing, with a plurality of modules arranged end-to-end in a linear, stacked configuration called a string. A common set of piping comprised of a suitable high temperture resistant material (1) provides fuel and air to each module housing, (2) serves as electrically conducting buses, and (3) provides structural support for a string of SOFC modules. The piping thus forms a manfold for directing fuel and air to each module in a string and makes electrical contact with the module's anode and cathode to conduct the DC power generated by the SOFC. The piping also provides structureal support for each individual module and maintains each string of modules as a structurally integral unit for ensuring high strength in a large 3-dimensional array of SOFC modules. Ceramic collars are used to connect fuel and air inlet piping to each of the electrodes in an SOFC module and provide (1) electrical insulation for the current carrying bus bars and gas manifolds, (2) damping for the fuel and air inlet piping, and (3) proper spacing between the fuel and air inlet piping to prevent contact between these tubes and possible damage to the SOFC.
Entanglement Generated by the Dispersive Interaction: The Dressed Coherent State
Luke C. G. Govia; Frank K. Wilhelm
2015-06-16
In the dispersive regime of qubit-cavity coupling, classical cavity drive populates the cavity, but leaves the qubit state unaffected. However, the dispersive Hamiltonian is derived after both a frame transformation and an approximation. Therefore, to connect to external experimental devices, the inverse frame transformation from the dispersive frame back to the lab frame is necessary. In this work, we show that in the lab frame the system is best described by an entangled state known as the dressed coherent state, and thus even in the dispersive regime, entanglement is generated between the qubit and the cavity. Also, we show that further qubit evolution depends on both the amplitude and phase of the dressed coherent state, and use the dressed coherent state to calculate the measurement contrast of a recently developed dispersive readout protocol.
Two-point derivative dispersion relations
Erasmo Ferreira; Javier Sesma
2014-03-24
A new derivation is given for the representation, under certain conditions, of the integral dispersion relations of scattering theory through local forms. The resulting expressions have been obtained through an independent procedure to construct the real part, and consist of new mathematical structures of double infinite summations of derivatives. In this new form the derivatives are calculated at the generic value of the energy $E$ and separately at the reference point $E=m$ that is the lower limit of the integration. This new form may be more interesting in certain circumstances and directly shows the origin of the difficulties in convergence that were present in the old truncated forms called standard-DDR. For all cases in which the reductions of the double to single sums were obtained in our previous work, leading to explicit demonstration of convergence, these new expressions are seen to be identical to the previous ones. We present, as a glossary, the most simplified explicit results for the DDR's in the cases of imaginary amplitudes of forms $(E/m)^\\lambda[\\ln (E/m)]^n$, that cover the cases of practical interest in particle physics phenomenology at high energies. We explicitly study the expressions for the cases with $\\lambda$ negative odd integers, that require identification of cancelation of singularities, and provide the corresponding final results.
Fluid cooled vehicle drive module
Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.
2005-11-15
An electric vehicle drive includes a support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EM/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.
Shear Banding of Complex Fluids
Thibaut Divoux; Marc A. Fardin; Sébastien Manneville; Sandra Lerouge
2015-03-13
Even in simple geometries many complex fluids display non-trivial flow fields, with regions where shear is concentrated. The possibility for such shear banding has been known since several decades, but the recent years have seen an upsurge of studies offering an ever more precise understanding of the phenomenon. The development of new techniques to probe the flow on multiple scales and with increasing spatial and temporal resolution has opened the possibility for a synthesis of the many phenomena that could only have been thought of separately before. In this review, we bring together recent research on shear banding in polymeric and on soft glassy materials, and highlight their similarities and disparities.
Immersible solar heater for fluids
Kronberg, James W. (Aiken, SC)
1995-01-01
An immersible solar heater comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.
Fluid Dynamics and Solid Mechanics
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article) |FinalIndustrial Technologies Industrial3 Fluid Dynamics
A. Gama Goicochea; M. A. Balderas Altamirano; R. Lopez-Esparza; M. A. Waldo; E. Perez
2015-06-20
The connection between fundamental interactions acting in molecules in a fluid and macroscopically measured properties, such as the viscosity between colloidal particles coated with polymers, is studied here. The role that hydrodynamic and Brownian forces play in colloidal dispersions is also discussed. It is argued that many body systems in which all these interactions take place can be accurately solved using computational simulation tools. One of those modern tools is the technique known as dissipative particle dynamics, which incorporates Brownian and hydrodynamic forces, as well as basic conservative interactions. A case study is reported, as an example of the applications of this technique, which consists of the prediction of the viscosity and friction between two opposing parallel surfaces covered with polymer chains, under the influence of a steady flow. This work is intended to serve as an introduction to the subject of colloidal dispersions and computer simulations, for last year undergraduate students and beginning graduate students who are interested in beginning research in soft matter systems. To that end, a computational code is included that students can use right away to study complex fluids in equilibrium.
An exact fluid model for relativistic electron beams: The many moments case
Sebastiano Pennisi; Maria Cristina Carrisi
2007-03-01
An interesting and satisfactory fluid model has been proposed in literature for the the description of relativistic electron beams. It was obtained with 14 independent variables by imposing the entropy principle and the relativity principle. Here the case is considered with an arbitrary number of independent variables, still satisfying the above mentioned two principles; these lead to conditions whose general solution is here found. We think that the results satisfy also a certain ordering with respect to a smallness parameter $\\epsilon$ measuring the dispersion of the velocity about the mean; this ordering generalizes that appearing in literature for the 14 moments case.
System and method for bidirectional flow and controlling fluid flow in a conduit
Ortiz, M.G.
1999-03-23
A system for measuring bidirectional flow, including backflow, of fluid in a conduit is disclosed. The system utilizes a structural mechanism to create a pressure differential in the conduit. Pressure sensors are positioned upstream from the mechanism, at the mechanism, and downstream from the mechanism. Data from the pressure sensors are transmitted to a microprocessor or computer, and pressure differential detected between the pressure sensors is then used to calculate the backflow. Control signals may then be generated by the microprocessor or computer to shut off valves located in the conduit, upon the occurrence of backflow, or to control flow, total material dispersed, etc. in the conduit. 3 figs.
System and method for bidirectional flow and controlling fluid flow in a conduit
Ortiz, Marcos German (Idaho Falls, ID)
1999-01-01
A system for measuring bidirectional flow, including backflow, of fluid in a conduit. The system utilizes a structural mechanism to create a pressure differential in the conduit. Pressure sensors are positioned upstream from the mechanism, at the mechanism, and downstream from the mechanism. Data from the pressure sensors are transmitted to a microprocessor or computer, and pressure differential detected between the pressure sensors is then used to calculate the backflow. Control signals may then be generated by the microprocessor or computer to shut off valves located in the conduit, upon the occurrence of backflow, or to control flow, total material dispersed, etc. in the conduit.
Babaei, Ferydon; 10.1016/j.optcom.2008.02.012
2010-01-01
The transmission and reflection spectra from a right-handed chiral sculptured zirconia thin film are calculated using the piecewise homogeneity approximation method and the Bruggeman homogenization formalism by considering that the propagation of both dispersive and non-dispersive dielectric function occurs for axial and non-axial states. The comparison of spectral results shows that the dispersion of the dielectric function has a considerable effect on the results. In axial excitation of cross-polarized reflectances and co-polarized transmittances the dispersion effect becomes more pronounced at wavelengths further away from the homogenization wavelength. This is also true in case of non-axial excitation of circular transmittances, while there are considerable differences for cross-polarized reflectances where (wavelength) the first Bragg peak occurs. At wavelengths in the vicinity of the homogenization wavelength the dispersion effect of the dielectric function in becomes more significant.
Modelling long-distance seed dispersal in heterogeneous landscapes.
Levey, Douglas, J.; Tewlsbury, Joshua, J.; Bolker, Benjamin, M.
2008-01-01
1. Long-distance seed dispersal is difficult to measure, yet key to understanding plant population dynamics and community composition. 2. We used a spatially explicit model to predict the distribution of seeds dispersed long distances by birds into habitat patches of different shapes. All patches were the same type of habitat and size, but varied in shape. They occurred in eight experimental landscapes, each with five patches of four different shapes, 150 m apart in a matrix of mature forest. The model was parameterized with smallscale movement data collected from field observations of birds. In a previous study we validated the model by testing its predictions against observed patterns of seed dispersal in real landscapes with the same types and spatial configuration of patches as in the model. 3. Here we apply the model more broadly, examining how patch shape influences the probability of seed deposition by birds into patches, how dispersal kernels (distributions of dispersal distances) vary with patch shape and starting location, and how movement of seeds between patches is affected by patch shape. 4. The model predicts that patches with corridors or other narrow extensions receive higher numbers of seeds than patches without corridors or extensions. This pattern is explained by edgefollowing behaviour of birds. Dispersal distances are generally shorter in heterogeneous landscapes (containing patchy habitat) than in homogeneous landscapes, suggesting that patches divert the movement of seed dispersers, ‘holding’ them long enough to increase the probability of seed defecation in the patches. Dispersal kernels for seeds in homogeneous landscapes were smooth, whereas those in heterogenous landscapes were irregular. In both cases, long-distance (> 150 m) dispersal was surprisingly common, usually comprising approximately 50% of all dispersal events. 5. Synthesis . Landscape heterogeneity has a large influence on patterns of long-distance seed dispersal. Our results suggest that long-distance dispersal events can be predicted using spatially explicit modelling to scale-up local movements, placing them in a landscape context. Similar techniques are commonly used by landscape ecologists to model other types of movement; they offer much promise to the study of seed dispersal.
Split driveshaft pump for hazardous fluids
Evans, II, Thomas P. (Aiken, SC); Purohit, Jwalit J. (Evans, GA); Fazio, John M. (Orchard Park, NY)
1995-01-01
A pump having a split driveshaft for use in pumping hazardous fluids wherein only one driveshaft becomes contaminated by the fluid while the second remains isolated from the fluid. The pump has a first portion and a second portion. The first portion contains a pump motor, the first driveshaft, a support pedestal, and vapor barriers and seals. The second portion contains a second, self-lubricating driveshaft and an impeller. The first and second driveshafts are connected together by a releasable coupling. A shield and a slinger deployed below the coupling prevent fluid from the second portion from reaching the first portion. In operation, only the second assembly comes into contact with the fluid being pumped, so the risk of contamination of the first portion by the hazardous fluid is reduced. The first assembly can be removed for repairs or routine maintenance by decoupling the first and second driveshafts and disconnecting the motor from the casing.
Nanoparticle Assemblies at Fluid Interfaces
Russell, Thomas P.
2015-03-10
A systematic study of the structure and dynamics of nanoparticles (NP) and NP-surfactants was performed. The ligands attached to both the NPs and NP-surfactants dictate the manner in which the nanoscopic materials assemble at fluid interfaces. Studies have shown that a single layer of the nanoscpic materials form at the interface to reduce the interactions between the two immiscible fluids. The shape of the NP is, also, important, where for spherical particles, a disordered, liquid-like monolayer forms, and, for nanorods, ordered domains at the interface is found and, if the monolayers are compressed, the orientation of the nanorods with respect to the interface can change. By associating end-functionalized polymers to the NPs assembled at the interface, NP-surfactants are formed that increase the energetic gain in segregating each NP at the interface which allows the NP-surfactants to jam at the interface when compressed. This has opened the possibility of structuring the two liquids by freezing in shape changes of the liquids.
Sullivan, Scott C; Fansler, Douglas
2014-10-14
A vehicle having multiple isolated fluid circuits configured to be filled through a common fill port includes a first fluid circuit disposed within the vehicle, the first fluid circuit having a first fill port, a second fluid circuit disposed within the vehicle, and a conduit defining a fluid passageway between the first fluid circuit and second fluid circuit, the conduit including a valve. The valve is configured such that the first and second fluid circuits are fluidly coupled via the passageway when the valve is open, and are fluidly isolated when the valve is closed.
Vibratory pumping of a free fluid stream
Merrigan, M.A.; Woloshun, K.A.
1990-11-13
A vibratory fluid pump is described having a force generator for generating asymmetric periodic waves or oscillations connected to one end of one or more fluid conveyance means, such as filaments. The opposite ends of the filaments are connected to springs. Fluid introduced onto the filaments will traverse along the filaments according to the magnitude of the positive and negative excursions of the periodic waves or oscillations, and can be recovered from the filaments. 3 figs.
Hydrostatic bearings for a turbine fluid flow metering device
Fincke, J.R.
1980-05-02
A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.
Fourier's Law for a Granular Fluid
James W. Dufty
2007-07-07
Newton' viscosity law for the momentum flux and Fourier's law for the heat flux define Navier-Stokes hydrodynamics for a simple, one component fluid. There is ample evidence that a hydrodynamic description applies as well to a mesoscopic granular fluid with the same form for Newton's viscosity law. However, theory predicts a qualitative difference for Fourier's law with an additional contribution from density gradients even at uniform temperature. The reasons for the absence of such terms for normal fluids are indicated, and a related microscopic explanation for their existence in granular fluids is presented.
Gas powered fluid gun with recoil mitigation
Grubelich, Mark C; Yonas, Gerold
2013-11-12
A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.
Fluid casting of particle-based articles
Menchhofer, Paul (Oak Ridge, TN)
1995-01-01
A method for the production of articles made of a particle-based material; e.g., ceramics and sintered metals. In accordance with one aspect of the invention, a thermally settable slurry containing a relatively high concentration of the particles is introduced into an immiscible, heated fluid. The slurry sets or hardens into a shape determined by the physical characteristics of the fluid and the manner of introduction of the slurry into the fluid. For example, the slurry is pulse injected into the fluid to provide spherical articles. The hardened spheres may then be sintered to consolidate the particles and provide a high density product.
Methodologies for Reservoir Characterization Using Fluid Inclusion...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Surveys Chemical Signatures of and Precursors to Fractures Using Fluid Inclusion Stratigraphy Creation of an Engineered Geothermal System through Hydraulic and Thermal...
DISPLAYING AND INTERPRETING FLUID INCLUSION STRATIGRAPHY ANALYSES...
DISPLAYING AND INTERPRETING FLUID INCLUSION STRATIGRAPHY ANALYSES ON MUDLOG GRAPHS Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings:...
Solution generating theorems for perfect fluid spheres
Petarpa Boonserm; Matt Visser; Silke Weinfurtner
2006-09-20
The first static spherically symmetric perfect fluid solution with constant density was found by Schwarzschild in 1918. Generically, perfect fluid spheres are interesting because they are first approximations to any attempt at building a realistic model for a general relativistic star. Over the past 90 years a confusing tangle of specific perfect fluid spheres has been discovered, with most of these examples seemingly independent from each other. To bring some order to this collection, we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres. In addition, we develop new ``solution generating'' theorems for the TOV, whereby any given solution can be ``deformed'' to a new solution. Because these TOV-based theorems work directly in terms of the pressure profile and density profile it is relatively easy to impose regularity conditions at the centre of the fluid sphere.
Paris-Sud XI, Université de
) exposed to dispersed crude oil2 3 Thomas Milinkovitch1* , Awa Ndiaye2 , Wilfried Sanchez2 , Stéphane Le a framework for dispersant use in nearshore areas.51 52 Keywords: dispersed crude oil; dispersant; oxidative ; CD : Chemically Dispersed oil ; D : Dispersant solution ; MD : Mechanically Dispersed oil; WSF
Confined zone dispersion project. Final technical report
NONE
1994-06-01
This report describes the performance of the confined zone dispersion (CZD) flue gas desulfurization (FGD) system in removing sulfur dioxide (SO{sub 2}) from flue gas in the coal-fired boiler. The CZD-FGD system, installed at Pennsylvania Electric Company`s (Penelec`s) Seward Power Station, was designed to remove 50% of the SO{sub 2} from one-half of Unit No. 5`s flue gas when the boiler is fired with 1.5% sulfur coal. Section 1 discusses the significance of CZD, the purpose of this report, the history of the project, and the role of DOE in the project, describes the project organization, and lists the six design areas involving proprietary information. Section 2 presents project location, objectives, and phases, and discusses the test program. Section 3 explains the process flow diagram, piping and instrumentation diagrams and operating controls, site plan, equipment layouts, and process equipment. Section 4 provides an integrated discussion of all the test results obtained during the test program, backed by tabulations and graphics. Section 5 describes the testing failures and corrective actions taken. Section 6, reliability/availability/maintainability analysis data of major equipment, covers the following systems: atomizing, sootblowing, lime, flue gas, and controls and instrumentation. Section 7 summarizes the capital cost requirements for the Seward CZD demonstration unit and discusses the capital and operating costs of installing the process at plants with various unit capacities. Section 8 discusses plans to continue the CZD demonstration to achieve longer term continuous operation at SO{sub 2} removals of 50%. Section 9 presents the principal findings of the CZD demonstration and recommends additional testing.
Fluid aspects of electron streaming instability in electron-ion plasmas
Jao, C.-S. [Institute of Space Science, National Central University, Jhongli, Taiwan (China)] [Institute of Space Science, National Central University, Jhongli, Taiwan (China); Hau, L.-N. [Institute of Space Science, National Central University, Jhongli, Taiwan (China) [Institute of Space Science, National Central University, Jhongli, Taiwan (China); Department of Physics, National Central University, Jhongli, Taiwan (China)
2014-02-15
Electrons streaming in a background electron and ion plasma may lead to the formation of electrostatic solitary wave (ESW) and hole structure which have been observed in various space plasma environments. Past studies on the formation of ESW are mostly based on the particle simulations due to the necessity of incorporating particle's trapping effects. In this study, the fluid aspects and thermodynamics of streaming instabilities in electron-ion plasmas including bi-streaming and bump-on-tail instabilities are addressed based on the comparison between fluid theory and the results from particle-in-cell simulations. The energy closure adopted in the fluid model is the polytropic law of d(p?{sup ??})/dt=0 with ? being a free parameter. Two unstable modes are identified for the bump-on-tail instability and the growth rates as well as the dispersion relation of the streaming instabilities derived from the linear theory are found to be in good agreement with the particle simulations for both bi-streaming and bump-on-tail instabilities. At the nonlinear saturation, 70% of the electrons are trapped inside the potential well for the drift velocity being 20 times of the thermal velocity and the p?{sup ??} value is significantly increased. Effects of ion to electron mass ratio on the linear fluid theory and nonlinear simulations are also examined.
Fluid-Particle and Fluid-Structure Interactions in Inertial Microfluidics
Amini, Hamed
2012-01-01
large-inertia laminar pipe flow. Journal of Fluid Mechanicsfluid are finite, still lies within the realm of laminar flow (
Under consideration for publication in J. Fluid Mech. 1 Hydroelastic waves on fluid sheets
Parau, Emilian I.
). In particular our work may find application in flat plate-type fuel assemblies found in nuclear reactor coolingUnder consideration for publication in J. Fluid Mech. 1 Hydroelastic waves on fluid sheets M. G. B 6BT, UK (Received 26 March 2012) Nonlinear travelling waves on a two-dimensional inviscid fluid
Journal of Fluids and Structures (1996) 10, 395420 FLUID-STRUCTURE INTERACTION AND
Tijsseling, A.S.
1996-01-01
of cooling-water systems in nuclear power stations, the reliability of fuel injection systems in aircraftJournal of Fluids and Structures (1996) 10, 395420 FLUID-STRUCTURE INTERACTION AND CAVITATION) The simultaneous occurrence of fluid-structure interaction (FSI) and vaporous cavitation in the transient vibration
Laser microfluidics : fluid actuation by light Laser microfluidics: fluid actuation by light
Paris-Sud XI, Université de
Laser microfluidics : fluid actuation by light Laser microfluidics: fluid actuation by light Jean.delville@cpmoh.u-bordeaux1.fr Abstract: The development of microfluidic devices is still hindered by the lack of robust to extend this concept to microfluidic two-phase flows. First, we investigate the destabilization of fluid
Dispersive shock waves in interacting one-dimensional systems
Fominov, Yakov
(internal waves in deep stratified fluid) Benjamin 1967 Ono 1975 Benjamin-Ono KdV h H #12;Nonlinearity vs · Internal waves in deep stratified fluids · Atmosphere waves www.dropbears.com #12;Conventional shock waves + l0 x + 2 l0xx H = 0 soliton charge = 1 m = Consequence of the universal density profile! m=3
Immersible solar heater for fluids
Hazen, T.C.; Fliermans, C.B.
1994-01-01
An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.
Immersible solar heater for fluids
Kronberg, J.W.
1995-07-11
An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater. 11 figs.
Pressurized-fluid-operated engine
Holleyman, J.E.
1990-01-30
This patent describes a pressurized-fluid-operated reciprocating engine for providing output power by use of a pressurized gas that expands within the engine without combustion. It comprises: an engine block having a plurality of cylinders within which respective pistons are reciprocatable to provide a rotary power output; gas inlet means connected with the engine block for introducing a pressurized gas into the respective cylinders in a predetermined, timed relationship to provide a smooth power output from the engine; gas outlet means connected with the engine block for conveying exhaust gas from the respective cylinders after the gas expanded to move the pistons within the cylinders; and recirculation means extending between the inlet means and the outlet means for recirculation a predetermined quantity of exhaust gas. The recirculation means including ejector means for drawing exhaust gas into the recirculation means.
MEC E 230 Introduction to thermo-fluid sciences
Flynn, Morris R.
. Introduction to fluid mechanics. Fluid properties. Fluid statics. Use of control volumes. Internal flows. Pre in mechanical engineering. The physics of heat transfer and fluid mechanics are introduced. · Understand tension in calculating pressure in a fluid · Calculate static pressure and forces on immersed objects
William Benton and Jim Turner, Cabot Specialty Fluids
Laughlin, Robert B.
with a range of beneficial properties. This makes them ideally suited for use as drilling and completion fluids for use as a drilling fluid, which are stable to 160°C. Drilling fluids made up of formate-based fluids materials, whereas a typical drilling fluid will contain up to 40% by volume of solids to obtain
EFFLUENT DISPERSION IN THE FRASER RIVER FROM THE
#12;EFFLUENT DISPERSION IN THE FRASER RIVER FROM THE GLENBROOK COMBINED SEWER OVERFLOW AT NEW A wastewater plume delineation study for the Glenbrook combined sewer overflow was conducted in February 1995
Particulate dispersion apparatus for the validation of plume models
Bala, William D
2001-01-01
The purpose of this thesis is to document design, development, and fabrication of a transportable source of dry aerosol to improve testing and validation of atmospheric plume models. The proposed dispersion apparatus is intended to complement...
The integration of dispersed asylum seekers in Glasgow
Rosenberg, Alexandra
This thesis is an analysis of the integration of dispersed asylum seekers in Glasgow. It is a qualitative case study that uses data from participant observation with community groups, interviews with asylum seekers and ...
RELIABILITY OF WIND POWER FROM DISPERSED SITES: A PRELIMINARY ASSESSMENT
Kahn, E.
2011-01-01
ON METHODOLOGY: FROM WIND POWER FREQUENCY TO LOSS-OF-LOADJ.P. , "Some Aspects of Wind Power Statistics, " J. of Appl.S£CTION Reliability of Wind Power From Dispersed Sites: A Pr
Dark solitons in dual-core waveguides with dispersive coupling
Kartashov, Yaroslav V; Malomed, Boris A
2015-01-01
We report on new types of two-component one-dimensional dark solitons (DSs) in a model of a dual-core waveguide with normal group-velocity dispersion and Kerr nonlinearity in both cores, the coupling between which is dispersive too. In the presence of the dispersive coupling, quiescent DSs supported by the zero-frequency background are always gray, being stable with the out-of-phase background, i.e., for opposite signs of the fields in the cores. On the contrary, the background with a nonzero frequency supports quiescent black solitons which may be stable for both out- and in-phase backgrounds, if the dispersive coupling is sufficiently strong. Only DSs supported by the out-of-phase background admit an extension to the case of nonzero phase mismatch between the cores.
Measurement of electron clouds in large accelerators by microwave dispersion
De Santis, Stefano
2008-01-01
in Large Accelerators by Microwave Dispersion S. De Santis,li.e. , phase shift) of a microwave signal propagating in thethe phase shift of the microwave signal through the electron
Interspecific Nematode Signals Regulate Dispersal Fatma Kaplan1
Burns, Jacqueline K.
Interspecific Nematode Signals Regulate Dispersal Behavior Fatma Kaplan1 *, Hans T. Alborn1. Citation: Kaplan F, Alborn HT, von Reuss SH, Ajredini R, Ali JG, et al. (2012) Interspecific Nematode
Bayesian Network Analysis of Radiological Dispersal Device Acquisitions
Hundley, Grant Richard
2012-02-14
It remains unlikely that a terrorist organization could produce or procure an actual nuclear weapon. However, the construction of a radiological dispersal device (RDD) from commercially produced radioactive sources and conventional explosives could...
POPULATION ECOLOGY Dispersal of the Eucalyptus Longhorned Borer (Coleoptera
Hanks, Lawrence M.
POPULATION ECOLOGY Dispersal of the Eucalyptus Longhorned Borer (Coleoptera: Cerambycidae) in Urban behavior of the eucalyptus longhorned borer, Phoracantha semipunctata (F.), a crepuscular beetle whose distributed in time and space. KEY WORDS Phoracantha semipunctata, Cerambycidae, eucalyptus, wood boring
The Role of Solvent Heterogeneity in Determining the Dispersion...
Office of Scientific and Technical Information (OSTI)
density resonse of a solvent to a surface in conjunction with the Clausius-Mossotti equation, we present a simple theory relating the discrete nature of solvent to dispersion...
Agents of seed dispersal : animal--zoochary / Wind--anemonochory
Lysakowski, Lukasz Kamil, 1974-
2004-01-01
Agents of seed dispersal is a project designed to address the increase of environmental degradation, which occurs as a result of the perpetual spread of the asphalt and concrete of the contemporary urban situation. Agents ...
Performance Analysis of Dispersed Spectrum Cognitive Radio Systems
Mohammad, Muneer
2011-02-22
Dispersed spectrum cognitive radio systems represent a promising approach to exploit the utilization of spectral resources to full extent. Therefore, the performance analysis of such systems is conducted in this research. The Average symbol error...
Mixing and Dispersion in Small-Scale Flow Systems
Nagy, Kevin David
Continuous flow chemistry is being used increasingly; however, without detailed knowledge of reaction engineering, it can be difficult to judge whether dispersion and mixing are important factors on reaction outcome. ...
Forced-convection, dispersed-flow film boiling
Hynek, Scott Josef
1969-01-01
This report presents the latest results of an investigation of the characteristics of dispersed flow film boiling. Heat transfer data are presented for vertical upflow of nitrogen in an electrically heated tube, 0.4 in. ...
Foam vessel for cryogenic fluid storage
Spear, Jonathan D (San Francisco, CA)
2011-07-05
Cryogenic storage and separator vessels made of polyolefin foams are disclosed, as are methods of storing and separating cryogenic fluids and fluid mixtures using these vessels. In one embodiment, the polyolefin foams may be cross-linked, closed-cell polyethylene foams with a density of from about 2 pounds per cubic foot to a density of about 4 pounds per cubic foot.
It's The Fluids SEG Honorary Lecture
information please visit: #12;·WATER and BRINE (BRINE = H2O + Salt) ·HYDROCARBONS Oil Gas TYPES of PORE FLUIDS Gas Mixtures ·DRILLING MUD ·PRODUCTION FLUIDS Miscible Injectants (CO2, Enriched Gas) #12;From Ivar = Porosity = Density sat = 0 (1- ) + f Density: #12;·WATER and BRINE (BRINE = H2O + Salt) ·HYDROCARBONS Oil
Fluid Neutral Momentum Transport Reference Problem
Budny, Robert
Fluid Neutral Momentum Transport Reference Problem D. P. Stotler, PPPL S. I. Krasheninnikov, UCSD 1 Summary Type of problem: kinetic or fluid neutral transport Physics or algorithm stressed: thermal force term (spatial resolution) in momentum transport equation and treatment of collisions (charge ex- change
PKN problem for non-Newtonian fluid
Linkov, Alexander
2012-01-01
The paper presents analytical solution for hydraulic fracture driven by a non-Newtonian fluid and propagating under plane strain conditions in cross sections parallel to the fracture front. Conclusions are drawn on the influence of the fluid properties on the fracture propagation.
Thermal System Design Thermal/Fluids
Kostic, Milivoje M.
of thermodynamics, heat transfer, and fluid mechanics ? Hardware: fans, pumps, compressors, engines, heat exchangers, fluids transport, and food, chemical, and process industries #12;3 Basic Course Topics ? Analysis networks ? Thermodynamics: modeling and optimization of a refrigeration system ? Heat Transfer: design
Fluid&ParticulateSystems 424514/2010
Zevenhoven, Ron
Åbo / Turku Finland Source: C06 #12;Fluid&ParticulateSystems 424514/2010 Fluid&ParticulateSystems ÅA below ~5 m Problems above ~ 400 °C februari 2014 RoNz 7Åbo Akademi University - Värme- och d dd For a certain cyclone and a certain gas, the separation efficiency c is a function
Highly dispersive photonic band-gap-edge optofluidic biosensors
Xiao, S; Xiao, Sanshui; Mortensen, Niels Asger
2006-01-01
Highly dispersive photonic band-gap-edge optofluidic biosensors are studied theoretically. We demonstrate that these structures are strongly sensitive to the refractive index of the liquid, which is used to tune dispersion of the photonic crystal. The upper frequency band-gap edge shifts about 1.8 nm for dn=0.002, which is quite sensitive. Results from transmission spectra agree well with those obtained from the band structure theory.
Power-law Spatial Dispersion from Fractional Liouville Equation
Vasily E. Tarasov
2013-07-18
A microscopic model in the framework of fractional kinetics to describe spatial dispersion of power-law type is suggested. The Liouville equation with the Caputo fractional derivatives is used to obtain the power-law dependence of the absolute permittivity on the wave vector. The fractional differential equations for electrostatic potential in the media with power-law spatial dispersion are derived. The particular solutions of these equations for the electric potential of point charge in this media are considered.
Power-law spatial dispersion from fractional Liouville equation
Tarasov, Vasily E. [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation)] [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation)
2013-10-15
A microscopic model in the framework of fractional kinetics to describe spatial dispersion of power-law type is suggested. The Liouville equation with the Caputo fractional derivatives is used to obtain the power-law dependence of the absolute permittivity on the wave vector. The fractional differential equations for electrostatic potential in the media with power-law spatial dispersion are derived. The particular solutions of these equations for the electric potential of point charge in this media are considered.
Assessment of gas dispersion in agitated tanks using hydrophones
Sutter, Terry Alan
1986-01-01
ASSESSMENT OF GAS DISPERSION IN AGITATED TANKS USING HYDROPHONES A Thesis by TERRY ALAN SUTTER Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirement for the degree of MASTFR OF SCIENCE ofay I...!)sfi Major Subject: Chemical Engineering ASSESSMENT OF GAS DISPERSION IN AGITATED TANKS USING HYDROPHONES A Thesis by TERRY ALAN SUTTER Approved as to style and content by: Gary B. Tatterson (Chairinan of Committee) Gerald L. orrison (Xieniber) C...
Extreme pressure fluid sample transfer pump
Halverson, Justin E. (Grovertown, GA); Bowman, Wilfred W. (North Augusta, SC)
1990-01-01
A transfer pump for samples of fluids at very low or very high pressures comprising a cylinder having a piston sealed with an O-ring, the piston defining forward and back chambers, an inlet and exit port and valve arrangement for the fluid to enter and leave the forward chamber, and a port and valve arrangement in the back chamber for adjusting the pressure across the piston so that the pressure differential across the piston is essentially zero and approximately equal to the pressure of the fluid so that the O-ring seals against leakage of the fluid and the piston can be easily moved, regardless of the pressure of the fluid. The piston may be actuated by a means external to the cylinder with a piston rod extending through a hole in the cylinder sealed with a bellows attached to the piston head and the interior of the back chamber.
Fluid transport by active elastic membranes
Arthur A. Evans; Eric Lauga
2013-02-10
A flexible membrane deforming its shape in time can self-propel in a viscous fluid. Alternatively, if the membrane is anchored, its deformation will lead to fluid transport. Past work in this area focused on situations where the deformation kinematics of the membrane were prescribed. Here we consider models where the deformation of the membrane is not prescribed, but instead the membrane is internally forced. Both the time-varying membrane shape, and the resulting fluid motion, result then from a balance between prescribed internal active stresses, internal passive resistance, and external viscous stresses. We introduce two specific models for such active internal forcing: one where a distribution of active bending moments is prescribed, and one where active inclusions exert normal stresses on the membrane by pumping fluid through it. In each case, we asymptotically calculate the membrane shape and the fluid transport velocities for small forcing amplitudes, and recover our results using scaling analysis.
Modelling anisotropic fluid spheres in general relativity
Petarpa Boonserm; Tritos Ngampitipan; Matt Visser
2015-02-03
We argue that an arbitrary general relativistic anisotropic fluid sphere, (spherically symmetric but with transverse pressure not equal to radial pressure), can nevertheless be successfully modelled by suitable linear combinations of quite ordinary classical matter: an isotropic perfect fluid, a classical electromagnetic field, and a classical (minimally coupled) scalar field. While the most general decomposition is not unique, a preferred minimal decomposition can be constructed that is unique. We show how the classical energy conditions for the anisotropic fluid sphere can be related to energy conditions for the isotropic perfect fluid, electromagnetic field, and scalar field components of the model. Furthermore we show how this decomposition relates to the distribution of electric charge density and scalar charge density throughout the model that is used to mimic the anisotropic fluid sphere. Consequently, we can build physically reasonable matter models for almost any spherically symmetric spacetime.
Euler's fluid equations: Optimal Control vs Optimization
Darryl D. Holm
2009-09-28
An optimization method used in image-processing (metamorphosis) is found to imply Euler's equations for incompressible flow of an inviscid fluid, without requiring that the Lagrangian particle labels exactly follow the flow lines of the Eulerian velocity vector field. Thus, an optimal control problem and an optimization problem for incompressible ideal fluid flow both yield the \\emph {same} Euler fluid equations, although their Lagrangian parcel dynamics are \\emph{different}. This is a result of the \\emph{gauge freedom} in the definition of the fluid pressure for an incompressible flow, in combination with the symmetry of fluid dynamics under relabeling of their Lagrangian coordinates. Similar ideas are also illustrated for SO(N) rigid body motion.
Fluid permeability measurement system and method
Hallman, Jr., Russell Louis (Knoxville, TN); Renner, Michael John (Oak Ridge, TN)
2008-02-05
A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.