Sample records for fluid catalytic cracker

  1. Have You Ever Seen a Cat Cracker in Person? | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    A catalytic cracker, or "cat cracker," is the basic gasoline-making process in a refinery. The cat cracker uses high temperatures, low pressure, and a catalyst to create a...

  2. Ethylene - DSM awards cracker study

    SciTech Connect (OSTI)

    NONE

    1995-09-13T23:59:59.000Z

    DSM is carrying out a feasibility study to increase capacity of the older of its two naphtha crackers at Geleen, the Netherlands. Linde, original supplier of the plant, and Stone & Webster, will carry out parallel studies, likely to lead to 15% increase in the capacity of the 455,000-m.t./year cracker. The study will take 12 weeks to complete and is expected to lead to the work being carried out during the next turnaround, in August 1998. DSM is already adding a combined 40,000 m.t./year at the company`s two crackers in Geleen, the Netherlands. Onstream target is mid-1996.

  3. Steam Cracker Furnace Energy Improvements

    E-Print Network [OSTI]

    Gandler, T.

    & challenges in steam cracking ? Energy efficiency improvements Overview Baytown Olefins Plant Page 3 Baytown Complex ?One of world?s largest integrated, most technologically advanced petroleum/petrochemical complexes ?~3,400 acres along Houston Ship... wall temperatures Furnace tube hydrocarbon + steam 0 0.2 0.4 0.6 0.8 1 1.2 1 2 time C o k e l a y e r Page 8 Steam Cracker Furnace Energy Efficiency ? Overall energy efficiency of furnace depends on ? Run length or % of time...

  4. Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC (Presentation)

    SciTech Connect (OSTI)

    Brodt-Giles, D.

    2008-08-05T23:59:59.000Z

    Presentation covers new content available on the Alternative Fuels and Advanced Vehicle Data Center regarding diesel vehicles, diesel exhaust fluid, and selective catalytic reduction technologies.

  5. Catalytic gasification studies in a pressurized fluid-bed unit

    SciTech Connect (OSTI)

    Mudge, L.K.; Baker, E.G.; Mitchell, D.H.; Robertus, R.J.; Brown, M.D.

    1983-07-01T23:59:59.000Z

    The purpose of the project is to evaluate the technical and economic feasibility of producing specific gas products via the catalytic gasification of biomass. This report presents the results of research conducted from October 1980 to November 1982. In the laboratory scale studis, active catalysts were developed for generation of synthesis gases from wood by steam gasification. A trimetallic catalyst, Ni-Co-Mo on silica-alumina doped with 2 wt % Na, was found to retain activity indefinitely for generation of a methanol synthesis gas from wood at 1380/sup 0/F (750/sup 0/C) and 1 atm (100 kPa) absolute pressure. Catalysts for generation of a methane-rich gas were deactivated rapidly and could not be regenerated as required for economic application. Sodium carbonate and potassium carbonate were effective as catalysts for conversion of wood to synthesis gases and methane-rich gas and should be economically viable. Catalytic gasification conditions were found to be suitable for processing of alternative feedstocks: bagasse, alfalfa, rice hulls, and almond hulls. The PDU was operated successfully at absolute pressures of up to 10 atm (1000 kPa) and temperatures of up to 1380/sup 0/F (750/sup 0/C). Yields of synthesis gases at elevated pressure were greater than those used for previous economic evaluations. A trimetallic catalyst, Ni-Cu-Mo on silica-alumina, did not display a long life as did the doped trimetallic catalyst used in laboratory studies. A computer program for a Radio Shack TRS-80 Model I microcomputer was developed to evaluate rapidly the economics of producing either methane or methanol from wood. The program is based on economic evaluations reported in previous studies. Improved yields from the PDU studies were found to result in a reduction of about 9 cents/gal in methanol cost.

  6. Methods applied to investigate the major VCE that occured in the TOTAL refinery's Fluid Catalytic Cracking Unit at La Mede,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    95-35 Methods applied to investigate the major Ă?VCE that occured in the TOTAL refinery's Fluid.V.C.E, occured in the Gas Plant of the TOTAL refinery's Fluid Catalytic Cracking ĂĽnit at La Mede, France

  7. Economics for iso-olefin production using the fluid catalytic cracking unit

    SciTech Connect (OSTI)

    McClung, R.G.; Witoshkin, A.; Bogert, D.C.; Winkler, W.S. [Englehard Corp., Iselin, NJ (United States)

    1993-12-31T23:59:59.000Z

    The Clean Air Act of 1990 requires use of oxygenates in some gasolines to improve both CO and hydrocarbon auto tailpipe emissions. Various oxygenates are currently being used by the refining industry. For the fully integrated refinery having a fluid catalytic cracking unit, the most commonly used oxygenates are methyl tertiary butyl ether (MTBE) and tertiary amyl ether (TAME). The FCC unit produces the isobutylene and iso-amylases need for manufacture of both MTBE and TAME. The economics for an assumed refinery processing scheme for several FCC cases are examined giving estimates of income and investments for each case. Up to one-third of the total gasoline pool can be made in reformulated gasoline using TAME and MTBE with the FCC unit as the sole source of feedstock. This processing route is much more economical than the alternative scheme using butane isomerization/iosbutane dehydrogenation.

  8. How crackers crack passwords or what passwords to avoid

    SciTech Connect (OSTI)

    De Alvare, A.M.

    1988-09-30T23:59:59.000Z

    Computer security is a growing concern in research, development, marketing, and most other areas of everyday life. The first and foremost task in computer security is to prevent unauthorized access to systems. This report tells how ''crackers'' (computer wizards who use their talents for illegal and destructive purposes) obtain access to computer systems and gives specific advice on how to prevent them from doing it. 11 refs., 5 tabs.

  9. Energy Efficiency Improvements of U.S. Olefins Crackers

    E-Print Network [OSTI]

    Benton, J.

    2013-01-01T23:59:59.000Z

    ESL-IE-13-05-18 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 8 Energy Efficiency Initiatives ? Energy ?Best Practices? Deep-Drills ? Driven by Technology Center; business-wide approach...1 Energy Efficiency Improvements of U.S. Olefins Crackers Jim Benton Energy Efficiency Leader - Hydrocarbons Dow Chemical Company ESL-IE-13-05-18 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21...

  10. A lightweight three-phase Fluid Catalytic Cracking riser model for real-time simulation and interactive three-dimensional visualization

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    physical model and a fast numerical solver are proposed for the rendering of fluid catalytic cracking (FCC) dynamics in the riser cylinder reactor part of the FCC unit. For Real Time requirements, a trade, privileged paths for the gas phase, etc. Of course, the rendering is purely qualitative, but accurate enough

  11. Multiphase Equilibrium of Fluids Confined in Fisher-Tropsch Catalytic Systems 

    E-Print Network [OSTI]

    Warrag, Samah

    2014-04-23T23:59:59.000Z

    Equation of state model extended to confined fluid (PR-C) has been utilized in multiphase equilibrium algorithm using FORTRAN. The simulation results provide the composition and the condition of each bulk phase and pore phase for a given initial mixture...

  12. Catalytic reactor

    DOE Patents [OSTI]

    Aaron, Timothy Mark (East Amherst, NY); Shah, Minish Mahendra (East Amherst, NY); Jibb, Richard John (Amherst, NY)

    2009-03-10T23:59:59.000Z

    A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

  13. Concentric catalytic combustor

    DOE Patents [OSTI]

    Bruck, Gerald J. (Oviedo, FL); Laster, Walter R. (Oviedo, FL)

    2009-03-24T23:59:59.000Z

    A catalytic combustor (28) includes a tubular pressure boundary element (90) having a longitudinal flow axis (e.g., 56) separating a first portion (94) of a first fluid flow (e.g., 24) from a second portion (95) of the first fluid flow. The pressure boundary element includes a wall (96) having a plurality of separate longitudinally oriented flow paths (98) annularly disposed within the wall and conducting respective portions (100, 101) of a second fluid flow (e.g., 26) therethrough. A catalytic material (32) is disposed on a surface (e.g., 102, 103) of the pressure boundary element exposed to at least one of the first and second portions of the first fluid flow.

  14. Method and apparatus for a catalytic firebox reactor

    DOE Patents [OSTI]

    Smith, Lance L. (North Haven, CT); Etemad, Shahrokh (Trumbull, CT); Ulkarim, Hasan (Hamden, CT); Castaldi, Marco J. (Bridgeport, CT); Pfefferle, William C. (Madison, CT)

    2001-01-01T23:59:59.000Z

    A catalytic firebox reactor employing an exothermic catalytic reaction channel and multiple cooling conduits for creating a partially reacted fuel/oxidant mixture. An oxidation catalyst is deposited on the walls forming the boundary between the multiple cooling conduits and the exothermic catalytic reaction channel, on the side of the walls facing the exothermic catalytic reaction channel. This configuration allows the oxidation catalyst to be backside cooled by any fluid passing through the cooling conduits. The heat of reaction is added to both the fluid in the exothermic catalytic reaction channel and the fluid passing through the cooling conduits. After discharge of the fluids from the exothermic catalytic reaction channel, the fluids mix to create a single combined flow. A further innovation in the reactor incorporates geometric changes in the exothermic catalytic reaction channel to provide streamwise variation of the velocity of the fluids in the reactor.

  15. Operation and device applications of a valved-phosphorus cracker in solid-source molecular-beam epitaxy

    E-Print Network [OSTI]

    Woodall, Jerry M.

    and reflection high-energy electron diffraction measurements. InP and InGaP lattice matched to GaAs were grown electron microscopy. The first microwave performance (ft 44 GHz, fmax 65 GHz of an InGaP reported the growth of InGaP and InAlP by a valved cracker. High- quality InGaP and InGaAlP were grown

  16. Catalytic Distillation

    E-Print Network [OSTI]

    Smith, L. A., Jr.; Hearn, D.; Wynegar, D. P.

    1984-01-01T23:59:59.000Z

    Catalytic Distillation' refers to a chemical process which performs both a catalyzed reaction and primary fractionation of the reaction components simultaneously. A structured catalyst which also is an effective distillation component has been...

  17. Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology

    SciTech Connect (OSTI)

    Swanson, Michael; Henderson, Ann

    2012-04-01T23:59:59.000Z

    The GreatPoint Energy (GPE) concept for producing synthetic natural gas and hydrogen from coal involves the catalytic gasification of coal and carbon. GPE’s technology “refines” coal by employing a novel catalyst to “crack” the carbon bonds and transform the coal into cleanburning methane (natural gas) and hydrogen. The GPE mild “catalytic” gasifier design and operating conditions result in reactor components that are less expensive and produce pipeline-grade methane and relatively high purity hydrogen. The system operates extremely efficiently on very low cost carbon sources such as lignites, subbituminous coals, tar sands, petcoke, and petroleum residual oil. In addition, GPE’s catalytic coal gasification process eliminates troublesome ash removal and slagging problems, reduces maintenance requirements, and increases thermal efficiency, significantly reducing the size of the air separation plant (a system that alone accounts for 20% of the capital cost of most gasification systems) in the catalytic gasification process. Energy & Environmental Research Center (EERC) pilot-scale gasification facilities were used to demonstrate how coal and catalyst are fed into a fluid-bed reactor with pressurized steam and a small amount of oxygen to “fluidize” the mixture and ensure constant contact between the catalyst and the carbon particles. In this environment, the catalyst facilitates multiple chemical reactions between the carbon and the steam on the surface of the coal. These reactions generate a mixture of predominantly methane, hydrogen, and carbon dioxide. Product gases from the process are sent to a gas-cleaning system where CO{sub 2} and other contaminants are removed. In a full-scale system, catalyst would be recovered from the bottom of the gasifier and recycled back into the fluid-bed reactor. The by-products (such as sulfur, nitrogen, and CO{sub 2}) would be captured and could be sold to the chemicals and petroleum industries, resulting in near-zero hazardous air or water pollution. This technology would also be conducive to the efficient coproduction of methane and hydrogen while also generating a relatively pure CO{sub 2} stream suitable for enhanced oil recovery (EOR) or sequestration. Specific results of bench-scale testing in the 4- to 38-lb/hr range in the EERC pilot system demonstrated high methane yields approaching 15 mol%, with high hydrogen yields approaching 50%. This was compared to an existing catalytic gasification model developed by GPE for its process. Long-term operation was demonstrated on both Powder River Basin subbituminous coal and on petcoke feedstocks utilizing oxygen injection without creating significant bed agglomeration. Carbon conversion was greater than 80% while operating at temperatures less than 1400°F, even with the shorter-than-desired reactor height. Initial designs for the GPE gasification concept called for a height that could not be accommodated by the EERC pilot facility. More gas-phase residence time should allow the syngas to be converted even more to methane. Another goal of producing significant quantities of highly concentrated catalyzed char for catalyst recovery and material handling studies was also successful. A Pd–Cu membrane was also successfully tested and demonstrated to produce 2.54 lb/day of hydrogen permeate, exceeding the desired hydrogen permeate production rate of 2.0 lb/day while being tested on actual coal-derived syngas that had been cleaned with advanced warm-gas cleanup systems. The membranes did not appear to suffer any performance degradation after exposure to the cleaned, warm syngas over a nominal 100-hour test.

  18. CATALYTIC BIOMASS LIQUEFACTION

    E-Print Network [OSTI]

    Ergun, Sabri

    2013-01-01T23:59:59.000Z

    LBL-11 019 UC-61 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,Catalytic Liquefaction of Biomass,n M, Seth, R. Djafar, G.of California. CATALYTIC BIOMASS LIQUEFACTION QUARTERLY

  19. Piloted rich-catalytic lean-burn hybrid combustor

    DOE Patents [OSTI]

    Newburry, Donald Maurice (Orlando, FL)

    2002-01-01T23:59:59.000Z

    A catalytic combustor assembly which includes, an air source, a fuel delivery means, a catalytic reactor assembly, a mixing chamber, and a means for igniting a fuel/air mixture. The catalytic reactor assembly is in fluid communication with the air source and fuel delivery means and has a fuel/air plenum which is coated with a catalytic material. The fuel/air plenum has cooling air conduits passing therethrough which have an upstream end. The upstream end of the cooling conduits is in fluid communication with the air source but not the fuel delivery means.

  20. Catalytic Coherence

    E-Print Network [OSTI]

    Johan Aberg

    2014-10-20T23:59:59.000Z

    Due to conservation of energy we cannot directly turn a quantum system with a definite energy into a superposition of different energies. However, if we have access to an additional resource in terms of a system with a high degree of coherence, as for standard models of laser light, we can overcome this limitation. The question is to what extent coherence gets degraded when utilized. Here it is shown that coherence can be turned into a catalyst, meaning that we can use it repeatedly without ever diminishing its power to enable coherent operations. This finding stands in contrast to the degradation of other quantum resources, and has direct consequences for quantum thermodynamics, as it shows that latent energy that may be locked into superpositions of energy eigenstates can be released catalytically.

  1. CATALYTIC LIQUEFACTION OF BIOMASS

    E-Print Network [OSTI]

    Seth, Manu

    2012-01-01T23:59:59.000Z

    liquid Fuels from Biomass: "Catalyst Screening and KineticUC-61 (l, RCO osn CDL or BIOMASS CATALYTIC LIQUEFACTION ManuCATALYTIC LIQUEFACTION OF BIOMASS Manu Seth, Roger Djafar,

  2. CATALYTIC BIOMASS LIQUEFACTION

    E-Print Network [OSTI]

    Ergun, Sabri

    2013-01-01T23:59:59.000Z

    Solvent Systems Catalystic Biomass Liquefaction Investigatereactor Product collection Biomass liquefaction process12-13, 1980 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,

  3. Rich catalytic injection

    DOE Patents [OSTI]

    Veninger, Albert (Coventry, CT)

    2008-12-30T23:59:59.000Z

    A gas turbine engine includes a compressor, a rich catalytic injector, a combustor, and a turbine. The rich catalytic injector includes a rich catalytic device, a mixing zone, and an injection assembly. The injection assembly provides an interface between the mixing zone and the combustor. The injection assembly can inject diffusion fuel into the combustor, provides flame aerodynamic stabilization in the combustor, and may include an ignition device.

  4. Fluid Catalytic Cracking Power Recovery Computer Simulation

    E-Print Network [OSTI]

    Samurin, N. A.

    1979-01-01T23:59:59.000Z

    operating conditions. The digital computer model simulates the performance of the axial compressor, power recovery expander, regenerator section, and system pressure drops. The program can simulate the process system design conditions for compatibility...

  5. Fluid Catalytic Cracking Power Recovery Computer Simulation 

    E-Print Network [OSTI]

    Samurin, N. A.

    1979-01-01T23:59:59.000Z

    operating conditions. The digital computer model simulates the performance of the axial compressor, power recovery expander, regenerator section, and system pressure drops. The program can simulate the process system design conditions for compatibility...

  6. Performance characterization of a hydrogen catalytic heater.

    SciTech Connect (OSTI)

    Johnson, Terry Alan; Kanouff, Michael P.

    2010-04-01T23:59:59.000Z

    This report describes the performance of a high efficiency, compact heater that uses the catalytic oxidation of hydrogen to provide heat to the GM Hydrogen Storage Demonstration System. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to a circulating heat transfer fluid. The fluid then transfers the heat to one or more of the four hydrogen storage modules that make up the Demonstration System to drive off the chemically bound hydrogen. The heater consists of three main parts: (1) the reactor, (2) the gas heat recuperator, and (3) oil and gas flow distribution manifolds. The reactor and recuperator are integrated, compact, finned-plate heat exchangers to maximize heat transfer efficiency and minimize mass and volume. Detailed, three-dimensional, multi-physics computational models were used to design and optimize the system. At full power the heater was able to catalytically combust a 10% hydrogen/air mixture flowing at over 80 cubic feet per minute and transfer 30 kW of heat to a 30 gallon per minute flow of oil over a temperature range from 100 C to 220 C. The total efficiency of the catalytic heater, defined as the heat transferred to the oil divided by the inlet hydrogen chemical energy, was characterized and methods for improvement were investigated.

  7. Catalytic distillation structure

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A. (Bellaire, TX)

    1984-01-01T23:59:59.000Z

    Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

  8. Sequential tasks performed by catalytic pumps for colloidal crystallization

    E-Print Network [OSTI]

    Ali Afshar Farniya; Maria J. Esplandiu; Adrian Bachtold

    2014-10-20T23:59:59.000Z

    Gold-platinum catalytic pumps immersed in a chemical fuel are used to manipulate silica colloids. The manipulation relies on the electric field and the fluid flow generated by the pump. Catalytic pumps perform various tasks, such as the repulsion of colloids, the attraction of colloids, and the guided crystallization of colloids. We demonstrate that catalytic pumps can execute these tasks sequentially over time. Switching from one task to the next is related to the local change of the proton concentration, which modifies the colloid zeta potential and consequently the electric force acting on the colloids.

  9. Catalytic distillation process

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A. (Bellaire, TX)

    1982-01-01T23:59:59.000Z

    A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  10. Catalytic distillation process

    DOE Patents [OSTI]

    Smith, L.A. Jr.

    1982-06-22T23:59:59.000Z

    A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  11. Catalytic distillation structure

    DOE Patents [OSTI]

    Smith, L.A. Jr.

    1984-04-17T23:59:59.000Z

    Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

  12. Catalytic nanoporous membranes

    DOE Patents [OSTI]

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27T23:59:59.000Z

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  13. Steam reformer with catalytic combustor

    DOE Patents [OSTI]

    Voecks, Gerald E. (La Crescenta, CA)

    1990-03-20T23:59:59.000Z

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  14. A Photosynthetic Hydrogel for Catalytic Hydrogen Production ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Photosynthetic Hydrogel for Catalytic Hydrogen Production Home > Research > ANSER Research Highlights > A Photosynthetic Hydrogel for Catalytic Hydrogen Production...

  15. Catalytic coal liquefaction process

    DOE Patents [OSTI]

    Garg, D.; Sunder, S.

    1986-12-02T23:59:59.000Z

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids. 1 fig.

  16. Catalytic thermal barrier coatings

    DOE Patents [OSTI]

    Kulkarni, Anand A. (Orlando, FL); Campbell, Christian X. (Orlando, FL); Subramanian, Ramesh (Oviedo, FL)

    2009-06-02T23:59:59.000Z

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  17. Catalytic hydrodesulfurization of bitumen

    SciTech Connect (OSTI)

    Sharma, R.K.; Olson, E.S. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-12-31T23:59:59.000Z

    Investigations of the catalytic hydrodesulfurization of Venezuela bitumen and its water emulsion (Orimulsion) were carried out. This material contained a large amount of sulfur and organometallics, such as vanadium and nickel compounds. A variety of nickel and molybdenum catalysts were prepared. These, as well as two commercial catalysts, were tested with Orimulsion and vacuum-dried, pentane-insoluble and soluble bitumen. Catalytic hydrotreatment removed up to 75% of sulfur from the bitumen. Hydrodesulfurization was found to be affected by reaction temperature, reaction time, catalyst, and feed material. Moisture-free bitumen and a pentane-soluble bitumen fraction were desulfurized more effectively than Orimulsion. Zeolite-based catalysts gave higher desulfurization than synthetic clay catalysts.

  18. Catalytic reforming catalyst

    SciTech Connect (OSTI)

    Buss, W.C.; Kluksdahl, H.E.

    1980-12-09T23:59:59.000Z

    An improved catalyst, having a reduced fouling rate when used in a catalytic reforming process, said catalyst comprising platinum disposed on an alumina support wherein the alumina support is obtained by removing water from aluminum hydroxide produced as a by-product from a ziegler higher alcohol synthesis reaction, and wherein the alumina is calcined at a temperature of 1100-1400/sup 0/F so as to have a surface area of 165 to 215 square meters per gram.

  19. Catalytic reactor for low-Btu fuels

    DOE Patents [OSTI]

    Smith, Lance (North Haven, CT); Etemad, Shahrokh (Trumbull, CT); Karim, Hasan (Simpsonville, SC); Pfefferle, William C. (Madison, CT)

    2009-04-21T23:59:59.000Z

    An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.

  20. Catalytic reforming methods

    DOE Patents [OSTI]

    Tadd, Andrew R; Schwank, Johannes

    2013-05-14T23:59:59.000Z

    A catalytic reforming method is disclosed herein. The method includes sequentially supplying a plurality of feedstocks of variable compositions to a reformer. The method further includes adding a respective predetermined co-reactant to each of the plurality of feedstocks to obtain a substantially constant output from the reformer for the plurality of feedstocks. The respective predetermined co-reactant is based on a C/H/O atomic composition for a respective one of the plurality of feedstocks and a predetermined C/H/O atomic composition for the substantially constant output.

  1. Catalytic hydrodesulfurization of bitumen

    SciTech Connect (OSTI)

    Sharma, R.K.; Olson, E.S. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-12-31T23:59:59.000Z

    Investigations of the catalytic hydrodesulfurization of Venezuela bitumen and its water-emulsion (Orimulsion) were carried out. A variety of catalysts were prepared and some impregnated with molybdenum and sulfided. These and two commercial catalysts were tested with Orimulsion, vacuum-dried Orimulsion, and pentane-insoluble and soluble Orimulsion. Hydrotreatment of feed material was done in a 15-mL tube reactor using a variety of catalysts at 390{degrees}C under an initial 1000-psi hydrogen pressure with a reaction time of 1-3 hours. The hydrotreated products were analyzed by total sulfur analysis. Catalytic hydrotreatment removed up to 75% of sulfur from the bitumen. Nickel and/or molybdenum impregnation on various supports promoted sulfur removal from Orimulsion. Hydrodesulfurization was found to be affected by reaction temperature, reaction time, catalyst, and feed material. A moisture-free bitumen and a pentane-soluble bitumen fraction were desulfurized more effectively than Orimulsion. Zeolite-based catalysts gave higher desulfurization than synthetic clay catalysts or commercial AMOCAT and HDN catalysts.

  2. Novel Catalytic Membrane Reactors

    SciTech Connect (OSTI)

    Stuart Nemser, PhD

    2010-10-01T23:59:59.000Z

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  3. Bifunctional Catalysts for the Selective Catalytic Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels as Reductants...

  4. Methods and apparatus for catalytic hydrothermal gasification...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methods and apparatus for catalytic hydrothermal gasification of biomass Re-direct Destination: Continuous processing of wet biomass feedstock by catalytic hydrothermal...

  5. Synthesis, Characterization, and Catalytic Function of Novel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization, and Catalytic Function of Novel Highly Dispersed Tungsten Oxide Catalysts on Mesoporous Silica . Synthesis, Characterization, and Catalytic Function of Novel...

  6. Preparation, Characterization, and Catalytic Properties of Tungsten...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preparation, Characterization, and Catalytic Properties of Tungsten Trioxide Cyclic Trimers on FeO(111)Pt(111). Preparation, Characterization, and Catalytic Properties of Tungsten...

  7. The catalytic oxidation of propane 

    E-Print Network [OSTI]

    Sanderson, Charles Frederick

    1949-01-01T23:59:59.000Z

    THE CATALYTIC OXIDATION OP PROPANE A Thesis By Charles Frederick Sandersont * * June 1949 Approval as to style and content recommended: Head of the Department of Chemical Engineering THE CATALYTICi OXIDATTON OF PROPANE A Thesis By Charles... Frederick ;Sandersonit * June 1949 THE CATALYTIC OXIDATION OP PROPANE A Thesis Submitted to the Faculty of the Agricultural and Mechanical College of Texas in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Major...

  8. The catalytic oxidation of propane

    E-Print Network [OSTI]

    Sanderson, Charles Frederick

    1949-01-01T23:59:59.000Z

    THE CATALYTIC OXIDATION OP PROPANE A Thesis By Charles Frederick Sandersont * * June 1949 Approval as to style and content recommended: Head of the Department of Chemical Engineering THE CATALYTICi OXIDATTON OF PROPANE A Thesis By Charles... Frederick ;Sandersonit * June 1949 THE CATALYTIC OXIDATION OP PROPANE A Thesis Submitted to the Faculty of the Agricultural and Mechanical College of Texas in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Major...

  9. Steam Cracker Furnace Energy Improvements 

    E-Print Network [OSTI]

    Gandler, T.

    2010-01-01T23:59:59.000Z

    The Southern Energy Efficiency Center (SEEC) was established to substantially increase the deployment of high-performance “beyond-code” buildings across the southern region of the U.S, funded by the U.S. Department of ...

  10. Protocol development for evaluation of commercial catalytic cracking catalysts

    SciTech Connect (OSTI)

    Mitchell, M.M. Jr.; Moore, H.F. (Ashland Petroleum Co., KY (USA))

    1988-09-01T23:59:59.000Z

    A complete, new set of testing protocols has been developed for qualification of catalysts for Ashland's commercial catalytic cracking units. The objective of this test development is to identify new generations of improved cracking catalysts. Prior test protocols have classically utilized microactivity (MAT) testing of steamed virgin catalysts, while more advanced methods have utilized fixed fluid bed and/or circulating pilot units. Each of these techniques, however, have been limited by their correlation to commercial operations, weaknesses in metallation and preparation of pseudo-equilibrium catalysts, and mechanical constraints on the use of heavy, vacuum bottoms-containing feedstocks. These new protocols have been baselined, compared to commercial Ashland results on known catalytic cracking catalysts, and utilized to evaluate a range of potentially new catalyst samples.

  11. Energy Recovery System for Fluid Catalytic Cracking Units 

    E-Print Network [OSTI]

    Wen, H.; Lou, S. C.

    1982-01-01T23:59:59.000Z

    hot gas expanders. Flue gas from the FCC regenerator passes through a special cyclone separator to remove most of the entrained catalyst fines. It then enters the expander train to generate power for the compressor which supplies air...

  12. Energy Conservation Revamps in Fluid Catalytic Cracking Systems

    E-Print Network [OSTI]

    Wilson, J. W.; Sloan, H. D.

    1984-01-01T23:59:59.000Z

    The FCC process continues as one of the major refinery technologies despite changes in refinery operations. The main fractionator/vapor recovery systems associated with many FCC units have the potential for significant gains in energy efficiency...

  13. Energy Recovery System for Fluid Catalytic Cracking Units

    E-Print Network [OSTI]

    Wen, H.; Lou, S. C.

    1982-01-01T23:59:59.000Z

    hot gas expanders. Flue gas from the FCC regenerator passes through a special cyclone separator to remove most of the entrained catalyst fines. It then enters the expander train to generate power for the compressor which supplies air...

  14. INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING

    E-Print Network [OSTI]

    INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING FOR GAS TURBINE Prepared For: California Energy REPORT (FAR) INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING FOR GAS TURBINE CYCLES EISG AWARDEE University://www.energy.ca.gov/research/index.html. #12;Page 1 Integral Catalytic Combustion/Fuel Reforming for Gas Turbine Cycles EISG Grant # 99

  15. Dry scrubber reduces SO sub 2 in calciner flue gas

    SciTech Connect (OSTI)

    Brown, G.W. (Refining Consulting Services, Englewood, CO (US)); Roderick, D. (Western Slope Refining Co., Fruita, CO (US)); Nastri, A. (NATEC Resources Inc., Dallas, TX (US))

    1991-02-18T23:59:59.000Z

    This paper discusses the installation of a dry sulfur dioxide scrubber for an existing petroleum coke calciner at its Fruita, Colo., refinery. The dry scrubbing process was developed by the power industry to help cope with the acid rain problem. It is the first application of the process in an oil refinery. The process could also remove SO{sub 2} from the flue gas of a fluid catalytic cracker, fluid coker, or other refinery sources.

  16. Bifunctional Catalysts for the Selective Catalytic Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as Reductants Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx...

  17. Plasma-assisted catalytic reduction system

    DOE Patents [OSTI]

    Vogtlin, G.E.; Merritt, B.T.; Hsiao, M.C.; Wallman, P.H.; Penetrante, B.M.

    1998-01-27T23:59:59.000Z

    Non-thermal plasma gas treatment is combined with selective catalytic reduction to enhance NO{sub x} reduction in oxygen-rich vehicle engine exhausts. 8 figs.

  18. Superconducting Cuprates on Catalytic Substrates - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Electricity Transmission Find More Like This Return to Search Superconducting Cuprates on Catalytic Substrates Brookhaven National Laboratory Contact BNL About...

  19. Catalytic membranes for fuel cells

    DOE Patents [OSTI]

    Liu, Di-Jia (Naperville, IL); Yang, Junbing (Bolingbrook, IL); Wang, Xiaoping (Naperville, IL)

    2011-04-19T23:59:59.000Z

    A fuel cell of the present invention comprises a cathode and an anode, one or both of the anode and the cathode including a catalyst comprising a bundle of longitudinally aligned graphitic carbon nanotubes including a catalytically active transition metal incorporated longitudinally and atomically distributed throughout the graphitic carbon walls of said nanotubes. The nanotubes also include nitrogen atoms and/or ions chemically bonded to the graphitic carbon and to the transition metal. Preferably, the transition metal comprises at least one metal selected from the group consisting of Fe, Co, Ni, Mn, and Cr.

  20. Catalytic Nanostructures | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C lKieling ,CatalysisPortalCatalytic

  1. Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons...

  2. Measurement of diesel solid nanoparticle emissions using a catalytic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    diesel solid nanoparticle emissions using a catalytic stripper for comparison with Europe's PMP protocol Measurement of diesel solid nanoparticle emissions using a catalytic...

  3. Atomic-Structural Synergy for Catalytic CO Oxidation over Palladium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic-Structural Synergy for Catalytic CO Oxidation over Palladium-Nickel Nanoalloys. Atomic-Structural Synergy for Catalytic CO Oxidation over Palladium-Nickel Nanoalloys....

  4. High Catalytic Rates for Hydrogen Production Using Nickel Electrocatal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Catalytic Rates for Hydrogen Production Using Nickel Electrocatalysts with Seven-Membered Diphosphine Ligands Containing High Catalytic Rates for Hydrogen Production Using...

  5. Nanoporous carbon catalytic membranes and method for making the same

    DOE Patents [OSTI]

    Foley, Henry C. (Hockessin, DE); Strano, Michael (Wilmington, DE); Acharya, Madhav (New Castle, DE); Raich, Brenda A. (Houston, TX)

    2002-01-01T23:59:59.000Z

    Catalytic membranes comprising highly-dispersed, catalytically-active metals in nanoporous carbon membranes and a novel single-phase process to produce the membranes.

  6. Fluid juggling

    E-Print Network [OSTI]

    Soto, Enrique

    2013-01-01T23:59:59.000Z

    This fluid dynamics video is an entry for the Gallery of Fluid Motion for the 66th Annual Meeting of the Fluid Dynamics Division of the American Physical Society. We show the curious behaviour of a light ball interacting with a liquid jet. For certain conditions, a ball can be suspended into a slightly inclined liquid jet. We studied this phenomenon using a high speed camera. The visualizations show that the object can be `juggled' for a variety of flow conditions. A simple calculation showed that the ball remains at a stable position due to a Bernoulli-like effect. The phenomenon is very stable and easy to reproduce.

  7. Catalytic converter with thermoelectric generator

    SciTech Connect (OSTI)

    Parise, R.J.

    1998-07-01T23:59:59.000Z

    The unique design of an electrically heated catalyst (EHC) and the inclusion of an ECO valve in the exhaust of an internal combustion engine will meet the strict new emission requirements, especially at vehicle cold start, adopted by several states in this country as well as in Europe and Japan. The catalytic converter (CC) has been a most useful tool in pollution abatement for the automobile. But the emission requirements are becoming more stringent and, along with other improvements, the CC must be improved to meet these new standards. Coupled with the ECO valve, the EHC can meet these new emission limits. In an internal combustion engine vehicle (ICEV), approximately 80% of the energy consumed leaves the vehicle as waste heat: out the tail pipe, through the radiator, or convected/radiated off the engine. Included with the waste heat out the tail pipe are the products of combustion which must meet strict emission requirements. The design of a new CC is presented here. This is an automobile CC that has the capability of producing electrical power and reducing the quantity of emissions at vehicle cold start, the Thermoelectric Catalytic Power Generator. The CC utilizes the energy of the exothermic reactions that take place in the catalysis substrate to produce electrical energy with a thermoelectric generator. On vehicle cold start, the thermoelectric generator is used as a heat pump to heat the catalyst substrate to reduce the time to catalyst light-off. Thus an electrically heated catalyst (EHC) will be used to augment the abatement of tail pipe emissions. Included with the EHC in the exhaust stream of the automobile is the ECO valve. This valve restricts the flow of pollutants out the tail pipe of the vehicle for a specified amount of time until the EHC comes up to operating temperature. Then the ECO valve opens and allows the full exhaust, now treated by the EHC, to leave the vehicle.

  8. 6. Fluid mechanics: fluid statics; fluid dynamics

    E-Print Network [OSTI]

    Zevenhoven, Ron

    Figure Pressure (a scalar!) is defined as surface force / area, for example pb = Fb / (d·w) = p @ z = z1 Picture: KJ05 Fluid volume h·d·w with density and mass m = h·d·w· z = z1 In engineering forces Fn+ Fs = 0 or - py·h·w + py·h·w = 0 py = 0 Similarly Fw+ Fe= 0 gives px = 0, There are three

  9. Catalytic gasification of bagasse for the production of methanol

    SciTech Connect (OSTI)

    Baker, E.G.; Brown, M.D.; Robertus, R.J.

    1985-10-01T23:59:59.000Z

    The purpose of the study was to evaluate the technical and economic feasibility of catalytic gasification of bagasse to produce methanol. In previous studies, a catalytic steam gasification process was developed which converted wood to methanol synthesis gas in one step using nickel based catalysts in a fluid-bed gasifier. Tests in a nominal 1 ton/day process development unit (PDU) gasifier with these same catalysts showed bagasse to be a good feedstock for fluid-bed gasifiers, but the catalysts deactivated quite rapidly in the presence of bagasse. Laboratory catalyst screening tests showed K/sub 2/CO/sub 3/ doped on the bagasse to be a promising catalyst for converting bagasse to methanol synthesis gas. PDU tests with 10 wt % K/sub 2/CO/sub 3/ doped on bagasse showed the technical feasibility of this type of catalyst on a larger scale. A high quality synthesis gas was produced and carbon conversion to gas was high. The gasifier was successfully operated without forming agglomerates of catalyst, ash, and char in the gasifier. There was no loss of activity throughout the runs because catalysts is continually added with the bagasse. Laboratory tests showed about 80% of the potassium carbonate could be recovered and recycled with a simple water wash. An economic evaluation of the process for converting bagasse to methanol showed the required selling price of methanol to be significantly higher than the current market price of methanol. Several factors make this current evaluaton using bagasse as a feedstock less favorable: (1) capital costs are higher due to inflation and some extra costs required to use bagasse, (2) smaller plant sizes were considered so economies of scale are lost, and (3) the market price of methanol in the US has fallen 44% in the last six months. 24 refs., 14 figs., 16 tabs.

  10. Vacuum-insulated catalytic converter

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO)

    2001-01-01T23:59:59.000Z

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  11. Simulating Fluids Exhibiting Microstructure

    E-Print Network [OSTI]

    Title: Simulating Fluids Exhibiting Microstructure Speaker: Noel J. Walkington, ... fluids containing elastic particles, and polymer fluids, all exhibit non-trivial ...

  12. Selective oxidation of hydrocarbons in a catalytic dense membrane reactor: Catalytic properties of BIMEVOX (Me = Ta)

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Selective oxidation of hydrocarbons in a catalytic dense membrane reactor: Catalytic properties for syngas or H2 production from light hydrocarbons. #12;2 Keywords: Dense membrane reactor, BIMEVOX, BITAVOX to decouple the two steps of the redox mechanism that prevails in selective oxidation of hydrocarbons [1

  13. VOC Destruction by Catalytic Combustion Microturbine

    SciTech Connect (OSTI)

    Tom Barton

    2009-03-10T23:59:59.000Z

    This project concerned the application of a catalytic combustion system that has been married to a micro-turbine device. The catalytic combustion system decomposes the VOC's and transmits these gases to the gas turbine. The turbine has been altered to operate on very low-level BTU fuels equivalent to 1.5% methane in air. The performance of the micro-turbine for VOC elimination has some flexibility with respect to operating conditions, and the system is adaptable to multiple industrial applications. The VOC source that was been chosen for examination was the emissions from coal upgrading operations. The overall goal of the project was to examine the effectiveness of a catalytic combustion based system for elimination of VOCs while simultaneously producing electrical power for local consumption. Project specific objectives included assessment of the feasibility for using a Flex-Microturbine that generates power from natural gas while it consumes VOCs generated from site operations; development of an engineering plan for installation of the Flex-Microturbine system; operation of the micro-turbine through various changes in site and operation conditions; measurement of the VOC destruction quantitatively; and determination of the required improvements for further studies. The micro-turbine with the catalytic bed worked effectively to produce power on levels of fuel much lower than the original turbine design. The ability of the device to add or subtract supplemental fuel to augment the amount of VOC's in the inlet air flow made the device an effective replacement for a traditional flare. Concerns about particulates in the inlet flow and the presence of high sulfur concentrations with the VOC mixtures was identified as a drawback with the current catalytic design. A new microturbine design was developed based on this research that incorporates a thermal oxidizer in place of the catalytic bed for applications where particulates or contamination would limit the lifetime of the catalytic bed.

  14. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect (OSTI)

    W. R. Laster; E. Anoshkina; P. Szedlacsek

    2006-03-31T23:59:59.000Z

    Under the sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse is conducting a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1-Implementation Plan, Phase 2-Validation Testing and Phase 3-Field Testing. The Phase 1 program has been completed. Phase II was initiated in October 2004. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCL{trademark}) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to react part of the fuel, increasing the fuel/air mixture temperature. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the catalytic concept will be demonstrated through subscale testing. Phase III will consist of full-scale combustor basket testing on natural gas and syngas.

  15. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect (OSTI)

    W. R. Laster; E. Anoshkina

    2008-01-31T23:59:59.000Z

    Under the sponsorship of the U. S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1 - Implementation Plan, Phase 2 - Validation Testing and Phase 3 - Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  16. Catalytic Combustor for Fuel-Flexible Turbine

    SciTech Connect (OSTI)

    Laster, W. R.; Anoshkina, E.

    2008-01-31T23:59:59.000Z

    Under the sponsorship of the U. S. Department of Energy’s National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1- Implementation Plan, Phase 2- Validation Testing and Phase 3 – Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  17. Fluid extraction

    DOE Patents [OSTI]

    Wai, Chien M. (Moscow, ID); Laintz, Kenneth E. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  18. Electro Catalytic Oxidation (ECO) Operation

    SciTech Connect (OSTI)

    Morgan Jones

    2011-03-31T23:59:59.000Z

    The power industry in the United States is faced with meeting many new regulations to reduce a number of air pollutants including sulfur dioxide, nitrogen oxides, fine particulate matter, and mercury. With over 1,000 power plants in the US, this is a daunting task. In some cases, traditional pollution control technologies such as wet scrubbers and SCRs are not feasible. Powerspan's Electro-Catalytic Oxidation, or ECO{reg_sign} process combines four pollution control devices into a single integrated system that can be installed after a power plant's particulate control device. Besides achieving major reductions in emissions of sulfur dioxide (SO{sub 2}), nitrogen oxides (NOx), fine particulate matter (PM2.5) and mercury (Hg), ECO produces a highly marketable fertilizer, which can help offset the operating costs of the process system. Powerspan has been operating a 50-MW ECO commercial demonstration unit (CDU) at FirstEnergy Corp.'s R.E. Burger Plant near Shadyside, Ohio, since February 2004. In addition to the CDU, a test loop has been constructed beside the CDU to demonstrate higher NOx removal rates and test various scrubber packing types and wet ESP configurations. Furthermore, Powerspan has developed the ECO{reg_sign}{sub 2} technology, a regenerative process that uses a proprietary solvent to capture CO{sub 2} from flue gas. The CO{sub 2} capture takes place after the capture of NOx, SO{sub 2}, mercury, and fine particulate matter. Once the CO{sub 2} is captured, the proprietary solution is regenerated to release CO{sub 2} in a form that is ready for geological storage or beneficial use. Pilot scale testing of ECO{sub 2} began in early 2009 at FirstEnergy's Burger Plant. The ECO{sub 2} pilot unit is designed to process a 1-MW flue gas stream and produce 20 tons of CO{sub 2} per day, achieving a 90% CO{sub 2} capture rate. The ECO{sub 2} pilot program provided the opportunity to confirm process design and cost estimates, and prepare for large scale capture and sequestration projects. The objectives of this project were to prove at a commercial scale that ECO is capable of extended operations over a range of conditions, that it meets the reliability requirements of a typical utility, and that the fertilizer co-product can be consistently generated, providing ECO with an economic advantage over conventional technologies currently available. Further objectives of the project were to show that the ECO system provides flue gas that meets the inlet standards necessary for ECO{sub 2} to operate, and that the outlet CO{sub 2} and other constituents produced by the ECO{sub 2} pilot can meet Kinder-Morgan pipeline standards for purposes of sequestration. All project objectives are consistent with DOE's Pollution Control Innovations for Power Plants program goals.

  19. Porous Core-Shell Nanostructures for Catalytic Applications

    E-Print Network [OSTI]

    Ewers, Trevor David

    2012-01-01T23:59:59.000Z

    C.Y Mou. Catalytic nano-rattle of Au@ hollow silica: towardshollow nanostructures induced by the Kirkendall effect: The basic concept. NanoHollow mesoporous aluminosilica spheres with perpendicular pore channels as catalytic nanoreactors. ACS Nano,

  20. CATALYTICALLY ENCHANCED SYSTEMS FOR HYDROGEN STORAGE

    E-Print Network [OSTI]

    to the conversion of the world to a "hydrogen economy" is the problem of onboard hydrogen storage. Despite decadesCATALYTICALLY ENCHANCED SYSTEMS FOR HYDROGEN STORAGE Craig M. Jensen, Dalin Sun, Sesha Sai RamanH/Al and the reverse hydrogenation reactions have been determined through kinetic studies of 2 mol % Ti and Zr doped

  1. Transparent and Catalytic Carbon Nanotube Films

    E-Print Network [OSTI]

    Hone, James

    for the dye-sensitized solar cell. Other possible applications include batteries, fuel cells and intercalation in hydrogen fuel cells and lithium ion batteries.1,10,12,14 However, the electrochemical activity to optimize performance through processing. In this study, we quantify the catalytic activity of single

  2. Combustion Air Preheat on Steam Cracker Furnaces

    E-Print Network [OSTI]

    Kenney, W. F.

    1983-01-01T23:59:59.000Z

    Beginning in 1978, Exxon has started up nine large new steam cracking furnaces with various levels of air preheat, and has seven more under construction. Sources of heat have included process streams, flue gas and gas turbine exhaust. Several...

  3. Combustion Air Preheat on Steam Cracker Furnaces 

    E-Print Network [OSTI]

    Kenney, W. F.

    1983-01-01T23:59:59.000Z

    aspects of the technology employed have been patented in the U.S. and elsewhere. This paper discusses the use of process heat and gas turbine exhaust for air preheat to provide plant fuel savings of about 8% over and above a modern, fuel efficient...

  4. Feedstock Economics for Global Steam Crackers

    E-Print Network [OSTI]

    McCormack, G.; Pavone, T.

    ECONOMIC FACTORS pa~ticula~ count~y p~ovides compa~ative economics on which In calculating p~oduction costs design c~acklng feedstock in each ~egion, f~om the 5 p~oduces ethylene at the lowest alte~native c~acking feedstocks, cost. Compa~lng ~ows...~icing scena~ios. * local ta)(es & insu~ance LOW COST PRODUCERS RESULTS F~om Table 2, the low cost Using all of the above, SRI p~oduce~s a~e Indonesia, Saudi calculated ethylene p~oduction A~abia, South Ko~ea. the US Gulf cost, and cost plus 251. p...

  5. Fluid Inclusion Gas Analysis

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dilley, Lorie

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  6. Fluid Inclusion Gas Analysis

    SciTech Connect (OSTI)

    Dilley, Lorie

    2013-01-01T23:59:59.000Z

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  7. Catalytic fast pyrolysis of lignocellulosic biomass

    SciTech Connect (OSTI)

    Liu, Changjun; Wang, Huamin; Karim, Ayman M.; Sun, Junming; Wang, Yong

    2014-11-21T23:59:59.000Z

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy Q3 carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel—bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating values, high corrosiveness, high viscosity, and instability; they also greatly Q4 limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.

  8. Catalytic extraction processing of contaminated scrap metal

    SciTech Connect (OSTI)

    Griffin, T.P.; Johnston, J.E.; Payea, B.M.; Zeitoon, B.M.

    1995-12-01T23:59:59.000Z

    Molten Metal Technology was awarded a contract to demonstrate the applicability of the Catalytic Extraction Process, a proprietary process that could be applied to US DOE`s inventory of low level mixed waste. This paper is a description of that technology, and included within this document are discussions of: (1) Program objectives, (2) Overall technology review, (3) Organic feed conversion to synthetic gas, (4) Metal, halogen, and transuranic recovery, (5) Demonstrations, (6) Design of the prototype facility, and (7) Results.

  9. Preface: Challenges for Catalytic Exhaust Aftertreatment

    SciTech Connect (OSTI)

    Nova, Isabella; Epling, Bill; Peden, Charles HF

    2014-03-31T23:59:59.000Z

    This special issue of Catalysis Today continues the tradition established since the 18th NAM in Cancun, 2003, of publishing the highlights coming from these catalytic after-treatment technologies sessions, where this volume contains 18 papers based on oral and poster presentations of the 23rd NAM, 2013. The guest editors would like to thank all of the catalyst scientists and engineers who presented in the "Emission control" sessions, and especially the authors who contributed to this special issue of Catalysis Today.

  10. Catalytic Consequences of Acid Strength in the Conversion of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consequences of Acid Strength in the Conversion of Methanol to Dimethyl Ether. Catalytic Consequences of Acid Strength in the Conversion of Methanol to Dimethyl Ether. Abstract:...

  11. Catalyst Cartography: 3D Super-Resolution Mapping of Catalytic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an individual catalytic nanoparticle while reactions are occurring. Catalysts are used in manufacturing everything from stain remover to rocket fuel; they make production more...

  12. Improved Low-Temperature Performance of Catalytic Converters...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catalytic converters, installed on vehicles with internal combustion and diesel engines, convert the toxic byproducts of combustion to less toxic compounds. In two-way (lean...

  13. Catalytic reduction system for oxygen-rich exhaust

    DOE Patents [OSTI]

    Vogtlin, G.E.; Merritt, B.T.; Hsiao, M.C.; Wallman, P.H.; Penetrante, B.M.

    1999-04-13T23:59:59.000Z

    Non-thermal plasma gas treatment is combined with selective catalytic reduction to enhance NO{sub x} reduction in oxygen-rich vehicle engine exhausts. 8 figs.

  14. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway...

    Broader source: Energy.gov (indexed) [DOE]

    the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium...

  15. The Effects of Trace Contaminants on Catalytic Processing of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processing of Biomass-Derived Feedstocks . Abstract: Trace components in biomass feedstocks are potential catalyst poisons when catalytically processing these materials to...

  16. Catalytic multi-stage liquefaction (CMSL)

    SciTech Connect (OSTI)

    Comolli, A.G.; Ganguli, P.; Karolkiewicz, W.F.; Lee, T.L.K.; Pradhan, V.R.; Popper, G.A.; Smith, T.; Stalzer, R.

    1996-11-01T23:59:59.000Z

    Under contract with the U.S. Department of Energy, Hydrocarbon Technologies, Inc. has conducted a series of eleven catalytic, multi-stage, liquefaction (CMSL) bench scale runs between February, 1991, and September, 1995. The purpose of these runs was to investigate novel approaches to liquefaction relating to feedstocks, hydrogen source, improved catalysts as well as processing variables, all of which are designed to lower the cost of producing coal-derived liquid products. This report summarizes the technical assessment of these runs, and in particular the evaluation of the economic impact of the results.

  17. Thin film porous membranes for catalytic sensors

    SciTech Connect (OSTI)

    Hughes, R.C.; Boyle, T.J.; Gardner, T.J. [and others

    1997-06-01T23:59:59.000Z

    This paper reports on new and surprising experimental data for catalytic film gas sensing resistors coated with nanoporous sol-gel films to impart selectivity and durability to the sensor structure. This work is the result of attempts to build selectivity and reactivity to the surface of a sensor by modifying it with a series of sol-gel layers. The initial sol-gel SiO{sub 2} layer applied to the sensor surprisingly showed enhanced O{sub 2} interaction with H{sub 2} and reduced susceptibility to poisons such as H{sub 2}S.

  18. Catalytic Solutions Inc CSI | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSLInformationMissouri:Catalyst Regeneration MarketCatalytic

  19. BioCatalytics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher Homes JumpMaintenance |BigBigLakeBioCatalytics

  20. Standardization of Thermo-Fluid Modeling in Modelica.Fluid

    E-Print Network [OSTI]

    Franke, Rudiger

    2010-01-01T23:59:59.000Z

    Thermo-Fluid Systems, Modelica 2003 Conference, Linköping,H. Tummescheit: The Modelica Fluid and Media Library forThermo-Fluid Pipe Networks, Modelica 2006 Conference, Vi-

  1. Ability of Catalytic Converters to Reduce Air Pollution

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    NOx - 1 Ability of Catalytic Converters to Reduce Air Pollution MEASUREMENT OF SELECTED AIR POLLUTANTS IN CAR EXHAUST Last updated: June 17, 2014 #12;NOx - 2 Ability of Catalytic Converters to Reduce Air Pollution MEASUREMENT OF SELECTED AIR POLLUTANTS IN CAR EXHAUST INTRODUCTION Automobile engines

  2. Fluid sampling tool

    DOE Patents [OSTI]

    Johnston, Roger G. (Los Alamos, NM); Garcia, Anthony R. E. (Espanola, NM); Martinez, Ronald K. (Santa Cruz, NM)

    2001-09-25T23:59:59.000Z

    The invention includes a rotatable tool for collecting fluid through the wall of a container. The tool includes a fluid collection section with a cylindrical shank having an end portion for drilling a hole in the container wall when the tool is rotated, and a threaded portion for tapping the hole in the container wall. A passageway in the shank in communication with at least one radial inlet hole in the drilling end and an opening at the end of the shank is adapted to receive fluid from the container. The tool also includes a cylindrical chamber affixed to the end of the shank opposite to the drilling portion thereof for receiving and storing fluid passing through the passageway. The tool also includes a flexible, deformable gasket that provides a fluid-tight chamber to confine kerf generated during the drilling and tapping of the hole. The invention also includes a fluid extractor section for extracting fluid samples from the fluid collecting section.

  3. Viscous fluid dynamics

    E-Print Network [OSTI]

    A. K. Chaudhuri

    2007-03-12T23:59:59.000Z

    We briefly discuss the phenomenological theory of dissipative fluid. We also present some numerical results for hydrodynamic evolution of QGP fluid with dissipation due to shear viscosity only. Its effect on particle production is also studied.

  4. HEAT TRANSFER FLUIDS

    E-Print Network [OSTI]

    Lenert, Andrej

    2012-01-01T23:59:59.000Z

    The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

  5. Standardization of Thermo-Fluid Modeling in Modelica.Fluid

    E-Print Network [OSTI]

    Franke, Rudiger

    2010-01-01T23:59:59.000Z

    Ob- ject-Oriented Modeling of Thermo-Fluid Systems, Modelicable and Compressible Thermo-Fluid Pipe Networks, ModelicaStandardization of Thermo-Fluid Modeling in Modelica.Fluid

  6. Preparation and characterization of VOx/TiO2 catalytic coatings on stainless steel plates for structured catalytic reactors.

    E-Print Network [OSTI]

    Boyer, Edmond

    for structured catalytic reactors. Thierry Giornelli, Axel Löfberg* and Elisabeth Bordes-Richard Unité de.Lofberg@univ-lille1.fr Abstract The parameters to be controlled to coat metallic walls by VOx/TiO2 catalysts which) was chosen because of its large application in industrial catalytic reactors. TiO2 films on stainless steel

  7. View dependent fluid dynamics

    E-Print Network [OSTI]

    Barran, Brian Arthur

    2006-08-16T23:59:59.000Z

    , are modified to support a nonuniform simulation grid. In addition, infinite fluid boundary conditions are introduced that allow fluid to flow freely into or out of the simulation domain to achieve the effect of large, boundary free bodies of fluid. Finally, a...

  8. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, E.M. Jr.

    1984-03-27T23:59:59.000Z

    A method is described for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor, contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

  9. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, E.M. Jr.

    1985-08-20T23:59:59.000Z

    A method and apparatus are disclosed for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

  10. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, Jr., Edward M. (Friendswood, TX)

    1984-01-01T23:59:59.000Z

    A method for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catatlyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

  11. Contact structure for use in catalytic distillation

    DOE Patents [OSTI]

    Jones, Jr., Edward M. (Friendswood, TX)

    1985-01-01T23:59:59.000Z

    A method and apparatus for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

  12. Catalytic cartridge SO/sub 3/ decomposer

    DOE Patents [OSTI]

    Galloway, T.R.

    1980-11-18T23:59:59.000Z

    A catalytic cartridge surrounding a heat pipe driven by a heat source is utilized as a SO/sub 3/ decomposer for thermochemical hydrogen production. The cartridge has two embodiments, a cross-flow cartridge and an axial flow cartridge. In the cross-flow cartridge, SO/sub 3/ gas is flowed through a chamber and incident normally to a catalyst coated tube extending through the chamber, the catalyst coated tube surrounding the heat pipe. In the axial-flow cartridge, SO/sub 3/ gas is flowed through the annular space between concentric inner and outer cylindrical walls, the inner cylindrical wall being coated by a catalyst and surrounding the heat pipe. The modular cartridge decomposer provides high thermal efficiency, high conversion efficiency, and increased safety. A fusion reactor may be used as the heat source.

  13. Catalytic carbon membranes for hydrogen production

    SciTech Connect (OSTI)

    Damle, A.S.; Gangwal, S.K.

    1992-01-01T23:59:59.000Z

    Commercial carbon composite microfiltration membranes may be modified for gas separation applications by providing a gas separation layer with pores in the 1- to 10-nm range. Several organic polymeric precursors and techniques for depositing a suitable layer were investigated in this project. The in situ polymerization technique was found to be the most promising, and pure component permeation tests with membrane samples prepared with this technique indicated Knudsen diffusion behavior. The gas separation factors obtained by mixed-gas permeation tests were found to depend strongly on gas temperature and pressure indicating significant viscous flow at high-pressure conditions. The modified membranes were used to carry out simultaneous water gas shift reaction and product hydrogen separation. These tests indicated increasing CO conversions with increasing hydrogen separation. A simple process model was developed to simulate a catalytic membrane reactor. A number of simulations were carried out to identify operating conditions leading to product hydrogen concentrations over 90 percent. (VC)

  14. Catalytic cracking of residual petroleum fractions

    SciTech Connect (OSTI)

    Moore, H.F.; Mayo, S.L.; Goolsby, T.L. (Research and Development Dept., Ashland Petroleum Co., Ashland, KY (US))

    1991-01-01T23:59:59.000Z

    This paper reports on Arabian Light crude oil vacuum bottoms fractionated into five high-boiling fractions by wiped film evaporation, and the fractions subjected to catalytic cracking in a fixed-fluidized bed using a commercial equilibrium cracking catalyst. Density, aromaticity, and heteroatom content generally increased with boiling point, as did metals content except for vanadium and iron which demonstrated possible bimodal distributions. The cracking response of these fractions showed increasing yields of dry gas and coke, with decreasing gasoline yields, as a function of increasing apparent boiling point as would normally be expected. Surprisingly, however, local maxima were observed for wet gas yield and total conversion, with local minima for cycle oil and slurry yields, in the region of the 1200-1263{degrees}F (650-680{degrees}C) middle fraction. All fractions showed significant response to cracking, with coke yields generally being the only negative factor observed.

  15. Spinning fluids reactor

    SciTech Connect (OSTI)

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20T23:59:59.000Z

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  16. Fluid Dynamics Seminar Fluid Dynamics Research Centre

    E-Print Network [OSTI]

    Davies, Christopher

    France) 8th Nov. Future Trends in Condition Monitoring of Rotating Machines Using System Identification Simulation of the Cooling of a Simplified Brake Disc Dr. Thorsten J. Möller, (Institute for Fluid Mechanics

  17. Fluid Dynamics Seminar Fluid Dynamics Research Centre

    E-Print Network [OSTI]

    Thomas, Peter J.

    France) 8 th Nov. Future Trends in Condition Monitoring of Rotating Machines Using System Identification Simulation of the Cooling of a Simplified Brake Disc Dr. Thorsten J. Möller, (Institute for Fluid Mechanics

  18. Novel Fast Pyrolysis/Catalytic Technology for the Production of Stable Upgraded Liquids

    SciTech Connect (OSTI)

    Ted Oyama, Foster Agblevor, Francine Battaglia, Michael Klein

    2013-01-18T23:59:59.000Z

    The objective of the proposed research is the demonstration and development of a novel biomass pyrolysis technology for the production of a stable bio-oil. The approach is to carry out catalytic hydrodeoxygenation (HDO) and upgrading together with pyrolysis in a single fluidized bed reactor with a unique two-level design that permits the physical separation of the two processes. The hydrogen required for the HDO will be generated in the catalytic section by the water-gas shift reaction employing recycled CO produced from the pyrolysis reaction itself. Thus, the use of a reactive recycle stream is another innovation in this technology. The catalysts will be designed in collaboration with BASF Catalysts LLC (formerly Engelhard Corporation), a leader in the manufacture of attrition-resistant cracking catalysts. The proposed work will include reactor modeling with state-of-the-art computational fluid dynamics in a supercomputer, and advanced kinetic analysis for optimization of bio-oil production. The stability of the bio-oil will be determined by viscosity, oxygen content, and acidity determinations in real and accelerated measurements. A multi-faceted team has been assembled to handle laboratory demonstration studies and computational analysis for optimization and scaleup.

  19. Heat transfer rates in fixed bed catalytic reactors

    E-Print Network [OSTI]

    Levelton, Bruce Harding

    1951-01-01T23:59:59.000Z

    HEAT TRANSFER RATES IN FIXED BED CATALYTIC REACTORS H EATTRNSFSAIX DB DNCLR YFNOAXa rRJRuSIX nSeR 1951i HssNIJFu FT SI TSBuR FXO LIXSRXS NRLIeeRXOROt HEAT TRANSFER RATES IN FIXED BED CATALYTIC REACTORS H EATTRNSFSAIX BSar DNCLR YFNOAXa r...RJRuSIX June 1951 HEAT TRANSFER RATES IN FIXED BED CATALYTIC REACTORS A Dissertation Submitted to the Faculty of the Agricultural and Mechanical College of Texas in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Major...

  20. Control of Substrate Access to the Active Site and Catalytic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control of Substrate Access to the Active Site and Catalytic Mechanism of Methane and Toluene Monooxygenases Friday, June 22, 2012 - 3:30pm SSRL Main Conference Room 137-322 Prof....

  1. Hydrogen permeable protective coating for a catalytic surface

    DOE Patents [OSTI]

    Liu, Ping (Irvine, CA); Tracy, C. Edwin (Golen, CO); Pitts, J. Roland (Lakewood, CO); Lee, Se-Hee (Lakewood, CO)

    2007-06-19T23:59:59.000Z

    A protective coating for a surface comprising a layer permeable to hydrogen, said coating being deposited on a catalyst layer; wherein the catalytic activity of the catalyst layer is preserved.

  2. Emerging catalytic processes for the production of adipic acid

    E-Print Network [OSTI]

    Van de Vyver, Stijn

    Research efforts to find more sustainable pathways for the synthesis of adipic acid have led to the introduction of new catalytic processes for producing this commodity chemical from alternative resources. With a focus on ...

  3. Catalytic H2O2 decomposition on palladium surfaces

    E-Print Network [OSTI]

    Salinas, S. Adriana

    1998-01-01T23:59:59.000Z

    The catalytic decomposition of H?O? at smooth single-crystal and polycrystalline palladium surfaces that had been subjected to various surface modifications has been studied. Monolayer and submonolayer coverages of I, Br and Cl adsorbates were used...

  4. An Energy Analysis of the Catalytic Combustion Burner

    E-Print Network [OSTI]

    Dong, Q.; Zhang, S.; Duan, Z.; Zhou, Q.

    2006-01-01T23:59:59.000Z

    The gas boilers of conventional flame always produce varying degrees of combustion products NOx and CO, which pollute the environment and waste energy. As a new way of combustion, catalytic combustion breaks the flammable limits of conventional...

  5. In situ XAS Characterization of Catalytic Nano-Materials with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    XAS Characterization of Catalytic Nano-Materials with Applications to Fuel Cells and Batteries Friday, July 12, 2013 - 11:00am SLAC, Conference Room 137-322 Presented by Qingying...

  6. atp catalytic domain: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 328 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  7. acidic multimetallic catalytic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 106 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  8. automobile catalytic converters: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Odei 2006-01-01 408 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  9. atp catalytic cycle: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 275 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  10. advanced catalytic hydrogenation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 188 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  11. apparent catalytic site: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 257 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  12. advanced catalytic materials: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 225 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  13. acrylamide catalytically inhibits: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 78 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  14. assisted catalytic oxidation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 251 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  15. active catalytic sites: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 337 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  16. atpase catalytic domain: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 266 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  17. advanced catalytic materials 1996: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 467 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  18. archaeal primase catalytic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 92 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  19. advanced catalytic science: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 488 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  20. Catalytic studies of supported Pd-Au catalysts 

    E-Print Network [OSTI]

    Boopalachandran, Praveenkumar

    2006-08-16T23:59:59.000Z

    Although Pd-Au high-surface area catalysts are used in industry to improve activity and selectivity, a thorough understanding of the nature of these enhancements is lacking. A molecular-level understanding of catalytic ...

  1. Catalytic Membrane Reactor for Extraction of Hydrogen from Bioethanol Reforming

    E-Print Network [OSTI]

    Kuncharam, Bhanu Vardhan

    2013-11-26T23:59:59.000Z

    This research explores a novel application of catalytic membrane reactors for high- purity hydrogen extraction from bioethanol reforming. Conventional membrane systems employ hydrogen permselective materials such as palladium, polymer membranes...

  2. Disposal of drilling fluids

    SciTech Connect (OSTI)

    Bryson, W.R.

    1983-06-01T23:59:59.000Z

    Prior to 1974 the disposal of drilling fluids was not considered to be much of an environmental problem. In the past, disposal of drilling fluids was accomplished in various ways such as spreading on oil field lease roads to stabilize the road surface and control dust, spreading in the base of depressions of sandy land areas to increase water retention, and leaving the fluid in the reserve pit to be covered on closure of the pit. In recent years, some states have become concerned over the indescriminate dumping of drilling fluids into pits or unauthorized locations and have developed specific regulations to alleviate the perceived deterioration of environmental and groundwater quality from uncontrolled disposal practices. The disposal of drilling fluids in Kansas is discussed along with a newer method or treatment in drilling fluid disposal.

  3. Fiber optic fluid detector

    DOE Patents [OSTI]

    Angel, S.M.

    1987-02-27T23:59:59.000Z

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  4. Multiphase Equilibrium of Fluids Confined in Fisher-Tropsch Catalytic Systems

    E-Print Network [OSTI]

    Warrag, Samah

    2014-04-23T23:59:59.000Z

    . Although this technology was discovered in 1923, commercialization and scale up are limited to the use of few reactor configurations (e.g. multi-tubular fixed-bed reactor, Slurry-bubble column reactor, and fluidized bed reactors). In order to improve...

  5. Reaction kinetics of olefin saturation in the hydrodesulfurization of fluid catalytic cracked naphtha

    E-Print Network [OSTI]

    Schumann, Brian Herbert

    1995-01-01T23:59:59.000Z

    . . . 30 . . . 3 I . . . 3 I 13. Run 222-92-70--Comparison ofkw/rto Carbon Number forNormalOlefin . . . . 32 14. Run 222-92-70 ? -Comparison of k w/r to Carbon Number for Iso Olefins . . . . . . . . . . . 32 15. Run 222-92-70 ? -Comparison of k w.../r to Carbon Number for Cycfic Olefins . . . . . . 33 16. Run 963-94-24 ? -Comparison of k w/r to Carbon Number for Normal Olefins . . . . 33 17. Run 963-94-24 ? -Comparison of k w/r to Carbon Number for Iso Olefins . . . . . . . . . . . 34 18. Run 963...

  6. Northwestern University Facility for Clean Catalytic Process Research

    SciTech Connect (OSTI)

    Marks, Tobin Jay [Northwestern University

    2013-05-08T23:59:59.000Z

    Northwestern University with DOE support created a Facility for Clean Catalytic Process Research. This facility is designed to further strengthen our already strong catalysis research capabilities and thus to address these National challenges. Thus, state-of-the art instrumentation and experimentation facility was commissioned to add far greater breadth, depth, and throughput to our ability to invent, test, and understand catalysts and catalytic processes, hence to improve them via knowledge-based design and evaluation approaches.

  7. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway

    SciTech Connect (OSTI)

    Biddy, M.; Jones, S.

    2013-03-01T23:59:59.000Z

    This technology pathway case investigates the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium (NABC) in collaboration with Virent, Inc. Technical barriers and key research needs that should be pursued for the catalytic conversion of sugars pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks have been identified.

  8. Metalworking and machining fluids

    DOE Patents [OSTI]

    Erdemir, Ali (Naperville, IL); Sykora, Frank (Caledon, ON, CA); Dorbeck, Mark (Brighton, MI)

    2010-10-12T23:59:59.000Z

    Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.

  9. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    DOE Patents [OSTI]

    Nicholas, Christpher P; Boldingh, Edwin P

    2013-12-17T23:59:59.000Z

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and show to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hyrdocarbons into hydrocarbons removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  10. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    DOE Patents [OSTI]

    Nicholas, Christopher P; Boldingh, Edwin P

    2014-10-07T23:59:59.000Z

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and shown to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub.1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  11. Microchannel Reactor System for Catalytic Hydrogenation

    SciTech Connect (OSTI)

    Adeniyi Lawal; Woo Lee; Ron Besser; Donald Kientzler; Luke Achenie

    2010-12-22T23:59:59.000Z

    We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 – 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstrated on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.

  12. Adsorption Kinetics of Surfactants at Fluid-Fluid Interfaces

    E-Print Network [OSTI]

    Andelman, David

    Adsorption Kinetics of Surfactants at Fluid-Fluid Interfaces Haim Diamant and David Andelman School-Fluid Interfaces, Adsorption, Adsorption Kinetics, Interfacial Tension. 1 #12;Abstract We review a new theoretical approach to the kinetics of surfactant adsorption at fluid-fluid interfaces. It yields a more complete

  13. Fluid delivery control system

    DOE Patents [OSTI]

    Hoff, Brian D.; Johnson, Kris William; Algrain, Marcelo C.; Akasam, Sivaprasad

    2006-06-06T23:59:59.000Z

    A method of controlling the delivery of fluid to an engine includes receiving a fuel flow rate signal. An electric pump is arranged to deliver fluid to the engine. The speed of the electric pump is controlled based on the fuel flow rate signal.

  14. Plasma-assisted catalytic storage reduction system

    DOE Patents [OSTI]

    Penetrante, Bernardino M. (San Ramon, CA); Vogtlin, George E. (Fremont, CA); Merritt, Bernard T. (Livermore, CA); Brusasco, Raymond M. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    A two-stage method for NO.sub.x reduction in an oxygen-rich engine exhaust comprises a plasma oxidative stage and a storage reduction stage. The first stage employs a non-thermal plasma treatment of NO.sub.x gases in an oxygen-rich exhaust and is intended to convert NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons. The second stage employs a lean NO.sub.x trap to convert such NO.sub.2 to environmentally benign gases that include N.sub.2, CO.sub.2, and H.sub.2 O. By preconverting NO to NO.sub.2 in the first stage with a plasma, the efficiency of the second stage for NO.sub.x reduction is enhanced. For example, an internal combustion engine exhaust is connected by a pipe to a first chamber in which a non-thermal plasma converts NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons, such as propene. A flow of such hydrocarbons (C.sub.x H.sub.y) is input from usually a second pipe into at least a portion of the first chamber. The NO.sub.2 from the plasma treatment proceeds to a storage reduction catalyst (lean NO.sub.x trap) that converts NO.sub.2 to N.sub.2, CO.sub.2, and H.sub.2 O, and includes a nitrate-forming catalytic site. The hydrocarbons and NO.sub.x are simultaneously reduced while passing through the lean-NO.sub.x trap catalyst. The method allows for enhanced NO.sub.x reduction in vehicular engine exhausts, particularly those having relatively high sulfur contents.

  15. Plasma-assisted catalytic storage reduction system

    DOE Patents [OSTI]

    Penetrante, Bernardino M. (San Ramon, CA); Vogtlin, George E. (Fremont, CA); Merritt, Bernard T. (Livermore, CA); Brusasco, Raymond M. (Livermore, CA)

    2000-01-01T23:59:59.000Z

    A two-stage method for NO.sub.x reduction in an oxygen-rich engine exhaust comprises a plasma oxidative stage and a storage reduction stage. The first stage employs a non-thermal plasma treatment of NO.sub.x gases in an oxygen-rich exhaust and is intended to convert NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons. The second stage employs a lean NO.sub.x trap to convert such NO.sub.2 to environmentally benign gases that include N.sub.2, CO.sub.2, and H.sub.2 O. By preconverting NO to NO.sub.2 in the first stage with a plasma, the efficiency of the second stage for NO.sub.x reduction is enhanced. For example, an internal combustion engine exhaust is connected by a pipe to a first chamber in which a non-thermal plasma converts NO to NO.sub.2 in the presence of O.sub.2 and hydrocarbons, such as propene. A flow of such hydrocarbons (C.sub.x H.sub.y) is input from usually a second pipe into at least a portion of the first chamber. The NO.sub.2 from the plasma treatment proceeds to a storage reduction catalyst (lean NO.sub.x trap) that converts NO.sub.2 to N.sub.2, CO.sub.2, and H.sub.2 O, and includes a nitrate-forming catalytic site. The hydrocarbons and NO.sub.x are simultaneously reduced while passing through the lean-NO.sub.x trap catalyst. The method allows for enhanced NO.sub.x reduction in vehicular engine exhausts, particularly those having relatively high sulfur contents.

  16. Fluid blade disablement tool

    DOE Patents [OSTI]

    Jakaboski, Juan-Carlos (Albuquerque, NM); Hughs, Chance G. (Albuquerque, NM); Todd, Steven N. (Rio Rancho, NM)

    2012-01-10T23:59:59.000Z

    A fluid blade disablement (FBD) tool that forms both a focused fluid projectile that resembles a blade, which can provide precision penetration of a barrier wall, and a broad fluid projectile that functions substantially like a hammer, which can produce general disruption of structures behind the barrier wall. Embodiments of the FBD tool comprise a container capable of holding fluid, an explosive assembly which is positioned within the container and which comprises an explosive holder and explosive, and a means for detonating. The container has a concavity on the side adjacent to the exposed surface of the explosive. The position of the concavity relative to the explosive and its construction of materials with thicknesses that facilitate inversion and/or rupture of the concavity wall enable the formation of a sharp and coherent blade of fluid advancing ahead of the detonation gases.

  17. Ultra Low NOx Catalytic Combustion for IGCC Power Plants

    SciTech Connect (OSTI)

    Shahrokh Etemad; Benjamin Baird; Sandeep Alavandi; William Pfefferle

    2008-03-31T23:59:59.000Z

    In order to meet DOE's goals of developing low-emissions coal-based power systems, PCI has further developed and adapted it's Rich-Catalytic Lean-burn (RCL{reg_sign}) catalytic reactor to a combustion system operating on syngas as a fuel. The technology offers ultra-low emissions without the cost of exhaust after-treatment, with high efficiency (avoidance of after-treatment losses and reduced diluent requirements), and with catalytically stabilized combustion which extends the lower Btu limit for syngas operation. Tests were performed in PCI's sub-scale high-pressure (10 atm) test rig, using a two-stage (catalytic then gas-phase) combustion process for syngas fuel. In this process, the first stage consists of a fuel-rich mixture reacting on a catalyst with final and excess combustion air used to cool the catalyst. The second stage is a gas-phase combustor, where the air used for cooling the catalyst mixes with the catalytic reactor effluent to provide for final gas-phase burnout and dilution to fuel-lean combustion products. During testing, operating with a simulated Tampa Electric's Polk Power Station syngas, the NOx emissions program goal of less than 0.03 lbs/MMBtu (6 ppm at 15% O{sub 2}) was met. NOx emissions were generally near 0.01 lbs/MMBtu (2 ppm at 15% O{sub 2}) (PCI's target) over a range on engine firing temperatures. In addition, low emissions were shown for alternative fuels including high hydrogen content refinery fuel gas and low BTU content Blast Furnace Gas (BFG). For the refinery fuel gas increased resistance to combustor flashback was achieved through preferential consumption of hydrogen in the catalytic bed. In the case of BFG, stable combustion for fuels as low as 88 BTU/ft{sup 3} was established and maintained without the need for using co-firing. This was achieved based on the upstream catalytic reaction delivering a hotter (and thus more reactive) product to the flame zone. The PCI catalytic reactor was also shown to be active in ammonia reduction in fuel allowing potential reductions in the burner NOx production. These reductions of NOx emissions and expanded alternative fuel capability make the rich catalytic combustor uniquely situated to provide reductions in capital costs through elimination of requirements for SCR, operating costs through reduction in need for NOx abating dilution, SCR operating costs, and need for co-firing fuels allowing use of lower value but more available fuels, and efficiency of an engine through reduction in dilution flows.

  18. Correlations between surface structure and catalytic activity/selectivity

    SciTech Connect (OSTI)

    Goodman, D.W.

    1992-10-01T23:59:59.000Z

    Objective is to address the keys to understanding the relation between surface structure and catalytic activity/selectivity. Of concern are questions related to enhanced catalytic properties of mixed-metal catalysts and critical active site requirements for molecular synthesis and rearrangement. The experimental approach utilizes a microcatalytic reactor contiguous to a surface analysis system, an arrangement which allows in vacuo transfer of the catalyst from one chamber to the other. Surface techniques being used include Auger (AES), UV and X-ray photoemission spectroscopy (UPS and XPS), temperature programmed desorption (TPD), low energy electron diffraction (LEED), high resolution electron energy loss spectroscopy (HREELS) and infrared reflection-absorption spectroscopy (IRAS). Our research program builds upon our previous experience relating the results of single crystal kinetic measurements with the results obtained with supported analogs. As well we are exploiting our recent work on the preparation, the characterization, and the determination of the catalytic properties of ultra-thin metal and metal oxide films. The program is proceeding toward the study of the unique catalytic properties of ultrathin metal films; the investigation of the critical ensemble size requirements for principal catalytic reaction types; and the modelling of supported catalysts using ultra-thin planar oxide surfaces.

  19. FRACTURING FLUID CHARACTERIZATION FACILITY

    SciTech Connect (OSTI)

    Subhash Shah

    2000-08-01T23:59:59.000Z

    Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

  20. Multiphase fluid characterization system

    DOE Patents [OSTI]

    Sinha, Dipen N.

    2014-09-02T23:59:59.000Z

    A measurement system and method for permitting multiple independent measurements of several physical parameters of multiphase fluids flowing through pipes are described. Multiple acoustic transducers are placed in acoustic communication with or attached to the outside surface of a section of existing spool (metal pipe), typically less than 3 feet in length, for noninvasive measurements. Sound speed, sound attenuation, fluid density, fluid flow, container wall resonance characteristics, and Doppler measurements for gas volume fraction may be measured simultaneously by the system. Temperature measurements are made using a temperature sensor for oil-cut correction.

  1. Supercritical fluid extraction

    DOE Patents [OSTI]

    Wai, Chien M. (Moscow, ID); Laintz, Kenneth (Pullman, WA)

    1994-01-01T23:59:59.000Z

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated or lipophilic crown ether or fluorinated dithiocarbamate. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  2. Method for measuring recovery of catalytic elements from fuel cells

    DOE Patents [OSTI]

    Shore, Lawrence (Edison, NJ); Matlin, Ramail (Berkeley, NJ)

    2011-03-08T23:59:59.000Z

    A method is provided for measuring the concentration of a catalytic clement in a fuel cell powder. The method includes depositing on a porous substrate at least one layer of a powder mixture comprising the fuel cell powder and an internal standard material, ablating a sample of the powder mixture using a laser, and vaporizing the sample using an inductively coupled plasma. A normalized concentration of catalytic element in the sample is determined by quantifying the intensity of a first signal correlated to the amount of catalytic element in the sample, quantifying the intensity of a second signal correlated to the amount of internal standard material in the sample, and using a ratio of the first signal intensity to the second signal intensity to cancel out the effects of sample size.

  3. Fuel Flexible, Low Emission Catalytic Combustor for Opportunity Fuel Applications

    SciTech Connect (OSTI)

    Eteman, Shahrokh

    2013-06-30T23:59:59.000Z

    Limited fuel resources, increasing energy demand and stringent emission regulations are drivers to evaluate process off-gases or process waste streams as fuels for power generation. Often these process waste streams have low energy content and/or highly reactive components. Operability of low energy content fuels in gas turbines leads to issues such as unstable and incomplete combustion. On the other hand, fuels containing higher-order hydrocarbons lead to flashback and auto-ignition issues. Due to above reasons, these fuels cannot be used directly without modifications or efficiency penalties in gas turbine engines. To enable the use of these wide variety of fuels in gas turbine engines a rich catalytic lean burn (RCL®) combustion system was developed and tested in a subscale high pressure (10 atm.) rig. The RCL® injector provided stability and extended turndown to low Btu fuels due to catalytic pre-reaction. Previous work has shown promise with fuels such as blast furnace gas (BFG) with LHV of 85 Btu/ft3 successfully combusted. This program extends on this work by further modifying the combustor to achieve greater catalytic stability enhancement. Fuels containing low energy content such as weak natural gas with a Lower Heating Value (LHV) of 6.5 MJ/m3 (180 Btu/ft3 to natural gas fuels containing higher hydrocarbon (e.g ethane) with LHV of 37.6 MJ/m3 (1010 Btu/ft3) were demonstrated with improved combustion stability; an extended turndown (defined as the difference between catalytic and non-catalytic lean blow out) of greater than 250oF was achieved with CO and NOx emissions lower than 5 ppm corrected to 15% O2. In addition, for highly reactive fuels the catalytic region preferentially pre-reacted the higher order hydrocarbons with no events of flashback or auto-ignition allowing a stable and safe operation with low NOx and CO emissions.

  4. Basic fluid system trainer

    DOE Patents [OSTI]

    Semans, Joseph P. (Uniontown, PA); Johnson, Peter G. (Pittsburgh, PA); LeBoeuf, Jr., Robert F. (Clairton, PA); Kromka, Joseph A. (Idaho Falls, ID); Goron, Ronald H. (Connellsville, PA); Hay, George D. (Venetia, PA)

    1993-01-01T23:59:59.000Z

    A trainer, mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.

  5. Basic fluid system trainer

    SciTech Connect (OSTI)

    Semans, J.P.; Johnson, P.G.; LeBoeuf, R.F. Jr.; Kromka, J.A.; Goron, R.H.; Hay, G.D.

    1991-04-30T23:59:59.000Z

    This invention, a trainer mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.

  6. Circulating Fluid Bed Combustor

    E-Print Network [OSTI]

    Fraley, L. D.; Do, L. N.; Hsiao, K. H.

    1982-01-01T23:59:59.000Z

    The circulating bed combustor represents an alternative concept of burning coal in fluid bed technology, which offers distinct advantages over both the current conventional fluidized bed combustion system and the pulverized coal boilers equipped...

  7. Phoresis in fluids

    E-Print Network [OSTI]

    Brenner, Howard

    This paper presents a unified theory of phoretic phenomena in single-component fluids. Simple formulas are given for the phoretic velocities of small inert force-free non-Brownian particles migrating through otherwise ...

  8. Fluid pumping apparatus

    DOE Patents [OSTI]

    West, Phillip B. (Idaho Falls, ID)

    2006-01-17T23:59:59.000Z

    A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.

  9. Ultrarelativistic fluid dynamics

    E-Print Network [OSTI]

    David W. Neilsen; Matthew W. Choptuik

    1999-04-20T23:59:59.000Z

    This is the first of two papers examining the critical collapse of spherically symmetric perfect fluids with the equation of state P = (Gamma -1)rho. Here we present the equations of motion and describe a computer code capable of simulating the extremely relativistic flows encountered in critical solutions for Gamma <= 2. The fluid equations are solved using a high-resolution shock-capturing scheme based on a linearized Riemann solver.

  10. Valve for fluid control

    DOE Patents [OSTI]

    Oborny, Michael C. (Albuquerque, NM); Paul, Phillip H. (Livermore, CA); Hencken, Kenneth R. (Pleasanton, CA); Frye-Mason, Gregory C. (Cedar Crest, NM); Manginell, Ronald P. (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    A valve for controlling fluid flows. This valve, which includes both an actuation device and a valve body provides: the ability to incorporate both the actuation device and valve into a unitary structure that can be placed onto a microchip, the ability to generate higher actuation pressures and thus control higher fluid pressures than conventional microvalves, and a device that draws only microwatts of power. An electrokinetic pump that converts electric potential to hydraulic force is used to operate, or actuate, the valve.

  11. The backflow cell model for fluidized bed catalytic reactors

    E-Print Network [OSTI]

    Ganapathy, E. V

    1967-01-01T23:59:59.000Z

    THE BACKFLOW CELL MODEL FOR FLUIDI2ED BED CATALYTIC REACTORS A Thesis By E. V. Ganapathy Submitted to the Graduate College of the Texas A&M University in partial fulfillment of' the requirements for the degree of MASTER OF SCIENCE May 1967... Major Subject Chemical En ineerin THE BACKFLOW CELL MODEL FOR FLUIDIZED BED CATALYTIC REACTORS A Thesis E. V. Ganapathy Approved as to style and content by: chairman of Committee ~H+d d D p t t Member Member) May 1967 SO THE BACKFLOW CELL...

  12. CSE Master Specialization Fluid Dynamics

    E-Print Network [OSTI]

    Lang, Annika

    CSE Master Specialization Fluid Dynamics Course Semester Fluid Dynamics II HS Quantitative Flow Energie- und Verfahrenstechnik FS Biofluiddynamics FS #12;CSE in Fluid Dynamics: Very large high in Fluid Dynamics: Physiology of the inner ear MicroCT imaging Multilayer MFS for Stokes flow simulations

  13. Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons

    DOE Patents [OSTI]

    Rollins, Harry W. (Idaho Falls, ID); Petkovic, Lucia M. (Idaho Falls, ID); Ginosar, Daniel M. (Idaho Falls, ID)

    2011-02-01T23:59:59.000Z

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  14. Continued investigations of the catalytic reduction of N? to NH? by molybdenum triamidoamine complexes

    E-Print Network [OSTI]

    Hanna, Brian S. (Brian Stewart)

    2011-01-01T23:59:59.000Z

    A study of the effects of employing different solvents and the introduction of dihydrogen during the catalytic reduction of dinitrogen to ammonia with [HIPTN 3N]Mo complexes was completed. During a catalytic reaction, the ...

  15. Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine

    E-Print Network [OSTI]

    Peck, Jhongwoo, 1976-

    2003-01-01T23:59:59.000Z

    As part of the MIT micro-gas turbine engine project, the development of a hydrocarbon-fueled catalytic micro-combustion system is presented. A conventionally-machined catalytic flow reactor was built to simulate the ...

  16. Impact of Biodiesel-Based Na on the Selective Catalytic Reduction...

    Broader source: Energy.gov (indexed) [DOE]

    Impact of Biodiesel-Based Na on the Selective Catalytic Reduction (SCR) of NOx Using Cu-zeolite Impact of Biodiesel-Based Na on the Selective Catalytic Reduction (SCR) of NOx Using...

  17. Fluorescent fluid interface position sensor

    DOE Patents [OSTI]

    Weiss, Jonathan D.

    2004-02-17T23:59:59.000Z

    A new fluid interface position sensor has been developed, which is capable of optically determining the location of an interface between an upper fluid and a lower fluid, the upper fluid having a larger refractive index than a lower fluid. The sensor functions by measurement, of fluorescence excited by an optical pump beam which is confined within a fluorescent waveguide where that waveguide is in optical contact with the lower fluid, but escapes from the fluorescent waveguide where that waveguide is in optical contact with the upper fluid.

  18. Interacting FisherWright Diffusions in a Catalytic Medium Andreas Greven

    E-Print Network [OSTI]

    Klenke, Achim

    environment (catalytic medium). Here we introduce a model of interacting Fisher­Wright diffusions where environment, catalytic medium, longtime behaviour, rescaling. AMS Subject Classification: 60K35, 60J70Interacting Fisher­Wright Diffusions in a Catalytic Medium Andreas Greven Mathematisches Institut

  19. Data reconciliation and optimal operation of a catalytic naphtha reformer

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Data reconciliation and optimal operation of a catalytic naphtha reformer Tore Lid Statoil Mongstad-mail:skoge@chemeng.ntnu.no) #12;Abstract The naphtha reforming process converts low-octane gasoline blending compo- nents to high-octane components for use in high-performance gasoline fuels. The reformer also has a important function

  20. Data reconciliation and optimal operation of a catalytic naphtha reformer

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Data reconciliation and optimal operation of a catalytic naphtha reformer Tore Lid Statoil Mongstad-mail:skoge@chemeng.ntnu.no) #12;Abstract The naphtha reforming process converts low-octane gasoline blending compo- nents to high-octane components for use in high-performance gasoline fuels. The reformer also has an important function

  1. Catalytic two-stage coal hydrogenation and hydroconversion process

    DOE Patents [OSTI]

    MacArthur, James B. (Denville, NJ); McLean, Joseph B. (So. Somerville, NJ); Comolli, Alfred G. (Yardley, PA)

    1989-01-01T23:59:59.000Z

    A process for two-stage catalytic hydrogenation and liquefaction of coal to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal is slurried with a process-derived liquid solvent and fed at temperature below about 650.degree. F. into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils at conditions favoring hydrogenation reactions. The first stage reactor is maintained at 650.degree.-800.degree. F. temperature, 1000-4000 psig hydrogen partial pressure, and 10-60 lb coal/hr/ft.sup.3 reactor space velocity. The partially hydrogenated material from the first stage reaction zone is passed directly to the close-coupled second stage catalytic reaction zone maintained at a temperature at least about 25.degree. F. higher than for the first stage reactor and within a range of 750.degree.-875.degree. F. temperature for further hydrogenation and thermal hydroconversion reactions. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, which results in significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of undesirable residuum and unconverted coal and hydrocarbon gases, with use of less energy to obtain the low molecular weight products, while catalyst life is substantially increased.

  2. Catalytic Methane Reduction in the Exhaust Gas of Combustion Engines

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    Catalytic Methane Reduction in the Exhaust Gas of Combustion Engines Peter Mauermann1,* , Michael Dornseiffer6 , Frank Amkreutz6 1 Institute for Combustion Engines , RWTH Aachen University, Schinkelstr. 8, D of the hydrocarbon exhaust of internal combustion engines. In contrast to other gaseous hydrocarbons, significant

  3. In-Situ Catalytic Fast Pyrolysis Technology Pathway

    SciTech Connect (OSTI)

    Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

    2013-03-01T23:59:59.000Z

    This technology pathway case investigates converting woody biomass using in-situ catalytic fast pyrolysis followed by upgrading to gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  4. Ex-Situ Catalytic Fast Pyrolysis Technology Pathway

    SciTech Connect (OSTI)

    Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

    2013-03-01T23:59:59.000Z

    This technology pathway case investigates converting woody biomass using ex-situ catalytic fast pyrolysis followed by upgrading to gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  5. Catalytic, Enantioselective Alkylations of N,O-Acetals

    E-Print Network [OSTI]

    Lectka, Thomas

    , 10998-10999. (2) Hoveyda et al. have developed a Ni-catalyzed alkylation reaction of allylic acetalsCatalytic, Enantioselective Alkylations of N,O-Acetals Dana Ferraris, Travis Dudding, Brandon Young alkylation reactions of acetals have attained a prominent position in organic synthesis.1 Methods employing

  6. Catalytic Asymmetric Synthesis of Hydroxy Enol Ethers: Approach to a

    E-Print Network [OSTI]

    Walsh, Patrick J.

    for the generation of polypro- pionate backbone.1-7 In contrast, the asymmetric acetate aldol reaction that leads associated with acetate aldol reactions have prompted investigations into alternative methods to generate the catalytic asymmetric allylation of aldehydes followed by oxidative cleavage of the allyl group (Scheme 1, A

  7. Catalytic Domain of Phosphoinositide-specific Phospholipase C (PLC)

    E-Print Network [OSTI]

    Williams, Roger L.

    Catalytic Domain of Phosphoinositide-specific Phospholipase C (PLC) MUTATIONAL ANALYSIS OF RESIDUES WITHIN THE ACTIVE SITE AND HYDROPHOBIC RIDGE OF PLC 1* (Received for publication, November 20, 1997 Institute, University of Dundee, Dundee DD1 4HN, United Kingdom Structural studies of phospholipase C 1 (PLC

  8. Utilization of char from biomass gasification in catalytic applications

    E-Print Network [OSTI]

    temperature or time. In addition, micropores were observed in char that was made in CO2, but not in char, but sintering was not observed during gasification with CO2. This showed that the properties of char depend catalytically or thermally. However, thermal decomposition requires high temperatures, and catalyst deactivation

  9. Short Communication Catalytic coal gasification: use of calcium versus potassium*

    E-Print Network [OSTI]

    Short Communication Catalytic coal gasification: use of calcium versus potassium* Ljubisa R of calcium is related to its sintering via crystallite growth. (Keywords: coal; gasification; catalysis was to study the relative merits (or liabilities) of these two catalysts in coal char gasification. This work

  10. Structural Dynamics of a Catalytic Monolayer Probed by Ultrafast

    E-Print Network [OSTI]

    Fayer, Michael D.

    REPORTS Structural Dynamics of a Catalytic Monolayer Probed by Ultrafast 2D IR Vibrational Echoes in solutions. Here, we extend the technique to probing the interfacial dynamics and structure of a silica. The structural dynamics, as reported on by a carbonyl stretch vibration of the surface-bound complex, have

  11. Industrial Gas Turbine Engine Catalytic Pilot Combustor-Prototype Testing

    SciTech Connect (OSTI)

    Shahrokh Etemad; Benjamin Baird; Sandeep Alavandi; William Pfefferle

    2009-09-30T23:59:59.000Z

    PCI has developed and demonstrated its Rich Catalytic Lean-burn (RCL®) technology for industrial and utility gas turbines to meet DOEâ??s goals of low single digit emissions. The technology offers stable combustion with extended turndown allowing ultra-low emissions without the cost of exhaust after-treatment and further increasing overall efficiency (avoidance of after-treatment losses). The objective of the work was to develop and demonstrate emission benefits of the catalytic technology to meet strict emissions regulations. Two different applications of the RCL® concept were demonstrated: RCL® catalytic pilot and Full RCL®. The RCL® catalytic pilot was designed to replace the existing pilot (a typical source of high NOx production) in the existing Dry Low NOx (DLN) injector, providing benefit of catalytic combustion while minimizing engine modification. This report discusses the development and single injector and engine testing of a set of T70 injectors equipped with RCL® pilots for natural gas applications. The overall (catalytic pilot plus main injector) program NOx target of less than 5 ppm (corrected to 15% oxygen) was achieved in the T70 engine for the complete set of conditions with engine CO emissions less than 10 ppm. Combustor acoustics were low (at or below 0.1 psi RMS) during testing. The RCL® catalytic pilot supported engine startup and shutdown process without major modification of existing engine controls. During high pressure testing, the catalytic pilot showed no incidence of flashback or autoignition while operating over a wide range of flame temperatures. In applications where lower NOx production is required (i.e. less than 3 ppm), in parallel, a Full RCL® combustor was developed that replaces the existing DLN injector providing potential for maximum emissions reduction. This concept was tested at industrial gas turbine conditions in a Solar Turbines, Incorporated high-pressure (17 atm.) combustion rig and in a modified Solar Turbines, Incorporated Saturn engine rig. High pressure single-injector rig and modified engine rig tests demonstrated NOx less than 2 ppm and CO less than 10 ppm over a wide flame temperature operating regime with low combustion noise (<0.15% peak-to-peak). Minimum NOx for the optimized engine retrofit Full RCL® designs was less than 1 ppm with CO emissions less than 10 ppm. Durability testing of the substrate and catalyst material was successfully demonstrated at pressure and temperature showing long term stable performance of the catalytic reactor element. Stable performance of the reactor element was achieved when subjected to durability tests (>5000 hours) at simulated engine conditions (P=15 atm, Tin=400C/750F.). Cyclic tests simulating engine trips was also demonstrated for catalyst reliability. In addition to catalyst tests, substrate oxidation testing was also performed for downselected substrate candidates for over 25,000 hours. At the end of the program, an RCL® catalytic pilot system has been developed and demonstrated to produce NOx emissions of less than 3 ppm (corrected to 15% O2) for 100% and 50% load operation in a production engine operating on natural gas. In addition, a Full RCL® combustor has been designed and demonstrated less than 2 ppm NOx (with potential to achieve 1 ppm) in single injector and modified engine testing. The catalyst/substrate combination has been shown to be stable up to 5500 hrs in simulated engine conditions.

  12. Fluid driven reciprocating apparatus

    DOE Patents [OSTI]

    Whitehead, J.C.

    1997-04-01T23:59:59.000Z

    An apparatus is described comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached. 13 figs.

  13. Fluid driven recipricating apparatus

    DOE Patents [OSTI]

    Whitehead, John C. (Davis, CA)

    1997-01-01T23:59:59.000Z

    An apparatus comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached.

  14. Biomass Gas Cleanup Using a Therminator

    SciTech Connect (OSTI)

    David C. Dayton; Atish Kataria; Rabhubir Gupta

    2012-03-06T23:59:59.000Z

    The objective of the project is to develop and demonstrate a novel fluidized-bed process module called a �¢����Therminator�¢��� to simultaneously destroy and/or remove tar, NH3 and H2S from raw syngas produced by a fluidized-bed biomass gasifier. The raw syngas contains as much as 10 g/m3 of tar, 4,000 ppmv of NH3 and 100 ppmv of H2S. The goal of the Therminator module would be to use promising regenerable catalysts developed for removing tar, ammonia, and H2S down to low levels (around 10 ppm). Tars are cracked to a non-condensable gas and coke that would deposit on the acid catalyst. We will deposit coke, much like a fluid catalytic cracker (FCC) in a petroleum refinery. The deposited coke fouls the catalyst, much like FCC, but the coke would be burned off in the regenerator and the regenerated catalyst would be returned to the cracker. The rapid circulation between the cracker and regenerator would ensure the availability of the required amount of regenerated catalyst to accomplish our goal. Also, by removing sulfur down to less than 10 ppmv, NH3 decomposition would also be possible in the cracker at 600-700���°C. In the cracker, tar decomposes and lays down coke on the acid sites of the catalyst, NH3 is decomposed using a small amount of metal (e.g., nickel or iron) catalyst incorporated into the catalyst matrix, and H2S is removed by a small amount of a metal oxide (e.g. zinc oxide or zinc titanate) by the H2S-metal oxide reaction to form metal sulfide. After a tolerable decline in activity for these reactions, the catalyst particles (and additives) are transported to the regenerator where they are exposed to air to remove the coke and to regenerate the metal sulfide back to metal oxide. Sulfate formation is avoided by running the regeneration with slightly sub-stoichiometric quantity of oxygen. Following regeneration, the catalyst is transported back to the cracker and the cycling continues. Analogous to an FCC reactor system, rapid cycling will allow the use of very active cracking catalysts that lose activity due to coking within the order of several seconds.

  15. Hazardous fluid leak detector

    DOE Patents [OSTI]

    Gray, Harold E. (Las Vegas, NV); McLaurin, Felder M. (Las Vegas, NV); Ortiz, Monico (Las Vegas, NV); Huth, William A. (Las Vegas, NV)

    1996-01-01T23:59:59.000Z

    A device or system for monitoring for the presence of leaks from a hazardous fluid is disclosed which uses two electrodes immersed in deionized water. A gas is passed through an enclosed space in which a hazardous fluid is contained. Any fumes, vapors, etc. escaping from the containment of the hazardous fluid in the enclosed space are entrained in the gas passing through the enclosed space and transported to a closed vessel containing deionized water and two electrodes partially immersed in the deionized water. The electrodes are connected in series with a power source and a signal, whereby when a sufficient number of ions enter the water from the gas being bubbled through it (indicative of a leak), the water will begin to conduct, thereby allowing current to flow through the water from one electrode to the other electrode to complete the circuit and activate the signal.

  16. Method for recovering catalytic elements from fuel cell membrane electrode assemblies

    DOE Patents [OSTI]

    Shore, Lawrence (Edison, NJ); Matlin, Ramail (Berkeley Heights, NJ); Heinz, Robert (Ludwigshafen, DE)

    2012-06-26T23:59:59.000Z

    A method for recovering catalytic elements from a fuel cell membrane electrode assembly is provided. The method includes converting the membrane electrode assembly into a particulate material, wetting the particulate material, forming a slurry comprising the wetted particulate material and an acid leachate adapted to dissolve at least one of the catalytic elements into a soluble catalytic element salt, separating the slurry into a depleted particulate material and a supernatant containing the catalytic element salt, and washing the depleted particulate material to remove any catalytic element salt retained within pores in the depleted particulate material.

  17. TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID...

    Open Energy Info (EERE)

    FLUID-INCLUSION GAS CHEMISTRY Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING...

  18. MEASUREMENT OF INTERFACIAL TENSION IN FLUID-FLUID SYSTEMS

    E-Print Network [OSTI]

    Loh, Watson

    MEASUREMENT OF INTERFACIAL TENSION IN FLUID-FLUID SYSTEMS J. Drelich Ch. Fang C.L. White Michigan been used to measure interfacial tensions between immisci- ble fluid phases. A recent monograph sources of information on the in- terfacial tension measurement methods include selected chapters in Refs

  19. Magnetically stimulated fluid flow patterns

    ScienceCinema (OSTI)

    Martin, Jim; Solis, Kyle

    2014-08-06T23:59:59.000Z

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  20. Magnetically stimulated fluid flow patterns

    SciTech Connect (OSTI)

    Martin, Jim; Solis, Kyle

    2014-03-06T23:59:59.000Z

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  1. Size Effect of Ruthenium Nanoparticles in Catalytic Carbon Monoxide Oxidation

    SciTech Connect (OSTI)

    Joo, Sang Hoon; Park, Jeong Y.; Renzas, J. Russell; Butcher, Derek R.; Huang, Wenyu; Somorjai, Gabor A.

    2010-04-04T23:59:59.000Z

    Carbon monoxide oxidation over ruthenium catalysts has shown an unusual catalytic behavior. Here we report a particle size effect on CO oxidation over Ru nanoparticle (NP) catalysts. Uniform Ru NPs with a tunable particle size from 2 to 6 nm were synthesized by a polyol reduction of Ru(acac){sub 3} precursor in the presence of poly(vinylpyrrolidone) stabilizer. The measurement of catalytic activity of CO oxidation over two-dimensional Ru NPs arrays under oxidizing reaction conditions (40 Torr CO and 100 Torr O{sub 2}) showed an activity dependence on the Ru NP size. The CO oxidation activity increases with NP size, and the 6 nm Ru NP catalyst shows 8-fold higher activity than the 2 nm catalysts. The results gained from this study will provide the scientific basis for future design of Ru-based oxidation catalysts.

  2. Catalytic destruction of groundwater contaminants in reactive extraction wells

    DOE Patents [OSTI]

    McNab, Jr., Walt W. (Concord, CA); Reinhard, Martin (Stanford, CA)

    2002-01-01T23:59:59.000Z

    A system for remediating groundwater contaminated with halogenated solvents, certain metals and other inorganic species based on catalytic reduction reactions within reactive well bores. The groundwater treatment uses dissolved hydrogen as a reducing agent in the presence of a metal catalyst, such a palladium, to reduce halogenated solvents (as well as other substituted organic compounds) to harmless species (e.g., ethane or methane) and immobilize certain metals to low valence states. The reactive wells function by removing water from a contaminated water-bearing zone, treating contaminants with a well bore using catalytic reduction, and then reinjecting the treated effluent into an adjacent water-bearing zone. This system offers the advantages of a compact design with a minimal surface footprint (surface facilities) and the destruction of a broad suite of contaminants without generating secondary waste streams.

  3. Selective dehydrogenation of propane over novel catalytic materials

    SciTech Connect (OSTI)

    Sault, A.G.; Boespflug, E.P.; Martino, A.; Kawola, J.S.

    1998-02-01T23:59:59.000Z

    The conversion of small alkanes into alkenes represents an important chemical processing area; ethylene and propylene are the two most important organic chemicals manufactured in the U.S. These chemicals are currently manufactured by steam cracking of ethane and propane, an extremely energy intensive, nonselective process. The development of catalytic technologies (e.g., selective dehydrogenation) that can be used to produce ethylene and propylene from ethane and propane with greater selectivity and lower energy consumption than steam cracking will have a major impact on the chemical processing industry. This report details a study of two novel catalytic materials for the selective dehydrogenation of propane: Cr supported on hydrous titanium oxide ion-exchangers, and Pt nanoparticles encapsulated in silica and alumina aerogel and xerogel matrices.

  4. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway

    SciTech Connect (OSTI)

    Biddy, Mary J.; Jones, Susanne B.

    2013-03-31T23:59:59.000Z

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium (NABC) in collaboration with Virent, Inc.. Technical barriers and key research needs that should be pursued for the catalytic conversion of sugars pathway to be competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks have been identified.

  5. Catalytic Combustion for Ultra-Low NOx Hydrogen Turbines

    SciTech Connect (OSTI)

    Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep

    2011-06-30T23:59:59.000Z

    Precision Combustion, Inc., (PCI) in close collaboration with Solar Turbines, Incorporated, has developed and demonstrated a combustion system for hydrogen fueled turbines that reduces NOx to low single digit level while maintaining or improving current levels of efficiency and eliminating emissions of carbon dioxide. Full scale Rich Catalytic Hydrogen (RCH1) injector was developed and successfully tested at Solar Turbines, Incorporated high pressure test facility demonstrating low single digit NOx emissions for hydrogen fuel in the range of 2200F-2750F. This development work was based on initial subscale development for faster turnaround and reduced cost. Subscale testing provided promising results for 42% and 52% H2 with NOx emissions of less than 2 ppm with improved flame stability. In addition, catalytic reactor element testing for substrate oxidation, thermal cyclic injector testing to simulate start-stop operation in a gas turbine environment, and steady state 15 atm. operation testing were performed successfully. The testing demonstrated stable and robust catalytic element component life for gas turbine conditions. The benefit of the catalytic hydrogen combustor technology includes capability of delivering near-zero NOx without costly post-combustion controls and without requirement for added sulfur control. In addition, reduced acoustics increase gas turbine component life. These advantages advances Department of Energy (DOE’s) objectives for achievement of low single digit NOx emissions, improvement in efficiency vs. postcombustion controls, fuel flexibility, a significant net reduction in Integrated Gasification Combined Cycle (IGCC) system net capital and operating costs, and a route to commercialization across the power generation field from micro turbines to industrial and utility turbines.

  6. Catalytic membrane reactors for chemicals upgrading and environmental control

    SciTech Connect (OSTI)

    Sammells, A.F. [Eltron Research, Inc., Boulder, CO (United States)

    1994-12-31T23:59:59.000Z

    Mixed ionic and electronic conducting catalytic membrane reactors are being developed for promoting a number of spontaneous chemical reactions either leading to synthesis of value added products or decomposition of environmental contaminants. The dense non-porous ceramic materials behave as short-circuited electrochemical devices whereby ions (oxygen anions or protons) and electrons become simultaneously mediated for one reaction surface to another. The rationale behind membrane materials selection and specific applications will be discussed.

  7. Hybrid lean premixing catalytic combustion system for gas turbines

    DOE Patents [OSTI]

    Critchley, Ian L.

    2003-12-09T23:59:59.000Z

    A system and method of combusting a hydrocarbon fuel is disclosed. The system combines the accuracy and controllability of an air staging system with the ultra-low emissions achieved by catalytic combustion systems without the need for a pre-heater. The result is a system and method that is mechanically simple and offers ultra-low emissions over a wide range of power levels, fuel properties and ambient operating conditions.

  8. Model catalytic oxidation studies using supported monometallic and heterobimetallic oxides

    SciTech Connect (OSTI)

    Ekerdt, J.G.

    1992-02-03T23:59:59.000Z

    This research program is directed toward a more fundamental understanding of the effects of catalyst composition and structure on the catalytic properties of metal oxides. Metal oxide catalysts play an important role in many reactions bearing on the chemical aspects of energy processes. Metal oxides are the catalysts for water-gas shift reactions, methanol and higher alcohol synthesis, isosynthesis, selective catalytic reduction of nitric oxides, and oxidation of hydrocarbons. A key limitation to developing insight into how oxides function in catalytic reactions is in not having precise information of the surface composition under reaction conditions. To address this problem we have prepared oxide systems that can be used to study cation-cation effects and the role of bridging (-O-) and/or terminal (=O) surface oxygen anion ligands in a systematic fashion. Since many oxide catalyst systems involve mixtures of oxides, we selected a model system that would permit us to examine the role of each cation separately and in pairwise combinations. Organometallic molybdenum and tungsten complexes were proposed for use, to prepare model systems consisting of isolated monomeric cations, isolated monometallic dimers and isolated bimetallic dimers supported on silica and alumina. The monometallic and bimetallic dimers were to be used as models of more complex mixed- oxide catalysts. Our current program was to develop the systems and use them in model oxidation reactions.

  9. Oscillating fluid power generator

    DOE Patents [OSTI]

    Morris, David C

    2014-02-25T23:59:59.000Z

    A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

  10. Fluid bed material transfer method

    DOE Patents [OSTI]

    Pinske, Jr., Edward E. (Akron, OH)

    1994-01-01T23:59:59.000Z

    A fluidized bed apparatus comprising a pair of separated fluid bed enclosures, each enclosing a fluid bed carried on an air distributor plate supplied with fluidizing air from below the plate. At least one equalizing duct extending through sidewalls of both fluid bed enclosures and flexibly engaged therewith to communicate the fluid beds with each other. The equalizing duct being surrounded by insulation which is in turn encased by an outer duct having expansion means and being fixed between the sidewalls of the fluid bed enclosures.

  11. Viscous dark fluid

    E-Print Network [OSTI]

    V. Folomeev; V. Gurovich

    2007-10-15T23:59:59.000Z

    The unified dark energy and dark matter model within the framework of a model of a continuous medium with bulk viscosity (dark fluid) is considered. It is supposed that the bulk viscosity coefficient is an arbitrary function of the Hubble parameter. The choice of this function is carried out under the requirement to satisfy the observational data from recombination ($z\\approx 1000$) till present time.

  12. Downhole Fluid Analyzer Development

    SciTech Connect (OSTI)

    Bill Turner

    2006-11-28T23:59:59.000Z

    A novel fiber optic downhole fluid analyzer has been developed for operation in production wells. This device will allow real-time determination of the oil, gas and water fractions of fluids from different zones in a multizone or multilateral completion environment. The device uses near infrared spectroscopy and induced fluorescence measurement to unambiguously determine the oil, water and gas concentrations at all but the highest water cuts. The only downhole components of the system are the fiber optic cable and windows. All of the active components--light sources, sensors, detection electronics and software--will be located at the surface, and will be able to operate multiple downhole probes. Laboratory testing has demonstrated that the sensor can accurately determine oil, water and gas fractions with a less than 5 percent standard error. Once installed in an intelligent completion, this sensor will give the operating company timely information about the fluids arising from various zones or multilaterals in a complex completion pattern, allowing informed decisions to be made on controlling production. The research and development tasks are discussed along with a market analysis.

  13. Method and apparatus for monitoring a hydrocarbon-selective catalytic reduction device

    DOE Patents [OSTI]

    Schmieg, Steven J; Viola, Michael B; Cheng, Shi-Wai S; Mulawa, Patricia A; Hilden, David L; Sloane, Thompson M; Lee, Jong H

    2014-05-06T23:59:59.000Z

    A method for monitoring a hydrocarbon-selective catalytic reactor device of an exhaust aftertreatment system of an internal combustion engine operating lean of stoichiometry includes injecting a reductant into an exhaust gas feedstream upstream of the hydrocarbon-selective catalytic reactor device at a predetermined mass flowrate of the reductant, and determining a space velocity associated with a predetermined forward portion of the hydrocarbon-selective catalytic reactor device. When the space velocity exceeds a predetermined threshold space velocity, a temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is determined, and a threshold temperature as a function of the space velocity and the mass flowrate of the reductant is determined. If the temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is below the threshold temperature, operation of the engine is controlled to regenerate the hydrocarbon-selective catalytic reactor device.

  14. Petroleum Refinery Catalytic Reforming -- Cutting High Energy Costs 

    E-Print Network [OSTI]

    Viar, W. L.

    1979-01-01T23:59:59.000Z

    at temperatures of 850-950oF. Hydrogen - rich off - gases are fired in combinations of process furnaces. Heat is transferred to hydrocarbon fluids by radiation, principally. Feed or return stream temperatures determine the need for convection sections...

  15. Scaling Issues of Micro Catalytic Reactors Tzong-Shyng Leu1,a

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    combustor, Microscale combustion, Power MEMS Abstract. Micro catalytic combustors are studied experimentally thermal management. For example, "Swiss Roll" [4] and multi-quartz tubes[5] utilized insulated conditions

  16. A Simple Approach of Tuning Catalytic Activity of MFI-Zeolites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Catalysts via First Principles (Agreement ID:10635) Catalysts via First Principles Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons...

  17. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them

    SciTech Connect (OSTI)

    Schwartz, Michael (Boulder, CO); White, James H. (Boulder, CO); Sammells, Anthony F. (Boulder, CO)

    2001-01-01T23:59:59.000Z

    A process for production of synthesis gas employing a catalytic membrane reactor wherein the membrane comprises a mixed metal oxide material.

  18. New sub-family of lysozyme-like proteins shows no catalytic activity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    modest sequence similarity to phage-like lysozyme (N-acetylmuramidase) but appears to lack essential catalytic residues that are strictly conserved in all lysozymes. Close...

  19. LUBRICANTS AND HYDRAULIC FLUIDS

    E-Print Network [OSTI]

    Engineer Manual Department

    Contents) Major General, USA Chief of Staff i Table of Contents Purpose ........................................................ 1-1 1-1 Applicability .................................................... 1-2 1-1 References ...................................................... 1-3 1-1 Distribution Statement ............................................. 1-4 1-1 Scope ......................................................... 1-5 1-2 Friction ........................................................ 2-1 2-1 Wear .......................................................... 2-2 2-4 Lubrication and Lubricants ......................................... 2-3 2-6 Hydrodynamic or Fluid Film Lubrication ............................... 2-4 2-6 Boundary Lubrication ............................................. 2-5 2-8 Extreme Pressure (EP) Lubrication ................................... 2-6 2-9 Elastohydrodynamic (EHD) Lubrication ................................ 2-7 2-9 Oil R

  20. Method and apparatus for decoupled thermo-catalytic pollution control

    DOE Patents [OSTI]

    Tabatabaie-Raissi, Ali; Muradov, Nazim Z.; Martin, Eric

    2006-07-11T23:59:59.000Z

    A new method for design and scale-up of thermocatalytic processes is disclosed. The method is based on optimizing process energetics by decoupling of the process energetics from the DRE for target contaminants. The technique is applicable to high temperature thermocatalytic reactor design and scale-up. The method is based on the implementation of polymeric and other low-pressure drop support for thermocatalytic media as well as the multifunctional catalytic media in conjunction with a novel rotating fluidized particle bed reactor.

  1. Recent Advances in Catalytic Conversion of Ethanol to Chemicals

    SciTech Connect (OSTI)

    Sun, Junming; Wang, Yong

    2014-04-30T23:59:59.000Z

    With increased availability and decreased cost, ethanol is potentially a promising platform molecule for the production of a variety of value-added chemicals. In this review, we provide a detailed summary of recent advances in catalytic conversion of ethanol to a wide range of chemicals and fuels. We particularly focus on catalyst advances and fundamental understanding of reaction mechanisms involved in ethanol steam reforming (ESR) to produce hydrogen, ethanol conversion to hydrocarbons ranging from light olefins to longer chain alkenes/alkanes and aromatics, and ethanol conversion to other oxygenates including 1-butanol, acetaldehyde, acetone, diethyl ether, and ethyl acetate.

  2. Method for low temperature catalytic production of hydrogen

    DOE Patents [OSTI]

    Mahajan, Devinder

    2003-07-22T23:59:59.000Z

    The invention provides a process for the catalytic production of a hydrogen feed by exposing a hydrogen feed to a catalyst which promotes a base-catalyzed water-gas-shift reaction in a liquid phase. The hydrogen feed can be provided by any process known in the art of making hydrogen gas. It is preferably provided by a process that can produce a hydrogen feed for use in proton exchange membrane fuel cells. The step of exposing the hydrogen feed takes place preferably from about 80.degree. C. to about 150.degree. C.

  3. Catalytic Filter for Diesel Exhaust Purification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Change RequestFirstchampions,Department ofConversionCatalytic

  4. New Developments in Titania-Based Catalysts for Selective Catalytic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForum |EnergyNew CatalyticDemands on Heavy

  5. Ultrasonic Fluid Quality Sensor System

    DOE Patents [OSTI]

    Gomm, Tyler J. (Meridian, ID); Kraft, Nancy C. (Idaho Falls, ID); Phelps, Larry D. (Pocatello, ID); Taylor, Steven C. (Idaho Falls, ID)

    2003-10-21T23:59:59.000Z

    A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.

  6. Ultrasonic fluid quality sensor system

    DOE Patents [OSTI]

    Gomm, Tyler J. (Meridian, ID); Kraft, Nancy C. (Idaho Falls, ID); Phelps, Larry D. (Pocatello, ID); Taylor, Steven C. (Idaho Falls, ID)

    2002-10-08T23:59:59.000Z

    A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.

  7. Fluid system for controlling fluid losses during hydrocarbon recovery operations

    SciTech Connect (OSTI)

    Johnson, M.H.; Smejkal, K.D.

    1993-07-20T23:59:59.000Z

    A fluid system is described for controlling fluid losses during hydrocarbon recovery operations, comprising: water; a distribution of graded calcium carbonate particle sizes; and at least one modified lignosulfonate, which is a lignosulfonate modified by polymerizing it at least to an extent effective to reduce its water solubility.

  8. Studies Relevent to Catalytic Activation Co & other small Molecules

    SciTech Connect (OSTI)

    Ford, Peter C

    2005-02-22T23:59:59.000Z

    Detailed annual and triannual reports describing the progress accomplished during the tenure of this grant were filed with the Program Manager for Catalysis at the Office of Basic Energy Sciences. To avoid unnecessary duplication, the present report will provide a brief overview of the research areas that were sponsored by this grant and list the resulting publications and theses based on this DOE supported research. The scientific personnel participating in (and trained by) this grant's research are also listed. Research carried out under this DOE grant was largely concerned with the mechanisms of the homogeneous catalytic and photocatalytic activation of small molecules such as carbon monoxide, dihydrogen and various hydrocarbons. Much of the more recent effort has focused on the dynamics and mechanisms of reactions relevant to substrate carbonylations by homogeneous organometallic catalysts. A wide range of modern investigative techniques were employed, including quantitative fast reaction methodologies such as time-resolved optical (TRO) and time-resolved infrared (TRIR) spectroscopy and stopped flow kinetics. Although somewhat diverse, this research falls within the scope of the long-term objective of applying quantitative techniques to elucidate the dynamics and understand the principles of mechanisms relevant to the selective and efficient catalytic conversions of fundamental feedstocks to higher value materials.

  9. Catalytic combustor for integrated gasification combined cycle power plant

    DOE Patents [OSTI]

    Bachovchin, Dennis M. (Mauldin, SC); Lippert, Thomas E. (Murrysville, PA)

    2008-12-16T23:59:59.000Z

    A gasification power plant 10 includes a compressor 32 producing a compressed air flow 36, an air separation unit 22 producing a nitrogen flow 44, a gasifier 14 producing a primary fuel flow 28 and a secondary fuel source 60 providing a secondary fuel flow 62 The plant also includes a catalytic combustor 12 combining the nitrogen flow and a combustor portion 38 of the compressed air flow to form a diluted air flow 39 and combining at least one of the primary fuel flow and secondary fuel flow and a mixer portion 78 of the diluted air flow to produce a combustible mixture 80. A catalytic element 64 of the combustor 12 separately receives the combustible mixture and a backside cooling portion 84 of the diluted air flow and allows the mixture and the heated flow to produce a hot combustion gas 46 provided to a turbine 48. When fueled with the secondary fuel flow, nitrogen is not combined with the combustor portion.

  10. Catalytic oxidation of CO by platinum group metals: from ultrahigh vacuum to elevated pressures

    E-Print Network [OSTI]

    Goodman, Wayne

    oxidation over platinum group metals has been investigated for some eight decades by many researchersCatalytic oxidation of CO by platinum group metals: from ultrahigh vacuum to elevated pressures A Catalytic oxidation of CO over platinum group metals (Pt, Ir, Rh and Pd) has been the subject of many

  11. Micro Catalytic Combustor with Pd/Nano-porous Alumina for High-Temperature Application

    E-Print Network [OSTI]

    Kasagi, Nobuhide

    Micro Catalytic Combustor with Pd/Nano-porous Alumina for High-Temperature Application Takashi: A micro-scale catalytic combustor using high-precision ceramic tape-casting technology has been developed surface reaction of butane. In combustion experiments with a prototype combustor, the wall temperature

  12. Non-uniform Heat Generation in Micro Catalytic Combustor Takashi Okamasa*, Yuji Suzuki, and Nobuhide Kasagi

    E-Print Network [OSTI]

    Kasagi, Nobuhide

    Non-uniform Heat Generation in Micro Catalytic Combustor Takashi Okamasa*, Yuji Suzuki@thtlab.t.u-tokyo.ac.jp Abstract We developed a micro catalytic combustor using high-precision ceramic tape-casting technology and nano-porous alumina catalyst layer. It is found that failure of the ceramic combustor occurs due

  13. Control of Natural Gas Catalytic Partial Oxidation for Hydrogen Generation in Fuel Cell Applications1

    E-Print Network [OSTI]

    Peng, Huei

    Control of Natural Gas Catalytic Partial Oxidation for Hydrogen Generation in Fuel Cell the anode field of fuel cell stack is considered. The first reactor that generates the majority in the fuel cell anode and (ii) the temperature of the catalytic partial oxidation reactor during transient

  14. Catalytic Transformation of Toluene over High Acidity Y-Zeolite Based S. Al-Khattaf*

    E-Print Network [OSTI]

    Al-Khattaf, Sulaiman

    Catalytic Transformation of Toluene over High Acidity Y-Zeolite Based Catalyst S. Al Abstract Catalytic transformation of toluene has been investigated over Y-zeolite based catalysts in the temperature range of 400-500o C to understand the transformation of toluene over high acidity Y-based zeolite

  15. Multiscale Modeling and Solution Multiplicity in Catalytic Pellet Reactors Kedar Kulkarni,

    E-Print Network [OSTI]

    Linninger, Andreas A.

    Multiscale Modeling and Solution Multiplicity in Catalytic Pellet Reactors Kedar Kulkarni, Jeonghwa phenomena in catalytic pellet reactors are often difficult to analyze because of coupling between heat at the macroscopic level as well as the catalyst pellets at the microscopic level. The resulting approach yields

  16. ENGINEERING SCALE UP OF RENEWABLE HYDROGEN PRODUCTION BY CATALYTIC STEAM REFORMING OF PEANUT

    E-Print Network [OSTI]

    ENGINEERING SCALE UP OF RENEWABLE HYDROGEN PRODUCTION BY CATALYTIC STEAM REFORMING OF PEANUT SHELLS, and academic organizations is developing a steam reforming process to be demonstrated on the gaseous byproducts, catalytic, steam-reforming reactor was then successfully operated on methane and peanut shell pyrolysis

  17. MEMS-based fuel cells with integrated catalytic fuel processor and method thereof

    DOE Patents [OSTI]

    Jankowski, Alan F. (Livermore, CA); Morse, Jeffrey D. (Martinez, CA); Upadhye, Ravindra S. (Pleasanton, CA); Havstad, Mark A. (Davis, CA)

    2011-08-09T23:59:59.000Z

    Described herein is a means to incorporate catalytic materials into the fuel flow field structures of MEMS-based fuel cells, which enable catalytic reforming of a hydrocarbon based fuel, such as methane, methanol, or butane. Methods of fabrication are also disclosed.

  18. The Catalytic Chemistry of HCN+NO over Na- and Ba-Y, FAU: An...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Catalytic Chemistry of HCN+NO over Na- and Ba-Y, FAU: An In Situ FTIR and TPDTPR Study. The Catalytic Chemistry of HCN+NO over Na- and Ba-Y, FAU: An In Situ FTIR and TPDTPR...

  19. Burning Velocities in Catalytically Assisted Self-Propagating High-Temperature Combustion Synthesis Systems

    E-Print Network [OSTI]

    Wooldridge, Margaret S.

    Burning Velocities in Catalytically Assisted Self-Propagating High-Temperature Combustion Synthesis of catalytically assisted self-propagating high-temperature synthesis (SHS) of the tantalum/carbon material system. © 2001 by The Combustion Institute INTRODUCTION Self-propagating high-temperature combustion synthesis

  20. Spin and Madelung fluid

    E-Print Network [OSTI]

    G. Salesi

    2009-06-23T23:59:59.000Z

    Starting from the Pauli current we obtain the decomposition of the non-relativistic local velocity in two parts: one parallel and the other orthogonal to the momentum. The former is recognized to be the ``classical'' part, that is the velocity of the center-of-mass, and the latter the ``quantum'' one, that is the velocity of the motion in the center-of-mass frame (namely, the internal ``spin motion'' or {\\em Zitterbewegung}). Inserting the complete expression of the velocity into the kinetic energy term of the classical non-relativistic (i.e., Newtonian) Lagrangian, we straightforwardly derive the so-called ``quantum potential'' associated to the Madelung fluid. In such a way, the quantum mechanical behaviour of particles appears to be strictly correlated to the existence of spin and Zitterbewegung.

  1. Fluid jet electric discharge source

    DOE Patents [OSTI]

    Bender, Howard A. (Ripon, CA)

    2006-04-25T23:59:59.000Z

    A fluid jet or filament source and a pair of coaxial high voltage electrodes, in combination, comprise an electrical discharge system to produce radiation and, in particular, EUV radiation. The fluid jet source is composed of at least two serially connected reservoirs, a first reservoir into which a fluid, that can be either a liquid or a gas, can be fed at some pressure higher than atmospheric and a second reservoir maintained at a lower pressure than the first. The fluid is allowed to expand through an aperture into a high vacuum region between a pair of coaxial electrodes. This second expansion produces a narrow well-directed fluid jet whose size is dependent on the size and configuration of the apertures and the pressure used in the reservoir. At some time during the flow of the fluid filament, a high voltage pulse is applied to the electrodes to excite the fluid to form a plasma which provides the desired radiation; the wavelength of the radiation being determined by the composition of the fluid.

  2. Finite element simulation of electrorheological fluids

    E-Print Network [OSTI]

    Rhyou, Chanryeol, 1973-

    2005-01-01T23:59:59.000Z

    Electrorheological (ER) fluids change their flow properties dramatically when an electric field is applied. These fluids are usually composed of dispersions of polarizable particles in an insulating base fluid or composed ...

  3. Computational fluid dynamic modeling of fluidized-bed polymerization reactors

    SciTech Connect (OSTI)

    Rokkam, Ram [Ames Laboratory

    2012-11-02T23:59:59.000Z

    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

  4. Studies of coupled chemical and catalytic coal conversion methods

    SciTech Connect (OSTI)

    Stock, L.M.; Chatterjee, K.; Cheng, C.; Ettinger, M.; Flores, F.; Jiralerspong, S.; Miyake, M.; Muntean, J.

    1991-12-01T23:59:59.000Z

    The objective of this research was to convert coal into a soluble substance under mild conditions. The strategy involved two steps, first to breakdown the macromolecular network of coal, and second to add hydrogen catalytically. We investigated different basic reagents that could, in priciple, break down coal's structure and alkylation strategies that might enhance its solubility. We examined O- and C-alkylation, the importance of the strength of the base, the character of the added alkyl groups and other reaction parameters. This work provided new information concerning the way in which hydrogen bonding, polarization interactions between aromatic structures and covalent bonding could be disrupted and solubility enhanced. The objective of our research was to explore new organochromium chemistry that might be feasible for the hydrogenation of coal under mild conditions.

  5. Studies of coupled chemical and catalytic coal conversion methods

    SciTech Connect (OSTI)

    Stock, L.M.; Chatterjee, K.; Cheng, C.; Ettinger, M.; Flores, F.; Jiralerspong, S.; Miyake, M.; Muntean, J.

    1991-12-01T23:59:59.000Z

    The objective of this research was to convert coal into a soluble substance under mild conditions. The strategy involved two steps, first to breakdown the macromolecular network of coal, and second to add hydrogen catalytically. We investigated different basic reagents that could, in priciple, break down coal`s structure and alkylation strategies that might enhance its solubility. We examined O- and C-alkylation, the importance of the strength of the base, the character of the added alkyl groups and other reaction parameters. This work provided new information concerning the way in which hydrogen bonding, polarization interactions between aromatic structures and covalent bonding could be disrupted and solubility enhanced. The objective of our research was to explore new organochromium chemistry that might be feasible for the hydrogenation of coal under mild conditions.

  6. In-Situ Catalytic Fast Pyrolysis Technology Pathway

    SciTech Connect (OSTI)

    Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

    2013-03-31T23:59:59.000Z

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates converting woody biomass using in-situ catalytic fast pyrolysis followed by upgrading to gasoline, diesel, and jet range blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  7. Ex-Situ Catalytic Fast Pyrolysis Technology Pathway

    SciTech Connect (OSTI)

    Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

    2013-03-31T23:59:59.000Z

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates converting woody biomass using ex-situ catalytic fast pyrolysis followed by upgrading to gasoline , diesel and jet range blendstocks . Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  8. Coal hydrogenation and deashing in ebullated bed catalytic reactor

    DOE Patents [OSTI]

    Huibers, Derk T. A. (Pennington, NJ); Johanson, Edwin S. (Princeton, NJ)

    1983-01-01T23:59:59.000Z

    An improved process for hydrogenation of coal containing ash with agglomeration and removal of ash from an ebullated bed catalytic reactor to produce deashed hydrocarbon liquid and gas products. In the process, a flowable coal-oil slurry is reacted with hydrogen in an ebullated catalyst bed reaction zone at elevated temperature and pressure conditions. The upward velocity and viscosity of the reactor liquid are controlled so that a substantial portion of the ash released from the coal is agglomerated to form larger particles in the upper portion of the reactor above the catalyst bed, from which the agglomerated ash is separately withdrawn along with adhering reaction zone liquid. The resulting hydrogenated hydrocarbon effluent material product is phase separated to remove vapor fractions, after which any ash remaining in the liquid fraction can be removed to produce substantially ash-free coal-derived liquid products.

  9. Catalytic Hydrogenation of Bio-Oil for Chemicals and Fuels

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2006-02-14T23:59:59.000Z

    The scope of work includes optimizing processing conditions and demonstrating catalyst lifetime for catalyst formulations that are readily scaleable to commercial operations. We use a bench-scale, continuous-flow, packed-bed, catalytic, tubular reactor, which can be operated in the range of 100-400 mL/hr., from 50-400 C and up to 20MPa (see Figure 1). With this unit we produce upgraded bio-oil from whole bio-oil or useful bio-oil fractions, specifically pyrolytic lignin. The product oils are fractionated, for example by distillation, for recovery of chemical product streams. Other products from our tests have been used in further testing in petroleum refining technology at UOP and fractionation for product recovery in our own lab. Further scale-up of the technology is envisioned and we will carry out or support process design efforts with industrial partners, such as UOP.

  10. Methods and apparatus for catalytic hydrothermal gasification of biomass

    DOE Patents [OSTI]

    Elliott, Douglas C.; Butner, Robert Scott; Neuenschwander, Gary G.; Zacher, Alan H.; Hart, Todd R.

    2012-08-14T23:59:59.000Z

    Continuous processing of wet biomass feedstock by catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent separation of sulfur contaminants, or combinations thereof. Treatment further includes separating the precipitates out of the wet feedstock, removing sulfur contaminants, or both using a solids separation unit and a sulfur separation unit, respectively. Having removed much of the inorganic wastes and the sulfur that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.

  11. Catalytic carbon membranes for hydrogen production. Final report

    SciTech Connect (OSTI)

    Damle, A.S.; Gangwal, S.K.

    1992-01-01T23:59:59.000Z

    Commercial carbon composite microfiltration membranes may be modified for gas separation applications by providing a gas separation layer with pores in the 1- to 10-nm range. Several organic polymeric precursors and techniques for depositing a suitable layer were investigated in this project. The in situ polymerization technique was found to be the most promising, and pure component permeation tests with membrane samples prepared with this technique indicated Knudsen diffusion behavior. The gas separation factors obtained by mixed-gas permeation tests were found to depend strongly on gas temperature and pressure indicating significant viscous flow at high-pressure conditions. The modified membranes were used to carry out simultaneous water gas shift reaction and product hydrogen separation. These tests indicated increasing CO conversions with increasing hydrogen separation. A simple process model was developed to simulate a catalytic membrane reactor. A number of simulations were carried out to identify operating conditions leading to product hydrogen concentrations over 90 percent. (VC)

  12. Tantalum pillard montmorillonite: II. Acidic and catalytic properties

    SciTech Connect (OSTI)

    Guiu, G.; Grange, P. [Universite Catholique de Louvain, Louvain-la-Neuve (Belgium)] [Universite Catholique de Louvain, Louvain-la-Neuve (Belgium)

    1997-06-01T23:59:59.000Z

    The acidic and catalytic properties of a series of Ta-PILCs synthesized with a different initial tantalum content were characterized by adsorption of gaseous probe molecules (TPD of ammonia and FTIR spectra of absorbed pyridine) and by the test reaction of 1-butanol dehydration. A large increase of acidity was noted in Ta-PILCs compared to Na-montmorillonite or tantalum oxide. Cross-linking pillars and silica layers of the clay induce stronger Lewis and new Bronsted sites. The lack of basic sites formation is evidenced by the dehydration of 1-butanol to butene selectivity (100%). The incorporation of the tantalum oxide between the montmorillonite sheets produce, within Ta-PILC, acid centers of the same nature as observed for the silicon-tantalum mixed oxides. 32 refs., 4 figs., 5 tabs.

  13. Model catalytic oxidation studies using supported monometallic and heterobimetallic oxides

    SciTech Connect (OSTI)

    Ekerdt, J.G.

    1991-04-30T23:59:59.000Z

    This research program is directed toward developing a fundamental understanding of how catalyst composition, redox ability, and structure control the catalytic properties of metal oxides. Oxide systems that permit examination of the role of metal oxide cations separately and in pairwise combinations are being developed. Organometallic complexes containing C{sub 3}-allyl, cyclopentadienyl, or carbonyl ligands are exchanged with the hydroxide ligands of silica, alumina, titania, zirconia and magnesia supports. The exchange technique is used to achieve high metal oxide loadings without the formation of supported crystallites over silica. The organometallic route may also lead to oxygen-bridged cations and/or cation pairs over the supports prior to full oxidation. The anchored complex is subsequently oxidized to generate a supported oxide. 2 refs., 1 tab.

  14. Method for selective catalytic reduction of nitrogen oxides

    DOE Patents [OSTI]

    Mowery-Evans, Deborah L. (Broomfield, CO); Gardner, Timothy J. (Albuquerque, NM); McLaughlin, Linda I. (Albuquerque, NM)

    2005-02-15T23:59:59.000Z

    A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.

  15. Method For Selective Catalytic Reduction Of Nitrogen Oxides

    DOE Patents [OSTI]

    Mowery-Evans, Deborah L. (Broomfield, CO); Gardner, Timothy J. (Albuquerque, NM); McLaughlin, Linda I. (Albuquerque, NM)

    2005-02-15T23:59:59.000Z

    A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.

  16. Fabrication of fuel cell electrodes and other catalytic structures

    DOE Patents [OSTI]

    Smith, J.L.

    1987-02-11T23:59:59.000Z

    A porous layer of catalyst material suitable for use as an electrode in a molten carbonate fuel cell includes elongated pores substantially extending across the layer thickness. The catalyst layer is prepared by depositing particulate catalyst material into polymeric flocking on a substrate surface by a procedure such as tape casting. The loaded substrate is heated in a series of steps with rising temperatures to set the tape, thermally decompose the substrate with flocking and sinter bond the catalyst particles into a porous catalytic layer with elongated pores across its thickness. Employed as an electrode, the elongated pores provide distribution of reactant gas into contact with catalyst particles wetted by molten electrolyte. 1 fig.

  17. Variable flexure-based fluid filter

    DOE Patents [OSTI]

    Brown, Steve B.; Colston Jr., Billy W.; Marshall, Graham; Wolcott, Duane

    2007-03-13T23:59:59.000Z

    An apparatus and method for filtering particles from a fluid comprises a fluid inlet, a fluid outlet, a variable size passage between the fluid inlet and the fluid outlet, and means for adjusting the size of the variable size passage for filtering the particles from the fluid. An inlet fluid flow stream is introduced to a fixture with a variable size passage. The size of the variable size passage is set so that the fluid passes through the variable size passage but the particles do not pass through the variable size passage.

  18. Fluid Imaging of Enhanced Geothermal Systems

    Broader source: Energy.gov (indexed) [DOE]

    for Fluids & Fractures - time lapse MTCSEM for fluid imaging - joint CSEM-MTseismic imaging ??? - use MEQ focal information with EM Imaging ScientificTechnical Approach...

  19. Catalytic Synthesis of Oxygenates: Mechanisms, Catalysts and Controlling Characteristics

    SciTech Connect (OSTI)

    Kamil Klier; Richard G. Herman

    2005-11-30T23:59:59.000Z

    This research focused on catalytic synthesis of unsymmetrical ethers as a part of a larger program involving oxygenated products in general, including alcohols, ethers, esters, carboxylic acids and their derivatives that link together environmentally compliant fuels, monomers, and high-value chemicals. The catalysts studied here were solid acids possessing strong Br�������¸nsted acid functionalities. The design of these catalysts involved anchoring the acid groups onto inorganic oxides, e.g. surface-grafted acid groups on zirconia, and a new class of mesoporous solid acids, i.e. propylsulfonic acid-derivatized SBA-15. The former catalysts consisted of a high surface concentration of sulfate groups on stable zirconia catalysts. The latter catalyst consists of high surface area, large pore propylsulfonic acid-derivatized silicas, specifically SBA-15. In both cases, the catalyst design and synthesis yielded high concentrations of acid sites in close proximity to one another. These materials have been well-characterization in terms of physical and chemical properties, as well as in regard to surface and bulk characteristics. Both types of catalysts were shown to exhibit high catalytic performance with respect to both activity and selectivity for the bifunctional coupling of alcohols to form ethers, which proceeds via an efficient SN2 reaction mechanism on the proximal acid sites. This commonality of the dual-site SN2 reaction mechanism over acid catalysts provides for maximum reaction rates and control of selectivity by reaction conditions, i.e. pressure, temperature, and reactant concentrations. This research provides the scientific groundwork for synthesis of ethers for energy applications. The synthesized environmentally acceptable ethers, in part derived from natural gas via alcohol intermediates, exhibit high cetane properties, e.g. methylisobutylether with cetane No. of 53 and dimethylether with cetane No. of 55-60, or high octane properties, e.g. diisopropylether with blending octane No. of 105, and can replace aromatics in liquid fuels.

  20. Detachment Energies of Spheroidal Particles from Fluid-Fluid Interfaces

    E-Print Network [OSTI]

    Gary B. Davies; Timm Krüger; Peter V. Coveney; Jens Harting

    2014-10-28T23:59:59.000Z

    The energy required to detach a single particle from a fluid-fluid interface is an important parameter for designing certain soft materials, for example, emulsions stabilised by colloidal particles, colloidosomes designed for targeted drug delivery, and bio-sensors composed of magnetic particles adsorbed at interfaces. For a fixed particle volume, prolate and oblate spheroids attach more strongly to interfaces because they have larger particle-interface areas. Calculating the detachment energy of spheroids necessitates the difficult measurement of particle-liquid surface tensions, in contrast with spheres, where the contact angle suffices. We develop a simplified detachment energy model for spheroids which depends only on the particle aspect ratio and the height of the particle centre of mass above the fluid-fluid interface. We use lattice Boltzmann simulations to validate the model and provide quantitative evidence that the approach can be applied to simulate particle-stabilized emulsions, and highlight the experimental implications of this validation.

  1. Fluid flow monitoring device

    DOE Patents [OSTI]

    McKay, M.D.; Sweeney, C.E.; Spangler, B.S. Jr.

    1993-11-30T23:59:59.000Z

    A flow meter and temperature measuring device are described comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips. 7 figures.

  2. Fluid flow monitoring device

    DOE Patents [OSTI]

    McKay, Mark D. (1426 Socastee Dr., North Augusta, SC 29841); Sweeney, Chad E. (3600 Westhampton Dr., Martinez, GA 30907-3036); Spangler, Jr., B. Samuel (2715 Margate Dr., Augusta, GA 30909)

    1993-01-01T23:59:59.000Z

    A flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.

  3. Computational fluid dynamic applications

    SciTech Connect (OSTI)

    Chang, S.-L.; Lottes, S. A.; Zhou, C. Q.

    2000-04-03T23:59:59.000Z

    The rapid advancement of computational capability including speed and memory size has prompted the wide use of computational fluid dynamics (CFD) codes to simulate complex flow systems. CFD simulations are used to study the operating problems encountered in system, to evaluate the impacts of operation/design parameters on the performance of a system, and to investigate novel design concepts. CFD codes are generally developed based on the conservation laws of mass, momentum, and energy that govern the characteristics of a flow. The governing equations are simplified and discretized for a selected computational grid system. Numerical methods are selected to simplify and calculate approximate flow properties. For turbulent, reacting, and multiphase flow systems the complex processes relating to these aspects of the flow, i.e., turbulent diffusion, combustion kinetics, interfacial drag and heat and mass transfer, etc., are described in mathematical models, based on a combination of fundamental physics and empirical data, that are incorporated into the code. CFD simulation has been applied to a large variety of practical and industrial scale flow systems.

  4. Viscous dark fluid universe

    SciTech Connect (OSTI)

    Hipolito-Ricaldi, W. S. [Universidade Federal do Espirito Santo, Departamento de Ciencias Matematicas e Naturais, CEUNES, Rodovia BR 101 Norte, km. 60, CEP 29932-540, Sao Mateus, Espirito Santo (Brazil); Velten, H. E. S.; Zimdahl, W. [Universidade Federal do Espirito Santo, Departamento de Fisica, Av. Fernando Ferrari, 514, Campus de Goiabeiras, CEP 29075-910, Vitoria, Espirito Santo (Brazil)

    2010-09-15T23:59:59.000Z

    We investigate the cosmological perturbation dynamics for a universe consisting of pressureless baryonic matter and a viscous fluid, the latter representing a unified model of the dark sector. In the homogeneous and isotropic background the total energy density of this mixture behaves as a generalized Chaplygin gas. The perturbations of this energy density are intrinsically nonadiabatic and source relative entropy perturbations. The resulting baryonic matter power spectrum is shown to be compatible with the 2dFGRS and SDSS (DR7) data. A joint statistical analysis, using also Hubble-function and supernovae Ia data, shows that, different from other studies, there exists a maximum in the probability distribution for a negative present value q{sub 0{approx_equal}}-0.53 of the deceleration parameter. Moreover, while previous descriptions on the basis of generalized Chaplygin-gas models were incompatible with the matter power-spectrum data since they required a much too large amount of pressureless matter, the unified model presented here favors a matter content that is of the order of the baryonic matter abundance suggested by big-bang nucleosynthesis.

  5. Fluid sampling system

    DOE Patents [OSTI]

    Houck, E.D.

    1994-10-11T23:59:59.000Z

    An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to be decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank. 4 figs.

  6. Fluid sampling system

    DOE Patents [OSTI]

    Houck, Edward D. (Idaho Falls, ID)

    1994-01-01T23:59:59.000Z

    An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.

  7. Tracing Geothermal Fluids

    SciTech Connect (OSTI)

    Michael C. Adams; Greg Nash

    2004-03-01T23:59:59.000Z

    Geothermal water must be injected back into the reservoir after it has been used for power production. Injection is critical in maximizing the power production and lifetime of the reservoir. To use injectate effectively the direction and velocity of the injected water must be known or inferred. This information can be obtained by using chemical tracers to track the subsurface flow paths of the injected fluid. Tracers are chemical compounds that are added to the water as it is injected back into the reservoir. The hot production water is monitored for the presence of this tracer using the most sensitive analytic methods that are economically feasible. The amount and concentration pattern of the tracer revealed by this monitoring can be used to evaluate how effective the injection strategy is. However, the tracers must have properties that suite the environment that they will be used in. This requires careful consideration and testing of the tracer properties. In previous and parallel investigations we have developed tracers that are suitable from tracing liquid water. In this investigation, we developed tracers that can be used for steam and mixed water/steam environments. This work will improve the efficiency of injection management in geothermal fields, lowering the cost of energy production and increasing the power output of these systems.

  8. Standardization of Thermo-Fluid Modeling in Modelica.Fluid

    SciTech Connect (OSTI)

    Franke, Rudiger; Casella, Francesco; Sielemann, Michael; Proelss, Katrin; Otter, Martin; Wetter, Michael

    2009-09-01T23:59:59.000Z

    This article discusses the Modelica.Fluid library that has been included in the Modelica Standard Library 3.1. Modelica.Fluid provides interfaces and basic components for the device-oriented modeling of onedimensional thermo-fluid flow in networks containing vessels, pipes, fluid machines, valves and fittings. A unique feature of Modelica.Fluid is that the component equations and the media models as well as pressure loss and heat transfer correlations are decoupled from each other. All components are implemented such that they can be used for media from the Modelica.Media library. This means that an incompressible or compressible medium, a single or a multiple substance medium with one or more phases might be used with one and the same model as long as the modeling assumptions made hold. Furthermore, trace substances are supported. Modeling assumptions can be configured globally in an outer System object. This covers in particular the initialization, uni- or bi-directional flow, and dynamic or steady-state formulation of mass, energy, and momentum balance. All assumptions can be locally refined for every component. While Modelica.Fluid contains a reasonable set of component models, the goal of the library is not to provide a comprehensive set of models, but rather to provide interfaces and best practices for the treatment of issues such as connector design and implementation of energy, mass and momentum balances. Applications from various domains are presented.

  9. Insertable fluid flow passage bridgepiece and method

    DOE Patents [OSTI]

    Jones, Daniel O. (Glenville, NV)

    2000-01-01T23:59:59.000Z

    A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.

  10. Fluid Mixing from Viscous Fingering

    E-Print Network [OSTI]

    Jha, Birendra

    Mixing efficiency at low Reynolds numbers can be enhanced by exploiting hydrodynamic instabilities that induce heterogeneity and disorder in the flow. The unstable displacement of fluids with different viscosities, or ...

  11. Bio-inspired fluid locomotion

    E-Print Network [OSTI]

    Chan, Brian, 1980-

    2009-01-01T23:59:59.000Z

    We have developed several novel methods of locomotion at low Reynolds number, for both Newtonian and non-Newtonian fluids: Robosnails 1 and 2, which operate on a lubrication layer, and the three-link swimmer which moves ...

  12. Rip Cosmology via Inhomogeneous Fluid

    E-Print Network [OSTI]

    V. V. Obukhov; A. V. Timoshkin; E. V Savushkin

    2013-09-18T23:59:59.000Z

    The conditions for the appearance of the Little Rip, Pseudo Rip and Quasi Rip universes in the terms of the parameters in the equation of state of some dark fluid are investigated. Several examples of the Rip cosmologies are investigated.

  13. Graduate Studies Environmental Fluid Mechanics

    E-Print Network [OSTI]

    Jacobs, Laurence J.

    and bridge scour · Wastewater dispersion in coastal waters · Cohesive sediment resuspension · Flood, and modeling research; and develop new technologies and tools that benefit engineering practice in fluid · Atmospheric, surface, and subsurface models · Flood/drought forecasting and management · Decision support

  14. DWPF CATALYTIC HYDROGEN GENERATION PROGRAM - REVIEW OF CURRENT STATUS

    SciTech Connect (OSTI)

    Koopman, D.

    2009-07-10T23:59:59.000Z

    Significant progress has been made in the past two years in improving the understanding of acid consumption and catalytic hydrogen generation during the Defense Waste Processing Facility (DWPF) processing of waste sludges in the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME). This report reviews issues listed in prior internal reviews, describes progress with respect to the recommendations made by the December 2006 external review panel, and presents a summary of the current understanding of catalytic hydrogen generation in the DWPF Chemical Process Cell (CPC). Noble metals, such as Pd, Rh, and Ru, are historically known catalysts for the conversion of formic acid into hydrogen and carbon dioxide. Rh, Ru, and Pd are present in the DWPF SRAT feed as by-products of thermal neutron fission of {sup 235}U in the original waste. Rhodium appears to become most active for hydrogen as the nitrite ion concentration becomes low (within a factor of ten of the Rh concentration). Prior to hydrogen generation, Rh is definitely active for nitrite destruction to N{sub 2}O and potentially active for nitrite to NO formation. These reactions are all consistent with the presence of a nitro-Rh complex catalyst, although definite proof for the existence of this complex during Savannah River Site (SRS) waste processing does not exist. Ruthenium does not appear to become active for hydrogen generation until nitrite destruction is nearly complete (perhaps less nitrite than Ru in the system). Catalytic activity of Ru during nitrite destruction is significantly lower than that of either Rh or Pd. Ru appears to start activating as Rh is deactivating from its maximum catalytic activity for hydrogen generation. The slow activation of the Ru, as inferred from the slow rate of increase in hydrogen generation that occurs after initiation, may imply that some species (perhaps Ru itself) has some bound nitrite on it. Ru, rather than Rh, is primarily responsible for the hydrogen generation in the SME cycle when the hydrogen levels are high enough to be noteworthy. Mercury has a role in catalytic hydrogen generation. Two potentially distinct roles have been identified. The most dramatic effect of Hg on hydrogen generation occurs between runs with and without any Hg. When a small amount of Hg is present, it has a major inhibiting effect on Rh-catalyzed H{sub 2} generation. The Rh-Ru-Hg matrix study showed that increasing mercury from 0.5 to 2.5 wt% in the SRAT receipt total solids did not improve the inhibiting effect significantly. The next most readily identified role for Hg is the impact it has on accelerating NO production from nitrite ion. This reaction shifts the time that the ideal concentration of nitrite relative to Rh occurs, and consequently causes the most active nitro-Rh species to form sooner. The potential consequences of this shift in timing are expected to be a function of other factors such as amount of excess acid, Rh concentration, etc. Graphical data from the Rh-Ru-Hg study suggested that Hg might also be responsible for partially inhibiting Ru-catalysis initially, but that the inhibition was not sustained through the SRAT and SME cycles. Continued processing led to a subsequent increase in hydrogen generation that was often abrupt and that frequently more than doubled the hydrogen generation rate. This phenomenon may have been a function of the extent of Hg stripping versus the initial Ru concentration in these tests. Palladium is an active catalyst, and activates during (or prior to) nitrite destruction to promote N{sub 2}O formation followed by a very small amount of hydrogen. Pd then appears to deactivate. Data to date indicate that Pd should not be a species of primary concern relative to Rh and Ru for hydrogen generation. Pd was a very mild catalyst for hydrogen generation compared to Rh and Ru in the simulated waste system. Pd was comparable to Rh in enhancing N{sub 2}O production when present at equal concentration. Pd, however, is almost always present at less than a quarter of the Rh concentration in S

  15. Fluid Mechanics IB Lecturer: Dr Natalia Berloff

    E-Print Network [OSTI]

    : hydroelectric power, chemical processing, jet-driven cutting tools · our fluid environment: ozone loss, climate

  16. Pitch-catch only ultrasonic fluid densitometer

    DOE Patents [OSTI]

    Greenwood, Margaret S. (Richland, WA); Harris, Robert V. (Pasco, WA)

    1999-01-01T23:59:59.000Z

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.

  17. Fluid&ParticulateSystems 424514/2010

    E-Print Network [OSTI]

    Zevenhoven, Ron

    cake solids mass/m2, w 3. Ruth equation using dw = (1-)solid dx fluidL p Ku solidK )1( 1 resistance, , with cake porosity : velocity, u layer thickness, L pressure drop, p dynamic viscosity, fluid Finland februari 2014 Unit w: kg/m2 Fluid&ParticulateSystems 424514/2010 Fluid&ParticulateSystems ĹA424514

  18. QUALITATIVE REASONING ABOUT FLUIDS AND MECHANICS

    E-Print Network [OSTI]

    Forbus, Kenneth D.

    which include both me- chanical mechanisms and fluids, such as internal combustion engines and hydraulic

  19. Mesoporous silica nanoparticles for biomedical and catalytical applications

    SciTech Connect (OSTI)

    Sun, Xiaoxing

    2011-05-15T23:59:59.000Z

    Mesoporous silica materials, discovered in 1992 by the Mobile Oil Corporation, have received considerable attention in the chemical industry due to their superior textual properties such as high surface area, large pore volume, tunable pore diameter, and narrow pore size distribution. Among those materials, MCM-41, referred to Mobile Composition of Matter NO. 41, contains honeycomb liked porous structure that is the most common mesoporous molecular sieve studied. Applications of MCM-41 type mesoporous silica material in biomedical field as well as catalytical field have been developed and discussed in this thesis. The unique features of mesoporous silica nanoparticles were utilized for the design of delivery system for multiple biomolecules as described in chapter 2. We loaded luciferin into the hexagonal channels of MSN and capped the pore ends with gold nanoparticles to prevent premature release. Luciferase was adsorbed onto the outer surface of the MSN. Both the MSN and the gold nanoparticles were protected by poly-ethylene glycol to minimize nonspecific interaction of luciferase and keep it from denaturating. Controlled release of luciferin was triggered within the cells and the enzymatic reaction was detected by a luminometer. Further developments by varying enzyme/substrate pairs may provide opportunities to control cell behavior and manipulate intracellular reactions. MSN was also served as a noble metal catalyst support due to its large surface area and its stability with active metals. We prepared MSN with pore diameter of 10 nm (LP10-MSN) which can facilitate mass transfer. And we successfully synthesized an organo silane, 2,2'-Bipyridine-amide-triethoxylsilane (Bpy-amide-TES). Then we were able to functionalize LP10-MSN with bipyridinyl group by both post-grafting method and co-condensation method. Future research of this material would be platinum complexation. This Pt (II) complex catalyst has been reported for a C-H bond activation reaction as an alternative of the traditional Friedel-Crafts reaction. And we will compare the turnover numbers of MSN supported material with homogenous catalyst to evaluate the catalytical efficiency of our material.

  20. Fluid&ParticulateSystems 424514/2010

    E-Print Network [OSTI]

    Zevenhoven, Ron

    fluidr L wDdrag v˝bL Lv dxbFF 331 0 . Picture: BMH99 PTG #12;Fluid&ParticulateSystems 424514/2010 Fluid/2010 Fluid&ParticulateSystems ĹA424514/2014 Basic concept wFAw A F VpVpP losscs cs loss losspumppump carlosscar wFP 212121 ,0, ppwwzz F w wFP #12;Fluid&ParticulateSystems 424514/2010 Fluid

  1. Enhanced thermal and gas flow performance in a three-way catalytic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    thermal and gas flow performance in a three-way catalytic converter through use of insulation within the ceramic monolith Enhanced thermal and gas flow performance in a three-way...

  2. Structural Studies of the Catalytic and Regulatory Mechanisms of Phenylalanine Hydroxylase

    E-Print Network [OSTI]

    Li, Jun

    2011-10-21T23:59:59.000Z

    The catalytic and regulatory mechanisms of phenylalanine hydroxylase were investigated by structural studies of in this research. Phenylalanine hydroxylase (PheH) hydroxylates phenylalanine to produce tyrosine using tetrahydrobiopterin (BH4...

  3. Reaction mechanisms for catalytic partial oxidation systems : application to ethylene epoxidation

    E-Print Network [OSTI]

    Anantharaman, Bharthwaj

    2005-01-01T23:59:59.000Z

    With the rapid advances in kinetic modeling, building elementary surface mechanisms have become vital to understand the complex chemistry for catalytic partial oxidation systems. Given that there is selected experimental ...

  4. Calibration and performance of a selective catalytic reduction (SCR) bench rig for NOx? emissions control

    E-Print Network [OSTI]

    Castro Galnares, Sebastián (Castro Galnares Wright Paz)

    2008-01-01T23:59:59.000Z

    A laboratory test rig was designed and built to easily test SCR (Selective Catalytic Reduction) technology. Equipped with three 6 kW heaters, connections for liquid N2 and an assortment of test gases, and a connection with ...

  5. Catalytic roles of Co0 and Co2+ during steam reforming of ethanol...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    roles of Co0 and Co2+ during steam reforming of ethanol on CoMgO catalysts . Catalytic roles of Co0 and Co2+ during steam reforming of ethanol on CoMgO catalysts . Abstract:...

  6. Comparison of Gas Catalytic and Electric Infrared Performance for Industrial Applications 

    E-Print Network [OSTI]

    Eshraghi, R. R.; Welch, D. E.

    1999-01-01T23:59:59.000Z

    A study was conducted to evaluate the performance of gas catalytic and electric infrared for industrial applications. The project focused on fabric drying, paper drying, metal heating, and plastic forming as target industrial applications. Tests...

  7. argonaute-like catalytic triad: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produc Kik, Pieter 93 Development of a catalytic combustion system for the MIT Micro Gas Turbine Engine MIT - DSpace Summary: As part of the MIT micro-gas turbine engine...

  8. Comparison of Gas Catalytic and Electric Infrared Performance for Industrial Applications

    E-Print Network [OSTI]

    Eshraghi, R. R.; Welch, D. E.

    A study was conducted to evaluate the performance of gas catalytic and electric infrared for industrial applications. The project focused on fabric drying, paper drying, metal heating, and plastic forming as target industrial applications. Tests...

  9. Bipolar Electrochemical Mechanism for the Propulsion of Catalytic Nanomotors in Hydrogen Peroxide Solutions

    E-Print Network [OSTI]

    Bipolar Electrochemical Mechanism for the Propulsion of Catalytic Nanomotors in Hydrogen Peroxide the bipolar electrochemical propulsion mechanism for bimetallic nanorods. Introduction Catalyic molecular nonbiological schemes for making micro/nanoscale ma- chines involve externally applied magnetic2 or electrical

  10. FOR THE RECORD Protein folding coupled to DNA binding in the catalytic

    E-Print Network [OSTI]

    Foster, Mark P.

    for substrate recognition and catalysis. We have examined the solution conformation of the catalytic domain (C mass spectra provides a quick and effective means to identify conformational heterogeneity of proteins

  11. Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    heating biomass with a catalyst to create bio-oils, which can be used to produce biofuel blendstocks. Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic Fast...

  12. Bioenergy Technologies Office R&D Pathways: Ex-Situ Catalytic...

    Broader source: Energy.gov (indexed) [DOE]

    biomass is heated with catalysts to create bio-oils, which are then used to produce biofuel blendstocks. Bioenergy Technologies Office R&D Pathways: Ex-Situ Catalytic Fast...

  13. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    DOE Patents [OSTI]

    Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

    2014-01-07T23:59:59.000Z

    A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

  14. Regional catalytic economic impacts and noise-damage costs of aviation growth

    E-Print Network [OSTI]

    Tam, Ryan Aung Min, 1973-

    2008-01-01T23:59:59.000Z

    There is growing recognition that transportation or infrastructure improvements can have longer-term catalytic impacts economic productivity, which are in addition to the direct, indirect, or induced household spending ...

  15. Impact of Biodiesel-Based Na on the Selective Catalytic Reduction...

    Broader source: Energy.gov (indexed) [DOE]

    Biodiesel-Based Na on the Selective Catalytic Reduction (SCR) of NO x Using Cu-zeolite D. William Brookshear 1 , Todd J. Toops 2 , William Rohr 1 , Ke Nguyen 1 , and Bruce G....

  16. System Study of Rich Catalytic/Lean burn (RCL) Catalytic Combustion for Natural Gas and Coal-Derived Syngas Combustion Turbines

    SciTech Connect (OSTI)

    Shahrokh Etemad; Lance Smith; Kevin Burns

    2004-12-01T23:59:59.000Z

    Rich Catalytic/Lean burn (RCL{reg_sign}) technology has been successfully developed to provide improvement in Dry Low Emission gas turbine technology for coal derived syngas and natural gas delivering near zero NOx emissions, improved efficiency, extending component lifetime and the ability to have fuel flexibility. The present report shows substantial net cost saving using RCL{reg_sign} technology as compared to other technologies both for new and retrofit applications, thus eliminating the need for Selective Catalytic Reduction (SCR) in combined or simple cycle for Integrated Gasification Combined Cycle (IGCC) and natural gas fired combustion turbines.

  17. Mercury Oxidation via Catalytic Barrier Filters Phase II

    SciTech Connect (OSTI)

    Wayne Seames; Michael Mann; Darrin Muggli; Jason Hrdlicka; Carol Horabik

    2007-09-30T23:59:59.000Z

    In 2004, the Department of Energy National Energy Technology Laboratory awarded the University of North Dakota a Phase II University Coal Research grant to explore the feasibility of using barrier filters coated with a catalyst to oxidize elemental mercury in coal combustion flue gas streams. Oxidized mercury is substantially easier to remove than elemental mercury. If successful, this technique has the potential to substantially reduce mercury control costs for those installations that already utilize baghouse barrier filters for particulate removal. Completed in 2004, Phase I of this project successfully met its objectives of screening and assessing the possible feasibility of using catalyst coated barrier filters for the oxidation of vapor phase elemental mercury in coal combustion generated flue gas streams. Completed in September 2007, Phase II of this project successfully met its three objectives. First, an effective coating method for a catalytic barrier filter was found. Second, the effects of a simulated flue gas on the catalysts in a bench-scale reactor were determined. Finally, the performance of the best catalyst was assessed using real flue gas generated by a 19 kW research combustor firing each of three separate coal types.

  18. TEC as electric generator in an automobile catalytic converter

    SciTech Connect (OSTI)

    Svensson, R. [Chalmers Univ. of Technology, Goeteborg (Sweden); Holmlid, L. [Univ. of Goeteborg (Sweden). Dept. of Physical Chemistry

    1996-12-31T23:59:59.000Z

    Modern cars use more and more electric power due to more on-board electric systems, e.g., ABS brakes, active suspension systems, electric windows, chair adjustment systems and electronic engine control systems. One possible energy source for electricity generation is to use the waste heat from the car`s engine, which generally is as much as 80% of the total energy from the combustion of the gasoline. Maybe the best location to tap the excess heat is the Catalytic Converter (Cat) in the exhaust system or perhaps at the exhaust pipes close to the engine. The Cat must be kept within a certain temperature interval. Large amounts of heat are dissipated through the wall of the Cat. A Thermionic Energy Converter (TEC) in coaxial form could conveniently be located around the ceramic cartridge of the Cat. Since the TEC is a rather good heat insulator before it reaches its working temperature the Cat will reach working temperature faster, and the final temperature of it can be controlled better when encapsulated in a concentric TEC arrangement. It is also possible to regulate the temperature of the Cat and the TEC by controlling the electrical load of the TEC. The possible working temperatures of present and future Cats appear very suitable for the new low work function collector TEC, which has been demonstrated to work down to 470 K.

  19. Low-temperature catalytic gasification of wet industrial wastes

    SciTech Connect (OSTI)

    Elliott, D C; Neuenschwander, G G; Baker, E G; Sealock, Jr, L J; Butner, R S

    1991-04-01T23:59:59.000Z

    Bench-scale reactor tests are in progress at Pacific Northwest Laboratory to develop a low-temperature, catalytic gasification system. The system, licensed under the trade name Thermochemical Environmental Energy System (TEES{reg sign}), is designed for treating a wide variety of feedstocks ranging from dilute organics in water to waste sludges from food processing. This report describes a test program which used a continuous-feed tubular reactor. This test program is an intermediate stage in the process development. The reactor is a laboratory-scale version of the commercial concept as currently envisioned by the process developers. An energy benefit and economic analysis was also completed on the process. Four conceptual commercial installations of the TEES process were evaluated for three food processing applications and one organic chemical manufacturing application. Net energy production (medium-Btu gas) was achieved in all four cases. The organic chemical application was found to be economically attractive in the present situation. Based on sensitivity studies included in the analysis, the three food processing cases will likely become attractive in the near future as waste disposal regulations tighten and disposal costs increase. 21 refs., 2 figs., 9 tabs.

  20. Constraints on Supersymmetric Models from Catalytic Primordial Nucleosynthesis of Beryllium

    E-Print Network [OSTI]

    Maxim Pospelov; Josef Pradler; Frank Daniel Steffen

    2008-10-27T23:59:59.000Z

    The catalysis of nuclear reactions by negatively charged relics leads to increased outputs of primordial ^6Li and ^9Be. In combination with observational constraints on the primordial fractions of ^6Li and ^9Be, this imposes strong restrictions on the primordial abundance and the lifetime of charged relics. We analyze the constraints from the catalysis of ^9Be on supersymmetric models in which the gravitino is the lightest supersymmetric particle and a charged slepton--such as the lighter stau--the next-to-lightest supersymmetric particle (NLSP). Barring the special cases in which the primordial fraction of the slepton NLSP is significantly depleted, we find that the ^9Be data require a slepton NLSP lifetime of less than 6x10^3 seconds. We also address the issue of the catalytic destruction of ^6Li and ^9Be by late forming bound states of protons with negatively charged relics finding that it does not lead to any significant modification of the limit on the slepton lifetime.

  1. Selective catalytic reduction of sulfur dioxide to elemental sulfur

    SciTech Connect (OSTI)

    Liu, Wei; Flytzani-Stephanopoulos, M.; Sarofim, A.F.

    1992-01-01T23:59:59.000Z

    Elemental sulfur recovery from SO[sub 2]-containing gas streams is highly attractive as it produces a saleable. Product and no waste to dispose of. However, commercially available schemes are complex and involve multi-stage reactors, such as, most notably in the Resox (reduction of SO[sub 2] with coke) and Claus plants(reaction of SO[sub 2] with H[sub 2]S over catalyst). This project win investigate a cerium oxide catalyst for the single-stage selective reduction SO[sub 2] to elemental sulfur by a reductant, such as carbon monoxide. Cerium oxide has been identified as a superior catalyst for SO[sub 2] reduction by CO to elemental sulfur because of its high activity and high selectivity to sulfur over COS over a wide temperature range(400--650C). Kinetic and parametric studies of SO[sub 2] reduction planned over various CeO[sub 2]-formulations will provide the necessary basis for development of a simplified process, a single-stage elemental sulfur recovery scheme from variable concentration gas streams. A first apparent application is treatment of regenerator off-gases in power plants using regenerative flue gas desulfurization. Such a simple catalytic converter may offer the long-sought Claus-alternative'' for coal-fired power plant applications.

  2. Structural Basis for Catalytic Activation of a Serine Recombinase

    SciTech Connect (OSTI)

    Keenholtz, Ross A.; Rowland, Sally-J.; Boocock, Martin R.; Stark, W. Marshall; Rice, Phoebe A. (Glasgow); (UC)

    2014-10-02T23:59:59.000Z

    Sin resolvase is a site-specific serine recombinase that is normally controlled by a complex regulatory mechanism. A single mutation, Q115R, allows the enzyme to bypass the entire regulatory apparatus, such that no accessory proteins or DNA sites are required. Here, we present a 1.86 {angstrom} crystal structure of the Sin Q115R catalytic domain, in a tetrameric arrangement stabilized by an interaction between Arg115 residues on neighboring subunits. The subunits have undergone significant conformational changes from the inactive dimeric state previously reported. The structure provides a new high-resolution view of a serine recombinase active site that is apparently fully assembled, suggesting roles for the conserved active site residues. The structure also suggests how the dimer-tetramer transition is coupled to assembly of the active site. The tetramer is captured in a different rotational substate than that seen in previous hyperactive serine recombinase structures, and unbroken crossover site DNA can be readily modeled into its active sites.

  3. Bio-Oil Separation and Stabilization by Supercritical Fluid Fractionation – 2014 Final Report

    SciTech Connect (OSTI)

    Foster Agblevor; Lucia Petkovic; Edward Bennion; Jason Quinn; John Moses; Deborah Newby; Daniel Ginosar

    2014-03-01T23:59:59.000Z

    The objective of this project is to use supercritical fluids to separate and fractionate algal-based bio-oils into stable products that can be subsequently upgraded to produce drop-in renewable fuels. To accomplish this objective, algae was grown and thermochemically converted to bio-oils using hydrothermal liquefaction (HTL), pyrolysis, and catalytic pyrolysis. The bio-oils were separated into an extract and a raffinate using near-critical propane or carbon dioxide. The fractions were then subjected to thermal aging studies to determine if the extraction process had stabilized the products. It was found that the propane extract fraction was twice as stable as the parent catalytic pyrolysis bio-oils as measured by the change in viscosity after two weeks of accelerated aging at 80°C. Further, in-situ NMR aging studies found that the propane extract was chemically more stable than the parent bio-oil. Thus the milestone of stabilizing the product was met. A preliminary design of the extraction plant was prepared. The design was based on a depot scale plant processing 20,000,000 gallons per year of bio-oil. It was estimated that the capital costs for such a plant would be $8,700,000 with an operating cost of $3,500,000 per year. On a per gallon of product cost and a 10% annual rate of return, capital costs would represent $0.06 per gallon and operating costs would amount to $0.20 per gallon. Further, it was found that the energy required to run the process represented 6.2% of the energy available in the bio-oil, meeting the milestone of less than 20%. Life cycle analysis and greenhouse gas (GHG) emission analysis found that the energy for running the critical fluid separation process and the GHG emissions were minor compared to all the inputs to the overall well to pump system. For the well to pump system boundary, energetics in biofuel conversion are typically dominated by energy demands in the growth, dewater, and thermochemical process. Bio-oil stabilization by near critical propane extraction had minimal impact in the overall energetics of the process with NER contributions of 0.03. Based on the LCA, the overall conversion pathways were found to be energy intensive with a NER of about 2.3 and 1.2 for catalytic pyrolysis and HTL, respectively. GHG emissions for the catalytic pyrolysis process were greater than that of petroleum diesel at 210 g CO2 eq compared to 18.9 g CO2 eq. Microalgae bio-oil based diesel with thermochemical conversion through HTL meets renewable fuel standards with favorable emission reductions of -10.8 g CO2 eq. The importance of the outcomes is that the critical fluid extraction and stabilization process improved product stability and did so with minimal energy inputs and processing costs. The LCA and GHG emission calculations point toward the HTL pathway as the more favorable thermochemical route towards upgrading algae to bio-fuels. Since the quality of the HTL oil was significantly lower than that of the catalytic pyrolysis bio-oil, the next steps point toward improving the quality of the HTL oils from algae biomass and focusing the critical fluid stabilization on that bio-oil product.

  4. Catalytic multi-stage process for hydroconversion and refining hydrocarbon feeds

    DOE Patents [OSTI]

    Comolli, Alfred G. (Yardley, PA); Lee, Lap-Keung (Cranbury, NJ)

    2001-01-01T23:59:59.000Z

    A multi-stage catalytic hydrogenation and hydroconversion process for heavy hydrocarbon feed materials such as coal, heavy petroleum fractions, and plastic waste materials. In the process, the feedstock is reacted in a first-stage, back-mixed catalytic reactor with a highly dispersed iron-based catalyst having a powder, gel or liquid form. The reactor effluent is pressure-reduced, vapors and light distillate fractions are removed overhead, and the heavier liquid fraction is fed to a second stage back-mixed catalytic reactor. The first and second stage catalytic reactors are operated at 700-850.degree. F. temperature, 1000-3500 psig hydrogen partial pressure and 20-80 lb./hr per ft.sup.3 reactor space velocity. The vapor and light distillates liquid fractions removed from both the first and second stage reactor effluent streams are combined and passed to an in-line, fixed-bed catalytic hydrotreater for heteroatom removal and for producing high quality naphtha and mid-distillate or a full-range distillate product. The remaining separator bottoms liquid fractions are distilled at successive atmospheric and vacuum pressures, low and intermediate-boiling hydrocarbon liquid products are withdrawn, and heavier distillate fractions are recycled and further upgraded to provide additional low-boiling hydrocarbon liquid products. This catalytic multistage hydrogenation process provides improved flexibility for hydroprocessing the various carbonaceous feedstocks and adjusting to desired product structures and for improved economy of operations.

  5. Coke gasification: the influence and behavior of inherent catalytic mineral matter

    SciTech Connect (OSTI)

    Mihaela Grigore; Richard Sakurovs; David French; Veena Sahajwalla [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Bangor, NSW (Australia)

    2009-04-15T23:59:59.000Z

    Gasification of coke contributes to its degradation in the blast furnace. In this study, the effect of gasification on the inherent catalytic minerals in cokes and their reciprocal influence on gasification are investigated. The catalytic mineral phases identified in the cokes used in this study were metallic iron, iron sulfides, and iron oxides. Metallic iron and pyrrhotite were rapidly oxidized during gasification to iron oxide. The catalysts had a strong influence on the apparent rates at the initial stages of reaction. As gasification proceeds, their effect on the reaction rate diminishes as a result of reducing the surface contact between catalyst and carbon matrix because of carbon consumption around the catalyst particles; with extended burnout the reactivity of the coke becomes increasingly dependent on surface area. The reaction rate in the initial stages was also influenced by the particle size of the catalytic minerals; for a given catalytic iron level, the cokes whose catalytic minerals were more finely dispersed had a higher apparent reaction rate than cokes containing larger catalytic particles. Iron, sodium, and potassium in the amorphous phase did not appear to affect the reaction rate. 40 refs., 16 figs., 6 tabs.

  6. Fluid observers and tilting cosmology

    E-Print Network [OSTI]

    A. A. Coley; S. Hervik; W. C. Lim

    2006-05-24T23:59:59.000Z

    We study perfect fluid cosmological models with a constant equation of state parameter $\\gamma$ in which there are two naturally defined time-like congruences, a geometrically defined geodesic congruence and a non-geodesic fluid congruence. We establish an appropriate set of boost formulae relating the physical variables, and consequently the observed quantities, in the two frames. We study expanding spatially homogeneous tilted perfect fluid models, with an emphasis on future evolution with extreme tilt. We show that for ultra-radiative equations of state (i.e., $\\gamma>4/3$), generically the tilt becomes extreme at late times and the fluid observers will reach infinite expansion within a finite proper time and experience a singularity similar to that of the big rip. In addition, we show that for sub-radiative equations of state (i.e., $\\gamma < 4/3$), the tilt can become extreme at late times and give rise to an effective quintessential equation of state. To establish the connection with phantom cosmology and quintessence, we calculate the effective equation of state in the models under consideration and we determine the future asymptotic behaviour of the tilting models in the fluid frame variables using the boost formulae. We also discuss spatially inhomogeneous models and tilting spatially homogeneous models with a cosmological constant.

  7. Maxwell's fluid model of magnetism

    E-Print Network [OSTI]

    Robert Brady; Ross Anderson

    2015-02-20T23:59:59.000Z

    In 1861, Maxwell derived two of his equations of electromagnetism by modelling a magnetic line of force as a `molecular vortex' in a fluid-like medium. Later, in 1980, Berry and colleagues conducted experiments on a `phase vortex', a wave geometry in a fluid which is analogous to a magnetic line of force and also exhibits behaviour corresponding to the quantisation of magnetic flux. Here we unify these approaches by writing down a solution to the equations of motion for a compressible fluid which behaves in the same way as a magnetic line of force. We then revisit Maxwell's historical inspiration, namely Faraday's 1846 model of light as disturbances in lines of force. Using our unified model, we show that such disturbances resemble photons: they are polarised, absorbed discretely, obey Maxwell's full equations of electromagnetism to first order, and quantitatively reproduce the correlation that is observed in the Bell tests.

  8. Non-Newtonian fluid flow

    E-Print Network [OSTI]

    Osinski, Charles Anthony

    1963-01-01T23:59:59.000Z

    zero and unity. The Ostwald- de Waele Equation (4), commonly known as the power law, is sometimes used to describe fluid behavior of this type. The rheological equation is (4) where the parameters "k" and "n" are constant for a particular fluid... be extended to include Reynolds numbers and the type of flow determined to be laminar and/or turbulent. It is assumed that the transition from laminar to turbulent flow occurs at a Reynolds number of 2100, the numeric distribution of Reynolds numbers...

  9. Viscosity of a nucleonic fluid

    E-Print Network [OSTI]

    Aram Z. Mekjian

    2012-03-21T23:59:59.000Z

    The viscosity of nucleonic matter is studied both classically and in a quantum mechanical description. The collisions between particles are modeled as hard sphere scattering as a baseline for comparison and as scattering from an attractive square well potential. Properties associated with the unitary limit are developed which are shown to be approximately realized for a system of neutrons. The issue of near perfect fluid behavior of neutron matter is remarked on. Using some results from hard sphere molecular dynamics studies near perfect fluid behavior is discussed further.

  10. DECOUPLED TIME STEPPING METHODS FOR FLUID-FLUID INTERACTION

    E-Print Network [OSTI]

    Kasman, Alex

    -fluid interaction, atmosphere-ocean, implicit-explicit method. 1. Introduction. The dynamic core in atmosphere-ocean to the coupled system using only (uncoupled) atmosphere and ocean solves, (see e.g. [4, 6, 17, 18, 19 their shared interface I by a rigid-lid coupling condition, i.e. no penetration and a slip with friction

  11. Compressor bleed cooling fluid feed system

    DOE Patents [OSTI]

    Donahoo, Eric E; Ross, Christopher W

    2014-11-25T23:59:59.000Z

    A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.

  12. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    SciTech Connect (OSTI)

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-12-01T23:59:59.000Z

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO{sub x}). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process.

  13. New Catalytic DNA Biosensors for Radionuclides and Metal ions

    SciTech Connect (OSTI)

    Lu, Yi

    2005-06-01T23:59:59.000Z

    In vitro selection for DNAzymes that are catalytically active with UO22+ ions as the metal cofactor has been completed. The 10th generation pool of DNA was cloned and sequenced. A total of 84 clones were sequenced and placed into families based on sequence alignments. Selected members of each family were 5-labeled with 32P and amplified using PCR. Activity assays were conducted using the isotopically labeled DNAzymes in order to determine which sequences were the most active. The secondary structures of the two most active sequences, called Clone 13 and Clone 39, were determined using the computer program Mfold. A cleavage rate of approximately 1 min-1 in the presence of 10 uM UO22+ was observed for both clones. Clone 39 was determined to be the best candidate for truncation to create a trans-cleaving DNAzyme, based on its secondary structure. An enzyme strand, called 39E, and a substrate strand, called 39DS, were designed by truncating the cis-cleaving DNAzyme. An alternative enzyme strand, called 39Ec, was also assayed with the 39DS substrate. This strand was designed so that the two binding arms were perfectly complimentary, unlike 39E, which formed three mismatched base pairs with 39DS. Both 39E and 39Ec were found to be active, with a rate of approximately 1 min-1 in the presence of 10 uM UO22+. A preliminary UO22+ binding curve was obtained for the 39Ec/39DS trans-cleaving system. The enzyme is active with UO22+ concentrations as low as 1 nM. Based on the preliminary binding curve data, the apparent UO22+ binding constant is approximately 330 nM, and kmax is approximately 1 min-1.

  14. IN SITU INFRARED STUDY OF CATALYTIC DECOMPOSITION OF NO

    SciTech Connect (OSTI)

    KHALID ALMUSAITEER; RAM KRISHNAMURTHY; STEVEN S.C. CHUANG

    1998-08-18T23:59:59.000Z

    The growing concerns for the environment and increasingly stringent standards for NO emission have presented a major challenge to control NO emissions from electric utility plants and automobiles. Catalytic decomposition of NO is the most attractive approach for the control of NO emission for its simplicity. Successful development of an effective catalyst for NO decomposition will greatly decrease the equipment and operation cost of NO control. Due to lack of understanding of the mechanism of NO decomposition, efforts on the search of an effective catalyst have been unsuccessful. Scientific development of an effective catalyst requires fundamental understanding of the nature of active site, the rate-limiting step, and an approach to prolong the life of the catalyst. Research is proposed to study the reactivity of adsorbates for the direct NO decomposition and to investigate the feasibility of two novel approaches for improving catalyst activity and resistance to sintering. The first approach is the use of silanation to stabilize metal crystallites and supports for Cu-ZSM-5 and promoted Pt catalysts; the second is utilization of oxygen spillover and desorption to enhance NO decomposition activity. An innovative infrared reactor system will be used to observe and determine the dynamic behavior and the reactivity of adsorbates during NO decomposition, oxygen spillover, and silanation. A series of experiments including X-ray diffraction, temperature programmed desorption, temperature programmed reaction, X-ray photoelectron spectroscopy will be used to characterized the catalysts. The information obtained from this study will provide a scientific basis for developing an effective catalyst for the NO decomposition under practical flue gas conditions.

  15. Catalytic properties of thimet oligopeptidase H600A mutant

    SciTech Connect (OSTI)

    Machado, Mauricio F.M.; Marcondes, Marcelo F. [Departamento de Biofisica, Universidade Federal de Sao Paulo, 04044-020 Sao Paulo, SP (Brazil)] [Departamento de Biofisica, Universidade Federal de Sao Paulo, 04044-020 Sao Paulo, SP (Brazil); Rioli, Vanessa [Laboratorio Especial de Toxinologia Aplicada, Instituto Butantan, 05467-010 Sao Paulo, SP (Brazil) [Laboratorio Especial de Toxinologia Aplicada, Instituto Butantan, 05467-010 Sao Paulo, SP (Brazil); Departamento de Biologia Celular e Desenvolvimento, Universidade de Sao Paulo, 05508-900 Sao Paulo, SP (Brazil); Ferro, Emer S. [Departamento de Biologia Celular e Desenvolvimento, Universidade de Sao Paulo, 05508-900 Sao Paulo, SP (Brazil)] [Departamento de Biologia Celular e Desenvolvimento, Universidade de Sao Paulo, 05508-900 Sao Paulo, SP (Brazil); Juliano, Maria A.; Juliano, Luiz [Departamento de Biofisica, Universidade Federal de Sao Paulo, 04044-020 Sao Paulo, SP (Brazil)] [Departamento de Biofisica, Universidade Federal de Sao Paulo, 04044-020 Sao Paulo, SP (Brazil); Oliveira, Vitor, E-mail: vitor.oliveira@unifesp.br [Departamento de Biofisica, Universidade Federal de Sao Paulo, 04044-020 Sao Paulo, SP (Brazil)] [Departamento de Biofisica, Universidade Federal de Sao Paulo, 04044-020 Sao Paulo, SP (Brazil)

    2010-04-02T23:59:59.000Z

    Thimet oligopeptidase (EC 3.4.24.15, TOP) is a metallo-oligopeptidase that participates in the intracellular metabolism of peptides. Predictions based on structurally analogous peptidases (Dcp and ACE-2) show that TOP can present a hinge-bend movement during substrate hydrolysis, what brings some residues closer to the substrate. One of these residues that in TOP crystallographic structure are far from the catalytic residues, but, moves toward the substrate considering this possible structural reorganization is His{sup 600}. In the present work, the role of His{sup 600} of TOP was investigated by site-directed mutagenesis. TOP H600A mutant was characterized through analysis of S{sub 1} and S{sub 1}' specificity, pH-activity profile and inhibition by JA-2. Results showed that TOP His{sup 600} residue makes important interactions with the substrate, supporting the prediction that His{sup 600} moves toward the substrate due to a hinge movement similar to the Dcp and ACE-2. Furthermore, the mutation H600A affected both K{sub m} and k{sub cat}, showing the importance of His{sup 600} for both substrate binding and/or product release from active site. Changes in the pH-profile may indicate also the participation of His{sup 600} in TOP catalysis, transferring a proton to the newly generated NH{sub 2}-terminus or helping Tyr{sup 605} and/or Tyr{sup 612} in the intermediate oxyanion stabilization.

  16. Integrating catalytic coal gasifiers with solid oxide fuel cells

    SciTech Connect (OSTI)

    Siefert, N.; Shamsi, A.; Shekhawat, D.; Berry, D.

    2010-01-01T23:59:59.000Z

    A review was conducted for coal gasification technologies that integrate with solid oxide fuel cells (SOFC) to achieve system efficiencies near 60% while capturing and sequestering >90% of the carbon dioxide [1-2]. The overall system efficiency can reach 60% when a) the coal gasifier produces a syngas with a methane composition of roughly 25% on a dry volume basis, b) the carbon dioxide is separated from the methane-rich synthesis gas, c) the methane-rich syngas is sent to a SOFC, and d) the off-gases from the SOFC are recycled back to coal gasifier. The thermodynamics of this process will be reviewed and compared to conventional processes in order to highlight where available work (i.e. exergy) is lost in entrained-flow, high-temperature gasification, and where exergy is lost in hydrogen oxidation within the SOFC. The main advantage of steam gasification of coal to methane and carbon dioxide is that the amount of exergy consumed in the gasifier is small compared to conventional, high temperature, oxygen-blown gasifiers. However, the goal of limiting the amount of exergy destruction in the gasifier has the effect of limiting the rates of chemical reactions. Thus, one of the main advantages of steam gasification leads to one of its main problems: slow reaction kinetics. While conventional entrained-flow, high-temperature gasifiers consume a sizable portion of the available work in the coal oxidation, the consumed exergy speeds up the rates of reactions. And while the rates of steam gasification reactions can be increased through the use of catalysts, only a few catalysts can meet cost requirements because there is often significant deactivation due to chemical reactions between the inorganic species in the coal and the catalyst. Previous research into increasing the kinetics of steam gasification will be reviewed. The goal of this paper is to highlight both the challenges and advantages of integrating catalytic coal gasifiers with SOFCs.

  17. Visually simulating realistic fluid motion

    E-Print Network [OSTI]

    Naithani, Priyanka

    2002-01-01T23:59:59.000Z

    's second law of motion and Conservation of Mass, which leads to the continuity equation. Newton's second law states that the total force F, acting on an element equals mass m times the element's acceleration a. In the case of fluids we do not consider...

  18. Directed flow fluid rinse trough

    DOE Patents [OSTI]

    Kempka, S.N.; Walters, R.N.

    1996-07-02T23:59:59.000Z

    Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs. 9 figs.

  19. Superior catalysts for selective catalytic reduction of nitric oxide. Quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect (OSTI)

    Li, W.B.; Yang, R.T.

    1995-12-01T23:59:59.000Z

    Efforts continued towards the synthesis of new pillared clay catalysts for the selective catalytic reduction of nitric oxide by ammonia. The possibility of utilizing hydrocarbons was also investigated.

  20. Quantifying the stimuli of photorheological fluids

    E-Print Network [OSTI]

    Bates, Sarah Woodring

    2010-01-01T23:59:59.000Z

    We develop a model to predict the dynamics of photorheological fluids and, more generally, photoresponsive fluids for monochromatic and polychromatic light sources. Derived from first principles, the model relates the ...

  1. Fluid Flow Simulation in Fractured Reservoirs

    E-Print Network [OSTI]

    Sarkar, Sudipta

    2002-01-01T23:59:59.000Z

    The purpose of this study is to analyze fluid flow in fractured reservoirs. In most petroleum reservoirs, particularly carbonate reservoirs and some tight sands, natural fractures play a critical role in controlling fluid ...

  2. Fluid Gravity Engineering Rocket motor flow analysis

    E-Print Network [OSTI]

    Anand, Mahesh

    Fluid Gravity Engineering Capability · Rocket motor flow analysis -Internal (performance) -External (plume / contamination) · Effect on landing site (surface alteration) -In-depth flow through porous young scientists/engineers Fluid Gravity Engineering Ltd #12;

  3. Fluid&ParticulateSystems 424514/2010

    E-Print Network [OSTI]

    Zevenhoven, Ron

    size distribution (CSD) and quality #12;Fluid&ParticulateSystems 424514/2010 Fluid solution ­ Selective distribution of impurities between a liquid phase and a solid phase uniformity, purity

  4. Fluid sampling system for a nuclear reactor

    DOE Patents [OSTI]

    Lau, Louis K. (Monroeville, PA); Alper, Naum I. (Monroeville, PA)

    1994-01-01T23:59:59.000Z

    A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump.

  5. Fluid sampling system for a nuclear reactor

    DOE Patents [OSTI]

    Lau, L.K.; Alper, N.I.

    1994-11-22T23:59:59.000Z

    A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump. 1 fig.

  6. Heat Transfer in Complex Fluids

    SciTech Connect (OSTI)

    Mehrdad Massoudi

    2012-01-01T23:59:59.000Z

    Amongst the most important constitutive relations in Mechanics, when characterizing the behavior of complex materials, one can identify the stress tensor T, the heat flux vector q (related to heat conduction) and the radiant heating (related to the radiation term in the energy equation). Of course, the expression 'complex materials' is not new. In fact, at least since the publication of the paper by Rivlin & Ericksen (1955), who discussed fluids of complexity (Truesdell & Noll, 1992), to the recently published books (Deshpande et al., 2010), the term complex fluids refers in general to fluid-like materials whose response, namely the stress tensor, is 'non-linear' in some fashion. This non-linearity can manifest itself in variety of forms such as memory effects, yield stress, creep or relaxation, normal-stress differences, etc. The emphasis in this chapter, while focusing on the constitutive modeling of complex fluids, is on granular materials (such as coal) and non-linear fluids (such as coal-slurries). One of the main areas of interest in energy related processes, such as power plants, atomization, alternative fuels, etc., is the use of slurries, specifically coal-water or coal-oil slurries, as the primary fuel. Some studies indicate that the viscosity of coal-water mixtures depends not only on the volume fraction of solids, and the mean size and the size distribution of the coal, but also on the shear rate, since the slurry behaves as shear-rate dependent fluid. There are also studies which indicate that preheating the fuel results in better performance, and as a result of such heating, the viscosity changes. Constitutive modeling of these non-linear fluids, commonly referred to as non-Newtonian fluids, has received much attention. Most of the naturally occurring and synthetic fluids are non-linear fluids, for example, polymer melts, suspensions, blood, coal-water slurries, drilling fluids, mud, etc. It should be noted that sometimes these fluids show Newtonian (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a given temperature, an increase in {zeta} implies that the activation energy is smaller and thus, the reaction ra

  7. Ultrasonic fluid densitometer for process control

    DOE Patents [OSTI]

    Greenwood, Margaret S. (Richland, WA)

    2000-01-01T23:59:59.000Z

    The present invention is an ultrasonic fluid densitometer that uses at least one pair of transducers for transmitting and receiving ultrasonic signals internally reflected within a material wedge. A temperature sensor is provided to monitor the temperature of the wedge material. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface and comparing a transducer voltage and wedge material temperature to a tabulation as a function of density.

  8. Catalytic two-stage coal hydrogenation process using extinction recycle of heavy liquid fraction

    DOE Patents [OSTI]

    MacArthur, J.B.; Comolli, A.G.; McLean, J.B.

    1989-10-17T23:59:59.000Z

    A process is described for catalytic two-stage hydrogenation and liquefaction of coal with selective extinction recycle of all heavy liquid fractions boiling above a distillation cut point of about 600--750 F to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal feed is slurried with a process-derived liquid solvent normally boiling above about 650 F and fed into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils. The first stage reactor is maintained at 710--800 F temperature, 1,000--4,000 psig hydrogen partial pressure, and 10-90 lb/hr per ft[sup 3] catalyst space velocity. Partially hydrogenated material withdrawn from the first stage reaction zone is passed directly to the second stage catalytic reaction zone maintained at 760--860 F temperature for further hydrogenation and hydroconversion reactions. A 600--750 F[sup +] fraction containing 0--20 W % unreacted coal and ash solids is recycled to the coal slurrying step. If desired, the cut point lower boiling fraction can be further catalytically hydrotreated. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, to provide significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of hydrocarbon gases, and no net production of undesirable heavy oils and residuum materials. 2 figs.

  9. Catalytic two-stage coal hydrogenation process using extinction recycle of heavy liquid fraction

    DOE Patents [OSTI]

    MacArthur, James B. (Denville, NJ); Comolli, Alfred G. (Yardley, PA); McLean, Joseph B. (Somerville, NJ)

    1989-01-01T23:59:59.000Z

    A process for catalytic two-stage hydrogenation and liquefaction of coal with selective extinction recycle of all heavy liquid fractions boiling above a distillation cut point of about 600.degree.-750.degree. F. to produce increased yields of low-boiling hydrocarbon liquid and gas products. In the process, the particulate coal feed is slurried with a process-derived liquid solvent normally boiling above about 650.degree. F. and fed into a first stage catalytic reaction zone operated at conditions which promote controlled rate liquefaction of the coal, while simultaneously hydrogenating the hydrocarbon recycle oils. The first stage reactor is maintained at 710.degree.-800.degree. F. temperature, 1000-4000 psig hydrogen partial pressure, and 10-90 lb/hr per ft.sup.3 catalyst space velocity. Partially hydrogenated material withdrawn from the first stage reaction zone is passed directly to the second stage catalytic reaction zone maintained at 760.degree.-860.degree. F. temperature for further hydrogenation and hydroconversion reactions. A 600.degree.-750.degree. F..sup.+ fraction containing 0-20 W % unreacted coal and ash solids is recycled to the coal slurrying step. If desired, the cut point lower boiling fraction can be further catalytically hydrotreated. By this process, the coal feed is successively catalytically hydrogenated and hydroconverted at selected conditions, to provide significantly increased yields of desirable low-boiling hydrocarbon liquid products and minimal production of hydrocarbon gases, and no net production of undesirable heavy oils and residuum materials.

  10. Fluid Construction Grammar on Real Robots

    E-Print Network [OSTI]

    Steels, Luc

    Chapter 10 Fluid Construction Grammar on Real Robots Luc Steels1,2, Joachim De Beule3, and Pieter and P. Wellens (2012). Fluid Construction Grammar on Real Robots. In Luc Steels and Manfred Hild (Eds game experiments reported in this book. This framework is called Fluid Construction Grammar (FCG

  11. Fluid&ParticulateSystems 424514/2010

    E-Print Network [OSTI]

    Zevenhoven, Ron

    .zevenhoven@abo.fi 2Fluid&ParticulateSystems 424514/2010 Fluid&ParticulateSystems ĹA424514/2014 2.1 Flow tube sections / Turku Finland RoNz 3 Fluid Flow in Tube Systems loss 2 2 1 pump 2 2 1 ppwzgppwzg outoutoutoutininininloss,311 ' 3 ppzgp 2loss,322 ' 3 ppzgp 210 VVV For a fully developed turbulent flow (horizontal

  12. Harmonic Fluids Changxi Zheng Doug L. James

    E-Print Network [OSTI]

    Columbia University

    Harmonic Fluids Changxi Zheng Doug L. James Cornell University Abstract Fluid sounds- ing. Furthermore, while offline applications can rely on talented foley artists to "cook up" plausible for vortex-based fluid sounds [Dobashi et al. 2003] and solid bodies [O'Brien et al. 2001; James et al. 2006

  13. SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW

    E-Print Network [OSTI]

    Santos, Juan

    SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW J. E. Santos1, G. B. Savioli2, J. M. Carcione3, D´e, Argentina SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12;Introduction. I Storage of CO2). SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12;Introduction. II CO2 is separated from natural

  14. Introduction to Computational Fluid Dynamics 424512 E #1 -rz Introduction to Computational Fluid Dynamics

    E-Print Network [OSTI]

    Zevenhoven, Ron

    Introduction to Computational Fluid Dynamics 424512 E #1 - rz Introduction to Computational Fluid Dynamics (iCFD) 424512.0 E, 5 sp / 3 sw 1. Introduction; Fluid dynamics (lecture 1 of 5) Ron Zevenhoven Ă?bo to Computational Fluid Dynamics 424512 E #1 - rz april 2013 Ă?bo Akademi Univ - Thermal and Flow Engineering

  15. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2011; 00:123

    E-Print Network [OSTI]

    Buscaglia, Gustavo C.

    , magma chambers, fluid­fuel interactions, crude oil recovery, spray cans, sediment transport in riversINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2011; 00 for the treatment of discontinuous pressures in multi­fluid flows Roberto F. Ausas1 , Gustavo C. Buscaglia1

  16. An FDTD Method for Analysis of Scattering from Rough FluidFluid Interfaces

    E-Print Network [OSTI]

    Schneider, John B.

    results are presented for fluid­fluid cases modeling water­sediment inter­ faces. Two different roughness speeds in shallow­water sediment bottoms are relatively slow, a fluid­ fluid model is a reasonable to the interface, and a correc­ tion for the numerical dispersion inherent to the FDTD algorithm. Numeri­ cal

  17. Cobalt and nickel supported on HY zeolite: Synthesis, characterization and catalytic properties

    SciTech Connect (OSTI)

    Garrido Pedrosa, Anne M. [Federal University of Rio Grande do Norte, Department of Chemistry, CP 1692, 59078-970 Natal-RN (Brazil)]. E-mail: annemgp@yahoo.com; Souza, Marcelo J.B. [Federal University of Sergipe, Department of Chemical Engineering, 49100-000 Sao Cristovao-SE (Brazil); Melo, Dulce M.A. [Federal University of Rio Grande do Norte, Department of Chemistry, CP 1692, 59078-970 Natal-RN (Brazil); Araujo, Antonio S. [Federal University of Rio Grande do Norte, Department of Chemistry, CP 1692, 59078-970 Natal-RN (Brazil)

    2006-06-15T23:59:59.000Z

    Bifunctional catalysts consisting of cobalt and nickel supported on HY zeolite were synthesized by solvent excess impregnation and characterized by X-ray diffraction, Fourier-transformed infrared spectroscopy, scanning electron microscopy, atomic absorption spectroscopy, thermogravimetric analysis and nitrogen adsorption. The profiles of metal reduction on zeolite were obtained by temperature-programmed reduction. The catalytic properties of the bifunctional catalysts were verified by n-hexane hydroconversion. X-ray diffraction and microstructural analyses showed the presence of crystalline phases in HY zeolite and in samples after impregnation. A decrease in the micropore surface area was observed by nitrogen adsorption experiments and attributed to a reduction in the accessibility to micropores. The catalysts showed catalytic activity in the hydroconversion of n-hexane with selectivity to branched hydrocarbons. Such catalytic activity was related to the acid and metallic properties of the bifunctional catalysts used.

  18. A catalytic approach to estimate the redox potential of heme-peroxidases

    SciTech Connect (OSTI)

    Ayala, Marcela [Departamento de Ingenieria Celular y Biocatalisis, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos 62210 (Mexico)]. E-mail: maa@ibt.unam.mx; Roman, Rosa [Departamento de Ingenieria Celular y Biocatalisis, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos 62210 (Mexico); Vazquez-Duhalt, Rafael [Departamento de Ingenieria Celular y Biocatalisis, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos 62210 (Mexico)

    2007-06-08T23:59:59.000Z

    The redox potential of heme-peroxidases varies according to a combination of structural components within the active site and its vicinities. For each peroxidase, this redox potential imposes a thermodynamic threshold to the range of oxidizable substrates. However, the instability of enzymatic intermediates during the catalytic cycle precludes the use of direct voltammetry to measure the redox potential of most peroxidases. Here we describe a novel approach to estimate the redox potential of peroxidases, which directly depends on the catalytic performance of the activated enzyme. Selected p-substituted phenols are used as substrates for the estimations. The results obtained with this catalytic approach correlate well with the oxidative capacity predicted by the redox potential of the Fe(III)/Fe(II) couple.

  19. Fluid dynamics on sieve trays

    SciTech Connect (OSTI)

    Hag, M.A.

    1982-08-01T23:59:59.000Z

    A study was conducted to investigate the effects of fluid properties on the hydrodynamics of sieve tray columns. The study showed that changes in liquid viscosity influenced froth height, while changes in liquid surface tension and density influenced total pressure drop across the trays. Liquid holdup was independent of these solution properties. The liquid systems used for the study were: water/glycerol for viscosity, water/ethanol for surface tension and methanol/chloroform for density.

  20. Hydrostatic bearings for a turbine fluid flow metering device

    DOE Patents [OSTI]

    Fincke, James R. (Rigby, ID)

    1982-01-01T23:59:59.000Z

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

  1. Hydrostatic bearings for a turbine fluid flow metering device

    DOE Patents [OSTI]

    Fincke, J.R.

    1982-05-04T23:59:59.000Z

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion. 3 figs.

  2. Locomotion in complex fluids: Integral theorems

    E-Print Network [OSTI]

    Eric Lauga

    2014-10-15T23:59:59.000Z

    The biological fluids encountered by self-propelled cells display complex microstructures and rheology. We consider here the general problem of low-Reynolds number locomotion in a complex fluid. {Building on classical work on the transport of particles in viscoelastic fluids,} we demonstrate how to mathematically derive three integral theorems relating the arbitrary motion of an isolated organism to its swimming kinematics {in a non-Newtonian fluid}. These theorems correspond to three situations of interest, namely (1) squirming motion in a linear viscoelastic fluid, (2) arbitrary surface deformation in a weakly non-Newtonian fluid, and (3) small-amplitude deformation in an arbitrarily non-Newtonian fluid. Our final results, valid for a wide-class of {swimmer geometry,} surface kinematics and constitutive models, at most require mathematical knowledge of a series of Newtonian flow problems, and will be useful to quantity the locomotion of biological and synthetic swimmers in complex environments.

  3. Polymer network/carbon layer on monolith support and monolith catalytic reactor

    DOE Patents [OSTI]

    Nordquist, Andrew Francis; Wilhelm, Frederick Carl; Waller, Francis Joseph; Machado, Reinaldo Mario

    2003-08-26T23:59:59.000Z

    The present invention relates to an improved monolith catalytic reactor and a monolith support. The improvement in the support resides in a polymer network/carbon coating applied to the surface of a porous substrate and a catalytic metal, preferably a transition metal catalyst applied to the surface of the polymer network/carbon coating. The monolith support has from 100 to 800 cells per square inch and a polymer network/carbon coating with surface area of from 0.1 to 15 m.sup.2 /gram as measured by adsorption of N.sub.2 or Kr using the BET method.

  4. Structural, textural and catalytic properties of Al-, Ti-pillared clays

    SciTech Connect (OSTI)

    Ramos-Galvan, C.E.; Dominguez, J.M.; Sandoval-Robles, G.; Castillo-Mares, A.; Nava E, N.

    1996-12-31T23:59:59.000Z

    Al-, Ti- and Zr-pillared clays were characterized and NiMo/Pilc`s were tested in HDS reactions. The combination of activity measurements with Moessbauer Spectroscopy and x-ray microanalysis at microscopical scale give insight in the metal phases migration during pillaring, reaction and regeneration steps. {Alpha}-Fe phase in free Fe{sub 2}O{sub 3} islands predominate together with structural Fe{sup 3+} phase, but during the catalytic reaction Fe{sup 2+} forms. Delamination of the Ti- and Zr-Clay supports, together with high Lewis acidity might enhance their catalytic properties.

  5. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them

    DOE Patents [OSTI]

    Schwartz, Michael (Boulder, CO); White, James H. (Boulder, CO); Sammels, Anthony F. (Boulder, CO)

    2000-01-01T23:59:59.000Z

    This invention relates to gas-impermeable, solid state materials fabricated into membranes for use in catalytic membrane reactors. This invention particularly relates to solid state oxygen anion- and electron-mediating membranes for use in catalytic membrane reactors for promoting partial or full oxidation of different chemical species, for decomposition of oxygen-containing species, and for separation of oxygen from other gases. Solid state materials for use in the membranes of this invention include mixed metal oxide compounds having the brownmillerite crystal structure.

  6. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them

    SciTech Connect (OSTI)

    Schwartz, Michael; White, James H.; Sammells, Anthony F.

    2005-09-27T23:59:59.000Z

    This invention relates to gas-impermeable, solid state materials fabricated into membranes for use in catalytic membrane reactors. This invention particularly relates to solid state oxygen anion- and electron-mediating membranes for use in catalytic membrane reactors for promoting partial or full oxidation of different chemical species, for decomposition of oxygen-containing species, and for separation of oxygen from other gases. Solid state materials for use in the membranes of this invention include mixed metal oxide compounds having the brownmillerite crystal structure.

  7. Hydrogen ions produced by plasma-assisted catalytic ionization using nickel grid

    SciTech Connect (OSTI)

    Oohara, W.; Kawata, K.; Hibino, T. [Department of Electronic Device Engineering, Yamaguchi University, Ube 755-8611 (Japan)] [Department of Electronic Device Engineering, Yamaguchi University, Ube 755-8611 (Japan)

    2013-06-15T23:59:59.000Z

    Positive and negative hydrogen ions are produced by plasma-assisted catalytic ionization using a nickel grid, where the irradiation current density of positive ions onto the grid can be controlled by the discharge power. The irradiation energy can be controlled by both the grid potential and the discharge plasma potential. Extraction properties and energy distributions of positive and negative ions produced in the cases of using the grid and a porous nickel plate are compared. Two production mechanisms of negative ions are found in the process of plasma-assisted catalytic ionization.

  8. The Effects of Trace Contaminants on Catalytic Processing of Biomass-Derived Feedstocks

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Peterson, Keith L.; Muzatko, Danielle S.; Alderson, Eric V.; Hart, Todd R.; Neuenschwander, Gary G.

    2004-03-25T23:59:59.000Z

    Trace components in biomass feedstocks are potential catalyst poisons when catalytically processing these materials to value-added chemical products. Trace components include inorganic elements such as alkali metals and alkaline earths, phosphorus or sulfur, aluminum or silicon, chloride, or transition metals. Protein components in biomass feedstocks can lead to formation of peptide fractions (from hydrolysis) or ammonium ions (from more severe breakdown) both of which might interfere with catalysis. The effects of these components on catalytic hydrogenation processing has been studied in batch reactor processing tests

  9. Development of Micro Catalytic Combustor Using Ceramic Tape Casting Takashi OKAMASA, Gwang-Goo LEE, Yuji SUZUKI, and Nobuhide KASAGI

    E-Print Network [OSTI]

    Kasagi, Nobuhide

    Development of Micro Catalytic Combustor Using Ceramic Tape Casting Takashi OKAMASA, Gwang-Goo LEE@thtlab.t.u-tokyo.ac.jp Abstract Micro-scale catalytic combustor fueled by butane is investigated. A cost-effective ceramic combustor is developed using high- precision tape-casting technology. Nano-porous alumina fabricated through

  10. Diffusion and Catalytic Cracking of 1,3,5 Tri-iso-propyl-benzene in FCC Catalysts

    E-Print Network [OSTI]

    Al-Khattaf, Sulaiman

    1 Diffusion and Catalytic Cracking of 1,3,5 Tri-iso- propyl-benzene in FCC Catalysts S.Al-Khattaf1 describes catalytic cracking experiments developed in a novel CREC Riser Simulator using 1,3,5-Tri-iso

  11. Behavior of chars from Bursa Mustafa Kemal Pasa Alpagut and Balkesir Dursunbey Cakiirca Lignite (Turkey) during non-catalytic and catalytic gasification

    SciTech Connect (OSTI)

    Bozkurt, Y.; Misirlioglu, Z.; Sinag, A.; Tekes, A.T.; Canel, M. [Ankara University, Ankara (Turkey). Dept. of Chemistry

    2008-07-01T23:59:59.000Z

    The reactivities of chars obtained by pyrolysis of Bursa Mustafa Kemal Pasa Alpagut lignite and Balkesir Dursunbey Cakiirca lignite (Turkey) at different temperatures were determined by CO{sub 2} gasification and by combustion with O{sub 2}. Catalytic effect of Na{sub 2}CO{sub 3} on the CO{sub 2} and O{sub 2} gasification reactivity of chars was investigated. Gasification tests were performed in the fixed bed reactors operating at ambient pressure. Reactivity of chars during the CO{sub 2} gasification reactions was determined by calculating the reaction rate constants and reactivity of chars during the O{sub 2} gasification was determined by using ignition temperatures of the samples. Activation energies and Arrhenius constants of the chars on the CO{sub 2} gasification reactions were also calculated by the help of Arrhenius curves. The activation energy for CO{sub 2} gasification was generally decreased with pyrolysis temperature, due to the different surface characteristics and different nature of carbon atoms gasified as the gasification reactions proceed. Generally, the increase in pyrolysis temperature leads to an increase in gasification reactivity with CO{sub 2}. The reactivity of chars in catalytic gasification was higher than the corresponding non-catalytic reactivity of the same chars. Ignition temperature increased with increasing pyrolysis temperature.

  12. Final Report, "Molecular Design of Hydrocarbon Oxidation Catalytic Processes"

    SciTech Connect (OSTI)

    Professor Francisco Zaera

    2007-08-09T23:59:59.000Z

    The main goal of this project had been to use model systems to correlate selectivities in partial oxidation catalysis with the presence of specific sites on the surface of the catalyst. Extensive work was performed this year on characterizing oxygen-treated nickel surfaces by chemical means. Specifically, the surface chemistry of ammonia coadsorbed with atomic oxygen on Ni(110) single-crystal surfaces was studied by temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). It was determined that at intermediate oxygen coverages direct ammonia adsorption on nickel sites is suppressed, but a new high-temperature reaction regime is generated at 400 K where NHx surface fragments are rehydrogenated concurrently with the production of water and molecular hydrogen. The extensive isotope scrambling and hydrogen transfer seen from nitrogen- to oxygen-containing surface intermediates, and the optimum yields seen for this 400 K state at intermediate oxygen coverages, strongly suggest the direct interaction of the adsorbed ammonia with oxygen atoms at the end of the –Ni–O- rows that form upon reconstruction of the surface. Hydrogen transfer between ammonia and oxygen appears to take place directly via hydrogen bonding, and to be reversible but biased towards water formation. An equilibrium is reached between the produced water and the reacting surface oxygen and hydrogen. The strong influence of the OH surface groups on the thermal chemistry of the adsorbed ammonia was interpreted in terms of the adsorbing geometry of the OH groups on the surface, and of hydrogen bonding between adsorbed OH and NH3 species. In terms of alcohol reactivity, the adsorption of 2-iodoethanol, a precursor for the preparation of 2-hydroxyethyl and oxametallacycle surface species, was found to lead to two configurations involving either just the iodine atom or both iodine and hydroxyl ends of the molecule. A complex chemical behavior starts around 140 K with the production of small amounts of ethylene and water, most likely via the concerted decomposition or disproportionation of the adsorbed molecular species. The bulk of the 2-iodoethanol decomposes at about 150 K via an initial carbon-iodine scission to form –O(H)CH2CH2– (~80%) and 2-hydroxyethyl (~20%) intermediates. Two competing reactions are involved with the subsequent conversion of the 2-hydroxyethyl species around 160 K, a reductive elimination with surface hydrogen to yield ethanol, and a ?-H elimination to surface vinyl alcohol. The –O(H)CH2CH2–, on the other hand, dehydrogenates to a –OCH2CH2– oxametallacycle species about the same temperature. Both 2-hydroxyethyl and oxametallacycle species tautomerize to acetaldehyde, around 210 K and above 250 K, respectively, and some of that acetaldehyde desorbs while the rest decomposes to hydrogen and carbon monoxide. We contend that a better understanding of the surface chemistry of oxygen-containing surfaces can lead to better selectivities in catalysis. This is arguably the most important issue in the field of catalysis in the near future, and one that impacts several technologies of interest to DOE such as the manufacturing of speciality chemicals and the control and removal of pollutants. Additional work was performed on the characterization of the chemistry of methyl and methylene adsorbed species on oxygen-treated nickel surfaces. Complex chemistry was observed involving not only hydrogenation and dehydrogenation steps, but also C-C couplings and methylene insertions to produce heavier hydrocarbons, and oxygen insertion reactions that yield oxygenates. Finally, a dual titration technique employing xenon and a chemically sensitive probe was developed to identify minority catalytic sites on oxide surfaces. In the case of oxygen-treated Ni(110) single crystals, it was found that both hydrogen transfer with adsorbed water or ammonia and certain hydrocarbon hydrogenation reactions take place at the end of the –Ni–O rows that form in this system. Carbon and nitrogen oxides, on the other hand, display no pre

  13. Two-stage Catalytic Reduction of NOx with Hydrocarbons

    SciTech Connect (OSTI)

    Umit S. Ozkan; Erik M. Holmgreen; Matthew M. Yung; Jonathan Halter; Joel Hiltner

    2005-12-21T23:59:59.000Z

    A two-stage system for the catalytic reduction of NO from lean-burn natural gas reciprocating engine exhaust is investigated. Each of the two stages uses a distinct catalyst. The first stage is oxidation of NO to NO{sub 2} and the second stage is reduction of NO{sub 2} to N{sub 2} with a hydrocarbon. The central idea is that since NO{sub 2} is a more easily reduced species than NO, it should be better able to compete with oxygen for the combustion reaction of hydrocarbon, which is a challenge in lean conditions. Early work focused on demonstrating that the N{sub 2} yield obtained when NO{sub 2} was reduced was greater than when NO was reduced. NO{sub 2} reduction catalysts were designed and silver supported on alumina (Ag/Al{sub 2}O{sub 3}) was found to be quite active, able to achieve 95% N{sub 2} yield in 10% O{sub 2} using propane as the reducing agent. The design of a catalyst for NO oxidation was also investigated, and a Co/TiO{sub 2} catalyst prepared by sol-gel was shown to have high activity for the reaction, able to reach equilibrium conversion of 80% at 300 C at GHSV of 50,000h{sup -1}. After it was shown that NO{sub 2} could be more easily reduced to N{sub 2} than NO, the focus shifted on developing a catalyst that could use methane as the reducing agent. The Ag/Al{sub 2}O{sub 3} catalyst was tested and found to be inactive for NOx reduction with methane. Through iterative catalyst design, a palladium-based catalyst on a sulfated-zirconia support (Pd/SZ) was synthesized and shown to be able to selectively reduce NO{sub 2} in lean conditions using methane. Development of catalysts for the oxidation reaction also continued and higher activity, as well as stability in 10% water, was observed on a Co/ZrO{sub 2} catalyst, which reached equilibrium conversion of 94% at 250 C at the same GHSV. The Co/ZrO{sub 2} catalyst was also found to be extremely active for oxidation of CO, ethane, and propane, which could potential eliminate the need for any separate oxidation catalyst. At every stage, catalyst synthesis was guided by the insights gained through detailed characterization of the catalysts using many surface and bulk analysis techniques such as X-ray diffraction, X-ray photoelectron spectroscopy, Temperature-programmed Reduction, Temperature programmed Desorption, and Diffuse Reflectance InfraRed Fourier Transform Spectroscopy as well as steady state reaction experiments. Once active catalysts for each stage had been developed, a physical mixture of the two catalysts was tested for the reduction of NO with methane in lean conditions. These experiments using a mixture of the catalysts produced N2 yields as high as 90%. In the presence of 10% water, the catalyst mixture produced 75% N{sub 2} yield, without any optimization. The dual catalyst system developed has the potential to be implemented in lean-burn natural gas engines for reducing NOx in lean exhaust as well as eliminating CO and unburned hydrocarbons without any fuel penalty or any system modifications. If funding continues, future work will focus on improving the hydrothermal stability of the system to bring the technology closer to application.

  14. Multiple source/multiple target fluid transfer apparatus

    DOE Patents [OSTI]

    Turner, Terry D. (Idaho Falls, ID)

    1997-01-01T23:59:59.000Z

    A fluid transfer apparatus includes: a) a plurality of orifices for connection with fluid sources; b) a plurality of orifices for connection with fluid targets; c) a set of fluid source conduits and fluid target conduits associated with the orifices; d) a pump fluidically interposed between the source and target conduits to transfer fluid therebetween; e) a purge gas conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass a purge gas under pressure; f) a solvent conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass solvent, the solvent conduit including a solvent valve; g) pump control means for controlling operation of the pump; h) purge gas valve control means for controlling operation of the purge gas valve to selectively impart flow of purge gas to the fluid source conduits, fluid target conduits and pump; i) solvent valve control means for controlling operation of the solvent valve to selectively impart flow of solvent to the fluid source conduits, fluid target conduits and pump; and j) source and target valve control means for controlling operation of the fluid source conduit valves and the fluid target conduit valves to selectively impart passage of fluid between a selected one of the fluid source conduits and a selected one of the fluid target conduits through the pump and to enable passage of solvent or purge gas through selected fluid source conduits and selected fluid target conduits.

  15. Novel Catalytic Fuel Reforming Using Micro-Technology with Advanced Separations Technology

    E-Print Network [OSTI]

    Novel Catalytic Fuel Reforming Using Micro-Technology with Advanced Separations Technology Patricia by the combustion of membrane raffinate for the production of clean hydrogen by steam reforming natural gas. Advanced membrane technology is being used to remove CO and CO2 from the reformate. The fuel processor

  16. The Role of Organic Capping Layers of Platinum Nanoparticles in Catalytic Activity of CO Oxidation

    SciTech Connect (OSTI)

    Park, Jeong Y.; Aliaga, Cesar; Renzas, J. Russell; Lee, Hyunjoo; Somorjai, Gabor A.

    2008-12-17T23:59:59.000Z

    We report the catalytic activity of colloid platinum nanoparticles synthesized with different organic capping layers. On the molecular scale, the porous organic layers have open spaces that permit the reactant and product molecules to reach the metal surface. We carried out CO oxidation on several platinum nanoparticle systems capped with various organic molecules to investigate the role of the capping agent on catalytic activity. Platinum colloid nanoparticles with four types of capping layer have been used: TTAB (Tetradecyltrimethylammonium Bromide), HDA (hexadecylamine), HDT (hexadecylthiol), and PVP (poly(vinylpyrrolidone)). The reactivity of the Pt nanoparticles varied by 30%, with higher activity on TTAB coated nanoparticles and lower activity on HDT, while the activation energy remained between 27-28 kcal/mol. In separate experiments, the organic capping layers were partially removed using ultraviolet light-ozone generation techniques, which resulted in increased catalytic activity due to the removal of some of the organic layers. These results indicate that the nature of chemical bonding between organic capping layers and nanoparticle surfaces plays a role in determining the catalytic activity of platinum colloid nanoparticles for carbon monoxide oxidation.

  17. Hybrid QM/MM Car-Parrinello Simulations of Catalytic and Enzymatic Reactions

    E-Print Network [OSTI]

    Guidoni, Leonardo

    1 Hybrid QM/MM Car-Parrinello Simulations of Catalytic and Enzymatic Reactions MariaCarola Colombo, we review some recent applications of hybrid Car-Parrinello simulations of chemical and biological recently developed a combination of these two techniques into a hybrid QM/MM Car-Parrinello scheme [4

  18. Supporting Information for: Exoelectrogenic biofilm as a template for sustainable formation of a catalytic

    E-Print Network [OSTI]

    and (B) anode potential (vs. SHE) of electrodes operated in a hydrogen fuel cell without potentiostatic that were pyrolyzed, but did not undergo the subsequent oxidation step generated with an RDE at 1000 rpm were alternately sparged with nitrogen and hydrogen to show the catalytic response of the reactors

  19. High Performance Plasma Sputtered Fuel Cell Electrodes with Ultra Low catalytic metal Loadings

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    to be reached between 2010 and 2015 are clear: the catalyst of a fuel cell can cost no more than 4 per kilowatt1 High Performance Plasma Sputtered Fuel Cell Electrodes with Ultra Low catalytic metal Loadings C in plasma fuel cell deposition devices. Pt loadings lower than 0.01 mg cm-2 have been realized. The Pt

  20. Exoelectrogenic Biofilm as a Template for Sustainable Formation of a Catalytic

    E-Print Network [OSTI]

    the electrochemically plated control electrode, even though 30% less Pd was present in the biotemplated catalyst was used as a sustainable template to form mesoporous Pd structures while eliminating the need formation, producing a catalytic Pd mesoporous (pore size 9.7 Ć 0.1 nm) structure attached to the graphite

  1. ORIGINAL PAPER New Catalytic Materials for the Direct Epoxidation of Propylene

    E-Print Network [OSTI]

    Senkan, Selim M.

    ORIGINAL PAPER New Catalytic Materials for the Direct Epoxidation of Propylene by Oxygen propylene oxide (PO) from propylene and oxygen using array channel microreactors at 1 atm and 300, 333 oxidation Á Nanoparticle synthesis Á Multimetallic catalysis 1 Introduction Propylene oxide (PO

  2. Catalytically active nickel ^110 surfaces in growth of carbon tubular structures

    E-Print Network [OSTI]

    Wang, Zhong L.

    Catalytically active nickel ^110 surfaces in growth of carbon tubular structures M. H. Kuang and Z of Sciences, Beijing 100083, China Received 19 October 1999; accepted for publication 11 January 2000 Recent interest in the growth of aligned carbon nanotube films using transition metal catalysts has led

  3. An atomic-scale analysis of catalytically-assisted chemical vapor deposition of carbon nanotubes

    E-Print Network [OSTI]

    Grujicic, Mica

    Growth of carbon nanotubes during transition-metal particles catalytically-assisted thermal decomposition of the transition-metal particles and onto the surface of carbon nanotubes, carbon atom attachment to the growing. Carbon nanotubes are generally processed by laser ablation of carbon rods e.g. [7], a direct current arc

  4. Comment on "Catalytic Activity of the Rh Surface Oxide: CO Oxidation over Rh(111)

    E-Print Network [OSTI]

    Goodman, Wayne

    . Obviously, heating Rh in pure oxygen to T ) 230 °C and above will lead to the formation of surface Rh oxideComment on "Catalytic Activity of the Rh Surface Oxide: CO Oxidation over Rh(111) under Realistic suggest the importance of a surface oxide phase for high CO2 formation in CO-O2 reactions. However

  5. Correlating Catalytic Methanol Oxidation with the Structure and Oxidation State of Size-Selected Pt Nanoparticles

    E-Print Network [OSTI]

    Kik, Pieter

    Correlating Catalytic Methanol Oxidation with the Structure and Oxidation State of Size-Selected Pt nanoparticles (NPs) prepared by micelle encapsulation and supported on -Al2O3 during the oxidation of methanol the pretreatment. KEYWORDS: platinum, methanol oxidation, operando, XAFS, EXAFS, XANES, alumina, nanoparticle, size

  6. Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction

    DOE Patents [OSTI]

    Liu, Di-Jia (Naperville, IL); Yang, Junbing (Westmont, IL); Wang, Xiaoping (Naperville, IL)

    2010-08-03T23:59:59.000Z

    A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.

  7. Functionalized Graphene as a Catalytic Counter Electrode in Dye-Sensitized

    E-Print Network [OSTI]

    Aksay, Ilhan A.

    %).1,2 In typical DSSC architectures, the photon-induced oxida- tion of a dye occurs at a TiO2 photoanode, while but typically requires a platinum catalyst in DSSC operation.3 5 Platinum has high catalytic activity toward I3, since platinum is a precious metal, much incentive exists to develop DSSC counter electrodes using

  8. Catalytic Properties of Supported MoO3 Catalysts for Oxidative Dehydrogenation of Propane

    E-Print Network [OSTI]

    Iglesia, Enrique

    Catalytic Properties of Supported MoO3 Catalysts for Oxidative Dehydrogenation of Propane Kaidong The effects of MoOx structure on propane oxidative dehydrogenation (ODH) rates and selectivity were examined with those obtained on MoOx/ZrO2. On MoOx/Al2O3 catalysts, propane turnover rate increased with increasing Mo

  9. Catalytic Carbon-Carbon Bond Activation and Functionalization by Nickel Complexes

    E-Print Network [OSTI]

    Jones, William D.

    Catalytic Carbon-Carbon Bond Activation and Functionalization by Nickel Complexes Brian L. Edelbach, New York 14627 Received May 24, 1999 The nickel alkyne complexes (dippe)Ni(PhCtCPh), 1, (dippe reported using (C5Me5)Rh- (PMe3)H2 5e and several platinum, palladium, and nickel phosphine complexes.5i

  10. Catalytic Carbon-Carbon and Carbon-Silicon Bond Activation and Functionalization by Nickel Complexes

    E-Print Network [OSTI]

    Jones, William D.

    Catalytic Carbon-Carbon and Carbon-Silicon Bond Activation and Functionalization by Nickel of Rochester, Rochester, New York 14627 Received June 11, 1999 The nickel alkyne complexes (dippe)Ni(Me3Si, and nickel phosphine complexes.3 Milstein and co-workers reported the cata- lytic hydrogenolysis

  11. Long life catalytic membrane reactors for spontaneous conversion of natural gas to synthesis gas

    SciTech Connect (OSTI)

    Schwartz, M., White, J., Deych, S., Millard, J., Myers, M., Sammells, A.

    1997-10-01T23:59:59.000Z

    This program is focusing on the development of mixed ionic and electronic conducting materials based on the brown millerite structure for use in catalytic membrane reactors (CMRs). These CMRs are being evaluated for promoting the spontaneous and highly selective oxidative reforming of carbon dioxide / natural gas mixtures to synthesis gas.

  12. DOI: 10.1002/chem.200700579 Selective Catalytic Oxidation of Ethanol to Acetic Acid on Dispersed

    E-Print Network [OSTI]

    Iglesia, Enrique

    % ethanol conversion) were much higher than in previous re- ports. The presence of TiO2 during syn- thesisDOI: 10.1002/chem.200700579 Selective Catalytic Oxidation of Ethanol to Acetic Acid on Dispersed Mo, easily separated from organic reactants and products, and gas-phase process- es that avoid solid

  13. DOI: 10.1002/adma.200601618 Dual Nanoparticle/Substrate Control of Catalytic

    E-Print Network [OSTI]

    Pennycook, Steve

    to polymerize and are the primary feed- stock of the petrochemical industry, especially ethene (n = 2. It has been found that oxidative catalytic dehydrogenation, that is, a process assisted by both a solid studies seeking under- standing that may help optimization of the process.[3,4,6,7] It has been

  14. Production of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic

    E-Print Network [OSTI]

    California at Riverside, University of

    and techno-economic analysis of a catalytic process for the conversion of whole biomass into drop-in aviation processing of biomass Jesse Q. Bond,a Aniruddha A. Upadhye,b Hakan Olcay,c Geoffrey A. Tompsett,d Jungho Jae fuels with maximal carbon yields. The combined research areas highlighted include biomass pretreatment

  15. Synthesis, Structure, and Catalytic Properties of Bis[bis(sulfonamido)] Titanium Complexes

    E-Print Network [OSTI]

    Walsh, Patrick J.

    Synthesis, Structure, and Catalytic Properties of Bis[bis(sulfonamido)] Titanium Complexes Eva Royo, Pennsylvania 19104 Received May 29, 2000 Reaction of the titanium tetraamide Ti(NMe2)4 with 2 equiv of racemic diastereomers are very different, the metrical parameters are not. Each of the titanium centers

  16. In Situ Polarization Modulation Infrared Reflection Absorption Spectroscopic and Kinetic Investigations of Heterogeneous Catalytic Reactions

    E-Print Network [OSTI]

    Cai, Yun

    2010-01-14T23:59:59.000Z

    below the temperature previously reported. Characterizations of highly catalytically active Au films have also been carried out. Electronic and chemical properties of (1 x 1)- and (1 x 3)-Au/TiOx/Mo(112) films are investigated by PM-IRAS using CO as a...

  17. Comparison of the Catalytic Oxidation Reaction on Graphene Oxide and Reduced Graphene Oxide

    E-Print Network [OSTI]

    Kim, Sehun

    Comparison of the Catalytic Oxidation Reaction on Graphene Oxide and Reduced Graphene Oxide Laboratory (PAL), Pohang 790-784, Republic of Korea ABSTRACT: The capacities of graphene oxide (GO) and reduced graphene oxide (rGO) films grown on silicon substrate to cause the aniline to azobenzene oxidation

  18. Catalytic Oxidation of Alcohol via Nickel Phosphine Complexes with Pendant Amines

    SciTech Connect (OSTI)

    Weiss, Charles J.; Das, Partha Pratim; Higgins, Deanna LM; Helm, Monte L.; Appel, Aaron M.

    2014-09-05T23:59:59.000Z

    Nickel complexes were prepared with diphosphine ligands that contain pendant amines, and these complexes catalytically oxidize primary and secondary alcohols to their respective aldehydes and ketones. Kinetic and mechanistic studies of these prospective electrocatalysts were performed to understand what influences the catalytic activity. For the oxidation of diphenylmethanol, the catalytic rates were determined to be dependent on the concentration of both the catalyst and the alcohol. The catalytic rates were found to be independent of the concentration of base and oxidant. The incorporation of pendant amines to the phosphine ligand results in substantial increases in the rate of alcohol oxidation with more electron-donating substituents on the pendant amine exhibiting the fastest rates. We thank Dr. John C. Linehan, Dr. Elliott B. Hulley, Dr. Jonathan M. Darmon, and Dr. Elizabeth L. Tyson for helpful discussions. Research by CJW, PD, DLM, and AMA was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Research by MLH was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.

  19. Tandem Catalytic Conversion of Glucose to 5Hydroxymethylfurfural with an Immobilized Enzyme and a Solid Acid

    E-Print Network [OSTI]

    Zhao, Huimin

    , the direct conversion of glucose, a more abundant monosaccharide than fructose, to HMF in a one-pot fashionTandem Catalytic Conversion of Glucose to 5Hydroxymethylfurfural with an Immobilized Enzyme: Conversion of cellulosic biomass to renewable chemicals such as 5-hydroxyme- thylfurfural (HMF) is of high

  20. Characterization of catalytic lanthanum oxide for double bond isomerization of n-butenes

    E-Print Network [OSTI]

    Fox, Janan Sherlene

    1978-01-01T23:59:59.000Z

    are unfortunate in th1s series of oxides where reactivity patterns are expected to prevail. As part of a systematic study of the catalytic activity and sur- face properties of the lanthanide oxides, the behavior of La203 as a catalyst for double-bond migration...

  1. SWNT Synthesis by Carbon Monoxide Catalytic Thermal CVD (COCCVD) Method Toshiaki NISHII1,2

    E-Print Network [OSTI]

    Maruyama, Shigeo

    plants. Furthermore, carbon dioxide gas is exhausted from most industrial plants as one of Greenhouse. (2) R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, (1988 CVD SWNT Synthesis by Carbon Monoxide Catalytic Thermal CVD (COCCVD) Method * Toshiaki

  2. Catalytically Assisted Self-Propagating High-Temperature Synthesis of Tantalum Carbide Powders

    E-Print Network [OSTI]

    Wooldridge, Margaret S.

    Catalytically Assisted Self-Propagating High-Temperature Synthesis of Tantalum Carbide Powders Troy high-temperature combustion synthesis (SHS) of materials has gained recognition for its energy in the context of gas-phase and solid-phase transport models. I. Introduction IN RECENT years, self-propagating

  3. ==================== !"#$%&'()*+,-+./,0)12 Development of Micro Ejector for Butane Catalytic Combustor

    E-Print Network [OSTI]

    Kasagi, Nobuhide

    pumps ambient air to the combustion chamber by utilizing the vapor pressure of liquified fuel. Catalytic with the excessive heat of the exhaust gas. The advantage of using ejector is that air-entrainment is achieved without an additional air container or a micro pump, and thus the system should be simple, safe

  4. Prediction of catalytic residues in proteins using machine-learning techniques

    E-Print Network [OSTI]

    Prediction of catalytic residues in proteins using machine-learning techniques Natalia V. Petrova) and prediction of protein function using various properties of proteins and amino acids (2). Prediction of the functional residues is a challenging and interesting task. The results of such prediction could

  5. in: Nanotechnology 7(1), pp. 307314, 1996 Emergent Computation by Catalytic Reactions

    E-Print Network [OSTI]

    Dittrich, Peter

    in: Nanotechnology 7(1), pp. 307­314, 1996 Emergent Computation by Catalytic Reactions Wolfgang the idea behind the chemical computational metaphor and outline its relevance for nanotechnology. We set up within this context. The implications of this approach for nanotechnology, parallel computers based on mo

  6. Short residence time coal liquefaction process including catalytic hydrogenation

    DOE Patents [OSTI]

    Anderson, Raymond P. (Overland Park, KS); Schmalzer, David K. (Englewood, CO); Wright, Charles H. (Overland Park, KS)

    1982-05-18T23:59:59.000Z

    Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone (26, alone, or 26 together with 42), the hydrogen pressure in the preheating-reaction zone being at least 1500 psig (105 kg/cm.sup.2), reacting the slurry in the preheating-reaction zone (26, or 26 with 42) at a temperature in the range of between about 455.degree. and about 500.degree. C. to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid (40, 68) to substantially immediately reduce the temperature of the reaction effluent to below 425.degree. C. to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C.sub.5 -454.degree. C. is an amount at least equal to that obtainable by performing the process under the same condition except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent (83) and recycled as process solvent (16). The amount of solvent boiling range liquid is sufficient to provide at least 80 weight percent of that required to maintain the process in overall solvent balance.

  7. Short residence time coal liquefaction process including catalytic hydrogenation

    DOE Patents [OSTI]

    Anderson, R.P.; Schmalzer, D.K.; Wright, C.H.

    1982-05-18T23:59:59.000Z

    Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone, the hydrogen pressure in the preheating-reaction zone being at least 1,500 psig (105 kg/cm[sup 2]), reacting the slurry in the preheating-reaction zone at a temperature in the range of between about 455 and about 500 C to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid to substantially immediately reduce the temperature of the reaction effluent to below 425 C to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C[sub 5]-454 C is an amount at least equal to that obtainable by performing the process under the same condition except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent and recycled as process solvent. The amount of solvent boiling range liquid is sufficient to provide at least 80 weight percent of that required to maintain the process in overall solvent balance. 6 figs.

  8. Immersible solar heater for fluids

    DOE Patents [OSTI]

    Kronberg, James W. (Aiken, SC)

    1995-01-01T23:59:59.000Z

    An immersible solar heater comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

  9. Fluid cooled vehicle drive module

    DOE Patents [OSTI]

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.

    2005-11-15T23:59:59.000Z

    An electric vehicle drive includes a support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EM/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  10. Fluid Imaging | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs Valley Area (DOEARRA Funded Projects for Fluid

  11. System and method for filling a plurality of isolated vehicle fluid circuits through a common fluid fill port

    SciTech Connect (OSTI)

    Sullivan, Scott C; Fansler, Douglas

    2014-10-14T23:59:59.000Z

    A vehicle having multiple isolated fluid circuits configured to be filled through a common fill port includes a first fluid circuit disposed within the vehicle, the first fluid circuit having a first fill port, a second fluid circuit disposed within the vehicle, and a conduit defining a fluid passageway between the first fluid circuit and second fluid circuit, the conduit including a valve. The valve is configured such that the first and second fluid circuits are fluidly coupled via the passageway when the valve is open, and are fluidly isolated when the valve is closed.

  12. Supercritical fluid thermodynamics for coal processing

    SciTech Connect (OSTI)

    van Swol, F. (Illinois Univ., Urbana, IL (United States). Dept. of Chemical Engineering); Eckert, C.A. (Georgia Inst. of Tech., Atlanta, GA (United States). School of Chemical Engineering)

    1988-09-15T23:59:59.000Z

    The main objective of this research is to develop an equation of state that can be used to predict solubilities and tailor supercritical fluid solvents for the extraction and processing of coal. To meet this objective we have implemented a two-sided. approach. First, we expanded the database of model coal compound solubilities in higher temperature fluids, polar fluids, and fluid mixtures systems. Second, the unique solute/solute, solute/cosolvent and solute/solvent intermolecular interactions in supercritical fluid solutions were investigated using spectroscopic techniques. These results increased our understanding of the molecular phenomena that affect solubility in supercritical fluids and were significant in the development of an equation of state that accurately reflects the true molecular makeup of the solution. (VC)

  13. On the equivalence of nonadiabatic fluids

    E-Print Network [OSTI]

    W. Barreto

    2010-11-17T23:59:59.000Z

    Here we show how an anisotropic fluid in the diffusion limit can be equivalent to an isotropic fluid in the streaming out limit, in spherical symmetry. For a particular equation of state this equivalence is total, from one fluid we can obtain the other and vice versa. A numerical master model is presented, based on a generic equation of state, in which only quantitative differences are displayed between both nonadiabatic fluids. From a deeper view, other difference between fluids is shown as an asymmetry that can be overcome if we consider the appropriate initial-boundary conditions. Equivalence in this context can be considered as a first order method of approximation to study dissipative fluids.

  14. Split driveshaft pump for hazardous fluids

    DOE Patents [OSTI]

    Evans, II, Thomas P. (Aiken, SC); Purohit, Jwalit J. (Evans, GA); Fazio, John M. (Orchard Park, NY)

    1995-01-01T23:59:59.000Z

    A pump having a split driveshaft for use in pumping hazardous fluids wherein only one driveshaft becomes contaminated by the fluid while the second remains isolated from the fluid. The pump has a first portion and a second portion. The first portion contains a pump motor, the first driveshaft, a support pedestal, and vapor barriers and seals. The second portion contains a second, self-lubricating driveshaft and an impeller. The first and second driveshafts are connected together by a releasable coupling. A shield and a slinger deployed below the coupling prevent fluid from the second portion from reaching the first portion. In operation, only the second assembly comes into contact with the fluid being pumped, so the risk of contamination of the first portion by the hazardous fluid is reduced. The first assembly can be removed for repairs or routine maintenance by decoupling the first and second driveshafts and disconnecting the motor from the casing.

  15. Drill-in fluids control formation damage

    SciTech Connect (OSTI)

    Halliday, W.S. (Baker Hughes Inteq, Houston, TX (United States))

    1994-12-01T23:59:59.000Z

    Several factors led to development, oil company interest in, and use of payzone drilling fluids, including operator concern about maximizing well production, increasing acceptance of horizontal drilling and openhole completion popularity. This article discusses water-base drill-in'' fluid systems and applications. Payzone damage, including fine solids migration, clay swelling and solids invasion, reduces effective formation permeability, which results in lower production rates. Formation damage is often caused by invasion of normal drilling fluids that contain barite or bentonite. Drill-in systems are designed with special bridging agents to minimize invasion. Several bridging materials designed to form effective filter cake for instantaneous leak-off control can be used. Bridging materials are also designed to minimize stages and time required to clean up wells before production. Fluids with easy-to-remove bridging agents reduce completion costs. Drill-in fluid bridging particles can often be removed more thoroughly than those in standard fluids.

  16. Hydrostatic bearings for a turbine fluid flow metering device

    DOE Patents [OSTI]

    Fincke, J.R.

    1980-05-02T23:59:59.000Z

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

  17. Pillared clays as superior catalysts for selective catalytic reduction of nitric oxide. Second semiannual report, 1996

    SciTech Connect (OSTI)

    Yang, R.T.; Li, W.B.; Sirilumpen, M.; Tharapiwattananon, N.

    1997-08-01T23:59:59.000Z

    During the first six months of the program, the work has progressed as planned. We have constructed a reactor system and assembled all laboratory essentials for conducting the three-year project. First, the catalytic activities of the Cu(2+) ion exchanged alumina-pillared clay for the selective catalytic reduction of NO by ethylene were measured. The temperature range was 250-500{degrees}C. The activities of this catalyst were substantially higher than the catalyst that has been extensively studied in the literature, Cu-ZSM-5. Fourier Transform Infrared Spectroscopy (FTIR) was used to study the acidity of the catalyst. The second part of the work was an in-depth FTIR study of the NO decomposition mechanism on the catalyst. This was planned as the first and the key step to obtain an understanding of the reaction mechanism. Key surface intermediates were identified from the FTIR spectra, and a redox type Eley-Rideal mechanism was proposed for the NO decomposition on this catalyst. This report will be divided into two parts. In Part One, we report results on the catalytic activities of the Cu-alumina-pillared clay and a direct comparison with other known catalysts. In Part two, we focus on the FTIR study and from the results, we propose a NO decomposition mechanism on this new catalyst. Plans for the next six months include tests of different pillared clays as well as the catalytic mechanism. The micro reactor will continue to be the key equipment for measuring the catalytic activities. FTIR will continue to be the major technique for identifying surface species and hence understanding the reaction mechanism.

  18. Fluid control structures in microfluidic devices

    DOE Patents [OSTI]

    Mathies, Richard A. (Moraga, CA); Grover, William H. (Berkeley, CA); Skelley, Alison (Berkeley, CA); Lagally, Eric (Oakland, CA); Liu, Chung N. (Albany, CA)

    2008-11-04T23:59:59.000Z

    Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.

  19. Metaphoric optical computing of fluid dynamics

    E-Print Network [OSTI]

    Tsang, M; Tsang, Mankei; Psaltis, Demetri

    2006-01-01T23:59:59.000Z

    We present theoretical and numerical evidence to show that self-defocusing nonlinear optical propagation can be used to compute Euler fluid dynamics and possibly Navier-Stokes fluid dynamics. In particular, the formation of twin vortices and the K\\'arm\\'an vortex street behind an obstacle, two well-known viscous fluid phenomena, is numerically demonstrated using the nonlinear Schr\\"odinger equation.

  20. Critical phenomena in perfect fluids

    E-Print Network [OSTI]

    David W. Neilsen; Matthew W. Choptuik

    1999-04-18T23:59:59.000Z

    We investigate the gravitational collapse of a spherically symmetric, perfect fluid with equation of state P = (Gamma -1)rho. We restrict attention to the ultrarelativistic (``kinetic-energy-dominated'', ``scale-free'') limit where black hole formation is anticipated to turn on at infinitesimal black hole mass (Type II behavior). Critical solutions (those which sit at the threshold of black hole formation in parametrized families of collapse) are found by solving the system of ODEs which result from a self-similar ansatz, and by solving the full Einstein/fluid PDEs in spherical symmetry. These latter PDE solutions (``simulations'') extend the pioneering work of Evans and Coleman (Gamma = 4/3) and verify that the continuously self-similar solutions previously found by Maison and Hara et al for $1.05 Gamma_dn are nodal points rather than focal points as previously reported. We also find a critical solution for Gamma = 2, and present evidence that it is continuously self-similar and Type II. Mass-scaling exponents for all of the critical solutions are calculated by evolving near-critical initial data, with results which confirm and extend previous calculations based on linear perturbation theory. Finally, we comment on critical solutions generated with an ideal-gas equation of state.

  1. Process for retarding fluid flow

    SciTech Connect (OSTI)

    Sandford, B.B.; Zillmer, R.C.

    1989-01-10T23:59:59.000Z

    A process is described for retarding the flow of fluid in a subterranean formation, comprising: (a) introducing an effective amount of a gel-forming composition into a subterranean formation, the gel-forming composition being operable when gelled in the formation for retarding the flow of fluid therein. The gel-forming composition consists of: i. a first substance dissolved in water to form an aqueous solution, the first substance being selected from the group consisting of polyvivyl alcohols, and mixtures thereof, wherein the gel-forming composition contains an amount of the first substance of from about 0.5 to about 5 weight percent of the gel-forming composition, and ii. an effective amount of glutaraldehyde which is operable for forming a weakly acidic condition having a pH from about 5.5 to less than 7 in the gel-forming composition and also operable for promoting crosslinking of the first substance and glutaraldehyde and for forming a gel from the gel-forming composition under the weakly acidic condition within a period of time no greater than about 5 days without adding an acidic catalyst to the gel-forming composition to lower the pH of the gel-forming composition below about 5.5.

  2. SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW

    E-Print Network [OSTI]

    santos

    SEISMIC MONITORING OF. CARBON DIOXIDE FLUID FLOW. J. E. Santos. 1. , G. B. Savioli. 2. , J. M. Carcione. 3. , D. Gei. 3. 1. CONICET, IGPUBA, Fac.

  3. Solution generating theorems for perfect fluid spheres

    E-Print Network [OSTI]

    Petarpa Boonserm; Matt Visser; Silke Weinfurtner

    2006-09-20T23:59:59.000Z

    The first static spherically symmetric perfect fluid solution with constant density was found by Schwarzschild in 1918. Generically, perfect fluid spheres are interesting because they are first approximations to any attempt at building a realistic model for a general relativistic star. Over the past 90 years a confusing tangle of specific perfect fluid spheres has been discovered, with most of these examples seemingly independent from each other. To bring some order to this collection, we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres. In addition, we develop new ``solution generating'' theorems for the TOV, whereby any given solution can be ``deformed'' to a new solution. Because these TOV-based theorems work directly in terms of the pressure profile and density profile it is relatively easy to impose regularity conditions at the centre of the fluid sphere.

  4. Coupled atomistic-continuum methods for fluids

    E-Print Network [OSTI]

    I will discuss the coupling scheme, its application to polymer fluids, and the major difficulties in implementations. In the second part of the talk, I will discuss the ...

  5. DISPLAYING AND INTERPRETING FLUID INCLUSION STRATIGRAPHY ANALYSES...

    Open Energy Info (EERE)

    ANALYSES ON MUDLOG GRAPHS Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: DISPLAYING AND INTERPRETING FLUID INCLUSION STRATIGRAPHY...

  6. Methodologies for Reservoir Characterization Using Fluid Inclusion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Surveys Chemical Signatures of and Precursors to Fractures Using Fluid Inclusion Stratigraphy Creation of an Engineered Geothermal System through Hydraulic and Thermal Stimulation...

  7. Gas powered fluid gun with recoil mitigation

    DOE Patents [OSTI]

    Grubelich, Mark C; Yonas, Gerold

    2013-11-12T23:59:59.000Z

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  8. Fourier's Law for a Granular Fluid

    E-Print Network [OSTI]

    James W. Dufty

    2007-07-07T23:59:59.000Z

    Newton' viscosity law for the momentum flux and Fourier's law for the heat flux define Navier-Stokes hydrodynamics for a simple, one component fluid. There is ample evidence that a hydrodynamic description applies as well to a mesoscopic granular fluid with the same form for Newton's viscosity law. However, theory predicts a qualitative difference for Fourier's law with an additional contribution from density gradients even at uniform temperature. The reasons for the absence of such terms for normal fluids are indicated, and a related microscopic explanation for their existence in granular fluids is presented.

  9. Spinning Fluids: A Group Theoretical Approach

    E-Print Network [OSTI]

    Dario Capasso; Debajyoti Sarkar

    2014-04-07T23:59:59.000Z

    We extend the Lagrangian formulation of relativistic non-abelian fluids in group theory language. We propose a Mathisson-Papapetrou equation for spinning fluids in terms of the reduction limit of de Sitter group. The equation we find correctly boils down to the one for non-spinning fluids. We study the application of our results for an FRW cosmological background for fluids with no vorticity and for dusts in the vicinity of a Kerr black hole. We also explore two alternative approaches based on a group theoretical formulation of particles dynamics.

  10. Under consideration for publication in J. Fluid Mech. 1 Hydroelastic waves on fluid sheets

    E-Print Network [OSTI]

    Parau, Emilian I.

    ). In particular our work may find application in flat plate-type fuel assemblies found in nuclear reactor coolingUnder consideration for publication in J. Fluid Mech. 1 Hydroelastic waves on fluid sheets M. G. B 6BT, UK (Received 26 March 2012) Nonlinear travelling waves on a two-dimensional inviscid fluid

  11. Laser microfluidics : fluid actuation by light Laser microfluidics: fluid actuation by light

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Laser microfluidics : fluid actuation by light Laser microfluidics: fluid actuation by light Jean.delville@cpmoh.u-bordeaux1.fr Abstract: The development of microfluidic devices is still hindered by the lack of robust to extend this concept to microfluidic two-phase flows. First, we investigate the destabilization of fluid

  12. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    SciTech Connect (OSTI)

    Somorjai, G.A.

    2009-09-14T23:59:59.000Z

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In addition, Pt-mesoporous silica core-shell structured NPs (Pt{at}mSiO{sub 2}) were prepared, where the individual Pt NP is encapsulated by the mesoporous silica layer. The Pt{at}mSiO{sub 2} catalysts showed promising catalytic activity in high temperature CO oxidation. The design of catalytic structures with tunable parameters by rational synthetic methods presents a major advance in the field of catalyst synthesis, which would lead to uncover the structure-function relationships in heterogeneous catalytic reactions.

  13. Immersible solar heater for fluids

    DOE Patents [OSTI]

    Kronberg, J.W.

    1995-07-11T23:59:59.000Z

    An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater. 11 figs.

  14. Immersible solar heater for fluids

    DOE Patents [OSTI]

    Hazen, T.C.; Fliermans, C.B.

    1994-01-01T23:59:59.000Z

    An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

  15. Foam vessel for cryogenic fluid storage

    DOE Patents [OSTI]

    Spear, Jonathan D (San Francisco, CA)

    2011-07-05T23:59:59.000Z

    Cryogenic storage and separator vessels made of polyolefin foams are disclosed, as are methods of storing and separating cryogenic fluids and fluid mixtures using these vessels. In one embodiment, the polyolefin foams may be cross-linked, closed-cell polyethylene foams with a density of from about 2 pounds per cubic foot to a density of about 4 pounds per cubic foot.

  16. Geothermal Reservoir Evaluation Considering Fluid Adsorption

    E-Print Network [OSTI]

    Stanford University

    SGP-"R- 68 Geothermal Reservoir Evaluation Considering Fluid Adsorption and Composition Michael J, California #12;GEOTHERMAL RESERVOIR EVALUATION CONSIDERING FLUID ADSORPTION AND COMPOSITION A DISSERTATIONFtion phenomena is described. Then, t h e implications of adsorption on material balance calculations and on vel1

  17. Mechanical Engineering ME 3720 FLUID MECHANICS

    E-Print Network [OSTI]

    Panchagnula, Mahesh

    . Fundamentals of fluid flow; fluid statics; systems, and control volumes; continuity, momentum and energy physical model results to prototype 10. Use Moody chart to calculate friction losses in pipe flows 11 equations; dynamic similitude; One-dimensional compressible flow. The objective(s) of this course is (are

  18. Fluid permeability measurement system and method

    DOE Patents [OSTI]

    Hallman, Jr., Russell Louis (Knoxville, TN); Renner, Michael John (Oak Ridge, TN)

    2008-02-05T23:59:59.000Z

    A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

  19. Theory of locomotion through complex fluids

    E-Print Network [OSTI]

    Gwynn Elfring; Eric Lauga

    2014-10-16T23:59:59.000Z

    Microorganisms such as bacteria often swim in fluid environments that cannot be classified as Newtonian. Many biological fluids contain polymers or other heterogeneities which may yield complex rheology. For a given set of boundary conditions on a moving organism, flows can be substantially different in complex fluids, while non-Newtonian stresses can alter the gait of the microorganisms themselves. Heterogeneities in the fluid may also be characterized by length scales on the order of the organism itself leading to additional dynamic complexity. In this chapter we present a theoretical overview of small-scale locomotion in complex fluids with a focus on recent efforts quantifying the impact of non-Newtonian rheology on swimming microorganisms.

  20. Pumping viscoelastic two-fluid media

    E-Print Network [OSTI]

    Hirofumi Wada

    2010-04-08T23:59:59.000Z

    Using a two-fluid model for viscoelastic polymer solutions, we study analytically fluid transport driven by a transverse, small amplitude traveling wave propagation. The pumping flow far from the waving boundary is shown to be strongly wave number and viscosity dependent, in contrast to a viscous Newtonian fluid. We find the two qualitatively different regimes: In one regime relevant to small wave numbers, the fluidic transport is almost the same as the Newtonian case, and uniform viscoelastic constitutive equations provide a good approximation. In the other regime, the pumping is substantially decreased because of the gel-like character. The boundary separating these two regimes is clarified. Our results suggest possible needs of two-fluid descriptions for the transport and locomotion in biological fluids with cilia and flagella.

  1. Euler's fluid equations: Optimal Control vs Optimization

    E-Print Network [OSTI]

    Darryl D. Holm

    2009-09-28T23:59:59.000Z

    An optimization method used in image-processing (metamorphosis) is found to imply Euler's equations for incompressible flow of an inviscid fluid, without requiring that the Lagrangian particle labels exactly follow the flow lines of the Eulerian velocity vector field. Thus, an optimal control problem and an optimization problem for incompressible ideal fluid flow both yield the \\emph {same} Euler fluid equations, although their Lagrangian parcel dynamics are \\emph{different}. This is a result of the \\emph{gauge freedom} in the definition of the fluid pressure for an incompressible flow, in combination with the symmetry of fluid dynamics under relabeling of their Lagrangian coordinates. Similar ideas are also illustrated for SO(N) rigid body motion.

  2. The incorporation of bubbles into a computer graphics fluid simulation

    E-Print Network [OSTI]

    Greenwood, Shannon Thomas

    2005-08-29T23:59:59.000Z

    We present methods for incorporating bubbles into a photorealistc fluid simulation. Previous methods of fluid simulation in computer graphics do not include bubbles. Our system automatically creates bubbles, which are simulated on top of the fluid...

  3. Thermal Storage and Advanced Heat Transfer Fluids (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01T23:59:59.000Z

    Fact sheet describing NREL CSP Program capabilities in the area of thermal storage and advanced heat transfer fluids: measuring thermophysical properties, measuring fluid flow and heat transfer, and simulating flow of thermal energy and fluid.

  4. Experimental and numerical study of the behavior of three-way catalytic converters under different engine operation conditions

    E-Print Network [OSTI]

    Zhang, Yuetao

    2005-01-01T23:59:59.000Z

    The thesis reports the studies on how the three-way catalytic converters behave under different operation conditions. The main focus of the work is in the oxygen storage capacity of the three-way catalyst. Rich-to-lean ...

  5. Synthesis of Z-(Pinacolato)allylboron and Z-(Pinacolato)alkenylboron Compounds through Stereoselective Catalytic Cross-Metathesis

    E-Print Network [OSTI]

    Kiesewetter, Elizabeth T.

    The first examples of catalytic cross-metathesis (CM) reactions that furnish Z-(pinacolato)allylboron and Z-(pinacolato)alkenylboron compounds are disclosed. Products are generated with high Z selectivity by the use of a ...

  6. Synthesis and Characterization of Transition Metal Complexes Useful for the Catalytic Deconstruction of Lignin

    SciTech Connect (OSTI)

    Chmely, S. C.; Kim, S.; Beckham, G. T.

    2012-01-01T23:59:59.000Z

    Lignin is an earth-abundant biopolymer that is grossly underutilized as a source of fuels and value-added chemicals. However, lignin is an intractable heteropolymer, which makes it difficult to deconstruct and upgrade in many chemically selective biomass conversion routes. The development of new catalytic routes to depolymerize this recalcitrant biopolymer is required to more effectively utilize lignin. To that end, our group aims to synthesize and characterize a collection of inorganic and organometallic catalysts to promote atom-economical catalytic lignin depolymerization. These catalysts have been screened against a continuum of model compounds and biomass-derived lignin for their usefulness in the deconstruction of these substrates. In addition, we have coupled our experimental efforts with quantum mechanical calculations to elucidate the mechanisms of catalysts to identify the mechanisms of lignin depolymerization. Detailed synthetic procedures, as well as spectroscopic and crystallographic characterization and DFT calculations will be presented.

  7. Electro-catalytic oxidation device for removing carbon from a fuel reformate

    DOE Patents [OSTI]

    Liu, Di-Jia (Naperville, IL)

    2010-02-23T23:59:59.000Z

    An electro-catalytic oxidation device (ECOD) for the removal of contaminates, preferably carbonaceous materials, from an influent comprising an ECOD anode, an ECOD cathode, and an ECOD electrolyte. The ECOD anode is at a temperature whereby the contaminate collects on the surface of the ECOD anode as a buildup. The ECOD anode is electrically connected to the ECOD cathode, which consumes the buildup producing electricity and carbon dioxide. The ECOD anode is porous and chemically active to the electro-catalytic oxidation of the contaminate. The ECOD cathode is exposed to oxygen, and made of a material which promotes the electro-chemical reduction of oxygen to oxidized ions. The ECOD electrolyte is non-permeable to gas, electrically insulating and a conductor to oxidized. The ECOD anode is connected to the fuel reformer and the fuel cell. The ECOD electrolyte is between and in ionic contact with the ECOD anode and the ECOD cathode.

  8. Low density microcellular carbon or catalytically impregnated carbon foams and process for their preparation

    DOE Patents [OSTI]

    Hooper, R.W.; Pekala, R.W.

    1987-04-30T23:59:59.000Z

    Machinable and structurally stable, low density microcellular carbon, and catalytically impregnated carbon, foams, and process for their preparation, are provided. Pulverized sodium chloride is classified to improve particle size uniformity, and the classified particles may be further mixed with a catalyst material. The particles are cold pressed into a compact having internal pores, and then sintered. The sintered compact is immersed and then submerged in a phenolic polymer solution to uniformly fill the pores of the compact with phenolic polymer. The compact is then heated to pyrolyze the phenolic polymer into carbon in the form of a foam. Then the sodium chloride of the compact is leached away with water, and the remaining product is freeze dried to provide the carbon, or catalytically impregnated carbon, foam.

  9. ALD Functionalized Nanoporous Gold: Thermal Stability, Mechanical Properties, and Catalytic Activity

    SciTech Connect (OSTI)

    Biener, M M; Biener, J; Wichmann, A; Wittstock, A; Baumann, T F; Baeumer, M; Hamza, A V

    2011-03-24T23:59:59.000Z

    Nanoporous metals have many technologically promising applications but their tendency to coarsen limits their long-term stability and excludes high temperature applications. Here, we demonstrate that atomic layer deposition (ALD) can be used to stabilize and functionalize nanoporous metals. Specifically, we studied the effect of nanometer-thick alumina and titania ALD films on thermal stability, mechanical properties, and catalytic activity of nanoporous gold (np-Au). Our results demonstrate that even only one-nm-thick oxide films can stabilize the nanoscale morphology of np-Au up to 1000 C, while simultaneously making the material stronger and stiffer. The catalytic activity of np-Au can be drastically increased by TiO{sub 2} ALD coatings. Our results open the door to high temperature sensor, actuator, and catalysis applications and functionalized electrodes for energy storage and harvesting applications.

  10. Catalytic two-stage coal liquefaction process having improved nitrogen removal

    DOE Patents [OSTI]

    Comolli, Alfred G. (Yardley, PA)

    1991-01-01T23:59:59.000Z

    A process for catalytic multi-stage hydrogenation and liquefaction of coal to produce high yields of low-boiling hydrocarbon liquids containing low concentrations of nitogen compounds. First stage catalytic reaction conditions are 700.degree.-800.degree. F. temperature, 1500-3500 psig hydrogen partial pressure, with the space velocity maintained in a critical range of 10-40 lb coal/hr ft.sup.3 catalyst settled volume. The first stage catalyst has 0.3-1.2 cc/gm total pore volume with at least 25% of the pore volume in pores having diameters of 200-2000 Angstroms. Second stage reaction conditions are 760.degree.-870.degree. F. temperature with space velocity exceeding that in the first stage reactor, so as to achieve increased hydrogenation yield of low-boiling hydrocarbon liquid products having at least 75% removal of nitrogen compounds from the coal-derived liquid products.

  11. Turing structures in catalytic surface reactions; The facetting of Pt(110) in Co + O sub 2

    SciTech Connect (OSTI)

    Imbihl, R. (Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin (Germany))

    1992-04-20T23:59:59.000Z

    This paper reports that exposing a Pt(110) surface to catalytic CO oxidation causes the development of a regular facet pattern of microscopic dimensions which has been identified as a dissipative structure of the Turing type. The primary step in the facetting process is considered to be the 1 {times} 1 {r reversible} 1 {times} 2 phase transition which is also responsible for the occurrence of kinetic oscillations in the same system. This interpretation was confirmed in a Monte Carlo simulation which was based on the Langmuir-Hinshelwood mechanism of catalytic CO oxidation and the properties of the surface phase transition. Thus a detailed microscopic description is available for the process by which a Turing structure is formed during a surface reaction.

  12. Incorporation of catalytic dehydrogenation into fischer-tropsch synthesis to significantly reduce carbon dioxide emissions

    DOE Patents [OSTI]

    Huffman, Gerald P.

    2012-11-13T23:59:59.000Z

    A new method of producing liquid transportation fuels from coal and other hydrocarbons that significantly reduces carbon dioxide emissions by combining Fischer-Tropsch synthesis with catalytic dehydrogenation is claimed. Catalytic dehydrogenation (CDH) of the gaseous products (C1-C4) of Fischer-Tropsch synthesis (FTS) can produce large quantities of hydrogen while converting the carbon to multi-walled carbon nanotubes (MWCNT). Incorporation of CDH into a FTS-CDH plant converting coal to liquid fuels can eliminate all or most of the CO.sub.2 emissions from the water-gas shift (WGS) reaction that is currently used to elevate the H.sub.2 level of coal-derived syngas for FTS. Additionally, the FTS-CDH process saves large amounts of water used by the WGS reaction and produces a valuable by-product, MWCNT.

  13. Catalytic and reactive polypeptides and methods for their preparation and use

    DOE Patents [OSTI]

    Schultz, Peter (Oakland, CA)

    1994-01-01T23:59:59.000Z

    Catalytic and reactive polypeptides include a binding site specific for a reactant or reactive intermediate involved in a chemical reaction of interest. The polypeptides further include at least one active functionality proximate the binding site, where the active functionality is capable of catalyzing or chemically participating in the chemical reaction in such a way that the reaction rate is enhanced. Methods for preparing the catalytic peptides include chemical synthesis, site-directed mutagenesis of antibody and enzyme genes, covalent attachment of the functionalities through particular amino acid side chains, and the like. This invention was made with Government support under Grant Contract No. AI-24695, awarded by the Department of health and Human Services, and under Grant Contract No. N 00014-87-K-0256, awarded by the Office of Naval Research. The Government has certain rights in this invention.

  14. Catalytic igniters and their use to ignite lean hydrogen-air mixtures

    DOE Patents [OSTI]

    McLean, William J. (Oakland, CA); Thorne, Lawrence R. (Livermore, CA); Volponi, Joanne V. (Livermore, CA)

    1988-01-01T23:59:59.000Z

    A catalytic igniter which can ignite a hydrogen-air mixture as lean as 5.5% hydrogen with induction times ranging from 20 s to 400 s, under conditions which may be present during a loss-of-liquid-coolant accident at a light water nuclear reactor comprises (a) a perforate catalytically active substrate, such as a platinum coated ceramic honeycomb or wire mesh screen, through which heated gases produced by oxidation of the mixture can freely flow and (b) a plurality of thin platinum wires mounted in a thermally conductive manner on the substrate and positioned thereon so as to be able to receive heat from the substrate and the heated gases while also in contact with unoxidized gases.

  15. The catalytic reduction of nitric oxide with ammonia over tetraamminecopper (II) complexes

    E-Print Network [OSTI]

    Oates, Margaret Deron

    1979-01-01T23:59:59.000Z

    . Jack H. Lunsford The catalytic activity of tetraamminecopper(II) complexes in aque- ous solution in the reduction of nitric oxide with ammonia nas been in- vestigated. Kinetic data for the nitric oxide reduction reaction were determined in a closed... circulating system. Electron paramagnetic reso- spectroscopy was used to determine the zelative quantity of copper in the +2 oxidation state at different temperatures. A reaction mechanism is proposed from these experimental investigations in order...

  16. Catalytic study of SOFC electrode materials in engine exhaust gas Pauline Briaulta

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -known materials in literature and leading to highest performances such as La0.6Sr0.4Co0.2Fe0.8O3- (LSCF), Sm0.5Sr0 stability at high temperature (600°C): R=0.21 and R=0.44. LSCF and PNO were considered as the most stable cathode materials, besides LSCF demonstrated a lower catalytic activity towards hydrocarbon partial

  17. Reduction of nitrogen oxides with catalytic acid resistant aluminosilicate molecular sieves and ammonia

    DOE Patents [OSTI]

    Pence, Dallas T. (Idaho Falls, ID); Thomas, Thomas R. (Idaho Falls, ID)

    1980-01-01T23:59:59.000Z

    Noxious nitrogen oxides in a waste gas stream such as the stack gas from a fossil-fuel-fired power generation plant or other industrial plant off-gas stream is catalytically reduced to elemental nitrogen and/or innocuous nitrogen oxides employing ammonia as reductant in the presence of a zeolite catalyst in the hydrogen or sodium form having pore openings of about 3 to 10 A.

  18. Nanorods, nanospheres, nanocubes: Synthesis, characterization and catalytic activity of nanoferrites of Mn, Co, Ni, Part-89

    SciTech Connect (OSTI)

    Singh, Supriya; Srivastava, Pratibha [Department of Chemistry, D.D.U. Gorakhpur University, Gorakhpur 273009 (India)] [Department of Chemistry, D.D.U. Gorakhpur University, Gorakhpur 273009 (India); Singh, Gurdip, E-mail: gsingh4us@yahoo.com [Department of Chemistry, D.D.U. Gorakhpur University, Gorakhpur 273009 (India)] [Department of Chemistry, D.D.U. Gorakhpur University, Gorakhpur 273009 (India)

    2013-02-15T23:59:59.000Z

    Graphical abstract: Prepared nanoferrites were characterized by FE-SEM and bright field TEM micrographs. The catalytic effect of these nanoferrites was evaluated on the thermal decomposition of ammonium perchlorate using TG and TG–DSC techniques. The kinetics of thermal decomposition of AP was evaluated using isothermal TG data by model fitting as well as isoconversional method. Display Omitted Highlights: ? Synthesis of ferrite nanostructures (?20.0 nm) by wet-chemical method under different synthetic conditions. ? Characterization using XRD, FE-SEM, EDS, TEM, HRTEM and SAED pattern. ? Catalytic activity of ferrite nanostructures on AP thermal decomposition by thermal techniques. ? Burning rate measurements of CSPs with ferrite nanostructures. ? Kinetics of thermal decomposition of AP + nanoferrites. -- Abstract: In this paper, the nanoferrites of Mn, Co and Ni were synthesized by wet chemical method and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive, X-ray spectra (EDS), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HR-TEM). It is catalytic activity were investigated on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellants (CSPs) using thermogravimetry (TG), TG coupled with differential scanning calorimetry (TG–DSC) and ignition delay measurements. Kinetics of thermal decomposition of AP + nanoferrites have also been investigated using isoconversional and model fitting approaches which have been applied to data for isothermal TG decomposition. The burning rate of CSPs was considerably enhanced by these nanoferrites. Addition of nanoferrites to AP led to shifting of the high temperature decomposition peak toward lower temperature. All these studies reveal that ferrite nanorods show the best catalytic activity superior to that of nanospheres and nanocubes.

  19. Ruthenium on rutile catalyst, catalytic system, and method for aqueous phase hydrogenations

    DOE Patents [OSTI]

    Elliot, Douglas C. (Richland, WA); Werpy, Todd A. (West Richland, WA); Wang, Yong (Richland, WA); Frye, Jr., John G. (Richland, WA)

    2001-01-01T23:59:59.000Z

    An essentially nickel- and rhenium-free catalyst is described comprising ruthenium on a titania support where the titania is greater than 75% rutile. A catalytic system containing a nickel-free catalyst comprising ruthenium on a titania support where the titania is greater than 75% rutile, and a method using this catalyst in the hydrogenation of an organic compound in the aqueous phase is also described.

  20. The selective catalytic reduction of nitric oxide with ammonia in the presence of oxygen

    E-Print Network [OSTI]

    Gruber, Karen Ann

    1989-01-01T23:59:59.000Z

    materials. Aluminum pillared titanium phosphate and hydrous sodium titanium oxide were the support structures of interest. The efFect of phosphate, aluminum and sodium on catalytic activity was studied. The reaction conditions were a feed composition... titanium oxide support was found to be the most effective catalyst of this study which led to the conclusion that phosphate, aluminum and sodium decrease the activity of vanadia catalysts for the SCR of NO with NHs in the presence of oxygen. ACKi...

  1. Effect of thermal treatment on coke reactivity and catalytic iron mineralogy

    SciTech Connect (OSTI)

    Byong-chul Kim; Sushil Gupta; David French; Richard Sakurovs; Veena Sahajwalla [University of New South Wales, Sydney, NSW (Australia). Centre for Sustainable Materials Research and Technology

    2009-07-15T23:59:59.000Z

    Iron minerals in coke can catalyze its gasification and may affect coke behavior in the blast furnace. The catalytic behavior of iron depends largely upon the nature of the iron-bearing minerals. To determine the mineralogical changes that iron could undergo in the blast furnace, cokes made from three coals containing iron present in different mineral forms (clays, carbonates, and pyrite) were examined. All coke samples were heat-treated in a horizontal furnace at 1373, 1573, and 1773 K and then gasified with CO{sub 2} at 1173 K in a fixed bed reactor (FBR). Coke mineralogy was characterized using quantitative X-ray diffraction (XRD) analysis of coke mineral matter prepared by low-temperature ashing (LTA) and field emission scanning electron microscopy combined with energy dispersive X-ray analysis (FESEM/EDS). The mineralogy of the three cokes was most notably distinguished by differing proportions of iron-bearing phases. During heat treatment and subsequent gasification, iron-containing minerals transformed to a range of minerals but predominantly iron-silicides and iron oxides, the relative amounts of which varied with heat treatment temperature and gasification conditions. The relationship between initial apparent reaction rate and the amount of catalytic iron minerals - pyrrhotite, metallic iron, and iron oxides - was linear and independent of heat treatment temperature at total catalyst levels below 1 wt %. The study showed that the coke reactivity decreased with increasing temperature of heat treatment due to decreased levels of catalytic iron minerals (largely due to formation of iron silicides) as well as increased ordering of the carbon structure. The study also showed that the importance of catalytic mineral matter in determining reactivity declines as gasification proceeds. 37 refs., 13 figs., 7 tabs.

  2. Spectroscopic and Kinetic Investigation of the Catalytic Mechanism of Tyrosine Hydroxylase

    E-Print Network [OSTI]

    Eser, Bekir Engin

    2011-02-22T23:59:59.000Z

    into the catalytic mechanism of this physiologically important enzyme. Analysis of the TyrH reaction by rapid freeze-quench M?ssbauer spectroscopy allowed the first direct characterization of an Fe(IV) intermediate in a mononuclear non- heme enzyme catalyzing... aromatic hydroxylation. Further rapid kinetic studies established the kinetic competency of this intermediate to be the long-postulated hydroxylating species, Fe(IV)O. Spectroscopic investigations of wild-type (WT) and mutant TyrH complexes using...

  3. PILLARED CLAYS AS SUPERIOR CATALYSTS FOR SELECTIVE CATALYTIC REDUCTION OF NITRIC OXIDE

    SciTech Connect (OSTI)

    R. Q. LONG; R.T. YANG

    1998-09-30T23:59:59.000Z

    Selective catalytic reduction (SCR) of NO{sub x} by hydrocarbons was investigated on Pt doped MCM-41 and copper ion and/or cerium ion-exchanged Al-MCM-41 in the presence of excess oxygen. It was found that Pt/MCM-41 provided the highest specific NO reduction rates as compared with other Pt doped catalysts reported in the literature, such as Pt/Al{sub 2}O{sub 3} and Pt/ZSM-5. For different hydrocarbons, the catalytic activity decreased according to the sequence of C{sub 3}H{sub 6} {approx} C{sub 2}H{sub 4} >> C{sub 3}H{sub 8} > CH{sub 4}. This catalyst was also stable in the presence of H{sub 2}O and SO{sub 2}. Cu exchanged Al-MCM-41 and cerium promoted Cu-Al-MCM-41 (i.e., Ce-Cu-Al-MCM-41) were also found to be active in this reaction. Higher NO{sub x} conversions to N2 were obtained on the Ce-Cu-Al-MCM-41 as compared with Cu-Al-MCM-41. The activity of Ce-Cu-Al-MCM-41 was approximately the same as that of Cu-ZSM-5; but the former had a wider temperature window. TPR results indicated that only isolated Cu{sup 2+} and Cu{sup +} ions were detected in the Cu{sup 2+}-exchanged Al-MCM-41 samples, which may play an important role in the selective catalytic reduction of NO{sub x} to N{sub 2}. After some cerium ions were introduced into Cu-Al-MCM-41, Cu{sup 2+} in the molecular sieve became more easily reducible by H{sub 2}. This may be related to the increase of catalytic activity of NO{sub x} reduction by ethylene.

  4. Cold flow tudy of a fluidized bed reactor for catalytic conversion of methanol to low molecular weight hydrocarbons

    E-Print Network [OSTI]

    Mehta, Shirish Ramniklal

    1982-01-01T23:59:59.000Z

    COLD FLOW STUDY OF A FLUIDIZED BED REACTOR FOR CATALYTIC CONVERSION OF METHANOL TO LOW MOLECULAR WEIGHT HYDROCAREONS A Thesis by SHIRISH RAMNIKLAL MEHTA Submitted to the Graduate College of Texas A&M University in partial fulfilment... of the requirement for the degree of MASTER OF SCIENCE March 1982 Major Subject: Chemical Engineering COLD FLOW STUDY OF A FLUIDIZED BED REACTOR FOR CATALYTIC CONVERSION OF METHANOL TO LOW MOLECULAR WEIGHT HYDROCARBON A Thesis by SHIRISH RAMNIKLAL MEHTA...

  5. Reaction rate kinetics for the non-catalytic hydrogenation of Texas lignite with tetralin and hydrogen gas

    E-Print Network [OSTI]

    Shumbera, David Allen

    1980-01-01T23:59:59.000Z

    REACTION RATE KINETICS FOR HE NON-CATALYTIC HYDROGENATION OF TEXAS LIGNITE WITH TETRALIN AND HYDROGEN GAS A Thesis by DAVID ALLEN SHUMBERA Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE May 1980 Major Subject: Chemical Engineering REACTION RATE KINETICS FOR THE NON-CATALYTIC HYDROGENATION OF TEXAS LIGNITE WITH TETRALIN AND HYDROGEN GAS A Thesis by DAVID ALLEN SHUMBERA Approved as to style and content...

  6. Carbon Dioxide Conversion to Valuable Chemical Products over Composite Catalytic Systems

    SciTech Connect (OSTI)

    Dagle, Robert A.; Hu, Jianli; Jones, Susanne B.; Wilcox, Wayne A.; Frye, John G.; White, J. F.; Jiang, Juyuan; Wang, Yong

    2013-05-01T23:59:59.000Z

    Presented is an experimental study on catalytic conversion of carbon dioxide into methanol, ethanol and acetic acid. Catalysts having different catalytic functions were synthesized and combined in different ways to enhance selectivity to desired products. The combined catalyst system possessed the following functions: methanol synthesis, Fischer-Tropsch synthesis, water-gas-shift and hydrogenation. Results showed that the methods of integrating these catalytic functions played important role in achieving desired product selectivity. It was speculated that if methanol synthesis sites were located adjacent to the C-C chain growth sites, the formation rate of C2 oxygenates would be enhanced. The advantage of using high temperature methanol catalyst PdZnAl in the combined catalyst system was demonstrated. In the presence of PdZnAl catalyst, the combined catalyst system was stable at temperature of 380oC. It was observed that, at high temperature, kinetics favored oxygenate formation. Results implied that the process can be intensified by operating at high temperature using Pd-based methanol synthesis catalyst. Steam reforming of the byproduct organics was demonstrated as a means to provide supplemental hydrogen. Preliminary process design, simulation, and economic analysis of the proposed CO2 conversion process were carried out. Economic analysis indicates how ethanol production cost was affected by the price of CO2 and hydrogen.

  7. Synthesis, Characterization, and Catalytic Oxygen Electroreduction Activities of Carbon-Supported PtW Nanoparticle Catalysts

    SciTech Connect (OSTI)

    Xiong, Liufeng [Honda Research Institute; More, Karren Leslie [ORNL; He, Ting [Honda Research Institute

    2010-01-01T23:59:59.000Z

    Carbon-supported PtW (PtW/C) alloy nanoparticle catalysts with well-controlled particle size, dispersion, and composition uniformity, have been synthesized by wet chemical methods of decomposition of carbonyl cluster complexes, hydrolysis of metal salts, and chemical reactions within a reverse microemulsion. The synthesized PtW/C catalysts were characterized by X-ray diffraction, high-resolution transmission electron microscopy, and energy-dispersive spectroscopy. The catalytic oxygen electroreduction activities were measured by the hydrodynamic rotating disk electrode technique in an acidic electrolyte. The influence of the synthesis method on PtW particle size, size distribution, composition uniformity, and catalytic oxygen electroreduction activity, have been investigated. Among the synthesis methods studied, PtW/C catalysts prepared by the decomposition of carbonyl cluster complexes displayed the best platinum mass activity for oxygen reduction reaction under the current small scale production; a 3.4-fold catalytic enhancement was achieved in comparison to a benchmark Pt/C standard.

  8. A microreactor array for spatially resolved measurement of catalytic activity for high-throughput catalysis science

    SciTech Connect (OSTI)

    Kondratyuk, Petro; Gumuslu, Gamze; Shukla, Shantanu; Miller, James B.; Morreale, Bryan D.; Gellman, Andrew J.

    2013-04-01T23:59:59.000Z

    We describe a 100 channel microreactor array capable of spatially resolved measurement of catalytic activity across the surface of a flat substrate. When used in conjunction with a composition spread alloy film (CSAF, e.g. Pd{sub x}Cu{sub y}Au{sub 1-x-y}) across which component concentrations vary smoothly, such measurements permit high-throughput analysis of catalytic activity and selectivity as a function of catalyst composition. In the reported implementation, the system achieves spatial resolution of 1 mm{sup 2} over a 10×10 mm{sup 2} area. During operation, the reactant gases are delivered at constant flow rate to 100 points of differing composition on the CSAF surface by means of a 100-channel microfluidic device. After coming into contact with the CSAF catalyst surface, the product gas mixture from each of the 100 points is withdrawn separately through a set of 100 isolated channels for analysis using a mass spectrometer. We demonstrate the operation of the device on a Pd{sub x}Cu{sub y}Au{sub 1-x-y} CSAF catalyzing the H{sub 2}-D{sub 2} exchange reaction at 333 K. In essentially a single experiment, we measured the catalytic activity over a broad swathe of concentrations from the ternary composition space of the Pd{sub x}Cu{sub y}Au{sub 1-x-y} alloy.

  9. A blurred interface formulation of The Reference Map Technique for Fluid-Solid Interactions and Fluid-Solid-Solid Interactions

    E-Print Network [OSTI]

    Valkov, Boris Ivanov

    2014-01-01T23:59:59.000Z

    In this work we present a blurred interface method for Fluid-Solid Interactions (FSI) and multiple solids immersed in a fluid or FSSI (Fluid-Solid-Solid Interactions) based on the reference map technique as presented by ...

  10. Evaluation of Biodiesel Fuels from Supercritical Fluid Processing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel Fuels from Supercritical Fluid Processing with the Advanced Distillation Curve Method Evaluation of Biodiesel Fuels from Supercritical Fluid Processing with the Advanced...

  11. Chemically Reactive Working Fluids for the Capture and Transport...

    Broader source: Energy.gov (indexed) [DOE]

    Specifically, the primary heat transfer fluid (HTF), which transmits the collected solar power to power cycle Evaluate Chemically Reacting Working Fluids (CRWFs) as HTFs...

  12. ITP Chemicals: Technology Roadmap for Computational Fluid Dynamics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fluid Dynamics, January 1999 ITP Chemicals: Technology Roadmap for Computational Fluid Dynamics, January 1999 cfdroadmap.pdf More Documents & Publications A Workshop to Identify...

  13. Gas Analysis Of Geothermal Fluid Inclusions- A New Technology...

    Open Energy Info (EERE)

    by this program can be applied to geothermal exploration, which may expand geothermal production. Knowledge of the gas contents in reservoir fluids can be applied to fluid...

  14. Variational Approach in Studying the Mixture of the Fluids: Transport ...

    E-Print Network [OSTI]

    Title: Variational Approach in Studying the Mixture of the Fluids: Transport and ... of the non-Newtonian complex fluids arise from the coupling and competing ...

  15. Development of Molten-Salt Heat Trasfer Fluid Technology for...

    Broader source: Energy.gov (indexed) [DOE]

    of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants, seeks to determine whether the inorganic fluids (molten salts) offer a sufficient...

  16. ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID INCLUSION...

    Open Energy Info (EERE)

    FLUID INCLUSION GAS ANALYSES Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID...

  17. Isotopic Analysis- Fluid At Dixie Valley Geothermal Area (Kennedy...

    Open Energy Info (EERE)

    geothermal resources with deep, fault hosted permeable fluid flow pathways and the helium Isotopic composition of the surface fluids. The authors suggest that helium isotopes...

  18. Investigation of injection-induced seismicity using a coupled fluid ...

    E-Print Network [OSTI]

    2012-01-23T23:59:59.000Z

    injection of fluid for the extraction of geothermal heat: Journal of Geo- physical ... earthquakes: Disposal of waste fluids into a deep well has triggered earth-.

  19. Application of Neutron Imaging and Scattering to Fluid Flow and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS...

  20. New fluid makes untapped geothermal energy cleaner | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fluid makes untapped geothermal energy cleaner New fluid makes untapped geothermal energy cleaner Released: April 17, 2015 Nontoxic solution could cut water use for enhanced...

  1. Working Fluids Low Global Warming Potential Refrigerants - 2013...

    Energy Savers [EERE]

    Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review Emerging Technologies...

  2. A STOCHASTIC METHOD FOR MODELING FLUID DISPLACEMENT IN PETROLEUM RESERVOIRS

    E-Print Network [OSTI]

    Anderson, C.

    2011-01-01T23:59:59.000Z

    FLUID DISPLACEMENT IN PETROLEUM RESERVOIRS C. Anderson andFLUID DISPLACEMENT IN PETROLEUM RESERVOIRS C. Anderson andachieve optimal recovery of petroleum from a reservoir, it

  3. Packing frustration in dense confined fluids

    E-Print Network [OSTI]

    Kim Nygĺrd; Sten Sarman; Roland Kjellander

    2014-09-04T23:59:59.000Z

    Packing frustration for confined fluids, i.e., the incompatibility between the preferred packing of the fluid particles and the packing constraints imposed by the confining surfaces, is studied for a dense hard-sphere fluid confined between planar hard surfaces at short separations. The detailed mechanism for the frustration is investigated via an analysis of the anisotropic pair distributions of the confined fluid, as obtained from integral equation theory for inhomogeneous fluids at pair correlation level within the anisotropic Percus-Yevick approximation. By examining the mean forces that arise from interparticle collisions around the periphery of each particle in the slit, we calculate the principal components of the mean force for the density profile - each component being the sum of collisional forces on a particle's hemisphere facing either surface. The variations of these components with the slit width give rise to rather intricate changes in the layer structure between the surfaces, but, as shown in this paper, the basis of these variations can be easily understood qualitatively and often also semi-quantitatively. It is found that the ordering of the fluid is in essence governed locally by the packing constraints at each single solid-fluid interface. A simple superposition of forces due to the presence of each surface gives surprisingly good estimates of the density profiles, but there remain nontrivial confinement effects that cannot be explained by superposition, most notably the magnitude of the excess adsorption of particles in the slit relative to bulk.

  4. Creating fluid injectivity in tar sands formations

    DOE Patents [OSTI]

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2012-06-05T23:59:59.000Z

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons including mobilized hydrocarbons are produced from the portion.

  5. Geothermal energy production with supercritical fluids

    DOE Patents [OSTI]

    Brown, Donald W.

    2003-12-30T23:59:59.000Z

    There has been invented a method for producing geothermal energy using supercritical fluids for creation of the underground reservoir, production of the geothermal energy, and for heat transport. Underground reservoirs are created by pumping a supercritical fluid such as carbon dioxide into a formation to fracture the rock. Once the reservoir is formed, the same supercritical fluid is allowed to heat up and expand, then is pumped out of the reservoir to transfer the heat to a surface power generating plant or other application.

  6. Creating fluid injectivity in tar sands formations

    DOE Patents [OSTI]

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2010-06-08T23:59:59.000Z

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons are produced from the portion.

  7. Elimination Of Catalytic Hydrogen Generation In Defense Waste Processing Facility Slurries

    SciTech Connect (OSTI)

    Koopman, D. C.

    2013-01-22T23:59:59.000Z

    Based on lab-scale simulations of Defense Waste Processing Facility (DWPF) slurry chemistry, the addition of sodium nitrite and sodium hydroxide to waste slurries at concentrations sufficient to take the aqueous phase into the alkaline region (pH > 7) with approximately 500 mg nitrite ion/kg slurry (assuming <25 wt% total solids, or equivalently 2,000 mg nitrite/kg total solids) is sufficient to effectively deactivate the noble metal catalysts at temperatures between room temperature and boiling. This is a potential strategy for eliminating catalytic hydrogen generation from the list of concerns for sludge carried over into the DWPF Slurry Mix Evaporator Condensate Tank (SMECT) or Recycle Collection Tank (RCT). These conclusions are drawn in large part from the various phases of the DWPF catalytic hydrogen generation program conducted between 2005 and 2009. The findings could apply to various situations, including a solids carry-over from either the Sludge Receipt and Adjustment Tank (SRAT) or Slurry Mix Evaporator (SME) into the SMECT with subsequent transfer to the RCT, as well as a spill of formic acid into the sump system and transfer into an RCT that already contains sludge solids. There are other potential mitigating factors for the SMECT and RCT, since these vessels are typically operated at temperatures close to the minimum temperatures that catalytic hydrogen has been observed to occur in either the SRAT or SME (pure slurry case), and these vessels are also likely to be considerably more dilute in both noble metals and formate ion (the two essential components to catalytic hydrogen generation) than the two primary process vessels. Rhodium certainly, and ruthenium likely, are present as metal-ligand complexes that are favored under certain concentrations of the surrounding species. Therefore, in the SMECT or RCT, where a small volume of SRAT or SME material would be significantly diluted, conditions would be less optimal for forming or sustaining the catalytic ligand species. Such conditions are likely to adversely impact the ability of the transferred mass to produce hydrogen at the same rate (per unit mass SRAT or SME slurry) as in the SRAT or SME vessels.

  8. Tunable Dipolar Capillary Deformations for Magnetic Janus Particles at Fluid-Fluid Interfaces

    E-Print Network [OSTI]

    Qingguang Xie; Gary B. Davies; Florian Günther; Jens Harting

    2015-03-12T23:59:59.000Z

    Janus particles have attracted significant interest as building blocks for complex materials in recent years. Furthermore, capillary interactions have been identified as a promising tool for directed self-assembly of particles at fluid-fluid interfaces. In this paper, we develop theoretical models describing the behaviour of magnetic Janus particles adsorbed at fluid-fluid interfaces interacting with an external magnetic field. Using numerical simulations, we test the models predictions and show that the magnetic Janus particles deform the interface in a dipolar manner. We suggest how to utilise the resulting dipolar capillary interactions to assemble particles at a fluid-fluid interface, and further demonstrate that the strength of these interactions can be tuned by altering the external field strength, opening up the possibility to create novel, reconfigurable materials.

  9. Tunable Dipolar Capillary Deformations for Magnetic Janus Particles at Fluid-Fluid Interfaces

    E-Print Network [OSTI]

    Xie, Qingguang; Günther, Florian; Harting, Jens

    2015-01-01T23:59:59.000Z

    Janus particles have attracted significant interest as building blocks for complex materials in recent years. Furthermore, capillary interactions have been identified as a promising tool for directed self-assembly of particles at fluid-fluid interfaces. In this paper, we develop theoretical models describing the behaviour of magnetic Janus particles adsorbed at fluid-fluid interfaces interacting with an external magnetic field. Using numerical simulations, we test the models predictions and show that the magnetic Janus particles deform the interface in a dipolar manner. We suggest how to utilise the resulting dipolar capillary interactions to assemble particles at a fluid-fluid interface, and further demonstrate that the strength of these interactions can be tuned by altering the external field strength, opening up the possibility to create novel, reconfigurable materials.

  10. Using Nanotechnology in Viscoelastic Surfactant Stimulation Fluids

    E-Print Network [OSTI]

    Gurluk, Merve Rabia 1986-

    2012-11-12T23:59:59.000Z

    Viscoelastic surfactant (VES) fluids are preferred for many applications in the oil industry. Their viscoelastic behavior is due to the overlap and entanglement of very long wormlike micelles. The growth of these wormlike micelles depends...

  11. Variational Methods for Computational Fluid Dynamics

    E-Print Network [OSTI]

    Alouges, François

    .2.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.2 Going back-structure interactions 35 4.1 A non deformable solid in a fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6 Stokes equations 49 6.1 Mixed finite

  12. Fluid Bed Combustion Applied to Industrial Waste

    E-Print Network [OSTI]

    Mullen, J. F.; Sneyd, R. J.

    Because of its unique ability to handle a wide variety of liquids and solids in an energy efficient and environmentally acceptable manner, fluid bed combustion is being increasingly applied to the utilization of waste materials and low grade fuels...

  13. THE UNIVERSITY OF MANCHESTER FLUID MECHANICS

    E-Print Network [OSTI]

    Glendinning, Paul

    (i.e. fluid) particle. Use these facts to deduce two equations involving the unknowns f equilibrium under constant gravitational accel- eration g, i.e. F = (0, 0, -g). At `sea-level' z = 0 (z being

  14. Reactive flash volatilization of fluid fuels

    DOE Patents [OSTI]

    Schmidt, Lanny D.; Dauenhauer, Paul J.; Dreyer, Bradon J.; Salge, James R.

    2013-01-08T23:59:59.000Z

    The invention provides methods for the production of synthesis gas. More particularly, various embodiments of the invention relate to systems and methods for volatilizing fluid fuel to produce synthesis gas by using a metal catalyst on a solid support matrix.

  15. Fluid Dynamics in Sucker Rod Pumps

    SciTech Connect (OSTI)

    Cutler, R.P.; Mansure, A.J.

    1999-01-14T23:59:59.000Z

    Sucker rod pumps are installed in approximately 90% of all oil wells in the U.S. Although they have been widely used for decades, there are many issues regarding the fluid dynamics of the pump that have not been fully investigated. A project was conducted at Sandia National Laboratories to develop unimproved understanding of the fluid dynamics inside a sucker rod pump. A mathematical flow model was developed to predict pressures in any pump component or an entire pump under single-phase fluid and pumping conditions. Laboratory flow tests were conducted on instrumented individual pump components and on a complete pump to verify and refine the model. The mathematical model was then converted to a Visual Basic program to allow easy input of fluid, geometry and pump parameters and to generate output plots. Examples of issues affecting pump performance investigated with the model include the effects of viscosity, surface roughness, valve design details, plunger and valve pressure differentials, and pumping rate.

  16. Applied Fluid Mechanics I) Course goals

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    design. #12;2 Textbook " Applied Fluid Mechanics" by Robert L. Mott, Sixth Edition in SI unit 1 Exam 30 Final Exam 30 (Total of 100) (30%)(&10%) () PDF lecture notes if any can be downloaded from

  17. Heat-Traced Fluid Transfer Lines

    E-Print Network [OSTI]

    Schilling, R. E.

    1984-01-01T23:59:59.000Z

    HEAT-TRACED FLUID TRANSFER LINES Robert E. Schilling, P.E. Eaton Corporation Aurora, Ohio This paper discusses basic considerations in designing a heat tracing system using either steam or electrical tracing. Four basic reasons to heat...

  18. Recovery Act-Funded Working Fluid Projects

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy was allocated funding from the American Recovery and Reinvestment Act to conduct research into working fluid technologies and applications. Projects funded by the...

  19. High gliding fluid power generation system with fluid component separation and multiple condensers

    DOE Patents [OSTI]

    Mahmoud, Ahmad M; Lee, Jaeseon; Radcliff, Thomas D

    2014-10-14T23:59:59.000Z

    An example power generation system includes a vapor generator, a turbine, a separator and a pump. In the separator, the multiple components of the working fluid are separated from each other and sent to separate condensers. Each of the separate condensers is configured for condensing a single component of the working fluid. Once each of the components condense back into a liquid form they are recombined and exhausted to a pump that in turn drives the working fluid back to the vapor generator.

  20. A LAGRANGIAN-EULERIAN SHELL-FLUID COUPLING ALGORITHM BASED ON LEVEL

    E-Print Network [OSTI]

    Cirak, Fehmi

    is demonstrated with an airbag deployment simulation. Key words: shell, fluid, shell-fluid interaction, finite

  1. Stirling engine with air working fluid

    SciTech Connect (OSTI)

    Corey, J. A.

    1985-08-06T23:59:59.000Z

    A Stirling engine capable of utilizing air as a working fluid which includes a compact heat exchange module which includes heating tube units, regenerator and cooler positioned about the combustion chamber. This arrangement has the purpose and effect of allowing the construction of an efficient, high-speed, high power-density engine without the use of difficult to seal light gases as working fluids.

  2. Control system for fluid heated steam generator

    DOE Patents [OSTI]

    Boland, James F. (Bonneville County, ID); Koenig, John F. (Idaho Falls, ID)

    1985-01-01T23:59:59.000Z

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  3. Moment of Fluid Interface Reconstruction with Filaments

    SciTech Connect (OSTI)

    Jemison, Matthew B. [Los Alamos National Laboratory

    2012-08-15T23:59:59.000Z

    A moving system made up of multiple fluids (e.g. air and water) may be defined by an evolving interface with a changing topology. MOF uses a piecewise linear interface reconstruction to numerically model deforming boundaries. Given a volume fraction V and reference centroid x for a material in cell {Omega}, we seek to find an interface {Gamma} that exactly captures V and minimizes error in x. This differs from Volume of Fluid methods.

  4. Viscosity of High Energy Nuclear Fluids

    E-Print Network [OSTI]

    V. Parihar; A. Widom; D. Drosdoff; Y. N. Srivastava

    2007-03-15T23:59:59.000Z

    Relativistic high energy heavy ion collision cross sections have been interpreted in terms of almost ideal liquid droplets of nuclear matter. The experimental low viscosity of these nuclear fluids have been of considerable recent quantum chromodynamic interest. The viscosity is here discussed in terms of the string fragmentation models wherein the temperature dependence of the nuclear fluid viscosity obeys the Vogel-Fulcher-Tammann law.

  5. Control system for fluid heated steam generator

    DOE Patents [OSTI]

    Boland, J.F.; Koenig, J.F.

    1984-05-29T23:59:59.000Z

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  6. Nanoparticle enhanced ionic liquid heat transfer fluids

    DOE Patents [OSTI]

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12T23:59:59.000Z

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  7. Fluid driven torsional dipole seismic source

    DOE Patents [OSTI]

    Hardee, Harry C. (Albuquerque, NM)

    1991-01-01T23:59:59.000Z

    A compressible fluid powered oscillating downhole seismic source device capable of periodically generating uncontaminated horizontally-propagated, shear waves is provided. A compressible fluid generated oscillation is created within the device which imparts an oscillation to a housing when the device is installed in a housing such as the cylinder off an existing downhole tool, thereby a torsional seismic source is established. Horizontal waves are transferred to the surrounding bore hole medium through downhole clamping.

  8. Stirling engine with air working fluid

    DOE Patents [OSTI]

    Corey, John A. (North Troy, NY)

    1985-01-01T23:59:59.000Z

    A Stirling engine capable of utilizing air as a working fluid which includes a compact heat exchange module which includes heating tube units, regenerator and cooler positioned about the combustion chamber. This arrangement has the purpose and effect of allowing the construction of an efficient, high-speed, high power-density engine without the use of difficult to seal light gases as working fluids.

  9. Anisotropic surface tension of buckled fluid membrane

    E-Print Network [OSTI]

    Hiroshi Noguchi

    2011-06-01T23:59:59.000Z

    Solid sheets and fluid membranes exhibit buckling under lateral compression. Here, it is revealed that fluid membranes have anisotropic buckling surface tension contrary to solid sheets. Surprisingly, the surface tension perpendicular to the buckling direction shows stronger dependence than that parallel to it. Our theoretical predictions are supported by numerical simulations of a meshless membrane model. This anisotropic tension can be used to measure the membrane bending rigidity. It is also found phase synchronization occurs between multilayered buckled membranes.

  10. Effective interactions between fluid membranes

    E-Print Network [OSTI]

    Bing-Sui Lu; Rudolf Podgornik

    2015-05-01T23:59:59.000Z

    A self-consistent theory is proposed for the general problem of interacting undulating fluid membranes subject to the constraint that they do not interpenetrate. The steric constraint is implemented via a representation of the Heaviside function, which enables one to transform it into a novel effective steric potential. The steric potential is found to consist of two contributions: one generated by zero mode fluctuations of the membranes, and the other by thermal bending fluctuations. For membranes of cross-sectional area $S$, we find that the bending fluctuation part scales with the inter-membrane separation $d$ as $d^{-2}$ for $d \\ll \\sqrt{S}$, but crosses over to $d^{-4}$ scaling for $d \\gg \\sqrt{S}$, whereas the zero mode part of the steric potential always scales as $d^{-2}$. For membranes interacting exclusively via the steric potential, we obtain exact nonlinear expressions for the effective interaction potential and for the rms undulation amplitude $\\sigma$, which becomes small at low temperatures $T$ and/or large bending stiffnesses $\\kappa$. Moreover, $\\sigma$ scales as $d$ for $d \\ll \\sqrt{S}$, but saturates at $\\sqrt{k_{{\\rm B}} T S/\\kappa}$ for $d \\gg \\sqrt{S}$. In addition, using variational Gaussian theory, we apply our self-consistent treatment to study inter-membrane interactions subject to three different types of potential: (i)~the Moreira-Netz potential for a pair of strongly charged membranes with an intervening solution of multivalent counterions, (ii)~an attractive square well, (iii)~the Morse potential, and (iv)~a combination of hydration and van der Waals interactions.

  11. Pump for molten metal or other fluid

    DOE Patents [OSTI]

    Horton, James A. (Livermore, CA); Brown, Donald L. (Livermore, CA)

    1994-01-01T23:59:59.000Z

    A pump having no moving parts which can be used to pump high temperature molten metal or other fluids in a vacuum or low pressure environment, and a method for pumping such fluids. The pump combines elements of a bubble pump with a trap which isolates the vacuum or low pressure region from the gas used to create the bubbles. When used in a vacuum the trap prevents the pumping gas from escaping into the isolated region and thereby reducing the quality of the vacuum. The pump includes a channel in which a pumping gas is forced under pressure into a cavity where bubbles are formed. The cavity is in contact with a reservoir which contains the molten metal or other fluid which is to be pumped. The bubbles rise up into a column (or pump tube) carrying the fluid with them. At the top of the column is located a deflector which causes the bubbles to burst and the drops of pumped fluid to fall into a trap. The fluid accumulates in the trap, eventually forcing its way to an outlet. A roughing pump can be used to withdraw the pumping gas from the top of the column and assist with maintaining the vacuum or low pressure environment.

  12. Fossil evidence for serpentinization fluids fueling chemosynthetic assemblages

    E-Print Network [OSTI]

    Demouchy, Sylvie

    Fossil evidence for serpentinization fluids fueling chemosynthetic assemblages Franck Lartauda,b,1 years, Lost City on the Mid-Atlantic Ridge (MAR) is remarkable both for its alkaline fluids derived from these fluids. Despite high concentrations of reduced chemicals in the fluids, this unique example of a serpenti

  13. Waste Heat Recovery Using a Circulating Heat Medium Loop

    E-Print Network [OSTI]

    Manning, E., Jr.

    1981-01-01T23:59:59.000Z

    by a circulating heat medium loop where waste heat is recovered for useful purposes. The heat medium chosen is turbine fuel. It is pumped around the refinery to pick up heat at the crude distilling unit, the hydrocracker, the catalytic cracker...

  14. Dendrimer Templated Synthesis of One Nanometer Rh and Pt Particles Supported on Mesoporous Silica: Catalytic Activity for Ethylene and Pyrrole Hydrogenation.

    E-Print Network [OSTI]

    Huang, Wenyu

    2009-01-01T23:59:59.000Z

    Scheme 2) and pyrrole hydrogenation (Scheme 3). Synthesis ofSynthesis of One Nanometer Rh and Pt Particles Supported on Mesoporous Silica: Catalytic Activity for Ethylene and Pyrrole

  15. Exergy & Economic Analysis of Catalytic Coal Gasifiers Coupled with Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Siefert, Nicholas; Litster, Shawn

    2012-01-01T23:59:59.000Z

    The National Energy Technology Laboratory (NETL) has undertaken a review of coal gasification technologies that integrate with solid oxide fuel cells (SOFC) to achieve system efficiencies near 60% while capturing and sequestering >90% of the carbon dioxide. One way to achieve an overall system efficiency of greater than 60% is in a power plant in which a catalytic coal gasifier produces a syngas with a methane composition of roughly 25% on a dry volume basis and this is sent to a SOFC, with CO{sub 2} capture occurring either before or after the SOFC. Integration of a catalytic gasifier with a SOFC, as opposed to a conventional entrained flow gasifier, is improved due to (a) decreased exergy destruction inside a catalytic, steam-coal gasifier producing a high-methane content syngas, and (b) decreased exergy destruction in the SOFC due to the ability to operate at lower air stoichiometric flow ratios. For example, thermal management of the SOFC is greatly improved due to the steam-methane reforming in the anode of the fuel cell. This paper has two main goals. First, we converted the levelized cost of electricity (LCOE) estimates of various research groups into an average internal rate of return on investment (IRR) in order to make comparisons between their results, and to underscore the increased rate of return on investment for advanced integrated gasification fuel cell systems with carbon capture & sequestration (IGFC-CCS) compared with conventional integrated gasification combined cycle (IGCC-CCS) systems and pulverized coal combustion (PCC-CCS) systems. Using capital, labor, and fuel costs from previous researchers and using an average price of baseload electricity generation of $61.50 / MW-hr, we calculated inflation-adjusted IRR values of up to 13%/yr for catalytic gasification with pressurized fuel cell and carbon dioxide capture and storage (CCS), whereas we calculate an IRR of ?4%/yr and ?2%/yr for new, conventional IGCC-CCS and PCC-CCS, respectively. If the carbon dioxide is used for enhanced oil recovery rather than for saline aquifer storage, then the IRR values improve to 16%/yr, 10%/yr, and 8%/yr, respectively. For comparison, the IRR of a new conventional IGCC or PCC power plant without CO{sub 2} capture are estimated to be 11%/yr and 15.0%/yr, respectively. Second, we conducted an exergy analysis of two different configurations in which syngas from a catalytic gasifier fuels a SOFC. In the first case, the CO{sub 2} is captured before the SOFC, and the anode tail gas is sent back to the catalytic gasifier. In the second case, the anode tail gas is oxy-combusted using oxygen ion ceramic membranes and then CO{sub 2} is captured for sequestration. In both cases, we find that the system efficiency is greater than 60%. These values compare well with previous system analysis. In future work, we plan to calculate the IRR of these two cases and compare with previous economic analyses conducted at NETL.

  16. Formic Acid Free Flowsheet Development To Eliminate Catalytic Hydrogen Generation In The Defense Waste Processing

    SciTech Connect (OSTI)

    Lambert, Dan P.; Stone, Michael E.; Newell, J. David; Fellinger, Terri L.; Bricker, Jonathan M.

    2012-09-14T23:59:59.000Z

    The Defense Waste Processing Facility (DWPF) processes legacy nuclear waste generated at the Savannah River Site (SRS) during production of plutonium and tritium demanded by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass canisters is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. Testing was initiated to determine whether the elimination of formic acid from the DWPF's chemical processing flowsheet would eliminate catalytic hydrogen generation. Historically, hydrogen is generated in chemical processing of alkaline High Level Waste sludge in DWPF. In current processing, sludge is combined with nitric and formic acid to neutralize the waste, reduce mercury and manganese, destroy nitrite, and modify (thin) the slurry rheology. The noble metal catalyzed formic acid decomposition produces hydrogen and carbon dioxide. Elimination of formic acid by replacement with glycolic acid has the potential to eliminate the production of catalytic hydrogen. Flowsheet testing was performed to develop the nitric-glycolic acid flowsheet as an alternative to the nitric-formic flowsheet currently being processed at the DWPF. This new flowsheet has shown that mercury can be reduced and removed by steam stripping in DWPF with no catalytic hydrogen generation. All processing objectives were also met, including greatly reducing the Slurry Mix Evaporator (SME) product yield stress as compared to the baseline nitric/formic flowsheet. Ten DWPF tests were performed with nonradioactive simulants designed to cover a broad compositional range. No hydrogen was generated in testing without formic acid.

  17. Aluminosilicates as controlled molecular environments for selective photochemical and catalytic reactions

    SciTech Connect (OSTI)

    Carrado, K.A.

    1986-01-01T23:59:59.000Z

    This dissertation concerns research that involves photochemical, catalytic and spectroscopic studies of clays, pillared clays and zeolites. Incorporation of uranyl ions into hectorite, montmorillonite, bentonite and vermiculite clays was monitored by XRD and luminescence methods. Excitation and emission characteristics were studied in order to understand the behavior of uranyl ions in clays after various thermal treatments. Luminescence lifetime measurements elucidated the number of uranyl sites. Uranyl-exchanged clays were found to absorb light at lower energies (445-455nm) than analogous uranyl-exchanged zeolites (425nm). Each uranyl-exchanged clay was tested as a catalyst for the photoassisted oxidation of isopropyl alcohol. Energy transfer (ET) between uranyl and Eu(III) ions in different zeolite framework systems was examined. The efficiency of ET (eta/sub t/) was found to be affected by the type of framework present. Pillared bentonites were examined in the hydrocracking of decane. A catalytically and spectroscopically active dopant ion, Cr(III), was introduced into the clays in both pillared and unpillared forms depending upon synthetic conditions. EPR and DRS were employed to monitor the environment of Cr(III) for determination of its location - whether in the micropore structure or associated with alumina pillars. Catalytic behavior based upon this variability of location was examined. Incorporation of Cr(III) ions into an alumina pillar was found to increase the stability and activity with respect to an alumina PILC catalyst. The results of these studies suggest that selective, efficient catalysts can be designed around inorganic ions in aluminosilicate supports.

  18. Final Report: Catalytic Hydrocarbon Reactions over Supported Metal Oxides, August 1, 1995 - July 31, 1999

    SciTech Connect (OSTI)

    Ekerdt, John G.

    1999-07-31T23:59:59.000Z

    The research program focused on the catalysis of hydrodesulfurization (HDS) over molybdenum-based catalysts and how catalyst composition, redox ability, structure and neighboring sites control the catalytic properties of metal oxides. We sought to understand the catalytic features/sites that control hydrogenation, hydrogenolysis, and isomerization during HDS. Unprompted silica-supported molybdenum oxides and molybdenum sulfides were studied. Model catalyst systems were prepared from organometallic precursors or cluster compounds to generate supported structures that feature Mo(II) and Mo(IV) cations that are isolated or in ensembles and that have either Mo-O or Mo-S bonds. Conventional MOS{sub 2} catalysts, which contain both edge and rim sites, were be studied. Finally, single-layer MOS{sub 2} structures were also prepared from 2H-MoS{sub 2} powder so that the model systems could be compared against a disulfide catalyst that only involves rim sites. Catalytic reactions for thiophene and tetrahydrothione were studied over the various catalysts. Oxidation states were determined using X-ray photoelectron spectroscopy. X-ray crystallography was used to characterize and follow changes in the MOS{sub 2} structures. The program on metal oxides prepared supported oxides that have a specific structure and oxidation state to serve as model templates for the more complex commercial catalysts and then employed these structures in reaction studies. This focus area examined the relationships between structure and cation redox characteristics in oxidation catalysis. Infrared and Raman spectroscopy were used to characterize the cations and reaction intermediates.

  19. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    SciTech Connect (OSTI)

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12T23:59:59.000Z

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  20. CHARACTERIZATION OF CATALYTIC COMBUSTOR TURBULENCE AND ITS INFLUENCE ON VANE AND ENDWALL HEAT TRANSFER AND ENDWALL FILM COOLING

    SciTech Connect (OSTI)

    Forrest E. Ames

    2002-10-01T23:59:59.000Z

    Endwall heat transfer distributions taken in a large-scale low speed linear cascade facility are documented for mock catalytic and dry low NOx (DLN) combustion systems. Inlet turbulence levels range from about 1.0 percent for the mock Catalytic combustor condition to 14 percent for the mock dry low NOx combustor system. Stanton number contours are presented at both turbulence conditions for Reynolds numbers based on true chord length and exit conditions ranging from 500,000 to 2,000,000. Catalytic combustor endwall heat transfer shows the influence of the complex three-dimensional flow field, while the effects of individual vortex systems are less evident for the mock dry low NOx cases. Turbulence scales have been documented for both cases. Inlet boundary layers are relatively thin for the mock catalytic combustor case while inlet flow approximates a channel flow with high turbulence for the mock DLN combustor case. Inlet boundary layer parameters are presented across the inlet passage for the three Reynolds numbers and both the mock catalytic and DLN combustor inlet cases. Both midspan and 95 percent span pressure contours are included. This research provides a well-documented database taken across a range of Reynolds numbers and turbulence conditions for assessment of endwall heat transfer predictive capabilities.